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ABSTRACT

Statistical learning theory has garnered attention during the last decade because it pro-

vides the theoretical and mathematical framework for solving pattern recognition problems,

such as dimensionality reduction, clustering, and shape analysis. In statistical learning,

a generative model is a fully probabilistic model of observed data and latent variables

with important properties, including compact representations, parameter estimation and

subsequent statistical analysis, and the ability to induce classifications on unseen data. This

dissertation proposes new generative approaches for 1) learning in kernel feature space, 2)

learning via the semisupervised approach, and 3) learning from shape data.

This dissertation first proposes a new statistical tool, kernel principal geodesic anal-

ysis, for hyperspherical statistical analysis in kernel feature space, including algorithms

for computing the sample-weighted Karcher mean and eigenanalysis of the sample-weighted

Karcher covariance. It then applies these tools to advance novel methods for dimensionality

reduction and clustering. Second, this dissertation proposes a novel generative framework

for multigroup shape analysis relying on a hierarchical generative shape model on shapes

within a population. The framework represents individual shapes as point sets modulo

translation, rotation, and scale, following the notion in Kendall shape space. Whereas

individual shapes are derived from their group shape model, each group shape model is

derived from a single population shape model. The hierarchical model follows the natural

organization of population data, and the top level in the hierarchy provides a common frame

of reference for multigroup shape analysis. Lastly, this dissertation proposes a principled

generative approach, generative model with pairwise relationships, to probabilistically model

the joint distribution given by user-defined pairwise relations between data points (e.g.,

pairs of data points belonging to the same class or different classes) to remarkably improve

the performance of unsupervised clustering. The proposed model accounts for general

underlying distributions without assuming a specific form.
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CHAPTER 1

INTRODUCTION

The focus of this dissertation is the automatic recognition of patterns from data. Many

types of algorithms have been proposed to understand the regularities in data, including non-

parametric methods and neural networks. In this dissertation, I primarily focus on statistical

learning theory and its subcategory, the generative model learning algorithms. Statistical

learning-based methods perform consistently over time and provide a useful benchmark for

measuring efficiency. Furthermore, statistical methods provide a theoretical approach to

data analysis, where data/information is presented and organized in an analytical manner.

The works in this dissertation use generative models for solving the pattern recognition

problems: dimensionality reduction, clustering, and shape analysis.

1.1 Statistical Learning Theory Using Generative Models

Statistical learning theory has garnered attention in several research areas, such as

computer vision [1], [2], biology [3], [4], financial analysis [5], and petroleum exploration [6].

It contributes the probability theory and the statistical aspects of pattern recognition, which

aim to discover the structure of data while classifing the data into different categories.

Probability theory and statistics are useful as a more theoretical approach to forecasting

(i.e., prediction). They further facilitate the evaluation of work performance (e.g., null

hypothesis testing). Statistical learning generally involves 1) learning patterns from data, 2)

building the predictive function or statistical model based on the patterns, and 3) predicting

unknown data via the model we have learned.

In statistical learning, a generative model is a fully probabilistic model of all variables.

It is different from a discriminative model, which evaluates only the target value y (i.e.,

all possible outputs) conditional upon the observed variable x. Because discriminative

models directly optimize the conditional prediction P (y|x), they often outperform gener-

ative models in classification tasks. However, numerous studies have demonstrated that

discriminative models that are not carefully regularized may be outperformed by simple
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generative models (e.g., naive Bayes) [7]–[11]. Further, if the size of the training data is

not large enough, a good performance of the training data will not guarantee the recurrence

of future testing data, i.e., learned discriminative models easily overfit the training data.

Lastly, most discriminative models are supervised, which means that without labeled data,

it is impossible to train the model.

Generative models define the joint probability density function P (x, y) over both the

observed variable x and latent variable y, which is not observed directly but can be inferred

from the observed variable. By assuming a parametric form for the underlying distribution

that generates the data in each class, a generative model has some advantages over a

discriminative model. First, a generative model not only can more precisely describe the

relation between the observed variable and the target value (i.e., the latent variable) but

also sample any other variables in the model. Second, a generative model can often perform

better than a discriminative model on a small set of training data, because the model trains

the joint probability density function P (x, y), in which the marginal step (i.e., marginal

probability P (x) =
∑

y P (x, y)) is treated essentially as a regularizer and hence can avoid

the overfitting problem [12]. Third, labeled data may be expensive or difficult to obtain

in some research areas (e.g., medical imaging analysis). Unlike a discriminative model, a

generative model can be used for unsupervised learning, i.e., labeled data are not required.

Fourth, a generative model is an induction that learns a model based on data from the

problem space. The model is further used to test new data, which can be any data point

in that space (i.e., reasoning from training data to a general rule). Another advantage of a

generative model is that it includes latent variables that allow more complex distributions

to be formed from a simplistic model.

This dissertation proposes generative models for a more efficient and principled way to

drive the latent variable during learning, which focuses on the applications in clustering

and statistical shape analysis. This dissertation also proposes a statistical analysis tool for

feature extraction: dimensionality reduction, which is a standard preprocessing step that

extracts features of interest from the data and can be computationally efficient.

1.2 Motivation

This dissertation focuses on the problem of processing data and identifying data that

belong to a set of categories, classified according to learned regularities in the data. There-

fore, this dissertation deals with finding a predictive function (or model) and assigning a

label to the data. For example, if I want to build a computer-aided diagnosis (CAD) tool to

evaluate a patient suspected of having a tumor via an x-ray image, I first need a collection
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of x-ray images (i.e., training data) that have been labeled +1 (i.e., healthy) or −1 (i.e., has

a tumor) by a medical doctor. The set of training data is used to build a statistical model

that performs a predictive function through a learning phase. Once the system has been

trained, it then is able to take any new patient’s x-ray image as input x (i.e., testing data)

and produce the target value f(x) = y, where y = {+1,−1} through a generalization phase.

In addition, a successful inference is based on a statistical assumption. The assumption from

the x-ray images could be that both training data and testing data are drawn independently

from an identical distribution (e.g., an identical population). In other words, all the x-ray

images are collected from patients who show a common set of relevant characteristics (e.g.,

demographics).

We can consider again the above medical imaging analysis example to examine the

problem in more detail. In order to learn the complex medical images more efficiently, we

can first extract a distinct feature to represent the interesting parts of an image instead

of using the entire image (a.k.a., dimensionality reduction). Afterwards, we can group the

images into the different clusters that are used to recognize the similarity between the images

within the same/different cluster (a.k.a., clustering). Last, because in this case the data are

an image, the geometrical properties of the shape of the tumor can be used as landmarks

for the analysis (a.k.a., statistical shape analysis). In the following subsections, I further

discuss the motivation for 1) dimensionality reduction, 2) clustering, and 3) statistical shape

analysis.

1.2.1 Dimensionality Reduction

Dimensionality reduction aims to transform the data from a high-dimensional space

to a lower dimensional space, in which data have a less noisy and more interpretable

representation; hence, learning problems can be solved more efficiently. Fig. 1.1 provides an

example of why dimensional reduction is important in statistical learning. The grayscale

face image always lies in the space in which the dimension is equal to a large number of

pixels; however, the underlying structure of the face image could be related to only a small

number of parameters, such as different camera angles, pose angles, lighting conditions,

and facial expressions. Therefore, the dimensional reduction step captures the invariant

data via fewer variables, and it makes the next step, image analysis, more efficient and

tractable. In addition to the challenge of space complexity, time complexity can also be

a problem in the analysis of data in high-dimensional space because of the greater cost

of computation. Therefore, dimensionality reduction allows the inference to have a lower

computation cost with fewer variables. Dimensional reduction is also helpful for utility
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Fig. 1.1. Illustration of dimensionality reduction: Each point indicates a face image.
The red line represents the lower-dimensional space that captures the different lighting
conditions (YALE face image dataset [13]).

performance in statistical learning since it avoids the overfitting problem.

Principal component analysis (PCA) is one of the most popular dimensionality reduction

algorithms. PCA is based on finding the principal components that are drawn on the

sequentially orthogonal components with the largest variances, which are particularly useful

in statistical learning. In 1998, an extension of linear principal component analysis was pro-

posed: kernel principal component analysis (KPCA). KPCA is a nonlinear dimensionality

reduction technique. The theory behind KPCA is to perform PCA in kernel feature space

using the kernel method. Conventionally, KPCA relies on Euclidean statistics in kernel

feature space. However, Euclidean analysis can make KPCA inefficient or incorrect for many

popular kernels that map input points to a hypersphere in the kernel feature space. Thus,

this dissertation proposes a novel adaptation of KPCA, namely kernel principal geodesic

analysis, for hyperspherical statistical analysis in kernel feature space. The proposed kernel

principal geodesic analysis is therefore able to describe the data more meaningfully and be

used as a statistical tool for applications such as dimensionality reduction and clustering.

1.2.2 Clustering

In statistical learning, the two major subclasses are supervised learning (i.e., classifica-

tion) and unsupervised learning (i.e., clustering). The goal of supervised classification is to

learn directly from a set of training data (i.e., labeled data) and assign the testing data

to a predefined class. Unsupervised clustering aims to group a set of data into different

clusters based on the similarities of the data. Unlike the supervised classification problem,

the clustering model is derived from data without labeled information. Thus, clustering

groups the data instead of labeling the data. The unsupervised clustering algorithm can,

therefore, serve as a tool to provide meaningful insights into the structure of the data. To

explain the importance of clustering, I list some applications:
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• Image segmentation [1], [2]: Image segmentation aims to divide an image into mul-

tiple segments that are more useful for further analysis, a very important preprocess

for medical imaging analysis, image retrieval, or object tracking. The framework for

clustering in image segmentation is to partition pixels into several clusters.

• Biology [3], [4]: Clustering is an important tool in bioinformatics. One of the

applications of clustering in bioinformatics is to group homologous sequences into

different clusters. This clustering is then used to understand the function or evolution

of DNA or RNA.

• Business [5]: Business modeling uses clustering analysis to recognize, for example,

groups of people with similar behaviors in order to conduct market segmentation or

develop new products.

• Sports analysis [14], [15]: The goal of sports analysis is to evaluate the performance

of the professional team or individual player. The sports analyst employs clustering

as a tool to segment players into different clusters, which is useful information for

negotiating a contract or designing tactics.

Clustering can also be categorized as a generative or a discriminative approach. Because

a generative assumption is made to model the data and their underlying distribution, the

goal of a generative approach is to find the optimal parameters to maximize the probability

(i.e., likelihood) of the data given the model. Moreover, a generative clustering model can

be viewed as distribution-based clustering, which provides probability information about

the data. In contrast, in a discriminative clustering model (e.g., graph-based clustering),

the algorithms try to learn from relationships (e.g., pairwise) over the set of input data, so

they typically do not rely on the underlying parametric form of the distribution. In this

dissertation, I focus on clustering using a generative model.

Recently, many studies have indicated that the performance of statistical learning sig-

nificantly improves by incorporating large amounts of unlabeled data with a small amount

of labeled data., e.g., semisupervised learning [16]–[27]. An example of such classification is

a toddler using flash cards (i.e., unlabeled data) to learn words (see Fig. 1.2). The toddler

might learn more efficiently if the parent gives the toddler a few examples (i.e., labeled data).

However, the semisupervised approach using a generative model can be considered as a

method to find the maximum likelihood, which combines the likelihood of the unsupervised

and supervised approaches. Therefore, the performance of the semisupervised approach

simply depends on the ratio of labeled data to unlabeled data [28]–[31]. To address this
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Fig. 1.2. Example of semisupervised learning: Learning with a large amount of
unlabeled data and a small amount of labeled data. The dotted brown line is the decision
boundary when only labeled data are available. However, the true decision boundary (i.e.,
solid brown line) will move to the left side of the dotted line when a large amount of
unlabeled data is available simultaneously. In this case, two cards were incorrectly predicted
to be cats when using only the labeled data.

issue, this dissertation proposes a generative approach by incorporating an instance-level

pairwise relationship with the clustering problem in a precise manner.

1.2.3 Shape Analysis

Shape modeling and analysis is an important problem in a variety of fields, including

biology, medical image analysis, and computer vision [32]–[34], and has received considerable

attention over the last few decades. Objects in biological images or anatomical structures

in medical images often possess shape as the sole identifying characteristic instead of color

or texture. Applications of shape analysis beyond natural contexts include handwriting

analysis and character recognition. In the medical context, shapes of anatomical structures

can provide crucial cues in the diagnosis of pathologies or disorders. The key problems

in this context lie in the fitting of shape models to population image data, followed by

statistical analysis such as hypothesis testing to compare groups, classification of unseen

shapes in one of the groups for which the shape model is learned, etc.

In section 1.1, I described how a generative model could perform well if the model

assumption is correct, even if the size of the data is small. This is an especially attractive

motivation to use a generative model for statistical shape analysis in medical imaging

analysis where medical image data are not easily obtained for research due to governmental

policies and/or personal privacy concerns. In order to build a reliable predictive model (e.g.,

computer-aided diagnosis) following the statistical approach, a generative model is clearly a

better choice than a discriminative model. Further, the nature of a generative model is that

any sample can be drawn when the model is given. This property is also extremely useful

for medical imaging analysis. For example, one can predict and visualize the shape variation
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of a brain along with time from a patient who has Alzheimer’s disease. For applications

in image segmentation, a generative model provides prior information of shape variation;

this information can significantly improve the performance of image segmentation. For

applications in anatomical atlases, if the particular statistical shape analysis algorithm is

based on a generative model, the joint distribution allows us to present a full range of

geometric variabilities. In general, statistical shape analysis [32],[33] entails the inference of

shape models from population data and associated statistical analyses. However, previous

approaches [35]–[39] considered only the population mean and covariance for multigroup

comparisons, such as hypothesis testing, as in Fig. 1.3-(a). This dissertation, on the

other hand, proposes a generative latent variable model that entails a multigroup strategy

(Fig. 1.3-(b)), a more natural way to solve statistical shape analysis.

1.3 Dissertation and Claims

In this section, I summarize the contributions of this dissertation.

• A novel method that extends KPCA, named kernel principal geodesic analysis (KPGA),

to 1) define more meaningful modes of variation in kernel feature space by explicitly

modeling the data on the Hilbert sphere in kernel feature space, 2) represent variability

using fewer modes, and 3) reduce the curvature of distributions by modeling them

explicitly on the Hilbert sphere, instead of modeling them in the ambient space, to

avoid artificially large measurements of variability observed in the ambient space.

• A new method for clustering that uses a kernel trick embedded in the generative

mixture model for the data on the unit Hilbert sphere in kernel feature space. The

probability density distribution of the observed variable given the latent variable and

(a) Single group (b) Multigroup

Fig. 1.3. Multigroup strategy: Each point indicates a shape: four shapes in the blue
group and four shapes in the red group. (a) Single group: consider only population mean
and covariance for two groups of shapes and (b) multigroup: also consider group mean and
covariance for each group.
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parameters is evaluated by geodesic Mahalanobis distance and performs model fitting

using expectation-maximization.

• A fully generative approach for semisupervised clustering, rather than the heuristic

approach or adding ad hoc penalties.

• A proposed generative semisupervised clustering model that reflects user preferences

and maintains a probabilistic interpretation, which allows it to be generalized to take

advantage of alternative density models or optimization algorithms.

• A proposed semisupervised clustering model that clearly deals with the must-link

and cannot-link cases in a unified framework and demonstrates that solutions using

must-link and cannot-link together or independently are tractable and effective.

• Instead of pairwise constraints, a statistical interpretation of pairwise relationships

that allows the model estimation to converge to a distribution that follows user

preferences with less domain knowledge.

• Within the content of the proposed semisupervised clustering algorithm, a parameter

estimation that is very similar to the Gaussian mixture model using expectation-

maximization in terms of ease of implementation and efficiency.

• Motivated by the natural organization of population data into multiple groups, the

proposal of a novel hierarchical generative statistical model for shapes, which rep-

resents shapes using pointsets and defines a joint distribution on the population’s

1) shape variables (i.e., latent variable) and 2) object-boundary data. The new method

solves for optimal point locations, correspondences, and model-parameter values as

a single optimization problem.

• A new method for maximizing the posterior of shapes using EM and relying on a

novel Markov-chain Monte-Carlo algorithm for sampling in Kendall shape space.

1.4 Dissertation Organization

Chapter 2 includes the paper, Kernel principal geodesic analysis, which has been pub-

lished in the European Conference on Machine Learning and Principles and Practice of

Knowledge Discovery (ECML-PKDD, 2014). The paper in Chapter 3, Hierarchical Bayesian

modeling, estimation, and sampling for multigroup shape analysis, has been published in

the International Conference on the Medical Image Computing and Computer Assisted In-

tervention (MICCAI, 2014). Chapter 4 is the paper, Clustering with pairwise relationships:
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a generative approach, which is under review by the Journal of Machine Learning Research

(JMRL). This dissertation is organized as follows:

• Chapter 2 provides background for generative models, the expectation-maximization

algorithm, and the kernel method. This chapter also presents statistics for the

Hilbert sphere in kernel feature space and dimensionality reduction and clustering

on a hypersphere in kernel feature space using kernel principal geodesic analysis.

• Chapter 3 presents the hierarchical generative shape model and its application.

• Chapter 4 describes the generative model with pairwise relationships, which is in the

general form of a probability distribution. This chapter also demonstrates that the

semisupervised GMM is a special case of the proposed model.



CHAPTER 2

KERNEL PRINCIPAL GEODESIC

ANALYSIS

2.1 Abstract

Kernel principal component analysis (kPCA) has been proposed as a dimensionality

reduction technique that achieves nonlinear, low-dimensional representations of data via

mapping to kernel feature space. Conventionally, kPCA relies on Euclidean statistics in

kernel feature space. However, Euclidean analysis can make kPCA inefficient or incorrect

for many popular kernels that map input points to a hypersphere in kernel feature space.

To address this problem, this dissertation proposes a novel adaptation of kPCA, namely

kernel principal geodesic analysis (kPGA), for hyperspherical statistical analysis in kernel

feature space. This dissertation proposes tools for statistical analyses on the Riemannian

manifold of the Hilbert sphere in reproducing kernel Hilbert space, including algorithms

for computing the sample-weighted Karcher mean and eigenanalysis of the sample-weighted

Karcher covariance. It then applies these tools to propose novel methods for 1) dimension-

ality reduction and 2) clustering using mixture-model fitting. The results, on simulated

and real-world data, show that kPGA-based methods perform favorably relative to their

kPCA-based analogs.

2.2 Introduction

Kernel principal component analysis (kPCA) [40] maps points in input space to a (high-

dimensional) kernel feature space where it estimates a best fitting linear subspace via PCA.

This mapping to the kernel feature space is typically denoted by Φ(·). For many of the most

This chapter is a revised and adapted with permission (copyright by authors) from

Kernel Principal Geodesic Analysis. Suyash P. Awate, Yen-Yun Yu, and Ross T. Whitaker.
Machine Learning and Knowledge Discovery in Databases Volume 8724 of the series Lecture Notes
in Computer Science pages 82-98 (European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery, Nancy, France, September 15-19, 2014).
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useful and widely used kernels (e.g., Gaussian, exponential, Matern, spherical, circular,

wave, power, log, rational quadratic), the input data x gets mapped to a hypersphere, or a

Hilbert sphere, in the kernel feature space. Such a mapping also occurs when using 1) kernel

normalization, which is common, e.g., in pyramid match kernel [41], and 2) polynomial

and sigmoid kernels when the input points have constant l2 norm, which is common in

digit image analysis [10]. This special structure arises because for these kernels k(·, ·), the

self-similarity of any data point x equals unity (or some constant), i.e., k(x, x) = 1. The

kernel defines the inner product in the kernel feature space F , and thus, 〈Φ(x),Φ(x)〉F = 1,

which, in turn, equals the distance of the mapped point Φ(x) from the origin in F . Thus,

all mapped points Φ(x) lie on a Hilbert sphere in kernel feature space. Fig. 2.1 illustrates

this behavior.

The literature shows that for many high-dimensional real-world datasets, where the data

representation uses a large number of dimensions, the intrinsic dimension is often quite

small, e.g., between 5–20 in [42]–[46]. The utility of kPCA lies in capturing the intrinsic

dimension of the data through the few principal (linear) modes of variation in kernel feature

space. This dissertation proposes a novel extension of kPCA to model distributions on

the Hilbert sphere manifold in kernel feature space. Manifold-based statistical analysis

explicitly models data to reside in a lower-dimensional subspace of the ambient space,

representing variability in the data more efficiently (fewer degrees of freedom). In this way,

the proposed method extends kPCA to 1) define more meaningful modes of variation in

kernel feature space by explicitly modeling the data on the Hilbert sphere in kernel feature

space, 2) represent variability using fewer modes, and 3) reduce curvature of distributions

by modeling them explicitly on the Hilbert sphere, instead of modeling them in the ambient

space, to avoid artificially large measurements of variability observed in the ambient space.

Fig. 2.2 illustrates this idea.

Typically, Euclidean PCA of spherical data introduces one additional (unnecessary)

component, aligned orthogonally to the sphere and proportional to the sectional curvature.

In practice, however, PCA in high-dimensional spaces (e.g., kernel feature space) is known

to be unstable and prone to error [47], which interacts with the curvature of the Hilbert

sphere on which the data reside. Thus, our empirical results demonstrate that the actual

gains in our hyperspherical analysis in kernel feature space surpass what we would expect

for the low-dimensional case.

While several works in the literature [10], [48]–[51] address the properties and uses of

kernel feature spaces, these works do not systematically explore this special structure of
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Fig. 2.1. Map points to a single orthant of a Hilbert sphere: Points in input space
get mapped, via several popular Mercer kernels, to a hypersphere or a Hilbert sphere in
kernel feature space.

Fig. 2.2. Principal geodesic analysis on the Hilbert sphere in kernel feature
space: The silver point Φ(xn) indicates the data point on hypersphere and the yellow
point tn is the logarithmic map of Φ(xn) that locates on the tangent space (red plane) with
respect to the sample Karcher mean µ (green point). The purple circle on the tangent space
visualizes the sample Karcher covariance.



13

kernel feature space and its implications for PCA in kernel feature space; that is the focus

of this paper. Recently, [49] have, in an independent development, examined the use of the

Karcher mean in kernel feature spaces, but they propose a different estimation strategy and

they do not formulate, estimate, or demonstrate the use of principle components on the

sphere, which is the main purpose of this work.

This dissertation makes several contributions. It proposes new formulations and algo-

rithms for computing the sample Karcher mean on a Hilbert sphere in reproducing kernel

Hilbert space (RKHS). To analyze sample Karcher covariance, this dissertation proposes

a kernel-based PCA on the Hilbert sphere in RKHS, namely, kernel principal geodesic

analysis (kPGA). It shows that just as kPCA leads to a standard eigenanalysis problem,

kPGA leads to a generalized eigenanalysis problem. This dissertation evaluates the utility of

kPGA for 1) nonlinear dimensionality reduction and 2) clustering with a Gaussian mixture

model (GMM) and an associated expectation-maximization (EM) algorithm on the Hilbert

sphere in RKHS. Results on simulated and real-world data show that kPGA-based methods

perform favorably with their kPCA-based analogs.

2.3 Related Work

Several areas of related work inform the results in this dissertation. The Karcher mean

and associated covariance have recently become important tools for statistical analysis [52].

The algorithm for the Karcher mean proposed in [53] is restricted to analyzing the intrinsic

mean and does not address how to capture covariance for data lying on spheres, even

in finite-dimensional spaces. Other algorithms for the Karcher mean exist and may be

more efficient numerically [54]. To capture covariance structure on Riemannian manifolds,

Fletcher et al. [55] propose PGA and an associated set of algorithms. Likewise, a small

body of work relies on the local geometric structure of Riemannian spaces of covariance

matrices for subsequent statistical analysis [56]–[58].

Because many RKHSs are infinite-dimensional, we must acknowledge the problem of

modeling distributions in such spaces [59] and the corresponding theoretical problems [60].

Of course, these same theoretical concerns arise in kPCA, and other well-known kernel

methods, and thus the justification for this work is similar. First, we may assume or

assert that the covariance operator of the mapped data is of trace class or, even more

strongly, restricted to a finite-dimensional manifold defined by the cardinality of the input

data. Second, the proposed methods are intended primarily for data analysis rather than

statistical estimation, and, thus, we intentionally work in the subspace defined by the data

(which is limited by the data sample size).
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In addition to the dimensionality structure, the Hilbert sphere imposes its own structure

and has an associated geometry with underlying theoretical implications. The proposed

approach in this dissertation extends PGA [55] to the Hilbert sphere in RKHS. The impor-

tant geometrical properties of the sphere for the proposed extension concern 1) the geodesic

distance between two points, which depends on the arc cosine of their dot product, and

2) the existence and formulation of tangent spaces [61]–[63].

The work in [49] is more directly related to the proposed method, because it uses

logarithmic and exponential maps on the Hilbert sphere in RKHS for data analysis. How-

ever, [49] does not define a mean or a covariance on the Hilbert sphere in RKHS; it also

requires the solution of the ill-posed preimage problem. Unlike [49], we define covariance

and its low-dimensional approximations on the Hilbert sphere, represented in terms of the

Gram matrix of the data, and incorporate this formulation directly into novel algorithms

for dimensionality reduction and clustering via EM [64], including geodesic Mahalanobis

distance on the Hilbert sphere in RKHS.

We apply the proposed method for 1) dimensionality reduction for machine-learning

applications and 2) mixture modeling. This builds on the work in kPCA [40], and therefore

represents an alternative to other nonlinear mapping methods, such as Sammon’s nonlinear

mapping [65], Isomap [66], and other kernel-based methods [67]–[71]. For applications to

clustering, the proposed approach generalizes kernel k-means [40] and kernel GMMs [72],

where we use formulations of means and/or covariances that respect the hyperspherical

geometry of the mapped points in RKHS.

In this chapter, we will first review a generative model with latent variables using

expectation-maximization and kernel method. We then introduce the proposed statistical

tool, kPGA.

2.4 Background

2.4.1 Generative Model Using Expectation-Maximization

In this section, we review the generative model in subsection 2.4.1.1 and expectation-

maximization in subsection 2.4.1.4.

2.4.1.1 Generative Model With Latent Variable

To review the generative model and latent variable, we use mixture distributions as an

example (such as the Gaussian mixture), because the mixture model is a natural approach

to model the data and an intuitive example to illustrate the theory concerning the function

of the discrete latent variable.
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The Gaussian mixture model (GMM) is defined as a linear superposition of Gaussian

distributions that is motivated by having more insight into the underlining structure of

the data compared to using only single Gaussian distributions when solving the statistical

analysis problem. For clustering, this Gaussian mixture model requires an estimation of the

covariance matrix, which allows the Gaussian mixture model to obtain the soft label based

on the posterior probability of the latent variable as in Fig. 2.3. On the other hand, the

k-means assumes only spherical clusters and obtains only a hard label such that each data

point is associated with only a single cluster. Thus, the k-means is considered as a special

case of mixture models [73].

Suppose we estimate the parameters of a standard GMM, consisting of K components,

on a dataset X of N -samples in d-dimensional space X = {xn}Nn=1 and xn ∈ Rd. The GMM

is formulated as a joint distribution over the i.i.d. observed samples xn and the mixture

parameters Θ = {πk,Θk}Kk=1. Thus, the definition of K components of the GMM over the

dataset X is

p(X|Θ) :=

N∏
n=1

K∑
k=1

πkN (xn|Θk) (2.1)

where N (.) denotes a multivariate normal distribution, and πk ∈ [0, 1] is the mixing

parameter that indicates the proportion of a single cluster to the mixture model. The

(a) hard label (b) soft label

Fig. 2.3. Example of clustering using k-means and GMM: (a) Result of clustering
using k-means, i.e., hard label. (b) Distribution-based clustering (e.g., GMM) is able
to obtain the soft label (membership), i.e., the probability of data belonging to the red,
green, or blue clusters. The color of each data point has a different saturation to represent
membership.
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mixing parameter must be subjected to

K∑
k=1

πk = 1. (2.2)

Θk = {µk,Σk} includes 1) the mean vector, µk, which contains the average of the obser-

vations for each variable, and 2) the covariance matrix, Σk, which is the generalization of

variance in multidimensional space. Θk = {µk,Σk} are associated with the k-th cluster.

Each µk and Σk is

µk ∈ Rd (2.3)

Σk ∈ Rd×d. (2.4)

Let us introduce the latent label set (i.e., not directly observed) Y = {yn}Kn=1. Each yn is

defined as

yn = [y1n, ..., y
K
n ]T , (2.5)

which is associated with the dataset X . yn is a K-dimensional binary random variable.

Each latent variable is subject to

yn ∈ {0, 1}K (2.6)

and

K∑
k=1

ykn = 1, (2.7)

which means that each yn has K possible states according to which element ykn = 1, i.e.,

ykn = 1 if and only if the corresponding data point xn was generated from the k-th component

of the GMM. Therefore, we can define

p(ykn = 1) := πk (2.8)

and the conditional probability of data given the latent variable is

p(xn|ykn = 1) := N (xn|µk,Σk). (2.9)
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The probability that a data point xn is generated from a GMM with parameters Θ can

be defined by the marginal distribution of xn, i.e., summing the joint distribution over all

possible yn, such that

p(xn|Θ) :=
∑
yn

p(xn,yn) (2.10)

=
∑
yn

p(yn)p(xn|yn) (2.11)

=
K∑
k=1

πkN (xn|µk,Σk). (2.12)

Therefore, the log of the likelihood of the observed dataset X governed by the mixture

model parameters is

logL(X ,Θ) := log p(X|Θ) (2.13)

= log

( N∏
n=1

K∑
k=1

πkN (xn|µk,Σk)

)
(2.14)

=

N∑
n=1

log

( K∑
k=1

πkN (xn|µk,Σk)

)
. (2.15)

2.4.1.2 Graphical View of GMM

Recall that the GMM assumes that the observed data are drawn independently from the

identical distribution (i.i.d.), so we can also express this i.i.d. using the graphical model.

The graphical model is a probabilistic model that uses a graph to express the conditional

dependence structure between random variables, as in Fig. 2.4-(a). The reason for intro-

ducing the graphical model here is that it is useful not only for visualizing the complex

structure of the probability model but also for intuitively understanding the properties of

the GMM. This dissertation defines the graphical model following [8].

As shown in Fig. 2.4-(a), directed graphs represent the joint probability distributions

of the GMM. Each node is represented as a random variable. The blue shaded node xn

indicates the observed variable and the unshaded node is the unobserved variable, i.e., latent

variable yn. The red box represents N nodes, of which only a single pair variable, xn and

yn, is shown. Any link going from node yn to another node xn means that node yn is the

parent of node xn. All parameters are shown by the smaller solid red nodes.

2.4.1.3 Latent Variable View of GMM

The goal is to find the maximum log-likelihood solution in equation (2.15); however, the

difficulty in equation (2.15) is that the summation over k occurs inside the logarithm. The
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(a) (b)

Fig. 2.4. Graphical representation of GMM: The data are sampled i.i.d. from a
mixture of the Gaussian distributions given mixing parameters π, mean µ, and covariance
matrix Σ. (a) Observed data {xn}Nn=1 and corresponding unobserved variable {yn}Nn=1. (b)
Observed data {xn}Nn=1 and corresponding observed variable {yn}Nn=1.

trick here is that we can combine the observed dataset X with the unobserved dataset (i.e.,

latent variable) Y to become a new dataset {X ,Y}, which is called the complete dataset.

The alternative view of the latent variable is that each yn denotes a 1-of-K representation,

i.e., we know only one element is nonzero. The Y can be viewed as the observed data as well

as X . From the graphical model point of view, we can change the node yn in Fig. 2.4-(a)

to be shaded, as in Fig. 2.4-(b). The node yn provides information about which component

of GMM generates certain data xn. Therefore, equations (2.8) and (2.9) can be revised as

p(yn) :=
K∏
k=1

π
ykn
k (2.16)

p(xn|yn) :=
K∏
k=1

N (xn|µk,Σk)
ykn . (2.17)

Now we consider that the latent variable Y is observed. Equation (2.15) can be revised as

logL(X ,Y,Θ) := log p(X ,Y|Θ)

= log

( K∏
k=1

N∏
n=1

p(xn, y
k
n)

)
(2.18)

= log

( K∏
k=1

N∏
n=1

p(xn|ykn)p(ykn)

)
(2.19)

=

K∑
k=1

N∑
n=1

log

(
[πk N (xn|µk,Σk)]

ykn

)
(2.20)

=

K∑
k=1

N∑
n=1

ykn log

(
πk N (xn|µk,Σk)

)
(2.21)
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where the ykn restricted the data point xn to be generated from the k-th component of the

Gaussian distribution, i.e., the complete-data log-likelihood function in equation (2.21) is a

summation of the K-independent component of the Gaussian distribution. Compared to the

original incomplete log-likelihood function in equation (2.15), it is clear that equation (2.21)

has the simpler representation for the likelihood function.

2.4.1.4 Expectation-Maximization Algorithm

The maximum likelihood estimator is used for estimating the value of the parameters

that maximize the likelihood based on the observed data. For example, if we flip a coin a

number of times (i.e., observed data), the total number of flips should follow a model ( e.g.,

binomial distribution and its parameters). Different values of parameters are able to fit the

observed data more or less well. The goal of maximum likelihood is to find the parameters

that can make the model better fit the data. Another intuitive thought is that the maximum

likelihood of the Gaussian distribution is simply the minimum distance from all observed

data according to the value of the estimated mean and covariance. In most unsupervised

problems, such as clustering, the probability model, given the observed data, has a complex

structure. Very often we need the latent variables that allow the statistical model to simplify

the dependencies. The general technique for seeking the maximum likelihood estimators for

the latent variable model is expectation-maximization (EM) [74]–[77]. In the following two

subsections, 2.4.1.5 and 2.4.1.6, we review model fitting using expectation-maximization

when assuming the data i.i.d. from the GMM.

2.4.1.5 E-Step

Although we treat the latent variable yn as observed, in practice, we are still unable

to directly access any latent variable. For the EM algorithm, however, we can consider

another way to employ the latent variable, that is, using the expected value of the latent

variable under the posterior distribution of the latent variable, also known as the E-step. In

this way, the latent variable has been marginalized out, i.e., we can gain information about

the latent variable via the posterior distribution p(ykn|xn), so the E-step is used to create a

distribution for the expectation of the likelihood evaluated using the current estimate for

the parameters Θold.

Q(Θ,Θold) = EY [log L]

=
∑
Y
p(Y|X ,Θold) log p(X ,Y|Θ). (2.22)
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First, we start with the initial values of the parameters and use them to evaluate the

posterior distribution, which is taking the expectation of the log-likelihood in equation (2.21)

with respect to the posterior distribution of ykn and bearing in mind that the latent variable

yn is a binary variable.

Eykn|xn
[ykn] =

K∑
k=1

yknp(y
k
n|xn) (2.23)

= p(ykn|xn) (2.24)

=
p(ykn)p(x|ykn)∑K

k′=1 p(y
k′
n )p(x|yk′n )

(2.25)

=
πkN (xn|µk,Σk)∑K

k′=1 πk′N (xn|µk′ ,Σk′)
, (2.26)

which can be viewed as the membership, i.e., soft-label, as in Fig. 2.3-(b).

2.4.1.6 M-Step

After the E-step, the EM algorithm keeps the posterior distribution fixed and uses

it for maximizing the likelihood function by revising current parameters, i.e., updating

parameters. Firstly, because the mixing parameter has to satisfy the constraint summation

to be one, this determination can be achieved by the Lagrange multiplier.

Q+ λ

( K∑
k=1

πk − 1

)
. (2.27)

λ is the Lagrange multiplier. Taking the derivative of equation (2.27) with respect to πk,

πk = −
N∑
n=1

p(ykn|xn)

λ
. (2.28)

By taking the derivative of equation (2.27) with respect to λ and equal to zero, we then can

get
∑K

k=1 πk = 1. We use the πk in equation (2.28) to substitute
∑K

k=1 πk = 1 and obtain

λ = −N , which we then use to eliminate λ in equation (2.28). The mixing parameter is

given by

πk =
Nk

N
. (2.29)

Let Nk =
∑N

n=1 p(y
k
n|xn). Secondly, we take the derivative of Q with respect to µk and

equal to zero, which gives the closed-form solution for µk:

N∑
n=1

p(ykn|xn)
(
Σ−1k (xn − µk)

)
= 0. (2.30)
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Then,

µk =

∑N
n=1 p(y

k
n|xn)xn

Nk
. (2.31)

Thirdly, taking the derivative of Q with respect to Σ−1k and equal to 0, we can get the

closed-form solution for Σk,

N∑
n=1

p(ykn|xn)

(
Σk − (xn − µk)(xn − µk)T

)
= 0. (2.32)

Hence:

Σk =

∑N
n=1 p(y

k
n|xn)(xn − µk)(xn − µk)T

Nk
. (2.33)

The algorithm iteration alternates between performing an E-step and M-step until the

convergence criterion is satisfied, e.g., the log-likelihood converges.

2.4.1.7 Expectation-Maximization Algorithm
in General

As described in the previous subsections, the EM is a two-stage (i.e., E-step and M-

step) iterative optimization method and is a widely used maximum likelihood estimation

technique for statistical models with latent variables. The advantage of EM is that it

guarantees maximization of the likelihood function for every iteration, unless it has arrived

at the local optima. Consider again a probabilistic model in which a set of observed data

X and a set of latent variables Y are collected. The log-likelihood logL is

logL(X ,Θ) := log

(∑
Y
p(X ,Y|Θ)

)
(2.34)

= log

(∑
Y
q(Y|X )

p(X ,Y|Θ)

q(Y|X )

)
(2.35)

≥
∑
Y
q(Y|X ) log

(
p(X ,Y|Θ)

q(Y|X )

)
(2.36)

= F (q,Θ) (2.37)

where q(Y|X ) is a nonnegative distribution and
∑
Y q(Y|X ) = 1. F (q,Θ) is a function of

the distribution q(Y|X ) and parameter Θ. Moreover, F (q,Θ) is auxiliary lower bound for
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log-likelihood, because of the Jensen’s inequality for the log function in equation (2.36).

F (q,Θ) also allows us to redefine the EM algorithm via decomposing the F (q,Θ), that is,

F (q,Θ) =
∑
Y
q(Y|X ) log

(
p(X ,Y|Θ)

q(Y|X )

)
(2.38)

=
∑
Y
q(Y|X ) log

(
p(X ,Y|Θ)

p(Y|X ,Θ)

)
+
∑
Y
q(Y|X ) log

(
p(Y|X ,Θ)

q(Y|X )

)
(2.39)

=
∑
Y
q(Y|X ) log p(X|Θ)−

∑
Y
q(Y|X ) log

(
q(Y|X )

p(Y|X ,Θ)

)
(2.40)

= logL(X ,Θ)−KL(q||p) (2.41)

where KL(q||p) is the Kullback-Leibler divergence between q(Y|X ) and the posterior dis-

tribution of the latent variable p(Y|X ,Θ). Note KL(q||p) ≥ 0 and KL(q||p) = 0 if

and only if q(Y|X ) = p(Y|X ,Θ). In equation (2.41), F (q,Θ) is decomposed into the

log-likelihood function and KL-divergence. Consider again, as in Fig. 2.5, that the log-

likelihood function is the sum of F (q,Θ) and KL-divergence. The EM algorithm can be

redefined via optimizing equation (2.41). The original E-step is to compute the posterior

distribution of the latent variable given the current value of parameters is Θold. Now, the

E-step optimizes q(Y|X ). In other words, the lower bound F (q,Θ) is maximized when the

KL(q||p) = 0, i.e., q(Y|X ) = p(Y|X ,Θ). Because KL(q||p) ≥ 0 is always true, it means

that logL(X ,Θold) ≥ F (q,Θold) as well. In the M-step, q(Y|X ) is fixed and is used to

estimate new parameters Θnew for maximizing the lower bound F (q,Θ). Further, it does

indeed increase the log-likelihood logL, (except that it is already at a local optimal) because

the KL-divergence is not equal to zero, i.e., q(Y|X ) = p(Y|X ,Θold) 6= p(Y|X ,Θnew) (as the

M-step in Fig. 2.5).

2.4.2 Kernel Method

In this subsection, we introduce the kernel method, reproducing kernel Hilbert space,

and kernel principal component analysis.

The kernel method has been widely used in learning algorithms since the last decade

[10], [78], [79], because this method has a more clear mathematical interpretation than the

neural network in the pattern recognition community. Basically, the kernel method functions

by mapping (e.g., feature map) the data from input space into high-dimensional space (e.g.,

kernel feature space), where a linear relation between the data exists. By allowing analysis

of the data in a linear way via the kernel method, it is clear that the kernel method facilitates

the following statistical learning analyses, such as clustering. Here we use an example for

intuitively understanding the motivation of the kernel method. Fig. 2.6 illustrates a simple
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Fig. 2.5. Illustration of expectation-maximization algorithm: The log-likelihood
logL(X ,Θ) can be decomposed into the lower bound F (q,Θ) and KL(q||p). In the E-step,
the current parameter Θold is fixed. The q function is optimized to be equal to the posterior
distribution p(Y|X ,Θold), i.e., KL(q||p) = 0, which increases the lower bound to be equal to
the log-likelihood function, i.e., logL(X ,Θold) = F (q,Θold). In the M-step, the q is fixed
for updating the new parameters Θnew, which updates the lower bound F (q,Θnew) unless
it is already at a local optimum. Also, because the q is estimated using the Θold, the p is
computed by Θnew. It does indeed cause the KL(q||p) > 0, i.e., increases the log-likelihood
logL(X ,Θnew).

example of data points originally in one-dimensional input space, but clearly we cannot

find any straight line that can separate the data (orange circles and cyan triangles) into

two clusters. However, if we map the data into two-dimensional space via a feature map

utilizing a polynomial feature (e.g., each data point gets a nonlinear map [x] → [x, x2]T ),

we can find a straight line (red dashed line in Fig. 2.6) to separate the data points. This

example shows the power of the kernel method. However, in practice, the above method is

problematic because the data get mapped into a very high-dimensional space. For example,

if the data are a small size image (e.g., size is 28 by 28) and the parameter of the polynomial

feature map is d = 4, the data will be mapped into the space where the total number of

dimensions is ≥ 1010. De facto, there is a way to avoid this computation problem in such

high-/infinite-dimensional space. If a model is based on the nonlinear feature map Φ(x)

and there is a kernel function, or just said kernel satisfies Mercer’s theorem [80], we can get

k(x, x′) = 〈Φ(x),Φ(x′)〉F . (2.42)

The concept of equation (2.42) is that we can compute the inner products in infinite-

dimensional space without knowing the feature map, i.e., implicitly map. In this way,
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Fig. 2.6. Illustration of the kernel method: Each one-dimensional data point gets
explicitly mapped ([x]→ [x, x2]T ) into a two-dimensional space, where the linear hyperplane
(red dashed line) exists for separating the datasets into two clusters (orange circles cluster
and cyan triangles cluster).

the feature map Φ(·) is no longer important, because the inner products 〈Φ(x),Φ(x)〉F
in infinite-dimensional space are equal to k(x, x′), which is also known as the kernel trick

[10], [78], [79], [81]. In other words, if we have any equation that is formulated as inner

products, then the term inner products can be replaced with some other selection of the

Mercer kernel. The 〈·, ·〉F indicates the inner products in kernel feature space, i.e., RKHS,

which we will introduce in the next section.

2.4.2.1 Reproducing Kernel Hilbert Space (RKHS)

The kernel trick is widely used for dimensional reduction, clustering, and many other

pattern recognition problems. In this subsection, we will introduce the reproducing kernel

Hilbert space (RKHS). Starting with the kernel rather than the feature map, suppose we

have a kernel. How can we construct the kernel feature space where the kernel trick is held,

i.e., the inner product in the kernel feature space, or what is the Hilbert space representation

of kernels? Before discussing the details of RKHS, we first introduce the gram matrix K.

Let {xn}Nn=1 be a set of observations in input space. Then, the gram matrix is an N by N

matrix with the element

Kij := k(xi, xj). (2.43)

In linear algebra, a symmetric N by N real matrix A is considered to be positive definite

if cTAc is positive for every nonzero column vector c with N real number elements. A

symmetric positive definite kernel is the generalization of a symmetric positive definite

matrix. If a kernel function k is able to give rise to a symmetric positive definite gram

matrix K, we call k a symmetric positive definite kernel. Further, a symmetric positive

definite kernel k is also a reproducing kernel [10], which provides a good example to explain

the reproducing kernel on page 33 [10], [82]–[85]. The general concept of a reproducing
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kernel is that of a representer of evaluation, i.e., for any function f in Hilbert space, f(x) =

〈k(x, ·), f(·)〉. The reproducing kernel satisfies symmetry, bilinearity, and positive definite.

By using such a reproducing kernel, we can turn each data point into a function on the

domain defined by a set of training data. In this way, each data point is represented by its

similarity to all other data points, i.e., an inner product space is constructed for the feature

space associated with a reproducing kernel.

〈Φ(x),Φ(x′)〉F = k(x, x′). (2.44)

Hilbert space is a vector space endowed with an inner product that it is complete, i.e., the

norm corresponding to the inner product. Therefore, an RKHS is a Hilbert space with

a reproducing kernel defined on the data domain and expanded in terms of a symmetric

positive definite kernel (i.e., reproducing kernel).

2.4.2.2 Kernel Principal Component Analysis

Kernel principal component analysis (kPCA) is a nonlinear version of principal compo-

nent analysis (PCA) using the kernel method. In other words, kernel PCA performs linear

PCA in RKHS. Fig. 2.7 is a good illustration of kernel PCA in which the relation of the data

points is nonlinear in input space. Instead of directly working in that space, we can first

map the data points into RKHS where the linear relation between the data points exists

and then perform PCA in RKHS. Fig. 2.7 also shows that the first principal component

(red arrow) can capture the largest variance in RKHS in a linear way, which means that

the first principal component in RKHS can be viewed as a nonlinear principal component

in input space. To understand the utility of kPCA, let us start with a set of observations

{Φ(xn)}Nn=1 that have a zero mean in RKHS. Thus, the sample covariance is defined as

C :=
1

N

∑
n

Φ(xn)Φ(xn)T . (2.45)

For the kPCA, we want to find the eigenvector v and eigenvalue λ. If λ is a positive

eignevalue and v is a corresponding eigenvector, then

v =
Cv

λ
=
∑
n

αnΦ(xn) (2.46)

where

αn =
〈Φ(xn), v〉F

Nλ
.
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From equation (2.46), the problem is reduced from finding the eigenvector v to solving the

αn, which means that the αn leads to a dual eigenvalue problem that is the eigenproblem

of the gram matrix instead of the eigenproblem of covariance,

Kα = λα, (2.47)

where α = {αn}Nn=1 is the eigenvector of the gram matrix K. Evaluating the projection

from a new data point Φ(x′) onto the k-th principal component can be done via a kernel

trick,

〈Φ(x′), vk〉F =
∑
n

αn〈Φ(x′),Φ(xn)〉F =
∑
n

αnk(x′, xn). (2.48)

In general, equation (2.48) is computationally far less expensive than explicitly doing the

inner product in the feature space.

However, as in Fig. 2.8, for many of the most widely used kernels, such as one of the

most popular kernels, the Gaussian kernel, all data points have a unitary norm in RKHS. To

address this issue, this dissertation proposes a new nonlinear statistical tool to analyze this

particular geometry in RKHS. Fig. 2.8 illustrates that the concept is to employ a geodesic

distance on the hypersphere instead of using the Euclidean-based tool, e.g., kernel PCA.

2.5 Geometry of the Hilbert Sphere in RKHS

Many popular kernels are associated with a RKHS that is infinite-dimensional. Thus, the

analysis in this chapter focuses on such spaces. Nevertheless, the analogous theory holds for

other important kernels (e.g., normalized polynomial) where the RKHS is finite-dimensional.

Let X be a random variable taking values x in input space X . Let {xn}Nn=1 be a set of

observations in input space. Let k(·, ·) be a real-valued Mercer kernel with an associated

map Φ(·) that maps x to Φ(x) := k(·, x) in an RKHS F [10], [86]. Consider two points

in RKHS: f :=
∑I

i=1 αiΦ(xi) and f ′ :=
∑J

j=1 βjΦ(xj). The inner product 〈f, f ′〉F :=∑I
i=1

∑J
j=1 αiβjk(xi, xj). The norm ‖f‖F :=

√
〈f, f〉F . When f, f ′ ∈ F\{0}, let f ⊗ f ′ be

the rank-one operator defined as f ⊗ f ′(h) := 〈f ′, h〉Ff . Let Y := Φ(X) be the random

variable taking values y in RKHS.

Assuming Y is bounded and assuming the expectation and covariance operators of Y

exist and are well defined, kPCA uses observations {yn := Φ(xn)}Nn=1 to estimate the

eigenvalues, and associated eigenfunctions, of the covariance operator of Y [40], [87]. The

analysis in this chapter applies to kernels that map points in input space to a Hilbert sphere

in RKHS, i.e., ∀x : k(x, x) = κ, a constant (without loss of generality, we assume κ = 1).
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Fig. 2.7. Illustration of kernel principal component analysis: Kernel principal
component analysis is the nonlinear version of principal component analysis. In the image
on the right, the linear representation (red arrow) is the first principal component that has
the largest possible variance in kernel feature space, which corresponds to the nonlinear one
(left) in input space.

Fig. 2.8. The motivation of kernel principal geodesic analysis: As in the image
on the right, for many of the most useful kernels (e.g., Gaussian, exponential, Matern,
spherical, circular, wave, power, log, rational quadratic), the input data x gets mapped to
a hypersphere in the kernel feature space, i.e., the self-similarity of any data point x equals
unity k(x, x) = 1. This dissertation proposes to use principal geodesic analysis [55] in kernel
feature space instead of principal component analysis as in Fig. 2.7 (right).



28

For such kernels, the proposed kPGA modifies kPCA using statistical modeling on the

Riemannian manifold of the unit Hilbert sphere [88], [89] in RKHS.

2.5.1 Logarithmic Map in RKHS

Consider a and b on the unit Hilbert sphere in RKHS represented, in general, as a :=∑
n γnΦ(xn) and b :=

∑
n δnΦ(xn). In Fig. 2.9, the logarithmic map, or Log map, of a with

respect to b is the vector

Logb(a) =
a− 〈a, b〉Fb
‖a− 〈a, b〉Fb‖F

arccos(〈a, b〉F ) =
∑
n

ζnΦ(xn), (2.49)

where

∀n : ζn ∈ R.

Clearly, Logb(a) can always be written as a weighted sum of the vectors {Φ(xn)}Nn=1. The

tangent vector Logb(a) lies in the tangent space, at b, of the unit Hilbert sphere. The

tangent space to the Hilbert sphere in RKHS inherits the same structure (inner product)

as the ambient space and, thus, is also an RKHS. The geodesic distance between a and b is

dg(a, b) = ‖Logb(a)‖F = ‖Loga(b)‖F .

2.5.2 Exponential Map in RKHS

Now, consider a tangent vector t :=
∑

n βnΦ(xn) lying in the tangent space at b. Fig. 2.10

visualizes the exponential map, or Exp map, of t with respect to b is

Expb(t) = cos(‖t‖F )b+ sin(‖t‖F )
t

‖t‖F
=
∑
n

ωnΦ(xn), (2.50)

where

∀n : ωn ∈ R.

Clearly, Expb(t) can always be written as a weighted sum of the vectors {Φ(xn)}Nn=1. Expb(t)

maps a tangent vector t to the unit Hilbert sphere, i.e., ‖Expb(t)‖F = 1.

2.6 PCA on the Hilbert Sphere in RKHS

This section proposes the kPGA algorithm for PCA on the unit Hilbert sphere in RKHS.

2.6.1 Sample Karcher Mean

The sample Karcher mean on Riemannian manifolds is a consistent estimator of the

theoretical Karcher mean of the underlying random variable [90],[91]. The sample-weighted
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Fig. 2.9. Illustration of the logarithmic map: The logarithmic map of a with respect
to b.

Fig. 2.10. Illustration of the exponential map: The exponential map of a tangent
point t with respect to b.
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Karcher mean of a set of observations {ym}Mm=1, on the unit Hilbert sphere in RKHS, with

associated weights {pm ∈ R+}Mm=1 is defined as

µ := arg min
ν

∑
m

pmd
2
g(ν, ym). (2.51)

The existence and uniqueness properties of the Karcher mean on the Riemannian manifold

of the unit Hilbert sphere are well studied [92]–[94]; a study on finite-dimensional Hilbert

spheres appears in [53]. The sample Karcher mean on a Hilbert sphere exists and is unique

if the pointset is contained within 1) an open convex Riemannian ball of radius π/2 [94],

i.e., an open hemisphere, or 2) a similar closed ball if one of the points lies in its interior [53].

Thus, the sample Karcher mean exists and is unique for all kernels that map points within

a single orthant of the Hilbert sphere in RKHS; this is true for all positive-valued kernels,

e.g., the Gaussian kernel.

Clearly, a Karcher mean µ must lie within the space spanned by {ym}Mm=1; if not, we

could project the assumed “mean” ν ′ onto the span of {ym}Mm=1 and reduce all distances

dg(ym, ν
′) on the Hilbert sphere because of the spherical Pythagoras theorem, thereby

resulting in a more optimal mean ν ′′ with dg(ym, ν
′′) < dg(ym, ν

′),∀m and a contradiction

to the initial assumption. Therefore, if the points ym are represented using another set of

points {Φ(xn)}Nn=1, i.e., ∀m, ym :=
∑

nwmnΦ(xn), then the mean µ can be represented as

µ =
∑

n ξnΦ(xn), where ∀n : ξn ∈ R.

We propose the following gradient-descent algorithm to compute the mean µ:

1) Input: A set of points {ym}Mm=1 on the unit Hilbert sphere in RKHS. Weights

{pm}Mm=1. As described previously, we assume that, in general, each ym is represented

using another set of points {Φ(xn)}Nn=1 and weights wmn on the unit Hilbert sphere

in RKHS, i.e., ym :=
∑

nwmnΦ(xn).

2) Initialize iteration count: i = 0. Initialize the mean estimate to

µ0 =

∑
m pmym

‖
∑

m pmym‖F
=
∑
n

ξnΦ(xn), (2.52)

where

ξn =

∑
m pmwmn

‖
∑

m pmym‖F
. (2.53)

3) Iteratively update the mean estimate until convergence by a) taking the Log maps

of all points with respect to the current mean estimate, b) performing a weighted
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average of the resulting tangent vectors, and c) taking the Exp map of the weighted

average scaled by a step size τ i, i.e.,

µi+1 = Expµi

(
τ i

M

∑
m

pmLogµi(ym)

)
, (2.54)

where

τ i ∈ (0, 1). (2.55)

4) Output: Mean µ lying on the unit Hilbert sphere in RKHS.

In practice, we use a gradient-descent algorithm with an adaptive step size τ i such that

the algorithm 1) guarantees that the objective-function value is nonincreasing in every

iteration and 2) increases/decreases the step size of each iteration to aid faster convergence.

We detect convergence as the point when the objective function cannot be reduced using

any nonzero step size. Typically, in practice, a few iterations suffice for convergence.

The convergence of gradient descent for finding Karcher means has been studied [53],[95].

In certain conditions, such as those described earlier when the sample Karcher mean on

a Hilbert sphere is unique, the objective function becomes convex [96], which leads the

gradient descent to the global minimum.

2.6.2 Sample Karcher Covariance and Eigenanalysis

Given the sample-weighted Karcher mean µ, consider a random variable Z := Logµ(Y )

taking values in the tangent space at µ. Assuming that both the expectation and covariance

operators of Z exist and are well defined (this follows from the similar assumption on Y ),

the sample-weighted Karcher covariance operator, in the tangent space at µ, is

C := (1/M)
∑
m

pmzm ⊗ zm, (2.56)

where

zm := Logµ(ym).

Because the tangent space is an RKHS, the theoretical analysis of covariance in RKHS in

standard kPCA [87], [97] applies to C as well (note that the set {zm}Mm=1 is empirically

centered by construction; i.e.,
∑

m zm = 0). Thus, as the sample size M → ∞, the partial

sums of the empirically computed eigenvalues converge to the partial sums of the eigenvalues

of the theoretical covariance operator of Z.
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Using the Log map representation in Section 2.5, zm =
∑

n′ βn′mΦ(xn′) leading to

C =
∑
n′

∑
n′′

En′n′′Φ(xn′)⊗ Φ(xn′′), (2.57)

where

En′n′′ =
1

M

∑
m

pmβn′mβn′′m.

If λ is a positive eigenvalue of C and v is the corresponding eigenfunction, then

v =
Cv

λ
=

1

λ

∑
n′

∑
n′′

En′n′′Φ(xn′)⊗ Φ(xn′′)v =
∑
n′

αn′Φ(xn′), (2.58)

where

αn′ =
∑
n′′

En′n′′

λ
〈Φ(xn′′), v〉F .

Thus, any eigenfunction v of C lies within the span of the set of points {Φ(xn)}Nn=1 used to

represent {ym}Mm=1. For any Φ(xη) ∈ {Φ(xn)}Nn=1 and the eigenfunction v,

〈Φ(xη), Cv〉F = λ〈Φ(xη), v〉F . (2.59)

Hence,

〈Φ(xη),
∑
n′

∑
n′′

En′n′′Φ(xn′)⊗Φ(xn′′)
∑
n′′′

αn′′′Φ(xn′′′)〉F = λ〈 Φ(xη),
∑
n′′′

αn′′′Φ(xn′′′)〉F .

(2.60)

Thus,

∑
n′′′

(∑
n′

Kηn′
∑
n′′

En′n′′Kn′′n′′′

)
αn′′′ = λ

∑
n′′′

Kηn′′′αn′′′ , (2.61)

where

Kij := 〈Φ(xi),Φ(xj)〉F

is the element in row i and column j of the gram matrix K. Considering E and K as N×N

real matrices and defining F := EK and G := KF leads to∑
n′′

En′n′′Kn′′n′′′ = Fn′n′′′ and
∑
n′

Kηn′
∑
n′′

En′n′′Kn′′n′′′ = Gηn′′′ . (2.62)

Therefore, the left-hand side of equation (2.59) equals Gη•α, where 1) Gη• is the ηth row

of the N × N matrix G and 2) α is the N × 1 column vector with the nth component as
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αn. Similarly, the right-hand side of equation (2.59) equals Kη•α, where Kη• is the ηth row

of the N ×N matrix K. Using equation (2.59) to form one equation for all η = 1, · · · , N ,

gives the following generalized eigenanalysis problem:

Gα = λKα. (2.63)

If k(·, ·) is a symmetric positive-definite (SPD) Mercer kernel and the points {Φ(xn)}Nn=1

are distinct, then K is SPD (hence, invertible) and the generalized eigenanalysis problem

reduces to the standard eigenanalysis problem

EKα = λα. (2.64)

Thus, 1) the eigenvalues {λn}Nn=1 are the same as the eigenvalues of the sample covariance

operator C, and 2) each eigenvector α gives one eigenfunction of C through equation (2.58).

Note that standard kPCA requires eigen decomposition of the (centralized) matrix K.

The definition of the sample covariance operator C implies that the rank of C is upper

bounded by the sample size M . Because the eigenvalues of C are the same as those for EK

or for the pair (G,K), if M < N , then the rank of the N ×N matrices EK and G is also

upper bounded by M . While K is an N ×N symmetric positive (semi) definite matrix of

rank at-most N , E is an N ×N symmetric positive (semi) definite matrix of rank at-most

M because E = BPBT , where 1) B is a N ×M matrix where Bnm = βnm and 2) P is an

M ×M diagonal matrix where Pmm = pm/M .

2.6.3 Kernel Principal Geodesic Analysis (kPGA) Algorithm

We summarize the proposed kPGA algorithm below.

1) Input: a) A set of points {ym}Mm=1 on the unit Hilbert sphere in RKHS. b) Weights

{pm}Mm=1. As described previously, we assume that, in general, each ym is represented

using another set of points {Φ(xn)}Nn=1 and weights wmn on the unit Hilbert sphere

in RKHS, i.e., ym :=
∑

nwmnΦ(xn).

2) Compute the gram matrix K.

3) Compute the Karcher mean µ using the algorithm in Section 2.6.1.

4) Compute the matrix E or G = KEK as described in Section 2.6.2.

5) To analyze the Karcher covariance, perform eigenanalysis for the linear system Gα =

λKα or EKα = λα to give eigenvalues {λη}Nη=1 (sorted in nonincreasing order) and

eigenvectors {αη}Nη=1.
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6) Output: a) Mean µ lying on the unit Hilbert sphere in RKHS. b) Principal

components or eigenfunctions {vn =
∑

n′ αηn′Φ(xn′)}Nn=1 in the tangent space at µ.

c) Eigenvalues {λn = λη}Nn=1 capturing variance along principal components.

2.7 Nonlinear Dimensionality Reduction

This section proposes kPGA-based algorithms for nonlinear dimensionality reduction.

First, we propose the following algorithm for dimensionality reduction using kPGA:

1) Input: A set of points {xn}Nn=1 along with their maps {Φ(xn)}Nn=1 on the unit Hilbert

sphere in RKHS. Weights {pn = 1}Nn=1.

2) Apply the kPGA algorithm in Section 2.6.2 to the observed sample {Φ(xn)}Nn=1 to

compute mean µ, eigenvalues {λn}Nn=1 (sorted in nonincreasing order), and corre-

sponding eigenfunctions {vn}Nn=1.

3) Select the largest Q < N eigenvalues {λq}Qq=1 that capture a certain fraction of energy

in the eigenspectrum. Select the corresponding subspace GQ =< v1, · · · , vQ >.

4) Project the Log map of each point Φ(xn) on the subspace GQ to give the embedding

coordinates enq := 〈LogµΦ(xn), vq〉F and projected tangent vectors tn =
∑

q enqvq in

the tangent space at the mean µ.

5) Take the Exp map of projections {tn}Nn=1 to produce {yn = Expµ(tn)}Nn=1 lying within

a Q-dimensional subsphere on the unit Hilbert sphere in RKHS.

6) Output: Embedding subspace (lower dimensional) GQ, embedding coordinates

{(en1, · · · , enQ)}Nn=1, and (re)mapped points on the Hilbert subsphere {yn}Nn=1.

2.8 Clustering Using Mixture Modeling and
Expectation-Maximization

This section proposes kPGA-based algorithms for clustering using a mixture model fitted

using expectation-maximization.

2.8.1 Mixture Model on Hilbert Sphere in RKHS

We now propose an algorithm for clustering a set of points {xn}Nn=1, into a fixed number

of clusters by fitting a mixture model on the unit Hilbert sphere in RKHS.

The proposed approach entails mixture modeling in a finite-dimensional subsphere of the

unit Hilbert sphere in RKHS, after the dimensionality reduction of the points {Φ(xn)} to a
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new set of points {yn} (as in Section 2.7). Modeling PDFs on Hilbert spheres entails fun-

damental trade-offs between model generality and the viability of the underlying parameter

estimation. For instance, although Fisher-Bingham probability density functions (PDF) on

Sd are able to model generic anisotropic distributions (anisotropy around the mean) using

O(d2) parameters, their parameter estimation may be intractable [98]–[100]. On the other

hand, parameter estimation for the O(d)-parameter von Mises-Fisher PDF is tractable [98],

but this PDF can model only isotropic distributions. We take another approach that uses a

tractable approximation of a normal law on a Riemannian manifold [101], allowing modeling

of anisotropic distributions through its covariance parameter in the tangent space at the

mean. Thus, the proposed PDF evaluated at Φ(x) is

P (Φ(x)|µ,C)
.
=

exp
(
−0.5d2g(µ,Φ(x);C)

)
((2π)Q/2|C|1/2)

(2.65)

where

|C| = ΠQ
q=1λq (2.66)

and dg(µ, ν;C) is the geodesic Mahalanobis distance between the point Φ(x) and mean µ,

given covariance C.

The geodesic Mahalanobis distance relies on a regularized sample inverse-covariance

operator [102]

C−1 :=

Q∑
q=1

(1/λq)vq ⊗ vq, (2.67)

where λq is the qth sorted eigenvalue of C, vq is the corresponding eigenfunction, and

Q ≤ min(M,N) is a regularization parameter. Then, the corresponding square-root inverse-

covariance operator is

C−1/2 :=
∑
q

(1/
√
λq)vq ⊗ vq (2.68)

and the geodesic Mahalanobis distance of the point ν from mean µ is

dg(ν, µ;C) := (〈C−1/2t, C−1/2t〉F )0.5 (2.69)

where

t := Logµ(ν).

Let Y be a random variable that generates the N independent and identically distributed

data points {yn}Nn=1 as follows. For each n, we first draw a cluster number l ∈ {1, 2, · · · , L}
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with probability wl (where ∀l : wl > 0 and
∑

l wl = 1) and then draw yn from P (Y |µl, Cl).

Thus, the probability of observing yn is P (yn) =
∑

l wlP (yn|µl, Cl).
The parameters for P (Y ) are θ = {wl, µl, Cl}Ll=1. We solve for the maximum-likelihood

estimate of θ via EM. Let {Sn}Nn=1 be hidden random variables that give, for each n, the

cluster number sn ∈ {1, · · · , L} that generated data point yn.

2.8.2 Expectation-Maximization

EM performs iterative optimization. Each EM iteration involves an E-step and an

M-step. At iteration i, given parameter estimates θi, the E-step defines a functionQ(θ|θi) :=

EP ({Sn}Nn=1|{yn}Nn=1,θ
i)[logP ({Sn, yn}Nn=1|θ)]. For our mixture model,

Q(θ|θi) =
∑
n

∑
l

P (sn = l|yn, θi)
(
logwl − 0.5 log |Cl| − 0.5d2g(µl, yn;Cl)

)
+ constant,

(2.70)

where

P (sn = l|yn, θi) =
P (sn = l|θi)P (yn|sn = l, θi)

P (yn|θi)
=

wilP (yn|µil, Cil )∑
l w

i
lP (yn|µil, Cil )

. (2.71)

We denote P (sn = l|yn, θi) in shorthand by the class membership P inl. We denote
∑

n P
i
nl

in shorthand by P il . Simplifying gives

Q(θ|θi) =
∑
l

P il (logwl − 0.5 log |Cl|)− 0.5
∑
n

∑
l

P inld
2
g(µl, yn;Cl) + constant. (2.72)

The M-step maximizes Q(θ), under the constraints on wl, using the method of Lagrange

multipliers, to give the optimal values and, hence, the updates, for parameters θ.

Thus, the proposed clustering algorithm is as follows:

1) Input: A set of points {Φ(xn)}Nn=1 on the unit Hilbert sphere in RKHS with all

associated weights pn set to unity.

2) Reduce the dimensionality of the input using the algorithm in Section 2.7 to give

points {yn}Nn=1 on a lower dimensional subsphere of the Hilbert sphere in RKHS.

3) Initialize iteration count i := 0. Initialize parameters θ0 = {w0
l , µ

0
l , C

0
l }Ll=1 as fol-

lows: run farthest-point clustering [103] (with kernel-based distances; with randomly

selected first point) to initialize kernel k means [40] that, in turn, initializes µ0l and C0
l

to be the mean and covariances of cluster l, respectively, and w0
l equal to the number

of points in cluster l divided by N .

4) Iteratively update the parameter estimates until convergence, as follows:
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5) Evaluate probabilities {P inl} using current parameter estimates θi.

6) Update means µi+1
l = arg minµ

∑
n P

i
nld

2
g(µl, yn;Cl) using a gradient-descent algo-

rithm similar to that used in Section 2.6.1 for the sample-weighted Karcher mean.

7) Update covariances Ci+1
l =

∑
n(P inl/P

i
l )Logµi+1

l
(yn)⊗ Logµi+1

l
(yn).

8) Update probabilities wi+1
l = P il /(

∑
l P

i
l ).

9) Output: Parameters: θ = {wl, µl, Cl}Ll=1. Labeling: Assign Φ(xn) to the cluster l

that maximizes P (yn|µl, Cl).

2.9 Experiments

This section shows results on simulated data, real-world face images from the Olivetti

Research Laboratory (ORL) [104], and real-world data from the University of California

Irvine (UCI) machine learning repository [105].

2.9.1 Nonlinear Dimensionality Reduction

We employ kPCA and the proposed kPGA for nonlinear dimensionality reduction on

simulated and real-world databases. To evaluate the quality of dimensionality reduction, we

use the co-ranking matrix [106] to compare rankings of pairwise distances between 1) data

points in the original high-dimensional space (i.e., without any dimensionality reduction)

and 2) the projected data points in the lower dimensional embedding found by the algorithm.

Based on this motivation, a standard measure to evaluate the quality of dimensionality-

reduction algorithms is to average, over all data points, the fraction of other data points

that remain inside a κ neighborhood defined based on the original distances [106]. For

a fixed number of reduced dimensions, an ideal dimensionality-reduction algorithm would

lead to this quality measure being 1 for every value of κ ∈ {1, 2, · · · , N − 1}, where N is

the total number of points in the dataset.

2.9.1.1 Simulated Data – Points on a High-Dimensional
Unit Hilbert Sphere

We generate N = 200 data points lying on the unit Hilbert sphere in R100. We

ensure the intrinsic dimensionality of the dataset to be 2 by considering a subsphere S2

of dimension 2 and sampling points from a von Mises-Fisher distribution on S2 [99]. We

set the kernel as k(x, y) := 〈x, y〉 that reduces the map Φ(·) to identity (i.e., Φ(x) := x)

and, thereby, performs the analysis on the original data that lie on a Hilbert sphere in

input space. Fig. 2.11 shows the results of the dimensionality reduction using kPCA and
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Reduced Dimension Q = 1 Reduced Dimension Q = 2

Fig. 2.11. Nonlinear dimensionality reduction on simulated data: The
performance for the proposed kPGA is in blue and that for the standard kPCA is in red.
The horizontal axis shows values of κ in the κ neighborhood [106]. The quality measure
on the vertical axis indicates the preservation of κ-sized neighborhoods based on distances
in the original space (see text). For a fixed number of reduced dimensions Q, the ideal
performance is a quality measure of 1 for all κ.
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kPGA. When the reduced dimensionality is forced to be 1, which we know is suboptimal,

both kPCA and kPGA perform comparably. However, when the reduced dimensionality

is forced to be 2 (which equals the intrinsic dimension of the data), then kPGA clearly

outperforms kPCA; kPGA preserves the distance-based κ neighborhoods for almost every

value of κ ∈ {1, · · · , 199}. The result in Fig. 2.11 is also consistent with the covariance eigen-

spectra produced by kPCA and kPGA. Standard kPCA, undesirably, gives three nonzero

eigenvalues (0.106, 0.0961, 0.0113) that reflect the dimensionality of the data representation

for points on S2. On the other hand, the proposed kPGA gives only two nonzero eigenvalues

(0.1246, 0.1211) that reflect the intrinsic dimension of the data. Thus, kPGA needs fewer

components/dimensions to represent the data.

2.9.1.2 Real-World Data – ORL Face Image Database

The ORL database [104] comprises N = 400 face images of size 112 × 92 pixels. To

measure image similarity, a justifiable kernel is the polynomial kernel k(x, y) := (〈x, y〉)d

after normalizing the intensities in each image x (i.e., subtract mean and divide by standard

deviation) so that 〈x, x〉 = 1 = k(x, x) [10]. Fig. 2.12 shows the results of nonlinear

dimensionality reduction using standard kPCA and the proposed kPGA. For a range of

values of the reduced dimension (i.e., 2, 4, 8, 16, 32, 64, 128, 256) and a range of values of

the polynomial kernel degree d (i.e., d = 4, 5, 6), the proposed kPGA outperforms standard

kPCA with respect to the κ-neighborhood-based quality measure.

2.9.2 Clustering

We use the UCI repository to evaluate clustering in RKHS. Interestingly, for all but

two of the UCI datasets used in this paper, the number of modes in kPCA (using the

Gaussian kernel) capturing 90% of the spectrum energy ranges from 3–15 (mean 8.5,

standard deviation 4.5). For only two datasets is the corresponding number of modes

more than 20. This number is usually close to the intrinsic dimension of the data.

2.9.2.1 Real-World Data – UCI Machine Learning
Repository

We evaluate clustering algorithms by measuring the error rate in the assignments of

data points to clusters; we define error rate as the fraction of the total number of points in

the dataset assigned to the incorrect cluster. We evaluate clustering error rates on a wide

range of subspace dimensions Q ∈ {1, · · · , 30}. For each Q, we repeat the following process

50 times: we randomly select 70% points from each cluster, run the clustering algorithm,
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Dimension Q=2, Degree d=4 Dimension Q=2, Degree d=5 Dimension Q=2, Degree d=6

Dimension Q=4, Degree d=4 Dimension Q=4, Degree d=5 Dimension Q=4, Degree d=6

Dimension Q=8, Degree d=4 Dimension Q=8, Degree d=5 Dimension Q=8, Degree d=6

Dimension Q=16, Degree d=4 Dimension Q=16, Degree d=5 Dimension Q=16, Degree d=6

Fig. 2.12. Nonlinear dimensionality reduction on ORL face images: The blue
curves represent the proposed kPGA and the red curves represent standard kPCA.
Each subfigure plots quality measures (on vertical axis) for reduced-dimension values Q =
2, 4, 8, 16 and polynomial-kernel-parameter values d = 4, 5, 6. Within each subfigure (on
horizontal axis), κ = 1, · · · , 399. See next page for additional results with reduced-dimension
values Q = 32, 64, 128, 256.
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Dimension Q=32, Degree d=4 Dimension Q=32, Degree d=5 Dimension Q=32, Degree d=6

Dimension Q=64, Degree d=4 Dimension Q=64, Degree d=5 Dimension Q=64, Degree d=6

Dimension=128, Degree d=4 Dimension Q=128, Degree d=5 Dimension Q=128, Degree d=6

Dimension=256, Degree d=4 Dimension Q=256, Degree d=5 Dimension Q=256, Degree d=6

Fig. 2.12. Continued.
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and compute the error rate. We use the Gaussian kernel k(xi, xj) = exp(−0.5‖xi−xj‖22/σ2)

and set σ2, as per convention, to the average squared distance between all pairs (xi, xj).

From Fig. 2.13 to Fig. 2.20, we compare the performance of spectral clustering [107],

standard kPCA, and the proposed kPGA. Fig. 2.13 shows the result of wine, where kPGA

shows the lowest error rates (over all Q) and outperforms spectral clustering. Fig. 2.14

shows the result of Harberman, where kPGA has lower error rates than both kPCA and

spectral clustering in most Q. From Fig. 2.15 to Fig. 2.18 (iris, vote, heart, and ecoli in

order), the kPGA performs better or as well as for almost all choices of Q, but the kPGA

Fig. 2.13. Clustering result of wine: The blue line indicates the kPGA, the red line
indicates kPCA, and the black line is spectral clustering. The x-axis is subspace dimensions
Q ∈ {1, · · · , 30}. For each Q, we repeat the following process 50 times: we randomly select
70% points from each cluster, run the clustering algorithm, and compute the error rate
(y-axis). The kPGA has the lowest error rates (over all Q) of all methods.

Fig. 2.14. Clustering result of Harberman: The kPGA has lower error rates than
kPCA and spectra clustering in most of Q except for Q = 1, 2, 5, and 11.
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Fig. 2.15. Clustering result of iris: The performance of kPGA is less than or equal to
kPCA for all Q, and both kPGA and kPCA outperform the spectral clustering for all Q.
The kPGA has the best error rate when Q = 4.

Fig. 2.16. Clustering result of vote: The performance of kPGA is less than or equal
to kPCA for all Q, and both kPGA and kPCA outperform the spectral clustering for all Q.
The kPGA has the best error rate when Q = 55.
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Fig. 2.17. Clustering result of heart: The performance of kPGA is less than or equal
to kPCA over all Q, and both kPGA and kPCA outperform the spectral clustering for all
Q. The kPGA has the best error rate when Q = 21.

Fig. 2.18. Clustering result of ecoli: The performance of kPGA is less than or equal
to kPCA over all Q, and both kPGA and kPCA outperform the spectral clustering for all
Q. The kPGA has the best error rate when Q = 27.
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Fig. 2.19. Clustering result of blood: The kPGA performs as well as spectral clustering
and has better performance than the kPCA when 8 < Q ≤ 13 and Q ≥ 23.

Fig. 2.20. Clustering result of liver: The performance of kPGA is better than both
the kPCA and spectral clustering when Q ≥ 2.

gives the lowest error rates (over all Q) and outperforms spectral clustering. In Fig. 2.19

is the blood dataset for which the kPGA performs as well as spectral clustering (over all

Q). In Fig. 2.20 is the liver dataset in which kPCA has the best performance when Q = 1;

however, kPGA performs the best whenever Q > 2.

2.10 Conclusion

This dissertation addresses the hyperspherical geometry of points in kernel feature space,

which naturally arises from many popular kernels and kernel normalization. This disser-

tation proposes kPGA to perform PGA on the Hilbert sphere manifold in RKHS, through

algorithms for computing the sample-weighted Karcher mean and the eigenvalues and

eigenfunctions of the sample-weighted Karcher covariance. It leverages kPGA to propose
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methods for 1) nonlinear dimensionality reduction and 2) clustering using mixture-model

fitting on the Hilbert sphere in RKHS.



CHAPTER 3

HIERARCHICAL BAYESIAN MODELING,

ESTIMATION, AND SAMPLING FOR

MULTIGROUP SHAPE ANALYSIS

3.1 Abstract

This dissertation proposes a novel method for the analysis of anatomical shapes present

in biomedical image data. Motivated by the natural organization of population data into

multiple groups, this dissertation presents a novel hierarchical generative statistical model

on shapes. The proposed method represents shapes using pointsets and defines a joint dis-

tribution on the population’s 1) shape variables and 2) object-boundary data. The proposed

method solves for optimal 1) point locations, 2) correspondences, and 3) model-parameter

values as a single optimization problem. The optimization uses expectation-maximization

relying on a novel Markov-chain Monte-Carlo algorithm for sampling in Kendall shape space.

Results on clinical brain images demonstrate advantages over the state-of-the-art.

3.2 Introduction and Related Work

Shape analysis [32], [33] entails the inference of shape models from population data

and associated statistical analyses, e.g., hypothesis testing for comparing groups. The

natural organization of biomedical data into groups, and possibly subgroups, calls for a

hierarchical modeling strategy. Previous works on hierarchical shape modeling typically

concern 1) multiresolution models [108], e.g., a face model at fine-to-coarse resolutions, or

2) multipart models [109], e.g., a car decomposed into body, tires, and trunk. In contrast,

This chapter is a revised and adapted with permission (copyright by authors) from

Hierarchical Bayesian Modeling, Estimation, and Sampling for Multigroup Shape
Analysis. Yen-Yun Yu, P. Thomas Fletcher, and Suyash P. Awate. Medical Image Computing
and Computer-Assisted Intervention - MICCAI 2014 Volume 8675 of the series Lecture Notes in
Computer Science pages 9-16 (17th International Conference on the Medical Image Computing
and Computer-Assisted Intervention, Boston, MA, USA, September 14-18, 2014)
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the proposed framework deals with population data comprising multiple groups, e.g., the

Alzheimer’s disease (AD) population comprising people with 1) dementia due to AD, 2) mild

cognitive impairment due to AD, and 3) preclinical AD.

Fig. 3.1 outlines the proposed generative model, where 1) top-level variables capture

the shape properties across the population (e.g., all individuals with and without medical

conditions), 2) variables at a level below capture the shape distribution in different groups

within the population (e.g., clinical cohorts based on gender or type of disease within a

spectrum disorder), and 3) variables at the next lower level capture individual shapes,

which finally relate to 4) individual image data at the lowest level. Moreover, the top-level

population variables provide a common reference frame for the group shape models, which

is necessary to enable comparison between the groups.

This dissertation makes several contributions. 1) It proposes a novel hierarchical gen-

erative model for population shape data. It represents a shape as an equivalence class

of pointsets modulo translation, rotation, and isotropic scaling [32]. This model tightly

couples each individual’s shape (unknown) to the observed image data by designing its joint

probability density function (PDF) using current distance or kernel distance [110], [111].

The current distance makes the logarithm of the joint PDF a nonlinear function of the

point locations. Subsequently, the proposed method solves a single unified model-fitting

optimization problem to estimate optimal point locations, correspondences, and parameter

values. 2) The proposed model fitting relies on expectation-maximization (EM), treating the

individual-shape and group-shape variables as hidden random variables, thereby integrating

them out while estimating parameters (e.g., the population shape mean and covariance). In

this way, the proposed EM algorithm improves over typical methods that use mode approxi-

mation for shape variables. 3) The EM algorithm entails evaluating an expectation over the

posterior PDF of the shape variables. For instance, the posterior PDF for individual-shape

variables involves the a) likelihood PDF designed using the current distance and b) prior

PDF conditioned on the group shape model. To compute the expectation, the proposed EM

algorithm relies on a novel adaptation of Hamiltonian Monte Carlo (HMC) [112] sampling

in Kendall shape space. 4) The results show that the hierarchical model leads to more

compact model fits and improved detection of subtle shape variations between groups.

Early approaches [32], [113] to statistical shape modeling rely on manually defined

homologous landmarks. Later approaches optimize point positions or correspondences

using statistical compactness criteria such as the 1) logarithm of the determinant of the

model covariance matrix [114], 2) minimum description length [115], [116], or 3) minimum
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Fig. 3.1. Proposed hierarchical generative statistical model for multigroup
shape data: The model variables at the top level capture statistical properties of the
population, the variables at a lower level capture statistical properties of different groups
within a population, and the variables at the lowest level capture individual properties.
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entropy [117]. However, these approaches 1) do not incorporate a generative statistical

model, 2) introduce ad hoc terms in the objective function to obtain correspondences,

and 3) do not estimate shape-model parameters within the aforementioned optimization.

Some generative models for shape analysis do exist [35]–[38], but these models rely on a

predetermined template shape with manually placed landmarks.

Experiments in this chapter use the fitted hierarchical model to perform 1) hypothesis

testing for comparison between pairs of groups using permutation testing and 2) classifica-

tion for image retrieval.

3.3 Background

Shape is emerging as an important feature to describe the geometry of objects. The

definition of shape is all the geometrical information that remains when location, scale, and

rotational effects are filtered out from an object [33]. In other words, two objects have

the same shape if they are invariant in Euclidean similarity transformations (Fig. 3.2).

Landmarks are homologous points that lie on the surface of the anatomy. One of the

standard ways to define shape is landmark-based shape, in which a finite number of points

(i.e., landmarks) are located on the surface of the object. Each point of correspondence

on each object is a match between and within a population of shapes. Landmarks can be

generated by different approaches, such as selection by a domain expert manually or by

following the geometrical property; thus, it is known as the point location problem [118],

[119]. Next, finding a meaningful correspondence within a shape population is a prerequisite

for shape analysis, which is known as the shape correspondence problem. Suppose a shape

X has N landmarks where each landmark is denoted as X(n) ∈ RD, then the shape is

represented as X := (X(1), X(2), . . . , X(N))T in RND.

3.4 Hierarchical Generative Shape Model

This section introduces the proposed hierarchical Bayesian shape model for statistical

shape analysis. We first describe the proposed hierarchical model for multigroup shape

data.

3.4.1 Observed Data

Consider a group of I vector random variables X := {Xi}Ii=1, where Xi is a vector

random variable denoting a given set of points on the boundary of an anatomical structure

in the i-th individual’s image data. That is, Xi := {Xi(n)}Ni
n=1 where Xi(n) ∈ RD is the

D-dimensional spatial coordinate of the n-th point in the pointset. Such points can be
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Fig. 3.2. Example of the shapes: Five objects have the same shape, but under different
location, scale, and rotational effects.

obtained from a given segmentation or delineation of the anatomical structure. In this

chapter, D = 3. In any individual’s image data, the number of boundary points Ni can be

arbitrary. Similarly, consider other groups of data, e.g., data Y := {Yj}Jj=1 derived from a

group of J individuals, data {Zk}Kk=1, etc.

3.4.2 Individual Shape Variable

For the first group (corresponding to data X), consider a group of I latent/hidden

random variables U := {Ui}Ii=1, where Ui is a vector random variable representing the shape

of the anatomical structure of the i-th individual. That is, Ui := {Ui(t)}Tt=1, where Ui(t) ∈

RD is the D-dimensional coordinate of the t-th point in the shape representation of the i-th

individual’s structure. We assume the observations Xi to be derived from the individual

shape Ui. Similarly, we consider latent random variables, i.e., V , W , etc., representing

shapes for the other groups. To enable intragroup and intergroup statistical analysis, we

ensure that all shape models lie in the same space by enforcing the same number of points

T in all shape models.

3.4.3 Group Shape Variable

Consider the first group of shapes U to be derived from a shape probability density

function having a mean shape M1 and a shape covariance C1. Consider other groups of

shapes modeled analogously, i.e., V derived from a group with shape mean and covariance

(M2, C2), W derived from a group with shape mean and covariance (Mn, Cn), etc. This

chapter treats the group means, i.e., M1, M2,· · · ,Mn, as latent random variables and

the group covariances, i.e., C1, C2,· · · ,Cn, as parameters. The proposed method can be

generalized to treat the group covariances as random variables.
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3.4.4 Population Shape Variable

Consider all group shape means, i.e., M1, M2,· · · ,Mn, to be derived from a single

population of shapes with mean M and covariance C. In this chapter, without loss of

generality, we consider only two groups (n = 2) for simplicity.

3.5 Joint Probability Density Function (PDF)

We model the joint PDF with 1) parameters M,C,C1, C2, 2) group shape variables

M1,M2, 3) individual shape variables U, V , and 4) data X,Y as

P (M1,M2, U, V,X, Y |M,C,C1, C2) := (3.1)

P (M1|M,C)P (M2|M,C)ΠI
i=1P (Ui|M1, C1)P (Xi|Ui)ΠJ

j=1P (Vj |M2, C2)P (Yj |Vj). (3.2)

3.5.1 PDF of Observed Data Given Individual Shape Variable

We model P (Xi|Ui), P (Yj |Vj) using current distance. As in Fig. 3.3, between pointsets

A := {ai}Ii=1 and B := {bj}Jj=1, the squared current distance is

d2K(A,B) :=
I∑
i=1

I∑
i′=1

K(ai, ai′) +
J∑
j=1

J∑
j′=1

K(bj , bj′)− 2
I∑
i=1

J∑
j=1

K(ai, bj) (3.3)

where K(·, ·) is a Mercer kernel. In this chapter, K(·, ·) is the Gaussian kernel with isotropic

covariance σ2ID. We use the current distance to define

P (Xi|Ui) := (1/γ) exp
(
−d2K(Xi, Ui)

)
, (3.4)

over finite support, where γ is the normalization constant. The current-distance model

allows the number of points in the shape models Ui to be different from the number of

boundary points in the data Xi.

3.5.2 PDF of Group Shape Variable

We model P (Ui|M1, C1) as Gaussian with mean M1 and covariance C1 and P (Vj |M2, C2)

as Gaussian with mean M2 and covariance C2.

3.5.3 PDF of Group Shape Variables Given Population Parameters

We model P (M1|M,C) and P (M2|M,C) as Gaussian with mean M and covariance

C; we choose the Gaussian 1) to be maximally noncommittal during model design and

2) as the conjugate prior for the Gaussian means M1,M2. Under the Gaussian model,

strange-looking shapes can be avoided by preventing overregularization of the covariance

estimate and preventing very large deviations from the mean (which are rare events under
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Fig. 3.3. Example of current distance: The current distance model allows the number
of points in pointset A to be different from the number of points in pointset B.

the Gaussian). More importantly, the hierarchical model alleviates this issue by producing

covariance estimates that are more compact and restrict variation over fewer modes.

3.6 Monte-Carlo Expectation-Maximization

This section presents the EM algorithm for the model-fitting optimization problem. The

proposed model uses Monte-Carlo EM to fit the shape model to data. The parameters in

our model are 1) the population mean M and covariance C and 2) the group covariances

C1, C2. Denoting θ := {M,C,C1, C2}, the optimal model fit is

arg max
θ
P (x, y|θ) = arg max

θ

∫
P (u, v,m1,m2, x, y|θ)dudvdm1dm2. (3.5)

3.6.1 E-Step: Hamiltonian Monte Carlo (HMC)

In the i-th iteration, with parameter estimate θ̂i, the E-step constructs the Q function

as

Q(θ|θ̂i) := E
P (U,V,M1,M2|x,y,θ̂i) logP (U, V,M1,M2, x, y|θ). (3.6)

Because of the analytical intractability of this expectation, we approximate

Q(θ|θ̂i) .
= Q̂(θ|θ̂i) :=

S∑
s=1

(1/S) logP (us, vs,ms
1,m

s
2, x, y|θ) (3.7)

using Monte-Carlo simulation. To sample the set of individual shapes us, vs and the group-

mean shapes ms
1,m

s
2 from P (U, V,M1,M2|x, y, θ̂i), we propose Gibbs sampling coupled with

a novel adaptation of the HMC sampler [112]. Before describing the adapted HMC sampler,

we outline the proposed shape-sampling algorithm for generating a sample of size S:

1) Set the sample index variable s to 0. Initialize the sampling algorithm with the sample

point s = 0 denoted by u0 := {u0i }Ii=1, v
0 := {v0j }Jj=1,m

0
1,m

0
2.

Given sample point s, sample the (s+ 1)-th sample point as follows:
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2) Initialized with usi , ∀i sample us+1
i ∼ P (Ui|vs,ms

1,m
s
2, x, y, θ̂

i).

3) Initialized with vsj , ∀j sample vs+1
j ∼ P (Vj |us+1,ms

1,m
s
2, x, y, θ̂

i).

4) Initialized with ms
1, sample ms+1

1 ∼ P (M1|us+1, vs+1,ms
2, x, y, θ̂

i).

5) Initialized with ms
2, sample ms+1

2 ∼ P (M2|us+1, vs+1,ms+1
1 , x, y, θ̂i).

6) If s+1 = S, then stop; otherwise increment s by 1 and repeat the previous four steps.

We ensure the independence of samples between Gibbs iteration s and the next s + 1 by

running the HMC algorithm sufficiently long and discarding the first few samples s.

HMC is a Markov-chain Monte-Carlo sampling algorithm. HMC exploits the gradient

of the log PDF for fast exploration of the space of the random variables. The HMC

approach first augments the original random variables with auxiliary momentum variables,

then defines a Hamiltonian function combining the original and auxiliary variables, and,

subsequently, alternates between simple updates for the auxiliary variables and Metropolis

updates for the original variables. HMC proposes new states by computing a trajec-

tory according to the Hamiltonian dynamics implemented with a leapfrog method and

guarantees the new proposal states to be accepted with high probability. In our case,

HMC requires gradients of logP (U, V,M1,M2|x, y, θ̂i) with respect to the latent variables

{Ui}Ii=1, {Vj}Jj=1,M1,M2.

3.6.2 E-Step: Sampling in Shape Space

Using HMC naively leads to pointset updates that can change the location, scale, and

pose of the pointset, thereby making the sampler very inefficient. For this problem, we

propose to modify HMC by replacing the gradient of the log posterior by a projected gradient

that restricts the updated shape to Kendall shape space. As shown in Fig. 3.4, starting

with pointset ui, the log-posterior gradient r1 is first projected onto the preshape space to

produce r4, which has the same centroid and scale as ui. Then, to remove rotation effects,

the resulting preshape r4 is rotationally aligned with the ui, yielding r5 (not shown in the

figure). These steps project the log-posterior gradient at ui, within HMC, to generate an

updated shape r5 as part of the trajectory within HMC.

3.6.3 M-Step: Parameters Estimation

In iteration i of the EM optimization, the M step maximizes Q̂(θ|θ̂i) over θ and sets

θ̂i+1 ← arg maxθ
∑S

s=1 logP (us, vs,ms
1,m

s
2, x, y|θ). Subsequently, we get optimal values in

closed form for the parameters Ĉi+1
1 , Ĉi+1

2 , M̂ i+1, Ĉi+1:



55

Fig. 3.4. Illustration of projected gradient that restricts the updated shape to
Kendall shape space: Top: Kendall preshape space [33] (dotted hypersphere) that is
the intersection of the (bold) hypersphere of fixed radius ρ (i.e.,

∑
t‖ui(t)‖2F = ρ2; fixes

scale) and the hyperplane through the origin (i.e.,
∑

t ui(t) = 0; fixes translation). For a
pointset ui, log-posterior gradients r1 are projected onto the hyperplane to produce r2, which
eliminates translation. Bottom: To remove changes in scale, the resulting projection r2

is then projected onto the tangent space at ui, tangent to the preshape space, and the
resulting tangent-space projection r3 is mapped to the preshape space via the manifold
exponential map to give r4. The text describes the last part of the projection.
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Ĉi+1
1 =

1

SI

S∑
s=1

I∑
i=1

(
(usi −ms

1)(u
s
i −ms

1)
T
)

(3.8)

Ĉi+1
2 =

1

SJ

S∑
s=1

J∑
j=1

(
(vsj −ms

2)(v
s
j −ms

2)
T
)

(3.9)

M̂ i+1 =
1

2S

S∑
s=1

(ms
1 +ms

2) (3.10)

Ĉi+1 =
1

2S

S∑
s=1

(
(ms

1 −M)(ms
1 −M)T + (ms

2 −M)(ms
2 −M)T

)
. (3.11)

3.7 Experiments

This section shows results for simulated and real data, including two dimensions (2D)

and three dimensions (3D). We demonstrate the performance of the proposed model on the

correspondence problem, classification, and hypothesis testing.

3.7.1 Correspondence Problem

First, we validate the hierarchical shape model for the correspondence problem on

simulated bump shapes. This subsection provides a 2D example of a standard simulated

test dataset [114] and shows that the proposed framework is able to correctly learn the true

group and population models. Fig. 3.5 (top row) shows simulated (ground-truth) pointsets,

which are very similar to those used in [114], in which the population is a collection of

box-bump [114] shapes where the location of the bump (and each point) exhibits linear

variation, across the group, over the top of the box. Whereas the desired population mean

M corresponds to a shape with the bump exactly in the middle, the bumps in the true group

means M1,M2 are located symmetrically on either side of the middle. The true covariance

matrices for the groups (C1, C2) and the population (C) have a single nonzero eigenvalue.

Fig. 3.5 (bottom row) shows the observed corrupted data, i.e., {xi}4i=1, {yj}4j=1, where we

induce poor correspondences and noise in the point locations.

Fig. 3.6 shows the means for the groups and population after EM optimization. We

see that the estimated population mean M and the expected values of the group means

M1,M2 after EM optimization are close to their true values. Fig. 3.6 also shows that the

correspondence of corrupted data points xi(t), across the group (i = 1, . . . , 4), is poor,

indicating a large variance. On the other hand, after EM optimization, the correspondence

of the expected values of the shape variables Ui(t) indicates a significantly lower variance

and correctly shows the linear variation in the point location across the group.
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Fig. 3.5. Simulated box-bump shapes [114]. Top Row: Simulated ground-truth
shape models for the two groups, each with four shapes. The bump for the first group (blue)
is on the left and the bump for the second group (red) is on the right. Each shape has 64
points, shown by circles. The black filled circle indicates the first point in the list; other
points are numbered counterclockwise. Bottom Row: Corrupted data where the point
ordering in each shape is randomly circularly shifted (to induce poor correspondences), and
independent Gaussian noise is added to each point position (to mimic errors in boundary
detection).

Fig. 3.6. Shape correspondence on simulated box-bump shapes: Left: The
optimal population mean M (black dots) along with the expected values for the group means
M1 (blue dots) and M2 (red dots) after EM inference. Middle: The correspondence
of points for the corrupted data xi across a selected group (blue shapes). Right: The
correspondences for the expected values of shape models Ui after EM inference.
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3.7.2 Classification

This section shows results of the proposed hierarchical multigroup shape modeling used

for classification on a real dataset, namely the Tree Leaf Database [120] comprising images

of leaves of 90 wood species growing in the Czech Republic. We used two of the largest

available groups, comprising the species 1) Carpinus betulus, with 23 leaf images (Fig. 3.7;

blue group) and 2) Fagus sylvatica, also with 23 leaf images (Fig. 3.7; red group). The

leaf stem was removed from the images manually. Interestingly, the blue group has oblong

leaves that have high curvature at one end and low at the other, whereas the red group has

oblong leaves that are more symmetric with similar curvatures at both ends.

After the multigroup model is fit to training data, we can classify unseen shapes as

follows. We evaluate the probability of the test pointset z being drawn from each group

model, i.e., P (z|M1, C1) and P (z|M2, C2), and classify z to the class that yields a higher

probability. We can evaluate the aforementioned probabilities as follows:

P (z|M1, C1) =

∫
w
P (z, w|M1, C1)dw

=

∫
w
P (z|w,M1, C1)P (w|M1, C1)dw

≈
S∑
s=1

1

S
P (z|ws) (3.12)

where

ws ∼ P (W |M1, C1). (3.13)

w is the latent random variable corresponding to the test pointset z. We performed the

classification task by training using only three leaves from each group and testing on the

remaining 20 leaves in each group. We obtained a correct-classification rate of 97.5%.

3.7.3 Hypothesis Testing

In the following sections, we show the proposed hierarchical shape model for hypothesis

testing on 3D shapes.

3.7.3.1 Initialization

For the 3D data, we assume the input 3D images undergoing shape analysis to be binary

or soft masks, having intensities in the range [−1, 1], that segment the image into the object

of interest and the background. For hypothesis testing, it is less interesting to compare the

performances of methods when the two groups are 1) similar or 2) extremely different. The
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Fig. 3.7. Tree leaf database: The two groups of leaves from two species of trees; one
in red and the other in blue. The blue groups is Carpinus betulus, with 23 leaf images and
the red group is Fagus sylvatica, which also has 23 leaf images.
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real challenge is being able to reject the null hypothesis when the two groups differ in subtle

ways.

For the proposed hierarchical model, we initialize the pointsets that model shape as

follows. First, we solve a groupwise registration problem on the mask images, using a

similarity transform to 1) register the images, representing shape, to a common space and

2) find an average (mask) image in that space. We assume the data to be the set of voxels

on the zero crossing of the mask images warped to the common space (Fig. 3.8-(a) and (b)).

Then, we 1) threshold the average mask to get an object boundary, 2) embed it as the zero

level set of a signed distance-transform image, and 3) generate a 3D triangular mesh for the

zero level set using [121] (Fig. 3.8-(c) and (d)). Finally, we use this mesh-vertex pointset as

the initial value for M , m0
1, m

0
2, {u0i }Ii=1, and {v0j }Jj=1. We set C,C1, C2 to (scaled) identity.

We set the σ for the Gaussian kernel, underlying the current distance, to be the average

edge length in the mesh. With this initialization, we compare the proposed method with a

state-of-the-art algorithm [117] implemented in the open-source software ShapeWorks [122].

3.7.3.2 Group Comparison Using Permutation Testing

After the model is fit to the data, we can perform hypothesis testing to compare any

pair of groups; the null hypothesis is that the two groups of data were drawn from the same

PDF. Since the shape PDF in each group is modeled using Mahalanobis distances based

on means M1,M2 and covariances C1, C2, we use Hotelling’s two-sample T 2 statistic to

measure dissimilarity between any pair of groups. However, in 3D medical image data, the

dimensionality TD can be very high compared to the number of individuals. Low sample

sizes can render the F-distribution unusable. Simulating shapes with sample sizes higher

than the dimensionality TD can be computationally expensive. Thus, we propose to employ

distribution-free hypothesis testing, namely permutation testing, using Hotelling’s T 2 as

the test statistic. Permutation testing is conservative in rejecting the null hypothesis and

enhances robustness to specific modeling choices, e.g., the cardinality of the shape-model

pointsets and internal model-free parameters.

3.7.3.3 Result: Simulated 3D Shapes

We simulate two groups of ellipsoidal shapes (ellipsoids in canonical form; 20 pointsets

per group), where the groups are subtly different from each other. Two of the axes have

length 1. The lengths of the third axis for the 1) first group are drawn from a Gaussian

with mean 0.9 and variance 0.01 and for the 2) second group are drawn from a Gaussian

with mean 1.1 and variance 0.01. The pointsets are then rescaled to a constant norm.
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(a) ellipsoidal (b) hippocampal

(a) ellipsoidal (b) hippocampal

Fig. 3.8. Example for ellipsoidal shapes and hippocampal shapes: (a) and (b) are
one 2D slide of distance transform 3D image data and (c) and (d) are 3D point shape.
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The proposed method as well as ShapeWorks 1) both employ T = 64 points per

pointset for shape modeling and 2) both take as input equivalent information, i.e., whereas

ShapeWorks takes as input a signed-distance-transform image (Fig. 3.8-(a)) representing the

ellipsoids implicitly, the proposed method takes as input the corresponding zero-crossing

image. With T = 64, the average distance between a point and its nearest neighbor, in

the shape pointset, is around 10 voxels. For both methods, the covariance estimates are

regularized by addition of a scaled identity matrix δI, where δ is a free parameter; the

experiments explore the robustness of both approaches to changes in δ.

Fig. 3.9 and Fig. 3.10 show the results from the proposed method compared to Shape-

Works for the regularization parameter δ set to 10−4. The proposed method leads to a fitted

model that has smaller variances at the group level as well as the population level. This

result indicates that the proposed method leads to a model that is more compact and fits

the data better, which stems from improvements in optimal point placement and estimation

of correspondences/parametrization. For the permutation distribution of the Hotelling’s T 2

statistic, the p value for ShapeWorks is 0.05 and that for the proposed method is 0.001.

Varying δ over 10−3, 10−4, · · · , 10−10, we find that the p value for the proposed method

stays at 0.001, but the p value of ShapeWorks varies and is never lower than 0.05. These

results were unchanged when the value of the current-distance parameter σ was multiplied

by factors ∈ [0.5, 2]. These results indicate that, compared to ShapeWorks, the proposed

method was more robust to changes in δ and consistently produces a p value that tends to

(correctly) reject the null hypothesis significantly more strongly.

3.7.3.4 Result: Hippocampal Shapes in Dementia

This section employs clinical brain magnetic resonance (MR) images from the OA-

SIS [123] dataset. We use 10 randomly selected OASIS brains that uniformly sample the

age span, including four cases with very mild to mild Alzheimer’s dementia and six controls,

having hippocampus segmentations manually performed by a radiologist [124], [125].

The proposed method and ShapeWorks both employ T = 128 points per pointset; the

average distance between a point and its nearest neighbor is around five voxels. Fig. 3.11 and

Fig. 3.12 show the results using δ = 10−4. These results were unchanged when the value of

the current-distance parameter σ was multiplied by factors ∈ [0.5, 2]. The proposed method

leads to a fitted model that has smaller variances, indicating a compact better-fitting model.

The p value for ShapeWorks is 0.07. The p value for the proposed method is 0.03, which

indicates a relatively stronger rejection of the null hypothesis.
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(a)

(b) (c)

Fig. 3.9. Eigenspectra of the group covariance for ellipsoid shape: (a) Eigenspec-
tra of the population covariance C, (b) eigenspectra of the group covariance C1, and (c)
eigenspectra of the group covariance C2.
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Fig. 3.10. Permutation distribution of Hotellings T 2 test statistic for ellipsoid
shape: For ShapeWorks (top) and the proposed method (bottom); the red circle shows
the value of the test statistic for the unpermuted group labeling.
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(a)

(b) (c)

Fig. 3.11. Eigenspectra of the group covariance for hippocampal shape: (a)
Eigenspectra of the population covariance C, (b) eigenspectra of the group covariance C1,
and (c) eigenspectra of the group covariance C2.
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Fig. 3.12. Permutation distribution of Hotellings T 2 test statistic for hippocam-
pal shape: For ShapeWorks (top) and the proposed method (bottom); the red circle
shows the value of the test statistic for the unpermuted group labeling.
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3.8 Conclusion

The results show that the proposed hierarchical model and unified-optimization ap-

proach lead to compact-fitting shape models that can differentiate subtle variations in

hippocampal shapes (open-access data) better than the state-of-the-art (open-source soft-

ware). The main originality in the paper is in being able to solve the three problems of

point placement, correspondence, and model-parameter estimation (given data from one or

more groups) as a single optimization problem. Another key originality is in being able to

sample in Kendall shape space, using a novel adaptation of HMC sampling using restricted

gradients. The proposed framework can benefit from more accurate and efficient schemes

for modeling and estimation.



CHAPTER 4

CLUSTERING WITH PAIRWISE

RELATIONSHIPS

4.1 Abstract

Semisupervised learning (SSL) has become important in current data analysis applica-

tions, where the amount of unlabeled data is growing exponentially and user input remains

limited by logistics and expense. Constrained clustering, as a subclass of SSL, makes use

of user input in the form of relationships between data points (e.g., pairs of data points

belonging to the same class or different classes) and can remarkably improve the performance

of unsupervised clustering in order to reflect user-defined knowledge of the relationships

between particular data points. Existing algorithms incorporate such user input, heuristi-

cally, as either hard constraints or soft penalties, which are separate from any generative or

statistical aspect of the clustering model; this results in formulations that are suboptimal

and not sufficiently general. In this dissertation, we propose a principled, generative

approach to probabilistically model, without ad hoc penalties, the joint distribution given

by user-defined pairwise relations. The proposed model accounts for general underlying

distributions without assuming a specific form and relies on expectation-maximization for

model fitting. For distributions in a standard form, the proposed approach results in a

closed-form solution for parameters updated. Results for real-world datasets demonstrate

the effectiveness of the proposed generative model in reflecting user preferences with fewer

user-defined relations compared to the state-of-the-art.

This chapter is a revised and adapted with permission (copyright by authors) from

Clustering With Pairwise Relationships: A Generative Approach. Yen-Yun Yu, Shireen
Y. Elhabian, and Ross T. Whitaker. The paper is under review by the Journal of Machine Learning
Research.
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4.2 Introduction

Semisupervised learning (SSL) has become a topic of significant recent interest in the

context of applied machine learning, where per-class distributions are difficult to auto-

matically separate due to limited sampling and/or limitations of the underlying mathe-

matical model. Several applications, including content-based retrieval [126], email classi-

fication [127], gene function prediction [128], and natural language processing [129], [130],

benefit from the availability of user-defined/application-specific knowledge in the presence

of large amounts of complex unlabeled data, where labeled observations are often limited

and expensive to acquire. In general, SSL algorithms fall into two broad categories: clas-

sification and clustering. Semisupervised classification is considered to improve supervised

classification when small amounts of labeled data with large amounts of unlabeled data

are available [9], [28]. For example, in a semisupervised email classification, one may wish

to classify constantly increasing email messages into spam/nonspam with the knowledge

of a limited amount of user-/human-based classified messages [127]. On the other hand,

semisupervised clustering (SSC), also known as constrained clustering [131], aims to provide

better performance for unsupervised clustering when user-based information about the

relationships within a small subset of the observations becomes available. Such relations

would involve data points belonging to the same or different classes. For example, a

language-specific grammar is necessary in cognitive science when individuals are attempting

to learn a foreign language efficiently. Such a grammar provides rules for prepositions

that can be considered as user-defined knowledge for improving the ability to learn a new

language.

To highlight the role of user-defined relationships for learning an application-specific data

distribution, we consider the example in Fig. 4.1(a), which shows a maximum likelihood

model estimate of a Gaussian mixture that is well supported by the data. However, an

application may benefit from another good (but not optimal w.r.t. likelihood) solution as in

Fig. 4.1(b), which is inconsistent with the data, but is optimal without some information in

addition to the raw data points. Using a limited amount of labeled data and a large amount

of unlabeled data could be difficult to guide the learning algorithm in the application-specific

direction [28]–[31], because performance of a generative model depends on the ratio of the

labeled data to unlabeled data. In contrast, previous works have shown that SSC achieves

the estimate in Fig. 4.1(b), given the observed data and a small number of user-defined

relationships that would guide the parameter estimation process toward a model [131] that is

not only informed by the data, but also by this small amount of user input. This dissertation
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(a) Mathematically Ideal Model (b) Application-Specific Model

Fig. 4.1. Generative model clustering example: Because of finite sampling and
modeling limitations, a distribution of points may give rise to optimal solutions that,
depending on the model and the data, (a) are not well suited to the application and/or
(b) are not consistent with the underlying generative model, which may require domain
knowledge from a user.

addresses the problem of incorporating such user-specific relations into a clustering problem

in an effective, general, and reliable manner.

Clustering data using a generative framework has some useful, important properties,

including compact representations, parameter estimation for subsequent statistical analysis,

and the ability to induce classifications of unseen data [132]. For the problem of estimating

the parameters of generative models, the expectation-maximization (EM) algorithm [74] is

particularly effective. The EM formulation is guaranteed to give maximum-likelihood (ML)

estimates in the unimodal case and local maxima. Therefore, EM formulations of parameter

estimation that properly account for user input in the context of SSC are of interest and

are one of the contributions of this dissertation.

A flexible and efficient way to incorporate user input into SSC is in the form of relations

between observed data points, in order to define statistical relationships among observations

(rather than explicit labeling, as would be done in classification). A typical example would

be for a user to examine a small subset of data and decide that some pairs of points should

be in different classes, referred to as a cannot-link relation, and that other pairs of data

points should be in the same class, i.e., must-link. Using these basic primitives, one may

build up more complex relationships among sets of points. The concept of pairwise links was

first applied to centroid-based clustering approaches, for instance, in the form of constrained
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K-means [133], where each observation is assigned to the nearest cluster in a manner that

avoids violating constraints.

Although some progress has been made in developing mechanisms for incorporating

this type of user input into clustering algorithms, the need remains for a systematic,

general framework that generalizes with a limited amount of user knowledge. Most state-

of-the-art techniques propose adding hard constraints [134], where data points that violate

the constraints do not contribute (i.e., all pairwise constraints must be satisfied), or soft

penalties [135], which penalize the clustering results based on the number of violated

constraints. These can lead to both a lack of generality and suboptimal solutions. For

instance, in constrained K-means, introducing constraints by merely assigning a relatively

small number of points to appropriate centroids does not ensure that the models (centroids)

adequately respond to this user input.

In this chpater, we propose a novel, generative approach for clustering with pairwise

relations that incorporates these relations into the estimation process in a precise manner.

The parameters are estimated by optimizing the data likelihood under the assumption that

individual data points are either independent samples (as in the unsupervised case) or that

they have a nontrivial joint distribution, which is determined by user input. The proposed

model explicitly incorporates the pairwise relationship as a property of the generative model

that guides the parameter estimation process to reflect user preferences and estimates the

global structure of the underlying distribution. Moreover, the proposed model is represented

as a probability distribution that can take virtually any form. The results in this chapter

demonstrate that the proposed optimal strategy pays off, and that it outperforms the state-

of-the art on real-world datasets with significantly less user input.

4.3 Related Work

Semisupervised clustering methods typically fall into one of two categories [131]: distance-

based methods and constraint-based methods. The distance-based approaches combine

conventional clustering algorithms with distance metrics that are designed to satisfy the

information given by user input [136]–[139]. The metrics effectively embed the points into

spaces where the distances between the points with constraints are either larger or smaller

to reflect the user-specified relationships. On the other hand, constraint-based algorithms

incorporate the pairwise constraints into the clustering objective function, to either enforce

the constraints or penalize their violation. For example, Wagstaff et al. [133] proposed

the constrained K-means algorithm, which enforced user input as hard constraints in a

nonprobabilistic manner as the part of the algorithm that assigns points to classes. Basu
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et al. [140] proposed a probabilistic framework based on a hidden Markov random field,

with ad hoc soft penalties, which integrated metric learning with the constrained K-means

approach, optimized by an EM-like algorithm. This work also can be applied to a kernel

feature space as in [141]. Allab and Benabdeslem [142] adapted topological clustering to

pairwise constraints using a self-organizing map in a deterministic manner.

Semisupervised clustering methods with generative, parametric clustering approaches

have also been augmented to accommodate user input. Lu and Leen [135] proposed a

penalized clustering algorithm using Gaussian mixture models (GMM) by incorporating

the pairwise constraints as a prior distribution over the latent variable directly, resulting

in a computationally challenging evaluation of the posterior. Such a penalization-based

formulation results in a model with no clear generative interpretation and a stochastic

expectation step that requires Gibbs sampling. Shental et al. [134] proposed a GMM

with equivalence constraints that defines the data from either the same or a different

source. However, for the cannot-link case, they used the Markov network to describe the

dependence between a pair of latent variables and sought the optimal parameter by gradient

ascent. Their results showed that the cannot-link relationship was unable to impact the final

parameter estimation (i.e., such a relation was ineffective). Further, they imposed user input

as hard constraints, where data points that violate the constraints did not contribute to the

parameter estimation process. A similar approach in [143] proposed to treat the constraint

as an additional random variable that increases the complexity of the optimization process.

Further, their approach focused only on must-link. In this dissertation, we propose a novel

solution to incorporating user-defined data relationships into clustering problems, so that

cannot-link and must-link relations can be included in a unified framework in a way that they

are computed efficiently using an EM algorithm with very modest computational demands.

Moreover, the proposed formulation is general in that it can 1) accommodate any kind of

relation that can be expressed as a joint probability and 2) incorporate, in principle, any

probability distribution (generative model). For GMMs, however, this formulation results

in a particularly attractive algorithm that entails a closed-form solution for the mean and

covariance and a relatively inexpensive, iterative, constrained, nonlinear optimization for

the mixing parameters.

Recently, EM-like algorithms for SSL (and clustering in particular) have received signif-

icant attention in natural language processing [144], [145]. Graca et al. [144] proposed an

EM approach with a posterior constraint that incorporates the expected values of specially

designed auxiliary functions of the latent variables to influence the posterior distribution to



73

favor user input. Because of the lack of probabilistic interpretation, the expectation step is

not influenced by user input, and the results are not optimal.

Unlike the generative approach, graph-based methods group the data points according

to similarity and do not necessarily assume an underlying distribution. Graph-based, semi-

supervised clustering methods have been demonstrated to be promising when user input is

available [146]–[148]. However, graph-based methods are not ideal classifiers when a new

data point is presented due to their transductive property, i.e., their inability to learn the

general rule from the specific training data [132], [149]. In order to classify a new data

point, other than rebuilding the graph with the new data point, one likely solution is to

build a separate inductive model on top of the output of the graph-based method (e.g.,

K-means or GMM); user input would need to be incorporated into this new model.

The work in this dissertation is distinct from the aforementioned works in the following

aspects:

• We present a fully generative approach, rather than a heuristic approach of imposing

hard constraints or adding ad hoc penalties.

• The proposed generative model reflects user preferences while maintaining a proba-

bilistic interpretation, which allows it to be generalized to take advantage of alternative

density models or optimization algorithms.

• The proposed model clearly deals with the must-link and cannot-link cases in a unified

framework and demonstrates that solutions using must-link and cannot-link together

or independently are tractable and effective.

• Instead of pairwise constraints, the statistical interpretation of pairwise relationships

allows the model estimation to converge to a distribution that follows user preferences

with less domain knowledge.

• In the proposed algorithm, the parameter estimation is very similar to a standard EM

in terms of ease of implementation and efficiency.

4.4 Clustering With Pairwise Relationships

The proposed model incorporates user input in the form of relations between pairs of

points that are in the same class (must-link) or different classes (cannot-link). The must-link

and cannot-link relationships are a natural and practical choice since the user can guide

the clustering without having a specific preconceived notion of classes. These pairwise
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relationships are typically not sufficiently dense or complete to build a full discriminative

model, and yet they may be helpful in discovering the underlying structure of the unlabeled

data. For data points that have no user input, we assume that they are independent,

random samples. The pairwise relationships give rise to an associate generative model with

a joint distribution that reflects the nature of the user input.

The parameters are estimated as an ML formulation through an EM algorithm that

discovers the global structure of the underlying distribution, reflecting the user-defined

relations. Unlike previous works that include user input in a specific model (e.g., a GMM)

through either hard constraints [134] or soft penalties [135], in this work we propose an

ML estimation based on a generative model, without ad-hoc penalties.

4.4.1 Generative Models: Unsupervised Scenario

In this section, we first introduce generative models for an unsupervised scenario. Sup-

pose the unconstrained generative model consists of M classes. X = {xn ∈ Rd}Nn=1

denotes the observed dataset without user input. Dataset X is associated with latent

set Z = {zn}Nn=1 where zn = [z1n, ..., z
M
n ]T ∈ {0, 1}M with zmn = 1 if and only if the

corresponding data point xn was generated from the mth class, subject to
∑M

m=1 z
m
n = 1.

Therefore, we can obtain the soft label for a data point x by estimating p(zm|x). The

probability that a data point x is generated from a generative model with parameters ϑ is

p(x|ϑ) =
∑
z

p(x|z,ϑ)p(z). (4.1)

The likelihood of the observed data points governed by the model parameters is

L(X ,Z,ϑ) := p(X ,Z|ϑ) =
M∏
m=1

∏
n∈[1,N ]:zmn =1

p(xn) (4.2)

=

M∏
m=1

N∏
n=1

p(xn, z
m
n ) =

M∏
m=1

N∏
n=1

[
p(xn|zmn ,ϑ)p(zmn )

]zmn
(4.3)

where the condition on the product term in equation (4.2) is restricted to data points xn

generated from the mth class. The joint probability in equation (4.3) is expressed, using

Bayes’ rule, in terms of the conditional probability p(xn|zmn ,ϑ) and the mth class prior

probability p(zmn ). In the rest of the formulation, to simplify the representation, we use

p(xn|zmn ) = p(xn|zmn ,ϑ).

4.4.2 Generative Model With Pairwise Relationships

The definition of a pairwise relation in the proposed generative model is similar to

that in the unsupervised case, yet such relations are propagated to the latent variables
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level. In particular, M = {(i, j)} denotes a set of must-link relations where the pair xi

and xj was generated from the same class; hence, the pair (xi,xj) shares a single latent

variable z{ij}. The same logic is applied to the cannot-link relations where C = {(a, b)}

denotes a set of cannot-link relations encoding that xa and xb were generated from distinct

classes; therefore, za 6= zb. Including M and C, the data points are now expanded to be

X := {x1, . . .xN ,M, C}. Thus, the modified complete-data likelihood function J (·) that

would reflect user input is (refer to Fig. 4.2 for the graphical representation)

J (X ,Z,M, C,ϑ) := p(X ,Z|M, C,ϑ)

= L(X ,Z,ϑ) S(X ,Z,M,ϑ) D(X ,Z, C,ϑ). (4.4)

S(·) and D(·) are the likelihood of pairwise data points. The likelihood of the set of all

pairs of must-link data points S is, therefore,

S(X ,Z,M,ϑ) := p(X ,Z|M,ϑ)

=
M∏
m=1

∏
(i,j)∈M

p(xi,xj , z
m
{ij})

=
M∏
m=1

∏
(i,j)∈M

[
p(xi|zm{ij})p(xj |z

m
{ij})p(z

m
{ij})

]zm{ij}
. (4.5)

The likelihood of the cannot-link data points explicitly reflects the fact that they are drawn

from distinct classes. Therefore, the joint probability of the labeling vectors za and zb for

all (a, b) ∈ C is as follows:

p(zma , z
m
b ) := p(zma |zmb )p(zmb ) = p(zmb |zma )p(zma ) (4.6)

=


p(zma )z

m
a p(zmb )z

m
b

1−
∑M

m′=1 p(z
m′
a )2

zma 6= zmb

0 zma = zmb

(4.7)

=
(1− zma zmb )p(zma )z

m
a p(zmb )z

m
b

1−
∑M

m′=1 p(z
m′
a )2

. (4.8)

The proposed joint distribution reflects the cannot-link constraints by assigning a zero joint

probability of xa and xb being generated from the same class, and takes into account the

effect of this relation on the normalization term of the joint distribution p(zma , z
m
b ). As such,

the cannot-link relations contribute to the posterior distribution as follows:
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Fig. 4.2. The graphical representation of the proposed generative model
with complete data-likelihood. The L(·) is from the standard generative model with
independent samples. The S(·) shows the must-link data points pair xi and xj shares a
single latent variable z{ij}. The D(·) shows the cannot-link data points pair xa and xb,
where the green dashed line indicates the joint probability of za and zb.
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D(X ,Z, C,ϑ) := p(X ,Z|C,ϑ)

=
M∏
m=1

∏
(a,b)∈C

p(xa,xb, z
m
a , z

m
b )

=
M∏
m=1

∏
(a,b)∈C

[
p(xa|zma )

]zma [
p(xb|zmb )

]zmb
p(zma , z

m
b ). (4.9)

4.4.3 Expectation-Maximization With Pairwise Relationships

Given the joint distribution p(X ,Z|M, C,ϑ), the objective is to maximize the log-

likelihood function logJ with respect to the parameters ϑ of the generative process in

a manner that would discover the global structure of the underlying distribution and reflect

user input. This objective can be achieved using an EM algorithm.

4.4.3.1 E-Step

In the E-step, we estimate the posterior of the latent variables using the current param-

eter values ϑold.

Q(ϑ,ϑold) = EZ [log J ]

=
∑
Z
p(Z|X ,M, C,ϑold) log p(X ,Z|M, C,ϑ). (4.10)

L-term: Taking the expectation of logL with respect to the posterior distribution of zmn and

bearing in mind that the latent variable z is a binary variable,

Ezmn |xn
[zmn ] =

p(xn|zmn )p(zmn )∑M
m′=1 p(xn|zm

′
n )p(zm′

n )
. (4.11)

S-term: Taking the expectation of logS with respect to the must-link posterior distribution

of zm{ij} results in

Ezm{ij}|xi,xj
[zm{ij}] =

p(xi|zm{ij})p(xj |z
m
{ij})p(z

m
{ij})∑M

m′=1 p(xi|zm
′
{ij})p(xj |z

m′
{ij})p(z

m′
{ij})

. (4.12)

D-term: Because the proposed model does not allow xa and xb to be from the same class, the

expectation of equation (4.8) in the logD− that both will have the same class assignment

vanishes, which can be shown using Jensen’s inequality as follows:

Ezma ,zmb |xa,xb
[log(1− zma zmb )] ≤ log

(
1− Ezma ,zmb |xa,xb

[zma z
m
b ]
)

= log(1− 0) = 0. (4.13)
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Hence, we can set log(1− zma zmb ) = 0 in equation (4.8). The expectation of the logD term

with respect to zma is

Ezma |xa,xb
[zma ] = p(zma |xa,xb) =

M∑
m′=1

p(zma , z
m′
b |xa,xb)

=

∑M
m′=1 p(xa|zma )p(xb|zm

′
b )p(zma , z

m′
b )∑M

m′′=1

∑M
m′′′=1 p(xa|z

m′′
k

a )p(xb|z
m′′′

k
b )p(zm′′

a , zm
′′′

b )
. (4.14)

In a like manner, we can write down the expectation of zmb .

4.4.3.2 M-Step

In the M-step, therefore, we update the ϑnew by maximizing equation (4.10) and fixing

the posterior distribution that we estimated in the E-step.

ϑnew = arg max
ϑ

Q(ϑ,ϑold). (4.15)

Different density models result in different update mechanisms for the respective model

parameters. In the next subsection, we elaborate on an example of the proposed model to

illustrate the idea of the M-step for the case of Gaussian mixture models.

4.4.4 Gaussian Mixture Model With Pairwise Relationships

Consider employing a single distribution (e.g., a Gaussian distribuion) for each class

probability p(x|zm). The proposed model, therefore, becomes the Gaussian mixture model

(GMM) with pairwise relationships. The parameter of the GMM is ϑ = {αm,µm,Σm}Mm=1,

such that αm ∈ [0, 1] is the mixing parameter for the class proportion subject to
∑M

m=1 αm =

1 and p(zm) = αm. µm ∈ Rd is the mean parameter, and Σm ∈ Rd×d is the covariance

associated with the mth class. By taking the derivative of equation (4.10) with respect to

µm and Σm, we can get

µm =

( N∑
n=1

`mn xn +
∑

(i,j)∈M

smij
[
xi + xj

]
+
∑

(a,b)∈C

[
dma xa + dmb xb

])/
Z (4.16)

Σm =

( N∑
n=1

`mn Smn +
∑

(i,j)∈M

smij
[
Smi + Smj

]
+
∑

(a,b)∈C

[
dma Sma + dkbS

m
b

])/
Z (4.17)

Z =

N∑
n=1

`mn + 2
∑

(i,j)∈M

smij +
∑

(a,b)∈C

[
dma + dmb

]
(4.18)

where `mn = p(zmn |xn), smij = p(zm{ij}|xi,xj), d
m
a = p(zma |xa,xb) and the sample covariance

Smn = (xn − µm)(xn − µm)T .
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Estimating the mixing parameters αm, on the other hand, entails the following con-

strained nonlinear optimization, which can be solved using sequential quadratic program-

ming with Newton-Raphson steps [150], [151]. Let α ∈ RM denote the vector of mixing

parameters. Given the current estimate of the mean vectors and covariance matrices, the

new estimate of the mixing parameters can be solved for using the optimization problem

defined in (4.19),

α∗ = arg min
α
−Q(ϑ,ϑold)

s. t. 1Tα− 1 = 0 and αm ≥ 0 ∀m ∈ [1,M ] (4.19)

where the initialization can be obtained using the closed-form solution obtained from

discarding the nonlinear part, which ignores the normalization term log(1 −
∑M

m′=1 α
2
m′).

The energy function is convex, and we have found that this iterative algorithm typically

converges in three to five iterations and does not represent a significant computational

burden.

4.4.4.1 Multiple Mixture Clusters Per Class

In order to group the data that lie on the subspace (e.g., manifold structure) more

explicitly, multiclusters to model per class have been widely used in unsupervised clustering

by representing the density model in a hierarchical structure [152]–[158]. Because of its

natural representation of data, the hierarchical structure can be built using either a top-

down or bottom-up approach, in which the first approach tries to decompose one cluster

into several small clusters, whereas the second starts with grouping several clusters into

one cluster. The multicluster per class strategy also has been proposed when both labeled

data and unlabeled data are available [159]–[166]. However, previous works indicated

[29]–[31], [167] that the labeled data is unable to impact the final parameter estimation

if the initial model assumption is incorrect. Moreover, it is not clear how to employ the

previous works in regard to pairwise links instead of labeled data.

In this section, we propose to use the generative mixture of Gaussian distributions for

each class probability p(x|zm). In this form, we use multiclusters to model one class that

overcomes data on a manifold structure. Therefore, in addition to the latent variable set Z,

X is also associated with the latent variable set Y = {yn}Nn=1 where yn = [y1n, ..., y
mK
n ]T ∈

{0, 1}mK with ymk
n = 1 if and only if the corresponding data point xn was generated from

the kth cluster in the mth class, subject to
∑mK

mk=1 y
mk
n = 1; mK is the number of clusters

in the mth class. The parameter of the generative mixture model is ϑ = {αm,Θm}Mm=1, αm

is the mixing parameter for the class proportion and is the same as αm in section 4.4.4. The
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parameter of the mth class is Θm = {πmk
,Θmk

}mK
mk=1 where Θmk

= {µmk
,Σmk

}, such that

πmk
∈ [0, 1] is the mixing parameter for the cluster proportion subject to

∑mk
mk=1 πmk

= 1,

µmk
∈ Rd is the mean parameter, and Σmk

∈ Rd×d is the covariance associated with the kth

cluster in the mth class. The probability that an unsupervised data point x is generated

from a generative mixture model given parameters ϑ is

L(X ,Y,Z,ϑ) =
M∏
m=1

mK∏
mk=1

N∏
n=1

[[
p(xn|ymk

n )p(ymk
n |zmn )

]ymk
n

p(zmn )

]zmn
(4.20)

where

p(zmn ) = αm; p(ymk
n |zmn ) = πmk

; p(x|ymk
n ) = N (x|µmk

,Σmk
), (4.21)

and N (x|µmk
,Σmk

) is the Gaussian distribution. The definition of equation (4.21) can be

used to describe the S(·) in equation (4.5) and the D(·) in equation (4.9). In the E-step,

the posterior of latent variable Z can be estimated by marginalization of the Y directly.

In the M-step, we update the parameters by maximizing equation (4.10), which is similar

to the GMM case in section 4.4.4 (see the Appendix A for details). Last, if mK = 1, we

have yn = [y1n] and equation (4.20) becomes the GMM, i.e., one cluster/single Gaussian

distribution per class.

4.5 Experiment

In this section, we demonstrate the effectiveness of the proposed generative model on

a synthetic dataset as well as on well-known datasets where the number of links can be

significantly reduced compared to state-of-the-art.

4.5.1 Experimental Settings

To illustrate the method, we start with the case of p(x|zm): a mixture of Gaussians

(mK > 1) and a single Gaussian distribution (mK = 1) and with mK = 1 (i.e., one cluster

per class). To initialize the mean vectors for each class, we use K-means++ [168], which

is similar to the Gonzalez algorithm [169] without being completely greedy. Afterward, we

assign every observed data point to its nearest initial mean where initial covariance matrices

for each class are computed. We initially assume equally probable classes where the mixing

parameters are set to 1/M . When mK > 1 (i.e., multiclusters per class), we initialize the

parameters of the kth cluster in the mth class using the aforementioned strategy, but only

on the data points that have been assigned to the mth class after the above initialization.

To mimic user-preferences and assess the performance of the proposed model as a function
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of the number of available relations, pairwise relations are created by randomly selecting

a pair of observed data points and using the knowledge of the distributions. If the points

are assigned to the same cluster based on their ground-truth labeling, we move them to the

must-link set, otherwise, to the cannot-link set. We perform 100 trials for all experiments.

Each trial is constructed by the random initialization of the model parameters and random

pairwise relations.

We compare the proposed model, generative model with pairwise relation (GM-PR),

to the unconstrained GMM, unconstrained spectral clustering (SC), and four other

state-of-the-art algorithms: 1) GMM-EC: GMM with the equivalence constraint [134],

2) EM-PC: EM with the posterior constraint [144]; it is worth mentioning that EM-PC

works only for cannot-link, 3) SSKK: Constrained kernel K-means [141], and 4) CSC :

Flexible constrained spectral clustering [147]. For SC, SSKK, and CSC, the similarity

matrix is computed by the RBF kernel, whose parameter is set by the average squared

distance between all pairs of data points.

We use purity [170] for performance evaluation, which is a scalar value ranging from 0

to 1 where 1 is the best. Purity can be computed as follows: each class m is assigned to the

most frequent ground-truth label g(m), then, purity is measured by counting the number of

correctly assigned observed data points in every ground truth class and dividing the total

number of observed data. The assignment is according to the highest probability of the

posterior distribution.

4.5.2 Results: Single Gaussian Distribution (mK = 1)

In this section, we demonstrate the performance of the proposed model using a single

Gaussian distribution on standard binary and multiclass problems.

4.5.2.1 Synthetic Data

We start off by evaluating the performance of GM-PR, which uses a single Gaussian

distribution for p(x|zm), on synthetic data. We generate a two-cluster toy example to mimic

the example in Fig. 4.1, which is motivated by [28]. The correct decision boundary should be

the horizontal line along the x-axis. Fig. 4.3(a) is the generated data with the initial means.

Fig. 4.3(b) is the clustering result obtained from an unconstrained GMM. Fig. 4.3(c) shows

that the proposed GM-PR can learn the desired model with only two must-link relations

and two cannot-link relations. Fig. 4.3(d) shows that the proposed GM-PR can learn the

https://github.com/gnaixgnaw/CSP
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Fig. 4.3. Application-specific model synthetic data: (a) Original data with initial
two means marked by x. Results are represented as follows: (b) GMM, (c) GM-PR using
two must-links (solid line) and two cannot-links (dashed line), (d) GM-PR using only two
must-links, and (e) GM-PR using only two cannot-links. The saturation of the red/green
points represents the value of the soft label.
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desired model with only two must-links. Fig. 4.3(e) shows that the proposed GM-PR can

learn the desired model with only two cannot-link relations. This experiment illustrates

the advantage of the proposed method, which can perform well with only either must-links

or cannot-links. This advantage makes the proposed model distinct from previous works

[134], [143]

4.5.2.2 UCI Repository and Handwritten Digits

In this section, we report the performance of three real datasets: 1) the Haberman’s

survival dataset contains 306 instances, 3 attributes, and 2 classes; 2) the MNIST

database contains images of handwritten digits. We used the test dataset, which contains

10000 examples, 784 attributes, and 10 classes [171]; and 3) the Thyroid dataset contains

215 instances, 5 attributes, and 2 classes.

We demonstrate the performance of GM-PR on two binary clustering tasks, Haberman

and Thyroid, and two multiclass problems, digits 1, 2, 3 and 4, 5, 6, 7. For ease of

visualization, we work with only the leading two principal components of the MNIST using

principal component analysis (PCA). Fig. 4.4 shows two-dimensional inputs, color-coded by

class label. Fig. 4.5 shows that GM-PR significantly outperforms GMM-EC regardless

of the available number of links on all datasets. Moreover, Fig. 4.6 shows that GM-PR

performs well even if only the must-links are available. Compared to EM-PC, which

uses only the cannot-links, Fig. 4.7 shows the performance of GM-PR is always greater

than or comparable to EM-PC. Fig. 4.7 also shows that the performance of EM-PC

decreases when the number of classes increases. Notice that all the experiments indicate

that GM-PR has a lower variance over 100 random initializations, which implies GM-PR

stability regardless of the number of available pairwise links.

4.5.3 Results: Mixture of Gaussians (mK > 1)

In this section, we demonstrate the performance of the proposed model using a mixture

of Gaussians on the datasets that have local manifold structure.

https://archive.ics.uci.edu/ml/datasets.html

http://yann.lecun.com/exdb/mnist/

http://www.raetschlab.org/Members/raetsch/benchmark
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(a) digits 1, 2, and 3 (b) digits 4, 5, 6, and 7

Fig. 4.4. Visualization of MNIST: Digits 1, 2, and 3, and digits 4, 5, 6, and 7 visualized
by the first two principal components of PCA.

4.5.3.1 Synthetic Data: Two Moons Dataset

Data points in two moons are on a moon-like manifold structure (Fig. 4.8(a)), which

allows us to show the advantage of the proposed method using a mixture of Gaussians as a

distribution instead of a single Gaussian distribution. Fig. 4.8(a) shows the data with initial

means for the GMM and the GM-PR using a single Gaussian. Fig. 4.8(b) shows the data

with initial means for GM-PR using a mixture of Gaussians (mK = 2). Fig. 4.8(c) is

the clustering result obtained from the unconstrained GMM, in which three points were

assigned to the wrong class. Fig. 4.8(c) also shows that the performance of the GMM

relied on the parameter initialization. Fig. 4.8(d) shows that the proposed GM-PR, which

used a single cluster for each class, tried to learn the manifold structure via two must-link

and two cannot-link relations. However, two points were still assigned to the incorrect class.

Fig. 4.8(e) shows that the GM-PR can trace the manifold structure but used the same

links in (d) with two clusters for each class. This experiment illustrates the advantage of

the proposed model with a mixture of distributions that traces the local data structure by

every single cluster and describes the global data structure using the mixture of clusters.
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Fig. 4.5. Result of MNIST and UCI: The performance of GM-PR compared to
GMM-EC [134] with a different number of pairwise links on (a) Harberman, (b) Thyroid,
(c) digits 1, 2, and 3, and (d) digits 4, 5, 6, and 7.
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Fig. 4.6. Result of MNIST and UCI with only must-link relations: The perfor-
mance of GM-PR compared to GMM-EC [134] with a different number of must-links on
(a) Harberman, (b) Thyroid, (c) digits 1, 2, and 3, and (d) digits 4, 5, 6, and 7.



87

 

 

GM−PR

EM−PC

GMM

0 20 40 60
0.6

0.65

0.7

P
u

ri
ty

Number of links
0 5 10 15

0.74

0.76

0.78

0.8

P
u

ri
ty

Number of links

(a) Harberman (b) Thyroid

0 10 20 30

0.6

0.7

0.8

P
u
ri
ty

Number of links
0 10 20 30

0.5

0.6

0.7

P
u
ri
ty

Number of links

(c) digits 1, 2, and 3 (d) digits 4, 5, 6, and 7

Fig. 4.7. Result of MNIST and UCI with only cannot-link relations: The
performance of GM-PR compared to EM-PC [144] with a different number of cannot-links
on (a) Harberman, (b) Thyroid, (c) digits 1, 2, and 3, and (d) digits 4, 5, 6, and 7.
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Fig. 4.8. Two moons synthetic data: (a) Original data with initial two means marked
by x. (b) Original data with initial means marked by triangles for class 1 and squares
for class 2. Results are represented as follows: (c) GMM, (d) MM-PR used one cluster
for each class, and two must-links (solid line) and two cannot-links (dashed line), and (e)
MM-PR used two clusters for each class and used the same links as in (d).
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4.5.3.2 COIL 20

In this section, we report the performance of COIL 20 datasets, which contain images

of 20 objects in which each object was placed on a turntable and rotated 360 degrees

to be captured with different poses via a fixed camera (Fig. 4.9). The COIL 20 dataset

contains 1440 instances and 1024 attributes. We set the number of multiclusters per class

by cross-validation to mK = 2. Previous studies have shown that the intrinsic dimension

of many high-dimensional real-world datasets is often quite small (d ≤ 20) [172], [173];

therefore, each image is first projected onto the low-dimensional subspace (d = 20). Fig. 4.9

shows that the GM-PR provides higher purity values compared to the SSKK and the CSC

with number of links ≥ 100. In these experiments, we found that the proposed model can

outperform the graph-based method with fewer links.

4.5.4 Result: Sensitivity to Number of Clusters Per Class

Lastly, we demonstrated the performance of the proposed model in regard to different

values of mK . First, we used the same dataset (MNIST) that is used in section 4.5.2.2.

In Fig. 4.4(a), we observed digit 1, which clearly lay on a moon-like structure. Therefore,

Fig. 4.10(a) shows that the performance of mK = 2, 3, or 4 is better than mK = 1 when

the number of links is greater than 64. However, in Fig. 4.4(b), we observe hardly any

manifold structure for digits 4, 5, 6, and 7. This observation also applies to the results in

Fig. 4.10(b). The performances of mK = 1, 2, 3, and 4 are very similar to each other, e.g.,

increasing the value of mK does not help. However, we also notice that the increase in the

number of mK does not hurt the performance of the model and might even enhance the

performance, depending on the dataset.

4.5.5 Application: Image Segmentation

In this subsection, we demonstrate the effectiveness of the proposed generative model

for an application, image segmentation.

The goal of image segmentation is to simplify the representation of an image, an im-

portant preprocess for medical imaging analysis, image retrieval, or object tracking [174].

Therefore, the procedure in image segmentation is to partition image elements (e.g., pixel

or voxel) into several different categories, i.e., a 2D image segmentation problem can be

viewed as a pixel clustering problem. Different from the standard clustering problem, pixel

clustering needs to ensure that spatial connectivity (i.e., pixel neighborhoods) is formulated

http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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during segmentation. Suppose we have a set of observed data P including every single pixel

p and a pixel neighborhood set NB representing all pairs (p, q) in p. In order to model

pixel neighborhoods, we can construct a graph with an image (e.g., pixels are associated

with nodes and the edges) by

E(L) =
∑
p∈P

Dp(Lp) +
∑
p∈P

∑
(p,q)∈NB

Vp,q(Lp, Lq), (4.22)

where L = {Lp|p ∈ P} is a labeling of image P , and Dp(·) is a penalty function, which

is defined by an individual label preference of pixels based on observed intensities given

a pretrained likelihood function (e.g., the GMM and the proposed model). Vp,q(·) is

the interaction potential, which indicates spatial coherence by penalizing discontinuities

between neighboring pixels (e.g., Pottes model [175]). Hence, we can partition the vertices

in the graph into disjoint subsets. The technique used to find the energy minimization in

equation (4.22) is the max flow/min cut algorithm, which is an efficient solver for many

low-level computer vision problems (e.g., image segmentation) that can be formulated in

terms of energy minimization [175]–[179].

In this experiment, we consider the foreground and background segmentation (M =

2). We first trained the proposed model and then used it as Dp(·) in equation (4.22).

The algorithm we used for solving the max flow problem is that proposed by [179]. The

parameter initialization of the proposed model is the same as that in section 4.5.1. In image

segmentation, instead of generating random pairwise relationships, we can also manually

add some meaningful links to see if the results of the proposed model conform to our

expectation. The intensity of the pixel is used for the feature vector. We used the images

from the Berkeley segmentation dataset and benchmark. For efficiency, we compressed the

images to 30% of the original size.

Fig. 4.11(a), (b) and (c) demonstrate that pairwise relations were created manually.

We manually selected the two red blocks (size is 10x10) and added 100 pairwise relations

between each pixel in the two blocks. The pairwise relations between each pixel in the

two blocks can be either must-link relations or cannot-link relations. We set mK = 5. In

Fig. 4.11(a), when the pairwise relationship was a must-link relation, both grass and sky

were recognized as background. However, when the pairwise relationship was cannot-link,

only sky was recognized as background. Fig. 4.11(b) demonstrates that if the pairwise

http://vision.csd.uwo.ca/code/

https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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(a) Pairwise relations set Must-link relations Cannot-link relations

(b) Pairwise relations set Must-link relations Cannot-link relations

(c) Pairwise relations set Must-link relations Cannot-link relations

(d) Ground truth Unsupervised GMM mK = 1 mK = 3

(e) Ground truth Unsupervised GMM mK = 1 mK = 4

(f) Ground truth Unsupervised GMM mK = 1 mK = 4

Fig. 4.11. Results of image segmentation. (a), (b), and (c) used the manually selected
pairwise relations. (c), (d), and (e) created the pairwise relations by randomly selecting a
pair of pixels.
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relationship was the must-link relation, both hat and clothes were recognized as foreground.

If, however, the pairwise relationship was cannot-link, clothes was recognized as background.

Fig. 4.11(c) demonstrates that if the pairwise relationship was the must-link relation, both

temple tower and statue were recognized as foreground. Only the statue was recognized as

foreground if the pairwise relationship was cannot-link.

In Fig. 4.11(d), (e), and (f), pairwise relations were created by randomly selecting a

pair of pixels. If the pixels have the same ground-truth labeling, we move them to the

must-link set, otherwise, to the cannot-link set. We created 500 pairwise relations (i.e.,

around 5% of pixels were used as user-input) of which 250 relations were must-links and the

others were cannot-links. We compared the proposed model, GM-PR with different values

of mK , to the unsupervised GMM. We set mK by cross-validation. Fig. 4.11(d) shows

that the task was to recognize the bird. The result proved that the unsupervised GMM

can recognize the bird; however, many pixels in the background were still assigned to be

foreground. The result further demonstrated that the GM-PR with mK = 1 can remove

more background pixels than the unsupervised GMM. When mK = 3, we can recognize the

bird more precisely. The performance of the GM-PR is similar in Fig. 4.11(e), where the

swan can be segmented precisely when mK = 4. Finally, in Fig. 4.11(f), GM-PR (mK = 1

and 4) can segment the cargo ship in a manner that is more close to the ground-truth than

unsupervised GMM.

4.6 Conclusion

This paper proposed a fully generative approach, GM-PR. In our formulation, cannot-

link relationships also contribute to the GM-PR to increase the performance of clustering,

which is distinct from previous works. We saw that in a distribution in a location-scale

family (e.g., mixture of Gaussians), the updated parameters of GM-PR are in a closed

form with an inexpensive, nonlinear optimization for the mixing parameters in terms of

ease of implementation. Moreover, the statistical interpretation of pairwise relationships

is more suited to the generative model, in which a pair of data is connected by similarity

(e.g., similar or dissimilar) instead of either hard constraints or heuristic soft penalties.

The results, therefore, demonstrated that the GM-PR can outperform the state-of-the-art

with fewer pairwise relations. In addition, the result also demonstrated when p(x|zm) is

a mixture model, the GM-PR can discover the data on a manifold structure. When the

data do not lie on a manifold structure, we found that different values of mK do not hurt

the performance of the model. Lastly, we showed the GM-PR can be used for image

segmentation.
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The GM-PR is a useful tool because it is in a generalized form that can be represented

as any alternative distribution and model. Different from the mixture model, the hidden

Markov model (HMM) is widely employed for analyzing biological sequences data and time

sequential data. A semisupervised approach for clustering data in a sequential order is still

an interesting problem. In the future, if the GM-PR uses the HMM, the GM-PR could

be used to solve this type of problem. Furthermore, we can assume that a pair of data is

generated from a different model. For example, images with text descriptions (e.g., tag) are

very common in social media. Instead of modeling image and text in a single model, a more

efficient approach is to use the GM-PR with the mixture model for images and HMM for

text.



APPENDIX

EXPECTATION-MAXIMIZATION:

MIXTURE OF GAUSSIANS WITH

PAIRWISE RELATIONSHIPS

A.1 Likelihood: Must-link Relationships

The likelihood of the S(·) is

S(X ,Y,Z,M,ϑ) := p(X ,Y,Z|M,ϑ)

=

M∏
m=1

mK∏
mk=1

∏
(i,j)∈M

[
αm

[
πmk
N (xi|µmk

,Σmk
)
]ymk

i
[
πmk
N (xj |µmk

,Σmk
)
]ymk

j

]zm{ij}
. (A.1)

A.2 Likelihood: Cannot-link Relationships

The likelihood of the D(·) is

p(zma , z
m
b ) = p(zma |zmb )p(zmb ) := p(zmb |zma )p(zma ) (A.2)

=


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m
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∑M

m′=1 α
2
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and

D(X ,Y,Z, C,ϑ) := p(X ,Y,Z|C,ϑ)

=

M∏
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mK∏
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∏
(a,b)∈C

[
πmk
N (xa|µmk

,Σmk
)
]zma y

mk
a
[
πmk
N (xb|µmk

,Σmk
)
]zmb y

mk
b
p(zma , z

m
b ).

(A.4)

A.3 E-Step: Unsupervised Scenario

The expatiation L(·) is

Ezmn ,ymk
n |xn

[zmn ymk
n ] = p(zmn , y

mk
n |xn) (A.5)

=
αmπmk

N (xn|µmk
,Σmk

)∑M
m′=1

∑mK
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αm′πm′
k
N (xn|µm′

k
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k
)
,



96

and

Ezmn |xn
[zmn ] = p(zmn |xn)

=
αm
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A.4 E-Step: Must-link Scenario

The S(·) is
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and
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A.5 E-Step: Cannot-link Scenario

The D(·) is

Ezma ,ymk
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A.6 M-Step

The mean and covariance in the kth cluster in the mth class are

µmk
=
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n `

mk
n xn +
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smk
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where

`mk
n = p(zmn , y

mk
n |xn),

smk
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dmk
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and

Smk
n = (xn − µmk

)(xn − µmk
)T . (A.15)

Because the mixing parameter for the cluster πmk
satisfies the summation to one, the

determination can be achieved by the Lagrange multiplier.

QJ + λ

( mK∑
mk=1

πmk
− 1

)
(A.16)

λ is the Lagrange multiplier. Taking the derivative of equation (A.16) with respect to πmk
,∑N
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By taking the derivative of equation (A.16) with respect to λ and equal to zero, we then can

get
∑mK

mk=1 πmk
= 1 and use it to eliminate the λ in equation (A.17). The mixing parameter

for the kth cluster in the mth mixture is given by
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Lastly, estimating the mixing parameters for mixture αm is the same as in equation (4.19).
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