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ABSTRACT 
 
 
 

All cells have distinct cellular architectures that are critical for their function.  A 

dramatic example of this relationship can be observed in cells that undergo subcellular 

branching.  In this case, cells must first specify distinct branch sites and then outgrow 

cellular projections from those sites, resulting in a branched cellular morphology. 

Branching morphology is a common type of cell shape, examples of which include glial 

oligodendrocytes found in the human brain, dendritic cells of the mammalian immune 

system and by far the best studied example, neurons. Tubulogenesis or lumen 

morphology is another type of cell formation common throughout biology.  Cellular 

tubes transport liquids and gases within animal tissues and are often found in elaborate 

organ systems that span the entire body including the human respiratory and circulatory 

systems.  Despite the importance of these forms of cell architecture, little is known about 

the genes and molecular machinery that are required for developing branched tubular 

cells.  Drosophila larval tracheal terminal cells are single, highly branched cells that have 

a subcellular lumen running through each branch.  These cells are located at the ends of a 

network of interconnected tubes and are the final, and critical step in delivery of oxygen 

and other gases to animal tissues.  Terminal cell development, which occurs primarily 

during larval stages, includes three distinct morphological processes: cell growth, 

subcellular branching and tubulogenesis.  Cell outgrowth is a general process that is used 

by many other cell types to enable the overall growth.  Subcellular branching is a 



 iv 

specialized process that includes sending cellular projections out from the plasma 

membrane towards other cellular targets.  Lastly, tubulogenesis is the process of forming 

a space or lumen within a cell through which gas can flow.   

Here, we use Drosophila larval terminal cells, a component of the respiratory system, to 

investigate the cellular mechanisms required for development of two distinct cellular 

morphologies, subcellular branching morphogenesis and subcellular lumen formation.  

Work described here focuses primarily on progress made in elucidating mechanisms of 

branch specification and branch outgrowth.  We have found that the PAR-polarity protein 

complex is required for terminal cell branching and that through the Rho GTPase Cdc42, 

and other PAR proteins, the exocyst facilitates polarized membrane addition required for 

terminal cell branch outgrowth. 
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CHAPTER 1 

 

INTRODUCTION 

 

Each cell within an organism has a distinct morphology that is necessary for its 

success and participation as a single cell or as part of a tissue.  The shape of some cells, 

such as cuboidal cells found in an epithelium, are very simple. Others, such as the shape 

of human sperm, melanocytes or muscle cells, are much more complex. One of the most 

intricate cell shapes is branched morphology.  Branched cells are common throughout 

biology and include cell types such as glial oligodendrocytes, megakaryocytes, and by far 

the best-known and well-studied examples, neurons.  Branched cells or systems have 

unique functional features that distinguish them from cells and tissues of other 

morphologies.  For instance, branching allows for increased surface area, as can be 

observed in the mammalian lung, where alveolar sacs at the tips of branched bronchioles, 

have a large surface area to facilitate the diffusion of gases (Cardoso and Lü, 2006).  

Additionally, a branched morphology allows a single cell to make contacts with many 

other cells simultaneously. In this case, the ability to contact many cells at the same time 

creates the opportunity for multiplicative signal propagation and integration. 

Conserved cellular processes likely provide general mechanisms to generate a 

branched morphology.  For branching to occur, three basic cellular steps are 



required: cell polarization (orientation), branch site specification, and branch outgrowth.  

Cell polarization is the process of establishing spatial differences within a cell that are 

required for structure, morphology, and function.  Polarization is not unique to branched 

cells and occurs in most cell types.  Branch site specification is the process of defining 

regions within a cell that are competent to promote branch growth.  Branch outgrowth 

requires polarized membrane addition to specific sites, and this process occurs in cells 

that undergo branching, ciliogenesis and cell budding (Babbey et al., 2010; Das and Guo, 

2011; Lalli, 2009; Murthy et al., 2003; Sans et al., 2003). 

Another distinct type of morphology is that of cellular tubes, which are used 

commonly throughout biology to transport liquids and gases within an organism.  One 

example is the vertebrate circulatory system, which is a system of cellular tubes that 

extend throughout the organism to shuttle blood containing vital nutrients and gases 

within the animal (Lizama and Zovein, 2013).  Interestingly, there are many examples of 

entire organ systems composed of cellular tubes that also undergo branching, such as the 

previously described respiratory and circulatory systems (Ochoa-Espinosa and Affolter, 

2012).  In these and other tubular networks, large diameter tubes are made up of multiple 

cells with many cell-cell contacts.  These tubes tend to bifurcate into smaller tubes with 

fewer cell-cell junctions.  This process continues as fewer and fewer cells make up the 

tube until, finally, a single tubular cell contacts its target tissues, where gas and nutrient 

diffusion occurs. 

Despite the important functions and elaborate and beautiful architecture, 

surprisingly little is known about the molecular mechanisms that are necessary for the 

development of a branched cell.  To investigate the genes and molecular machinery 
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required for branching morphogenesis and tubulogenesis we use a component of the 

Drosophila larval tracheal system, terminal cells. 

 

The Drosophila larval tracheal system 

The Drosophila larval tracheal system contains ~10,000 interconnected tubes that 

function in gas transport.  Air enters through openings in the insect cuticle called 

spiracles and passes through the tubes of the tracheal system until it reaches target tissues 

(Figure 1.1A and B).  The larval tracheal system is composed of multiple tubes of distinct 

morphology.  The dorsal trunks (DT) are two large multicellular tubes derived from 

primary tracheal branches that run parallel to the long axis of the animal (Figure 1.1A-C, 

see arrows).  These function primarily to collect and transport large volumes of gas 

through the animal by their direct connection to the spiracular openings at the posterior 

and anterior ends of the animal.  Secondary tracheal branches are unicellular tubes 

(Figure 1.1 insert from A and C) that function primarily to connect the dorsal trunk to the 

cells specialized for supplying gas directly to tissues, the terminal cells.  However, some 

secondary tracheal branches have more specialized functions.  For example, fusion cells 

which function in the interconnectivity of the tracheal system and connect the two dorsal 

terminal cells.  Lastly, terminal cells are located at the ends of the tracheal system and 

consist of a network of subcellular tubes contained within an elaborately branched 

cytoplasm (Figure 1.1D and E).  These cells send cellular projections out from their cell 

body to ramify with target tissues, where they facilitate gas exchange.  Together primary, 

secondary and terminal cell branches make up the highly connected and branched tubular 

network required for transporting gases to internal tissues. 
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Tracheal system development 

The tracheal system has repeating segmental and bilateral symmetry, which is 

established during embryogenesis (Figure 1.1F).  During early embryonic development 

tracheal precursor cells, expressing the bHLH-PAS domain transcription factor 

Trachealess invaginate from the ectoderm to form 10 bilateral clusters (pits) of ~80 

tracheal precursor cells within each body segment (Ghabrial et al., 2003; Llimargas, 

1999).  Expression of trachealess in tracheal precursors induces expression of the FGF 

receptor, encoded by breathless, just prior to sprouting from placodes and developing as 

tracheal pits.  An FGF ligand, encoded by the branchless (bnl) gene, is expressed in a 

fixed pattern, which is governed by global patterning hierarchies in the embryo (Lee et al., 

1996).  Bnl is responsible for directing tracheal cell migration from placodes and controls 

the highly stereotyped morphology observed in primary and secondary tracheal branching 

patterns (Sutherland et al., 1996).  In contrast, terminal cells, located at the terminal tips 

of the embryonic tracheal system, are specified by FGF-induced expression of the 

transcription factor, blistered, the Drosophila homolog of mammalian serum response 

factor (Gervais and Casanova, 2011; Guillemin et al., 1996).  It has been proposed that, 

after specification, a secondary round of Bnl signaling could trigger the activation of 

Blistered, which would be sufficient to induce terminal branch growth through 

downstream regulation of cytoskeletal components such as actin and microtubules.  

Interestingly, the requirement for blistered can be bypassed by over-expression of bnl 

(Gervais and Casanova, 2011).  Although this is sufficient to induce subcellular 

branching and lumen formation, the branches are not properly organized, which suggests 

that two pathways contribute to embryonic terminal cell development.  One pathway 
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controls organization and outgrowth of branches and requires Blistered, whereas the other, 

Blistered-independent, pathway is sufficient for processes required to differentiate a 

terminal cell, but lacks the necessary organizational cues for proper development 

(Gervais and Casanova, 2011). 

It will be important to determine the specific molecular machinery that is required 

for embryonic terminal cell development.  However, the development of terminal cell 

structures during embryonic stages is minor in comparison to the dramatic morphological 

changes that occur during larval stages.  Unlike other types of tracheal cells, terminal cell 

morphology is highly dependent upon oxygen requirement in target tissues.  Just after 

hatching terminal cells are induced to branch and undergo outgrowth in response to the 

chemoattractive signal, Branchless, which is secreted by hypoxic tissue (Lee et al., 1996; 

Sutherland et al., 1996).  This process continues throughout larval stages, with iterative 

rounds of specification and outgrowth until the oxygen demands of the tissue have been 

met.  This process results in a dynamic and highly variable branching pattern between 

individual cells that is representative of the oxygen requirement of the target tissues 

(Ghabrial et al., 2003).  Interestingly, the general shape of an individual terminal cell is 

conserved within repeating body segments and between animals, but differs only in the 

exact positioning of individual branches.  A mature terminal cell will show an average of 

thirty-two subcellular branches per cell.  These branches extend in different directions, 

never crossing over, away from the cell body and towards target tissues (Figure 1.1D).  

Terminal cells undergo the same three previously mentioned morphological processes 

that contribute to a branched morphology; cell growth, branch specification, and branch 

outgrowth.  Cell growth is a general process required for making a cell larger in all 
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directions, which likely occurs in all cell types as a growth mechanism.  Branch 

specification, however, is a much more specialized process that requires polarization and 

regionalization of a cell.  Finally, branch outgrowth requires addition of membrane to a 

specific site on the plasma membrane.  The general cell growth machinery could control 

this process, or specialized protein complexes that facilitate concentrated growth may be 

required.  Together these three cellular processes result in a highly branched cellular 

morphology. 

Using both forward and reverse genetic approaches, I have begun to elucidate 

some of the genetic and molecular components required for terminal cell branching 

morphology.  Chapter 2 of this dissertation describes the identification and 

characterization of genes required for terminal cell branching morphogenesis.  Chapter 3 

focuses on the mechanisms of polarized membrane addition and vesicle trafficking events 

required for terminal cell branch outgrowth.  Chapter 4 discusses the consequences of 

misregulating polarity proteins with respect to terminal cell branching morphology.  This 

identification and characterization of the machinery required for the cellular processes, of 

branching and outgrowth has provided valuable information about terminal cell 

development and general mechanisms used to elaborate a branched cell.  

 

Tracheal system lumen formation 

In addition to establishing the highly branched network of interconnected cells, 

the tracheal system must also form cellular tubes through which gas will flow (Figure 

1.1C).  The dorsal trunks (DTs), are made up of a polarized epithelial sheet that appears 

to have folded upon itself until the edges met.  This results in a multicellular tube with 
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many cell-cell junctions, an apical domain adjacent to the lumen, and a basal domain 

facing the inside of the animal (Samakovlis et al., 1996).  Secondary branches also 

undergo tube formation, giving rise to unicellular tubes (Figure 1.1C), which occurs by a 

process termed budding.  In this case, individual cells migrate out from a polarized 

epithelial sheet and elongate along their long axis, again with an apical domain adjacent 

to the lumen, and a basal domain facing the inside of the animal (Samakovlis et al., 1996).  

In contrast to multi- and unicellular tubes, which undergo lumen formation during 

embryogenesis, terminal cells generate a subcellular tube only after establishing the 

branched network of cellular projections during larval stages.  Terminal cell lumens are 

characterized by the absence of cell-cell junctions and are thought to develop through a 

process called cell hollowing (Figure 1.1C).  This process requires multiple steps, 

including cellular regionalization (polarization, defining the region for lumen assembly), 

membrane accumulation (organization, trafficking and assembly of membrane), and 

lumen clearing or maturation (Ghabrial and Krasnow, 2006; Jarecki et al., 1999).   

In addition to the de novo generation of a subcellular lumen, tracheal tubes must 

also generate a protective cuticle that lines the lumen to prevent dehydration, infection, 

and provide mechanical support (Moussian, 2010; Payre, 2004).  This protective cuticle 

is continuous with the entire tracheal system and the larval cuticle that covers the exterior 

of the animal.  The cuticle is made up of three distinct layers; the envelope, the epicuticle 

and the procuticle (Figure 1.1C, see insert).  The envelope is composed of proteins and 

lipids that provide a waterproof protective layer.  The epicuticle, which is located directly 

under the envelope, is composed of cross-linked proteins, which confer stiffness and 

provide structure.  Finally, the procuticle, which lies adjacent to the surface of the apical 
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membrane, consists of the polysaccharide chitin, and is responsible for the flexibility of 

the cuticle (Moussian, 2010).  Together these three layers comprise a mature cuticle, 

which is critical for gas filling of the tracheal system. 

Recently, genetic analysis has revealed several mechanisms involved in 

subcellular lumen formation.  For example, a conserved protein, Zinc finger protein 1 

(Zpr1) was shown to be required for subcellular lumen maturation (Ruiz et al., 2012).  

Terminal cells homozygous for Zpr1 show no gas-filled lumens by brightfield 

microscopy, and ultrastructural analysis reveals the defects appear to be in the 

development or maturation of the cuticle lining the lumen.  Zpr1 binds the cytoplasmic 

tail of inactivated EGF receptors and is thought to participate in mediating a short range 

EGF signal required for lumen formation in terminal cells (Ruiz et al., 2012).  However, 

Zpr1 may also participate in cross talk with the FGF receptor, Breathless, which is also 

required for lumen formation.  Additionally, Enabled, expressed downstream of Blistered, 

promotes asymmetric actin accumulation in terminal cells, which results in microtubule 

organization and establishment of apical/basal domains that eventually drive cell 

elongation and lumen formation (Gervais and Casanova, 2010).  In support of this model, 

other groups have shown the dynein motor complex transports vesicles required for 

subcellular lumen formation towards the minus-end of acetylated microtubules, found 

near branch tips (Schottenfeld-Roames and Ghabrial, 2012).  These vesicles presumably 

localize to branch tips by the action of a Rab GTP binding protein, Rab35 and its specific 

Rab-GAP, Whacked.  Loss of either of these proteins results in aberrant lumen formation 

around the cell nucleus (Schottenfeld-Roames and Ghabrial, 2012), suggesting Rab35 

and Wkd participate in a localization step, but not lumen formation per se.  
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Despite this growing body of knowledge, subcellular lumen formation remains 

poorly understood.  Chapter 2 of this dissertation describes work investigating the role of 

common polarity proteins in the development of a subcellular lumen in terminal cells.  

Finally, Chapter 4 investigates the molecular machinery required for distinct phases of 

subcellular lumen formation, maturation, and gas filling. 

 

Summary 

Terminal cell development embodies a number of important biological questions. 

How are growth signals propagated resulting in distinct cellular architectures? How are 

branch sites specified?  How does localized receptor activation result in branch 

specification and eventually outgrowth? Where is the membrane required for branch 

growth and lumen formation generated? How is the molecular machinery necessary for 

branch outgrowth properly positioned within cells?  How does a cell coordinate branch 

development and lumen formation?   Work presented in this dissertation addresses three 

main questions about terminal cell development.  Chapter 2 describes my work 

identifying genes required for terminal cell polarization and branching.  Chapter 3 

describes my work defining the cellular trafficking events required for branch outgrowth. 

Finally, Chapter 2 and Chapter 4 investigate mechanisms of subcellular lumen formation 

in terminal cells. 
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Figure 1.1 Drosophila larval tracheal system morphology.  (A and B) Dorsal view of 

L3 larva.  Branches are visualized by expressing GFP using the breathless promoter 

(A) and the air-filled lumens are visualized with brightfield microscopy (B).  Insert in 

A indicates the dorsal trunk (1o) with an arrow and a unicellular branch (2o) with an 

arrowhead.  (C) Diagram of tracheal tube morphologies.  Insert shows the structure of 

the cuticle.  (D and E) Morphology of a terminal cell from a L3 wandering larva.  The 

homozygous mutant cell is labeled with GFP (D) to visualize the branching pattern 

and brightfield microscopy (E) shows the air-filled lumen within each branch.  (F) 

Diagram of two body segments in an L3 larva.  The location of terminal cells is 

designate by the small circles.  A single body segment is highlighted in grey to show 

the repetitive pattern of terminal cell locations. Dorsal trunk (DT), lateral group (LG) 

terminal cells, fat body (FB) terminal cells.  Dashed white lines indicate the proximal 

end of the terminal cells and red arrowheads show the air-filled lumen in D and E. 
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INVESTIGATION

A Novel Function for the PAR Complex in Subcellular
Morphogenesis of Tracheal Terminal Cells

in Drosophila melanogaster
Tiffani A. Jones and Mark M. Metzstein1

Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112

ABSTRACT The processes that generate cellular morphology are not well understood. To investigate this problem, we use Drosophila
melanogaster tracheal terminal cells, which undergo two distinct morphogenetic processes: subcellular branching morphogenesis and
subcellular apical lumen formation. Here we show these processes are regulated by components of the PAR-polarity complex. This
complex, composed of the proteins Par-6, Bazooka (Par-3), aPKC, and Cdc42, is best known for roles in asymmetric cell division and
apical/basal polarity. We find Par-6, Bazooka, and aPKC, as well as known interactions between them, are required for subcellular
branch initiation, but not for branch outgrowth. By analysis of single and double mutants, and isolation of two novel alleles of Par-6,
one of which specifically truncates the Par-6 PDZ domain, we conclude that dynamic interactions between apical PAR-complex
members control the branching pattern of terminal cells. These data suggest that canonical apical PAR-complex activity is required
for subcellular branching morphogenesis. In addition, we find the PAR proteins are downstream of the FGF pathway that controls
terminal cell branching. In contrast, we find that while Par-6 and aPKC are both required for subcellular lumen formation, neither
Bazooka nor a direct interaction between Par-6 and aPKC is needed for this process. Thus a novel, noncanonical role for the polarity
proteins Par-6 and aPKC is used in formation of this subcellular apical compartment. Our results demonstrate that proteins from the
PAR complex can be deployed independently within a single cell to control two different morphogenetic processes.

FOR most cell types, morphology is key to cell function. A
dramatic example of this association is seen in cells that

undergo subcellular branching morphogenesis. In this pro-
cess, cells send out extensions from their plasmamembranes,
which grow and undergo bifurcation events to form complex,
branched networks. Examples of subcellular branching mor-
phogenesis are seen in glial oligodendrocytes (Bauer et al.
2009) and in dendritic cells of the mammalian immune
system (Makala and Nagasawa 2002), but by far the best
studied examples of this process are in neurons (reviewed
by Gibson and Ma 2011; Jan and Jan 2010). Indeed, neu-
rons are frequently categorized entirely by differences in
their branching morphologies (see Puelles 2009). However,
despite the importance of subcellular branching morphogen-

esis, little is known about the molecular mechanisms that
organize distinctive subcellular branching patterns.

We are studying the process of subcellular branching
morphogenesis in Drosophila tracheal terminal cells, a com-
ponent of the insect respiratory system. Terminal cells reside
at the ends of a network of cellular tubes that functions in
delivering air to internal tissues (Guillemin et al. 1996). The
cells are specified during embryogenesis, primarily through
a process of competitive FGF signaling and lateral inhibition
among tracheal precursors (Llimargas 1999; Ghabrial and
Krasnow 2006). At hatching, terminal cells occupy stereo-
typical positions within the larvae and have a simple mor-
phology, typically consisting of a cell body, connected at its
base to the rest of the tracheal system, with a single, sub-
cellular cytoplasmic projection. During larval development,
terminal cells undergo considerable growth and branching,
such that in late larvae, the cells have an elaborate morphol-
ogy composed of a branched network of cytoplasmic exten-
sions (Figure 1A). Growth and branching are primarily
under the control of the Branchless protein, an FGF growth
factor, which is secreted by oxygen-starved target tissues
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(Jarecki et al. 1999). The mechanisms for outgrowth are
not well understood, though likely involve cytoskeletal com-
ponents, including actin (Levi et al. 2006; Gervais and
Casanova 2010); how branch sites are selected is currently
unknown.

In addition to the process of cytoplasmic extension and
branching, each subcellular projection forms an internal
membrane-lined tube. The mechanism for tube formation is
not well understood, but may involve vesicle trafficking to
the center of the cell followed by vesicle fusion (Jarecki et al.
1999). The mature terminal cell lumen is lined by an apical
membrane, which is continuous with the apical domains of
other tubes of the tracheal system, but is distinguished from
these other apical domains in that it forms without cellular
junctions (Noirot-Timothee and Noirot 1982), typically
found in polarized epithelia (Plaza et al. 2010).

Terminal cell development epitomizes a number of
important questions in cell biology. How does local receptor
activation regulate directional cell growth and migration?
How are subcellular domains specified and organized? How
are branch points patterned and molecularly defined? A
common player in the regulation of subcellular organization
is the evolutionarily conserved PAR-polarity complex (re-
ferred to here as the PAR complex), consisting of the scaf-
folding proteins Par-6 and Bazooka (Baz, the Drosophila
homolog of Par-3), atypical protein kinase C (aPKC), and
the small GTP-binding protein Cdc42 (reviewed by Suzuki
and Ohno 2006; Goldstein and Macara 2007). In many con-
texts, these proteins function together (Welchman et al. 2007)
to effect biological roles such as asymmetric cell division
(e.g., Kemphues et al. 1988; Prehoda 2009) and establishment
and maintenance of apical/basal polarity in epithelial cells
(reviewed by Martin-Belmonte and Mostov 2008). However,
a role for the PAR complex in subcellular branching mor-
phogenesis or subcellular lumenogenesis has not been di-
rectly assayed.

Here, we show that PAR-complex proteins are required
for both subcellular branching morphogenesis and sub-
cellular lumen formation in tracheal terminal cells. We find
that all members of the complex, as well as known physical
interactions among them, are required for subcellular
branching, indicating that canonical complex activity con-
tributes to this process. The defects we observe in branch-
ing suggest that interactions between PAR-complex
proteins may regulate an iterative process that generates
branch patterns in terminal cells. Surprisingly, although the
PAR complex is well known to be required for apical/basal
polarity in other epithelial cell types, we find that only
a subset of the complex members is needed for subcellular
lumen formation in terminal cells. Furthermore, the
proteins that are required may be acting independently in
this process. Therefore, we have identified both a novel
role for the PAR complex in the control of subcellular
branching morphogenesis and a novel mechanisms by
which PAR-complex proteins participate in forming an
apical domain.

Materials and Methods

Fly stocks and genetics

Flies were reared on standard cornmeal/dextrose media and
larvae to be scored were raised at 25!. The control chromo-
somes used in experiments were y w FRT19A (Xu and Rubin
1993) or FRTG13 (Chou and Perrimon 1992), unless other-
wise stated. Alleles analyzed were bazEH171 (Eberl and
Hilliker 1988), bazFA50 [(Simoes et al. 2010) a gift from T.
Schüpbach (Princeton University, Princeton, New Jersey) via
J. Zallen (Sloan-Kettering Institute, New York, New York)],
par-6∆226 (Petronczki and Knoblich 2001), par-6f05334 (Bellen
et al. 2004), par-629VV and par-615N (this work), aPKCk06403
(Wodarz et al. 2000), aPKCpsu69 and aPKCpsu265 (Kim et al.
2009), and Cdc424 (Fehon et al. 1997). For construction of
the baz par-6 double-mutant chromosome, see Supporting
Information, File S1. For mosaic analysis we used the tracheal
specific breathless (btl) promoter (Shiga et al. 1996) in the
stocks y w P{w+, btl-Gal80} FRT19A, hsFLP122; btl-Gal4 UAS-
GFP (M. M. Metzstein, unpublished data) and y w hsFLP122;
FRTG13 P{w+, tub-Gal80}; btl-Gal4 UAS-GFP [gift from S.
Luschnig (University of Zurich, Zurich, Switzerland)]. The
par-6 genomic rescue transgene has been described previ-
ously (Petronczki and Knoblich 2001). To perform mosaic
analysis, par-6∆226, bazEH171, and Cdc424 were recombined
onto FRT19A and aPKCk06403 was recombined onto FRTG13
using standard methods. UAS-baz RNAi lines (5055R-1 and
5055R-2) were obtained from National Institute of Genetics
Fly Stock Center, Japan (NIG-Fly) and UAS-par-6 RNAi lines
(108560 and 19730) were obtained from the Vienna Dro-
sophila RNAi Center (Dietzl et al. 2007). Homozygous mutant
cells were generated using the mosaic analysis with a repress-
ible cell marker (MARCM) technique (Lee and Luo 1999). We
also used this technique to express lBtl, using UAS-lBtl (Lee
et al. 1996), in GFP-marked terminal cells that were simulta-
neously mutant or wild type for PAR-polarity genes. To gen-
erate the mosaics, 0- to 6-hr embryos were collected in fly
food vials at 25! and treated to a 45-min heat shock at 38! in
a circulating water bath before being returned to 25! for de-
velopment. For light microscopy, tracheal terminal cells were
scored at wandering third instar.

Tracheal terminal cell screen

par-629VV and par-615N were isolated in a mosaic screen for
mutations affecting terminal cell development, the details of
which are to be published elsewhere (M. M. Metzstein and
M. A. Krasnow, unpublished results). Briefly, mutations were
induced on a y w FRT19A chromosome using 25 mM EMS
(Lewis and Bacher 1968). We made MARCM mosaics in
!900 lines carrying X-linked lethal mutations and scored
for defects in terminal cells, using GFP expression to assess
branching and brightfield microscopy to assess lumen for-
mation. The lethality associated with par-629VV was mapped
with respect to visible X-linked markers using standard
methods. For basic characterization of par-615N obtained
from this screen see File S1 and Table S1.
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Immunofluorescence analysis

Wandering third instar larvae were dissected in 1· PBS to
make fillets exposing the tracheal system. Fillets were fixed
for 30 min in 4% paraformaldehyde in 1· PBS, rinsed three
times for 15 min in 1· PBST (1· PBS + 0.1% TX100), blocked
for 30 min at room temperature in PBSTB (1· PBST + 0.02%
BSA), and then incubated with primary antibody overnight
at 4!. Fillets were then rinsed three times for 15 min in 1·
PBSTB and incubated with secondary antibody for 2 hr at
room temperature. Fillets were then rinsed and mounted on
glass slides in ProLong Gold antifade reagent (Invitrogen,
Carlsbad, CA). Antibodies were used in the following con-
centrations: guinea pig anti-Baz, 1:500 (Wodarz et al. 2000);
rabbit anti-Par-6, 1:500 (Petronczki and Knoblich 2001); goat
anti-aPKC, 1:200 (Santa Cruz Biotechnology; sc-15727); and
mouse anti-GFP, 1:1000 (Clontech; 632375). Secondary anti-
bodies, conjugated to Alexa-488 or Alexa-568 (Molecular
Probes, Eugene, OR), were used at 1:1000. Images were taken
on a Zeiss (Carl Zeiss, Thornwood, NY) AxioImager M1
equipped with an AxioCam MRm.

Terminal cell branching and lumen quantification

For determination of the number of terminal cell branches
and lumens in homozygous wild-type and mutant terminal
cells, we collected fluorescent and brightfield images of
lateral group branches [LF, LG, and LH terminal cells (Ruhle
1932)] in mosaic animals. Terminal cell branches and
lumens from these images were traced manually using Neu-
ronJ (Meijering et al. 2004). Branch order was assigned on
the basis of the following criteria: each tracheal terminal cell
has a single central branch that contains the cell body, class I
terminal branches arise directly from the central branch, and
class II terminal branches arise directly from class I
branches. We extended this scheme for further orders of
branches, if present. Lumens were quantified as a ratio of
total lumen length to total branch length, and different
orders of lumens were not separated. For statistical compar-
isons we used the two-tailed Mann–Whitney U-test (http://
elegans.swmed.edu/~leon/stats/utest.cgi).

Results

par-6 is required for branching and lumenogenesis in
Drosophila tracheal terminal cells

In a genetic mosaic screen, we identified a lethal mutation,
designated 29VV, that showed distinct branching defects in
Drosophila tracheal terminal cells. Wild-type cells possess
a single central branch containing the cell nucleus and
a set of side branches (class I branches) sprouting from
the central branch (Figure 1A). In wild-type cells, class I
branches bifurcate to produce class II, class III, and so forth,
branches (Figure 1, A and A99). Homozygous 29VV cells
have normal class I branching, but subsequent branching
is much reduced, so that cells contain many fewer higher-
order branches (Figure 1, B and B99, quantitated in Figure

2A). In addition, wild-type cells contain a gas-filled lumen
running through each branch (Figure 1A9), but 29VV homo-
zygous cells lack gas-filled lumens (Figure 1B9, quantitated
in Figure 2B), apart from a region at the proximal end of the
cell near the nucleus. At this level of analysis, we cannot
distinguish whether mutant cells generate a lumen that does
not subsequently gas fill or whether no lumen is generated
at all. Finally, in contrast to wild-type cells where branches
continually reduce in diameter, leading to smooth, tapered
branch tips (Figure 1D), 29VV terminal cell tips often appear
bulbous (Figure 1E). The morphology of these abnormal tip
structures is quite variable; some appear to contain internal
membranous structures, while others appear to be simple
accumulations of cytoplasm (Figure 1E).

We mapped the lethality associated with 29VV to a region
!2 map units to the right of the gene forked. This region
contained a candidate for causing the observed tracheal cell
defects: the PAR-complex gene par-6. We sequenced the
coding region for par-6 in 29VV and found a single, non-
conservative change altering the initiation codon (ATG /
ATA, Figure S1A), suggesting that 29VV leads to a severe
loss or complete absence of par-6 function. Consistent with
this, we found that 29VV fails to complement the par-6 al-
leles ∆226 (Petronczki and Knoblich 2001) and f05534 (Bellen
et al. 2004) for lethality. Furthermore, a genomic construct
containing wild-type par-6 (Petronczki and Knoblich 2001)
rescued the lethality associated with 29VV (data not shown).
Importantly, all observed defects (branching, lumen forma-
tion, and tip abnormalities) in 29VV terminal cells were res-
cued by the par-6+ genomic construct (Figure S2, A and B) or
by trachea-specific expression of a par-6 cDNA (Doerflinger
et al. 2010) under the control of the GAL4/UAS system (data
not shown).

To compare the par-629VV terminal cell phenotype to
a known null allele of par-6, we generated par-6∆226
mosaics. ∆226 is an N-terminal deletion of par-6 that lacks
detectable Par-6 protein expression (Petronczki and Kno-
blich 2001). We found par-6∆226 mutant terminal cells had
defects similar to par-629VV in branching (Figure 1C), lumen
formation (Figure 1C9), and branch tip morphology (Figure
1F). The extent of these defects was quantitatively similar
between 29VV and ∆226 cells in branching (Figure 2A, P .
0.7) and lumen formation (Figure 2B, P = 0.029). par-6 is
known to be required for proper development of the embry-
onic cuticle (Petronczki and Knoblich 2001), and cuticular
phenotypes of par-6∆226 and par-629VV were identical, either
as zygotic mutants or in germline clones (data not shown).
From these data, we conclude that par-629VV is a null allele
and shows that Par-6 is required for diverse aspects of tra-
cheal terminal cell morphology.

The canonical PAR complex is required for terminal cell
branching but not all components are required for
lumen formation

Our results with par-6 mutants led us to test whether other
PAR-complex members also function in tracheal terminal
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cell development. First, we made mosaics of the aPKC null
allele k06403 (Wodarz et al. 2000; Rolls et al. 2003). We
found that aPKCk06403 mutant terminal cells have branching
(Figure 3A), lumenogenesis (Figure 3A9), and tip morpho-
genesis defects (Figure 3B) similar to par-6 null alleles. Also,

like par-6, loss of aPKC primarily affects class II and later-
order branches (Figure 2A).

Mosaics of the null baz alleles FA50 (Simoes et al. 2010)
and EH171 (Eberl and Hilliker 1988; Cox et al. 2001) dis-
play a similar branching defect to par-6, both qualitatively

Figure 2 Quantification of terminal cell defects. (A) Quantification of mutant terminal cell branches, using tracings as shown in Figure 1. Gray bars, total
number of branches per terminal cell; red bars, number of class I branches per cell; and blue bars, number of class II branches per cell. (B) Quantification
of gas-filled lumens for terminal cells mutant for the indicated polarity gene calculated as a ratio of gas-filled lumen length to total branch length and
normalized to wild-type cells. Error bars represent 62 SEM (n = 10).

Figure 1 par-6 is required for subcellular branching and lumen formation. Mosaic L3 larvae were generated using the MARCM system, such that only
homozygous tracheal cells express GFP under the control of the tracheal-specific breathless promoter. Expression of GFP was used to identify
homozygous cells and characterize the cellular branching pattern (A–C) and branch tips (D–F). The gas-filled intracellular lumen was examined using
brightfield microscopy (A9–C9). Wild-type terminal cells have extensive outgrowth and subcellular branching (A), a single gas-filled lumen within each
branch (A9), and normal tapered tip morphology (D). Terminal cells homozygous for par-629VV or par-6∆226 have branching defects (B and C), very little
gas-filled lumen (B9 and C9), and abnormal tip morphology (E and F). Note that in B9 and C9 other non GFP-labeled (thus wild-type) terminal cells in the
fields of view have normal, darkly contrasting, gas-filled lumens. (A99–C99) Tracing of the branching pattern observed in A–C. Branch hierarchy is
indicated by color: green, central branch; red, class I terminal branches; blue, class II terminal branches; yellow, class III terminal branches; orange, tip
abnormality. Dashed white lines demark the proximal end of GFP-labeled cells; arrows highlight gas-filled lumens. Bars: A–C, 75 mm; D–F, 25 mm.
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and quantitatively (Figures 3C and 2A and data not shown;
P . 0.6 for total branches). Surprisingly, terminal cells mu-
tant for either allele of baz appeared to have normal gas-
filled lumens (Figures 3C9 and 2B and data not shown). In
addition, tip morphology in baz mutant cells was similar to
that of wild type, with a smooth tapered appearance (Figure
3D).

Mosaics of the Cdc42 allele, Cdc424 (Fehon et al. 1997)
had very strong branching (Figure S3A) and lumen forma-
tion (Figure S3A9) defects. However, the cells also had
a number of other morphological abnormalities (Figure
S3A), confounding our analysis of tracheal defects. We have
not characterized the role of Cdc42 in tracheal terminal cells
further.

In summary, we found that all components of the PAR
complex are required for normal tracheal terminal cell
branching and that the branching defect observed in each
of the mutants consists primarily of a failure in higher-order
bifurcation events. However, not all the components are
required for subcellular lumen formation.

par-6 and baz are partially redundant for branching in
tracheal terminal cells

When we compared terminal cells mutant for various
members of the PAR complex, we noted a difference among

them in the severity of branching defects. In particular,
terminal cells mutant for the aPKC null allele had a signifi-
cantly more severe branching defect than either par-6 or baz
null mutants (Figure 2A, P , 0.01). One interpretation of
this result is that baz and par-6 are partially redundant in
regulating aPKC. To test this, we examined baz par-6 dou-
ble-mutant cells and found that they had severe branching
defects (Figure 3E), quantitatively more similar to those
observed in the aPKC null single mutant than in either
par-6 or baz single mutants (Figure 2A). These data are
consistent with the idea that par-6 and baz are partially re-
dundant in terminal cell branching morphogenesis.

PAR-polarity proteins show distinct localization in
tracheal terminal cells

We used immunocytochemistry to determine the localization
of PAR-complex proteins within tracheal terminal cells in late
L3 larvae (Figure 4). In all cases, no specific staining was
observed in cells mutant for the corresponding gene, demon-
strating the specificity of the antibodies used (Figure S4).

We found that in wild-type terminal cells, Par-6 protein is
enriched adjacent to the intracellular lumen, with little
staining observed in the rest of the cytoplasm (Figure 4A).
The apical localization of Par-6 is lost in bazmutant cells, and
instead staining is found throughout the cytoplasm (Figure

Figure 3 The PAR complex is required for subcellular branching, but not all components are required for lumen formation. As in Figure 1, homozygous
terminal cell branches and tips were visualized by GFP expression in mosaic L3 larvae (A–F) and gas-filled lumens visualized by brightfield microscopy (A9,
C9, and E9). Terminal cells homozygous for aPKCk06430 have branching defects (A), no gas-filled lumen (A9), and abnormal tip morphology (B). Terminal
cells homozygous for bazFA50 have branching defects (C), but do contain gas-filled lumens (C9) and have normal tip morphologies (D). Terminal cells
homozygous for bazFA50 par-6∆226 have branching defects (E), no gas-filled lumen (E9), and abnormal tip morphologies (F). (A99, C99, and E99) Tracing of
the branching pattern observed in A, C, and E. Branch hierarchy colors and other labels are as in Figure 1. Bars: A, C, and E, 75 mm; B, D, and F, 25 mm.
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4B). This result is consistent with multiple reports showing
that Baz is at the top of a PAR-complex localization hierarchy
(reviewed in Harris and Peifer 2005). aPKC mutant cells
mostly lack a gas-filled lumen, having this structure only in
the proximal part of the cell. In these cells, Par-6 is found
localized around this residual lumen, but in a broader domain
than is found in wild-type cells (Figure 4C).

Baz shows no enrichment around the lumen in terminal
cells that we examined, but is instead localized entirely in
the cytoplasm (Figure 4D). This lack of luminal localization
(and thus non-colocalization with Par-6) was surprising
given our result that Par-6 accumulation at the lumen is
dependent on Baz. However, this result is consistent with
reports that Par-6 and Baz do not colocalize perfectly in

other mature epithelia (Harris and Peifer 2005; Morais-
de-Sa et al. 2010). The final localization of Baz is thought
to occur by a two-step process: first, apically localized Baz
recruits Par-6/aPKC; second, aPKC phosphorylates Baz, caus-
ing its relocalization to subapical junctions (Nagai-Tamai
et al. 2002; Morais-de-Sa et al. 2010). We wanted to know
whether such a mechanism might be displacing Baz from
mature subcellular lumens, and since terminal cell branches
lack cellular junctions, Baz relocalizes to the cytoplasm. To
test this idea, we examined terminal cells mutant for the
kinase-dead aPKC allele, psu265 (Kim et al. 2009). We found
that aPKCpsu265 mutant cells have branching defects similar
to aPKC null mutant cells, but contain gas-filled lumens
(data not shown). In these cells, we found that Baz was

Figure 4 Localization of PAR-complex proteins in wild-type and mutant terminal cells. Individual homozygous terminal cells in L3 larvae were visualized
with cytoplasmic GFP (A9–G9; green channel in A99–G99) and stained for the indicated protein (A–G; red channel in A99–G99). In wild-type cells, Par-6 is
enriched at the lumen (A, arrowhead), distinct from the cytoplasmic GFP (A99). In bazFA50 homozygous mutant cells, Par-6 loses luminal enrichment and
is instead found throughout the cytoplasm (B), as seen by colocalization with GFP (B99). aPKCk06430 homozygous mutant cells have patches of gas-filled
lumen proximal to the cell body. In these regions, Par-6 is enriched around the lumen (C, arrowhead), but its domain is expanded compared to wild-type
cells. Some regions in aPKCk06430 mutant cells contain reduced GFP expression, possibly indicative of a non-gas–filled lumen (outlined with dashed white
lines in C9 and C99). Par-6 is not enriched around such lumens. In wild-type cells, Baz is cytoplasmically localized (D) and overlaps with cytoplasmic GFP
(D99). In aPKCpsu265 cells, which lack aPKC kinase activity, Baz is found enriched around the lumen (E, arrowhead). In wild-type cells, aPKC shows
punctate cytoplasmic and luminal localization (F). This localization remains the same in bazFA50 mutant cells (G). Bars: 2 mm.
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now localized to the lumen (Figure 4E), suggesting that aPKC-
dependent phosphorylation indeed relocalizes Baz from the
luminal membrane to the cytoplasm. Our results also indi-
cate that kinase activity of aPKC is required for branching,
but not for lumen formation. Finally, in par-6 or aPKC null
mutants, which lack lumens, Baz is found in the cytoplasm
(Figure S5, A and B). Therefore, apical localization of Par-6
and Baz appears to occur by mechanisms similar to those
occurring in other epithelia.

aPKC shows enrichment to the lumen, but rather than
having a continuous domain of localization, is present in
distinct puncta (Figure 4F). aPKC is also found in dispersed
puncta within the cytoplasm. Unlike Par-6, aPKC luminal
localization is unaffected by loss of baz (Figure 4G). In
par-6 mutant cells, aPKC shows punctate staining around
the residual lumen, but expression levels appear to be re-
duced (Figure S5C). Thus, each of the three proteins exam-
ined showed distinct localization behavior within terminal
cells.

Finally, we noted neither enrichment nor depletion of any
PAR-complex protein around branch sites. Thus we con-
clude that it is the localized activity of the polarity complex,
for instance by regulated interaction with downstream effec-
tors, that mediates branching. Alternatively, the polarity
complex may function within the whole cell to control
branching, independent of specific sites.

par-6 and aPKC function independently in
lumen formation

We have shown that Par-6 and aPKC are both required for
branching and lumen formation in terminal cells. These
proteins are known to have a direct interaction mediated
through their respective PB1 domains (Lin et al. 2000;
Hirano et al. 2005). To test whether this interaction is re-
quired for branching and/or lumen formation, we examined
an allele of aPKC, psu69, that contains a single point muta-
tion located just outside the PB1 domain. This mutation
completely abolishes the interaction between aPKC and
Par-6 (Kim et al. 2009). We found that tracheal terminal
cells mutant for aPKCpsu69 have branching defects (Figure
5A) similar to those observed in par-6 or baz null mutants
and significantly less severe than those observed in the aPKC
null (compare Figures 3A and 5A, quantitated in Figure 5D,
P , 0.01). Interestingly, we observed that aPKCpsu69 mutant
terminal cells have a normal gas-filled lumen running
through each branch (Figure 5A9), suggesting that the phys-
ical interaction between aPKC and Par-6 is not required for
normal lumen formation. aPKCpsu69 mutant terminal cells
also differed from aPKC null cells in that they show normal
branch tip morphology (data not shown). Finally, we found
the defects observed in aPKCpsu69 mutant cells are indepen-
dent of baz (Figure S6).

A further line of evidence suggesting par-6 and aPKC
function independently in lumen formation comes from
experiments in which we used RNAi to reduce the activity
of par-6. When expressed in the tracheal system, an RNAi

transgene directed against par-6 resulted in branching
defects similar to those in par-6-null mutants (Figure 5B,
quantitated in Figure 5D). However, we observed only weak
defects in lumen formation (Figure 5B9, quantitated in Fig-
ure 5E), suggesting the knockdown is only partial. When we
performed this par-6 knockdown in an aPKCpsu69 mutant
background, we found no difference in branching defects
(Figure 5, C and D), but the lumen formation defects were
partially ameliorated (Figure 5, C9 and E, P , 0.05). An
explanation for this is that Par-6 functions in two pools,
and disruption of binding to aPKC releases Par-6 into the
lumen formation pool (Figure 5F).

The PDZ domain of Par-6 is required for branching
and lumen formation

In our screen, we identified a second par-6 allele, designated
15N (see Materials and Methods). DNA sequence analysis
revealed 15N contains a 592-bp deletion in the par-6 gene.
This mutation is predicted to truncate the Par-6 protein
within its single, C-terminally located PDZ domain (Figure
S1, A and B). Similar to null mutations in par-6, terminal
cells homozygous for par-615N have defects in branching
(Figure 6A), lumen formation (Figure 6A9), and tip mor-
phology (Figure 6B). However, unlike null mutations, 15N
would not be expected to completely eliminate expression of
Par-6 protein. In particular, while the deletion removes the
C-terminal coding regions of par-6, the 39-UTR is mostly left
intact, missing only the first 97 (of 1677) bases. On the basis
of this, we would predict that 15N would not cause tran-
script instability, and while the PDZ domain is disrupted, the
PB1 and semi-CRIB domains, which are required for inter-
actions with aPKC and Cdc42, respectively (Lin et al. 2000;
Yamanaka et al. 2001; Li et al. 2010) are left intact (Figure
S1A).

To test residual activity in par-615N we examined the
cuticle phenotype of par-6 zygotic mutants. Embryos
hemizygous for null alleles of par-6 are known to contain
large cuticular holes, indicative of epithelial polarity defects
(Petronczki and Knoblich 2001). We observed this defect
in the par-6 null allele ∆226 (Figure 6D) and our new allele
29VV (data not shown). However, we found that par-615N
mutants do not show large cuticular holes (Figure 6E).
Trans-heterozygotes between 15N and null alleles of par-6
show occasional small holes (Figure 6F), suggesting that
15N is hypomorphic for the regulation of embryonic epithe-
lial polarity.

In contrast to this relatively mild embryonic cuticular
defect, par-615N homozygous terminal cells were quantita-
tively more severe than null alleles of par-6 (Figure 6, G and
H, P, 0.001) and quantitatively similar to aPKC null alleles.
Furthermore, while par-629VV homozygous cells contain
a small portion of gas-filled lumen proximal in the cell,
par-615N cells have almost no observable gas-filled lumen
(Figure 6A9). par-615N homozygous terminal cell-tip abnor-
malities are extensive and include large varicosities and
membrane-filled cytoplasmic swellings (Figure 6B). It is
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important to note that par-615N/+ heterozygotes have com-
pletely normal terminal cells, indicating 15N is fully reces-
sive (data not shown).

Thus, 15N appears to have complex properties, showing
weaker phenotypes in some contexts, but stronger pheno-
types—even stronger than null alleles—in other contexts.
Since the Par-6 PDZ domain is known to be required for
its physical interaction with Baz (Lin et al. 2000), our data
suggest that a direct protein–protein interaction between
Par-6 and Baz is not required for embryonic epithelial po-
larity, but is required for branching morphogenesis and lu-
men formation in tracheal terminal cells.

PAR-polarity proteins function downstream of the FGF
signaling pathway to regulate subcellular branching

Directional growth and branching in Drosophila tracheal
terminal cells are known to be controlled by an FGF extra-
cellular signal (Jarecki et al. 1999), potentiated by detection
of intracellular oxygen tension (Centanin et al. 2008). In-
crease in FGF, either by reducing oxygen levels or by using
a transgene to directly increase expression, results in in-
creased growth and branching of terminal cells (Jarecki
et al. 1999). We wanted to determine whether this increase

in branching was dependent on PAR proteins. To test this,
we made use of an activated form of the FGF Receptor, lBtl
(Lee et al. 1996). We expressed lBtl in individual terminal
cells and found that this leads to an increase in branch
number, as well as cell growth, particularly obvious in the
cell body (Figure 7A). While branch numbers were hard to
determine precisely in this genetic background (due to the
overall disorganized pattern and large number of overlap-
ping branches), they were clearly significantly higher (.40)
than those observed in wild-type cells (32 6 2). However,
when we expressed lBtl in cells that were also mutant for
par-629VV, we found these cells did not show increased
branching (Figure 7B). Indeed, the number of branches in
these par-629VV; lBtl cells (10 6 0.5) was very similar to
that in par-629VV mutant cells not expressing lBtl (13 6 2).
In contrast, lBtl-stimulated cell growth, as determined by
the increase in cell body size, was unaffected by par-629VV
(Figure 7, A and B). We observed similar results for baz: baz
mutant cells expressing lBtl show reduced branching com-
pared to wild-type cells expressing lBtl (data not shown).
From these data we conclude that Par-6 and Baz are down-
stream of FGF signaling for branching, but not for cell
growth.

Figure 5 A direct interaction between Par-6 and aPKC is required for subcellular branching, but not for lumen formation. As in Figure 1, homozygous
terminal cell branches were visualized by GFP expression in mosaic L3 larvae (A–C) and gas-filled lumens visualized by brightfield microscopy (A9–C9).
Terminal cells homozygous for aPKCpsu69 have branching defects similar to other polarity complex mutants (A), but have gas-filled lumens (A9).
Expression of UAS-par-6 RNAi leads to branching defects (B) similar to those seen in par-6 null cells. These terminal cells also have lumen defects
(B9), but these are not as severe as the defects observed in par-6 null cells. Terminal cells homozygous for aPKCpsu69 and also expressing the par-6 RNAi
show branching defects (C), but show more extensive gas-filled lumens than that seen in aPKC+ par-6 RNAi cells (C9, compare to B9). (A99–C99) Tracing of
the branching pattern observed in A–C. Quantitation of branching (D) and lumen formation (E) in cells was performed as in Figure 2. (F) Model for how
aPKCpsu69 ameliorates the lumen defects observed in par-6 partial RNAi knockdown cells. In wild-type cells, Par-6 is present in two pools. One pool is
complexed with aPKC and functions in branching, but not lumen formation. A second pool of Par-6 functions independently of aPKC and is required for
lumen formation. In the par-6 partial knockdown there are limited amounts of Par-6 available for both branching and lumen formation, and both
processes are defective. In aPKCpsu69 mutant cells, since aPKC and Par-6 can no longer interact, more of the limiting amount of Par-6 is now available for
lumen formation, resulting in a weaker lumen formation defect. Bar: 75 mm. Branch hierarchy colors and other labels are as in Figure 1. Error bars
represent 62 SEM (n = 10 for aPKCpsu69; n = 5 for par-6 RNAi and aPKCpsu69 par-6 RNAi).
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Discussion

The shape of branched networks is controlled by two
parameters: the directional growth of extensions and the
location of branching points. When combined in different
patterns, these two processes can result in a great diversity
of branched structures (Turcotte et al. 1998). Here, we have
shown that mutations in PAR complex genes uncouple FGF-
mediated growth from branching in tracheal terminal cells.
We find that in PAR-complex mutants, terminal branches
typically extend as far as they do in wild type and average
branch length is not affected by mutations in any of the PAR-
complex genes (data not shown), suggesting the PAR com-
plex is not required for branch outgrowth, but is required for
branch initiation. Furthermore, increase in branch numbers

caused by overactivation of the FGF signaling pathway
requires par-6 and baz, while FGF-induced cell growth is
independent of these genes. We propose that the FGF signal
goes through two independent pathways; one controls
growth and is independent of the PAR complex, while a sec-
ond, PAR-complex–dependent mechanism, controls branch-
ing (Figure 7C).

Little is known about the cellular mechanisms that
initiate subcellular branching, either for terminal cells or
for other cells, such as neurons. There is considerable evi-
dence that the PAR complex regulates different aspects of
cytoskeletal organization (Nance and Zallen 2011) and it
has been suggested that actin may play a role in outgrowth
of at least the initial terminal cell branch (Gervais and
Casanova 2010), although we find development of this branch

Figure 6 Analysis of par-615N. As in Figure 1, homozygous terminal cell branches and tips were visualized by GFP expression in mosaic L3 larvae (A and
B) and gas-filled lumens visualized by brightfield microscopy (A9). Terminal cells homozygous for par-615N show severe branching defects (A), have no
gas-filled lumen (A9), and have strong tip morphology defects (B). (A99) Tracing of the branching pattern observed in A. (C–F) Darkfield image of
embryonic cuticle preparations. (C) Wild-type embryo. (D) par-6∆226 hemizygote has a large cuticle hole (arrowhead), indicative of a polarity defect. (E)
par-615N hemizygote has no cuticle hole. Arrow indicates a head involution defect in this genotype. (F) par-6∆226/15N trans-heterozygote has a small
cuticle hole (arrowhead). (G and H) Quantification of terminal cell branches (G) and lumen formation (H) in par-615N mutant cells. Wild-type and par-
629VV data from Figure 2 are shown for comparison. Bars: A, 75 mm; B, 25 mm. Branch hierarchy colors and other labels are as in Figure 1. Error bars
represent 62 SEM (n = 10).

Figure 7 Par-6 is required for
FGF-induced cell branching,
but not cell growth. As in Fig-
ure 1, homozygous terminal cell
branches were visualized by GFP
expression in mosaic L3 larvae
(A and B). par-6+ terminal cells
expressing activated FGF recep-
tor (lBtl) show an increase in
branch number (A) and cell
growth, most obvious in the cell
body (arrowhead). par-629VV ter-
minal cells expressing lBtl do not

show increased branch numbers (B), but still have increased cell growth (arrowhead). (C) Model for PAR complex in FGF-mediated branching in terminal
cells. FGF stimulates outgrowth, independently of the PAR complex, and branching, dependent on the PAR complex. Bar: 75 mm.
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is apparently not affected by PAR complex mutations. Since
branch outgrowth occurs from the basal cell surface, one
interesting possibility is that outgrowth is controlled by
the counterpart to apical PAR proteins, basal polarity pro-
teins that include Par-1 and Lethal (2) giant larvae (Lgl)
(reviewed by Goldstein and Macara 2007). These apical
and basal proteins are known to negatively regulate each
other (Benton and St. Johnston 2003; Hao et al. 2006), and
this cross-regulation is critical for establishing and maintain-
ing stable apical/basal domains (reviewed by Prehoda
2009). One possibility is that basal proteins keep the basal
surface in a nonbranching configuration until it is locally
downregulated by the apical PAR complex, thus triggering
branching events. Characterization of targets of both the
apical and the basal PAR complexes should thus shed light
on mechanisms of subcellular branching.

We have found that some, but not all, of the PAR-
complex components are required for subcellular lumen
formation. Specifically, both Par-6 and aPKC are required,
while we cannot detect any role for Bazooka in this process.
In other epithelia, it is well known that disruption of any of
the four complex members generally leads to loss of
epithelial integrity (Goldstein and Macara 2007). However,
in these epithelia, the PAR complex is invariably associated
with apical junctions that form between cells. Tracheal ter-
minal branches do not possess such junctions, being seam-
less, intracellular tubes (Noirot-Timothee and Noirot 1982),
so perhaps canonical complex function is required only for
the formation and maintenance of junctions, rather than
apical determination per se. Consistent with this, mutations
in crumbs, a key apical junctional component that is gener-
ally required for stable epithelia, have no effect on terminal
cell lumen formation (S. Luschnig, personal communica-
tion). Furthermore, we propose that Par-6 localization to
the apical surface is a consequence of lumen formation,
rather than a cause. One model suggests that the localiza-
tion of PAR-complex proteins starts with a difference in lipid
composition of the apical membrane. This composition
allows binding by Baz (Gallardo et al. 2010; Krahn et al.
2010), which then functions to recruit Par-6/aPKC (Harris
and Peifer 2005). We propose a similar mechanism for the
terminal cell subcellular lumen: the lumen forms with a lipid
composition similar to that of typical apical membranes,
causing Baz localization, which in turn localizes Par-6.

We have multiple lines of evidence that Par-6 and aPKC
may function independently of each other in the lumeno-
genic process. First, loss of interaction between Par-6 and
aPKC, as in the aPKCpsu69 allele, has no effect on lumen
formation, even in the absence of a potential bridging in-
teraction through Baz. Second, the kinase activity of aPKC,
which is regulated by Par-6, is not required for lumen for-
mation. Finally, the localization of aPKC and Par-6 differs in
terminal cells, with aPKC showing punctate, Baz-independent
luminal localization, while Par-6 has a continuous, Baz-
dependent luminal enrichment. These data suggest that Par-6
and aPKC may affect different steps in a lumen formation

pathway. Other studies have identified Par-6- and aPKC-
dependent, but Baz-independent cellular processes. Specifi-
cally, cell junction formation in imaginal epithelia is thought
to be regulated by a Par-6- and aPKC-dependent endocytic
pathway that regulates levels of E-Cadherin at cellular con-
tacts (Georgiou et al. 2008; Leibfried et al. 2008). The phe-
notypes of par-6 and aPKC mutant cells in these studies
were similar, leading to the proposal that Par-6 and aPKC
function together at a specific, but as yet unidentified, endo-
cytic step. However, interfering with endocytosis even at
biochemically distinct steps can lead to similar phenotypes
(Babst et al. 2002). Hence, Par-6 and aPKC may function
independently of each other in this cell junctional regula-
tion, as we have proposed here for lumen formation.

The membranes that line intracellular lumens are thought
to be generated by a process of vesicle biogenesis, trafficking
of these vesicles to the center of the branch, and fusion
(Jarecki et al. 1999; Ghabrial et al. 2003; but see Gervais
and Casanova 2010, for an alternative model). One addi-
tional phenotype present in par-6 and aPKCmutant terminal
cells suggests a role in membrane trafficking. These terminal
cells not only lack a subcellular lumen, but also have abnor-
mal morphology at branch tips, showing swelling of their
plasma membranes and sometimes the appearance of abnor-
mal internal membranous structures. Both these defects are
suggestive of ectopic membrane at branch tips. This defect is
correlated with the lack of lumen formation. Mutants such
as baz or aPKCpsu69 with abnormal branching, but no lumen
defects, never show tip abnormalities. We propose that this
ectopic membrane is material that normally contributes to
the membrane surrounding the intracellular lumen. In this
model, Par-6 and aPKC function to partition membranes
between growing tips and intracellular lumens. In their ab-
sence, membrane intended for the lumen is trafficked to the
tips and this excess membrane leads to the morphological
defects observed.

Our genetic analysis of the PAR complex suggests that
not all its components are required equally for branching.
Specifically, aPKC mutant cells show a significantly more
severe defect than either par-6 or baz mutants. Also, we
have found that baz par-6 double mutants have a stronger
defect than either of the single mutants. These data suggest
the active form in branching is not the ternary Par-6/aPKC/
Baz complex, since loss of any one of the components should
give the same defect, and loss of any two should not give
a stronger defect. Rather, we propose Par-6 and Baz act in
parallel to regulate aPKC. Both the Par-6/aPKC and the Baz/
aPKC complexes are required for branching, but either one
has some activity on its own. Our multicomplex model may
also explain why par-615N leads to such strong branching
defects, which are comparable to those of aPKC single
mutants, but stronger than even null alleles of par-6. We
propose that aPKC switching between the active Baz and
Par-6 bound forms goes through a ternary complex, but this
complex is not active for branching. Transition from this
complex to one of the active binary complexes requires the
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Par-6 PDZ domain, such that in 15N mutants the compo-
nents become locked into the inactive ternary complex and
are thus unable to regulate branching. This model also
explains why Par-615N, lacking the interaction between
Par-6 and Baz, has defects in lumen formation, even though
Baz itself is not required in this process: the locked ternary
complex sequesters both Par-6 and aPKC from their function
in lumen formation.

Finally, we suggest that the dynamic switching of partners
within the PAR complex is not unique to subcellular branching.
Rather, this may be a common phenomenon in cases in which
the PAR complex must be remodeled during dynamic pro-
cesses, such as asymmetric cell division, but it may be less
critical for the complex to function in static systems, such as
in apical/basal polarity. This is evident from the cuticles of
par-615N zygotic mutant embryos that lack large holes, which
are indicative of polarity defects. We further predict from this
model that par-615N would lead to severe defects in other
dynamic processes, such as asymmetric division of neuroblasts.
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FIGURE S1.—Molecular analysis of  new par-6 alleles (A) Genomic structure of  par-6 showing location of  the 29VV mutation and the 

extent of  the 15N deletion.  Filled boxes represent coding sequence, open boxes represent 5’ and 3’ UTRs, the open arrow indicates the 

direction of  transcription.  Colors represent different domains of  Par-6: PB1 (green); semi-CRIB (blue); PDZ (magenta).  Ticks above 

sequence show out-of-frame (red) and first in-frame (black) start codons after the usual start.  The extent of  the 15N deletion is brack-

eted under the structure.  (B) Partial sequence of  the final exon of  par-6.  The dark line represents the sequence deleted in 15N.  The first 

asterisk represents the normal par-6 stop codon and the second asterisk represents the inferred 15N stop codon.  15N is predicted to 

remove 64 amino acids of  Par-6 and add 10 amino acids that are not normally coding before translation termination.
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FIGURE S2.—par-6 rescue experiments.  Homozygous terminal cell branches and tips were visualized by GFP expression in mosaic L3 larvae (A-D) and gas-filled lumens visualized by bright-field 

microscopy (A’ and C’).  Terminal cells homozygous for par-629VV  (A, B) or par-615N (C, D) carrying one copy of  a genomic par-6+ containing transgene have normal branching (A, C), a 

complete gas-filled lumen (A’, C’) and normal tapered tip morphology (B, D).  Dashed white lines demarks the proximal end of  the cell; arrows point to gas-filled lumens.  Scale bar; 753m.
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FIGURE S3.—Terminal cell defects in Cdc42 mutants.  Tracheal terminal cells homozygous for Cdc42
4
 have branching defects (A) and no gas-filled lumen (A’). Dashed white lines demark 

where the homozygous GFP-labeled cell starts relative to other (wild-type) tracheal cells.  Additional defects are observed in Cdc42 mutants, including fine filopodial-like extensions 

(arrowheads) and regions of  branches in which the cell membranes appear to spread out on the substrate, leading to a wider and thinner appearance (arrow).  Scale bar; 75.m.
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FIGURE S4.—Staining of  mutant cells showing specificity of  antibody staining.  Individual terminal cells in L3 larvae stained for the indicated protein (A-C).  Par-6 is localized to the lumen in 

par-629VV heterozygous cells (A), but completely absent in terminal cells homozygous for par-629VV (A’).  aPKC is detected in terminal cells heterozygous for aPKCk06403 (B), but absent in 

aPKCk06403 homozygous terminal cells (B’).  Baz is cytoplasmically localized in terminal cells heterozygous for bazFA50 (C), but absent in bazFA50 homozygous terminal cells (C’).  Heterozygous 

and homozygous mutant cells were scored within the same mosaic animals in each case.  Scale bar; 20m.
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FIGURE S5.—Localization of  Baz and aPKC in mutant backgrounds.  Individual homozygous terminal cells in L3 larvae visualized with cytoplasmic GFP (A’-C’; green channel in 

A’’-C’’) and stained for the indicated protein (A-C; red channel in A’’-C’’).  Baz is cytoplasmically localized and overlaps with cytoplasmic GFP in aPKCk06403 (A-A”), and par-629VV 

(B-B”) terminal cells.  In par-629VV mutant cells, aPKC shows punctate cytoplasmic and luminal localization (C-C’’), similar to that seen in wild-type cells.  Scale bar; 2/m.
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FIGURE S6.—Baz does not function to bridge interactions between Par-6 and aPKCpsu69 in lumen formation.  Baz has protein-protein 

interactions with both aPKC and Par-6, and one possibility we considered is that Baz may act to bridge the interaction between aPKC and Par-6, 

missing in psu69, to allow lumen formation to occur.  One prediction of  this model is that baz, while not normally required for lumen formation, 

would be required in psu69 mutant terminal cells.  To test this, we made mosaics of  aPKCpsu69 in animals also expressing an RNAi transgene 

directed against baz.  We first confirmed that terminal cells expressing the baz RNAi transgene, under the control of  the tracheal-specific breathless 

promoter, show branching defects (A), but no lumen defects (A’), akin to baz mutant terminal cells.  Next, we examined terminal cells mutant for 

aPKCpsu69 that also expressed the baz RNAi transgene.  We found that these cells still had a gas-filled lumen running through each branch (B’).  

These results indicate that the aPKCpsu69 mutant terminal cells generate lumens independent of  Baz, and therefore Baz does not bridge the 

interaction between aPKC and Par-6 in psu69 mutant cells.  Dashed white lines demarks the proximal end of  the cell; arrows point to gas-filled 

lumens.  Scale bar; 755m.
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CHAPTER 3 

 

EXOCYST-MEDIATED MEMBRANE TRAFFICKING IS REQUIRED  

FOR BRANCH OUTGROWTH IN DROSOPHILA 

 TRACHEAL TERMINAL CELLS 

 

Abstract 

Branching morphogenesis, the process by which cells or tissues generate tree-like 

networks that function to increases surface area or in contacting multiple targets, is a 

common developmental motif in multicellular organisms.  We use Drosophila tracheal 

terminal cells, a component of the insect respiratory system, to investigate branching 

morphogenesis that occurs on the single cell level.  Here, we show that the exocyst, a 

conserved protein complex that facilitates docking and tethering of vesicles at the plasma 

membrane, is required for terminal cell branch outgrowth.  We find that exocyst-deficient 

terminal cells have highly truncated branches and show an accumulation of vesicles 

within their cytoplasm.  We also show that vesicle trafficking pathways mediated by the 

Rab GTPases Rab10 and Rab11 are redundantly required for branch outgrowth.  In 

terminal cells, the PAR-polarity complex is required for branching, and we find the PAR 

complex is required for proper membrane localization of the exocyst, thus identifying a 

molecular link between the branching and outgrowth programs.  Together, our results	  



suggest a model where exocyst mediated vesicle trafficking facilitates branch outgrowth, 

while de novo branching requires cooperation between the PAR and exocyst complexes. 

 
 

Introduction 

Branching architecture is found in many biological contexts and facilitates 

numerous biological functions at both the multiple- and single-cell level.  For instance, 

multicellular branching events in the vertebrate lung increase surface area available for 

gas diffusion (Gehr et al., 1981; Warburton et al., 2010), while branching in neurons 

allows individual cells to make numerous contacts with targets, which promotes 

multiplicative signal propagation and processing (Bilimoria and Bonni, 2013; Vetter et al., 

2001).  There has been significant progress in elucidating the mechanisms of 

multicellular branching (Carmeliet and Jain, 2011; Conway et al., 2001; Warburton et al., 

2005; 2000), but much less is known about the mechanisms underlying subcellular 

branching.  During subcellular branching, membrane bound cytoplasmic extensions 

emerge from a cell, these extension undergo further bifurcation events to make a network 

of membrane bound cellular branches.  Such subcellular branching presumably depends 

on membrane addition to specific sites on the plasma membrane.  Iterative rounds of such 

site specification and outgrowth produce a branched cellular morphology.  However, the 

molecular machinery that regulates site specification and membrane addition required for 

subcellular branching, remains poorly understood. 

We use terminal cells, a component of the Drosophila tracheal system, to 

investigate the molecular machinery required for the development of a branched cellular 

morphology.  Terminal cells are located at the ends of a network of cellular tubes used 
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for insect respiration, where they elaborate processes onto target tissues to supply oxygen 

and other gases (Ghabrial et al., 2003; Locke, 1957; Samakovlis et al., 1996).  Terminal 

cells are born during embryogenesis and maintain a simple unbranched morphology until 

hatching (Guillemin et al., 1996).  Throughout larval stages, terminal cells grow and 

branch extensively in response to the fibroblast growth factor (FGF) Branchless (Bnl), 

which is secreted by hypoxic target tissues (Jarecki et al., 1999).  Bnl activates the FGF 

receptor Breathless (Btl), expressed in terminal cells, to stimulate both outgrowth and 

branching (Gervais and Casanova, 2011; Jarecki et al., 1999; Lee et al., 1996; Sutherland 

et al., 1996).  Concurrent with branching, terminal cells also form a subcellular lumen 

through which oxygen is supplied to hypoxic tissue (Gervais and Casanova, 2010; Jarecki 

et al., 1999; Ruiz et al., 2012; Schottenfeld-Roames and Ghabrial, 2012).   

Genetic screens have identified a number of genes required for terminal cell 

branching morphogenesis (Baer et al., 2007; Ghabrial et al., 2011; Jones and Metzstein, 

2011; B. Levi and Ghabrial, 2006).  One mechanism identified in these screens involves 

the activity of the PAR-polarity complex (Par-6, Baz, aPKC, and Cdc42).  In terminal 

cells the PAR complex is required for terminal cell branching but not outgrowth, 

demonstrating that these two processes can be decoupled (Jones and Metzstein, 2011).  

Here, we focus on the molecular machinery required for branch outgrowth in terminal 

cells and identify a role for the exocyst complex in subcellular branch outgrowth. 

The exocyst is an octomeric protein complex consisting of the proteins Sec3, Sec5, 

Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84, and was originally identified for its role in 

polarized membrane addition that precedes bud outgrowth and secretion in S. cerevisiae 

(TerBush et al., 1996). The exocyst complex also functions in other cellular contexts.  For 
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instance, the complex has been shown to participate in neurite outgrowth and synapse 

formation in Drosophila (Mehta et al., 2005; Murthy et al., 2003), cilia formation in 

mammalian cells (Rogers et al., 2004; Zuo et al., 2009), and axon outgrowth and receptor 

positioning in mammalian neurons (Hazuka et al., 1999; Vega and Hsu, 2001), amongst 

many other processes.  On a molecular level, the exocyst functions by facilitating 

tethering, docking, and fusion at the plasma membrane (Heider and Munson, 2012; 

Whyte and Munro, 2002) of vesicles derived from diverse cellular origins, including the 

Golgi and recycling endosome (He and Guo, 2009; Ponnambalam and Baldwin, 2003).  

Localization of the exocyst to the plasma membrane is dependent on Rho-family small 

GTPases (Estravís et al., 2011; Kanzaki and Pessin, 2003; Kawase et al., 2006; Ory and 

Gasman, 2011; X. Zhang, 2001), while trafficking of exocytic vesicles is controlled by 

Rab-family GTPases (Das and Guo, 2011; Novick et al., 2006; Pfeffer, 2012).  In 

particular, Rab8, Rab10, and Rab11 have been shown to function with the exocyst in 

delivery of vesicles to the plasma membrane (Babbey et al., 2010; Chen et al., 1998; 

Feng et al., 2012; Satoh et al., 2005; Takahashi et al., 2012).  Rab10 and Rab11 have also 

been shown to physically interact with the exocyst through directly binding Sec15 (S. Wu 

et al., 2005; X.-M. Zhang et al., 2004).    

Here, we show the exocyst complex is required for branching and branch 

outgrowth in terminal cells.  We provide evidence that the PAR complex controls 

terminal cell branching by regulating exocyst localization at the plasma membrane in 

developing terminal cells.  Ultrastructural analysis reveals exocyst deficient terminal cells 

have defects in vesicle trafficking, implicating polarized membrane addition as a 

mechanism of branch outgrowth.  Finally, we show that redundant vesicle trafficking 
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pathways converge on the exocyst to contribute to the outgrowth of terminal cell 

branches.  These finding demonstrate how the interplay of several molecular mechanisms 

contribute to subcellular branching morphogenesis. 

 
 

Materials and methods 

Fly stocks and genetics 

Flies were reared on standard cornmeal/dextrose food and larvae were raised at 

25°C.  The control chromosomes used were: y w FRT19A, FRT82B (Xu and Rubin, 1993) 

and FRTG13 (Chou, 1996), unless otherwise stated.  Alleles analyzed were sec5E10  

(Murthy et al., 2003), sec6KG08199 (Zhou et al., 2007), sec10f03085 (Bloomington 

Drosophila Stock Center), sec151 (Mehta et al., 2005), par-629VV (Jones and Metzstein, 

2011), aPKCk06403 (Wodarz et al., 2000), bazFA50 (Wodarz et al., 2000), shits1 (Masur et al., 

1990), Rab5k08232 (Wucherpfennig et al., 2003).  For mosaic analysis, we used the stocks: 

y w P{w+,btl-Gal80} FRT19A, hsFLP122; btl-Gal4 UAS-GFP (Jones and Metzstein, 2011), 

y w hsFLP122; FRTG13 P{w+, tub-Gal80} ; btl-Gal4 UAS-GFP (gift from S. Luschnig), 

and y w hsFLP122;  btl-Gal4 UAS-GFP ; FRT82B P{w+ tub-Gal80}/TM6B (gift from A. 

Ghabrial).  To perform mosaic analysis, shits, sec6, and sec10 were recombined onto 

FRT19A, FRTG13 and FRT82B, respectively, using standard methods.  UAS-Sec5 RNAi 

(27526), UAS-Sec6 RNAi (27314), UAS-Sec10 RNAi (27483), UAS-Sec15 RNAi (27499), 

UAS-Chc RNAi (27530), UAS-Rab11 RNAi (27730), UAS-YFP-Rab11 DN (23261), 

UAS-YFP-Rab10 DN (9786), and UAS-Cdc42N17 (6288) were obtained from the 

Bloomington Drosophila Stock Center (stock numbers shown in parentheses).  Rab5 

(stock number 111-239) was obtained from the Drosophila Genetic Resource Center.  
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Homozygous mutant cells were generated using the mosaic analysis with a repressible 

cell marker (MARCM) technique (Lee and Luo, 1999).  To generate mosaics, 0-6 hr 

embryos were collected in fly food vials at 25° C and treated to a 45 minute heat shock at 

38° C in a circulating water bath, then reared at 25° C until the L3 stage (Jones and 

Metzstein, 2013).  Temperature sensitive shi alleles were heat shocked and maintained at 

room temperature overnight then reared at the restrictive temperature of 29º C until they 

reached L3. 

 

Light microscopy of terminal cells 

Wandering third instar larvae were collected and heat-fixed according to a 

standard protocol developed in our lab (Jones and Metzstein, 2013).  Images were taken 

on Zeiss AxioImager M1 equipped with an AxioCam MRm. 

 

Immunofluorescence 

Wandering third instar larvae were dissected in 1X PBS to make fillets exposing 

the tracheal system.  Fillets were fixed for 30 minutes in 4% PFA in 1X PBS, rinsed 3 

times for 15 minutes in 1X PBST (1X PBS + 0.1% TX100), blocked for 30 minutes at 

room temperature in PBSTB (1X PBST + 0.02% BSA), then incubated with primary 

antibody overnight at 4°C.  Fillets were then rinsed 3 times for 15 minutes in 1X PBSTB 

and incubated with secondary antibody for 2 hr at room temperature.  Fillets were then 

rinsed and mounted on glass slides in ProLong® Gold antifade reagent (Invitrogen).  

Antibodies were used in the following concentrations: goat anti-sec8 (Beronja et al., 

2005), at 1:250 and mouse anti-GFP, at 1:1000 (Clontech, #632375).  Secondary 
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antibodies, conjugated to Alexa-488 or Alexa-568 (Molecular Probes), were used at 

1:1000.  Imaging was performed using a Leica TCS SP2 confocal microscope.  A Z-stack 

of 10-25 slices was imaged for each setting sequentially. An average intensity projection 

was generated in Image-J. 

 

Terminal cell branching and outgrowth quantification 

Terminal cell branch number and outgrowth were determined using methods 

described previously (Jones and Metzstein, 2011).  Outgrowth was quantified as the ratio 

of the length of class I branches to the number of class I branches. For statistical 

comparisons we used the two-tailed Mann-Whitney U test. 

 

Transmission electron microscopy 

High pressure freezing 

We fixed samples for TEM analysis using a protocol developed in our lab, the 

details of which will be published later.  Briefly, larvae were picked at late L1 or early L2 

and kept for a short time in a drop of 1X PBS prior to freezing. Larvae were loaded into 

Type A specimen carriers (Technotrade, cat. # 24150) and carriers were filled with E. 

coli as a cryoprotectant. Loaded Type A carriers were closed with the flat side of a Type 

B specimen carrier (Technotrade, cat. # 24250).  Carriers were immediately subjected to 

high pressure-freezing using a BAL-TEC HPM 010 freezer (BAL-TEC, Inc., Carlsbad, 

CA). Carriers containing frozen larvae were quickly transferred to cryovials that 

contained a precooled (-90°C) mix of 2% osmium tetroxide (OsO4) and 0.1% Uranyl 

Acetate in 97% acetone (McDonald and Müller-Reichert, 2002) in a Leica EM AFS 
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(Leica Microsystems, Vienna, Austria). To enhance membrane contrast 3% water was 

added to the fixative (Walther and Ziegler, 2002).  Specimens underwent freeze 

substitution for 72 hrs at -90°C, were gradually warmed at the rate of 5°C/hrs to -20°C, 

and were kept at this temperature for 8-16 hrs.  The temperature was slowly raised to 

20°C at the rate of 10°C/hr, and samples then were removed from the AFS unit to room 

temperature and rinsed immediately with pure acetone 5 times as follows: 2x15 min, 

1x30min, and 2x1 hr, before infiltration and embedding.  

 

Resin infiltration and embedding 

Infiltration was performed by incubating the specimens in a gradually increasing 

concentrations of Durcupan Fluka epoxy resin (Fluka Analytical cat. # 44610) at room 

temperature as follows: 30% epoxy resin in acetone for 5 hrs; 70% resin in acetone 

overnight; and 90% resin in acetone for 8 hrs-overnight.  Specimens were transferred to 

100% resin for 24 hrs with 2 changes, then transferred to fresh 100% resin with 2 

changes over a 3 hr period, after which polymerization was performed at 60°C for 48 hrs.  

 

Sectioning and imaging 

Ultrathin (50-60nm) sections were obtained using a diamond knife (Diatome) and 

Reichert Ultracut E microtome. Sections were collected on coated copper grids and post-

stained with 2.5% uranyl acetate for 10 minutes.  Sections were imaged at 120 kV using a 

FEI Tecnai 12 transmission electron microscope.  
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Vesicle quantification 

Vesicle accumulation was quantified by determining the average number of 

cytoplasmic vesicles per section, in ultrathin sections.  From each genotype, a total of at 

least 8 sections were evaluated (2-6 sections from 3-4 cells each). Vesicles were defined 

as roughly circular membrane bound structures of 50 nm or greater in diameter lacking 

electron dense material in their lumens. 

 

Results 

The exocyst complex is required for terminal cell branch outgrowth  

To test if the exocyst complex is required for terminal cell branching or outgrowth, 

we used the MARCM system (Lee and Luo, 1999) to generate mosaic animals with 

terminal cells mutant for exocyst components.  The use of mosaics allowed us to 

investigate the cell autonomous role of the exocyst in terminal cells, as well as to bypass 

any other requirement for organismal development.  We found that terminal cells 

homozygous for null alleles of sec5, sec6, sec10, and sec15 showed similar defects, 

including fewer branches and shorter branch lengths (Figure 3.1A-E; quantitated in 3.1G 

and 3.1H).  We used RNAi-mediated gene knockdown to test a role for other members of 

the exocyst complex for which null alleles were not available.  We found RNAi-mediated 

knockdown of exocyst complex members exo70 and exo84 resulted in terminal cell 

defects qualitatively similar to those of other exocyst deficient cells (Figure S3.1).  By 

contrast, as previously reported (Jones and Metzstein, 2011), PAR-polarity proteins such 

as Par-6 are required for terminal cell branching, but not outgrowth:  terminal cells 

deficient for par-6 and other PAR polarity genes have defects in the total number of 
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branches, but branches that are present extend as far as wild-type branches (Figure 3.1F-

H and S3.2). 

Our data suggests the exocyst complex is required for both branch specification 

and outgrowth.  However, it is possible that the exocyst is primarily required for 

outgrowth but is less important in branch specification, but this cannot be observed since 

outgrowth is required to observe specified branches.  To test this possibility, we used 

RNAi to partially inactivate exocyst complex members in terminal cells.  We found 

RNAi-mediated knockdown of sec5, sec6, sec10, or sec15, resulted in similar branching 

defects to those observed in null alleles, but relatively mild outgrowth defects, suggesting 

the knockdown was indeed incomplete (Figure 3.2A-E; quantitated in Figure 3.2P).  

Interestingly, close examination of branches in these RNAi knockdown cells revealed 

small membrane protrusions along their lengths (Figure 3.2G-J).  This morphology 

differed from that of wild-type (Figure 3.2F) or exocyst-complex null cells, in which 

branches nearly always have a smooth, tapered appearance.  We interpret these 

protrusions to be primitive branch sites that have undergone specification, but fail to 

extend when exocyst function is reduced.  These results suggest that the primary role of 

the exocyst complex is in branch outgrowth.  We also note that these nascent branches 

are more numerous than established branches, suggesting a mechanism of lateral branch 

inhibition may help pattern terminal cells. 

We next asked whether the PAR complex and the exocyst complex had 

independent roles in terminal cell branching, or whether they were participating together 

to facilitate this process.  To do this we tested for exacerbation of branching defects in 

terminal cells that were mutant for a par-6 null allele and simultaneously expressing 
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RNAi directed against exocyst complex members.  We found branching defects observed 

upon RNAi of sec5, sec6, sec10, and sec15 were not exacerbated by loss of Par-6 (Figure 

3.2K-O); the double mutant branching defects are quantitatively similar to defects 

observed by RNAi expression alone (Figure 3.2P). This result suggests the exocyst 

complex and the PAR complex likely participate in a common process required for 

terminal cell branching. 

 

The PAR-polarity complex is required for proper exocyst localization 

 in terminal cells 

The Rho GTPase Cdc42 has been shown to directly interact with exocyst-

complex members Sec3 (X. Zhang, 2001) and Exo70 (H. Wu et al., 2010).  Cdc42 is a 

component of the PAR-polarity complex, which is required for terminal cell branching 

morphogenesis (Jones and Metzstein, 2011).  Thus, Cdc42 is a candidate to link polarized 

membrane addition by the exocyst with branch specification by the PAR complex.  To 

investigate this, we determined if the PAR complex was required for localization of the 

exocyst in terminal cells.  We used immunofluorescence to visualize localization of the 

exocyst-complex member Sec8 in wild-type and Cdc42 mutant terminal cells (Figure 

3.3A-F), since localization of Sec8 is representative of the localization of the assembled 

exocyst complex at the cell membrane (Rivera-Molina and Toomre, 2013).  We found 

that in wild-type terminal cells, Sec8 protein is spread diffusely throughout the plasma 

membrane and also concentrated in distinct membrane-localized puncta (Figure 3.3B, B’ 

and C).  However, in the absence of Cdc42, the punctate membrane localization is 

completely lost (Figure 3.3E, E’ and F), leaving only the diffuse membrane staining.  We 
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obtained similar results when we examined a mutant of another PAR-complex member, 

aPKC (Figure 3.3G-I).  Together, these results suggest the PAR-polarity complex is 

required for localized concentration of the exocyst on the terminal cell plasma membrane.  

Since the PAR complex is specifically required for terminal cell branching, these results 

imply the exocyst puncta are related to processes involved in new branch formation. 

 

Vesicle trafficking is abnormal in exocyst and Cdc42 mutant terminal cells 

Given the role of the exocyst complex in vesicle trafficking and fusion at the 

plasma membrane, one prediction is that loss of exocyst function would result in an 

accumulation of cytoplasmic vesicles in mutant terminal cells.  Such a phenotype has 

been observed in exocyst defective yeast and mammalian cells (Guo et al., 1999; 

TerBush et al., 1996).  We tested if this is the case in exocyst defective terminal cells 

using transmission electron microscopy (TEM).  We found that in wild-type terminal 

cells, intracellular vesicles are rarely observed in the cytoplasm (0.13±0.35, vesicle per 

section; Figure 3.4A).  However, when RNAi is used to reduce expression of either sec5 

(Figure 3.4B) or sec15 (Figure 3.4C), we found the terminal branch cytoplasm contained 

many large intracellular vesicles, with sec5-deficient and sec15-deficient terminal cells 

containing an average of 4.7±1.5 and 1.9±1.0 vesicles per section, respectively.  Since 

each section represents only a small fraction of the cell, these data indicate that exocyst-

mutant terminal cells accumulate a large number of vesicles in their cytoplasm. 

Since Cdc42 is required for localization of the exocyst to the plasma membrane, 

we predicted we would observe a vesicle accumulation phenotype similar to exocyst 

complex mutants in terminal cells defective for Cdc42. When we examined the 
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ultrastructure of terminal cells expressing dominant-negative Cdc42, we observed an 

accumulation of intracellular vesicles similar to that observed in sec5 and sec15 deficient 

cells.  The defects observed in Cdc42 defective cells are even more severe than those 

observed in exocyst-mutant terminal cells (8.1±2.5 vesicles per section).  Our results 

suggest that vesicle trafficking in terminal cells is abnormal in the absence of the exocyst 

or Cdc42. 

 

Multiple trafficking pathways contribute to branch outgrowth 

Rab GTPases have been shown to work in concert with the exocyst complex to 

mediate trafficking of vesicles to the plasma membrane (Das and Guo, 2011).  Rab10 is 

involved in trafficking of vesicles derived from the Golgi (Lerner et al., 2013; Sano et al., 

2007; Wang et al., 2011), and Rab11 is primarily involved in trafficking of vesicles from 

recycling endosomes (Chen et al., 1998; Satoh et al., 2005; Takahashi et al., 2012).  To 

determine the role of these Rab proteins in terminal cell development, and to identify the 

source of vesicles that contribute to branch outgrowth, we expressed dominant-negative 

forms of Rab10 or Rab11 (J. Zhang et al., 2007) in terminal cells.  We found expression 

of either rab10-DN (Figure 3.5A) or rab11-DN (Figure 3.5B) resulted in strong defects in 

total branch number, but only mild outgrowth defects (quantified in Figure 3.5F and G).  

Interestingly, we found terminal cells coexpressing rab10-DN and rab11-DN (Figure 

3.5C) show outgrowth defects that are much more severe than either of the single mutants 

and are comparable to those of an exocyst null mutant (Figure 3.5F and G).  At the 

ultrastructural level, Rab10 and Rab11 defective terminal cells show cytoplasmic vesicle 

accumulation similar to that observed in exocyst complex and Cdc42 defective cells 
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(Figure 3.5D and E).  These findings imply that redundant vesicle trafficking pathways 

contribute to terminal branch outgrowth and these pathways are likely to converge on the 

exocyst to facilitate this process. 

 

Endocytosis is required for terminal cell branching 

As Rab11 is primarily involved in trafficking from the recycling endosome to the 

plasma membrane, we predicted endocytosis might also be important for terminal cell 

development.  To test this, we examined critical components of the clathrin-mediated 

endocytosis machinery: clathrin heavy chain, a major component of clathrin-coated pits 

(Conibear, 2010; Swan, 2013) and dynamin, a GTPase known to facilitate scission of 

endocytic vesicles from the plasma membrane (Ramachandran, 2011).  We found 

terminal cells expressing RNAi directed against Chc (clathrin heavy-chain) or mutant for 

shibire (shi, the Drosophila homolog of dynamin) have severe defects in total branch 

number, but only mild defects in branch outgrowth (Figure S3.3).  Additionally, terminal 

cells mutant for Rab5, a key regulator of early endosome formation (Pfeffer, 2001), show 

defects similar to shi or Chc mutant cells in branching and outgrowth (Figure S3.3).  

These defects are very similar to those caused by inhibiting Rab11, suggesting a 

trafficking pathway of endocytosis to recycling endosomes is required for terminal cell 

branching. 

 
 

Discussion 

Drosophila tracheal terminal cells have proven to be a powerful model for 

investigating molecular mechanisms controlling the formation of a branched cell.  In 
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particular, much has been learned about the signaling pathways required for terminal cell 

specification and initial development (Gervais and Casanova, 2011; Ghabrial et al., 2003; 

Guillemin et al., 1996).  However, much less is known about the mechanisms of terminal 

cell branching and branch outgrowth.  Previously, we showed the PAR-polarity complex 

is necessary for branching and functions downstream of the FGF signaling pathway that 

regulates growth of terminal cells towards hypoxic tissue (Jarecki et al., 1999; Jones and 

Metzstein, 2011).  However, the PAR-polarity complex is not in itself required for branch 

outgrowth.  Here, we characterize a role for exocyst-mediated vesicle trafficking in 

terminal cell branch outgrowth.  We find disruption of all tested exocyst-complex 

components results in severe branch extension defects in terminal cells.  Branch 

outgrowth requires membrane addition at specific sites and the exocyst is known to 

facilitate docking and fusion of vesicles at target membranes (He and Guo, 2009; 

Lipschutz and Mostov, 2002).  Our ultrastructural analysis of terminal cells defective for 

exocyst-complex components reveals an accumulation of vesicles within the cytoplasm.  

These vesicles are likely those that would deliver membrane required for branch 

extension, but in exocyst defective cells are unable to fuse with their target membranes 

and remain trapped in the cytoplasm.  Thus, we propose that exocyst-mediated vesicle 

fusion is a key mechanism of branch outgrowth in terminal cells.   

In various cellular contexts, the exocyst facilitates membrane addition required 

for both general and polarized cell growth (Cole and Fowler, 2006; Heider and Munson, 

2012).  General cell growth is a process of membrane addition that occurs throughout the 

entire plasma membrane and leads to an overall increase in cell size and length.  

Conversely, polarized outgrowth occurs at specific sites and results in extension of small 
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regions of the cell membrane.  Terminal cells presumably employ both types of cellular 

growth: general growth, as established branches get longer and wider during larval 

development, and polarized outgrowth, required for new branch formation.  We find that 

in terminal cells, the exocyst is localized diffusely throughout the cell membrane, as well 

as in greater concentrations at specific sites on the membrane.  We find that these sites of 

membrane concentration are dependent upon the PAR complex, as the punctate 

localization is lost and we only observed diffuse membrane staining in PAR-complex 

mutant terminal cells.  PAR complex mutants do not show defects in branch outgrowth, 

indicating that the diffusely localized pool of exocyst is sufficient for growth of the cell 

and for the extension of established branches.  Thus, it appears that PAR complex-

dependent membrane concentration of the exocyst is required only for de novo branching. 

We propose a model that de novo branch outgrowth is driven by a transient increase in 

exocyst complex concentration at branch sites (Figure 3.6).  As a potential mechanism for 

such an increase, we propose that local FGF receptor activation at the plasma membrane 

promotes a transient increase in exocyst concentration, leading to exocyst-mediated 

membrane addition at these sites, resulting in new branch formation.  This process 

continues through iterative rounds of specification and outgrowth to generate a branched 

cellular morphology.  A potential molecular link between FGF receptor activation and 

exocyst localization, is the PAR complex component Cdc42.  It is known that receptor 

tyrosine kinase activation can lead to the recruitment of PI3K (Funamoto et al., 2002) and 

thus to a local increase in phosphatidylinositol (3,4,5)-triphosphate (PIP3) concentration.  

PIP3 in turn can recruit GEFs that activate Cdc42 (Yang et al., 2012), and Cdc42 is 

known to stimulate assembly of the exocyst complex (Estravís et al., 2011; Kawase et al., 
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2006; H. Wu et al., 2010).  One part of this model is that the PAR complex is not 

specifically localized to branch sites, but instead is locally activated to promote branching.  

This is consistent with our previous observation that the PAR complex, despite being 

required for branching, is not specifically localized to branch sites in terminal cells.  In 

this way the PAR complex facilitates branching but is not instructive for this process.  

Finally, it is important to note that concentrated exocyst localization is found throughout 

the membrane and not only at branch sites.  Since branches in terminal cells are typically 

spaced apart it is likely that a mechanism of lateral inhibition occurs upon branch 

specification and outgrowth, as may be observed in our partial exocyst knockdown 

experiments.  Testing whether these mechanism function in terminal cells will likely 

require the development of techniques that will allow live cell imaging and biochemical 

approaches to detect changes in local concentrations of the key components 

(Schottenfeld-Roames and Ghabrial, 2012). 

The process of de novo branch formation requires addition of membrane to a 

specific site on the cell surface.  Vesicles that deliver membrane to the plasma membrane 

are primarily derived from two intracellular compartments: the Golgi and the recycling 

endosome (Bryant et al., 2010; Pfeffer, 2012; Ponnambalam and Baldwin, 2003; Prigent 

et al., 2003; Whyte and Munro, 2002).  To investigate which of these compartments is the 

likely source of membrane used for branch outgrowth, we examined terminal cells where 

we had inactivated pathway-specific vesicle-trafficking genes.  We found that disruption 

of either Golgi to plasma membrane trafficking, through knockdown of Rab10, or 

disruption of recycling endosome to plasma membrane trafficking, through knockdown 

of Rab11, leads to only mild branch outgrowth defects.  However, the simultaneous 
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inactivation of Rab10 and Rab11 leads to very strong outgrowth defects, comparable to 

loss of the exocyst.  These results suggest that the vesicles required for branch outgrowth 

can be derived either from the Golgi or from the recycling endosome.  Such a mechanism 

of terminal branch outgrowth contrasts with axonal growth, in which membrane is 

thought to be derived primarily from the Golgi (Tekirian, 2002), but may have parallels 

with dendritic morphogenesis, in which membranes can come from multiple sources 

(Sann et al., 2009).  We do not yet know if the vesicles derived from these two sources 

have different functional properties, for instance in the delivery of proteins or other 

macromolecules required for later steps in terminal cell branch function, such as guidance 

(Englund et al., 2002; Steneberg and Samakovlis, 2001) or adhesion to underlying 

substrates (B. P. Levi et al., 2006). 

Mechanisms of terminal cell branching morphogenesis encompass a number of 

important cell biological processes including, a unique combination of cellular 

organization and polarity, as well as trafficking processes.  Here, we have shown exocyst-

mediated vesicle trafficking is critical for terminal cell branch outgrowth and propose a 

model where localized PAR complex activity regulates localization of the exocyst.  

Continued genetic analysis of mutants obtained from this pliable genetic system should 

reveal more about the general processes necessary for subcellular morphogenesis, which 

are common to branched cells such as neurons, oligodendrocytes, and megakaryocytes. 
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Figure 3.1.  The exocyst complex is required for terminal cell morphogenesis.  (A-F) 

Terminal cells in MARCM mosaic L3 larvae, with homozygous cells labeled with GFP.  

(A) Wild-type terminal cells show extensive outgrowth and subcellular branching.  (B-E) 

Terminal cells homozygous for exocyst complex members sec5, sec6, sec10, or sec15 

show a reduction in branching and branch outgrowth, showing only a few branches that 

are much shorter than those observed in wild-type.  (F) Cells mutant for par-6 have fewer 

branches than wild-type cells, but normal outgrowth.  (G) Quantification of terminal cell 

branch number, measured by counting the total number of branches per cell.  (H) 

Quantification of terminal cell outgrowth, measured as the average length of class I 

branches (the first side branches to emerge from a terminal cell).  *Significant difference 

from par-6 (p<0.01); n.s., not significant (p>0.05). Dashed white lines indicate the 

proximal ends of the GFP-labeled cell.  Scale bar, 75 µm. Error bars represent ±2 SEM.  
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Figure 3.2.  The exocyst is required for terminal cell branch outgrowth.  (A-O) MARCM 

was used to generate mosaic animals with GFP-marked terminal cells expressing RNAi 

transgenes directed against specific exocyst genes.  (A) Wild-type terminal cells have 

many subcellular branches and individual branches (F) have a smooth tapered appearance.  

(B-E) Terminal cells expressing RNAi directed against exocyst complex members have 

fewer branches than wild-type cells.  (G-J) Individual branches of exocyst RNAi cells 

show numerous short extensions along their lengths.  (K) Terminal cells homozygous for 

a null allele of par-6, show branching defects, but normal outgrowth.  (L-O) RNAi of 

exocyst components in a par-6 mutant result in defects similar to those observed with 

RNAi alone.  (P) Quantification of terminal cell branch number measured by counting the 

total number of branches per cell.  † (p=0.05); n.s., not significant (p<0.05).  Dashed 

white lines indicate the proximal ends of the GFP-labeled cell.  Scale bars are 75 µm 

within each column.  Error bars represent ±2 SEM. 
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Figure 3.3. The PAR complex is required for exocyst membrane concentration in 

terminal cells.  Terminal cells in L3 mosaic larvae were identified by cytoplasmic GFP 

expression and then probed with anti-GFP (A, D, and G) and anti-Sec8 (B, E, and H) 

antisera.  (C, F and I) merged channels (GFP in green, anti-Sec8 in red).  (B and B’) In 

wild-type cells, Sec8 is found diffusely throughout the membrane and in distinct puncta.  

Terminal cells homozygous for Cdc42 (E and E’) or aPKC (H and H’) lose the punctate 

but not the diffuse membrane staining.  In the image of the aPKC mutant cell, normal 

Sec8 puncta can be observed in an adjacent, non-GFP labeled wild-type cell (asterisk).  

B’, E’, and H’ show magnified views of B, E, and H (boxed regions).  Scale bars: A-I, 10 

µm; B’, E’, and H’, 2.5 µm. 
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Figure 3.4. Terminal cells defective for the exocyst complex or Cdc42 accumulate 

cytoplasmic vesicles.  (A-D) Terminal cell branch ultrastructure observed in thin cross-

section using transmission electron microscopy (TEM).  Cytoplasmic vesicles are 

outlined in orange and green shows an apparently swollen Golgi. (A) Wild-type terminal 

cell branches show circular crosssectional morphology, the lumen is expanded and clear 

of cytoplasmic material and the cytoplasm is devoid of large vesicles.  Notes lysosomes 

appear as circular structures containing electron dense staining.  (B and C) Terminal cells 

expressing RNAi for exocyst complex member sec5 or sec15, show an accumulation of 

vesicles in their cytoplasm.  (D) Terminal cells expressing a dominant-negative Cdc42 

also show vesicle accumulation.  Arrows in A indicate microtubules (MT), which are 

much smaller than cytoplasmic vesicles (close up in inset).  Scale bars, 400 nm. 
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Figure 3.5.  Rab GTPases Rab10 and Rab11 are required for terminal cell branch 

development.  (A-C) Mosaic animals were generated using MARCM and GFP co-

expressed with dominant-negative transgenes for the indicated Rab.  (A and B) Terminal 

cells expressing dominant-negative Rab10 or dominant-negative Rab11 show defects in 

branching, but only mild defects in outgrowth.  (C) Coexpression of Rab10-DN and 

Rab11-DN leads to severe branching and outgrowth defects.  (D and E) TEM of branch 

ultrastructure in terminal cells expressing dominant-negative Rab10 or RNAi directed 

against Rab11 show accumulation of vesicles within the cell cytoplasm. Cytoplasmic 

vesicles are pseudo-colored orange.  (F and G) Quantification of branch number and 

outgrowth.  * (p<0.01).  Dashed white lines indicate the proximal end of the GFP-labeled 

cell (A-C).  Scale bars, A-C, 75 µm; D and E, 200 nm. 
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Figure 3.6. Branching morphogenesis model.  Activation of the FGF receptor leads to local 

concentration of the exocyst complex, via activation of the PAR complex.  General cell 

growth and branch elongation is controlled by trafficking of vesicle from the recycling 

endosomes or Golgi to the exocyst.  Newly formed branches inhibit outgrowth of 

subsequent branches by a process of lateral inhibition.
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Figure S3.1.  Terminal cells expressing RNAi directed against exocyst complex members 

show branching and outgrowth defects.  (A and B) GFP labeled terminal cells in MARCM 

mosaic L3 larvae expressing RNAi directed against exocyst complex members exo70 and 

exo84 have defects in branching and branch outgrowth.  Scale bar, 75 µm.
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Figure S3.2.  The PAR-polarity complex is not required for terminal cell branch 

outgrowth.  Quantification of terminal cell branch outgrowth measured as the 

average length of class I branches (the first side branches to emerge from a 

terminal cell).  Error bar represent ±2 SEM.
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Figure S3.3.  The endocytic recycling pathway is required for terminal cell branch 

development.  Terminal cells in MARCM mosaic L3 larvae with homozygous mutant cells 

labeled with GFP.  (A-C)  Terminal cells expressing RNAi directed against Chc (clathrin 

heavy chain), or homozygous mutant for shi (dynamin), or Rab5 have defects in branching 

and mild outgrowth defects.  (D and E) Quantification of branch number and outgrowth.  

Error bars represent ±2 SEM.  Dashed white lines indicate the proximal end of the 

GFP-labeled cell (A-C).  Scale bar, 75 µm.
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CHAPTER 4 
 
 
 

MOLECULAR INTERACTIONS OF THE PAR COMPLEX AND  

THE ROLE OF THE PAR- AND EXOCYST COMPLEX  

IN SUBCELLULAR TUBE FORMATION 

 
 

Introduction 
 

 We have shown previously that the conserved PAR-polarity complex is required 

for branching in terminal cells (Jones and Metzstein, 2011).  However, the molecular 

interactions that occur between PAR proteins during terminal cell branching are unknown.  

In addition, the upstream processes that function to initiate localization or local activation 

of the PAR complex, which are presumably required for terminal cell branching, remain 

unclear.  Previous work in epithelial cells showed that the PAR complex member Par-6 

acts as a scaffold protein and interacts with the Rho GTP binding protein Cdc42 (Hutterer 

et al., 2004; Joberty et al., 2000), another scaffold protein, Baz, and a protein kinase, 

aPKC (Figure 4.1A).  aPKC is negatively regulated by Baz, a process facilitated by the 

PDZ domain of Par-6 (Hung and Kemphues, 1999; Nance and Zallen, 2011).  Once 

activated, aPKC phosphorylates Baz at a conserved serine residue, and the inhibitory 

effect of Baz on aPKC is suppressed (Horikoshi et al., 2009; Morais-de-Sá et al., 2010; 

Nance and Zallen, 2011). The aPKC kinase can be transformed by proteolytic cleavage of 

the regulatory domain to a constitutively active kinase, called PKM, which is sufficient to  



rescue some of the defects associated with loss of aPKC in Drosophila (Drier et al., 2002; 

Ruiz-Canada et al., 2004).   

The 15N allele of par-6 contains a 592-bp deletion in the par-6 gene. This 

mutation is predicted to truncate the PDZ domain, which is located in the C-terminal 

region of the Par-6 protein (Jones and Metzstein, 2011; Mehta et al., 2005).  Since the 

PDZ domain of Par-6 is required for Baz binding, this mutation presumably abrogates the 

interaction between Par-6 and Baz.  However, we expect the Par-615N truncated protein to 

still efficiently bind aPKC and Cdc42.  In addition, the Par-615N transcript is expected to 

be stable as there is no premature termination codon and the 3’ UTR is mostly intact.  We 

previously showed that terminal cells homozygous for the par-615N allele have branching 

defects, lack a visible air-filled lumen, and also display an abnormal tip morphology 

(Bloomington Drosophila Stock Center,, 2004; Jones and Metzstein, 2011) .  These 

defects are quantitatively more severe than defects observed in par-6 null mutants with 

15N mutant terminal cells having approximately 2-fold fewer branches than either par-6 

or baz null terminal cells.  This suggests that the PDZ domain of par-6 is important for 

regulating aspects of terminal cell development.  Since the PDZ domain of Par-6 is 

required to bind Baz, and Baz acts to inhibit aPKC, we propose that in the absence of the 

Par-6 PDZ domain, as in 15N, there is no inhibition of aPKC by Baz, resulting in mis-

regulation of aPKC.  Unregulated kinase activity could be the cause of the severe 

branching defects observed in 15N mutant terminal cells.  Alternatively, the 15N defects 

could be caused by mislocalization or misregulation of Baz itself.  In this model, loss of 

the Par-6 PDZ domain prevents interaction with Baz, resulting in a Baz gain-of-function 

phenotype.  Here, we use double mutant analysis and expression of a constitutively active 
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version of aPKC, called PKM, to differentiate between these models.  We find the defects 

observed in 15N mutant terminal cells are not ameliorated by loss of Baz, suggesting the 

defects are not a result of unregulated Baz.  In addition, we find that constitutive kinase 

activity of aPKC is sufficient to induce severe branching defects, both in wild-type and 

aPKC mutant cells.  This suggests that both the positive and negative modulation of 

aPKC kinase is required for terminal cell branching morphogenesis. 

In epithelial cells, apical and basolateral plasma membrane domains can be 

distinguished by their different lipid and protein compositions (Drubin and Nelson, 1996; 

Hung and Kemphues, 1999; Hutterer et al., 2004; Joberty et al., 2000; Jones and 

Metzstein, 2011; Nance and Zallen, 2011; Rodriguez-Boulan and Nelson, 1989; Zhu and 

Nelson, 2012).  Similarly, in neurons, the polarized axonal and dendritic membrane 

domains also display differences in lipid composition (Drier et al., 2002; Horikoshi et al., 

2009; Hsu et al., 1999; Jones and Metzstein, 2011; Morais-de-Sá et al., 2010; Nance and 

Zallen, 2011). The activity and localization of polarity complexes, including the PAR 

complex, is regulated by spatially restricted molecular signals.  Phosphoinositides are 

membrane-tethered lipid molecules derived from phosphatidylinositol (PI), or 

phosphoinositides, synthesized from PI by the sequential action of lipid kinases.  

Localization of particular phosphoinositides is controlled by local concentrations of lipid 

kinases and lipid phosphatases at the membrane (Gassama-Diagne et al., 2006; Mehta et 

al., 2005).  For example, localization of PI 3-kinase to the plasma membrane is triggered 

by growth factors that activate receptor tyrosine kinases (RTKs) (Funamoto et al., 2002).  

This localization causes a local accumulation of PI(3,4,5)P3 (PIP3), which in turn is 

required for axon formation (Jones and Metzstein, 2011; Shi et al., 2003). Individual 
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phosphoinositides are known to control a variety of cellular processes.  PIP2, has diverse 

targets and functions in the context of sperm polarization by regulating trafficking of 

actin and membrane proteins and has been associated with localization of the exocyst 

complex (Fabian et al., 2010; Simões et al., 2010). Additionally, PIP3 can participate in 

local activation of Cdc42 and localization of Par-3, which is required for axon outgrowth 

in neurons (Keely et al., 1997; Nguyen et al., 2002; Tolias et al., 1995; Wodarz et al., 

2000). Additionally, PI 3-kinase and PIP3 have been shown to play an instructive role in 

cell polarization and migration by controlling localization of Par-3 (Baz) (Funamoto et al., 

2002; Iijima and Devreotes, 2002; Ruiz-Canada et al., 2004; Sciorra et al., 2002; Weiner 

et al., 2002).  Based on their role in localization of PAR proteins in other cell types, we 

investigated a role for specific kinases of the PI pathway in terminal cell branch 

development.  We found PI 3-kinase is required for terminal cell branching, but that no 

other component of the pathway appears necessary for terminal cell development.    

The exocyst, a conserved protein complex composed of proteins Sec3, Sec5, Sec6, 

Sec8, Sec10, Sec15, Exo70 and Exo84, is required for docking and fusion of vesicles at 

target membranes, where it facilitates cell outgrowth. Chapter 3 of this dissertation shows 

that exocyst mutants fail to form fully-grown branches, demonstrating that the exocyst is 

required for branch outgrowth in terminal cells.  Interestingly, members of the exocyst 

have recently been shown to participate in early regulatory steps and assembly of 

autophagy machinery (Bodemann et al., 2011; Farré and Subramani, 2011; Shiga et al., 

1996), thus implicating the exocyst in a process that requires intracellular membrane 

assembly. Such assembly is reminiscent of the membrane accumulation that is thought to 

occur in the cell-hollowing process necessary for subcellular lumen formation in terminal 
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cells.  Here, we show members of the exocyst complex are required for a step in terminal 

cell lumen maturation. 

 
 

Materials and methods 

Fly stocks and genetics 

Flies were reared on standard cornmeal/dextrose media and larvae were raised at 

25°C.  The control chromosomes for these experiments were y w FRT19A and FRT82B 

(Jones and Metzstein, 2011; Xu and Rubin, 1993) and FRTG13 (Chou, 1996).  Alleles 

analyzed were sec5E10 (Murthy et al., 2003), sec6KG08199 (Mehta et al., 2005), 

sec10f03085(Bloomington Drosophila Stock Center,, 2004), sec151 (Mehta et al., 2005), 

par-615N (Jones and Metzstein, 2011), bazFA50 (Simões et al., 2010) [a gift from 

T.Schüpbach (Princeton University, Princeton, New Jersey) via J. Zallen (Sloan-

Kettering Institute, New York, New York)], aPKCk06403 (Wodarz et al., 2000) and UAS-

PKM (Ruiz-Canada et al., 2004) a gift from V. Budnik.  For mosaic analysis we used the 

tracheal specific breathless (btl) promoter (Shiga et al., 1996) in the stocks y w P{w+,btl-

Gal80} FRT19A, hsFLP122 ; btl-Gal4 UAS-GFP (Jones and Metzstein, 2011).  UAS-

Sec5 RNAi (27526), UAS-Sec15 RNAi (27499), UAS-fwd (29396*, 31187, 35257) RNAi, 

UAS-sktl (35198*, 27715) RNAi, UAS-PLC (31269, 31270*, 32438) RNAi, UAS-PI3K 

(35265, 35798, 31252, 27690*) RNAi were obtained from the Bloomington Drosophila 

Stock Center (stock numbers shown in parentheses, * indicates the lines imaged).  

Homozygous mutant cells were generated using the mosaic analysis with a repressible 

cell marker (MARCM) technique (Lee and Luo, 1999). To generate the mosaics, 0-6 hr 
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embryos were collected in fly food vials at 25° C and treated to a 45 minute heat shock at 

38° C in a circulating water bath before being returned to 25° C for development. 

 
 
Construction of baz par-615N double mutant 

Because baz and par-6 are located close to each other on the Drosophila X 

chromosome (baz is ~1.3 m.u. to the left of par-6), we used a two-step recombination 

process to construct the baz par-615N double mutant.  First, we recombined the viable 

visible marker, scalloped (sd1), located about 7 m.u. to the left of par-6 (thus ~5.7 m.u. 

from baz) onto par-615N.  par-615N FRT19A/FM7c females were crossed to sd1/Y males, 

nonbalancer female progeny (sd1/par-615N FRT19A) were collected and crossed to 

Dp(1;Y)W73, y B f+ bearing males.  Dp(1;Y)W73 is a Y-linked duplication that covers 

par-6 and baz, but not sd.  Individual sd males were used to establish lines balanced with 

FM7c.  Lethal lines, were chosen and complementation tests, using a null allele of par-6, 

were performed to confirm the presence of par-615N.  In addition, terminal cell defects in 

these presumptive 15N mutants were also evaluated in mosaic animals and found to be 

identical to those observed in par-615N, confirming the presence of 15N as well as FRT19A.  

Next, sd1 par-615N FRT19A/FM7c females were crossed to bazFA50 FRT19A/Dp(1;Y)W73, y 

B f+ males, nonbalancer female offspring were collected and crossed to Dp(1;Y)W73, y B 

f+ bearing males.  Single sd+ males were selected, and crossed to baz and to par-6 

carrying females.  Animals that failed to complement both par-6 and baz were used to 

establish lines. 
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Light microscopy of terminal cells 

Wandering third instar larvae were collected and heat-fixed according to a 

standard protocol developed in our lab (Jones and Metzstein, 2013). Images were 

obtained using a Zeiss AxioImager M1 equipped with an AxioCam MRm. 

 
 
Quantification of terminal cell branch number  

Terminal cell branch number was determined using methods described previously 

(Jones and Metzstein, 2011).  

 
 
Immunocytochemistry  

Wandering third instar larvae were dissected in 1X PBS to make fillets exposing 

the tracheal system.  Fillets were fixed for 30 minutes in 4% PFA in 1X PBS, rinsed 3 

times for 15 minutes in 1X PBST (1X PBS + 0.1% TX100), blocked 30 minutes at room 

temperature in PBSTB (1X PBST + 0.02% BSA), then incubated with primary antibody 

overnight at 4°C.  Fillets were then rinsed 3 times for 15 minutes in 1X PBSTB and 

incubated with secondary antibody for 2 hr at room temperature.  Fillets were then rinsed 

and mounted on glass slides in ProLong® Gold antifade reagent (Invitrogen).  Antibodies 

were used in the following concentrations: rabbit anti-pio, 1:100 (Jaźwińska et al., 2003) 

and mouse anti-GFP, 1:1000 (Clontech, #632375).  Secondary antibodies, conjugated to 

Alexa-488 or Alexa-568 (Molecular Probes), were used at 1:1000.  Imaging was 

performed using a Leica TCS SP2 confocal microscope.  A Z-stack of 10-25 slices was 

imaged for each setting sequentially. An average intensity projection was generated in 

Image-J. 
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Transmission electron microscopy 

High pressure freezing, resin infiltration and embedding, sectioning and imaging 

were performed using methods described in Chapter 3. 

 
 

Results 

The PDZ domain of Par-6 is required for regulation of aPKC 

 The par-6 allele 15N shows more severe branching defects than a null mutant 

allele (Jones and Metzstein, 2011), suggesting that the Par-6 15N protein has neomorphic 

or gain-of function activity.  The 15N allele truncates the PDZ domain, which has been 

shown to bind Baz in canonical PAR complex formation.  We therefore predict that, in a 

15N mutant, Baz cannot interact with Par-6, and this loss of binding causes a gain-of-

function phenotype.  The resulting branching defects could be due to the loss of Baz 

interacting with the rest of the PAR complex and failure to negatively regulate aPKC, 

causing constitutive kinase activity in aPKC.  Alternatively, unbound Baz may negatively 

affect the overall polarity of the cell, if it has intrinsic gain-of-function activity. 

To distinguish between these models, we aimed to generate a 15N baz double 

mutant.  This would allow us to determine if the defects observed in the 15N mutant were 

due to Baz gain-of-function activity.  To do this we used MARCM to generate 

homozygous baz par-615N double mutant terminal cells.  Wild-type terminal cells show 

many subcellular branches (Figure 4.1B) and a gas-filled lumen (Figure 4.1B’), and each 

branch tip has a smooth, tapered appearance (Figure 4.1B’’).  Terminal cells homozygous 

for 15N show defects in branching (Figure 4.1C), almost no gas-filled lumen (Figure 

4.1C’), and tip morphology defects (Figure 4.1C’’).  In contrast, while baz homozygous 

82



terminal cells show similar branching defects (Figure 4.1D), they have a complete gas-

filled lumen (Figure 4.1D’) and smooth, tapered tip morphology (Figure 4.1D’’).  We 

found double mutant baz par-615N terminal cells had branching defects (Figure 4.1E), 

lumen defects (Figure 4.1E’) and tip morphology defects (Figure 4.1E’’).  These defects 

were both qualitatively and quantitatively (Figure 4.1F) similar to those observed for 15N.  

These data indicate the severe defects seen in 15N are not caused by a Baz gain of 

function, but instead suggest that unregulated aPKC is responsible for the defects 

observed in Par-615N.   

To test this hypothesis, we expressed a truncated version of the mouse homolog of 

aPKC, PKM, which functions as a constitutively active kinase (Drier et al., 2002; Ruiz-

Canada et al., 2004). We found that wild-type mosaic terminal cells that expressed PKM 

had severe branching defects (Figure 4.2A).  Similarly, expressing PKM in aPKC 

homozygous terminal cells also resulted in branching defects (Figure 4.2B), suggesting 

regulation of the kinase activity of aPKC is critical for terminal cell branch development. 

 
 
The phosphoinositide PI(3,4,5)P3 is required for terminal cell  

branching morphogenesis 

To examine mechanisms of PAR protein localization, we tested whether specific 

phosphoinositides are required for terminal cell branching. When we generated mosaic 

animals with terminal cells expressing RNAi for kinases required for phosphoinoside 

production, we found the PI4K fwd (Figure 4.3B), PI5K sktl Figure 4.3B), or PLC 

(Figure 4.3D) had normal branching and gas-filled lumens (Figured 4.3B’- 4.3D’).  

However, terminal cells expressing RNAi for PI3K showed mild branching defects 
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(Figure 4.3E) but no lumen defects (Figure 4.3E’).  These data suggest PI3K is important 

in terminal cell branch development and suggests the phosphoinositide PI(3,4,5)P3, the 

product of PI3K and PIP2, is required for branching.  

 
 
Par-6 and aPKC organize apical membranes required for  

lumen formation  

Previously, we showed PAR-polarity proteins Par-6 and aPKC, but not Baz, are 

required for terminal cell lumen morphogenesis (Jones and Metzstein, 2011).  However, 

the methods used in this study could only detect fully mature, gas-filled lumens.  

Therefore, we could not distinguish lumens that never form from lumens that are 

defective at an intermediate stage of development, such as air filling.  To distinguish 

between these possibilities, we used immunofluorescence to visualize localization of Pio, 

an apically secreted luminal protein (Jaźwińska et al., 2003), in mutant and wild-type 

terminal cells.  Pio is required in the embryonic tracheal system as a vital component of 

the extracellular matrix to facilitate cell elongation and intercalation in multicellular and 

unicellular tubes (Jaźwińska et al., 2003).  However, it is not required for terminal cell 

development and simply acts as a marker to visualize the apical membrane (Jaźwińska et 

al., 2003).  We used GFP expression to identify homozygous terminal cells in MARCM 

mosaics (Figure 4.4A-E) and found that in wild-type cells, Pio is localized to distinct 

puncta lining the entire lumen (Figure 4.4F and F’).  Terminal cells homozygous null for 

baz, which have an air-filled lumen, also show punctate luminal localization of Pio 

(Figure 4.4G and G’).  Conversely, aPKC (Figure 4.4H and H’), or par-6 (Figure 4.4I 

and I’) null mutant terminal cells show diffuse, sporadic localization of Pio protein in 
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regions devoid of GFP.  This segregation suggests some sort of compartmentalization of 

Pio, possibly within membrane bound vesicles.  In terminal cells homozygous for 15N 

(Figure 4.4J and J’), Pio protein is mostly diffuse throughout the cytoplasm, but it 

accumulates in the cytoplasmic blobs found at terminal cell branch tips (as seen in Figure 

4.1B’’).  Since Pio is only secreted onto apical domains, these data suggest aPKC, par-6, 

and 15N mutant terminal cells contain regions or compartments with apical identity, 

suggestive of partial lumens.  In addition, TEM of 15N mutant terminal cells shows the 

apical membrane takes up a much larger portion of the cell and contains large vesicle like 

structures in place of the lumen, something never observed in wild-type (Figure 4.5A and 

B).   

 
 
Exocyst complex components are required for lumen maturation in 

terminal cells 

In Chapter 3 of this thesis, we showed the exocyst complex is required for vesicle 

tethering events that facilitate branch outgrowth in terminal cells.  To test the role of the 

exocyst in lumen formation we used MARCM to generate homozygous mutant terminal 

cells for exocyst complex members sec5, sec6, sec10, and sec15.  We used GFP to 

identify homozygous cells and brightfield microscopy to visualize the air-filled lumen 

(Figure 4.6A-E and A’-E’).  We found terminal cells homozygous for any of these 

exocyst components had no air-filled lumens (Figure 4.6B’-E’), indicating members of 

the exocyst complex are required for lumen development.  However, using brightfield 

microscopy only shows portions of the lumen that are gas-filled and does not differentiate 

between defects that may occur in earlier steps of lumen formation. 
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The process of lumen formation likely requires multiple steps including cell 

regionalization, membrane accumulation, domain identification, and lumen maturation 

and clearing.  The exocyst could participate in any one of these steps.  To further 

investigate the role of the exocyst in lumen formation we used transmission electron 

microscopy (TEM) to visualize the lumen ultrastructure in wild type and exocyst 

defective terminal cells (Figure 4.7A-C).  We found that in wild-type cells, the lumen is 

generally found near the center of the cell, and the envelope and thin, waxy water-

resistant outer layer, called the epicuticle are electron dense, and are closely associated 

with the less electron dense chitinous underlayer, called the procuticle (Figure 4.7A).  In 

contrast, when we express RNAi directed against exocyst components sec5 (Figure 4.7B) 

or sec15 (Figure 4.7C) lumen ultrastructure appears defective.  In sec5 terminal cells the 

epicuticle, is irregularly shaped and the procuticle, is often not easily identified, and the 

luminal space appears filled with membrane bound structures (Figure 4.7B).  In sec15 

deficient terminal cells the epicuticle has a more regular shape, but the procuticle is 

misshapen and the space between these two membranes is much larger than is ever 

observed in wild-type cells (Figure 4.7C).  These data demonstrate that exocyst complex 

members are not required for trafficking membrane for lumen assembly or initial 

organization, but instead suggest the exocyst is required for a lumen maturation step, 

possibly through maturation of the cuticle. 

One important aspect of terminal cell development is the regionalization and 

specification of apical and basal domains.  In terminal cells, the apical domain is tightly 

associated with the cuticle that lines the lumen and is critical for lumen formation.  One 

prediction for the role of the exocyst in lumen formation is that it would be required for 
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delivering components to the membrane that are necessary for apical identity.  To test 

this possibility we used immunohistochemistry to visualize localization of the apical 

membrane marker Pio in wild-type and exocyst-deficient terminal cells.  Here, GFP 

identifies homozygous terminal cells (Figure 4.7D-F).  In the wild-type cells Pio protein 

was localized to distinct puncta lining the lumen (Figure 4.7D’).  Conversely, when we 

used RNAi to inhibit expression of sec5 (Figure 4.7E-E’’) or sec15 (Figure 4.7F-F’’), this 

punctate localization is lost and Pio protein appears diffuse or nearly absent (Figure 4.7E’ 

and F’).  Taken together these data suggest members of the exocyst are required for a 

lumen maturation step. 

 
 

Discussion 

We have shown previously that the PAR-polarity complex, composed of the 

proteins, Par-6, Baz, aPKC, and Cdc42, is required for terminal cell branching.  In 

addition, we have also shown that physical interactions known to occur between aPKC 

and Par-6, and Par-6 and Baz, are also required for terminal cell branching. Finally, we 

also found that terminal cells homozygous for the neomorphic allele of par-6, 15N have 

more severe branching defects than a null allele. Here, we investigate the potential cause 

of the additional defects observed in 15N mutants in more detail.  One possibility is that 

this is due to loss of Par-6 mediated Baz regulation.  We found that the strong defects 

observed in 15N mutants are not ameliorated by the loss of Baz, showing that they are not 

due to a Baz gain of function defect, which suggests the PDZ domain of Par-6 is 

important for regulation of aPKC, likely through its ability to bind Baz, which negatively 

regulates aPKC.  Furthermore, evidence to support the idea that 15N could have aPKC 
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gain of function activity comes from expression of PKM.  Here, we show expression of 

PKM in tracheal terminal cells is sufficient to cause severe branching defects in both 

wild-type and aPKC mutant terminal cells, suggesting a gain of function effect, although 

we did not test this directly.  We propose that the interaction between the PDZ domains 

of Par-6 and Baz is required to govern the activation and kinase activity of aPKC. In the 

absence of a functional PDZ domain, as in 15N, Par-6 can still bind and activate aPKC, 

however, Baz is unable to bind and negatively regulate this process. We propose that the 

excess branching defects seen in 15N, are a result of the unregulated kinase activity of 

aPKC, which might result in unregulated phosphorylation of downstream targets that 

could disrupt the polarization of potential branch sites. This type of regulation is 

reminiscent of the regulation that occurs in epithelial cells, where Baz is required to 

negatively regulate aPKC in the context of establishing apical and basolateral domains. 

15N is the first gain-of-function allele of par-6 described in Drosophila and would 

therefore be an interesting allele to test in other cellular contexts where the PAR complex 

is required, such as in axon outgrowth. 

PAR proteins participate in terminal cell branching morphogenesis downstream of 

the FGF signaling pathway.  However, the molecular cues that are required for PAR 

protein positioning remain unknown.  In neurons, regional activation of 

phosphatidylinositol 3-kinase (PI3K), an enzyme that converts PIP2 to PI 3,4,5-

trisphosphate (PIP3), is required for localization of Baz, and this is necessary for axon 

specification.  We predict loss of PI3K would inhibit localized PIP3 production and 

subsequent PAR protein localization.  If this were the case, we would expect inhibition of 

PI3K to lead to phenotypes similar to PAR complex loss of function alleles.  However, 
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we found inhibiting expression of PI3K in terminal cells resulted in only mild branching 

defects, suggesting PI3K, PIP3, have no major role in terminal cell branching.  We also 

predicted other PI kinases would be important for lumen formation, based on predictions 

that the apical or luminal membrane of a terminal cell would have a different lipid 

composition than the basal or branching membrane of the cell.  Surprisingly, no other PI 

kinase we tested showed any terminal cell defects in branching or lumen formation.  It is 

possible that using RNAi, which results in an incomplete knockdown, could confound 

these results and PI3K and other PI kinases and phosphatases may indeed play major 

roles in terminal cell development.  The minor defects in branching were unexpected and 

we propose examination of null alleles would better decipher the role of various 

phosphatidylinositides in terminal cell branching and lumen formation. 

Lumen formation is thought to occur by a process of cell hollowing, and this 

process likely includes numerous steps including, polarization, scaffold assembly, vesicle 

trafficking, and vesicle fusion.  Additionally, proper secretion and assembly of the 

luminal cuticle is also required to generate a function lumen.  Previously, we found PAR-

polarity proteins aPKC and Par-6, but not Baz, are required for terminal cell lumen 

development.  However, the methods used previously could only detect mature gas-filled 

lumens thus did not provide information about the specific step at which defects occurred.  

Par-6 and aPKC are required for apical membrane identity in epithelial cells (Bryant et al., 

2010).  We predicted these polarity proteins could participate in either organization 

membrane bound vesicle (polarization) at a presumptive lumen site or provide apical 

identity for vesicles that make up the luminal membrane.  Using localization of an 

apically secreted protein, Pio as a marker, we found aPKC and Par-6 mutant terminal 
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cells have unorganized and discontinuous regions of apical membrane throughout the 

cells.  Additionally, we found the Par-6 allele 15N has a massively expanded apical 

membrane.  Despite this, as we showed previously, 15N shows no lumen by brightfield 

microscopy (Jones and Metzstein, 2011).  These data suggest a model in which the PAR-

polarity proteins Par-6 and aPKC are required for apical membrane organization, which 

is necessary for terminal cell lumen development. 

The exocyst complex is required for trafficking, docking and tethering of vesicles 

at the plasma membrane.  We showed in Chapter 3, that the exocyst complex facilitates 

fusion of vesicles required for terminal cell branch outgrowth.  We expected the exocyst 

would also play a role in lumen formation.  We found loss of the exocyst complex 

showed defects in the formation of terminal cell lumen gas-filling as assayed by 

brightfield microscopy.  We further predicted the exocyst would participate in the 

trafficking of vesicles necessary for luminal membrane formation.  However, we instead 

found the exocyst complex is not required for lumen initiation, as we can observe an 

immature luminal structure by TEM in exocyst defective cells. The lumen in these cells 

does show a defective cuticular lining in which the envelope and epicuticle are 

disorganized and the procuticle domain is expanded.  Additionally, we found the 

normally apically secreted Pio protein, is not found in the presumptive lumens.  

Therefore, we propose the exocyst complex is not required for initial membrane assembly 

steps in terminal cell lumen formation, but instead is required for secretion and 

maturation of the cuticle.  The cuticle is in turn necessary for terminal cell air filling and 

for maturation of the lumen. 

 

90



Figure 4.1 baz 15N double mutants show severe terminal cell defects. (A) PAR complex 

protein-protein interaction model.  Dashed lines indicate interaction domains.  

Abbreviations: Post synaptic density protein (PSD95), Drosophila disc large tumor 

suppressor (Dlg1), and Zonula occludens-1 protein (zo-1) (PDZ domain), Phox and 

Bem1 (PB1 domain), Cdc42/Rac Interactive Binding (CRIB).  (B-E) Mosaic larvae were 

generated using MARCM, with homozygous mutant cells labeled with GFP to visualize 

cytoplasmic branching (B-E) and brightfield microscopy to visualize the darkly 

contrasting air-filled lumen (B’-E’).  Wild-type terminal cells show extensive outgrowth 

and subcellular branching (B) a complete air-filled lumen (B’) and smooth tapered tip 

morphology (B’’).  Terminal cells homozygous for par-615N show defects in branching 

(C), no visible air-fill lumen (C’) and abnormal tip blobs (C’’).  baz mutant cells show 

branching defects (D), but an air-filled lumen (D’) and normal tip morphology (D’’).  

Terminal cells homozygous for baz par-615N show branching defects (E), no visible air-

filled lumen (E’) and abnormal tip blobs (E’’).  (F) Quantification of total terminal cell 

branch number per cell.  (G) Gene interaction model. Dashed white lines indicate the 

proximal end of the cell.  White arrows highlight the air-filled lumen. Scale bar, B-E, B’-

E’ 75 µm and B’’-E’’, 25 µm. 
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A B

aPKC+ UAS-PKM aPKCk06403 UAS-PKM

Figure 4.2 Activated aPKC causes branching defects in terminal cells.  As in Figure 4.1, 

homozygous terminal cell branches are visualized and identified by expression of GFP 

in L3 mosaic animals.  (A) Expression of PKM in wild-type terminal cells shows 

defects in terminal cell branch number and morphology.  (B) Terminal cells homozy-

gous for aPKC and expressing PKM also show branch number and morphology 

defects. Dashed white lines indicate the proximal end of the cell.  Scale bar, 75 μm.
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Figure 4.3 PI3K is required for branching in tracheal terminal cells.  (A) 

Phosphatidylinositol (PI) pathway. PI 4-kinase (fwd) phosphorylates PI to yield PI4P.  

PIP 5-kinase (sktl) phosphorylates PI4P to produces PI (4,5)P also called PIP2, can then 

be phosphorylated by PI 3-kinase to produce PIP3.  PIP2 can also be hydrolyzed by PLC 

to produce inositol triphosphate (IP3) and diacylglycerol (DAG) second messenger 

molecules. As in Figure 4.1, homozygous terminal cell branches are visualized and 

identified by expression of GFP in L3 mosaic animals (B-E) and brightfield microscopy 

shows the air-filled lumen (B’-E’).  Terminal cells homozygous for fwd, sktl, or PLC, 

show no defects in branching (B-D) and complete air-filled lumens (B’-D’).  In contrast, 

PI3K homozygous terminal cells show mild branching defects (E) but have a complete 

air-filled lumen (E’). Dashed white lines indicate the proximal end of the GFP-labeled 

cell.  Scale bar, 75 µm. 
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Figure 4.4 PAR-polarity mutant terminal cells show accumulation of the apical 

membrane marker, Pio.  Terminal cells in L3 mosaic larvae were identified by 

cytoplasmic GFP expression and then probed with anti-GFP (A - E) and anti-Pio 

(F-J & F’-J’) antisera. Panels K-O show merged channels, P-T show merged 

channels of F’-J’ (GFP in green, anti-Pio in red). In wild type (F & F’) and baz (G 

& G’) cells, Pio is found in distinct puncta lining the luminal membrane.  In 

terminal cells homozygous for aPKC (H & H’) or par-6 (I & I’) Pio appears in 

distinct, but random regions, which are usually devoid of GFP.  Terminal cell 

homozygous for par-615N (J & J’) show accumulation of Pio only in cytoplasmic 

tip blobs (Highlighted in J’). 
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par-615N
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Figure 4.5 Ultrastructure of 15N mutant terminal cells. Terminal cell branch 

ultrastructure observed in thin cross-section using transmission electron micros-

copy (TEM). The luminal membrane (apical) is pseudo-colored green. Wild-type 

terminal cell branches show a circular cross-sectional morphology, the lumen is 

expanded and clear of cytoplasmic material (A). Terminal cells homozygous for 

15N (B) show an abnormal extensive apical domain and an

accumulation of membranous structures in the luminal space. Scale bar, 200 nm.
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Figure 4.6 Exocyst complex members are required for lumen formation in terminal cells. 

As in Figure 4.1, homozygous terminal cell branches are identified by expression of GFP. 

(A-E) Shows the GFP image merged with the brightfield image that shows the air-filled 

lumen (A’-E’).  Wild-type terminal cells show a complete air-filled lumen running 

through each branch (A & A’). Terminal cells homozygous for sec5, sec6, sec10, or 

sec15 show branching defects (B-E) and no air-filled lumen appears in any of the 

branches (B’-E’). Dashed line indicates the region that contains the GFP-labeled cell.  

Scale bar, 75 µm. 
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Figure 4.7 Exocyst complex members are required for lumen maturation in terminal cells.  

(A-C) Transmission electron microscopy (TEM) of terminal cell branch ultrastructure. 

The procuticle (white double-headed arrows) fills the space between the apical membrane 

(red arrows) and the epicuticle (red arrowheads).  Wild-type terminal cell branches show 

a normal circular cross-sectional morphology with little space between the epi- and 

procuticle (A).  Expression of RNAi for sec5 (B) or sec15 (C) shows severe defects in 

lumen ultrastructure and the distance between the epicuticle and the procuticle is much 

larger and is filled with membrane bound structures. (D-F)  Terminal cells in L3 mosaic 

larvae were identified by cytoplasmic GFP expression and then probed with anti-GFP (D-

F) and anti-Pio (D’-F’) antisera. Panels D’’-F’’ show merged channels (GFP in red, anti-

Pio in green).  Wild-type terminal cells show punctate localization of Pio at the luminal 

membrane.  Expression of RNAi for sec5 (E-E’’) or sec15 (F-F’’) show very diffuse 

cytoplasmic staining with Pio (E’ & F’) but Pio protein can be seen lining the lumen of 

the adjacent unicellular tube. Scale bar, A-C, 50 nm. 
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CHAPTER 5 
 
 
 

EXAMINATION OF DROSOPHILA LARVAL TRACHEAL  

TERMINAL CELLS BY LIGHT MICROSCOPY 

 
 
 

Reprint of: Jones and Metzstein (2013) Examination of Drosophila Larval Tracheal 

Terminal Cells by Light Microscopy.  JoVE, 77,e50496. 

Reprinted with permission from The Journal of Visualized Experiments. 
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CHAPTER 6 
 
 
 

SUMMARY 
 
 
 

Cellular branching is a unique and highly specialized type of morphology that 

facilitates many interactions between a single cell and its surrounding environment. This 

interconnectivity is often observed in systems that require a cell to propagate or affect 

cellular processes with many neighboring cells.  The best-known and well-studied type of 

branched cells are mammalian neurons, which are often characterized solely by their 

distinct branching patterns.  In the case of neurons, the highly branched dendritic and 

axonal projections allow a single cell to make many individual contacts that facilitate 

rapid, multiplicative signal propagation.  However, branching morphology is also 

specialized to facilitate delivery of fluids or gases to broad areas of tissue, where the 

branches contact many cells at once.  In this case, the branched cell also requires a 

cellular tube through which gases or fluids can flow.  Tubular cells that display a 

branched morphology transport material from a single cell to many target cells, which 

allows the system to satisfy the nutrient requirements of a target tissue quickly and 

efficiently.  An example of this can be seen in the human vasculature, in capillaries or in 

the alveolar sacs of the human lung.  In both cases, these branched tubular cells lie at the 

end of a network of interconnected tubes that facilitate diffusion of liquid or gases.  The 

development of a branched cell is a dynamic and highly regulated process that involves a  



number of organization steps to regionalize domains within the cell.  Domain 

organization is coupled with membrane trafficking events necessary for growing a 

cellular branch.  Additionally, a branched tubular cell has the complexity of having to 

organize a cellular tube.  Similar to branching, tube formation requires the regionalization 

of domains that will support a cellular tube, as well as delivery and organization of 

membrane required for the tube structure.  In addition, tube formation requires a process 

of clearing the space within the tube to create the lumen, which also requires the 

generation of structures that provide mechanical support to keep the lumen open.  Both 

branching morphogenesis and tube formation likely require much of the same molecular 

machinery, however, surprisingly little is known about the genes and molecular 

mechanisms that govern their development.  Using a component of the Drosophila larval 

tracheal system (respiratory system) called terminal cells we have begun to elucidate 

some of the cellular machinery required for elaborating a branched tubular cell. 

Terminal cells are single cells located at the ends of a network of cellular tubes 

that provide oxygen and other gases to tissues in Drosophila.  These cells have an 

elaborately branched cytoplasm that is dynamic and highly variable as its development is 

controlled by the oxygen requirement of target tissues.   Located within each cellular 

branch is a subcellular tube that is connected at its base to the rest of the tracheal system.  

This tube contains no cell-cell junctions and is generated de novo within the terminal 

cells during development. 

To investigate the genes that are required for terminal cell branch and tube 

formation, a forward genetic screen of the X chromosome was performed (Jones and 

Metzstein, 2011).  This screen yielded thirty-two lethal lines that had defects in various 

113



aspects of terminal cell development, including branch morphogenesis, cell outgrowth, 

and lumen formation.  Mapping and sequencing of two mutant lines, designated 29VV 

and 15N, which showed defects in branching and lumen formation, revealed the causative 

mutation was in the same gene, par-6.  Our analysis showed 29VV is a null allele, and 

15N is a neomorphic allele.  Both of these mutants showed defects in branch number and 

lumen development, and also showed abnormal tip morphologies; however, these defects 

were much more severe in 15N. 

Par-6 is a member of the conserved PAR-polarity complex best known for its role 

is establishing apical/basal polarity in epithelial cells.  We found that other members of 

the complex, Bazooka (Par-3), aPKC, and Cdc42, are also required for terminal cell 

branching. We also found that the direct physical interaction known to occur between 

complex members aPKC and Par-6 is required for terminal cell branching.  Furthermore, 

the Par-615N allele indicates that the interaction with Baz is also necessary for this process.  

Additionally, we found the PAR complex functions downstream of the FGF receptor to 

facilitate branching but does not participate in the branch outgrowth process, thus 

genetically separating these two previously coupled processes.  The identification of PAR 

proteins as potential regulators of branching was a novel discovery and, based on their 

roles in other cell types, suggested these proteins could act to specify branch sites.  

However, our localization studies were not able to confirm this hypothesis.  Additionally, 

terminal cells mutant for par-6, baz, or aPKC show defects in the number of class II and 

class III branches, but the number of class I branches as well as the positioning of those 

branches, is comparable to wild-type, but differ only by a thin and spindly appearance.  

This result suggests that PAR proteins do not act to specify branch points for at least class 
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I branches, and instead suggest that this complex could be required for localization of 

other factors that act in a branch specification process. 

Interestingly, the par-6 mutant 15N, showed branching and tip morphology 

defects that were more severe than those seen in the null allele.  This allele truncates the 

PDZ domain of the protein, which is required for its interaction with Baz.  I found that 

these additional defects were likely due to the misregulation of aPKC. As these defects 

are not ameliorated in the absence of Baz.  Additionally, expression of PKM, which has 

constitutive aPKC kinase activity, also results in severe branching defects.  Together 

these data indicate that regulation of aPKC, both positively and negatively, is necessary 

for terminal cell branching morphogenesis.  However, the exact phosphorylation targets 

and how this process affects terminal cell branching remains unclear. 

In addition to branch specification, terminal cell branches must also undergo 

polarized membrane addition for outgrowth of a branch.  Using a reverse genetic 

approach, we determined that a conserved protein complex called the exocyst is required 

for terminal cell branch outgrowth.  The exocyst, composed of, Sec3, Sec5, Sec6, Sec8, 

Sec10, Sec15, Exo70 and Exo84, is known for its role in docking and tethering of 

vesicles at the plasma membrane.  We showed that exocyst deficient terminal cells 

accumulate cytoplasmic vesicles and have fewer branches that do not extend as far as 

wild-type branches. We also showed the exocyst is localized to both the basal (branching) 

membrane and the apical (luminal) membrane and that this localization is dependent 

upon PAR proteins.  Taken together, we propose that the exocyst is localized to the 

membrane by the PAR complex where it functions to facilitate the docking and fusion of 

vesicles required for terminal cell branch outgrowth.  Additionally, we found this process 
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required the Rab GTP binding proteins, Rab10 and Rab11 and that these proteins 

function in redundant pathways to facilitate this process.  One of these pathways may be 

the endocytic recycling pathway, which requires proteins such as dynamin, Clathrin and 

Rab5.  We showed that these factors are required for terminal cell branching, thus 

suggesting this pathway is a source of at least some of the membrane necessary to 

outgrow a terminal cell branch. 

In addition to branching and outgrowth, many of these same proteins are required 

for subcellular lumen formation in terminal cells.  We found PAR-polarity proteins Par-6 

and aPKC, but not Baz, are required for terminal cell lumen development.  Interestingly, 

the physical interaction known to occur between complex members is not required for 

this process, indicating Par-6 and aPKC participate in lumen formation in a novel way, 

independent of their role in the canonical PAR complex. Terminal cells mutant for aPKC 

or par-6 do not exhibit air-filled lumens but instead contain local accumulations, in what 

may be large vesicles, of apical membrane.  This indicates that these proteins could act to 

organize vesicles at the center of the cell or possibly define the membrane as apical and 

in the absence of aPKC or Par-6 only a portion of the lumen is properly organized.  

Ultrastructural analysis of aPKC and par-6 mutant terminal cells would help differentiate 

these models. 

We also found that, in addition to its role in branch outgrowth, the exocyst is 

required for terminal cell lumen formation.  We found exocyst mutants do not show an 

air-filled lumen by brightfield microscopy.  Ultrastructural analysis showed the 

presumptive lumen of exocyst deficient cells are defective in the development of the 

cuticle that lies adjacent to the apical membrane and is therefore required for maturation 
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of the lumen.  Additionally, these same mutants failed to properly position the apical 

membrane marker Pio.  Both cuticle formation and positioning of Pio on the apical 

domain require secretion from the apical membrane; therefore it is likely that the exocyst 

is required for a secretory step necessary for lumen maturation. 

The work presented in this thesis contributes to a growing literature on terminal 

cell branch and lumen development, but also gives the field of cell biology a better 

understanding of the cellular processes that govern the generation of a branched cell and 

cellular tubes.  Despite our contribution to the understanding of terminal cell 

development, many questions still remain.  Some of these questions include: How does 

FGF signaling position the molecular machinery required for branching?  How is the 

PAR-polarity complex positioned within the terminal cell, and is this important for 

branch site specification?  What cytoskeletal rearrangements are necessary for branching 

and lumen formation?  Analysis and characterization of the remaining mutants from the 

X chromosome screen will begin to elucidate many of these questions.  We identified a 

noncanonical role for polarity proteins, aPKC and Par-6, which provides a new 

understanding of previously well-studied developmental pathways.  Lastly, the allele of 

par-6, 15N, will be a useful tool for dissecting the cellular interactions and regulatory 

mechanism required for the PAR complex in many contexts. 

Using Drosophila terminal cells to model cellular branching and subcellular tube 

formation has proven fruitful and we have identified multiple molecular complexes 

required for their development.  However, future investigation using this model system 

would benefit greatly from the development of additional tools and metrics for evaluating 

terminal cell morphologies.  For example, little is known about the temporal nature of 
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terminal cell branching and how this process correlates with lumen formation.  

Developing live imaging techniques will be critical for answering these questions.  Live 

imaging would also be useful for detecting transient localization events that are likely 

required for branch specification.  Additionally, throughout the course of this graduate 

dissertation work our methods of detecting branch abnormalities such as measuring 

absolute number of branches and quantifying branch outgrowth ratios, have evolved 

drastically.  However, many of the finer branch defects, such as wispy branches, branches 

with uneven diameter and a misplaced cell body, have largely been ignored.  Future 

projects would benefit greatly from the development of more stringent methods for 

measuring these small morphological abnormalities. 
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