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ABSTRACT 

 

Water resources are limited and disproportionately distributed in time and place. 

Moreover, complex interactions among different components of the water system, 

changes in population and urbanization growth rates, and climate change have increased 

the uncertainty influencing water resource planning. The ultimate question arising for 

water managers considering the complexity of water systems is how to determine if 

management strategies are effective and improve the performance of a water system. 

Generally, decision-makers assess the system’s condition based on a univariate measure 

of reliability or vulnerability. However, these measures do not deliver sufficient 

information, and present a limited view about the system’s performance. There is a 

known need to study water resources in an integrated fashion to effectively manage for 

the present and the future. In this dissertation, a new comprehensive integrated modeling 

and performance assessment framework is offered. First, a new approach is designed to 

assess vulnerability of a water system based on important factors including exposure, 

sensitivity, severity, potential severity, social vulnerability, and adaptive capacity. Then, 

instead of an individual metric, the joint probability distribution of reliability and 

vulnerability based on copula function is developed to estimate a new index, the Water 

System Performance Index (WSPI), to evaluate the reliability and vulnerability of a water 

system simultaneously. To test the effectiveness of the framework and demonstrate the
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advances of the new performance index, a practical application is conducted for the Salt 

Lake City Department of Public Utilities (SLCDPU) water system. For this purpose, an 

integrated water resource management (IWRM) model is developed using system 

dynamics approach for the case study. Management alternatives are incorporated into the 

model using a decision support tool designed for use by water managers and 

stakeholders. Results of the study show an inconsistency in the degree of vulnerability 

between traditionally used and the new vulnerability assessment approaches. The use of 

the integrated model and new vulnerability approach is also shown to provide more 

informative guidance for decision makers evaluating alternative management strategies 

during failure events. Furthermore, results illustrate the effectiveness of the WSPI to 

identify critical conditions when there is a need for a combined measure of performance. 

In terms of water management decision making, the final results of this dissertation 

indicate centralized water storage solutions improve water system performance better 

than rainwater harvesting for the Salt Lake City case study. 
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 CHAPTER 1

 

INTRODUCTION 

 

Rapid population growth, urbanization, and climate change are challenging the 

sustainability and resiliency of water systems. Population growth (including emigration 

and immigration), decrease of social welfare, and economic changes are influencing 

much of the urbanization rate (Skeldon 2006). Moreover, climate simulations of the 21st 

century indicate widespread warming (IPCC 2013) and increases in extreme precipitation 

(Kunkel et al. 2013). Consequently, changes in climatic conditions modify streamflow 

and affect the amount and variability of inflow to storage reservoirs and availability in 

supply systems. These complex challenges are exemplified in the intermountain western 

United States (U.S.), where water systems are largely driven by snowpack and hydrologic 

response is seasonal (Stewart et al. 2005). For instance, it has been suggested that 

regional warming in the western U.S. may be causing reduction in snowpack, spring 

runoff, and more winter flooding (Seager et al. 2007). Measures by water managers 

reduce the negative impact of these changes, but the relative sustainability of the 

programmed responses remains an area of great question due to environmental 

considerations, water scarcity, and climate change (Sandoval-Solis et al. 2011).  
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1.1 Background 

The concept of sustainability was brought to the forefront by the United Nations 

World Commission on Environment and Development (WCED 1987), when the 

Commission reported sustainable development to be “…development that meets the 

needs of the present without compromising the ability of future generations to meet their 

own needs.” This definition has been useful for providing a general and overarching 

construct. Over time, the sustainability term has been expanded and defined in various 

ways (e.g., Spangenberg and Bonniot 1998; Parkin 2000; Kates et al. 2001; Spangenberg 

2004; Palmer et al. 2005). Among all these definitions, Foran et al. (2005) proposed the 

use of a more comprehensive way to describe the sustainability of a system – one that 

measures the social, environmental, and economic aspects of individual parts in a system. 

A well-known and useful definition of sustainability for water systems was presented by 

Loucks and Gladwell (1999). They defined sustainability as “water resource systems 

designed and managed to fully contribute to the objectives of society, now and in the 

future, while maintaining their ecological, environmental, and hydrological integrity.” In 

all these definitions, the core and major element of sustainable development is to meet 

essential human requirements and improve performance of the system while conserving 

resources in the future. Although economic and social factors should be fully investigated 

toward achieving more sustainable systems, the main objective for water managers is to 

find the best policies to reduce the adverse impacts of failure events in water supply 

systems. In order to meet this objective, it is crucial to analyze the performance of water 

systems using performance criteria to estimate the effectiveness of water management 

policies and help managers to compare alternative management strategies. 
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To characterize the problems and develop solutions, researchers and water managers 

have created approaches and metrics to assess water system performance. Loucks (1997) 

suggested that sustainability of water systems can be introduced by use of statistical 

measures. He proposed use of reliability, resiliency, and vulnerability (RRV) measures to 

summarize and calculate a sustainability index (SI). The formulation of SI was improved 

later by Sandoval-Solis et al. (2011). They suggested integration of RRV with other 

performance criteria that include information about the sustainability of a basin. The 

concept of using RRV in water resources was originally introduced by Hashimoto et al. 

(1982). They defined reliability as the probability of nonfailure in a system (e.g., water 

demands supplied sufficiently), resilience as the recovery speed of a system from a 

failure condition, and vulnerability as severity degree of a failure condition. However, 

various indices have been developed to fulfill the need for evaluation of water resources 

systems performance and provide fair comparisons among different management 

scenarios [examples: Palmer Drought Severity Index (Palmer 1965); Surface Water 

Supply Index (SWSI) (Shafer and Dezman 1982); Environmental Sustainability Index 

(Esty et al. 2005); and Canadian Water Sustainability Index (Policy Research Initiative 

(PRI) 2007); System Readiness Index (SRI) (Nazif and Karamouz 2011)]. The IPCC 

suggested in the Fourth Assessment Report (2007) that “Vulnerability is a function of the 

character, magnitude, and rate of climate change and variation to which a system is 

exposed, its sensitivity, and its adaptive capacity.” The report stated that vulnerability 

should not only be quantified based on magnitude, but also other factors such as adaptive 

capacity. Moreover, while a failure in a water system should be characterized based on 

the frequency (reliability) and magnitude of failure (vulnerability), a joint behavior of 
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these criteria can be considered as a new characteristic of the system. Presentation of 

simultaneous information about these two measures facilitates the interpretation of a 

water system’s performance and comparison of management alternatives, while there are 

trade-offs among performance criteria. 

Water resources are limited and traditional water operation and management 

approaches need to consider the compleixity and uncertainty of the system. In general, 

integrated approaches have been used to analyze water systems, especially to measure 

sustainability of water-related systems and water projects (Loucks 1997). Integrated 

water resources management (IWRM) has been defined in the World Summit on 

Sustainable Development (WSSD) (2002) as “a process, which promotes the coordinated 

development and management of water, land and related resources in order to maximize 

the resultant economic and social welfare in an equitable manner without compromising 

the sustainability of vital ecosystems.” In the modeling phase of the IWRM process, an 

integrated model should capture the natural elements related to the water cycle, structural 

components, policies, actions and decisions of managers, stakeholder input, and other 

human factors. These components have complex interactions and feedback loops and 

simulation of their relationships needs a dynamic framework. 

To comprehensively assess the sustainability of an urban water system and 

recommend modifications, a robust evaluation framework must be used. Although there 

is a lack of a standardized framework in the literature, most assessment frameworks can 

be distilled into several steps. Table  1.1 list the previous studies and notes the general 

modeling and simulation framework used for evaluation. Among the methods listed in 

Table  1.1, system dynamics (SD), developed by Forreste (1969), has gained widespread  
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Table  1.1 Summary listing of existing sustainability evaluation frameworks. 

Evaluation Framework Studies 

Ecological footprint Wackernagel and Rees (1996) 

Environmental impact assessment Anjaneyulu and Manickam (2011) 

Life-cycle assessment (LCA) 

Berger and Finkbeiner (2010); Graedel and 

Allenby (2010); Pfister et al. (2009); 

Boulay et al. (2011); Humbert et al. (2009) 

Material flow analysis (MFA) 
Rechberger (2007); Montangero and 

Belevi (2008) 

Economic input – output life cycle 

assessment 
Hendrickson et al. (2006) 

System Dynamics (SD) 
Sterman (2000); Meadows (2008); Dahl 

(2012); 

 

use to assess performance of complex water systems because of its ability to represent 

processes and interactions that have spatial and temporal variability. 

The SD approach (Forrester 1969) also captures the interaction between natural and 

structural components of a water system and can assist with stakeholder participation and 

presentation of results to support IWRM (Simonovic 2002; Stave 2003; Winz and 

Brierley 2009; Xi and Poh 2013). Investigating the sustainability of an integrated water 

resource management system needs not only the existence of a sufficiently detailed 

model, but a model that can link the spheres of sustainability to consider social and 

economic dimensions (Lychkina and Shults 2009). Life Cycle Assessment (LCA), for 

example, is a useful modeling approach to capture the environmental impact of an event, 

process, or component of a water system, but it lacks ability to represent spatial and 

temporal variability and to link the water system to interconnected systems. In sum, SD 
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models provide a means to assess water management alternatives, including new 

infrastructure development, considering both quantitative and qualitative measures to 

account for broad system goals such as sustainability (Makropoulos et al. 1999).  

Investigating a wide range of alternative scenarios for water system management 

requires a tool which can implement SD or other approaches to simulate multiple 

scenarios, analyze the performance, and compare the implementation of various options 

(Hardy et al. 2005). Decision support tools (DSTs) help to reduce the complexity of a 

system’s interrelationships and develop a well-structured assessment process (Jakeman et 

al. 2006). Based on Power (1997), executive information or support systems, geographic 

information systems, or online analytical processing or software agents can be classified 

under decision support systems. Thus, in application, DSTs establish and enhance the 

communication and coordination among managers, stakeholders, and researchers. It 

should be noted that DSTs’ objective is not to make decisions instead of managers; it is 

designed to help the process of decision making. At the end of the day, it is the role of 

managers and stakeholders to use their managerial judgment and make the most 

appropriate decisions (Jakeman et al. 2006). While the current paradigm of water 

management is developing additional infrastructure, DSTs help managers to find more 

sustainable solutions in response to urban developments (Brown et al. 2009; Lloyd et al. 

2012).  

In the context of urban water supply, centralized systems rely on a small number of 

large storage solutions and water treatment plants (WTPs). Centralized water 

infrastructures have been the common practice more than 150 years in the United States, 

and thousands of years in other countries. However, in today’s era of massive cities and 
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rapid expansion of those cities, the centralized approach is presented with challenges to 

sustainability. In urban areas, solutions for urban water supply have recently turned 

towards new approaches (e.g., Domènech 2011; Nelson 2012; Sapkota et al., 2013) to 

increase resiliency and sustainability by use of distributed components of decentralized 

infrastructure supporting potable water supply, wastewater management, and 

stormwatercontrol. And in many cases this is leading to integration of centralized and 

decentralized solutions to produce hybrid systems that incorporate the use of local water 

sources, including rainwater harvesting, greywater reuse, wastewater treatment at the 

property, cluster, and development scale (Sharma et al. 2013). 

 

1.2 Research Goal, Objectives, and Hypotheses 

The goal of the dissertation is to introduce new measures of water system 

performance and to advance the use of comprehensive system dynamics modeling to 

compute the new measures. A new vulnerability index is introduced that incorporates a 

broad set of factors, in particular the new concept of potential severity. The new 

vulnerability index is combined with reliability of a water system to create the water 

system performance index (WSPI). The WSPI provides information about the 

performance of management alternatives that is useful for stakeholders, water users, and 

researchers. The SD framework employed makes it possible to study the complex 

relationship between various components of a water system. The research here advanced 

the use of detailed process models in concert with an SD model to capture 

interconnections and responses of water system components with higher levels of fidelity. 

To build the framework, advances in cyber-infrastructure were also incorporated into the 
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research. Overall, the comprehensive research plan incorporated several steps that are 

illustrated in the flow chart shown in Figure 1.1. Based on research needs and the 

deficiencies of previous studies outlined above, a conceptual approach for the research 

was defined (Figure 1.1) to improve assessment of water system performance. The 

specific research activities were guided by defined research questions and hypotheses. 

Each question and hypothesis is then addressed in a dissertation chapter. The concluding 

chapter presents a final summary and validation of states’ objectives and hypotheses. 

 

1.2.1 Research Question #1 

 Does incorporating potential severity into reservoir system vulnerability analysis 

provide a more informative measure of system performance compared to a traditional 

vulnerability measure? 

Managing a water system using a typical vulnerability index does not consider future 

vulnerable conditions. In this research, a new vulnerability index is introduced that not 

only considers severity, but also potential severity. I hypothesize that incorporating 

potential severity into the measure of vulnerability of a water system will identify 

important critical conditions not noted by the traditional form of vulnerability. The 

research will use an example of future climate change to highlight the importance of 

potential severity. The methodology for the testing of this hypothesis is explained in 

Chapters 2 and 4. To test the hypothesis, an investigation is presented in Chapter 2 for a 

reservoir system. In Chapters 4 and 5, other factors are incorporated and tested for their 

importance in a vulnerability assessment of water systems. 



9 
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Figure  1.1. Schematic framework of developing IWRM decision support tool. 
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1.2.2 Research Question #2 

 Can a copula-based approach integrate reliability and vulnerability into a 

representative water system performance metric providing simultaneous insight into 

both metrics? 

Copulas are functions which can define dependencies between variables. By 

utilization of copulas functions a distribution is created which can model correlated 

multivariate data. This multivariate distribution is developed by specifying marginal 

univariate distributions of variables and then the best fit copula can be chosen to provide 

the correlation structure. Based on the potential of applying copula functions to water 

systems analysis, I hypothesize copulas can be used to develop the multivariate 

distribution by using the marginal distributions of reliability and vulnerability of a water 

system. Instead of using just one measure, such as reliability, to evaluate system 

performance, the joint distribution of reliability, resiliency, and vulnerability (RRV) can 

be used to assess the level of service. In order to quantify my assessment, the new index, 

the Water System Performance Index (WSPI), is built from a cumulative density function 

of the joint probability and used to help researchers, decision makers, and stakeholders 

evaluate alternatives and select the most efficient one by looking at RRV simultaneously. 

The method to analyze and test the hypothesis is presented in Chapter 3, which describes 

the joint probability analysis approach to develop the WSPI and results of the study. 

 

1.2.3 Research Question #3 

 Do distributed water infrastructure elements improve the performance of the Salt 

Lake City (SLC) urban water supply system under future climate change conditions?  
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To study this question, and in the process demonstrate the new vulnerability index for 

a comprehensive urban water system, two alternatives are selected. First, rainwater 

harvesting is chosen as the distributed water infrastructure example. And second, 

increasing reservoir storage capacity is chosen as the centralized alternative. Based on the 

seasonal climate conditions and the greatest need for water in the summer dry season, I 

hypothesize the vulnerability metric will show the centralized alternative to reduce 

system vulnerability more than the distributed rainwater harvesting approach. However, 

the results may be ecosnistent with other research that indicates a combination of 

practices is the most effective. To test which alternative has better performance, the 

WSPI is calculated for both scenarios and compared with a no management action 

scenario. The results are presented in Chapter 5. 

 

1.3 Dissertation Outline 

This dissertation research seeks to introduce new metrics to quantity water system 

vulnerability and assess them using an integrated urban water modeling approach. The 

methodology is presented in the following chapters of the dissertation. The first two 

chapters present the formulation of the new metrics for a water system component, 

specifically a reservoir. Then, in the subsequent chapters the methods are expanded and 

applied to a larger scale water supply system. Finally, the dissertation concludes with a 

description of a decision support tool that incorporates the modeling and analysis 

elements introduced and developed. The decision support framework is used to evaluate 

the relative water system performance of a centralized and a decentralized water system 

solution. Figure  1.2 shows the organization of the chapters in the dissertation. 



12 
 

 
 

 

Figure  1.2. Organization of dissertation chapters. 

 

1.3.1 Chapter 2 

In response to climate change, vulnerability assessment of water resources systems is 

typically performed based on quantifying the severity of the failure. Chapter 2 introduces 

an approach to assess vulnerability that incorporates a set of new factors. The method is 

demonstrated with a case study of a reservoir system in Salt Lake City, UT, USA using 

an integrated modeling framework composed of a hydrologic model and a systems model 

driven by temperature and precipitation data for a 30-year historical (1981-2010) period. 

The climates of the selected future (2036-2065) simulation periods were represented by 

five selected combinations of warm or hot, wet or dry, and central tendency projections 

derived from the results of the World Climate Research Programme (WCRP) Coupled 

Model Intercomparison Project Phase 5. The results of the analysis illustrate that basing 

vulnerability on severity alone may lead to an incorrect quantification of the system 

vulnerability. In this chapter, it is shown that the traditional vulnerability metric (severity) 

incorrectly provides low magnitudes under the projected future warm-wet climate 

 
Vulnerability WSPI 

Reservoir Chapter 2 Chapter 3 

Water supply system Chapter 4 Chapter 5* 

*) Comparison between management alternatives 
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condition.  

The new metric correctly indicates the vulnerability to be high because it accounts for 

additional factors. To further explore the new factors, a sensitivity analysis (SA) was 

performed to show the impact and importance of the factors on the vulnerability of the 

system under different climate conditions. The new metric provides a comprehensive 

representation of system vulnerability under climate change scenarios, which can help 

decision makers and stakeholders evaluate system operation and infrastructure changes 

for climate adaptation. 

 

1.3.2 Chapter 3 

Assessing the long-term reliability and vulnerability of municipal water supply 

systems often employs system modeling to analyze performance. Generally, decision-

makers assess the system’s condition based on a univariate measure of reliability or 

vulnerability, which cannot provide a comprehensive view of system performance. In this 

chapter, instead of an individual metric, the joint probability distribution of reliability and 

vulnerability is used to assess the level of supplied demand and to evaluate system 

performance. In order to quantify the distribution between reliability and vulnerability, 

different copulas are tested and the most appropriate one is selected to join their one-

dimensional marginal distributions. Then a new index, Water System Performance Index 

(WSPI), is estimated from cumulative density function of joint probability. WSPI 

indicates nonexceedance in reliability and exceedance in vulnerability using a combined 

metric. The WSPI is demonstrated and tested using the water system for the Salt Lake 

City Department of Public Utilities (SLCDPU) service area. Results illustrate the 
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effectiveness of the WSPI to identify conditions that need a combined measure of 

performance, especially for assessing system performance under climate change 

scenarios.  

 

1.3.3 Chapter 4 

Water managers face population growth, the risk of climate variability, the deficit in 

groundwater storage, and other water-related issues. The main question which arises from 

the study of complex problems in water systems is, How do we know if water resource 

management strategies are effective and improve performance of a water system? In 

order to evaluate the performance of the water supply system, this chapter introduces a 

new approach to assess vulnerability of a water system by considering exposure, 

sensitivity, severity, potential severity, social vulnerability, and adaptive capacity factors. 

To verify these factors and present a better understanding and more information about the 

vulnerability of a water system, the Salt Lake City (SLC), Utah, water supply system is 

selected as a case study. Mountains along the Wasatch Front provide snowmelt runoff, 

which is the main source of water supply for SLC. An integrated water resource 

management (IWRM) model is developed for the region with the use of a system-wide 

water allocation and decision support model. The SLC-IWRM model is designed to 

simulate the water supply system in the city, which is made up of four major creeks and 

other water related components. The results of the analysis illustrate that basing 

vulnerability on severity alone may lead to insufficient understanding of system 

vulnerability. In particular, the ranking of severity of individual creek water sources of 

SLC is not consistent with the ranking of vulnerability. During times of water shortage, 
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the use of the integrated model and new vulnerability approach is shown to provide more 

informative guidance for decision makers evaluating alternative management strategies. 

 

1.3.4 Chapter 5 

In Chapters 2 and 3, new vulnerability assessment approaches are presented for a 

reservoir system. In Chapter 4, the approaches are extended by including new measures 

of system performance relevant for vulnerability assessment, and the approach is 

evaluated for an entire water supply system. The results illustrate that basing 

vulnerability on severity alone does not present enough information and sometimes may 

cause a misleading quantification of the system vulnerability. The inclusion of potential 

severity helps identify conditions when releasing or holding water may lead to future 

system failures. The dissertation presents several advances to vulnerability assessment of 

water systems; however, there is a need to further demonstrate the advances using a 

practical application to a case study. Therefore, Chapter 5 presents a brief summary of an 

application to answer a specific management question for the Salt Lake City Department 

of Public Utilities. To execute the analysis, the technical advances from the dissertation 

are incorporated into a decision support tool (DST). Then, different management 

scenarios are tested. 



 

 
 

  CHAPTER 2

 

INCORPORATING POTENTIAL SEVERITY INTO VULNERABILITY 

ASSESSMENT OF WATER SUPPLY SYSTEMS UNDER CLIMATE 

 CHANGE CONDITIONS 

 

2.1 Introduction 

Climate change impacts on vulnerable water resource systems are a major challenge 

for water managers, engineers, and decision makers. Climate simulations of the 21st 

century indicate widespread warming in response to increased greenhouse gas 

concentrations (Sedláček and Knutti 2012; IPCC 2013), with about half of the earth’s 

landmass experiencing significantly more intense hot extremes within three decades 

(Fischer et al. 2013). Increases in extreme precipitation, specifically the probable 

maximum precipitation, are projected (Kunkel et al. 2013), and changes in the width of 

the right tail of the precipitation distribution are noted (Scoccimarro et al. 2013). Changes 

in the phase of precipitation (rain versus snow) also stress water systems in areas relying 

on snowpack because they lead to changes in the amount and timing of streamflow 

(Stewart et al. 2005; Seager et al. 2007). In general, modified streamflow affects the 

amount and variability of inflow to storage reservoirs. And these alterations are expected 

to be compounded in the future by changes in evapotranspiration and water demand 
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patterns, leading to the need for more detailed and comprehensive methods of assessing 

the vulnerability of water systems. 

The understanding of climate impacts on water resources described above is derived 

primarily from experiments with Global Climate Models (GCMs) run with nominally 

100-200 km horizontal resolution and an array of hydrologic models (Bergström et al. 

2001; Gao et al. 2002; Christensen et al. 2004; Chen et al. 2007; Miller et al. 2011; 

Gyawali and Watkins 2013). Finer spatial and temporal resolution is expected to improve 

the accuracy of the results, especially for local and regional water systems. Several 

methods exist for extracting information from GCM output at spatial and temporal scales 

finer than their native resolution (i.e., downscaling; Wilby et al. 2004). These are 

generally classified as statistical or dynamical. Raw or statistically downscaled climate 

perturbations produced by a GCM (i.e., changes in temperature and precipitation) can be 

used as offsets to historical observations in so-called “change factor” or “delta” methods 

(e.g., Tabor and Williams 2010; Karamouz et al. 2013; Zahmatkesh et al. 2014). Delta 

methods assume that potentially transient aspects of the historical climatology will 

persist, such as the frequency of storm systems, but they are computationally efficient 

and provide a range of future scenarios to support a robust analysis.  

There are a variety of ways to quantify water system vulnerability, which has led to 

different approaches to estimate and calculate the value (Füsel 2010). Generally, water 

resources engineers have tended to apply the term in a quantitative way that shows the 

magnitude of system failure. Hashimoto et al. (1982) were among the first to formally 

introduce an operational definition of vulnerability in the context of water systems. Their 

vulnerability metric describes the severity of a failure’s consequences. Since its 
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introduction, the concept has continued to be developed. Frederick and Gleick (1990) 

introduced a vulnerability metric, which includes the regional indicators of storage, 

demand, hydropower use, ground-water overdraft, and streamflow variability, to assess 

the vulnerability of U.S. water systems in 18 regions under climate change conditions. In 

the same year, Vogel et al. (1999) developed reliability, resiliency, reservoir yield, and 

vulnerability metrics to evaluate reservoir performance. Over time, the vulnerability term 

has been broadly applied to evaluate performance of various types of water systems 

under different types of failures, such as flood and drought, breaks in water distribution 

systems, level of reservoirs, etc. (e.g. Nadal et al. 2010; Kanta and Brumbelow 2013; 

Acosta and Martínez 2014). Vulnerability metrics derived from the Hashimoto (1982) 

definition have been applied to evaluate climate change and other impacts on reservoir 

systems (e.g. Fowler et al. 2003; Ashofteh et al. 2013; Karamouz et al. 2013; Lanini et al. 

2014). Vicuña et al. (2012) for example defined agricultural vulnerability as a ratio of 

total annual deliveries to annual irrigation requirements and used the output of CMIP3 to 

analyze climate variability impact on the vulnerability of agricultural areas in the Limarí 

River basin, Northern Chile. 

Recently, the IPCC suggested in the Fourth Assessment Report (2007) that 

vulnerability of a system can be defined as "a function of the character, magnitude, and 

rate of climate change and variation to which a system is exposed, its sensitivity, and its 

adaptive capacity." The report stated that vulnerability should not only be quantified 

based on magnitude, but also other factors such as adaptive capacity should be included. 

Herein, a new approach to calculate vulnerability is presented that responds to the 

suggestions of the IPCC. Specifically, to quantify vulnerability, the factors of exposure, 
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severity, and potential severity of a water system are calculated. This chapter describes 

the vulnerability metric and demonstrates it using a case study of the Parley’s Creek 

water storage component of the Salt Lake City, Utah, USA water supply system. 

 

2.2 Case Study 

The primary water storage component of the Salt Lake City (SLC) water supply 

system is the subject of the case study presented herein. SLC is located in the 

mountainous western U.S. The 285-km2 city has 190,000 residents in the municipal 

boundary, with more than one million in the wider metropolitan area. Between 2006 and 

2007, Utah experienced the third-fastest population growth rate in the U.S., and future 

projections suggest SLC’s population may more than double in the next 50 years. SLC’s 

average land elevation is 1,320 meters above mean sea level, with a low of 1,280 meters 

and a high of 2,858 meters. The location experiences a subhumid climate in the mountain 

areas and a semiarid climate in the lower elevation locations. According to the Köppen 

climate classification, the area experiences a dry-summer, continental climate. The mean 

annual precipitation and temperature are 40.9 cm and 11.2°C, respectively. The city is 

bordered by mountain ranges to the east (Wasatch) and west (Oquirrh), and the Great Salt 

Lake to the northwest (Figure  2.1). The mountains and lake both exert influences on the 

city’s weather. SLC has large annual cycles in climate, ranging from cold snowy winters 

to hot dry summers. 

The SLC Department of Public Utilities (SLCDPU) provides drinking water, 

stormwater management, flood control, wastewater treatment, and other public works 

services to a population of approximately 350,000, which includes SLC and surrounding  
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Figure  2.1. Schematic map of Salt Lake County and SLCDPU Service Area. 
 

cities and towns (Figure  2.1). The water supply system relies on snowpack accumulated 

from November to May, with the majority of precipitation falling from March to May. 

Almost sixty percent of the City’s water supply comes from four of the seven canyons 

draining the mountains to the east of the City, which include City Creek, Parley’s Creek, 

and Big and Little Cottonwood Creeks. In addition, SLC supplies water from wells, 

springs, and interbasin transfers through exchange agreements. The residential water 

demand for Salt Lake County varies from a low average during the winter months (229.5 

liters per capita per day) to a high average during the summer months (998 liters per 

capita per day) (Utah Division of Water Resources 2009). In this study, the summer 

months were considered to cover indoor and outdoor water use, whereas winter months 

were assumed to be indoor use only. The city’s water management strategy relies on 

storage and groundwater to meet the warm season demands when precipitation is less and 

demands are highest due to outdoor irrigation. 
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This study focuses on the Parley’s Creek portion of the SLC water supply system 

because a major portion of the potential storage (about 30 million cubic meters (MCM)) 

available to SLC is located in a two-reservoir system (Little Dell and Mountain Dell) 

inline to the creek (see Figure  2.2). Dell Creek flows into Little Dell reservoir, while 

Lambs Creek flows into Mountain Dell reservoir. The outflow from Little Dell reservoir 

discharges into Mountain Dell. A water treatment facility, located at the outlet of 

Mountain Dell reservoir, provides finished water into the SLC water distribution system. 

Water that bypasses the water treatment facility is directed into Parley’s Creek that flows 

through the urbanized area of SLC into the Jordan River and eventually the Great Salt 

Lake. There is no minimum instream flow requirement below Mountain Dell Reservoir in 

Parley’s Creek. The operations of Mountain Dell, Little Dell, and the treatment facility 

are based on decisions made by SLCDPU working with partner agencies (e.g., 

Metropolitan Water District of Salt Lake and Sandy). More details of the infrastructure 

and operation of the reservoirs are provided in the System Modeling section. 

 

Figure  2.2. Schematic of Parley’s water system. 
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2.3 Methodology 

The methods used here are explained in five parts: climate change projections, 

hydrologic modeling, water system modeling, simulation of climate change conditions, 

and calculation of vulnerability. First, the output of different GCMs from the World 

Climate Research Programme (WCRP) Coupled Model Intercomparison Project Phase 5 

(CMIP5) climate projections were analyzed to project changes on streamflow. Second, 

the operational hydrologic model of the Colorado Basin River Forecast Center (CBRFC) 

was applied to this study.  Third, the reservoirs’ operation in the Parley’s system was 

simulated using a system dynamics model. Fourth, the system was subjected to climate 

change conditions. And fifth, a comprehensive assessment of vulnerability and a 

sensitivity analysis was completed. More details of each step are presented in the next 

subsections. 

 

2.3.1 Climate Change Projection and Downscaling 

Climate change scenarios were developed using an ensemble-informed delta method 

(Reclamation 2008), meaning that statistically downscaled future changes in temperature 

and precipitation from GCMs were added, and multiplied, respectively, as offsets to 

historical observations of temperature and precipitation. The choice of climate change 

scenarios was guided by CMIP5 (http://gdo-dcp.ucllnl.org; Maurer et al. 2007). The 

monthly data were derived from 37 GCMs, each run under four Representative 

Concentration Pathways (RCPs 2.6, 4.5, 6.0, and 8.5). The name of each RCP indicates a 

radiative forcing in W/m2 at the end of the current century. The combination of the 37 

GCMs and 4 RCPs result in a total of 234 runs due to multiple runs with some of the 
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GCMs. The GCM output was statistically downscaled using the monthly bias-

correction/spatial disaggregation (BCSD: Wood et al. 2004) approach. 

For this analysis a subset of the total 231 CMIP5 traces were evaluated. RCP 2.6 was 

not considered as it requires a very significant and rapid carbon emission reduction and 

sequestration (IPCC 2013), and the associated relatively small departure of climate from 

current conditions would be less of a concern from a management standpoint. Several 

GCMs produced multiple runs for a given RCP using slightly different initial conditions 

or parameterizations, and we used only the first of any such runs to ensure that the GCMs 

were uniformly weighted. As a result, 89 runs were considered for the two 1/8 degree 

grid cells encompassing the Parley’s watershed.  

The analysis of these downscaled climate projections for the study region consistently 

indicates temperatures continuing to warm into the future in SLC, but the rate of warming 

is highly variable among the projections. In Table 2.1, the Median is the median of the 

seasonal mean change in temperature in °C or precipitation in % change from the 89 

climate model projections from the base period of water years (WY) 1981-2010 to the 

future period of WY 2036 to 2065. The Max column shows the highest seasonal mean 

change from the 89 runs and three RCP scenarios, while the Min column is the lowest 

seasonal mean change in temperature or precipitation. These changes are calculated by 

comparing temperature and precipitation for water years 1981-2010 to the future period 

of 2036 to 2065. The %∆>0 is the percentage of seasonal mean changes in temperature or 

precipitation that indicate warming or wetting, respectively. 

Climate model projections of future precipitation for the Parley’s Creek basin indicate 

a strong and consistent trend toward warmer conditions and a slight tendency
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Table  2.1 CMIP5 89 runs (RCP4.5, 6.0, and 8.0, first run only) for 2 cells centered on 
Parley’s system, difference between WY 1981-2010 to WY 2036 to 2065. 

Season Variable Median Max Min % Δ >0 

Annual (Oct-Sept) 

temperature (°C) +2.3 +4.5 +0.9 100 

precipitation (%) +4.1 +27.7 -9.2 74 

Spring (Mar-May) 

temperature (°C) +2.2 +4.7 0.5 100 

precipitation (%) +3.7 +79.6 -17.1 64 

Summer (June-Aug) 

temperature (°C) +2.4 +4.7 +0.7 100 

precipitation (%) -0.9 +56.0 -35.4 48.3 

Fall (Sep-Nov) 

temperature (°C) +2.2 +3.8 +0.8 100 

precipitation (%) +1.4 +49.6 -17.6 57.3 

Winter (Dec-Feb) 

temperature (°C) +2.3 +5.9 +0.2 100 

precipitation (%) +6.5 +39.8 -16.1 71.0 

 

towards wetter conditions. To evaluate a suitable range of potential future streamflow 

conditions for mid-century planning purposes, while also investigating a manageable 

number of climate scenarios, five climate scenarios were selected from a subset of the 89 

CMIP5 traces. The annual differences in temperature and precipitation from a base period 

of 1981-2010 (the calibration period of the CBRFC hydrology model described below) 

and a future period of water years 2036-2065 were analyzed. The method used here to 

select the five scenarios followed the ensemble-informed delta method (Reclamation 

2008). The five scenarios were chosen to represent a broad range of possible futures, and 

were based on the average annual projected 10th and 90th percentile changes in 

temperature and precipitation, as well as the central tendency. The scenarios were 

selected by averaging the five GCM runs nearest the 10th and 90th percentiles for the 



25 
 

 
 

HotDry (HD), HotWet (HW), WarmDry (WD), WarmWet (WW), as well as the Central 

Tendency (or Middle) (CT) scenarios (Figure  2.3). 

 

2.3.2 Hydrologic Model 

The colocation of Western Water Assessment (WWA) personnel (co-author 

Bardsley) at the CBRFC, a regional operational National Weather Service (NWS) center 

supplying short- and seasonal-range model-based streamflow forecasts for the Colorado  

 

 

Figure  2.3. GCM scenarios selected to inform hydrologic modeling (Comparing Oct 
2035-Sep 2065 to Oct 1980-Sep 2010). Mean annual temperature and precipitation 
changes for the 89 GCMs representing the first run of each GCM for RCPs 4.5, 6.0, and 
8.5 for the two 1/8 degree BCSD grid cells covering the Parley’s system. The 5 models 
closest to the 10/90 or 50th exceedance lines were selected for each scenario. 
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and eastern Great Basin, including SLC water operations and management, facilitated the 

application of existing calibrated hydrology models for the SLC system. CBRFC’s 

modeling environment includes the Sacramento Soil Moisture Accounting Model 

(SACSMA) coupled with the Snow-17 temperature index snow model (Burnash et al. 

1973; Anderson 1973; Burnash 1995). These models (referred to in aggregate as ‘‘the 

CBRFC model’’) were chosen because of their existing calibrations for the watersheds of 

interest available through the CBRFC. The CBRFC model was executed within the 

National Weather Service (NWS) Community Hydrologic Prediction System (CHPS), 

which is driven by three climatological forcings: mean areal temperature (MAT) and 

mean areal precipitation (MAP) at 6-hourly resolution, and potential evapotranspiration 

(PET) at daily resolution. These are specified for two to three elevation zones in the 

drainage area of each forecast point to run the CBRFC model in a daily time step.  In 

addition, CBRFC maintains a database of daily unregulated flows developed using all 

available records impacting each forecast point. PET is a physically based estimate 

driven by temperature, specific humidity, wind speed, shortwave and long-wave 

radiation, and atmospheric pressure derived from 1/8° gridded meteorological forcings 

from the North American Land Data Assimilation Systems (Hobbins et al. 2012). In this 

study, dynamic PET inputs are used in which the future PET is sensitive to changes in 

temperature only, due to lack of confidence in future changes in the other drivers. 

While the five climate scenarios described above were selected based on the annual 

mean change of temperature and precipitation from the observed period to the future 

period, mean monthly changes in temperature and precipitation were calculated for each 

scenario.  These monthly temperature and precipitation changes were used to adjust the 
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CBRFC model inputs of MAP, MAT, and PET for the observed period, by adding the 

mean temperature change and multiplying the mean observed/projected precipitation 

ratio. In so doing, the historic weather sequencing is maintained while incorporating 

climate change associated with bulk trends.  This method avoids the challenge GCMs 

face in reliably simulating future sequences of wet and dry years (e.g., Ault et al. 2012), 

but in so doing assumes stationarity in future sequencing and variability. 

 

2.3.3 System Model 

 Reservoir System Operation 2.3.3.1

The SLC water supply system includes two storage reservoirs, which support 

primarily municipal and industrial water supply, and secondarily flood control. The 

managers of the system seek to balance providing a sufficient quantity of drinking water 

and preventing downstream flooding. Mountain Dell Reservoir can be operated 

separately because its inflow and outflow are independent, but Little Dell must operate in 

tandem because its outflow enters Mountain Dell (see Figure  2.2). Usually the two 

reservoirs are operated in tandem. Mountain Dell’s maximum storage capacity is 3.95 

MCM, but it typically ranges between 1.0 MCM and 2.7 MCM. The maximum storage 

capacity of Little Dell is 24.67 MCM, and it can be emptied completely if necessary. The 

maximum flow that can be released from Mountain Dell, through Parley’s Creek, is 8.5 

cubic meters per second (cms).  Lambs Creek must have 0.15 cms (in some of the few 

months during the year) in the channel prior to diverting Parley’s water into Little Dell 

via the Lambs Diversion structure.  
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 Flood Control Operation 2.3.3.2

The operation of the two reservoirs is guided by Code of Federal Regulation Title 33, 

part 208.11. The SLCDPU uses a relationship diagram designed to identify the required 

storage needed in both reservoirs to control flood operations. First, the flood capacity is 

defined based on required amounts for Little Dell (3.7 MCM) and Mountain Dell (1.23 

MCM) for cloud burst-driven floods. Second, the diagram indicates required variable 

storage space based on the current reservoir state and the forecasted snowmelt runoff 

amounts. Releases are then governed by the diagram to provide the expected storage 

capacity to contain the snowmelt runoff.  

 

 GoldSim Simulation 2.3.3.3

In this study, the water system modeling and simulation is performed in GoldSim, a 

Monte-Carlo simulation software for dynamically modeling complex systems 

(http://www.goldsim.com). GoldSim is an object-oriented computer program which can 

support management and decision-making in fields such as engineering by modeling 

dynamic connections and conducting probabilistic simulations (GoldSim 2013). For this 

study, GoldSim is set up to operate as a water supply system simulation model, accepting 

inputs, incorporating outputs from a hydrologic model, executing a reservoir model, and 

operating other submodels within the overall water supply system model.  

The physical characteristics of the supply-demand system, the operation policies and 

decision constraints, and the simulated streamflows for Dell and Lambs Creeks from the 

CBRFC hydrologic model are the main inputs to the water system model in GoldSim. 

The daily water balance is simulated for both reservoirs using a water budget equation 
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including inflow, outflow, and stored water: 

 

𝑉(𝑡) = 𝑉(𝑡 − 1) + 𝑄𝑖𝑛(𝑡) + 𝑃(𝑡) − 𝑄𝑜𝑢𝑡(𝑡) − 𝐸(𝑡) − 𝐺𝑊(𝑡)   (2.1) 

 

where V(t) and V(t-1) are the reservoir volume at the end of time t and t-1, respectively. 

Qin includes the total volume of inflow to the reservoir and P(t) is the direct precipitation 

over the reservoir. Qout, E, and GW are the outflow from reservoir based on release, 

evaporation, and groundwater for time step t, respectively. Daily inflow to Little Dell 

includes Dell Creek streamflow and diversions from Lambs Creek. Lambs Creek 

streamflow and releases from Little Dell are the inflows to Mountain Dell. There are 

unmonitored inflows to both reservoirs which are estimated for different months based on 

the calibration of the system described in Goharian et al. (2013). The evaporation and 

groundwater losses are neglected for this study because of the small size of reservoirs, 

and they are accounted for in the estimated monthly unmonitored inflows based on the 

model calibration. The reservoir outflows are calculated based on the releases determined 

from the flood control diagram and overflows based on calculation. Several “if-then” 

statements are used to represent daily and seasonal operations of the Parley’s water 

system. To estimate the water demand driving the system, the number of users in the 

service area was estimated using historical monthly consumed water (transfer from 

Mountain Dell to the Parley’s Water Treatment Facility). It is important to note that in the 

future scenarios, demand is assumed to be the same as the baseline; however, this is a 

model parameter that can be manipulated. 
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2.3.4 System Performance Evaluation 

System performance can be represented by an indicator such as a time series of a 

simulated parameter (for example, reservoir water level): 

 

𝑋𝑡,    𝑡 = 1, 2, … , 𝑇         (2.2) 

 

where Xt represents the performance of the system at time t. T is the time period of 

simulation. A system performance index (SPI) can be developed as a function of this 

indicator: 

 

𝑆𝑃𝐼 = 𝑓(𝑋𝑡)        𝑡 = 1, 2, … , 𝑇        (2.3) 

 

Another more meaningful system performance index should define the state at time t. 

To determine the value of the indicator state at time step t (Zt), a threshold or comparison 

measure (CM) is defined to identify satisfactory condition (S) versus unsatisfactory 

condition (U). The SPI can then be defined as: 

 

𝑆𝑃𝐼 = 𝑓(𝑍𝑡)        𝑡 = 1, 2, … , 𝑇  

𝑎𝑛𝑑 {
𝑍𝑡 = 1         𝑋𝑡 ∈ 𝑆
𝑍𝑡 = 0         𝑋𝑡 ∈ 𝑈

         (2.4) 

 

Different performance indices have been derived based on a variety of functions (f). 

Hashimoto et al. (1982) presented several of the most widely used indices and functions, 

including Reliability, Resilience, and Vulnerability, which are known as RRV. These 
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metrics are defined based on different functions; however, sometimes these functions are 

not the same for different cases and can be modified and developed based on new 

functions. In addition, the indicator varies from study to study. 

 

 Reliability and Risk 2.3.4.1

Reliability (α) is a metric which indicates the probability (relative frequency) of the 

system being in a satisfactory state: 

 

𝛼 = 𝑃𝑟𝑜𝑏[𝑋𝑡 ∈ 𝑆]         ∀𝑡       (2.5) 

 

Generally, reliability can be defined by different indicators and functions. In this 

study, the available water in reservoirs is used as a criterion to evaluate reliability.  

Figure 2.4 shows the reservoirs’ satisfactory and unsatisfactory states based on the 

flood, conservation, and dead pool volumes, with the satisfactory region being the 

conservation. It is important to note that the minimum required flood control capacity is 

not constant; rather, it varies from February to July based on SLCDPU flood control 

operation policies. Table  2.2 displays the classification for each reservoir’s pools. The 

reservoirs’ operations in this study are highly related to use from other resources and 

creeks based on SLCDPU operating policies. These criteria are derived from the 

historical operational management of reservoirs based on flood control and water supply 

objectives. Therefore, in this study, reliability (Rel) of the system is described as 

𝑅𝑒𝑙 =
∑ 𝑍𝑡

𝑇
𝑡=1

𝑇
= 1 − (

𝑛𝑓
𝑇⁄ )       (2.6) 
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Figure  2.4. Satisfactory and Unsatisfactory States based on the Water Volume in 
Reservoir. 

 

Table  2.2 Reservoirs’ pools classification 

 
Little Dell Volume 

(MCM) 

Mountain Dell Volume 

(MCM) 

Maximum Capacity 24.67 3.95 

Flood Capacity 20.97*-24.67 2.71*-3.95 

Conservation 12.33-20.97 1.97-2.71 

Dead Pool 0-12.33 1-1.97 

* The minimum required flood capacity is subject to change based on flood control operation from February through 

July. 
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where Rel is the estimate of reliability and nf is the number of failure periods out of the 

total periods, T. 

On the other hand, the probability of failure in a period is called risk. This is a 

classical definition of risk. Risk is defined in this study as unity minus reliability:   

 

𝑅𝑖𝑠𝑘 = 1 − 𝑅𝑒𝑙 = (
𝑛𝑓

𝑇⁄ )       (2.7) 

 

However, the new definition of risk, in terms of risk assessment, is the probability 

that exposure to a hazard leads to a negative consequence.  

Therefore, the risk is zero when a system poses no exposure to the hazard. Each 

hazard has different degree of severity on system and more severe hazard leads to a 

greater vulnerability in a system which is exposed to the hazard. More detail about new 

definitions and calculation methods of risk assessment can be found in Wisner et al. 

(2004).  

However, both reliability and risk cannot fully describe the behavior of a water 

system. They can describe how frequently the system is in a failure state. The severity, 

likely consequences, response of system to a failure, and so on cannot be defined. 

Vulnerability and resilience, however, can incorporate severity of failures and system 

response to failures. 

 

 Vulnerability 2.3.4.2

Vulnerability is often calculated based on the maximum deficit of a parameter (Xt) 

over unsatisfactory periods (Hashimoto et al. 1982, Fowler et al. 2003). Another common 
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way to calculate vulnerability is average failures over unsatisfactory periods (Loucks 

1997). Asefa et al. (2014) suggest evaluating the vulnerability of the system by not just 

looking at the maximum deficit. They proposed to assess vulnerability by also 

considering the return period of a certain vulnerability level exceeding a threshold of 

failures. However, all of these measurements are estimated based on the realized deficit 

or failures. As an example, Simonovic and Li (2003) calculated vulnerability based on 

measure of the severity of failure. In this study, another factor is investigated, which is 

called potential severity. Potential severity helps to quantify the potential vulnerability of 

a water resource system element and is needed to indicate when a system element may be 

shown in a satisfactory state yet have potential for vulnerability. 

In this study, three factors are selected to present vulnerability of a reservoir system 

under the climate change scenarios: 

Vulnerability= f (exposure, severity, potential severity)  

In this function, higher values of severity of failures, exposure, or potential severity 

can increase the vulnerability. In order to describe the vulnerability function, these three 

factors are defined as follows: 

 

2.3.4.2.1 Exposure 

 Exposure can be interpreted as the occurrence of a failure in a water resource system 

element due to climate change. Usually, changes in surface runoff precipitated by climate 

change would lead to the exposure events. In this study, reservoir volume is used to 

identify exposure, with a Reservoir Volume Index to Climate Change defined as 
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𝑅𝑉𝐼𝐶𝐶 = 1 −
𝑅𝑉𝐶𝐶

𝑅𝑉𝐻
         (28) 

 

where Reservoir Volume Index to Climate Change (RVICC), which is dimensionless, can 

be calculated based on comparing Surface Reservoir Volume due to climate change 

(RVCC) and Historical Reservoir volume (RVH). RVICC varies between 0-1, with 1 being 

the most vulnerable condition and 0 being the condition with no change compared to 

historical conditions. In cases when RVCC is bigger than RVH, it is assumed that RVICC is 

equal to zero. Daily historical records over the time period of 1981-2010 are used to 

evaluate the baseline condition, and the daily reservoir volume under different climate 

conditions from the GCM results of 2036-2065 are used to quantify reservoir volume 

during the period under climate change conditions. 

 

2.3.4.2.2 Severity  

Severity quantifies the magnitude of damage to the system and sometimes is used 

instead of vulnerability in water system studies. The severity factor (S) for this study is 

calculated as shown in Equation 2.9. 

 

𝑆 = ∑ 𝑠𝑡. 𝑒𝑡    𝑋𝑡 ∈ 𝑈      (2.9) 

 

where Xt, as it was described before, is a discrete state of the system at time step t, and st 

corresponds to 𝑋𝑡 ∈ 𝑈, quantifying the severity of state at t. et is the occurrence 

probability of Xt (corresponds to st), and is the most severe result from the unsatisfactory 

state sets. In this study, instead of using maximum value, the average volume of water 
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deficits or surpluses which puts the system in flood zone or dead pool is considered as the 

severity factor. As a result, S can be calculated as  

 

𝑆 =
∑ (𝑉𝑓+𝑉𝑑)𝑇

𝑡=1

𝑇−∑ 𝑍𝑡
𝑇
𝑡=1

         (2.10) 

 

where Equation 2.4 determines the value of indicator state at time step t (Zt). Although 

severity quantifies the degree of damage to the system, more precise and comprehensive 

assessment of vulnerability is needed instead of just quantifying the magnitude of a 

failure event. 

 

2.3.4.2.3 Potential Severity  

Potential severity is a new factor to present the adaptive capacity in a reservoir 

system. Traditional water systems such as reservoirs and dams were designed and 

constructed without consideration of climate change impacts. Therefore, these systems 

must be adapted to account for the circumstances they will encounter under climate 

change conditions. Traditional systems, sometimes, are managed in a way to decrease the 

vulnerability and increase the reliability of the system in case of failure. However, these 

actions may cause potential failure in the future. For example, reservoirs may be on the 

verge of flooding or lowering into the dead pool level, and actions are taken to account 

for forecasted inflows. Water may be released if the reservoir is close to full or water may 

be stored if close to dead pool.  However, if those decisions to release or store are in error 

and the system is exposed to an inflow condition that creates a failure state, then the 

reservoir may be considered to have been in a potential severity situation. In essence, 
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released or bypassed water when a reservoir is full and stored water when a reservoir is 

near dead pool can result in future system failure. The potential severity is proposed to be 

calculated as  

 

 𝑃𝑆 = ∑ 𝑝𝑠𝑡. 𝑒𝑡
𝑇
𝑡=1     𝑋𝑡 ∈ 𝑆 & 𝑋𝑡+∆𝑡 ∈ 𝑈     (2.11) 

 

where PS is the potential severity factor, pst is estimated as the magnitude or severity in a 

potential failure, which means the current state would be 𝑋𝑡 ∈ 𝑆, but the state of system 

reaches unsatisfactory condition after a time threshold, 𝑋𝑡+∆𝑡 ∈ 𝑈. ∆t is the time 

threshold representing the time interval between the current state of the system, when it is 

not in failure, to the next possible failure or failures. 

In the same way, the potential severity in a reservoir system can be written as 

 

{
𝑃𝑆 =

∑ 𝑉𝑝𝑟
𝑇
𝑡=0

∑ 𝑤𝑖
𝑛
𝑖=1

 𝑤𝑖 =  ∆𝑡𝑖       𝑤ℎ𝑒𝑛      𝑉𝑟𝑒𝑠 = 𝑉𝑚𝑎𝑥

                      (2.12) 

 

where PS is the average potential severity, wi is the time duration number i when the 

available water in the reservoir (Vres) is at maximum level (Vmax), and Vpr is the volume of 

potential released water at this condition which can be used in the future to reduce 

shortage in the system. n is the total number of PS occurrences when conditions in 

Equation 2.13 are met. It should be noted that the maximum level of the reservoir in this 

study is variable and would be selected based on required volume needed for flood 

control. However, there is another condition that leads to released water being identified 
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as potential severity, which is at times when the duration time of transition (dt) from full 

capacity to dead pool would be less than a defined threshold. Threshold duration of 

transition (dtt) is the time it takes to use the potential released water to avoid an 

unsatisfactory condition if there were space in the reservoir. Therefore, only water when 

time of transition is less than the threshold (dt< dtt) should be considered as a useful 

potential release. Another condition that should be considered when calculating PS is 

how much of the release can be used for shortage water in the reservoir if the shortage 

volume in the reservoir (Vd) would be bigger than the released water volume (Vr). In this 

condition, all released water can be considered as Vpr, but if the Vd would be less than or 

equal to Vr, then Vpr is equal to shortage water because the exceedance release (Vr - Vd) 

would not be useful and the system has already exited from an unsatisfactory state, so 

water should be released to avoid being in a flood failure condition. This condition can be 

described mathematically as 

 

{
𝑉𝑝𝑟 = 𝑉𝑟         𝑉𝑟 < 𝑉𝑑

𝑉𝑝𝑟 = 𝑉𝑑         𝑉𝑟 ≥ 𝑉𝑑
.        (2.13) 

 

Moreover, to use PS in the calculation of vulnerability, the factor should be 

normalized. Figure  2.5 illustrates an example reservoir to clarify the meaning of potential 

severity. 

In Figure  2.5, released water due to a full volume of the reservoir happens in three 

different conditions, as indicated by areas filled with dots or diagonal lines. In case of 

condition 1, assume that dt is less than dtt, then as expressed in the figure the released  
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Figure  2.5. Different potential severity occurrences in a reservoir system 
 

water is less than shortage in the system after dt. Consequently, all water released can be 

considered potentially useful water which could be stored in the system to prevent future 

failure. In case of condition 2, it is assumed that dt2 < dtt < dt1; therefore, in this condition, 

Vd2 is less than Vr and based on Equation 2.13 Vpr would be equal to Vd1. 

However, considering Vd2, regardless if it is more than or less than Vr, if dt2 is bigger 

than dtt, it is not considered potential severity. In condition 3, although there is some 

potential useful release from the system because the system does not experience 

subsequent shortage, it is not considered useful, and from a management standpoint that 

amount of water has to be bypassed to decrease the flood failure state. It should be noted 

that based on the specific operation policies of a reservoir, the maximum volume of the 

reservoir, and other factors, the potential release condition interpretations can be varied 

from those used for this study. Therefore, the potential severity presented here provides a 

means to quantify the adaptive capacity of the reservoir system. 

To summarize the proposed vulnerability metric in this study, a function is needed to 
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include three different factors: proposed reservoir volume index for climate change 

(RVIcc), severity (S), and potential severity (PS). These factors should first be normalized 

to have the same scale and then assigned weights (Wrv, Ws, and Wps) to sum to find the 

vulnerability: 

 

𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑅𝑉𝐼𝐶𝐶 × 𝑊𝑟𝑣 + 𝑆 × 𝑊𝑠 + 𝑃𝑆 × 𝑊𝑝𝑠         (2.14) 

 

Since each variable has a different degree of importance, it was necessary to allocate 

a weighting to each factor. Here, equal weights (1/3) are assumed to calculate the 

vulnerability. A sensitivity analysis was performed to investigate the relative impact of 

the weights on the new vulnerability index.   

 

 Vulnerability Classification 2.3.4.3

To show different levels of system vulnerability, it is convenient to define categories 

of vulnerability. Considering the vulnerability range of (0, 1), categories may be defined 

based on Jenks Optimization (Jenks 1967), also known as the “Jenks Natural Breaks”. 

Jenks Optimization seeks to minimize each class’ average deviation from the class mean, 

while maximizing each class’ deviation from the means of the other groups. In other 

words, the method seeks to reduce the variance within classes and maximize the variance 

between classes. By implementing Jenks Natural Breaks in this study, category 1 includes 

scenarios with the lowest vulnerability values; and category 6 includes scenarios with the 

highest vulnerability values. As a result, the vulnerability values obtained with Equation 

2.14 are classified into six categories. The vulnerability levels and their index ranges are: 
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Extreme (E) (0.333-0.402), Medium-Extreme (ME) (0.292-0.332), High (H) (0.238-

0.291), Medium-High (MH) (0.154-0.237), Medium (M) (0.106-0.153), and Low (L) (0-

0.105). 

 

2.3.5 Sensitivity Analysis (SA) Framework 

There is a variety of existing methods to test the sensitivity of criteria based on their 

weights. A common approach which is widely used is the One-At-a-Time method (OAT 

method) which is presented by Daniel (1985). Using the OAT approach for this study and 

varying only criteria weights provides insight on the importance of criteria on 

vulnerability result. This approach shows the stability of vulnerability assessment by 

using a known amount of change to criteria weights and identifies the criteria that are 

sensitive to weights changes (Chen et al. 2010). For this purpose, a feasible range of 

changes for weights should be determined. Then, the increment of percent change (IPC) 

is selected to run the series of evaluations where each criterion’s weights are changed by 

IPC. The incremental changes and runs should be performed within a feasible range, and 

the weights of other criteria should be specified proportionally to satisfy the constraints. 

The constraint here is that the sum of all weights in each run should be equal to 1 because 

the final vulnerability value should be in the range of 0-1 (Equation 2.15). 

 

𝑊𝑗 = ∑ ∑ 𝑊𝑖,𝑗
𝑛
𝑖=1 = 1𝑟

𝑗=1           (15) 

 

where Wj is the sum of all criteria weights in run j and r is the total number of simulation 

runs. Wi,j is the ith criterion among all n criteria. In each simulation run, one of the criteria 



42 
 

 
 

should be assigned as a main criterion (m) and its weight (Wm) is changing at a certain 

percent change (PC). This weight can be calculated as 

 

𝑊𝑚,𝑗 = 𝑊𝑚,𝑜 + 𝑊𝑚,0 × 𝑃𝐶                               1 ≤ 𝑚 ≤ 𝑛   (2.16) 

 

In Equation 2.16, Wm,0 is the first assigned (base run) weight to the main criterion, 

which is 0.34 in this study. Moreover, to meet the constraint of Equation 2.15, other 

criteria weights are adjusted based on Wm,j and can be derived as follows: 

 

𝑊𝑖,𝑗 = (1 − 𝑊𝑚,𝑗) × 𝑊𝑖,0 (1 − 𝑊𝑚,0)                        𝑖 ≠ 𝑚 & 1 ≤ 𝑖 ≤ 𝑛⁄  (2.17) 

 

where Wi,0 is the weight of each nonmain criterion (i≠m) at the base run (j=0) among all 

n criteria. 

 

2.4 Results 

2.4.1 Reliability Assessment 

The reliability of the system for both reservoirs was computed and the baseline and 

future scenarios were compared based on Equation 2.6. Table  2.3 and Table 2.4 show the 

differences in reliability of Little Dell and Mountain Dell reservoirs, respectively, under 

climate scenarios from the historical period. To better analyze the changes over the 30-

year period, the duration is divided into 5-year increments. Table  2.3 and Table 2.4 show 

that in the Central Tendency (CT) scenario, which is essentially the average of the GCMs 
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Table  2.3 Percentage changes in reliability of Little Dell Reservoir from baseline to 
climate scenarios. 

 
Scenario 

5-year periods Warm Wet Warm Dry Middle Hot Wet Hot Dry 

1 12 0 4 0 -38 

2 60 -47 -33 -13 -67 

3 35 -48 -39 -13 -83 

4 33 -48 -36 -21 -69 

5 156 -67 -44 22 -100 

6 42 -48 -32 -6 -74 

30-year period 39 -36 -25 -7 -64 

 

 

Table  2.4 Percentage changes in reliability of Mountain Dell Reservoir from baseline to 
climate scenarios. 

 
Scenario 

5-year periods Warm Wet Warm Dry Middle Hot Wet Hot Dry 

1 3 -17 -10 -10 -34 

2 63 -25 -25 0 -50 

3 60 -20 -10 20 -50 

4 33 -22 -17 0 -44 

5 140 -20 0 60 -60 

6 33 -33 -13 7 -53 

30-year period 36 -21 -14 7 -43 
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future projections, the reliability of the system decreased over the 30-year period. Only 

under the WarmWet (WW) scenario does the reliability of both reservoirs increase (36%-

39%) from the baseline scenario, while in the first 5-year period the reliability changes 

are low and in the fifth 5-year period the highest increases in reliability were found. On 

the other hand, in the fifth 5-year period, the HotDry (HD) scenario shows the greatest 

decrease in reliability. This suggests the most extreme projections happened in the same 

time period (fifth 5-year period), either a dry or wet period. Under the HotWet (HW) 

scenario, the system shows different behavior, with the Little Dell reservoir experiencing 

a 7% reduction in reliability, while the reliability of Mountain Dell reservoir experienced 

an increase of 7%. All in all, based on these tables, the behavior of the system shows that 

the WW scenario was the most desirable condition and the HD scenario was the worst 

case scenario. Interestingly, the HW scenario did not have a significant change from 

baseline. 

 

2.4.2 Vulnerability Assessment 

In order to estimate the vulnerability of the system, designated factors should be 

calculated for each reservoir based on Equation 2.14. Again, the 30-year period of 

simulation is divided into 5-year increments. As mentioned previously, vulnerability and 

risk both present the failure condition of the system in terms of magnitude and the 

probability of the failure event occurring; therefore, increase in either of these values can 

indicate more damages to the system. The vulnerability and risk of the reservoirs are 

illustrated in Figure  2.6.a and Figure  2.6.b. Figure  2.6.a shows that in Little Dell reservoir  
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(a) 

 

(b) 

Figure  2.6. Vulnerability vs. Risk under different climate scenarios for, a) Little Dell 
Reservoir, b) Mountain Dell Reservoir. 

 

the WW scenario had the least risk. On the other hand, the HD scenario projected the 

most vulnerable and risky condition. By looking at Figure  2.6.b, although risk evaluation 

of the system presented the same result, the vulnerability of WW is high in Little Dell 

and Mountain Dell reservoir in comparison to its risk. In many cases, both of these 

factors have the same behavior, i.e., the higher degree of risk can be found in a more 

vulnerable system. However, in these figures the vulnerability and risk do not have the 

same behavior in comparison to other scenarios. For example, under the WW scenario 

the risk is relatively low, but the system is still vulnerable. To identify the reason for this 

anomaly requires further analysis. Table  2.5 shows the normalized severity of both 

reservoirs for the WW, CT (Middle), and HD scenarios, to highlight the differences 

between their normalized severities.  

As shown in Table  2.5, the normalized severity had the same behavior in both 

reservoirs through the 30-year period (except for Time Period 1 for Little Dell, where 

values are close and WW normalized severity is between CT and HD). This value for 

WW is less than CT, and CT is less than HD scenario, which is not the same for the 
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Table  2.5 Normalized severity values for both reservoirs in 5-year period. 

 
Little Dell Mountain Dell 

5-year period Warm Wet Middle Hot Dry Warm Wet Middle Hot Dry 

1 0.221 0.140 0.234 0.040 0.099 0.319 

2 0.370 0.623 0.808 0.389 0.680 0.901 

3 0.417 0.672 0.836 0.313 0.581 0.808 

4 0.000 0.255 0.452 0.000 0.309 0.579 

5 0.472 0.724 1.000 0.543 0.864 0.990 

6 0.101 0.371 0.507 0.157 0.449 0.695 

30-year period 0.000 0.558 1.000 0.000 0.552 1.000 

 

vulnerability of reservoirs. As has been shown previously, this factor is used most of the 

time to represent the vulnerability of the system. However, in this study these two 

metrics, vulnerability and severity, do not have the same behavior.  

Based on the previous discussion, nonzero values in Table 2.6 show that there is 

reduction in reservoir volume under climate change projections. Therefore, the same as 

normalized severity, the system is more vulnerable on the HD rather than CT and WW in 

terms of RVIcc. Consequently, severity and reservoir volume index are not the cause of 

high vulnerability in the system under the WW scenario. To discover which time 

increment equates to the highest vulnerability in Mountain Dell reservoir, the 

vulnerability of reservoirs is calculated for 5-year periods (Table  2.7 and Table  2.8). 

These tables show that in the first 5 years the vulnerability of the reservoirs is high. 

Based on the analysis, the one factor that controls this is potential severity. The 

streamflow of Lambs Creek over the first 5 years shows the peak flows occur for the WW 

scenario. The potential severity for both reservoirs shows large values under the WW  
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                                  Table  2.6 RVIcc for both reservoirs in 5-year period. 

 
Little Dell Mountain Dell 

5-year period Warm Wet Middle Hot Dry Warm Wet Middle Hot Dry 

1 0.00 0.057 0.143 0.00 0.018 0.064 

2 0.00 0.069 0.166 0.00 0.005 0.065 

3 0.00 0.096 0.198 0.00 0.011 0.070 

4 0.00 0.089 0.184 0.00 0.035 0.099 

5 0.00 0.068 0.211 0.00 0.000 0.027 

6 0.00 0.075 0.155 0.00 0.029 0.096 

30-year period 0.00 0.076 0.176 0.00 0.016 0.070 

 

Table  2.7 Vulnerability assessment of Little Dell Reservoir. 

 
Scenarios 

5-year 

Periods 
H WW WD M HW HD 

1 0.06 0.41 0.07 0.07 0.06 0.13 
2 0.16 0.12 0.26 0.23 0.18 0.32 
3 0.18 0.14 0.30 0.26 0.17 0.34 
4 0.01 0.00 0.14 0.11 0.09 0.21 
5 0.21 0.16 0.35 0.26 0.19 0.40 
6 0.07 0.03 0.17 0.15 0.12 0.22 

 

Table  2.8 Vulnerability assessment of Mountain Dell Reservoir. 

 
Scenarios 

5-year 

Periods 
H WW WD M HW HD 

1 0.03 0.35 0.04 0.04 0.04 0.13 

2 0.22 0.13 0.26 0.23 0.19 0.32 

3 0.18 0.10 0.25 0.20 0.16 0.29 

4 0.04 0.00 0.14 0.11 0.11 0.23 

5 0.29 0.18 0.34 0.29 0.22 0.34 

6 0.11 0.05 0.21 0.16 0.12 0.26 
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for the first 5-year period. Looking at the releases from the reservoirs during the first 5-

year period, there are time periods with significant releases when the reservoirs are in or 

near their flood zones. For example, during June in Mountain Dell Reservoir 

approximately 10 MCM is released, while about 0.8, 2, and 6 MCM water shortages are 

estimated in the reservoir in the next one, two, and six months, respectively. Thus, based 

on the definition of potential severity, the time thresholds from the previous section, and 

normalizing the potential severity, this value would be one for both reservoirs under the 

WW scenario. Moreover, peak flows during these periods caused the bypass from 

reservoirs to increase, and the potential severity of this reservoir would be higher. This 

phenomenon happened mainly because of relatively rapid snowmelt in the mountain 

areas based on warm weather and a high precipitation projection for the WW scenario. 

This results in greater vulnerability in the WW condition.  

Although in the WW scenario average runoff is more than other scenarios, the system 

is more vulnerable because of flood occurrence. While the HW scenario ranked second in 

terms of average inflow projection, it has less extreme conditions and can provide enough 

water for demand as well as reduce the impact of potential future flood events, mainly 

because of more gradual snowmelt during the spring and summer seasons. On the other 

hand, under the HD condition there is no flood danger, but the system faces shortages in 

the reservoirs.  

 

2.4.3 SA Simulation Results 

In this study, a range of ±20% changes in weights is selected to test all three criteria, 

including RVIcc, S, and PS with increment percent change of ±1%. As a result, 40 total 
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simulation runs are needed for each criterion. The -20% is the first run and +20% is the 

last one for each criterion, and the whole SA simulation includes 120 evaluation runs. 

Each of these runs represents a set of criteria which is reasonable to be specified by 

stakeholders. The base run is assumed when all factors have equal weights (0.34). 

Table  2.9 shows the summary and classes which are anticipated when different 

combinations of weights are evaluated. This table summarizes the range of changes in 

weight of a factor when it is the focus criterion in the SA evaluation. In each simulation 

run, the categories of vulnerability were found and presented in Table  2.9.  

Based on Table  2.9 it is clear that the Historical and HD scenarios are almost 

independent of the changes in weight of factors, and the vulnerability value in the 

Historical condition run is relatively low, while for the HD scenario it is extremely high 

at most times. Moreover, in none of the conditions and sets of weights changes did the 

category of vulnerability increase or decrease more than two from the base run. Based on   

 

Table  2.9 Summary of vulnerability categories generated by SA simulation runs under 
different climate change scenarios 

  Scenario 

Main changing 

criterion weights 
Historical WW WD M HW HD 

RVIcc 

<0.34 L E ME-E MH-M M E 

0.34 L E H MH M E 

>0.34 L ME-H H MH L E 

S 

<0.34 L E H MH-M L ME-E 

0.34 L E H MH M E 

>0.34 L–M ME-H E ME-H M E 

PS 

<0.34 L ME-H ME-E H M E 

0.34 L E H MH M E 

>0.34 L E H-MH M L ME-E 
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the number of category changes in this table, S and PS exert higher sensitivity than RVIcc, 

which shows the necessity of precise weighting for these two factors. However, the 

behavior of these two factors is different. Generally, except under WW, by increasing the 

weights of S the vulnerability of the system is increasing, while increase of PS and RVIcc 

causes decrease in vulnerability. Under the WW scenario, the importance of PS is more 

significant, because only increase of weight of this factor causes increase in vulnerability. 

This change in behavior of weight can be interpreted by high values and identified 

importance of PS under the warm and wet condition. In this condition, more 

precipitation, which is mostly snow in mountainous areas and rainfall in spring, and high 

temperature may melt the snow pack in a shorter time period. Rapid snowmelt, which 

happens in May and June, forces the system to release excess water to retain flood 

capacity of the reservoir and in turn causes future shortage during summer. While under 

other scenarios this water can be captured in the reservoir system gradually and used for 

future demand. Consequently, in cases with warm and wet conditions, PS is important 

and causes a higher vulnerability to the system, while in other conditions the importance 

of S is considerable. 

Finally, results of this study show that new operation policies or infrastructure 

development alternatives should be considered for the system to reduce the vulnerability 

to flood occurrence. 

  

2.5 Summary and Discussion 

This chapter introduced a new approach and set of factors to calculate the 

vulnerability of water systems. The new approach was demonstrated with a case study of 
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a reservoir system in Salt Lake City, Utah using a hydrologic model and a systems model 

driven by historical temperature and precipitation data and future climate change 

projections from CMIP5 (Table 2.10). The investigation of the new vulnerability metric 

elucidated the influence of various factors on water supply system vulnerability. For 

instance, it was illustrated that if severity were the only factor considered, the results of 

the study would be different and the WarmWet scenario would be considered as the least 

vulnerable condition. Since this conclusion was shown in this case study to overlook 

greater threats to the system, the use of the more comprehensive vulnerability metric was 

supported. The new metric shows that future changes in snowmelt (earlier and more 

rapid) can increase the vulnerability of the Parley’s reservoirs system. The inclusion of 

potential severity in the vulnerability calculation helped identify conditions when 

releasing or holding water may lead to future system failures. The results illustrated that 

basing vulnerability on severity presents less information rather than including other 

factors affect the vulnerability of the system. In this study, a traditional vulnerability 

metric (severity) could not deliver an informative index about the vulnerability of a future 

condition, while the inclusion of potential severity correctly identified the risk of future 

failure. Overall, the new vulnerability metric can enhance analyses and present more 

informative information to provide more comprehensive guidance on planning changes in 

operation and modifications to infrastructure systems. Although the new vulnerability 

metric was shown to be useful in this case study, more research is needed to explore the 

relative sensitivity of its different factors and their weighting and to assess the impact of 

uncertainty of the downscaled climate model projection, change factor method, and 

hydrologic simulation.  
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Table  2.10 Model, Scenario, and precipitation and temperature difference selected to 
represent extreme scenarios 

Scenario Model RCP value delP delT rank 

HD5 

access1.0.1 8.5 0.03 -4.47 3.59 1 

ipsl.cm5a.mr.1 8.5 0.05 -6.46 3.36 2 

bnu.esm.1. 8.5 0.31 -7.49 3.06 3 

hadgem2.ao.1 4.5 0.39 0.14 3.55 4 

miroc5.1 8.5 0.40 0.09 3.67 5 

HW5 

hadgem2.cc.1 8.5 0.19 12.51 3.52 1 

miroc.esm.chem.1 6 0.37 11.02 3.45 2 

gfdl.cm3.1 8.5 0.45 20.16 3.82 3 

gfdl.cm3.1 4.5 0.56 10.34 3.09 4 

fgoals.g2.1 8.5 0.92 13.85 2.69 5 

WW5 

giss.e2.r.1 6 0.01 16.06 1.44 1 

gfdl.esm2m.1 4.5 0.04 16.28 1.25 2 

giss.e2.h.cc.1 4.5 0.15 17.49 1.19 3 

mri.cgcm3.1 8.5 0.24 15.35 1.76 4 

cnrm.cm5.1 4.5 0.55 12.35 1.78 5 

WD5 

noresm1.me.1 6 0.18 -7.94 1.38 1 

inmcm4.1 4.5 0.23 -6.50 1.02 2 

fio.esm.1 6 0.36 -3.31 0.98 3 

bcc.csm1.1.1 6 0.44 -1.44 1.85 4 

noresm1.m.1 6 0.46 -2.10 1.90 5 

CT5 

miroc5.1 6 0.01 4.13 2.37 1 

access1.3.1 4.5 0.03 4.80 2.20 2 

mpi.esm.mr.1 8.5 0.08 6.13 2.49 3 

noresm1.m.1 4.5 0.10 6.78 2.44 4 

noresm1.me.1 4.5 0.11 4.70 2.06 5 

 



 
 

 
 

 CHAPTER 3

 

USING JOINT PROBABILITY DISTRIBUTION OF RELIABILITY AND 

VULNERABILITY TO DEVELOP A WATER SYSTEM 

 PERFORMANCE INDEX (WSPI) 

 

3.1 Introduction 

In water resources management, one of the main objectives is making or selecting the 

best policies and decisions to reduce the harmful impacts of failures and unexpected 

events. In order to meet this objective, it is crucial to analyze the performance of water 

systems. Performance criteria are used to estimate the effectiveness of water management 

policies and help managers to compare alternative management strategies. The 

performance criteria can simply quantify average, sum, maximum, minimum, or 

probability of a system’s condition [e.g., Total Water Deficit (TWD) (Dracup et al. 

1980)]. These criteria are often nonintegrated measures [e.g. Reliability and vulnerability 

(Hashimoto et al. 1982), vulnerability/average failure (Loucks and van Beek 2005), total 

maximum daily load (TMDL) (U.S. EPA 2015)], or they can be derived from integrated 

measures and multiple criteria to provide one index (integrated measures).  

Indices are typically aggregate measures of performance in the form of a single factor 

(Sainz 1989); however, the term “index” is sometimes also used for nonintegrated
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 measures/indicators [Surface Water Supply Index (SWSI) (Shafer and Dezman 1982), 

Standardized Precipitation Index (McKee et al. 1993 and 1995)]. Various indices have 

been developed to fulfill the need for evaluation of water resources systems and provide 

fair comparisons among different management scenarios [examples: Palmer Drought 

Severity Index (Palmer 1965), Sustainability Index (Loucks 1997), Environmental 

Sustainability Index (Esty et al. 2005), and Canadian Water Sustainability Index (Policy 

Research Initiative (PRI) 2007)]. Loucks (1997) suggested that sustainability of water 

systems can be introduced by use of statistical measures. He proposed the use of 

reliability, resiliency, and vulnerability (RRV) measures to summarize and calculate a 

sustainability index (SI). The Sustainability Index (SI) of Loucks (1997), later improved 

by Sandoval-Solis et al. (2011), integrates reliability, vulnerability, resiliency (RRV), and 

other performance criteria that include information about the sustainability of the basin. 

The geometric average of RRVs is used to improve the content, scaling, and flexibility of 

the SI. However, their updates were not mathematical, and the SI could not present the 

differences between the sustainability of the system with the same datasets of RRVs, i.e., 

regardless of the case system, the same values of RRVs produce the same information 

about the performance of the systems. Furthermore, they still applied traditional 

weighting methods to find the relative importance of criteria. In another study, Nazif and 

Karamouz (2011) combined RRVs to estimate the readiness of water distribution 

systems. Nonetheless, they did not directly use the RRVs to estimate the system readiness 

index (SRI). Rather, they used RRVs to predict the SRI value and class by use of 

probabilistic neural networks. In the present chapter, a new statistical approach will be 

presented to estimate the performance of water systems, water system performance index 
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(WSPI), directly from RRVs. The new concept of using joint probability distribution of 

reliability and vulnerability solves the problems arising from previously mentioned 

studies and derived indices from RRV. 

While a failure in a water system should be characterized based on the frequency 

(reliability) and magnitude of failure (vulnerability), a joint behavior of these criteria can 

be considered as a new characteristic of the system. This characteristic is captured by an 

index which is called the WSPI. To capture the joint behavior of these two criteria, the 

theory of copula is utilized. Copulas have been used in recent studies in finance (Meucci 

2011), medicine (Eban et al. 2013), climate research (Schölzel et al. 2008), and 

engineering (Thompson 2011, Yazdi et al. 2015). Drought management and hydrological 

analyses have also seen increasing application of copulas. For example, the joint 

distributions between drought variables have been modeled with different copula 

functions to analyze duration, intensity, and return period of drought (Cancelliere and 

Salas 2004; Nadarajah 2009; Mirabbasi et al. 2011; Vangelis et al. 2011). Maity et al. 

(2013) used the same concept to develop a new drought management index (DMI) to 

quantify the degree of agricultural drought risk in a drainage catchment. They modeled 

the dependence of correlated stochastic variables of droughts in the Malaprabha River 

basin in India through Plackett copula. In the study presented herein different copula 

families are tested to find the best fit function to reliability and vulnerability datasets. The 

WSPI can be expanded using three- and four-dimensional copulas to include more 

performance criteria. However, because of similarity in behavior of resilience and 

reliability (Hashimoto et al. 1982), interrelationship between reliability and vulnerability 

is used here to characterize the performance of water systems.  
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Instead of using broad and multiple factors, the WSPI uses reliability and 

vulnerability of the system to summarize essential performance criteria. Using joint 

probability of reliability and vulnerability, copula functions, and exceedance and non-

exceedance probabilities leads to the development of WSPI. The WSPI summarizes and 

combines the values from vulnerability and reliability of the water system and presents 

related information simultaneously. This performance index provides sufficient 

information about the performance of management alternatives to managers, 

stakeholders, water users, and researchers. Thus, the main goal of this index is to ease the 

evaluation and comparison of management strategies and policies. Moreover, derived 

information based on this index is further used to reduce the vulnerability of the system 

based on the system’s adaptive capacity. In the case of existence of trade-offs among 

performance criteria, the WSPI facilities the comparison of different alternatives.  

In the following section, the details of the performance criteria parameters used in the 

WSPI are described. Then, the methodology to calculate the WSPI is presented. To 

demonstrate the application of the WSPI, the Parley’s reservoirs system in Salt Lake City 

is used as the case study. Finally, to test effectiveness of WSPI, the system under current 

water management and five future climate change scenarios is simulated and the results 

of WSPI for the scenarios are compared. 

 

3.2 Methodology 

In this section, the new WSPI is defined in the context of the general system 

performance assessment. The joint probability and copula functions used for the WSPI 

are described. The five steps to develop the WSPI are presented as part of the entire 
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system performance assessment process.  

 

3.2.1 System Performance Assessment 

Performance of a system can be expressed by a state indicator. This indicator should 

present the system’s state in time t. In order to determine the indicator state (Z), first a 

threshold or comparison measure (CM) is assigned to compare success condition (S) 

versus failure condition (U), which can be calculated as follows: 

 

{
𝑍𝑡 = 1         𝑋𝑡 ∈ 𝑆
𝑍𝑡 = 0         𝑋𝑡 ∈ 𝑈

          (3.1) 

 

where Xt is the time series of the system’s variable in time t. In a water resource system, 

first Hashimoto et al. (1982) presented the concept of reliability, resilience, and 

vulnerability. However, during recent years, these metrics have been refined based on 

different mathematical functions. These functions are not necessarily the same for 

different cases and are modified based on the new conditions which govern the water 

system. 

 

 Reliability 3.2.1.1

Reliability is a metric which shows the probability of a satisfactory state in the 

system. This metric is the fraction of time when the system is in a ‘‘satisfactory state’’ 

over the total simulation period (T). Reliability of a system (Reliability) in general is 

calculated as follows: 
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𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑃𝑟𝑜𝑏[𝑋𝑡 ∈ 𝑆]         ∀𝑡      (3.2) 

 

Combination of Equations 3.1 and Equation 3.2 provides the reliability of the system 

as follows: 

 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = lim𝑛→∞
1

𝑛
∑ 𝑍𝑡

𝑛
𝑡=1         (3.3) 

 

Reliability in water systems can be defined by different functions. Volume reliability 

estimates the ratio of the demand target volume which is supplied by available water 

volume. Period reliability is calculated by dividing number of months when the total 

demand target is supplied by the entire simulation period. Reliability in a system is 

usually expressed as a percentage. In this study, to estimate the reliability of the reservoir 

systems, Equation 3.4 is used: 

 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
∑ 𝑍𝑡

𝑇
𝑡=1

𝑇
= 1 − (

𝑛𝑓
𝑇⁄ )      (3.4) 

 

where Reliability is the estimate of reliability and nf is the number of failure periods out 

of the total periods, T. 

Reliability cannot completely describe the behavior of a water system. For example, 

the magnitude of failure is needed to show how a system is damaged by a failure event. 

Therefore, more comprehensive performance evaluation is needed for water systems. 

Vulnerability and resilience capture the possible severity of failure and the system’s 
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response to unexpected events. 

 

 Vulnerability 3.2.1.2

The new comprehensive method to calculate the vulnerability of water systems is 

presented  in this dissertation. Instead of using the magnitude of failure in water systems 

(severity), this method proposed to include potential severity and exposure of water 

systems as well. Sometimes just a small chance of failure in water systems causes 

substantial damage. In the proposed function, higher severity of failures, exposure, or 

potential severity represents greater vulnerability. The weighting factors are allocated to 

each criterion, then the overall vulnerability is calculated as follows: 

 

𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐸𝑥𝑝 × 𝑊𝑒 + 𝑆 × 𝑊𝑠 + 𝑃𝑆 × 𝑊𝑝𝑠     (3.5) 

 

where Exp is the exposure of a system to a new condition, such as climate change. We, 

Wp, and Wps are weights of exposure, severity (S), and potential severity (PS), 

respectively. More details to calculate each individual factor for a water system can be 

found in this dissertation.  

 

3.2.2 Water System Performance Index (WSPI) 

Recently, copulas are being used to model the joint probability distribution of 

multivariate data for hydrologic and water systems research. In this study, instead of 

estimating individual measures to assess system performance, the joint probability of 
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reliability and vulnerability are used. Thus, the proposed Water System Performance 

Index was developed to aid decision makers and stakeholders. To quantify the 

distribution between bivariate data, different copulas are tested and the best-fit are 

selected. Figure  3.1 shows the steps to estimate WSPI.  

 

 Determining Dependence between Simulation Inputs 3.2.2.1

First, the dependence between Vulnerability (V) and Reliability (R) datasets should 

be specified. It should be mentioned that reliability and resilience have linear/nonlinear 

relationship. The observation of Hashimoto et al. (1982) show that in water resource 

systems resiliency and reliability generally show the same trend. Therefore, adding 

resiliency to the study and incorporating that in joint probability will not deliver more 

information. Here, two kinds of widely used dependence measures are Pearson 

correlation coefficient (Pearson’s rho, ρ) and Kendall rank correlation coefficient 

(Kendall's tau, τ). Dependence measures estimate the degree of similarity and the 

significance of the relation between V and R datasets. Pearson’s rho measures the linear  

 

Figure  3.1. Steps of developing water system performance index. 
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dependence and cannot preserve the nonlinear transformations, while rank correlation 

eliminates the restrictions of using Pearson’s rho. For this reason, Spearman rank and 

Kendall rank correlation coefficients are both used. Moreover, they are not dependent and 

sensitive to the selected marginal distributions of V and R. Here, Kendall's tau (Nelsen 

2006) is selected to determine the dependence between bivariate data and determine the 

copula parameters. Kendall's tau estimates the degree of concordance between X1 and X2 

values and is estimated as follows: 

 

𝜏 = 𝑃[(𝑋1 − 𝑋1
′ )(𝑋2 − 𝑋2

′ ) > 0] − 𝑃[(𝑋1 − 𝑋1
′)(𝑋2 − 𝑋2

′ ) < 0]  (3.6) 

 

where X'1 and X'2 are the independent copy of X1 and X2, and P[] is the probability 

function.  Kendall's tau can also be expressed in terms of copula functions: 

 

𝜏 = 4 ∫ ∫ 𝐶(𝑢1, 𝑢2; 𝜃)𝑑
1

0

1

0
𝐶(𝑢1, 𝑢2; 𝜃) − 1     (3.7) 

 

where, C(u1, u2;) is the copula function of the bivariate distribution and   is the vector 

of copula parameter (more details are presented in the next sections). It can be interpreted 

from Equation 3.7 that the copula parameter is independent of the marginal distribution 

and is a function of Kendall's tau. 

 

 Fitting Marginal Distributions to Inputs 3.2.2.2

Before fitting copulas to variables, the marginal distributions should be fitted to the 

reliability and vulnerability data. Here, four different widely used distributions are 
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selected to ensure the positivity of simulated reliability and vulnerability. The 

Lognormal, Weibull distributions, and truncated below zero of Normal and Gumbel 

distributions are selected as candidates. More information about the probability density 

functions (PDF), cumulative density functions (CDF), and domains of distributions 

functions can be found in Li and Tang (2014). Goodness-of-fit tests are applied to 

determine the distribution functions appropriate to represent reliability and vulnerability. 

Finally, the best-fit copula is employed to construct the bivariate joint distribution 

between reliability and vulnerability.  

 

 Definition of Copula  3.2.2.3

As defined by Nelson (2006), copulas are “multivariate distribution functions which 

joint probability distributions to their one-dimensional marginal distributions.” In other 

words, marginal distributions which are uniform in the interval of [0, 1] can be linked or 

tied together by use of multivariate distribution functions of copulas. To do so, first the 

marginal univariate distributions should be specified uniformly in the interval of [0, 1], 

then a copula function correlates the variables by construction of a multivariate 

distribution with means of the copula parameter (). The foundation of copulas is Sklar’s 

theorem (Sklar 1959). For a bivariate case, if F and G would be two (continuous) 

marginal uniform distributions and H is the joint CDF of random variable x and y, Sklar’s 

theorem states that there is a unique copula C for all (x, y) as follows: 

 

𝐻(𝑥, 𝑦) = 𝐶[𝐹(𝑥), 𝐺(𝑦)] = 𝐶(𝑢1, 𝑢2; 𝜃)      (3.8) 
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where C(u1, u2) is a joint distribution function with uniform marginals. It should be 

noted that all bivariate copulas have an individual copula parameter . Moreover, to 

estimate the probability density function (PDF) of F and G, a derivative should be taken 

of Equation 3.8: 

 

𝑓(𝑥, 𝑦) = 𝐷(𝐹(𝑥), 𝐺(𝑦))𝑓(𝑥)𝑔(𝑦) = 𝐷(𝑢1, 𝑢2; 𝜃)𝑓(𝑥)𝑔(𝑦)   (3.9) 

 

where f(x, y) is the bivariate PDF, f(x) and g(y) are the marginal PDFs of X and Y, and 

D(u1, u2;) is a bivariate copula density function and is estimated as: 

 

𝐷(𝑢1, 𝑢2; 𝜃) =
𝜕2𝐶(𝑢1,𝑢2;𝜃)

𝜕𝑢1𝜕𝑢2
       (3.10) 

 

Consequently, if the marginal distributions of F and G and selected copula functions 

would be known, the joint CDF and PDF of Fand G are determined by Equations 3.8 and 

Equation 3.10. 

 

 Copula Functions 3.2.2.4

There are many copula functions applied in different fields. The main characteristic 

which distinguishes these functions is correlation coefficient as well as other dependency 

characteristics such as symmetry and tail dependence (Nelsen 2006).  

Copula functions are classified into different families, as follows:  

 Elliptical (Gaussian and t); 
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 Archimedean (Frank, Gumbel, and Clayton); 

 Extreme Value (Gumbel, Husler-Reiss, and Galambos); and 

 Other families (Plackett and Farlie-Gumbel-Morgenstern). 

Among these copulas, some are more appropriate to maintain the negative correlation 

between variables. Based on literature, from each class a copula function is selected to fit 

the dependence structure between reliability and vulnerability. The bivariate Gaussian 

copula is selected from the elliptical class and can maintain a wide range of positive and 

negative association between variables. From the Archimedean family, the Frank copula 

can accommodate both negative and positive association between reliability and 

vulnerability. Placket copula is also able to capture the entire range of dependence. As a 

result, these three copulas can address the negative dependences, and the Kendall rank 

correlation coefficients between reliability and vulnerability can approach to -1. These 

copula functions are summarized in Table  3.1 along with the copula parameter () and 

domain of  for each copula. 

In general, the copula parameter can be estimated based on the dual integral in 

Equation 3.7. However, solving the equation is a major effort; therefore, more concise 

ways to calculate the copula parameter are presented in Table  3.1. Finally, the bivariate 

distributions are developed by substituting CDFs of reliability and vulnerability into the 

corresponding copula functions in Table  3.1.  

 

 Identifying the Best-fit Marginal Distributions and Copulas 3.2.2.5

To select the best-fit marginal distributions, the Akaike Information Criterion (AIC) 

(Akaike 1974) and Bayesian Information Criterion (BIC) (Schwarz 1978) are used. To  
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Table  3.1 Bivariate copula functions and their parameter domain. 

Copula Copula function, C(u1, u2;) 
Copula parameter 

() 
 domain 

Gaussia

n 
∫ ∫

1

2𝜋(1 − 𝜃2)
1

2⁄
𝑒𝑥𝑝 [−

𝑥2 − 2𝜌𝑥𝑦 + 𝑦2

2(1 − 𝜃2)
]

𝜑−1(𝑢2)

−∞

𝜑−1(𝑢1)

−∞

𝑑𝑦𝑑𝑥 𝜏 =
2

𝜋
sin−1(𝜃) [-1, 1] 

Plackett 

𝑆 − √𝑆2 − 4𝑢1𝑢2𝜃(𝜃 − 1)

2(𝜃 − 1)
 

𝑆 = 1 + (𝜃 − 1)(𝑢1+𝑢2) 

Equation 3.7 

(Genest et al. 1995) 
θ≠0 

Frank −
1

𝜃
ln [1 +

(𝑒−𝜃𝑢1 − 1)(𝑒−𝜃𝑢2 − 1)

𝑒−𝜃 − 1
] 

𝜏 = 1 +

4

𝜃
[𝐷1(𝜃) − 1]* 

θ≥0 

* D1 is the first-order Debye function (Genest 1987) 

 

verify the goodness-of-fit test, the marginal distributions with smallest AIC and BIC are  

adopted as the best-fits. The AIC is fully described in Akaike (1974) and can be 

calculated as follows: 

 

𝐴𝐼𝐶 = −2 ∑ 𝑙𝑛𝑓( ) + 2𝑘𝑁
𝑖=1        (3.11) 

 

where the sigma part of the equation for a distribution with k parameters is the logarithm 

of the likelihood for the specific distribution with PDF of f( ), and N is the sample size. In 

the same way BIC can be estimated by Equation 3.12. 

 

𝐵𝐼𝐶 = −2 ∑ 𝑙𝑛𝑓( ) + 𝑘𝑙𝑛𝑁𝑁
𝑖=1        (3.12) 

 

In this study, k is equal to 2, because all of the selected distributions are two-
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parameter types. As a result, the reliability and vulnerability marginal distributions with 

the smallest AIC and BIC values are identified as the best-fits. The next step is to 

recognize the best-fit copula to measure the dependence of reliability and vulnerability. 

Three previously selected copula functions are used to fit to the measured dependence of 

reliability and vulnerability. Similarly, the best-fit copula would be the one with the 

minimum values of AIC and BIC. The f marginal distribution function in Equations 3.11 

and Equation 3.12 should be changed to the copula density function, C(u1, u2;).  

Consequently, k would be the number of copula parameters and ∑ 𝑙𝑛𝐷(𝑢1, 𝑢2; 𝜃)𝑁
𝑖=1  is 

the logarithm of the likelihood function for a specified copula. Details of how to estimate 

AIC and BIC to find the best-fit copula are presented in Li and Tang (2014). 

 

 Calculating the WSPI Value 3.2.2.6

After selecting the best-fit copula function and developing the joint distribution of 

reliability and vulnerability, the WSPI is calculated. The main role of WSPI is to combine 

the information from reliability and vulnerability evaluation and present simultaneous 

interpretation of these two. Therefore, this index can be used as a new metric in place of 

or as a complement to multicriteria decision making. To facilitate interpretation of the 

WSPI, a range of 0 to 1 is designed, where 0 shows the worst performance when 

reliability is minimum and vulnerability is maximum. On the other hand, WSPI=1 

indicates the best performance of the system. The main concern for decision makers is 

when the tradeoff between reliability and vulnerability is unclear. It causes decision 

making to be limited to use of either reliability or vulnerability. WSPI provides a richer 

integrated metric to base decisions. WSPI can be determined from cumulative density 
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function of joint probability of reliability and vulnerability as follows: 

 

WSPI = P(Reliability ≤ Rel, Vulnerability > Vul)     (3.13) 

 

where 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≤ 𝑅𝑒𝑙 shows the nonexceedance probability of reliability than Rel, 

and 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 > 𝑉𝑢𝑙 shows the exceedance probability of vulnerability than Vul. 

P() is the probability function of the event. In this equation, Rel and Vul are calculated 

from their empirical distributions.   

 

3.3 Case Study 

To demonstrate the utility of the new WSPI approach to assess the performance of 

water systems, two reservoirs are selected. Little Dell reservoir and Mountain Dell 

reservoir are located in Parley’s canyon in Utah, US (Figure  3.2). Parley’s canyon is 

relatively wide and straight and passes through the Wasatch Mountain range east of Salt 

Lake City (SLC). Parley’s Creek is the main stream in this canyon and provides 

approximately 20% of the water to the service district of SLC Department of Public 

Utilities (SLCDPU), an area encompassing more than 340,000 customers. Utah’s 

population is expected to increase by 150-200% in the next 50 years, and the SLC 

metropolitan area is expected to see a significant portion of the increased residents.  

SLCDPU mainly uses local sources to supply Salt Lake City's water requirements: 1) 

City Creek, Parley’s Creek, and Big and Little Cottonwood Creeks supply about 57 

percent; 2) The Deer Creek Project, 65 kilometer southeast of SLC, supplies 

approximately 27 percent; and 3) Deep wells provide the rest of the needed water supply.  
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Figure  3.2. Schematic view of Parley’s creek reservoir system. 
 

Among the four creeks supplying approximately 60% of the water, Parley’s system is 

the only one that has significant storage in two reservoirs totaling 30 million cubic meters 

(MCM) reservoir storage. The two reservoirs in Parley’s system are used and operated by 

snowmelt to provide water supply, especially during the warm, dry summer season when 

SLCDPU first control the flood hazard of snowmelt in Parley’s canyon and then store 

creek flows are low. The schematic of the system is shown in Figure  3.2. The capacity 

and different operation levels of these two reservoirs are shown in Table  3.2. Lamb’s and 

Dell Creeks are the major inflows to these two reservoirs and a diversion from Lambs  
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Table  3.2 Little Dell and Mountain Dell reservoirs operation pools. 

 
Little Dell Volume 

(MCM) 

Mountain Dell Volume 

(MCM) 

Maximum Capacity 25 4 

Flood Capacity 21-25 2.7-4 

Conservation 12.5-21 2-2.7 

Dead Pool 0-12.5 1-2 

 

creek flows to Little Dell. The Parley’s water treatment plant, with maximum capacity of 

1.75 m3/s, is located below the Mountain Dell reservoir and delivers treated water to the 

city. 

In order to test the WSPI under different management scenarios, selected climate 

change scenarios from the downscaled output of global climate models (GCMs) from the 

World Climate Research Programme’s (WCRP’s) Coupled Model Intercomparison 

Project Phase 5 (CMIP5) climate projections are used. Temperature and precipitation 

from different GCMs were analyzed and scenarios were selected to capture extreme and 

average climate conditions. Scenarios were categorized based on hot-dry (HD), hot-wet 

(HW), warm-dry (WD), warm-wet (WW), and the central-tendency or middle (M) 

scenarios (Goharian et al. 2015). These scenarios were used to drive the hydrologic 

model and streamflow changes entering the Parlays Creek reservoir system as presented 

in Goharian et al. (2015). In sum, system performance was evaluated under historical 

conditions and the five climate scenarios.  

The system model of Parley’s creek is developed by Goharian et al. (2015) in 
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GoldSim software (GoldSim Technical Group, 2014) and used here to assess the 

performance of the system. This water planning and management tool is also accessible 

through a web-based tool described in Goharian and Burian (2014). Failure in the system 

is defined when the water level in reservoirs exceeds the flooding level threshold or falls 

below the conservation pool. The goal of the system is to operate in conservation level to 

meet the objectives of reducing the flood hazard and meet the city demand. Reservoirs’ 

operation in this study is highly related to use from other resources and creeks based on 

SLCDPU operation policies. These criteria are derived from the historical operation 

management of reservoirs, which is flood control and drought mitigation. The applied 

methodology to assess the WSPI for the Parley’s creek system provides capacity to 

evaluate management scenarios for Parley’s and enable managers, stakeholders, and users 

to test different solutions. 

 

3.4 Results 

3.4.1 Reliability and Vulnerability Assessment 

To estimate the bivariate distribution of reliability and vulnerability, observed values 

are obtained from Goharian et al. (2015). These datasets are gathered for two reservoirs, 

Little Dell and Mountain Dell, and under historical and future extreme climate 

conditions. The reliability values are shown in Table 3.3 and Table  3.4 in 5-year intervals 

(suggested by Maity et al. 2013) for the historical period of 1981–2010 and future 

condition of 2036–2065 for Little Dell and Mountain Dell reservoirs, respectively. 

Table 3.5 and Table 3.6 summarize the measured vulnerability of these reservoirs for  
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Table  3.3 Reliability assessment of Little Dell Reservoir. 

 
Scenarios 

5-year Periods Historical Warm Wet Warm Dry Middle Hot Wet Hot Dry 

1 0.50 0.56 0.50 0.52 0.50 0.31 

2 0.15 0.24 0.08 0.10 0.13 0.05 

3 0.23 0.31 0.12 0.14 0.20 0.04 

4 0.42 0.56 0.22 0.27 0.33 0.13 

5 0.09 0.23 0.03 0.05 0.11 0.00 

6 0.31 0.44 0.16 0.21 0.29 0.08 

 

Table  3.4 Reliability assessment of Mountain Dell Reservoir. 

 
Scenarios 

5-year Periods Historical Warm Wet Warm Dry Middle Hot Wet Hot Dry 

1 0.29 0.30 0.24 0.26 0.26 0.19 

2 0.08 0.13 0.06 0.06 0.08 0.04 

3 0.10 0.16 0.08 0.09 0.12 0.05 

4 0.18 0.24 0.14 0.15 0.18 0.10 

5 0.05 0.12 0.04 0.05 0.08 0.02 

6 0.15 0.20 0.10 0.13 0.16 0.07 

 

Table  3.5 Vulnerability assessment of Little Dell Reservoir. 

 
Scenarios 

5-year Periods Historical Warm Wet Warm Dry Middle Hot Wet Hot Dry 

1 0.08 0.42 0.09 0.08 0.08 0.14 

2 0.17 0.14 0.26 0.24 0.19 0.33 

3 0.19 0.15 0.31 0.26 0.18 0.35 

4 0.03 0.02 0.16 0.13 0.10 0.22 

5 0.21 0.17 0.35 0.27 0.19 0.40 

6 0.08 0.05 0.18 0.16 0.13 0.23 
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Table  3.6 Vulnerability assessment of Mountain Dell Reservoir. 

 
Scenarios 

5-year Periods Historical Warm Wet Warm Dry Middle Hot Wet Hot Dry 

1 0.03 0.35 0.04 0.04 0.04 0.13 

2 0.22 0.13 0.26 0.23 0.19 0.32 

3 0.18 0.1 0.25 0.2 0.16 0.29 

4 0.04 0.001 0.14 0.11 0.11 0.23 

5 0.29 0.18 0.34 0.29 0.22 0.34 

6 0.11 0.05 0.21 0.16 0.12 0.26 

 

the same time period and based on Equation 3.5.  

The mean of reliability values for Little Dell reservoir is 0.24, while the standard 

deviation is 0.16. The mean and standard deviation of reliability values for Mountain Dell 

reservoir are 0.13 and 0.07, respectively. The vulnerability values for Little Dell and 

Mountain Dell are also estimated as 0.17±0.10 and 0.17±0.09, respectively. The values in 

Table 3.3 to Table 3.6 and standard deviation of results do not show significant variation 

in reliability and vulnerability in the reservoir system. Although in most cases the 

variations of different system performance indices are greater, this is not an important 

issue for the framework, and the results are verified regardless of parameters’ variation. 

Moreover, in this condition where reliability and vulnerability are varying minimally and 

there is no predictability of a system’s performance, a new index is useful to interpret the 

condition of the system. For that reason, the Kendal’s tau for each of these four 

conditions is calculated from Equation 3.7.  

The Kendal’s taus are -0.73 and -0.78 for Little Dell and Mountain Dell reservoirs, 
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and the Pearson's linear correlation coefficients are -0.66 and -0.72, respectively. These 

values verify and indicate the existence of strong negative correlation between reliability 

and vulnerability. Based on the AIC and BIC tests, to find the best-fit marginal 

distributions for reliability and vulnerability, Log-Normal distribution is selected for both 

metrics and reservoirs. Scatter plots of reliability versus vulnerability are shown in 

Figure  3.3 for Little Dell and Mountain Dell reservoirs. Although from these two figures 

it is clear that in most cases lower reliability is seen in more vulnerable conditions, this is 

not a general rule.  

There are some points in these figures where results show a higher degree of 

vulnerability in more reliable conditions. These points are confusing conditions in the 

system for a manager to decide whether they should plan based on frequency of failure in 

their system or based on magnitude and severity of failure. While, from the point of view 

of a decision maker, WSPI presents distinct interpretation from performance of system 

and simultaneous information about the frequency and magnitude of failure to help 

managers to develop appropriate plans. 

 

(a) 

 

(b) 

 
Figure  3.3. Scatter plot of reliability versus vulnerability a) Little Dell b) Mountain Dell. 
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3.4.2 Joint Distribution between Reliability and Vulnerability 

Kendall’s tau and Pearson's linear correlation coefficients verified the negative 

association between reliability and vulnerability in both reservoirs. Aforementioned 

selected copulas are used to derive the joint distribution between observed reliability and 

vulnerability. The copula parameters for Gaussian, Plackett, and Frank copulas are -0.72 

for Little Dell reservoir and -0.74 for Mountain Dell reservoir (Table 3.7). Dependence 

parameters of the Frank copula (θF) and the Plackett copula (θP) are also calculated based 

on the details provided in the methodology section (Table  3.1). In order to find the most 

suitable joint distribution based on their characterization, AIC and BIC tests are 

performed, and related values are found for each copula function and each reservoir. It is 

noticed that based on both AIC and BIC tests, the Gaussian copula is more suitable than 

the Plackett and the Frank copulas for both reservoirs. For example, AIC and BIC for 

Little Dell reservoir are estimated as 5.27 and 3.68, respectively. It is important to 

mention that here a generic methodology is presented to evaluate the WSPI. These steps 

should be repeated to find which copula function is more suitable for a specific case.  

The Gaussian copula is selected to form the joint distribution between reliability and 

vulnerability. Figure  3.4 and Figure  3.5 show the joint PDF and joint CDF between 

reliability and vulnerability by a contour plot for Little Dell and Mountain Dell 

reservoirs, respectively. In addition to plots of joint PDF and CDF, probability density 

values of observed reliability and vulnerability from their empirical distributions are also 

shown by points. Later the CDF of the reliability and vulnerability will be used to 

calculate the WSPI. Moreover, as shown in these figures, the negative association 

between reliability and vulnerability is clear. As mentioned before, contour plots of PDF 
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Table  3.7 Dependence parameters of copula functions. 

 Little Dell reservoir Mountain Dell reservoir 

Rho Gaussian -0.72 -0.74 

Theta Plackett 0.02 0.01 

Theta Frank -12.86 -16.60 

 

 
(a) 

 
(b) 

Figure  3.4. Probability density values of observed reliability and vulnerability and joint a) 
PDF and b) CDF contour plot for Little Dell reservoir. 
 

 
(a) 

 
(b) 

Figure  3.5. Probability density values of observed reliability and vulnerability and joint a) 
PDF and b) CDF contour plot for Mountain Dell reservoir. 
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and CDF shows the smaller range of changes in vulnerability and reliability.  

To present the larger datasets of reliability and vulnerability which are produced by 

the same copula function, random numbers are generated from the Gaussian copula. The 

mean, Pearson’s linear correlation coefficient, and Kendall’s tau are estimated for these 

random generations and show almost the same values as observations. Finally, these 

random numbers are used to simulate reliability and vulnerability from constructed joint 

probability by use of their inverse transform functions. For this purpose, 1000 random 

numbers are generated from Gaussian copula function and transformed to the reliability 

and vulnerability datasets in Little Dell reservoir and Mountain Dell reservoir. 

Preservation of mean, Pearson’s linear correlation coefficient, and Kendall’s tau shows 

that the Gaussian copula is suitable to present the joint distribution between reliability 

and vulnerability. As shown in Figure  3.6.a and Figure  3.6.b, reliability decreases with 

increase in vulnerability and vice versa, which shows the negative association between 

these two metrics. Moreover, the vast range of reliability and vulnerability presented in 

these figures shows random datasets of these metrics for each reservoir and proves that 

even though the reliability can be low in these systems, still they are not highly 

vulnerable. This outcome is an important factor for managers to cope with failures and 

find out how much the system is reliable during time and under different circumstances 

of failures, even if the system is not vulnerable to failures. 

 

3.4.3 Computation of WSPI for Different Types of Climate Conditions 

To further test the performance of the SLC Parley’s Creek reservoir system, the WSPI 

is estimated for different climate conditions. The 0 to 1 range of WSPI shows the 
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(a) 

 
(b) 

Figure  3.6. Simulation of reliability and vulnerability from correlated uniformly 
distributed variables from Gaussian copula: a) Little Dell reservoir, b) Mountain Dell. 

 

difference between extreme climate conditions in terms of system performance. As a 

reminder, while WSPI=0 indicates the lowest performance of the system, WSPI=1 

indicates the best performance. All values in this range are not necessarily captured by 

the observed values or in the process of model development; thus, here, extreme 

conditions (which may not be seen during historical or future conditions) are also tested 

to verify the suitably of WSPI. It is important to note the framework tested here is not 

limited to climate change conditions, but also can capture other unforeseen events which 

cause changes in the performance of a water system. In Table  3.8 the reliability and 

vulnerability of the system over a 30-year period and under different climate conditions 

are presented. These climate conditions change the water level in the reservoir and 

consequently the performance of the system. These performance changes are reflected in 

the reliability, vulnerability, and resiliency of the system. However, the developed index 

depends both on reliability and vulnerability. Likewise, the best (S1) and worst (S2) case  
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Table  3.8 WSPI values under climate change and hypothetical conditions for Little Dell 
and Mountain Dell reservoirs. 

 
Little Dell reservoir Mountain Dell reservoir 

 
Rel Vul WSPI Rel Vul WSPI 

H 0.28 0.13 0.62 0.14 0.15 0.56 

WW 0.39 0.16 0.49 0.19 0.14 0.62 

WD 0.18 0.22 0.25 0.11 0.21 0.29 

M 0.21 0.19 0.35 0.12 0.17 0.43 

HW 0.26 0.15 0.53 0.15 0.14 0.58 

HD 0.10 0.28 0.12 0.08 0.26 0.17 

S1 0.00 1.00 0.00 0.00 1.00 0.00 

S2 1.00 0.00 1.00 1.00 0.00 1.00 

 

scenarios in the system are added to this table to test a wide range of scenarios for WSPI. 

Results from Table  3.8 indicate Little Dell and Mountain Dell reservoirs are less 

reliable and more vulnerable under the HD scenario in comparison to other scenarios; 

thus, the performance of the system should be less favorable. WSPI verifies this result 

(values of 0.12 and 0.17 for Little Dell and Mountain dell reservoirs, respectively). On 

the other hand, selecting the best condition is not so easy. Although the system is more 

reliable for WW in both reservoirs, the vulnerability condition does not show the same 

result in these reservoirs. While Little Dell is less vulnerable under H and HW scenarios, 

WW and HW scenarios are less vulnerable in Mountain Dell reservoir. In this condition 

the performance assessment is challenging for managers, and deciding which condition is 

more favorable and which is more critical is difficult. However, based on simultaneous 

information and also historical and future simulations of the system, the WSPI solved this 

problem. 
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Based on WSPI estimation, the performance of the system is degraded in Little Dell 

reservoir in comparison to the historical period. Although the reliability of the system is 

improved under the WW scenario, the higher degree of damage to the system made it 

more vulnerable and therefore shows worse performance than the historical period. This 

result shows the Little Dell reservoir is more sensitive to vulnerability and related 

damage of failure rather than reliability. Finding the threshold between these changes and 

how much more sensitive a system is, can be captured by WSPI. This aspect of 

performance assessment is usually underemphasized by researchers and needs further 

investigation to be applied in decision making. In the Mountain Dell reservoir, this issue 

is less controversial, as the WW scenario shows the most reliable and the least vulnerable 

condition. Comparison between historical period and HW scenario verifies the 

effectiveness of WSPI estimation. The historical period has reliability of 0.14 and 

vulnerability of 0.15, while these values for the HW scenario are vice versa. In this case, 

WSPI for HW scenarios is 0.58 and for H is 0.56. Consequently, in both reservoirs the 

WW and the HW scenario show almost the same performance of the system in 

comparison to the historical period. However, other scenarios give a possible warning to 

managers for future planning and decision making.  

To test the accuracy of WSPI to predict the performance of a system under the best 

and worst case conditions (S1 and S2), WSPI is computed. As shown in Table  3.8, under 

favorable conditions WSPI is 1 and under unfavorable conditions WSPI is 0 for both 

reservoirs. Explanation of the method and demonstrated results illustrated in this section 

show the effectiveness, usefulness, and accuracy of WSPI to assess the performance of 

reservoir systems under the climate change condition. This is under further investigation 
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by the authors for larger and more complicated water systems and also under other 

circumstances, especially to compare management alternatives for water supply systems. 

 

3.5 Conclusion 

This chapter presented a new Water System Performance Index, WSPI, using a case 

study of the reliability and vulnerability of a two-reservoir water supply system in Salt 

Lake City, Utah. The reliability and vulnerability were calculated and presented based on 

different climate condition scenarios. Then the new WSPI was used to evaluate the 

performance of the system based on simultaneous information about reliability and 

vulnerability. The WSPI was developed based on the joint probability distribution 

developed using copula functions. The Gaussian copula was selected for this case to 

present joint info between the reliability and vulnerability time series. WSPI is aimed to 

be developed to aid managers and stakeholders to have a better understanding of a water 

system’s performance, and at the same time realize the extent to which the system is 

reliable and vulnerable. The concept of using the joint probability to present the joint 

information between a system’s performance metrics can be extended to other factors like 

resiliency, as well as present the multivariate assessment of the system. WSPI provides a 

useful tool for managers and stakeholders because of the ability to represent info about 

frequency, magnitude, and recovery period of a system under different failure conditions. 

This concept can be applied to the historical period as well as future projections for a 

system under various climate conditions, population, and economic growth conditions to 

assess the usefulness of different management alternatives. Managers may use this index 

to check the design of a water system’s components, the implementation of new 
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infrastructure, water conservation practices, or any other management practices. WSPI is 

currently under further investigation to be applied to the larger water supply systems and 

also used to compare the management alternatives in Salt Lake City, UT.  



 

 
 

 CHAPTER 4

 

COMPREHENSIVE VULNERABILITY ASSESSMENT TO SUPPORT 

INTEGRATED WATER RESOURCES MANAGEMENT OF 

METROPOLITAN WATER SUPPLY SYSTEMS  

 

4.1 Introduction 

Water managers are responsible for safeguarding public water supplies. They must 

address many challenges, including population growth, urbanization, water quality 

protection, changing climate, and aging infrastructure. These issues dominate the 21st 

century perspective of water resources systems, with freshwater scarcity and security 

recognized as the key consequences (Jury & Vaux 2005; Vörösmarty et al. 2010). To 

characterize the problems and develop solutions, researchers and water managers have 

created approaches and metrics to assess water system performance. In general, 

integrated approaches have been used to analyze water systems, especially to measure the 

sustainability of water-related systems and water projects (Loucks 1997).  

Given the varied challenges, water resource management requires an integrated 

approach that not only represents the physical systems, but also includes socioeconomic 

and institutional-policy components. To meet this need, integrated water resources 

management (IWRM) has been widely applied. IWRM was defined in the World 
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Summit on Sustainable Development (WSSD) (2002) as “a process, which promotes the 

coordinated development and management of water, land and related resources in order 

to maximize the resultant economic and social welfare in an equitable manner without 

compromising the sustainability of vital ecosystems.” IWRM emphasizes management 

within a basin-wide context and under the principles of public participation. Simulation 

frameworks supporting IWRM capture the natural hydroclimate system and the built 

water infrastructure, and contain interconnections to stakeholder policies, institutional 

decision making, societal response, and other influencing factors. Incorporating this 

broad collection of components and considering their interdependencies is critically 

important for effectively analyzing water systems (Rosbjerg & Knudsen 1983). This 

complexity of interactions and feedbacks represented in water systems requires the use of 

dynamic simulation frameworks, such as system dynamics (SD) models (Forrester 1969), 

to be employed in the IWRM process (Simonovic 2002; Stave 2003; Winz and Brierley 

2009; Karamouz et al. 2013; Xi and Poh 2013).  

The analysis of water resource systems is typically based on characterizing system 

conditions according to specified performance metrics. Hashimoto et al. (1982) were 

among the first to introduce and apply metrics of water system reliability, resiliency, and 

vulnerability (RRV). They defined reliability as the probability of nonfailure in a system 

(e.g., water demands supplied sufficiently), resilience as the recovery speed of a system 

from a failure condition, and vulnerability as the degree of severity of a failure condition. 

Since the introduction of these metrics they have continued to be advanced and expanded 

to provide measures for researchers, planners, designers, and water managers to compare 

alternatives, assess policy impact, and improve the operation of water systems. Although 
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RRVs remain the most often used comprehensive approach to study water system 

performance (Moy et al. 1986; Vogel & Bolognese 1995; Fowler et al. 2003; Kjeldsen & 

Rosbjerg 2004; Sandoval-Solis et al. 2011; Asefa et al., 2014; Goharian et al. 2015), 

other metrics have also been introduced (e.g., Vörösmarty et al., 2000). A review and 

application of RRVs and other metrics in water resource management can be found in 

Füsel (2010) and Wang and Blackmore (2009). 

Among the several most often used metrics, vulnerability is investigated in the 

present chapter. Hashimoto et al. (1982) defined vulnerability as the severity of a 

failure’s consequence in the system. The definition of vulnerability was expanded to the 

average magnitude of failure over unsatisfactory periods (Loucks 1997) and incorporated 

the return period of a certain vulnerability level exceeding a threshold of failures in 

vulnerability assessment (Asefa et al. 2014). In general, approaches to assess water 

system vulnerability may be classified into top-down or bottom-up frameworks. The top-

down method is a scenario-based framework which involves coupling models to assess 

the vulnerability of water supply systems (Pielke et al. 2012). This approach is typically 

driven by precipitation or streamflow observations or simulation results, often based on 

projections from general circulation model (GCM) scenarios. Alternatively, the bottom-

up approach focuses on local scale vulnerability sources by addressing socio-economic 

responses to climate. Both bottom-up and top-down approaches have been widely 

applied, and in some cases have produced a new vulnerability index (e.g., Adger et al. 

2004; Brooks et al. 2005; Stainforth et al. 2007; Hamouda et al. 2009; Sullivan 2011;  

Brown et al. 2012).  

This chapter introduces a new comprehensive assessment of vulnerability that seeks 
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to integrate bottom-up and top-down perspectives to more effectively capture the 

complex interaction between climate, water structures, and socio-economic responses, 

Specifically, the new vulnerability metric incorporates factors representing severity, 

potential severity, and exposure representing the top-down approach, while social 

vulnerability, water supply adaptive capacity, and sensitivity factors are incorporated to 

represent the bottom-up approach. The following sections describe the new vulnerability 

metric and demonstrate its application with a case study assessment of the vulnerability 

of Salt Lake City’s water supply system.  

 

4.2 Methodology 

4.2.1 Vulnerability Assessment 

Goharian et al. (2015) introduced a new framework to evaluate the vulnerability of a 

reservoir system based on three factors of severity, potential severity, and exposure. 

These three factors are estimated based on the top-down approach. Herein, two additional 

factors, sensitivity and adaptive capacity, are incorporated into the vulnerability 

assessment framework. Adaptive capacity is composed of two measures, social 

vulnerability (SoVI) and water supply adaptive capacity index (WSACI). Together, these 

three factors (sensitivity, social vulnerability, and water supply adaptive capacity) can be 

estimated following a bottom-up approach. Overall, the new vulnerability framework 

incorporates five factors (Figure  4.1) and is formulated as: 

Vulnerability= f (exposure, sensitivity, 1/adaptive capacity, severity, potential 

severity) 
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I  

Figure  4.1. Comprehensive vulnerability based on aggregation of top-down and bottom-
up approaches. 
 

In this vulnerability function, higher values of severity of failure, exposure, sensitivity of 

system to failure or potential severity can increase the vulnerability. On the other hand, 

adaptive capacity has an inverse relationship with vulnerability, i.e., the greater the 

adaptive capacity the lesser the vulnerability of a system.  

 

 Exposure 4.2.1.1

 Exposure (Exp) describes the relative occurrence of change in a system that can 

cause failure events. For water systems, changes affecting streamflow (i.e., exposure) 

may cause flooding or shortage downstream. Exposure (Expj) is formulated here as: 

 

𝐸𝑥𝑝𝑗 = 1 −
𝑚.∑ 𝑁𝑅𝑗(𝑡)𝑛

𝑡=1

𝑛.∑ 𝑁𝑅𝑗(𝑡)𝑚
𝑡=1

        (4.1) 

 

where NRj(t) is the natural surface runoff volume in water source j during the historical 

Adaptive 
capacity

Top-down approach
factors

Bottom-up approach
factors

Severity
Potential 
severity

Exposure

Sensitivity

SoVI WSACI
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time (t) period with m time steps, and future period with n time steps.  

 

 Severity 4.2.1.2

 As noted above, severity (S) has been used as a vulnerability index for water 

systems. It quantifies the magnitude of damage to the system. This factor is estimated as: 

 

𝑆 = ∑ 𝑠𝑡. 𝑒𝑡    𝑋𝑡 ∈ 𝑈      (4.2) 

 

where S is the severity factor. The system state (Xt) is a discrete state of a system in time 

step t, then st, corresponding to 𝑋𝑡 ∈ 𝑈, represents the severity of state in t during a 

defined unsatisfactory (U) condition. et is the occurrence probability of Xt (corresponds to 

st) which would be the most severe result from the unsatisfactory state set.  

 

 Potential Severity 4.2.1.3

 Potential severity (PS) was introduced by Goharian et al. (2015). This factor 

represents the probability and magnitude of a potential failure in the system. Considering   

this factor in vulnerability assessment helps managers prevent future increases in severity 

of the system by changing the operating policies or taking account for infrastructure 

development to make a water supply systems less vulnerable to severity. Potential 

severity is calculated as   

 

 𝑃𝑆 = ∑ 𝑝𝑠𝑡. 𝑒𝑡
𝑇
𝑡=1     𝑋𝑡 ∈ 𝑆 𝑎𝑛𝑑 𝑋𝑡+∆𝑡 ∈ 𝑈    (4.3) 
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where PS is the potential severity factor. While the system is in satisfactory (S) mode and 

it drops to a failure after a time threshold (∆t), pst is the magnitude or severity of a 

potential failure event.  

 

 Sensitivity  4.2.1.4

Sensetivity (Sens), as an indicator, indicates the degree to which a system will be 

affected by changes in system’s conditions or by a stimulus like climate change (Smith et 

al. 2001). For a water system, the degree of failure of a system is dependent on changes 

in streamflow affecting components of the system. For example, in case of a water 

shortage event the people in the service area for the water source will get less water. As 

an indicator to represent the sensitivity factor of each water source, the size of the 

population served by that component is used. The logic is that when the same reduction 

occurs in two different systems, the system with a larger population would have a higher 

degree of vulnerability. 

 

 Adaptive capacity (AC) 4.2.1.5

Adaptive capacity (AC) is defined as the ability and capability of a system to adapt 

and cope with external stimuli. Adaptive capacity leads to strategies for a system to 

mitigate hazards like climate variability (Brooks and Adger 2004), thereby reducing the 

vulnerability of a water system. To quantify adaptive capacity factor and to show 

potential adaptation strategies, two subfactors are considered. A factor is considered for 

supply-demand level in municipalities, which shows the potential degree of support for 
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water supply source j in the region by other k-1 water supply sources (k = total number of 

water supply sources), and is called the Water System Adaptive Capacity Index (WSACI). 

Another subfactor is selected to show the social knowledge and relationship between 

institutions and people and is called Social Vulnerability Index (SoVI). This factor is 

estimated based on the characteristics of race, age, gender, income, and social 

infrastructure form the basis of a vulnerability study, with additional characteristics 

selected to contextualize the index for the study region (Cutter et al 2003; Holand and 

Lujala 2013). 

In sum, vulnerability with the five factors outlined above is computed as 

 

𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐸𝑥𝑝 × 𝑊𝑟𝑣 + 𝑃𝐼 × 𝑊𝑝 + 𝑆 × 𝑊𝑠 + 𝑃𝑆 × 𝑊𝑝𝑠 + (1 − 𝐴𝐶) × 𝑊𝑎𝑐   (4.4) 

 

Since each variable has a different degree of importance, it is necessary to allocate a 

weighting to each factor. The relative importance of these factors based on judgment, 

surveys of stakeholders, or other means can be used to weight the factors. In this study, 

equal weights are assigned. Goharian et al. (2015) analyzed the relative importance of the 

weightings in a vulnerability assessment.  

 

4.2.2 Salt Lake City Study Area 

 Description 4.2.2.1

The water system of Salt Lake City (SLC) is selected as the case study to illustrate the 

new vulnerability factor. SLC is located in the mountainous western U.S. with a 

population of approximately 190,000 residents in a 285-km2 boundary. The capital of the 
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State of Utah, SLC anchors a population of more than one million in the SLC 

metropolitan area. Between 2006 and 2007, Utah experienced the third-fastest population 

growth rate in the U.S., and future projections suggest SLC’s population might more than 

double in the next 50 years. SLC’s average land surface elevation is 1,320 meters above 

mean sea level, with a low of 1,280 meters and a high of 2,858 meters. The area 

experiences a subhumid climate in the mountain areas and a semiarid climate in the lower 

elevation locations. The mean annual precipitation and temperature are 40.9 cm and 

11.2°C, respectively. The city is bordered by mountain ranges to the east (Wasatch) and 

west (Oquirrh), and the Great Salt Lake to the northwest. The mountains and lake both 

exert influences on the city’s weather.  

The SLC Department of Public Utilities (SLCDPU) provides drinking water, 

stormwater management, flood control, wastewater treatment, and other public works 

services to a customer base of approximately 350,000, which includes SLC and 

surrounding cities and towns (Figure  4.2). Water supply relies on annual runoff generated 

by snowmelt from April to July and minor snowmelt in March and August (Stewart et al. 

2005; Bardsley et al. 2013). Almost sixty percent of the City’s water supply comes from 

four of the seven canyons draining the mountains to the east of the City, which include 

City Creek, Parley’s Creek, and Big and Little Cottonwood Creeks. In addition, SLC 

supplies water from wells, springs, and interbasin transfers.  

 

 Data 4.2.2.2

Data were collected to model components including water demand, infrastructure 

properties, streamflow, and population growth, and to drive the simulations. A portion of  
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Figure  4.2. Schematic map of SLC water system components.  
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the information is based on communication with personnel at SLCDPU, and the other 

portion was collected from available data sources. 

 

4.2.2.2.1 Precipitation 

 The Salt Lake City International Airport station (Latitude: 40.77806 and Longitude:  

-111.96944, Station No. 42-7598) was selected to provide precipitation in the study area 

for the urban runoff simulations (Stormwater modeling) because it had the most complete 

rainfall record within the study area. The data were downloaded from the National 

Climatic Data Center’s (NCDC) online climate data center (NCDC 2013). For the future 

generation of rainfall, first probability distributions are fitted to each month rainfall 

dataset, and the random stochastic generation is used to generate future rainfall values for 

the area. 

 

4.2.2.2.2 Streamflow 

 Streamflow for the main four watersheds was provided by the Colorado Basin River 

Forecast Center (CBRFC) of the National Weather Service (NWS). Analysis was 

performed on the results of the phase 5 of the World Climate Research Programme 

(WCRP) Coupled Model Intercomparison Project (CMIP5) from its website (Maurer et 

al. 2007) to identify the central tendency scenario of all model and projection 

combinations. The central tendency scenario (also called the middle scenario here) 

represents the mean of changes in temperature and precipitation under various GCMs 

projections. Then, change factors are applied to the historical precipitation and 
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temperature to generate inputs for the hydrologic model. Thus, the historical sequences of 

temperature and precipitation will be maintained in the future projections. NWS forecasts 

streamflow used by SLC water system operations and management using an existing 

calibrated hydrologic model, the Sacramento Soil Moisture Accounting (SACSMA) 

model coupled with the Snow-17 temperature index snow model. Figure  4.3 shows daily 

time series of the historical streamflow of four major creeks (Parley’s creek is assumed to 

be the sum of Lambs and Dell Creeks). 

 

 

a. City Creek 

 

b. Parley’s Creek 

 

c. Big Cottonwood Creek 

 

d. Little Cottonwood Creek 

Figure  4.3. Historical and future simulation of major streamflows in SLC system. 
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4.2.2.2.3 Social Vulnerability 

The Social Vulnerability Index (SoVI) is a place-specific assessment of the 

vulnerability to personal and economic loss of a population due to hazards (Cutter 1996). 

The population characteristics selected for a vulnerability assessment represent the 

political-ecology background of that population, characteristics that modify the loss 

potential beyond physical exposure to a hazard (Blaikie et al. 1994; Cutter 1996; Cutter et 

al. 2003). A completed SoVI for a study area represents the relative vulnerability of the 

study population in both a numeric score and a categorical classification. The social data 

used for this study, including race, age, gender, income, and social infrastructure, are 

obtained from the United States Census Bureau. A subset of 22 variables was selected 

from the American Community Survey (ACS) data for Salt Lake County over the period 

of 2008 to 2012 based on the work of Hile and Cova (2015). These variables represent 

broad characteristics of social vulnerability presented by Cutter et al. (2003) and relate to 

the social-ecological state of the population. 

 

4.2.2.2.4 Population Growth 

The population data for the different townships under SLCDPU service area were 

acquired from the United States Census Bureau (2010). The populations of Salt Lake 

City, Mill Creek, Holladay, and Cottonwood Heights for the study were 186,440, 62,139, 

26,472, and 33,433 people, respectively. The population growth rates of these cities are 

derived based on changes during 2000-2010 and are assumed to be constant  over the 

future time period to generate future projections of water demand.  
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4.2.2.2.5 Water Demand 

 Water demand was estimated based on the residential water demand for Salt Lake 

County, which varies from a low during winter months (average of 229.5 liters per capita 

per day) to a high during summer months (average of 998 liters per capita per day) (Utah 

Division of Water Resources 2009). It was assumed that the relative amount used indoors 

and outdoors could be separated based on the difference between winter (indoor use only) 

and summer (indoor plus outdoor). The total indoor and outdoor water demand is 

generated based on the population growth estimates for the future. The indoor and 

outdoor demands per capita are assumed to remain the same in future. Monthly patterns 

of outdoor water use were derived based on the historical records (no outdoor water use 

from November to March).  

 

4.2.3 Integrated Water Resource Management Model 

In this study, water system modeling was conducted using GoldSim, a Monte-Carlo 

simulation software for dynamically modeling complex systems. GoldSim is an object-

oriented computer program which can support management and decision-making in 

various fields, including engineering, science, business, and others, by modeling dynamic 

connections and conducting probabilistic simulations (GoldSim 2010). 

 

 Model Structure 4.2.3.1

GoldSim has been used by researchers to model water systems (e.g., Lillywhite 2008; 

Alemu et al. 2011; Morrison and Stone 2014; York et al. 2015). GoldSim provides a 
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general purpose framework for supporting decision and risk analysis by simulating future 

performance while quantitatively representing the uncertainty and risks inherent in all 

complex systems. The software enables users to integrate different models or software to 

interconnect with the water system model.  

For this study, GoldSim is set up to operate as a water supply system simulation 

model - accepting inputs, incorporating outputs from a hydrologic model, simulating 

reservoir operations, and operating other submodels within the overall water supply 

system model. The system model schematic is shown in Figure  4.4. As shown in the 

figure, the whole system consists of seven major modules. The Parley’s Reservoir 

module controls the operation of two reservoirs in Parley’s Creek, Little Dell and 

Mountain Dell. Operation rules and details of modeling of these two dams are discussed 

in Goharian et al. (2015) and based on input from SLCDPU personnel. The starting point 

of the system is the watershed module that generates the natural streamflow. The model 

included watersheds for City, Emigration, Parley’s, Mill, Big Cottonwood, and Little 

Cottonwood Creeks. City, Parley’s, and Big and Little Cottonwood Creeks have 

diversions to water treatment facilities. Emigration Creek and Mill Creek do not have 

diversions to treatment facilities, but are a part of the urban stormwater drainage network, 

as are the other creeks.  

Based on water demand estimation from the service areas and allocation rules, water 

from the creeks is treated in treatment plants and transferred to the urban area. Remaining 

streamflow is discharged as natural streamflow into the stormwater module. The role of 

the stormwater module is to estimate urban runoff. Return flow from water used in the 

urban area and discharges from the stormwater drainage system will ultimately flow into  
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Figure  4.4. Different components of system model and their relationships in GoldSim. 
 

the Jordan River. The Jordan River’s headwater is Utah Lake, and it flows northward 

through the Salt Lake Valley and empties into Farmington Bay and eventually the Great 

Salt Lake. Figure  4.4 shows the schematic view of IWRM-SLC model in GoldSim which 

includes different submodels like water treatment plants, wastewaters, watersheds, 

reservoir system, and stormwater, and different demand sources. 

 

 Reservoir Operations Module 4.2.3.2

The reservoir operations module regulates the release of water from Little Dell and 

Mountain Dell reservoirs into the Parley’s water treatment plant. The operational rules 

also control the diversion from Lambs Creek to the Little Dell reservoir. Therefore, the 

physical characteristics of the supply-demand system, the operation policies and decision 

constraints, and the simulated streamflows for Dell and Lambs Creeks from the 

hydrologic model are the main inputs to the reservoir systems model in GoldSim. The 

daily water balance is simulated for both reservoirs using a water budget equation, 
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including inflow, outflow, and stored water: 

 

𝑉(𝑡) = 𝑉(𝑡 − 1) + 𝑄𝑖𝑛(𝑡) + 𝑃(𝑡) − 𝑄𝑜𝑢𝑡(𝑡) − 𝐸(𝑡) − 𝐺𝑊(𝑡)   (4.5) 

 

where V(t) and V(t-1) are the reservoir volume at the end of time t and t-1, respectively. 

Qin includes the total volume of inflow to the reservoir and P(t) is the direct precipitation 

on the reservoir water surface. Qout, E, GW are the outflow from reservoir based on 

release, evaporation, and net groundwater flow for time step t, respectively. The detail of 

simulation of reservoirs in GoldSim is presented in Goharian et al. (2015). 

 

 Water Supply Module 4.2.3.3

The first step to tracking water in the system shown in Figure  4.4 is a hydrologic 

model used to model flows where the conservation of mass is checked and the model is 

calibrated. As noted above, the hydrologic model is the Sacramento Soil Moisture 

Accounting (SACSMA) model and generates streamflow entering the urban area. 

Equation 4.6 shows the mass balance equation used for the natural parts of the watershed 

in the model. 

 

𝐺𝑊(𝑡) = 𝐺𝑊(𝑡 − 1) + 𝑃(𝑡) − 𝐸𝑇(𝑡) − 𝑁𝑅(𝑡) + 𝑆𝑂(𝑡)   (4.6) 

 

where GW is the stored water in aquifers, NR is the natural surface runoff, which includes 

both surface runoff and interflow, SO is the subsurface outflow, and P and ET are 

precipitation and evapotranspiration, respectively.  
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As water enters the urban areas, the first check is the water treatment plants (WTPs). 

In these units the mass balance is set based on the efficiency of treatment plants to 

produce treated water. Moreover, based on the maximum capacity of WTPs to treat 

water, excess water will be bypassed to the creeks. The formulation of mass balance in 

WTPs is as follows: 

 

𝑄𝑊𝑇𝑃(𝑡) + 𝑏𝑦𝑝𝑎𝑠𝑠(𝑡) = 𝐸𝑓𝑓 × 𝑁𝑅(𝑡)      (4.7) 

 

where QWTP is the outflow from treatment plants to service areas to supply water demand, 

bypass is the surface runoff, which is greater than demand and is released from WTP, and 

Eff is the efficiency of each unit and shows the losses in the WTPs. 

The outflow from WTP flow to the service areas is divided into indoor (Qi) and 

outdoor (Qo) flows to match indoor (Di) and outdoor (Do) water demands. The 

conservation of formulations in demand points is: 

 

{
𝑄𝑖(𝑡) = 𝑊𝑊𝑅𝐹 × 𝑄𝑖(𝑡) + 𝐷𝑖(𝑡) + 𝐿𝑎𝑡𝑚 × 𝑄𝑖(𝑡)                 𝑓𝑜𝑟 𝑖𝑛𝑑𝑜𝑜𝑟 𝑢𝑠𝑒𝑠

𝑄𝑜(𝑡) = 𝑅𝐹 × 𝑄𝑖(𝑡) + 𝐷𝑜(𝑡) + 𝐿𝑎𝑡𝑚 × 𝑄𝑖(𝑡) + 𝑆𝑂(𝑡)      𝑓𝑜𝑟 𝑜𝑢𝑡𝑑𝑜𝑜𝑡 𝑢𝑠𝑒𝑠
 (4.8) 

 

where WWRF and RF are return flow rates to the wastewater treatment plants (WWTPs) 

and the natural system, and Latm is the possible losses to the atmosphere through 

evaporation. In WWTPs, the same equation as WTPs can be used: 

 

𝑄𝑊𝑊𝑇𝑃(𝑡) = 𝐸𝑓𝑓 × (𝑊𝑊𝑅𝐹 × 𝑄𝑖(𝑡))      (4.9) 
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Here, it is assumed that the WWTPs do not store water in their system for more than 

one time step. QWWTP ultimately flows into the Jordan River or Farmington Bay at the 

boundary of the water system. Back to the natural system, bypass from WTPs flows to 

the drainage system where urban surface runoff (UR) from precipitation onto the urban 

watershed is calculated by using the U.S. Environmental Protection Agency Storm Water 

Management Model (SWMM) and is added to the bypass. So, inflow to the Jordan River 

(QR) is calculated as follows: 

 

𝑄𝑅(𝑡) = 𝑅𝐹 × 𝑄𝑖(𝑡) + 𝑈𝑅(𝑡) + 𝑏𝑦𝑝𝑎𝑠𝑠(𝑡)     (4.10) 

 

As shown before, each water related module conserves mass balance in the system 

and consequently in the end the mass balance of system would be: 

 

𝑉𝑓𝑏(𝑡) + 𝐺𝑊(𝑡) = 𝑉𝑓𝑏(𝑡 − 1) + 𝐺𝑊(𝑡 − 1) + 𝑃𝑡𝑜𝑡𝑎𝑙(𝑡) + 𝑄𝑢𝑡𝑎ℎ(𝑡)    

−𝐿𝑎𝑡𝑚,𝑡𝑜𝑡𝑎𝑙(𝑡) − 𝑄𝑠𝑢𝑟𝑝𝑙𝑢𝑠(𝑡) − 𝑄𝑜𝑢𝑡,𝑓𝑏(𝑡) + 𝐷𝑡𝑜𝑡𝑎𝑙    (4.11) 

 

where Vfb is the water volume in Farmington Bay, Qutah is the inflow from Utah Lake to 

Jordan River at the boundary of the system, and Qsurplus is the outflow from the surplus 

canal to the Great Salt Lake, which is out of the system boundaries for this study.  

 

 Stormwater Module 4.2.3.4

An existing SWMM model for the study area was linked to the GoldSim model to 

estimate the urban runoff and model the stormwater within the system. Still, there are 
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hydroinformatics challenges to transfer data among the models. These problems are 

facilitated via the external dynamic library of SWMM and link to the GoldSim to transfer 

data in each time step. Details of SWMM model and its calibration is presented by York 

et al. (2015) and the hydroinformatics challenges and solutions are shown in Goharian 

and Burian (2014).  

 

 Water Allocation among Different Sources 4.2.3.5

The uniqueness of the SLC water supply system is the terrain of the area. The water 

supply is captured in snowpack in adjacent mountain watersheds. As the water melts, it 

can be distributed using primarily gravity, which minimizes pumping and, in turn, energy 

usage in the system. The land surface in the eastern part of the Jordan River watershed 

slopes generally from east to west and from south to north. Accordingly, water managers 

at SLCDPU try to use water sources located in the northeast section for the northern part 

of the city and the sources in the southeast as the supply in the southern service areas and 

as supplementary sources to support water demand in the northern part of the city. These 

rules are the main drivers to allocate water from different sources among service areas. 

Another important factor which changes the allocation of water between sources is that 

there are two main reservoirs on the Parley’s creek system which can store water when 

needed or when there is sufficient streamflow in other creeks. The stored water can be 

used in future periods of need, mostly during summer seasons when streamflows are 

lower. In addition to the Parley’s reservoirs, SLCDPU has rights to flows in the Provo 

River and storage in Deer Creek Reservoir. This water can be stored in the Deer Creek 

Reservoir and delivered to SLCDPU in case of shortage. In sum, approximately 60% of 
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SLC’s water supply comes from four of the seven canyons draining into the city (City 

Creek, Parley’s Creek, Big and Little Cottonwood Creek). In addition to the creeks, 

wells, springs, and Deer Creek Reservoir in the Provo system provides 20% of the water 

supply, and a few other sources like groundwater contribute the rest. 

The rules and development of the model were specified with input from SLCDPU 

personnel. The overall model structure and module details were confirmed by SLCDPU 

and available data, as were the results of simulations (York et al. 2015). For example, the 

behavior of the system model was compared to the annual report of SLCDPU for the year 

of 2014. The population served by SLCDPU and related total water provided by them are 

stated in the report as 343,226 and about 99 million cubic meters (MCM). Simulated 

values were 337,636 and 116 MCM. The slight differences between the provided water 

and simulated water provided may be due to numerous elements of uncertainty in the 

input and model formulation.  

 

 Vulnerability Assessment Module 4.2.3.6

In this study, the five factors comprising vulnerability are quantified for the SLC 

water system. First, exposure is calculated using the daily simulation for the historical 

period of 1981-2010, and future period of 2010-2059 based on Equation 4.1. A zero 

value of Exp indicates no change in future streamflow volumes in the creek, while a 

positive value indicates a decrease in the creek’s streamflow volume in the future in 

comparison to the historical period, and the water source j is deemed more vulnerable. It 

is assumed that if the streamflow in the creek is increased, i.e., the Exp is negative, it has 

no effect on the vulnerability of the system, and exposure equals zero. NRj for the 
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historical and future period is illustrated in Figure  4.3 for all creeks.  

The sensitivity of the SLC water system is defined based on the number of inhabitants 

who are living in the system boundaries using a calculated Population Index (PI): 

 

𝑃𝐼𝑗 =
𝑝𝑗

𝑝𝑡𝑜𝑡𝑎𝑙
         (4.12) 

 

where PIj is the normalized value of population index, and pj shows the affected 

population in the service area of a water source of j. ptotal is the total numbers of 

vulnerable people in the entire system served by SLCDPU. 

In case of a shortage event (failure condition) in the SLCDPU service area, the 

severity for water sources (j) would be the ratio of total shortage volume (Shj) for the 

service area of water source j to the total demand of that area (Demj). Sj is calculated as 

follows: 

 

𝑆𝑗 =
∑ 𝑆ℎ𝑗

𝑇
𝑡=1

∑ 𝐷𝑒𝑚𝑗
𝑇
𝑡=1

         (4.13) 

 

where T is the total time period of simulation. Total demand (Demj) includes indoor and 

outdoor demand. It is clear that higher magnitude of severity causes higher vulnerability 

in the system, and most times this value is the key factor for decision makers and 

managers to operate the water supply systems to decrease harmful effects of a failure 

event and increase satisfaction within their service area. 

Potential severity for the SLC system is expanded to the larger water supply system 

components used by Goharian et al. (2015), and is estimated as 
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𝑃𝑆𝑗 =
∑ 𝑉𝑗,𝑝𝑠

𝑇
𝑡=1

∑ 𝐷𝑒𝑚𝑗
𝑇
𝑡=1

         (4.14) 

 

In Equation 4.14, PSj is the potential severity related to the water supply source of j. 

Vj,ps shows the potential water volume related to the potential severity for source j, i.e., 

this volume of water at time step t could be saved within the water source to prevent 

shortage during the time period of t to t+∆t. Vj,ps is equal to either the total volume of 

water shortage during the time period of t to t+∆t  if  the bypass volume of water from 

water treatment plants or release volume from the reservoir is greater than shortage, or 

vice versa. 

To estimate the adaptive capacity of the SLC water supply system, a SoVI of Salt 

Lake County, Utah is developed to be used as the Social Adaptive Capacity Index 

(SACI). WSACIj and SACIj for a water supply source of j are estimated based on Equation 

4.15 and Equation 4.16, respectively. 

 

𝑊𝑆𝐴𝐶𝐼𝑗 =
∑ ∑ 𝑁𝑅𝑗(𝑡)𝒌−𝟏

𝒋=𝟏
𝑻
𝒕=𝟏

∑ 𝑵𝑹𝒋(𝒕)𝑻
𝒕=𝟏

        (4.15) 

 

𝑆𝐴𝐶𝐼𝑖 = 1
𝑆𝑜𝑉𝐼𝑗

⁄          (4.16) 

 

In conclusion, the proposed vulnerability in this study for each water supply source is 

a function of six different variables: exposure (Exp), population Index (PI), severity (S), 

potential severity (PS), water system adaptive capacity index (WSACI), and social 

vulnerability Index (SoVI). PI, S, and PS are scaled between 0-1, while WSACI and SoVI 
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should first be normalized to be used in a vulnerability function. Also, to keep the output 

of function in 0-1 scale and show the importance of each factor in the estimation of 

vulnerability, a weighting factor is assigned to each factor. 

 

4.3 Results 

To compare existing approaches to study the vulnerability of water supply systems 

and the one proposed in this study, the vulnerability values from Equation 4.4 and 

severity (traditional vulnerability) from Equation 4.13 are derived. Then to better 

illustrate the degree of relative vulnerability between sources these values are normalized 

and displayed in Figure  4.5. If the assessment is done relying on severity exclusively, the 

result suggests City Creek is the most vulnerable source in the SLCDPU system, and 

Little Cottonwood is the least vulnerable source. However, Little Cottonwood is 

identified by SLCDPU as more important because it serves the whole area. Even Big 

Cottonwood Creek is identified by SLCDPU as more important. However, they do not 

have a measure of vulnerability to express it. Any failure of those two creek sources and 

their water treatment plants would affect not only the southern parts of the system, but 

also the northern. Therefore, other factors, in addition to the magnitude of failure, are 

crucial in the context of vulnerability assessment for water supply sources in SLC and 

other locations. Figure  4.5 indicates how including other factors in vulnerability 

assessment changes the ranking of vulnerable sources in the SLCDPU system. To better 

understand the effects of proposed factors on new vulnerability assessment in this study, 

more detailed investigation is done on each of these factors. 

First, to estimate the SoVI of each water supply source, this value should be extracted  
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Figure  4.5. Comparison between traditional vulnerability assessments of water supply 
systems and proposed methodology in this study. 

 

from the county social vulnerability assessment. Social vulnerability within the county is 

generally low in low population density areas, and high vulnerability is in the central 

portion of the county, adjacent to the major highways in the county (Figure  4.6). Within 

the SLCDPU Service Area specifically, more than half of the census block groups are 

classed as high or very high vulnerability, centered on downtown SLC, extending east to 

the university and southwest toward West Valley City. High and very high vulnerability 

block groups include all block groups with a SoVI score of 5.4 and greater. Figure  4.6 

shows the SoVI classes in the SLCDPU service area.  

Figure  4.7 presents the values for the six indices in the vulnerability assessment.  

Figure  4.7.a displays the severity comparison between different water sources. As noted 

earlier, severity represents the vulnerability metric introduced by Hashimoto et al. (1982). 

A comparison between the severities of failure events, in case of water shortage, 

demonstrates that City Creek has the highest value of severity among sources. Previously,  
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Figure  4.6. Social vulnerability assessment for the SLCDPU service area. 

 

the comparison between streamflow in different creeks (Figure  4.2) displayed that City 

Creek, compared to the other creeks, has the lowest streamflow rates. But City Creek 

supplies water for the northern part of SLC service area, which includes downtown SLC. 

Therefore, this water shortage for the most populous place of the service area has the 

highest severity. After City Creek, Parley’s Creek and Big Cottonwood Creek have the 

second highest levels of severity. While the severity in both creeks is almost similar, it 

shows that the water shortage in Holladay, which is just supported by Little Cottonwood 

Creek, is low and insignificant.  

Figure  4.7.b shows the high variability of potential severity among water sources. Big 

Cottonwood Creek provides the largest amount of streamflow after Little Cottonwood  
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a. Severity 

 
b. Potential severity 

 
c. Exposure 

 
d. Sensitivity 

 
e. Social adaptive capacity 

 
f. Water supply adaptive capacity 

index 

Figure  4.7. Result values of vulnerability factors for water supply sources in SLC. 
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Creek, but there is no storage. Therefore, streamflow that is not treated is bypassed into 

the stream. Without the capacity to store water, the potential severity of Big Cottonwood 

Creek within the period of a threshold of 60 days (selected for this study) is high. The 

potential severity is low for City Creek and Parley’s Creek, but Parley’s Creek has a 

higher streamflow rate. The reason is Parley’s Creek has two reservoirs which can store 

the excess water not needed to meet present demand to use later to meet future demand 

and thus eliminate or mitigate failures in the system. Bypassed water from Little 

Cottonwood is less than Big Cottonwood, because part of Little Cottonwood water is 

used by Sandy City and has less discharge downstream. 

 Changes in the future condition of water sources can be captured by the exposure 

factor. Exposure is zero for Big Cottonwood Creek and Little Cottonwood Creek, i.e., the 

average streamflow in these two creeks is not changed or increased compared to the 

historical period (Figure  4.7.c). On the other hand, the higher value of exposure for 

Parley’s Creek shows streamflow projections decreased on average in comparison to the 

historical period. Little Cottonwood Creek is used by SLCDPU to serve the all service 

areas. Therefore, Little Cottonwood Creek is the most sensitive supply source and City 

Creek is least sensitive (Figure  4.7.d). From Figure  4.6, it is clear that as you go toward 

southern parts of the county the social vulnerability is decreasing. Although the social 

adaptive capacity of the Little Cottonwood service area is higher than all the other 

sources, it is not supported by any other sources within the SLCDPU service area. Thus, 

in the SLC system social adaptive capacity and the water supply adaptive capacity show 

the reverse behavior. Northern parts of the system have higher social vulnerability, but 

they are supported by multiple water supply sources. For example, if something happens 
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to City Creek, three other sources can mitigate the harmful effects of failure. 

As illustrated in Figure  4.7, individual factors like severity are not adequate to report 

comprehensively the vulnerability of sources. While the severity of City Creek is higher 

than that of others, this source is supported by other sources in case of failure and the 

impact of failure can be mitigated. On the other hand, because Little Cottonwood is 

located in the southern part of the system, this source would be more vulnerable to 

changes, leading to more harmful conditions in the system. However, to declare more 

definitively and precisely which source is more vulnerable, the proposed function of 

vulnerability can be used and its value over time can be estimated by Equation 4.4. 

Therefore, the time series of vulnerability for different sources is presented in Figure  4.8. 

Figure  4.8 shows that, by just looking at one factor, it is not clear which source is 

more vulnerable. Instead, the new proposed framework to evaluate the vulnerability can 

help managers to make decisions. As is depicted in the figure, Big Cottonwood Creek has 

the highest value of vulnerability during the study time period. Furthermore, during the 

time and specifically after 2030, Big Cottonwood Creek, as a water supply source, would 

be more vulnerable. Hence, decision makers should think about new management 

policies in order to decrease the vulnerability of this source and ultimately reduce the 

vulnerability of the whole system. 

 

4.4 Summary and Conclusion 

This chapter presented a new approach to quantify water system vulnerability. The 

new approach built on the traditional approach added in additional factors to account for 

potential severity, sensitivity, and adaptive capacity.  
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Figure  4.8. Vulnerability of four water supply sources in SLCDPU during 1981-2060. 

 

The new vulnerability assessment approach was tested for the water system serving 

the Salt Lake City Department of Public Utilities service area. A dynamic system model 

was created for the Salt Lake City study area using GoldSim. Observational data, 

secondary data from simulation results, and information from the Salt Lake City 

Department of Public Utilities was used to create and confirm the model. Results using 

the new vulnerability metric show Big Cottonwood Creek as the most vulnerable source, 

and City Creek as the least vulnerable. This is contrary to the ranking that would have 

been provided by a commonly used vulnerability metric.  

The relative importance of the factors comprising the new vulnerability metric is 

based on judgment, surveys of stakeholders, and other means. Clearly, the 

results/vulnerability can be changed based upon these weights. But the purpose of this 

study was to demonstrate that including factors like these in the vulnerability assessment 

was important. The collaboration with Salt Lake City Department of Public Utilities is 

ongoing to quantify the vulnerability of their system based on their opinion about the 
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importance of these factors in their service area. Future research will report on a 

sensitivity study of the weighting and the influence of a determined weighting for Salt 

Lake City.   



 
 

 
 

 CHAPTER 5

 

DEVELOPING A DECISION SUPPORT TOOL FOR WATER RESOURCE 

MANAGEMENT IN SALT LAKE CITY, UTAH  

 

5.1 Introduction 

In this dissertation, a new vulnerability assessment approach was proposed for a 

reservoir system. The results illustrated that basing vulnerability on severity alone may 

cause a misleading quantification of the system vulnerability. The inclusion of potential 

severity helped identify conditions when releasing or holding water may lead to future 

system failures. Then, for the same reservoir system, a new metric, called the Water 

System Performance Index (WSPI), was suggested which could combine the reliability 

and vulnerability of a reservoir system via copula functions to present integrated 

information about these two metrics. To apply both methodologies to a larger scale water 

supply system, there was a need to include other factors affecting water system 

vulnerability. Chapter 4 of the dissertation described the inclusion of other important 

factors in the vulnerability assessment of water supply systems. In Chapter 4, it was 

shown that how the vulnerabilities of water sources within a water supply system can be 

different. The dissertation presented several advances to the vulnerability assessment of 

water systems; however, there is a need to further demonstrate the 
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advances using a practical application to a case study system. Therefore, this appendix 

presents a brief summary of an application to answer a question for the Salt Lake City 

Department of Public Utilities. First, the incorporation of the advances into a decision 

support tool (DST) is described, different management scenarios are tested, and the new 

vulnerability assessment approaches are applied to compare the different management 

scenarios. 

Population growth (including emigration and immigration), decrease of social 

welfare, and economic changes are influencing much of the urbanization rate. Globally, 

the urbanization rate depends on factors such as industrialization, manufacturing 

advances, new infrastructure, resource availability, and more (Skeldon 2006). Due to 

these factors and others, population growth is projected for Utah. Recently, the U.S. 

Census documented that the growth in Utah’s population is already among the highest in 

the nation (United States Census Bureau 2010). During 2013-2014, for example, Utah’s 

population increased at a rate of 1.4 percent, which placed Utah as the fourth ranked state 

in terms of the five-year growth rate. However, the population is not evenly distributed 

throughout the state, with the Wasatch Front area containing more than three-quarters of 

Utah's population. Salt Lake City, the capital of the state and one of the main population 

centers in the Wasatch Front, has a population of nearly 200,000 (United States Census 

Bureau 2013). The projected growth in population, combined with the uncertainty of 

climate change and the potential for drought, provide a complicated picture for water 

management decision making. The Salt Lake City Department of Public Utilities 

(SLCDPU) is responsible for providing water to Salt Lake City and nearby customers. 

SLCDPU is interested in investigating the vulnerability of the existing system to factors 
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such as population growth, climate change, natural hazards, and failure of key system 

components. They are also interested in assessing future alternative management 

strategies to reduce system vulnerability. 

 

5.2 SLC-IWRM Decision Support Tool 

Assessing water management alternatives, including new infrastructure development, 

generally requires considering both quantitative and qualitative investigations to account 

for broad system goals such as sustainability (Makropoulos et al., 1999). However, 

uncertainty within and dynamic interactions between components makes the study of 

water resource systems a complex task. Moreover, changes in climate and natural 

systems’ responses exacerbate the complication of analyzing and finding sustainable 

solutions. Using a Decision Support Tool (DST) can help managers in the process of 

decision making (Jakeman et al., 2006). Decision support tools (DSTs) help to reduce the 

complexity of a system’s interrelationships and develop a well-structured assessment 

process. Based on Power (1997), executive information or support systems, geographic 

information systems, or online analytical processing or software agents can be classified 

under decision support systems. Thus, in application, DSTs establish and enhance the 

communication and coordination among managers, stakeholders, and researchers. It 

should be noted that a DST’s objective is not to make decisions instead of managers; it is 

just designed to help and support the process of decision making. At the end of the day, it 

is the role of managers and stakeholders to use their managerial judgment and make the 

most appropriate decisions (Jakeman et al., 2006).  

Water supply, stormwater drainage, and wastewater disposal are the three main 
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components of an urban water system (Makropoulos et al., 2008). It is necessary to 

develop an integrated modeling framework which includes climate, hydrological, and 

other components to fully investigate the interactions between the water system 

components. Different researchers tried to develop the DSTs for urban water systems 

(e.g., Sakellari et al., 2005, Makropoulos et al., 2008, Willuweit and O’Sullivan 2013); 

however, the framework, structure, outcomes, etc. of their tools are varied. The research 

presented in this dissertation tries to follow and emulate previous work in the 

development of the modeling framework to integrate the simulation of different water-

related components and also provide a DST for managers. The structure and 

mathematical relationships for the SLC IWRM model were presented in Chapter 4. The 

DST, called SLC-IWRM, was developed to support the process of IWRM and to assist 

managers and stakeholders to gain a better understanding about the behavior of the SLC 

water supply system and its response to influencing factors and management alternatives. 

The DST was used in meetings 4-6 times per year with SLCDPU water managers and the 

climate impacts group. After two years of meetings, the managers and stakeholders had 

not only helped to create the DST, but had gained insight into the structure and function 

of it. They comprehended how to implement and test alternative solutions, build what if 

scenarios, combine scenarios, and explore the results and reactions of various water 

related components within the system. The research advances of developing new ways to 

quantify vulnerability eased the comparison between different scenarios and supported 

decision makers to evaluate proposed solutions. 
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5.2.1 Database Management System 

Any type of mathematical model that represents the real-world needs inputs to be able 

to accurately represent the system. Therefore, the initial step to develop a DST is to have 

a well-organized, adequately populated, and accessible data management system. For this 

purpose, all the input data to the main IWRM model are gathered in a database. GoldSim 

is able to access data, time series, and stochastic inputs in different ways. Input data can 

be simply added to a model from a dynamic spreadsheet, or, more advanced, they can be 

downloaded directly from an ODBC-compliant database. Consequently, data are stored in 

a well-organized manner, accompanied by metadata in a database. Furthermore, the use 

of database management systems can be especially effective for cases when the model 

needs to be continuously updated by measuring input data to aid ongoing and real-time 

decision making. The results of the study, output data, can be transferred, stored, and 

visualized in an Excel file or a database. For example, the WSPI calculation, which is 

done by using MATLAB, uses the stored result of GoldSim in a database. 

 

5.2.2 Simulation Core 

In order to simulate any kind of system, after creating the conceptual model, there is a 

need to use a computational tool to simulate the behavior of the system. This 

computational tool might be a human’s brain or a calculator for a simple system, or 

perhaps a spreadsheet program like Excel. However, for more complex systems, a high-

level technical computing environment is required (Liu et al., 2005).  Generally, in 

simulations of water resource systems, there are three main categories (Figure  5.1): 1. 

Specialized water resources software like Water Evaluation and Planning System  
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Figure  5.1. degree of flexibility and specialization of water system modeling methods. 
 

(WEAP), 2. Dynamic simulation software like GoldSim, and 3. Programing languages 

like R or MATLAB. As it is shown in this figure, dynamic simulation software eases 

changes and improvements in modeling without decreasing the specialization and 

precision of modeling, i.e., system dynamics has the ability to increase the upgradeability 

and modularity in the simulation. However, it still needs to define and add new specific 

equations for new components into the existing model. Using a system dynamics-based 

model helps to make the simulation of water components more generic. One of the 

preferences in the presented framework here is using a system dynamics and 

probabilistic-based simulation software, called GoldSim.  

GoldSim is an object-oriented dynamic simulator which is used to simulate an 

existing or proposed system during the time. It is able to evolve and change with time and 

solve differential equations through numerical integration (GoldSim User’s Manual, 

2013). Moreover, it provides the potential to simulate what-if scenarios to test different 
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management policies or plans in water systems. In addition, GoldSim enables 

incorporation of uncertainty sources in modeling and not only deterministically simulates 

the system behavior, but also reports the result of the analysis in a stochastic fashion. 

GoldSim is used as the core of DST to simulate the water supply system and integrate 

different related modules to the main system.  

 

5.2.3 Integrated Modeling Framework 

One of the common problems in developing DSTs is lack of presentation of external 

models and their linkage to the main model. Details of external modules or submodels are 

occasionally eliminated or underestimated in drawing the big picture of the model. Even 

more importantly, the interactions and interdependencies (like casual and feedback loops) 

between water-related components are often disregarded or poorly embodied in 

simulation. To solve this problem, there is a vital need for an integrated modeling 

framework within the core of DTSs. What is needed for DTSs is a core integrator, which 

can integrate all of the external modules and submodels into a particular integrated 

system model. Integration of different components is possible in different ways in 

GoldSim. Dynamic link library (DLL) of external programs (like using the SWWM-DLL 

in this study) can be developed and linked to GoldSim. Another common way is using 

spreadsheets or databases as the middle transferring module (i.e., middleware) to couple 

other models to the GoldSim model (like streamflow ensembles from the Colorado River 

Basin Forecast Center hydrologic model in this study). Another way to build external 

modules is to develop them within the GoldSim as submodels, i.e., GoldSim is planned to 

support other customized modules in GoldSim to address specialized applications by 
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building submodels or building custom elements using scripts (like rainwater harvesting 

external module used here). Consequently, GoldSim is a flexible and powerful model 

integrator, which offers a hierarchical, modular, and structured manner to integrate 

various water-related models. Details of modeling and implementation of the 

mathematical model using GoldSim are mentioned in Chapter 4. 

 

5.2.4 Resolution and Dimension Issues 

In order to model the urban water system with appropriate resolution, different layers 

are combined (Makropoulos et al., 2006). However, different layers may have finer or 

coarser spatial resolution. Although in this study the boundary of the system is defined 

based on the service area of SLCDPU and elements are presented as nodes within the 

system dynamics approach, recent studies suggested coupling a geographic information 

system (GIS) with system dynamics to introduce spatial system dynamics (Ahmad and 

Simonovic 2004). Moreover, external models for hydrologic inputs and stormwater 

drainage have finer spatial resolution and more detail. The SLC-IWRM tool is designed 

to not only evaluate the performance of a system under climate change scenarios, but also 

test different management planning scenarios at different scales. Similarly, the temporal 

resolution of different modules has different levels. The stormwater module, for example, 

runs at hourly increments, while the water supply allocation optimization has a daily time 

scale. The hydrologic model uses 6-hour climate data, but produces daily streamflow for 

the water supply system module. GoldSim allows the aggregation and disaggregation of 

data to simulate the system and report the result. Each module within GoldSim can run in 

different time scales, and then the transfer of data between modules happens based on the 
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hierarchy structure of the model. As a result, daily time step is selected to run the 

simulation globally, which is an appropriate time scale to study integrated urban water 

system models (Makropoulos et al., 2006). The result of the study is reported in daily, 

monthly, and annual time scales to managers. Presenting results and running the whole 

model in subdaily time scale would be too detailed to study management-level strategies 

and compare the alternatives for long-term implementation. Additionally, information 

within a module or between different modules can be transferred with time delay in 

GoldSim. Delays have a key effect on the dynamics of a system.  

Another issue which should be solved in the development phase of DSTs and their 

core engines is to standardize the dimensions and units within the simulation, and more 

importantly when the model should be expanded or upgraded. GoldSim has a huge 

internal database of units, which makes it aware about the dimensionality of elements in a 

system. It ensures that the dimensions are consistently used in the simulation and 

wherever it is needed it automatically convert units.  

 

5.2.5 Accessing to the DST 

Another common issue in the building of DSTs is access to the final product. Most 

DSTs are developed (Holmes et al., 2005; Makropoulos et al., 2008) in business software 

or programing languages which require licensing in order to use them. The core 

simulation environment of the models is usually highly complex without providing user-

friendly interface. All these problems cause managers or stakeholders to have difficulty 

accessing the developed DSTs. GoldSim provides a dashboard interface for models to be 

used without needing deep knowledge of the model core or familiarity with the core 
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simulation software. Moreover, GoldSim models with dashboard are transferable to other 

machines and distributed among managers and stakeholders without requiring the user to 

have the software installed. This option is available through the “GoldSim player” 

version of the model, which contains the main model in the background and provides a 

dashboard (DST graphical user interface (GUI)) for users to build their own scenarios, 

run them, and see the results. GoldSim Player (www.goldsim.com/player) is free and 

there is no need to license the core simulation software.  

Furthermore, part of the GoldSim model, Parley’s Creek Management Tool, is 

developed as a web app (<http://demo.tethysplatform.org/apps/Parley’s-creek-

management/>). While the core simulation model is located on a server, users have 

access to the DST through the web page. This application is used to evaluate various 

management scenarios for the Parley's Creek system to give this ability to managers, 

stakeholders, and users to test different alternatives. This also can be used to test climate 

change scenarios (uncertain future extreme climatic conditions) to evaluate the reservoirs' 

performance. More detail about this application can be found in Swain et al. (2016). 

Figure  5.2 shows different parts of the DST tool for the SLC - IWRM tool. 

 

5.2.6 Alternative Management Plans 

Demand-supply imbalance, expansion of urban and suburban areas, energy use, 

flooding risk, drought, changing climate, and other possible harms to the water system 

call for more innovative water management alternatives. The current paradigm of water 

management is developing additional infrastructure, which is configured as centralized 

systems in urban areas. In the context of water supply, centralized systems 
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Figure  5.2. Schematic overview of SLC-IWRM tool structure. 
 

suggest the use and building of large-capacity water treatment plants (WTPs), adding 

new water infrastructure elements like reservoirs, and treating wastewater in centralized 

wastewater treatment plants. These options have been common practice for over 100 

years. However, the centralized approach may not be a universally sustainable approach 

and alternative way to decrease vulnerability. There is a need to find more sustainable 

solutions in response to urban developments (Brown et al., 2009; Lloyd et al. 2012). It 

can be achieved only if water managers consider a wide range of alternative options and 

employ new technologies in water supply systems, wastewater treatment, and stormwater 

management. 
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Recently, new studies (e.g., Domènech 2011; Nelson 2012; Sapkota et al., 2013) 

propose increasing the resiliency and sustainability of water systems by use of alternative 

approaches. These methods are categorized based on having primarily decentralized 

components (potable water, wastewater and stormwater) or combined centralized and 

decentralized (hybrid) systems. The decentralized concept suggests related water volume, 

supplied by either individual wells or using approaches. Part of the water demand is 

supplied by the use of local water sources, including stormwater, rainwater, wastewater, 

and greywater reuse. A decentralized system is assumed as the system which provides 

services for water, wastewater and stormwater at the property, cluster, and development 

scale (Sharma et al. 2013). Although the extra water provided by centralized methods is 

more than that provided by decentralized alternatives, the related cost and energy 

associated with the centralized systems are higher, and consequently lead to less a 

sustainable system in comparison to decentralized systems (McCully, 1996). 

Incorporating a wide range of alternative scenarios in water system management 

requires a tool which simulates multiple scenarios, analyzes the performance of water 

system, and compares the implementation of various options (Hardy et al., 2005). The 

proposed DST in this research, after developing the structure of model, includes 

extensive possible management alternatives for the current system. Then, to report the 

results of scenarios and assessment measures to managers, a visualization and post-

analysis tool is deployed. To choose the management scenarios presented in this study, 

multiple meetings were held between the research team from the University of Utah and 

SLCDPU managers. During the meetings most important factors which are considered to 

select scenarios are:  
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 Centralized alternatives should be selected based on available water 

resources. 

 Decentralized density is proposed in different levels of spatial scales and 

relative to the available water resources. 

 Implementation of alternatives must consider the existing water rights and 

regulations by SLCDPU.  

Based on these factors, Rainwater harvesting is proposed to serve as a decentralized 

solution, and improvement of large water storage infrastructure (i.e., reservoirs) is 

proposed to serve as the centralized alternative. A list of scenarios are categorized into 

three main groups: Source changes, Demand changes, and Solutions. To present the 

application of the SLC-IWRM tool, the following simulation scenarios are selected: 

 Source Changes: Using CMIP5 downscaled projections, finding extreme and 

central tendency pattern of temperature and precipitation changes.  

o Hot-Dry (HD) 

o Warm-Wet (WW) 

o Middle/Central tendency (M) 

 Demand Changes: Estimation of future demand is difficult and needs in-

depth study. However, based on approaches used by SLCDPA, the main 

factor of population growth in the study area is selected to present changes in 

future demand. 

o Population growth (PG) 

 Solutions: As described before, efficiency of centralized and decentralized 

solutions and the trade-off between them is the primary question for 
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SLCDPU under future conditions.   

o No management action (NMA) 

o Centralized alternative (CA): Developing a new reservoir on the Big 

Cottonwood Creek 

o Decentralized alternative (DCA): Rainwater harvesting  

 

5.2.7 DST Graphical User Interface 

The DST-GUI, which is built in GoldSim as a dashboard, is presented in Figure  5.3. 

This interface is particularly created to answer the questions from SLCDPU. However, 

the interface potentially can support and involve all the elements and parameters which 

are included in the modeling phase and also can be further expanded. This model can be 

executed in either deterministic or stochastic simulation mode for 1981-2060. Although 

this model runs based on daily simulation, it is recommended the results be aggregated in 

monthly or annual reports because of the long run time and a large space which is needed 

for daily simulation reporting. In advanced mode, the model can be run with distributed 

computing in a local or sets of the network machine.  

Here, a brief description of the model elements is provided, following the modules 

shown in Figure  5.3. 

 

 Water Demand 5.2.7.1

In this module, users may create scenarios based on changing per capita indoor 

demand, outdoor demand, and pattern of outdoor water consumption. Moreover, the  
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Figure  5.3. The SLC-IWRM tool inteface. 
 

future projection is done using deterministic increases in water demand or stochastic 

simulation. It should be noted whenever the term stochastic (or uncertainty analysis) is 

used, the model will run with stochastic inputs and will use the Monte Carlo approach. 

Behind the GUI, stochastic inputs are already selected, analyzed, and appropriate 

distribution functions are fitted to them. For this purpose, users need just specify the 

mean and standard deviation and autocorrelation for triggering lag of resampling.  

 

 Water Conservation 5.2.7.2

One of the management alternatives for SLCDPU is the future conservation practices 

to decrease per capita water demand in a supported area. Regardless of the practice which 

will lead to the conservation, a user can build the related scenario by setting the expected 



128 
 

 
 

percentage decrease in per capita demand and specifying the start year and time period, 

which conservation is applied within the system. 

 

 Stormwater Model 5.2.7.3

This module is built based on coupling the U.S. EPA SWMM model of Salt Lake 

County to the SLC-IWRM. For this purpose the sub-basins, which are included in the 

boundary of the system, are presented in a map. By clicking on each sub-basin, the 

dashboard will be changed to the SWMM-GoldSim dashboard which gets the input 

values to run the SWMM engine with the GoldSim (Figure  5.4). Users can make 

alternative scenarios by changing the input parameters in each sub-basin. This model is 

already calibrated for the system in a monthly and annual scale, and any changes in this 

part are assumed as alternative changes in the system. For example, urbanization within 

the system can be represented by changing the pervious area to an impervious area in 

sub-basins or other related parameters. 

 

 Rainwater Harvesting (RWH) 5.2.7.4

 One of the considered management scenarios for SLCDPU is to capture rainwater 

within the urban area in rain barrels, to use it later for outdoor demand. Figure  5.5 

displays the submodel of RWH, which can be found under the Management Scenarios 

section in GUI of the SLC-IWRM tool. To represent RWH in the SLC-IWRM tool, the 

SWMM-GoldSim model is coupled with the RWH model which is modeled in GoldSim 

by use of system dynamics approach. The result of the implication of RWH shows  
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Figure  5.4. SWMM input dashboard in GoldSim. 
 

 

Figure  5.5. Rainwater harvesting dashboard in GoldSim. 
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changes in results of the simulation of different parts in the system. For example, 

capturing rainwater causes a decrease in the volume of treated water in WTPs, an 

increase in bypasses from them, and ultimately changes in discharges to the downstream 

(Jordan River). Users may change the number of implemented rain barrels for each sub-

basin based on the two different types of rain barrels, and also variation in the percentage 

of treated water by RWH. A person can capture and store precipitation in one or two 

covered storage containers with maximum storage capacity of 0.38 m3 (100 gallon) for 

each or less with no need to register them. They may use 9.5 m3 (2,500 gallon) rain 

barrels with registration to collect precipitation (Utah Division of Water Rights, 2015).  

 

 Population Module 5.2.7.5

Population section enables users to change the population properties in the system 

mainly for future periods. Users can keep the population constant or change the growth 

rate, or run the uncertainty analysis based on stochastic population growth. In case of 

stochastic run, users may change the mean population growth for different townships as 

well as actual initial population. Moreover, in stochastic modeling users decide about the 

changes in resampling triggers and their related autocorrelation.  

 

 Infrastructure Development 5.2.7.6

This part is divided into different alternative scenarios. Here, only developing a new 

reservoir on Cottonwood Creek will be studied. Users can change the characteristics of 

the proposed reservoir, as well as change the operating rules and levels for the  
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reservoirs. These changes represent future developments in the system to evaluate the 

changes in reliability, vulnerability, and performance of the system. Other possible 

options are to build a new water treatment plant (WTP) in Mill Creek where the user can 

specify the design of this treatment plant, and expanding the Parley’s Creek reservoir 

system. It is important to note that all options were specified by SLCDPU.  

 

 Deterministic/Stochastic Simulation 5.2.7.7

Users may decide to choose between running the model for deterministic simulation 

or using a Monte-Carlo approach to stochastically run the simulation. In a deterministic 

simulation, uncertain elements will run based on estimated mean values. In a Monte-

Carlo simulation, stochastic elements are already defined based on their probability 

distributions. Therefore, the model can be executed in the future under uncertain 

conditions. It can be helpful when managers are interested in looking at a wide range of 

possible occurrences of events. Moreover, it helps them to track the propagation of 

uncertainty through different parts of the simulation. The number of realizations and 

other stochastic or deterministic simulation properties, like the time period and simulation 

time step, can be changed by use of the stochastic or deterministic simulation button. 

 

 Scenario Management 5.2.7.8

In this part, users can add, modify, remove, or save the scenarios. The scenarios are 

built by any changes in the tool’s parameters value. Then, these values are stored in the 

model and the results can be seen individually or combined with other scenarios to 
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compare them.  

 

 Results 5.2.7.9

Some of the useful results (defined by default) for the model are provided within the 

GUI. Results for all the elements within the modeling process are provided, which 

include the time histories, or a probability distribution of results for daily, monthly, and 

annual values of all elements. Moreover, under the stochastic simulation, results can be 

seen for different realization, as well as the statistical analysis (probability of uncertain 

bounds) for stochastically simulated elements. Users may have access to all the results 

within the simulation or are limited to the results which show or can be downloaded 

directly from the interface. The most useful results in DST, which support managers and 

stakeholders, is the reliability and vulnerability of the system. These results are used to 

compare different scenarios to aid decision makers. Other provided results in the 

interface are population projection, demand projection, annual peak of precipitation, 

precipitation time series, and volume of water supplied by each source in SLCDPU 

service area. It should be noted, if users are granted access to all the results, desired 

results can be viewed or downloaded by browsing the actual model, and also added here 

for further analysis. 

 

5.2.8 Assessment Tool 

Besides the vulnerability and reliability of the system, which are available from DST 

interface, another package is made in MATLAB which calculates the water system 
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performance index (WSPI). It offers joint information about the estimated reliability and 

vulnerability for different scenarios by use of individual unique value. This value is 

calculated by forming a joint probability distribution between reliability and vulnerability 

from Copula functions. WSPI varies between 0 to 1, where 0 indicates the least favorable 

performance by system and 1 demonstrates the best performance of the system. Details of 

estimating WSPI and forming related joint probability distribution can be found in this 

dissertation. The whole calculation process of assessing the WSPI is automated in 

MATLAB, where it reads the reliability and vulnerability of scenario from GoldSim, 

through a spreadsheet and presents the WSPI value. 

 

5.3 Management Alternatives 

In order to compare the implication of centralized and decentralized management 

practices with the no management alternative action (NMA) scenario, the model 

simulates the historical and future condition of the system under different climate 

conditions. Then, the first scenario is added to the simulation process as the building of a 

new reservoir on the Big Cottonwood Creek. The primary design of Argenta Dam in Big 

Cottonwood Canyon was 15 MCM (12,000 acre-foot (af)). The plan was studied in detail 

and the analysis showed the Argentina site was feasible to build a new dam and the cost 

was relatively low. The proposed storage of the reservoir could provide for an increase in 

population of 80,000; therefore, because the population growth is expected higher in the 

next 50 years, the storage design in this study increased to 21 MCM (17,000 af). 

Moreover, because of this increase in stored water in Big Cottonwood, the WTP should 

be expanded proportionally and the capacity increased from 0.15 million cubic meters per 
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day (MCMD) (40 MGD) to 0.45 MCMD (120 MGD). The Argenta Reservoir is a 

suitable project because it can bring an excellent quality of water into the system due to 

the purity and low temperature of water in the Big Cottonwood Creek. Moreover, taking 

more water out of water supply sources in the southern part of the county can decrease 

the need of operating the Upper Canal pumping plants. More detail about this project can 

be found in (Hooton, Jr., L. 2015). However, at the end, the Argenta Dam bond election 

was defeated, and this study shows the preliminary result of reevaluation, the feasibility, 

and advantages of building it as a centralized option. The employed option, instead of 

building a new reservoir, was to increase the transferred water from Provo system and 

Deer Creek reservoir. The decentralized alternative (DCA) in this study is the use of 

rainwater harvesting to reduce the amount of treated water consumption for outdoor 

demand. The DST model offers a separate dashboard to let users specify the total number 

of two types of rain barrels in different subcatchments. The number of rain barrels, here, 

is derived based on the total number of housing units in different townships under the 

service area of SLCDPU. For this purpose, the 50% of the total housing units in 2010 is 

proposed to be equipped by rain barrels. Then, the number of total rain barrels is divided 

to 35% with size of 200 gallons and the rest as 2,000 gallons. The total number of 

implemented rain barrels is shown in Table 5.1. 

 

5.4 Results 

To study the effects of using management alternatives in a water supply system, DST 

is used to simulate and compare the results. Proposed vulnerability factors, reliability, 

and WSPI evaluate the system performance under management scenarios along with  
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Table  5.1 Total number of housing unites in different townships and number of rain 
barrels used for RWH. 

Township 
Housing units, 

2010 

Selected for RWH 

200 gal rain barrel 2,500 gal rain barrel 

Salt Lake City 80,724 30,272 10,091 

Mill Creek 26,203 9,826 3,275 

Holladay 10,537 3,951 1,317 

Cottonwood Height 13,194 4,948 1,649 

 

three climate scenarios of HD, M, and WW. Table  5.2 reports the result of important 

factors included in the vulnerability assessment for four major water supply sources of 

SLCDPU under NMA, CA, and DCA Scenarios. The severity of failure in all sources and 

management scenarios is increasing by change of climate condition from WW to HD. 

The existence of Argenta Dam decreases the severity of failure in the system more than 

RWH. DCA has less effect on the severity of the system and the main reason is because 

the stored volume by RWH is not significant when water shortage happens in dry 

months. The severity values under DCA are not even improved in some cases under the 

HD scenario, which means there is not enough water available to store via rain barrels. 

However, this factor is improved under the WW climate condition. On the other hand, 

the severity, magnitude of failure, can be decreased to zero (under WW) when Argenta 

dam is built and support the system in the face of water shortage. In conclusion, CA 

offers to store more water and for a longer period of time within the system than DCA, 
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especially under the WW condition.  

As it is mentioned, the Argenta Dam can eliminate any water shortage failure under 

warm and wet climate condition, and because of this, the potential severity would be zero 

in these conditions too. The highest improvement in potential severity is happening to 

Big Cottonwood Creek, while this creek has the highest volume of streamflow in the 

system. It shows that potential severity can play an important role to select the best 

location for developing new infrastructure to decrease further failure in the system. The 

potential severity is not only decreased in Big Cottonwood, but also it helps to store water 

when there is excess water in the system, and other sources like City Creek would be 

used for water supply. In this way, less water will be bypassed from other creeks too. 

Although RWH can be used to improve the severity of system, it has a minor effect on 

the potential severity in water supply system. It may also, in some cases, increase 

potential severity mainly in sources without reservoir structures to save water upstream. 

The water which was supplied by the treatment plant no longer will be used, substituted 

by RWH, and as a result water will be bypassed from WTPs and cause a higher degree of 

potential severity within the system. Table 5.2 indicates that even though the exposure 

and WSACI varies under different climate conditions, they are not changing by 

implementation of management alternative. However, adding a new water supply source 

to the system can increase the WSACI factor for other sources.  

After estimating all the vulnerability factors, the overall vulnerability of the water 

supply system can be calculated based on the methodology presented in Chapter 4. The 

overall vulnerability and reliability of the system are presented in Figure  5.6 for different 

management scenarios and under different climate conditions. This figure verifies that the 
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Table  5.2 Vulnerability factors’ values for different water sources under different 
scenrios. 

Water 
supply 
source 

City Creek Parley’s Big Cottonwood Little Cottonwood 

climate 
condition HD M WW HD M WW HD M WW HD M W

W 

 Argenta Reservoir 

Severity 0.07 0.03 0.01 0.06 0.02 0.00 0.06 0.02 0.00 0.05 0.02 0.00 
Potential 
Severity 0.04 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.04 0.00 

Exposure 0.23 0.05 0.00 0.40 0.12 0.00 0.15 0.00 0.00 0.11 0.00 0.00 
WSACI 9.82 9.61 9.15 7.97 6.98 6.26 0.98 0.96 0.93 0.00 0.00 0.00 

 
No Management 

Severity 0.13 0.09 0.05 0.10 0.07 0.04 0.10 0.07 0.04 0.09 0.06 0.04 
Potential 
Severity 0.10 0.12 0.13 0.02 0.06 0.09 0.47 0.46 0.48 0.17 0.20 0.32 

Exposure 0.23 0.05 0.00 0.40 0.12 0.00 0.15 0.00 0.00 0.11 0.00 0.00 
WSACI 9.82 9.61 9.15 7.97 6.98 6.26 0.98 0.96 0.93 0.00 0.00 0.00 

 
Rainwater Harvesting 

Severity 0.12 0.08 0.04 0.10 0.07 0.03 0.10 0.07 0.03 0.08 0.06 0.03 
Potential 
Severity 0.11 0.11 0.14 0.02 0.06 0.09 0.46 0.43 0.46 0.18 0.18 0.32 

Exposure 0.23 0.05 0.00 0.40 0.12 0.00 0.15 0.00 0.00 0.11 0.00 0.00 
WSACI 9.82 9.61 9.15 7.97 6.98 6.26 0.98 0.96 0.93 0.00 0.00 0.00 

 

 

 

Figure  5.6. Comparison of different scenrios based on reliability and vulnerability 
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CA alternative suggests lower values of vulnerability in the system, while the least 

vulnerable condition in a system is during WW scenario and the existence of Argenta 

reservoir. WW condition also proposes less vulnerable conditions in two other scenarios 

when no management action is implemented or a decentralized option is evaluated. 

Moreover, this figure shows while the HD condition is the most vulnerable condition, 

two other scenarios of central tendency (M) and WW conditions offer almost the same 

degree of vulnerability. It shows that the system is more sensitive to the HD climate 

condition rather than improving the system under WW scenarios. It means, although the 

supply side management alternative can improve the system performance under HD  

condition, there is a need for demand side practices during M to WW climate conditions. 

That is because, even if water sources are in a good shape and even the total volume is 

increased, the speed of population growth and change in timing of snowmelt causes 

failures in the system. 

By looking at the reliability and vulnerability of the system under WW and M 

conditions, it is clear that even though their magnitude of failure or vulnerability are 

almost the same, WW condition can cause a slight decrease in the degree of vulnerability, 

the total number of failure events is still different in these two cases. This difference is 

almost the same as the difference between the reliability of M and HD conditions. It can 

be interpreted as the climate conditions alleviating harmful damages to the system, but it 

cannot be the goal/hope to fully eliminate the failure events. As a result, implementing 

efficient and sustainable management scenarios, along with desirable climate conditions, 

can lead to more reliable and less vulnerable water supply systems. 

As was shown in Chapter 3, and also here, it is difficult to fully understand and report 
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the performance of a water supply system just by looking at either reliability or 

vulnerability indicators of system. Making decisions based on just one of the indicators 

can lead to misinterpretation about the behavior of the system. Two major problems 

which arise from the use of single indicator evaluation for a system are as follows: 

 Overestimate or underestimate about the performance of the system as it is 

shown in Figure  5.6. While the reliability shows improvement in the system 

from HD to M and from M to WW conditions, the vulnerability of the system 

is almost the same for WW and M conditions. Solely assessing vulnerability 

can result in reliance on a system which is not really reliable. It is shown by 

the same values of vulnerability between M and WW in RWH scenarios, but 

different numbers of failure events and degree of reliability. 

 In cases, like Chapter 3, when the interpretation of reliability and 

vulnerability is difficult, results can lead to the selection of not the most 

appropriate decisions. For example, while managers want to make decisions 

between different options, reliability and vulnerability do not always have the 

same behavior. So, relying on either of them can cause making a wrong 

decision.  

To solve these two problems, there is a need for an indicator to offer simultaneous 

information about the reliability and vulnerability of the system. While Figure  5.6 shows 

the reliability and vulnerability of different management alternatives, Figure  5.7 presents 

the combined indicator of WSPI for these scenarios. 

In Chapter 3, the copula functions were used to develop a joint probability 

distribution between reliability and vulnerability marginal distributions. Here, by use of 
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Figure  5.7. WSPI results for different manageemnt scnerios and climatic conditions. 
 

timeseries of historical reliability and vulnerability of a system, the Frank copula function 

is selected as the best fit for joint probability distribution. Then, WSPI for different sets 

of reliability and vulnerability from Figure  5.6 are estimated from the cumulative density 

function of joint probability. Figure  5.7 depicts WSPI values for NMA, CA, and DCA 

scenarios under HD, M, and WW climate conditions. As it is shown in this figure, 

regardless of climate condition, the CA option offers better performance in the system. It 

is important to focus on how the difference between WSPI of NMA and DCA is 

decreased when the climatic condition is changing from WW to HD. This means that 

under warmer and wetter climate condition, RWH is an appropriate alternative for 

managers; but in HD condition, implementing RWH is not a sustainable alternative. In 

this way, this metric cannot give more quantitative information about the performance of 

a system. 
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 CHAPTER 6

 

SUMMARY, CONCLUSION, AND RECOMMENDATIONS 

 

In this dissertation, a new vulnerability assessment approach was presented for a 

reservoir system. The inclusion of potential severity helped identify conditions when 

releasing or holding water may lead to future system failures, and the new vulnerability 

assessment method presents a more informative index. The new approach was 

demonstrated in Chapter 2 with the case study of the reservoir system to test the first 

hypothesis of the dissertation (Research Question #1). The investigation of the new 

vulnerability metric elucidated the influence of the potential severity factor on water 

supply system vulnerability. For instance, it was illustrated that if severity were the only 

factor considered, the results of the study would be different and the WarmWet climate 

condition would be considered the least vulnerable situation in the reservoir system. 

Since this conclusion was shown in this case study to overlook greater threats to the 

system, the use of the more comprehensive vulnerability metric was supported. The new 

metric shows that future changes in snowmelt (earlier and more rapid) can increase the 

vulnerability of the Parley’s reservoir system. The inclusion of potential severity in the 

vulnerability calculation helped identify conditions when releasing or holding water may 

lead to future system failures. Consequently, the traditional vulnerability metric (severity)  
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information is not adequate to fully understand the vulnerable conditions in the future, 

while the inclusion of potential severity presents a more informative index.  

A new comprehensive vulnerability metric was developed in Chapter 4. The new 

approach built on the traditional approach to quantify water vulnerability, and added in 

additional factors to account for potential severity, sensitivity, and adaptive capacity. For 

instance, results using the new vulnerability metric show Big Cottonwood Creek as the 

most vulnerable source, and City Creek as the least vulnerable, in the SLC system. This is 

contrary to the ranking that would have been provided by a commonly used vulnerability 

metric. Therefore, this metric enhanced analyses to provide more comprehensive 

guidance on planning changes in operation and modifications to infrastructure systems. 

The relative importance of the factors comprising the new vulnerability metric is 

based on judgment, surveys of stakeholders, and other means. Although the new 

vulnerability metric was shown to be useful in this case study, more research is needed to 

explore the relative sensitivity of its different factors and their weighting and to assess the 

impact of uncertainty in water systems. Clearly, the results/vulnerability can be changed 

based upon these weights. Future collaboration with the Salt Lake City Department of 

Public Utilities can quantify the vulnerability of their system based on their judgment 

about the importance of these factors in their service area. Future research is needed to 

report on a sensitivity study of the weighting and the influence of a determined weighting 

for Salt Lake City. 

In Chapter 3, for the same reservoir system, a new metric, called the Water System 

Performance Index (WSPI), was presented which could combine the reliability and 

vulnerability of a reservoir system via copula functions to present integrated information 
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about these two metrics. For instance, the reservoir system was more reliable under the 

WarmWet climate condition.  However, the vulnerability condition does not show the 

same result. In such a condition, the performance assessment is challenging for managers. 

It is difficult for them to judge which condition is more favorable and which is more 

critical to the system. Therefore, they often use one of these measures to develop 

reservoir operation policies. However, based on simultaneous information, the WSPI has 

solved this problem. Based on WSPI estimations, the performance of the system is 

degraded in comparison to the historical period. Although the reliability of the system is 

improved under the WarmWet scenario, a higher degree of damage to the system made it 

more vulnerable and therefore shows worse performance than the historical period. This 

result shows that the reservoir is more sensitive to vulnerability and related damage of 

failure rather than reliability. Accordingly, WSPI aids managers and stakeholders to have 

a better understanding of a water system’s performance. This finding verifies the second 

hypothesis of the dissertation and shows copula functions, and ultimately WSPI can 

capture and realize the extent to which the system is reliable and vulnerable at the same 

time (Research Question #2). In the future, the concept of using the joint probability to 

present the joint information between system’s performance metrics can be extended to 

other factors like resiliency, as well as present the multivariate assessment of the water 

systems. 

As a final point, to apply the presented methodologies in the dissertation and to 

incorporate management strategies for a larger scale water supply system (Research 

Question #3), there was a need to study the system in an integrated fashion. The 

dissertation presented several advances to the vulnerability and performance assessment 
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of reservoir systems. Chapter 5 demonstrated the advances using a practical application 

to a case study system. To test the third hypothesis of the dissertation, a brief summary of 

an application to answer questions for the Salt Lake City Department of Public Utilities 

was presented. For this purpose, the IWRM model and the new performance assessment 

framework were incorporated into a decision support tool (DST), the SLC-IWRM tool. 

Then, different management scenarios were tested, and the new assessment approaches 

were applied to compare the different management scenarios to answer Research 

Question #3. Results showed that incorporating the SLC-IWRM tool solved the problems 

attributed to single indicator performance evaluation of management strategies. First, this 

tool removes overestimation or underestimation in reliability or vulnerability assessment 

of centralized (developing a new reservoir) and decentralized (rainwater harvesting) 

alternatives under specific climate conditions.  For instance, results showed by solely 

assessing vulnerability associated with rainwater harvesting implementation, managers 

may rely on a system which is not really reliable. It was concluded by the low values of 

vulnerability in different climate conditions under decentralized scenarios, but high 

numbers of failure events and degree of reliability. Moreover, in cases, like Chapter 3, 

when the interpretation of reliability and vulnerability is difficult, it can mislead the 

study. For example, while managers want to make decisions between different options, 

reliability and vulnerability do not always have the same behavior. So, relying on either 

of them can cause a wrong decision. Consequently, to solve these two problems, there 

was a need for WSPI which offers simultaneous information about the reliability and 

vulnerability of the system. Concluding results of this dissertation demonstrate that 

regardless of climate condition, centralized options offer a better performance for the 
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SLC water system. Moreover, it shows that under drier climatic conditions, implementing 

the decentralized option (rainwater harvesting) cannot significantly improve the 

performance of the system in comparison to no management actions (Research Question 

#3).   

At the end, I believe there are still further opportunities to elevate this study and 

continue it to better support integrated water resource management process and decision 

making. Here is the list of improvments which can be done in the future: 

• Incorporating the life-cycle analysis, greenhouse gas emissions, and cost to assess 

the sustainability of system. 

•  Expanding the system to include the whole Jordan River basin and adding a 

water quality module to evaluate the performance of the system and assess the 

WSPI. 

•  Weighting the vulnerability factors by use of surveys and collaboration with 

managers and stakeholders. 

•  Including an Agent-Based modeling approach to simulate demand and supply 

interactions in a finer scale. 

•  Adding further centralized and decentralized alternative managements like water 

reuse, Parley’s system development, etc. 
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