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ABSTRACT 

 

It is surprising that there are only about 80 described congenital diseases that 

result from mutations in any of the 1% of genes in the human genome (~200-250 genes) 

dedicated to protein glycosylation.  It is these glycosylation events that provide 

tremendous protein diversity and contribute to proper protein folding, function, and 

subcellular localization.  Thus, the rarity with which human congenital disorders of 

glycosylation (CDGs) are observed despite the myriad of genes involved in this process 

and the apparent critical role for proper protein form and function suggests that 

glycosylation is critical for proper development.  However, the role of glycans in 

development has been largely understudied and there are only a few genetic models of 

human CDGs in existence. 

 Glycosylation occurs by the enzymatic addition of sugar-derived molecules and is 

estimated to provide 10-104 times more diversity than the unmodified proteome alone.  

Glycans are present on the surface of nearly every cell within multicellular organisms 

and are capable of facilitating communication with the cell and its environment and with 

other cells and also have structural roles as critical components of extracellular matrix.  

However, the complexity of glycan formation makes it difficult to understand the diverse 

and pleiotropic roles glycans play in cellular biology. 

The utility of Drosophila to elucidate the role of glycans in development as well as 

disease has only been appreciated recently.  Herein, I further demonstrate the utility of 

Drosophila to understand the roles of both N- and O-glycans in development and cell 

signaling.  Furthermore, I utilize the fly to understand the biology of glycans in a human 

disorder of congenital disease, Peters’ Plus Syndrome. 



 

I demonstrate that the previously reported Dpp signal antagonism achieved by 

the sugar derivative UDP-N-Acetyglucosamine (GlcNAc) is carried out by the synthesis 

of a chondroitin-sulfate sink produced in the embryonic cardiac mesoderm and by the 

addition of GlcNAc to the type I receptor Saxophone to limit Dpp signal through Tkv 

exclusively.  Furthermore, loss of the Drosophila ortholog of the human B3GLCT gene, 

sugarcoated, demonstrates a critical role for O-linked mucins in cell hypertrophic growth 

during larval development and oogenesis and demonstrates a potential role for human 

mucins in chondrocyte hypertrophy—an event required for the majority of human bone 

growth—and a potential mechanistic reason for growth defects observed in Peters’ Plus 

Syndrome patients.  
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CHAPTER 1 

 

INTRODUCTION 

 

Glycosylation in cell signaling, development and disease 

Glycan biology 

Although the human genome encodes in excess of 20,000 genes, the protein 

diversity that can be generated from these genes is vastly increased due to alternative 

splicing and post-translational modification (PTM) (Fig. 1.1).  One of the most diverse 

and abundant PTMs is glycosylation, which occurs by enzymatic addition of sugar-

derived molecules.  Glycosylation can be a major contributor to protein mass and can 

alter subcellular localization and function of a protein (Pandey and Mann, 2000; Varki, 

2017).  The collective group of glycan structures, or the glycome, is estimated to be 10-

104 times more diverse than the translated proteome, and upwards of 1% or more of the 

genes in the genome are dedicated to glycosylating proteins (Freeze, 2006; Marquardt 

and Denecke, 2003).  It is, therefore, somewhat surprising that the role of glycosylation 

in development and disease has only been recently appreciated.  This may be due, in 

part, to the heterogeneous nature of disorders of glycosylation and the relative rarity with 

which many of these diseases occur in the human population.  A critical developmental 

role for glycosylation has lately become well-established and may provide a reason why 

glycosylation disorders are rare (Haltiwanger, 2002; Haltiwanger and Lowe, 2004; 

Moremen et al., 2012).  For example, pathogenic mutations of the catalytic subunit of the 

oligosaccharyltransferase complex, STT3A, result in aberrations in the glycosylation 

pattern of transferrin glycoconjugates (Ghosh et al., 2017).  Clinical symptoms manifest 
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in these patients include intellectual disability, developmental delay, seizures, and 

absent speech.  Additionally, some patients developed episodic hypothermia and altered 

consciousness.  Clinical manifestations like these may not be properly attributed to 

disorders in glycosylation until after extensive mutation mapping and laboratory 

verification. Indeed the rarity with which disorders of glycosylation are observed in 

humans may be due not only to the important developmental roles of glycans, but also 

our inability to distinguish disorders of glycosylation from the myriad of other disorders 

with overlapping symptoms. 

The glycome encompasses all sugar-modified compounds including 

glycoproteins, proteoglycans, glycosphingolipids, and glycosylphosphatidylinositol (GPI) 

anchors, collectively termed glycans.  Glycans are categorized by the types of sugars 

found in them, by the presence or absence of sugar chain branches, and by the 

substrate on which the sugars are attached (Varki, 2017). Glycoproteins are broadly 

defined as any protein with a carbohydrate group attached whereas proteoglycans are 

glycoproteins that are modified by one or more nonbranched glycosaminoglycan chain 

(i.e., heparin, chondroitin, and dermatan sulfate).  Glycosphingolipids are branched or 

nonbranched sugar chains attached to the cell membrane via a ceramide-derived lipid 

and can also be attached to the carboxy-terminus of a glycoprotein making up a GPI 

anchor.  Glycans surround the surface of virtually every cell of multicellular organisms 

capable of differentiation and tissue formation.  These glycans are positioned around the 

cell to facilitate cellular communication with the environment and perform essential 

cellular functions including the regulation of cell-cell communication (Haltiwanger, 2002; 

Haltiwanger and Lowe, 2004; Haltiwanger and Stanley, 2002; Shao et al., 2002).  

Additionally, secreted proteoglycans (like hyaluronan) function to define the structural 

properties within bone and cartilage and are critical components of extracellular matrix 

(Bastow et al., 2008; Vincent et al., 2003).  Glycans are found in ordered arrays across 
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diverse tissues throughout developmental time, leading to the hypothesis that they serve 

a critical role in development.  However, the astounding complexity with which glycans 

alter cellular function makes the understanding of their specific developmental roles 

difficult to assess with rapidity. 

 

Genetic models of glycosylation disease 

Drosophila has proven itself to be an invaluable model in which to elucidate the 

function of glycans and implies that similar mechanisms may be utilized across diverse 

evolutionary lineages.  Both N- and O-glycans play critical roles in modulation of 

signaling pathways in the fly (Haltiwanger, 2002; Haltiwanger and Stanley, 2002; Shao 

et al., 2002).  It has been demonstrated that Notch signaling is regulated by both O-

glucose and the subsequent elongation by xylose.  O-glucose modification of Notch 

alters the conformation of the Notch extracellular domain and promotes efficient 

proteolytic processing of Notch (Haltiwanger and Lowe, 2004; Haltiwanger and Stanley, 

2002).  However, further addition of xylose to O-glucose modifications in one protein 

domain of Notch leads to inhibition of Notch signaling in some developmental contexts 

(Lee et al., 2017; Lee et al., 2013; Lee et al., 2010).  Lack of O-fucose completely 

abrogates Notch signaling as nonfucosylated Notch cannot bind to the receptor Delta 

(Stanley, 2007).  For an in-depth review of glycosylation-mediated regulation of Notch 

signaling, see Haines and Irvine (2003).  N-glycosylation plays important modulatory 

roles in other signaling pathways as well. For example, loss of heparin and chondroitin 

sulfate, as in a suppenkasper (ska) mutant, results in wingless loss of function 

phenotypes and demonstrates the essential role for N-linked GAGs in Wingless 

signaling (Haerry et al., 1997).  Heparin sulfated proteoglycans like Syndecan have also 

been implicated in facilitating Dpp signaling in the wing imaginal disc (Yan and Lin, 

2009).  These studies demonstrate that the fly has been well-utilized in understanding 
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the complex roles glycans play in development, especially cell signaling and is poised to 

aid our understanding of glycans in human developmental disease. 

Although there are over 80 described human congenital disorders of 

glycosylation (NORD website, May 15, 2017), most of these diseases currently lack 

adequate genetic models in which to understand disease etiology and develop effective 

therapeutic interventions (see Table 1.1 for list of animal models of CDGs).  Human 

disorders of glycosylation are among the more complicated human congenital diseases 

to understand and treat owing to the complexity of the metabolic pathways required to 

carry out glycosylation and the pleiotropic effects that can be caused by mutations in 

even a single gene (i.e., loss of any sugar/enzyme can affect many downstream 

pathways).    Drosophila provides a superb platform in which models of glycosylation 

defects can be tested and utilized to inform research into disease therapies (Moulton 

and Letsou, 2016).  This is in no small part due to the high degree of conservation of 

developmental and homeostatic pathways and biological processes between human and 

fly.  Its utility is further bolstered by an immense and ever expanding genetic toolkit to 

generate mutations with increased ease and specificity and with decreasing cost and 

time. 

Drosophila has recently been used in diverse ways to understand glycosylation 

and disorders of glycosylation.  Analyses of O-mannose modifications on the protein 

dystroglycan have been instrumental in establishing a Drosophila model of muscular 

dystrophy (Haltiwanger and Lowe, 2004; Nakamura et al., 2010), and elimination of Gfr 

RNA in Drosophila mimics Notch loss-of-function mutations and serves as a model for 

the human disease congenital disorder of glycosylation IIc (Ishikawa et al., 2005).  

Drosophila geneticists have also successfully developed models of the glycosylation-

affected disorders CGD-la (Jumbo-Lucioni et al., 2014; Parkinson et al., 2016) and 

classic galactosemia (Jumbo-Lucioni et al., 2014).   Despite these clear victories in 
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disease modeling, many glycosylation-related human diseases  such as X-linked 

intellectual disability resulting from mutations in the O-linked GlcNAc transferase 

(Niranjan et al., 2015), Peters’ Plus Syndrome resulting from mutations in β3GLCT 

(Maillette de Buy Wenniger-Prick and Hennekam, 2002), and others, still lack genetic 

models (Table 1.1).  Thus although Drosophila has proven fruitful in delineating roles for 

glycosylation in human disease, there is still more that can be done in Drosophila to 

expand our understanding of glycosylation-related human diseases. 

 

Research summary 
 

Building on work to understand the role of glycans in modulating cell signaling, 

our lab has identified several unique ways in which glycans are required for proper 

development, cell signaling, and embryonic patterning using Drosophila as a model.  

Specifically, our lab has discovered a critical role for N-acetylglucosamine (GlcNAc) in 

embryonic development and patterning.  Loss of the mummy (mmy)–encoded N- 

acetylglucasamine pyrophosphorylase, which catalyzes the last step in the synthesis of 

GlcNAc, results in ectopic Dpp signaling in the embryonic epidermis and hypotrophy of 

ventral structures, the ventral denticle belts (Humphreys et al., 2013).  We and others 

have identified a group of mutants, namely raw, ribbon (rib), and puckered (puc), with 

shared loss-of-function cuticle phenotypes and demonstrated that these mutants also 

share defects in Dpp signal antagonism.  While raw, rib, and puc all mediate their effects 

on Dpp via regulation of JNK signaling, the signaling pathway that is required for dpp 

production in the epidermis, mmy’s effects on Dpp are direct.  We now seek to 

understand the role of GlcNAc in direct antagonism of Dpp signaling.  To this end, we 

have discovered two novel mechanisms of GlcNAc-mediated Dpp signal antagonism.  

The first via O-GlcNAcylation-mediated repression of the Type I receptor Saxophone 

(Sax), which functions as a nutrient sensitive arm of Dpp signaling (Chapter 2).  The 



6 
 

second via the synthesis of a chondroitin-sulfate sink that is generated in the mesoderm 

underlying the dorsolateral epidermis which functions to sequester Dpp and prevent it 

from signaling (Chapter 4).  Additionally, we have discovered a novel developmental role 

for mucins containing β1-3 glucose additions to O-Fucose, which are added using the 

enzyme encoded by the CG9109 gene, which we have named sugarcoated (sgct) 

(Chapter 3). 

Specifically, herein I describe our discovery that while Dpp signaling is required 

in both the embryonic epidermis and the underlying cardiac mesoderm, proper Dpp 

signal propagation in both of these tissues requires the expression of a chondroitin-

modified signaling sink in the mesoderm.  Loss of either of two genes required for the 

formation of chondroitin (gale and wand) results in expanded Dpp signaling in the 

epidermis and cardiac mesoderm.  These data are the first to demonstrate a role for a 

signaling sink specifically targeting Dpp for elimination from its signaling capacity. 

I also describe a novel role for the O-GlcNAc transferase, Sxc, in Dpp signal 

antagonism.  Loss of Sxc results in ectopic Dpp signaling phenotypes dependent on the 

Type I BMP receptor Sax, but not the canonical Type I Dpp receptor, Tkv.  This 

demonstrates that Sax is capable of transducing a Dpp signal in the embryonic 

epidermis, but its ability to do so is limited by Sxc-mediated glycosylation of the Sax 

receptor.  Furthermore, I demonstrate that Dpp signaling is responsive to dietary sugar 

and hypothesize that Sax represents a nutrient sensitive arm of the Dpp signaling 

pathway to modulate Dpp signal capacity in response to glucose availability.  Activating 

mutations in the human homolog of Sax, ALK2/5, result in a progressive ossification of 

soft tissue disorder known as Fibrodysplasia Ossificans Progressiva, or FOP (Petrie et 

al., 2009).  The finding that O-GlcNAc can be used to inhibit Sax function may prove 

useful in developing therapeutics to combat FOP. 

Lastly, I describe our discovery of that sgct plays an essential role in cell 
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hypertrophy during oogenesis and larval development.  I have demonstrated that loss of 

sgct in vivo results in failure of developing fly larvae to grow in size and progress through 

their normal stages of development (i.e., failure to molt).  Furthermore, specific loss of 

sgct in female ovaries results in infertility and severe growth defects of developing egg 

chambers.  I have discovered that these phenotypes are due to the failure of cells to 

undergo hypertrophic growth, a process critical for egg chamber and larval growth.  

Given the predicted function of sgct as a glycosyltransferase required for mucin 

formation, our data suggest a role for mucins in hypertrophic growth of nonmitotic cells.  

I hypothesize that growth defects observed in patients with Peters’ Plus Syndrome, 

which is caused by defects in the B3GLCT gene, the human homolog of sgct, could be 

explained by a failure in cells to grow by hypertrophy. 

The discovery of these novel ways in which glycosylation regulates cell signaling, 

cell growth, and development have aided us in developing a broad understanding of the 

critical and diverse role of cellular glycans and allowed us to develop a Drosophila 

models of human disease. 
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Fig. 1.1 Glycosylation confers great complexity on the proteome.  Immense 

proteome complexity can be achieved by alternative splicing and post-translational 

modification of proteins.  Glycosylation occurs in many varied ways providing a 

multiplicity of varieties of proteins in the glycome compared to the much smaller subset 

of proteins encoded by the genome alone. 
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Table 1.1 Models of human congenital disorders of glycosylation (as reported by 

OMIM) 

 

Dis. Gene Disease  MIM no.  Model  Refs 
________________________________________________________________ 

 

Disorders of N-glycosylation 

 

PMM2  CDG Type Ia  212065 Mouse  Schneider et al., 2012 

 

MPI  CDG Type Ib  602579 None   

 

ALG6  CDG Type Ic  603147 None 

 

ALG3  CDG Type Id  601110 None 

 

ALG12  CDG Type Ig  607143 None 

 

ALG8  CDG Type Ih  608104 None 

 

ALG1  CDG Type Ik  608540 None 

 

ALG9  CDG Type Il  608776 None 

 

RFT1  CDG Type In  612015 None 

 

MGAT2 CDG Type IIa  212066 None 

 

DPAGT1 CDG Type Ij  608093 Mouse  Marek et al., 1999 

 

ALG13  CDG Type Is  300884 None 

 

ALG2  CDG Type Ii  607906 Mouse  Dickinson et al., 2016 

 

ALG11  CDG Type Ip  613661 None 

 

DDOST CDG Type Ir  614507 Mouse  Dickinson et al., 2016 

 

STT3A  CDG Type Iw  615596 None 

 

STT3B  CDG Type Ix  615597 None 

 

SSR4  CDG Type Iy  300934 None 

 

MOGS  CDG Type IIb  606056 Mouse  Dickinson et al., 2016 
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Table 1.1 cont. 

 

Disorders of O-glycosylation 

 

EXT1/EXT2 Exostoses Type I/II 133700 None 
 
B4GALT7 Ehlers-Danlos synd. 130070 None 
 
GALNT3 Tumoral calcinosis 211900 None 
 
SLC35D1 Schneckenbecken 269250 Mouse  Hiraoka et al., 2007 
       dysplasia 
          
B3GALTL Peters’ Plus synd. 261540 None 
 
LFNG  Spondylocostal 609813 Mouse  Zhan & Gridley, 1998 
       Dysostosis 3     Evrard et al., 1998 
          
POMT1 Musc. dystr., A1 236670 Mouse  Willer et al., 2004 
  Musc. dystr., B1 613155 Mouse  Willer et al., 2004 
  Musc. dystr., C1 609308 Mouse  Willer et al., 2004 
 
POMT2 Musc. dystr., A2 613150 None 
  Musc. dystr., B2 613156 None 
  Musc. dystr., C2 613158 None 
 
POMGNT1 Musc. dystr., A3 253280 None 
  Musc. dystr., B3 613151 None 
  Musc. dystr., C3 613157 None 
 
EOGT  Adams-Oliver synd. 615297 Drosophila Sakaidani et al., 2012 
 
B3GALT6 Ehlers-Danlos synd. 615349 None 
 
CHSY1 Temtamy preaxial 605282 C. elegans Mizuguchi et al. 2003 

     brachydactyly synd.  Zebrafish Li et al., 2010 
 
B3GALNT2 Musc. dystr. A11 615181 Zebrafish Stevens et al., 2013 
 
POFUT1 Dowling-Degos dis. 2 615327 Zebrafish Li et al., 2013 
 
POGLUT1 Musc. dystr. 2Z 617232 None 
  Dowling-Degos dis. 4 615696 None 
 
 
Disorders of glycosphingolipid and GPI-anchor glycosylation 
 
ST3GAL5 Salt & pepper dev. 609056 Mouse  Yamasita et al., 2003 
       regression synd.     Yosikawa et al., 2009 
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Table 1.1 cont. 

 

Disorders of glycosphingolipid and GPI-anchor glycosylation 
 
PIGM  GPI deficiency  610293 None 
 
PIGN  Mult. cong. anomalies 614080 None 
       hypotonia-seizures syndrome 1 
 
PIGV  Hyperphosphatasia 239300 None 
       mental retardation syndrome 
 
PIGA  Mult. cong. anomalies 300868 Mouse  Keller et al., 1999 
       hypotonia-seizures syndrome 2 
 
PIGL  CHIME syndrome 280000 Mouse  Dickinson et al., 2016 
 
B4GALNT1 Spastic paraplegia 26 609195 Mouse  Takamiya et al., 1996 
 
 
Defects of multiple glycosylation and other pathways 
 
DPM1  CDG Type Ie  608799 Mouse  Dickinson et al., 2016 
 
MPDU1 CDG Type If  609180 None 
 
SLC35C1 CDG Type IIc  266265 Drosophila Ishikawa et al., 2005 
       Mouse  Hellbusch et al., 2007 
         Yakubnia et al., 2008 
 
DOLK  CDG Type Im  610768 None 
 
SRD5A3 CDG Type Iq  612379 Mouse  Cantagrel et al., 2010 
 
COG1  CDG Type IIg  611209 None 
 
COG3  CDG Type IIq  617395 None 
 
COG4  CDG Type IIj  613489 None 
 
COG5  CDG Type Iii  613612 None 
 
COG6  CDG Type IIl  614576 None 
 
COG7  CDG Type IIe  608779 None 
 
COG8  CDG Type IIh  611182 None 
 
ATP6V0A2 Cutis laxa Type IIA 219200 None 
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Table 1.1 cont. 

 

Defects of multiple glycosylation and other pathways 

 

SEC23B Cowden syndrome 7 616858 Zebrafish Schwarz et al., 2009 
 
GFPT1  Myasthenia, cong.,12 610542 Zebrafish Senderek et al., 2011 
 
DPM2  CDG Type Iu  615042 Mouse  Dickinson et al., 2016 
 
DPM3  CDG Type Io  612937 None 
 
B4GALT1 CDG Type IId  607091 Mouse  Lo et al., 1998 
       Mouse  Asano et al., 1997 
       Mouse  Kotani et al., 2001 
 
GNE  Nonaka myopathy 605820 Mouse  Schwarzkopf et al., 

     2002 
       Mouse  Galeano et al, 2007 
       Mouse  Malicdan et al., 2007 
 
SLC35A1 CDG Type IIf  603585 None 
 
SLC35A2 CDG Type IIm  300896 None 
 
SLC35A3 Arthrogryposis, 61553  None 
       mental retardation, and seizures 
 
SRD5A3 CDG Type Iq  612379 Mouse  Cantagrel et al., 2010 
 
DHDDS Retinitis  613861 Zebrafish Zuchner et al., 2011 
       pigmentosa 59 
 
TMEM165 CDG Type IIk  614727 None 
 
PGM1  CDG Type It  614921 None 
 
PGM3  Immunodeficiency 23 615816 None 
________________________________________________________________ 

Abbreviations used: 
 Dis.: disease 

CDG: congenital disorder of glycosylation 
 GPI: glycosylphosphatidylinositol 
 Cong.: congenital 
 Mult.: multiple 
 Dev.:  development(al) 
 Synd.: syndrome 
 Musc. dystr.: Muscular dystrophy 
 



 

 

CHAPTER 2 

 

DPP SIGNALING IS MODULATED BY 

O-LINKED GLYCOSYLATION 

 

Abstract 

Embryogenesis in metazoans requires input from diverse signaling pathways to 

coordinate proper placement and organization of body structures, tissues, and organs.  

Activation and deactivation of signaling pathways at the right time and place are 

essential for embryogenesis, with defects in signaling often leading to congenital defects 

and disease.  However, much remains to be understood about the regulation of 

interactions between ligands and their receptors.  BMP/Dpp signaling regulators, acting 

on the pathway at all steps of signal transduction (extracellularly, at the membrane, in 

the cytoplasm, and in the nucleus) have been studied extensively.  The Letsou lab has 

previously demonstrated that protein glycosylation, using UDP-N-acetylglucosamine 

(GlcNAc) as a substrate, regulates Dpp signaling in the Drosophila epidermis. With intact 

GlcNAc biosynthetic pathways, Dpp functions are tightly regulated. However, when 

GlcNAc production or utilization is disrupted, Dpp signaling range is extended with 

respect to both space and time.  Here I describe the identification of the super sex 

combs (sxc)-encoded O-GlcNAc transferase in an RNAi screen for transferases 

functioning downstream of GlcNAc biosynthesis to regulate Dpp signaling.  With intact 

O-GlcNAcylation (sxc+), Dpp signals only in the most dorsal regions of the epidermis and 

in its absence (sxc-), the signaling range expands.   As expected for a modulator of the 

Dpp signal in Drosophila, I found that signaling in sxc mutants requires both Dpp and its 
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canonical type II receptor Punt.  However, in an unexpected but revealing twist, I found 

that Dpp signals independently of its canonical type I receptor Tkv in sxc mutants.  

Signaling in this context depends instead on the type I receptor Sax, which is itself a 

target of O-GlcNAcylation.  Taken together, this study demonstrates that both Tkv and 

Sax function as Dpp receptors and that despite their association with the same R-Smad, 

the Tkv and Sax responses to Dpp are substantively different, with spatial and temporal 

output properties distinguishing the two.  This study also shows that sxc functions as a 

genetic on-off switch that modulates Dpp/Sax pathway output, with Sax being an O-

GlcNAc modified target of Sxc.  Moreover, I provide evidence that Dpp signaling is 

sensitive to dietary glucose and demonstrate that sxc embryonic phenotypes can be 

recapitulated by elimination of dietary sugar from parental diets.  This study is the first to 

demonstrate a role for Sxc in embryogenesis to modulate Dpp. 

 

Introduction 

Coordinated cell movements and cell fate decisions during metazoan 

embryogenesis require diverse input from varied signaling pathways.  Aberrations in 

these signaling cascades, both in terms of loss and gain of signaling, can result in 

congenital anomalies and termination of embryonic development.  The Letsou lab seeks 

to understand how signaling in the Drosophila embryonic epidermis by Decapentaplegic 

(Dpp), one of the three fly bone morphogenic proteins (BMPs), is regulated to ensure 

proper development.  Dpp, like other BMPs, is required for a host of biological processes 

including embryonic patterning and morphogenesis, and cell growth and proliferation 

(Derynck and Feng, 1997; Klinedinst and Bodmer, 2003; Muller et al., 2003; Xiao et al., 

2007).  Dpp signaling initiates as the Dpp ligand binds to a heteromeric receptor 

complex composed of type I and II receptors.  The constitutively active type II receptor, 

Punt (Put), activates the type I receptor, Thickveins (Tkv), via phosphorylation and 
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initiates target gene expression changes via phosphorylation and activation of the Smad 

family transcription factor, Mothers against Dpp (Mad).  Mutations that cause either too 

much or too little Dpp signaling lead to failures in Dpp-dependent processes, including 

dorsal closure (Byars et al., 1999; Humphreys et al., 2013; Muller et al., 2003; Xia and 

Karin, 2004; Xiao et al., 2007).  Although it is thought that each BMP ligand in 

Drosophila has a unique and dedicated receptor complex, in vertebrates the number of 

BMP ligands exceeds the number of receptors complexes that could be formed to confer 

dedication of one complex for each ligand (Herpin and Cunningham, 2007).  It is, 

therefore, of great importance to understand the complex regulation required to restrict 

BMP signaling through proper ligand/receptor interactions. 

The Letsou lab uses the Drosophila process of dorsal closure (DC) as an 

experimental platform to study BMP/Dpp signaling. Dpp loss midway in embryogenesis 

(8-12 hrs. AEL) results in a well-characterized and easily identified DC defect (Byars et 

al., 1999; Humphreys et al., 2013; Scuderi and Letsou, 2005; VanHook and Letsou, 

2008). At the molecular level, DC initiates with Jun-N-terminal kinase (JNK)-dependent 

dpp expression in the dorsal-most row of cells in the lateral epidermal sheet, termed the 

leading edge (LE) (Hou et al., 1997; Riesgo-Escovar and Hafen, 1997). Precise control 

of Dpp signaling is vital for all processes, and DC is not an exception to this rule; both 

loss- and gain-of-function Dpp signaling mutants disrupt the process, with each 

producing a distinctive embryonic phenotype (Humphreys et al., 2013). Loss of function 

of Dpp antagonists results in ectopic Dpp signaling and a distinguishing cuticle 

phenotype, characterized by hypotrophy of ventral denticle belts and puckering of the 

dorsal midline. The Letsou lab and others have used this signature loss-of-function 

cuticle phenotype to identify mutants with hyperactive Dpp signaling (raw, ribbon [rib], 

puckered [puc], and mummy [mmy]). raw, rib and puc all mediate their effects on Dpp 

signaling via modulation of JNK signaling, which is required to initiate dpp expression in 
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the epidermis, whereas mmy functions to antagonize the Dpp signaling pathway directly 

(Humphreys et al., 2013).  Loss of mummy (mmy), which encodes an enzyme required 

for the production of UDP-N-acetylglucosamine (GlcNAc), leads to ectopic Dpp signaling 

in the epidermis (Araujo et al., 2005; Humphreys et al., 2013). 

GlcNAc is utilized by glycosyltransferase to perform a wide variety of cellular 

functions including post-translational modification of proteins through N- and O-linked 

attachments and to synthesize glycosyl-phosphatidylinositol, chondroitin sulfate, and 

heparin sulfate molecules (Tonning et al., 2006).  We targeted each of the GlcNAc 

transferases in the Drosophila genome by targeted RNAi in order to identify how GlcNAc 

is utilized to antagonize Dpp signaling.  From this screen, we found that embryos 

expressing RNAi targeting super sex combs (sxc) share a loss-of-function patterning 

defect with mmy mutants (Sinclair et al., 2009).  Although no embryonic phenotypes 

associated with loss of sxc have been reported, results from our RNAi screen suggest 

that there is a previously unappreciated role for sxc in embryonic development. 

In Drosophila, there is a single OGT, sxc, and mutations of sxc were identified 

originally based on the presence of ectopic sex combs present on 2nd and sometimes 3rd 

leg pairs of deceased pharate adult male flies (Ingham, 1983; Sinclair et al., 2009).  Sxc, 

like mammalian O-GlcNAc transferases (OGTs), is an enzyme that carries out O-linked 

glycosylation of serine/threonine residues of intracellular proteins.  In contrast with the 

complex and oftentimes branched sugar chains found on proteins that have been N-

glycosylated while transitioning through the Golgi or ER, O-GlcNAcylation occurs as a 

reversible addition of a single GlcNAc residue to a protein.  Complete loss of OGT in 

mice is embryonic lethal (O’Donnell, et al., 2004), but no embryonic phenotypes 

associated with complete loss of sxc have been reported.  Rather hypomorphic 

mutations in human OGT result in X-linked intellectual disability (Willems et al., 2017). 

Here I report my characterization of the molecular underpinnings of how O-linked 
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glycosyl modifications carried out by Sxc antagonize Dpp signaling in the Drosophila 

embryonic epidermis.  I demonstrate that loss of sxc results in partial embryonic lethality 

along with cuticle defects indicative of ectopic Dpp signaling.  I report that Dpp signaling 

is ectopically activated in sxc embryos through the type I BMP receptor Saxophone 

(Sax), and that Sxc normally functions to repress Sax-mediated Dpp signaling activity via 

glycosylation.  I also demonstrate that Dpp signaling is responsive to dietary glucose by 

altering O-GlcNAcylation of Sax by Sxc. 

 

Results 

sxc functions downstream of mummy as a Dpp signaling antagonist 

 The Letsou lab identified the super sex combs (sxc)-encoded O-GlcNAc 

transferase (OGT) in an RNAi screen for transferases functioning downstream of mmy 

and UDP-GlcNAc in regulating Dpp signaling.  Targeted elimination of sxc via 

Tubulin:Gal4>UAS:sxcRNAi during embryogenesis resulted in embryonic lethality and 

patterning defects similar to mmy mutant embryos (Fig. 2.1 A-C, Humphreys et al., 

2013) and completely eliminated detectable zygotic transcripts (Fig. 2.2 A-F).  In an 

extension of RNAi studies, I assessed embryonic lethality in animals homozygous for 

publically available and independently derived sxc alleles, ranging in strength from 

hypomorphic to null (Fig. 2.1 F).  For all alleles, I observed an incompletely penetrant 

embryonic lethality in homozygotes ranging from 19% to 35%, with the highest 

measures of lethality observed in animals harboring the amorphic alleles (sxc1 and sxc6, 

Fig. 2.1G).   Analysis of cuticle from inviable mutant embryos confirmed RNAi studies 

and revealed an invariably expressed loss-of-function cuticle phenotype shared with 

mmy mutants and suggestive of hyperactive Dpp signaling, namely a dorsal pucker and 

hypotrophy of ventral denticle belts (Fig. 2.1D).  The observed phenotype was not 

worsened when the null allele sxc1 was put in trans to a deficiency uncovering sxc, 
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demonstrating that sxc1 is indeed a null (Fig. 2.1E).  

Given that sxc-dependent lethality is incompletely penetrant, I tested whether 

maternally derived sxc might be providing some function to rescue the embryonic 

lethality and cuticle defects I observed.  Consistent with this idea I demonstrated that sxc 

is maternally deposited and ubiquitously expressed at least through dorsal closure 

stages of embryogenesis (Fig. 2.2 A-C).  To test maternal function genetically, I 

generated animals with either maternal or maternal zygotic loss of sxc by expressing 

RNAi targeting sxc using the UAS-Gal4 system to drive RNAi during oogenesis and 

during embryogenesis.  Loss of maternal sxc had no effect on embryonic viability 

compared to wild-type and no obvious cuticle phenotype (Fig. 2.2 J, L).  In contrast, 

depletion of maternal RNA in a sxc1 mutant background resulted in 31% embryonic 

lethality and cuticle defects indistinguishable from those observed in sxc1 mutants alone. 

(Fig. 2.2 K-L).  Thus, loss of zygotically-derived sxc is sufficient to explain all embryonic 

lethality observed. 

Although I observed no difference in dpp expression in sxc from wild-type 

embryos (Fig. 2.3 A, C, E), I examined Dpp activation in the epidermis of dorsal closure 

stage Drosophila embryos via immunohistochemistry using an antibody directed against 

the phosphorylated form of Mad (pMad).  We have previously demonstrated that Dpp 

signaling is activated transiently in the dorso-lateral epidermis of wild-type embryos 3-5 

cells from the LE and that this activation quickly wanes as dorsal closure proceeds 

(Humphreys et al., 2013; Fig. 2.3B).  In sxc1 embryos, however, I detected pMad 8-12 

cells from the LE and observed its persistence throughout dorsal closure.  This signaling 

defect is expanded to the same extent we previously documented in mmy1 (Humphreys 

et al., 2010; see also Fig. 2.3 D-G).  
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Mechanism of sxc-mediated antagonism of Dpp signaling 

Ectopic epidermal Dpp signaling results either from ectopic activation of the JNK 

signaling pathway, as in raw (Byars et al., 1999; Humphreys et al., 2013), or from 

ectopic activation of the Dpp signaling pathway, as with mmy (Humphreys et al., 2013).  

Thus, I next tested whether Sxc acts as an antagonist of the JNK or Dpp signaling 

pathway.  To this end, I performed an immunohistochemistry analysis of Jun localization 

in wild-type, JraAI109, and sxc1 mutant embryos in situ using an antibody directed against 

Jun (Fig. 2.4A-C,).  Normally, Jun accumulates in LE cells (Fig. 2.4A Humphreys et al., 

2013) and I observed its proper accumulation in sxc mutants (Fig. 2.4B), whereas it was 

absent in JraIA109 embryos (Fig. 2.4C).  Next, I tested whether the amount of total Jun 

protein was altered in sxc mutants in a quantitative analysis of Jun protein.  Western blot 

analysis revealed no significant difference in Jun protein levels in sxc mutants compared 

to wild-type (Fig. 2.4D). Finally, I used the JNK reporter line, dpp151H, to test for altered 

JNK activity.  This reporter line is expressed in the LE of wild-type embryos but is 

expressed beyond the LE in mutants of JNK antagonists (Johnson et al., 2003).  I 

observed no difference in the reporter expression in sxc from wild-type embryos (Fig. 

2.4E).  Taken together, these data indicate that JNK signaling is unaffected in the sxc 

mutant background.  Thus, ectopic JNK is not responsible for ectopic Dpp, and Sxc 

functions to modulate the Dpp pathway directly.  

In an initial exploration of this idea, I tested whether ectopic Dpp signaling is 

dependent upon LE Dpp.  I used the JraIA109 mutant to specifically remove LE Dpp 

(Humphreys et al., 2013), and then I tested whether Dpp signaling is ectopically 

activated in sxc1JraIA109 double mutants.  I observed no Dpp signaling in the epidermis of 

this sxc1JraIA109 double mutants, thereby demonstrating that the Dpp signaling pathway 

antagonized by Sxc is dependent on/triggered by LE dpp (Fig. 2.4 F-G).    
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sxc genetically interacts with saxophone 

Having established that: 1) pMAD persists broadly in the epidermis of dorsal 

closure stage sxc embryos, and 2) ectopic Dpp signaling is dependent on LE dpp 

expression (see Figs. 2.4 F-G), I next considered the necessity of the canonical 

transcription factor/receptor complex components in Sxc-dependent Dpp signaling.  Punt 

(Put), Thickveins (Tkv), and Mothers Against Dpp (Mad) are thought to be obligate 

transducers of the epidermal Dpp signal and as such loss of any one of these leads to a 

fully penetrant embryonic lethality along with characteristic defects in dorsal closure 

(Figs. 2.5 A, C, E.  Loss of both mad and sxc in sxc mad double mutants leads to no 

change in phenotype (Fig. 2.5 A-B). Similarly, loss of both put and sxc in a put sxc 

double mutant leads to no change in phenotype in comparison to put alone (Fig. 2.5 C-

D).  Both double mutant genotypes produce a dorsal-open Dpp signaling-deficient 

phenotype, indicating that Dpp signal transduction in sxc mutants requires the canonical 

type II receptor Put and the transcription factor Mad.  Conversely, and somewhat to our 

surprise, I found that dysregulated Dpp signaling phenotype persists in the tkv sxc 

double mutant (Fig. 2.5 F) and ectopic Dpp signaling is observed in this background 

beyond the normal domain (Fig. 2.5 F’, compare wild-type in Fig. 2.4G). Moreover, in 

contrast to the incomplete penetrance that I observe in sxc single mutants (~40%), Dpp 

hyperactivity is a fully penetrant phenotype in tkv sxc double mutants (>98%).  Taken 

together, these data indicate that: 1) there is a type I receptor that transduces the Dpp 

signal via phosphorylation of Mad independently of Tkv, and 2) this type I receptor 

activity is regulated by Sxc (OGT).  

In addition to Tkv, there are two other BMP type I receptors in Drosophila: 

saxophone (sax) and baboon (babo).  One of these, Saxophone (Sax), is expressed 

broadly throughout embryogenesis (FlyBase, 2003), although to date its only recognized 

role is to augment Dpp/Tkv  signaling in dorsoventral axis determination in early 
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embryos via activation by the BMP ligand, Screw (Scw) (Nguyen et al., 1998).  I 

employed double mutants to test the requirement for sax in sxc-dependent dpp 

signaling.  Loss of sax (Fig. 2.5 G-H) in a sxc mutant background rescues the sxc 

phenotype, restoring both normal cuticle pattern and pMad profiles to sax sxc embryos 

(Fig. 2.5 H’), presumably because the Dpp signal is now funneled exclusively through 

Tkv.   Moreover, I tested this idea using a triple mutant of sax, tkv, and sxc and found 

that all Dpp signaling in the embryonic epidermis has been eliminated in this 

background.  Specifically, tkv sax sxc triple mutant embryos secrete a dorsal-open 

cuticle indistinguishable from that of tkv and diagnostic of Dpp signaling loss (Fig. 2.5 I-

J).  

While Sax is expressed in the embryonic epidermis during dorsal closure stage 

embryos, the ligands thought capable of activating Sax, Gbb and Scw are not expressed 

during these stages, nor is scw/gbb expression altered in sxc (Fig. 2.6 A, B, E, F; FlyBase, 

2003b).  Loss of scw results in a weak ventralized embryonic phenotype, while loss of gbb 

results in a weak dorsal closure defect.  Loss of sxc in either the scw or gbb backgrounds 

resulted in ectopic Dpp signaling phenotypes (Fig. 2.6 C-D, G-H, K-L) demonstrating 

independence from scw and gbb in the sxc ectopic signaling phenotype. 

 

Sxc antagonizes Saxophone function via O-linked glycosylation 

Serine/threonine kinases and OGT both function to modify serine/threonine 

residues within proteins.  Although a single protein could act as a substrate for both 

phosphorylation and O-GlcNAcylation, these post-translational modifications are 

mutually exclusive at any given serine or threonine residue.  Our genetic data suggest 

that Sax receptor activity, but not that of Tkv, is regulated by O-GlcNAc and thus I tested 

whether Sax is different from Tkv in its modification by Sxc via O-GlcNAcylation.  

Lysates were prepared from wild-type embryos and transgenic embryos containing 
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either UAS:Sax-Flag or UAS:Tkv-GFP which was expressed ubiquitously via a 

tubulin:Gal4 driver.  Sax and Tkv were immunoprecipitated from lysates with anti-Flag 

and anti-GFP antibodies.  I used an antibody specific for O-GlcNAc modifications to 

detect the presence of O-GlcNAc on immunopurified Sax or Tkv lysates.  I observed the 

presence of a band in the immunoprecipitated fraction in embryos expressing Sax-Flag, 

but not in that from sxcRNAi embryos expressing Sax-Flag or embryos expressing Tkv-

GFP alone  (Fig. 2.7 A) thus demonstrating that Sax is O-glycosylated by Sxc in 

embryos.  In the Western blotting experiments, I confirmed expression of Sax-Flag and 

Tkv-GFP using anti-Flag and anti-GFP antibodies, respectively, and demonstrated that 

these proteins are expressed at detectable levels (Fig. 2.7A). 

 

Dpp signaling is sensitive to glucose availability 

In mammalian cells, addition of excess sugar to media culture induces an 

increase in O-glycosylated proteins (Bond and Hanover, 2015; Schwartz and Pirrotta, 

2009).  Additionally, excessive O-glycosylation has been observed in diabetic patients 

(Konrad and Kudlow, 2002; Majumdar et al., 2004).  These data have led researchers to 

speculate that OGT can function as a nutrient sensor for the cell in that increased 

glucose uptake by the cell leads to a greater production of GlcNAc, the sugar substrate 

used by OGT (Zachara and Hart, 2004a, b).  Our observation that O-GlcNAc suppresses 

Sax-mediated transduction of Dpp evokes the expectation that nutrient poor conditions 

will activate Sax-mediated transduction of Dpp.  I tested whether Sxc acts as a nutrient 

sensitive regulator of Dpp signaling by depriving parent flies of all dietary sugar and 

analyzed lethality and cuticle defects in embryos derived from these adults.  I observed 

~40% lethality in embryos derived from parents fed no sugar (Fig. 2.7 B).  Analysis of 

cuticles from inviable embryos revealed the signature defects of ectopic Dpp signaling 

(Fig. 2.7 D; Bayrs et al., 1999).  I observed no change in lethality frequency or cuticle 
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pattern in sxc embryos derived from parents on the no sugar diet compared to those 

raised on standard lab food (Fig. 2.7 B, E; compare to Fig 2.1 E).  Taken together, these 

data demonstrate that embryonic Dpp signaling is sensitive to maternal sugar intake, 

and that Sxc is the sugar sensor.  

 

Discussion 

 Here, I have demonstrated a novel role for sxc in embryonic development and 

Dpp signal antagonism (Fig. 2.8 A-B).  While sxc is expressed in the embryo, its role in 

embryogenesis has been unexplored to date.  This may be due to the incomplete 

penetrance of embryonic lethality observed in sxc homozygotes, but our study has 

demonstrated that embryonic lethality in sxc is fully penetrant when in combination with 

loss of Tkv.  I have demonstrated that embryonic lethality in sxc and sxc Tkv 

backgrounds is due to ectopic Dpp signaling through the Type I BMP receptor Sax.  I 

demonstrated that signaling occurs through Sax and that loss of sax in either 

background ablates any gain of Dpp signaling phenotypes observed.  Therefore, I 

conclude that Sxc functions to control the signaling receptor complexes used to 

transduce Dpp signaling in the Drosophila epidermis during DC; specifically, Sxc 

functions to repress Dpp signaling occurring through Sax under standard lab conditions.  

However, these data fail to fully explain why Dpp signaling through Sax leads to lethality 

in only ~40% of embryos.  I propose that there must be some difference in the ability of 

Dpp to signal through Put/Tkv complexes versus Put/Sax complexes.  This may be due 

to an increased affinity of Dpp for Tkv versus Sax or differences in expression levels of 

Sax such that it is not as abundant as Tkv in the epidermis and these questions warrant 

further exploration.  Alternatively, Sxc-mediated glycosylation of Sax could prevent the 

Put/Sax complex from ever forming.  If this complex were to form and bind Dpp, it could 

act as a sink for Dpp and we would predict that loss of Sax would increase the pool of 
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Dpp available for signaling to Tkv.  However, given that loss of sax results in no 

embryonic lethality or cuticle defect, I favor the idea that O-glycosylation of Sax prevents 

a Put/Sax complex from ever forming. 

Our data also beg the question as to why Dpp could signal through a receptor 

complex composed of Sax if activation through Sax is detrimental.  I demonstrated that 

sugar deprivation in adults led to ~40% embryonic lethality with cuticle defects 

resembling ectopic Dpp signaling phenotypes.  Therefore, I conclude that Dpp signaling 

normally occurs through a Put/Tkv receptor complex, but can respond to nutrient input 

and adjust signaling output accordingly by modifying Sax (or not) by O-GlcNAcylation, 

thus modulating Sax activity function.  While it is not surprising that nutrition plays a 

critical role in proper embryonic development, this is the first time, to our knowledge, that 

anyone has demonstrated a role for sugar in Dpp signaling.  It remains to be seen 

whether this role for sugar is generalizable for all contexts in which Dpp signaling occurs 

or whether this is specific to the epidermis at this time during development.  I argue that 

O-GlcNAcylation of Sax be explored further in the epidermis and elsewhere. 

Using an in silico approach (Gupta and Brunak, 2002), I identified potential sites 

of O-linked glycosylation that sometimes overlap with predicted sites of phosphorylation 

in Tkv, Sax, and their mammalian homologs (Fig. 2.8 C).  Some of the sites are 

conserved between all Type I receptors while others were unique to the Sax or Tkv 

receptors.  I predict that some or all of these sites could represent key residues of Sxc-

mediated glycosylation and therefore deactivation of Sax function, although this remains 

to be tested. 

Drosophila sxc mutants provide a platform on which to understand loss of OGT in 

human development and disease contexts.  Additionally, this study has shed light into 

the strict requirement for repression of Sax during embryogenesis.  Activating mutations 

of the human Sax homologue of, ACVR1 (Alk2), lead to ectopic BMP signaling and give 
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rise to Fibrodysplasia Ossificans Progressiva (FOP; OMIM ID#135100), a devastating 

condition associated with ossification of soft tissue.  FOP is inherited in an autosomal 

dominant fashion and, while symptoms at birth are absent, ossification occurs 

progressively throughout life often with most patients being confined to a wheelchair by 

their third decade (Petrie et al., 2009).  The mutation responsible for most cases maps to 

an R206H amino acid substitution.  This mutation has been demonstrated in cell culture 

to lead to increased and continuous ACVR1 phosphorylation in the absence of ligand 

and a failure to internalize and degrade the ACVR1 protein (de la Penna et al., 2005).  In 

both humans and Drosophila tight regulation of ACVR1/Sax activity is required to 

maintain proper levels of signaling.  In the case of Drosophila, this regulation is achieved 

by O-glycosylation.  Modification of ACVR1 by O-GlcNAcylation at any site has never 

been reported to date.  However, our data suggest that ACVR1 may be a target of O-

GlcNAcylation in human cells as it is in Drosophila and, therefore, should be examined in 

detail. 

Our use of genetic and biochemical approaches in the Drosophila embryo have 

led to the discovery of a novel mechanism of BMP signal antagonism by O-GlcNAc.  As 

the identification of O-GlcNAcylated proteins has progressed, it is becoming clearer that 

O-GlcNAc is an abundant modification with tremendous implication on protein function 

and cell signaling.  Moreover, I have developed a genetically tractable system in which I 

can readily assess Sax activity and serve as a model for BMP signaling diseases, such 

as FOP. 

 

Methods 

Fly strains 

The Oregon R strain served as the wild-type in all experiments.  mmy1, rawIG, 

and JraIA109 stocks were used as described (Humphreys et al., 2013).  The Tubulin:Gal4 
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stock was a gift of Mark Metzstein, and sxc stocks were a gift of John Hanover.  Stocks 

of sax5, Df(sxc), Df(Mad), scw5, gbbD4, babo32, and the maternal-driving Gal4 were 

obtained from the BDSC (stock numbers 8785, 740, 9713, 7306, 63053, 5399, and 

31777, respectively) and described previously (FlyBase, 2003, version FB2017_01, 

released February 14, 2017). sxc RNAi strain was obtained from the VDRC (stock 

number 18611) (Dietzl et al., 2007).  The dpp151H (Johnson et al., 2003), Tkv5 (Terracol 

and Lengyel, 1994), and put88 (Simin et al., 1998) stocks were as described previously.  

UAS:Sax-Flag line was a generous gift of Kristi Wharton, UAS:Tkv-GFP line was a 

generous gift Tom Kornberg. 

 

Phenotypic analysis 

Cuticle analysis was performed by dark field microscopy after embryos were 

incubated in one-step mounting media at 37°C for 18 hrs.  Lethal stage analyses were 

performed by plating embryos on grape juice agar plate and recording observed 

proportion of dead embryos after 48 hrs.  RNA in situ hybridization and 

immunohistochemistry staining procedures were all described previously (Humphreys et 

al., 2013).  In brief, rabbit anti-phospho-Smad1,5 Ser463/465 (1:20, Cell Signaling 

Technology) antibody or digoxigenin-labeled anti-sense RNA probes were incubated 

overnight on fixed embryo clutches.  After several washes, secondary antibodies 

targeting pMad, goat anti-rabbit alkaline phosphatase (Jackson ImmunoResearch) or 

goat anti-rabbit Alexa Fluor 488 (Invitrogen Molecular Probes), or digoxigenin-labeled 

RNA probes, mouse anti-digoxigenin alkaline phosphatase Fab fragments (Roche), were 

incubated with the embryos overnight.  The following day, alkaline phosphatase 

detection was performed using nitro blue tetrazolium chloride and 5-Bromo-4-chloro-3-

indolyl phosphate followed by dehydration in methanol and overnight incubation in 80% 

glycerol. 
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Protein studies 

Western blot studies and pMad quantification analyses were performed as 

described previously (Humphreys et al., 2013). In brief, protein lysates were loaded onto 

a 12% Acryl-Bis polyacrylamide gel and subjected to electrophoresis at 100v for 3 hrs.  

The gel was transferred to a PVDF membrane (Millipore) and blocked using 5% milk or 

5% BSA in TBS + 0.05% Tween for 2 hrs.  Primary antibodies were used at 1:200 (anti-

Jun) or 1:1,000 concentration (anti-O-GlcNAc [RL2] from Abcam and anti-Flag [M2] from 

Sigma-Aldrich).  HRP-conjugated goat-anti-mouse IgG secondary was used at 

1:100,000 for anti-O-GlcNAc and 1:15,000 for anti-Flag as well as HRP-conjugated goat 

anti-rabbit secondary at 1:5,000 for anti-Jun.  Blot detection was performed by mixing 

equal volumes of ECL Luminol solutions A and B (Santa Cruz) and developed on a Mini-

Medical Series machine (AFP Imaging). 

Immunoprecipitation assays were performed on embryonic lysates isolated using 

nondenaturing lysis buffer.  Three μg of anti-Flag or anti-GFP antibody was incubated 

with the lysates for 90 mins. followed by a 60-min. incubation with protein-G sepharose 

beads (Santa Cruz).  Beads were pelleted by centrifugation at 8,000 x G for 7 mins.  

Supernatant was collected and pelleted beads were subsequently washed in 500 μl lysis 

buffer 3 times.  2X Laemelli Sample Buffer was added to pellet and supernatant fractions 

and subsequently used in Western blot studies using the aforementioned protocol. 
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Fig. 2.1 sxc mutations result in embryonic lethality. Cuticle analysis of (A) wt, (B) 

mmy1, (C) Tub>sxcRNAi, (D) sxc1, and (E) sxc1/Df embryos. (F) sxc mutant allelic series 

map, sxc2 mutation is due to a 2:3 translocation, sxc3 aberration is not currently known. 

(G) sxc homozygotes from all lines exhibit partially penetrant embryonic lethality in all 

lines tested (**p<0.01). (H) Biochemical pathway in which sxc functions. 
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Fig. 2.2 Zygotically-derived sxc plays a critical role in development.  sxc expression 

in (A-C) wild-type, (D-F) Tub>sxc shRNA and (G-I) Maternal Gal4>sxc shRNA sxc1/sxc1 

embryos throughout embryogenesis (left to right: stage 5, stage 11, stage 13).  Cuticle 

analysis of (J) Maternal Gal4>sxc shRNA sxc1/+ and (K) Maternal Gal4>sxc shRNA 

sxc1/sxc1.  (L) Quantification of embryonic lethality associated with maternal, zygotic, and 

maternal/zygotic loss of sxc (**p<0.01). 
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Fig. 2.3 Dpp signaling, but not dpp expression, is aberrant in sxc. dpp RNA is 

exclusively expressed from the leading edge cells in the dorsal epidermis of (A) wild-

type embryos.  This expression is expanded in (C) mmy1, but not in (E) sxc1.  Mad is 

phosphorylated 4-6 cells deep within the epidermis of (B) wt embryos, but signaling is 

short lived during dorsal closure.  Mad phosphorylation occurs at a greater distance 

from the leading edge in both (D) mmy1 and (F) sxc1 embryos and persists through 

dorsal closure. (G) Quantification of depth of pMad staining nuclei in wild-type and sxc1 

embryos.  
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Fig. 2.4 sxc embryos do not exhibit JNK signaling defects.  Jun protein is localized 

to leading edge cells (white arrowheads) in (A) wild-type embryos is indistinguishable 

from (C) sxc1 embryos and is completely absent in (B) JraIA109 embryos.  (D) Jun protein 

abundance is not increased in sxc1 embryonic lysates above wild-type embryonic 

lysates.  This is in contrast to the previously described increase in Jun protein levels 

observed in embryonic lysates of a known JNK signaling antagonist, rawIG.  Also the 

JNK reporter is unaltered in (F) sxc1 embryos compared to wild-type embryos (E). The 

ectopic pMad phenotype in sxc requires Jun-dependent expression of dpp as no 

epidermal pMad is observed in (I) sxc1 JraIA109 compared to (H) sxc1 alone; compare 

also (G) wild-type. 
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Fig. 2.5 Sxc interacts with the Dpp signaling pathway at the level of Sax.  The 

sxc phenotype is lost in (B) sxc1 Df(Mad)/sxc1; Tub>MadRNAi; compare (A) 

Df(Mad)/+; Tub>MadRNAi. No difference is observed between (C) put88 and (D) sxc1; 

put88. The sxc phenotype is observed in (F, F’) sxc1 tkv5 compared with (E) tkv5. The 

sxc phenotype is lost in (H, H’) sxc1 sax5 compared to (G) sax5. No difference is 

observed between (I) sax5 tkv5 and (J) sxc1 sax5 tkv5. 
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Fig. 2.6 scw and gbb is not expressed in the embryonic epidermis and plays no 

role in the sxc phenotype. scw is expressed in stage 5 embryos (A, E), but is absent 

in the epidermis of stage 12 embryos (B, F) in both wild-type (A-B) and sxc1 (E-F) 

embryos.  Loss of scw in a sxc background (G) results in a phenotype with similarities 

to both sxc and scw (C) indicating that the sxc phenotype is independent of scw in the 

embryonic epidermis. The sxc phenotype also persists in sxc1 gbbD4 (H) double mutants 

compared to gbbD4 (D) mutants that exhibit weak dorsal closure defects. 
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Fig. 2.7  Dpp signaling through Sax is modulated by O-linked glycosylation and 

dietary sugar.  Sax-Flag and Tkv-GFP expressing embryonic lysates were subjected 

to immunoprecipitation and probed for the presence of O-GlcNAc via Western blot 

analysis (A).  The presence of a band in the Sax-Flag expressing embryos compared 

to wild-type controls indicates that Sax is O-link glycosylated in vivo.  No O-

glycosylation is detected on Tkv.  Forty percent of embryos derived from wild-type flies 

raised on no-sugar diets abort embryogenesis (B) and exhibit Dpp phenotypes (C-D).  

No change in phenotype is observed in lethality or cuticle phenotype in sxc1 embryos 

derived from flies raised on the no-sugar diet (E). 
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Fig. 2.8 Model of Sxc-mediated Dpp signal antagonism. Sxc functions to repress 

Dpp signal activation through Saxophone and limit all signaling through Tkv in the 

epidermis (A).  We hypothesize that glycosylation of Sax either in the GS domain or in 

the kinase domain would abrogate its ability to interact with Put or its kinase function 

(B). There are several predicted sites of O-link glycosylation on Sax by Sxc (C).  Yellow 

squares indicate sites of predicted glycosylation. 



 

 

CHAPTER 3 

 

THE DROSOPHILA Β1,3-GALACTOSYLTRANSFERASE, 

IS REQUIRED FOR HYPERTROPHIC CELL GROWTH 

 

Abstract 

 Glycans serve important developmental and homeostatic roles, and aberrations 

in glycan synthesis have been implicated in numerous diseases, both congenital and 

adult-onset.  In an effort to characterize developmental roles for glycosyltransferases 

implicated in human congenital disease, we have generated several transferase mutants 

in the powerful genetic model, Drosophila melanogaster.  Herein, we characterize 

phenotypes associated with the loss of the Drosophila ortholog of B3GLCT, sugarcoated 

(sgct), and demonstrate its utility as a model for Peters’ Plus Syndrome, a congenital 

disorder of glycosylation associated with B3GLCT mutations.  While many tissues exhibit 

hyperplastic growth (by mitosis), others, like bone, grow by hypertrophy (cell 

enlargement). We identified a role for sgct in cell hypertrophy during oogenesis and 

larval development.  Our data point to the sgct fly as a unique and powerful genetic 

model of Peters’ Plus Syndrome, providing insight into the etiology of growth and corneal 

defects observed in patients. 

 

Introduction 

Glycans, or polysaccharides, surround the surface of virtually every cell capable 

of differentiation and tissue formation in multicellular organisms (Haltiwanger and Lowe, 

2004).  Glycans facilitate communication between the cell and its environment and can 



45 
 

regulate cell-cell communication (Haerry et al., 1997; Haines and Irvine, 2003; 

Haltiwanger and Lowe, 2004; Varki, 2017).  The presence of glycans in ordered arrays in 

diverse tissues throughout development has led researchers to speculate that they serve 

a critical role in development (Haltiwanger and Lowe, 2004; Varki, 2017).  However, the 

complexity with which glycans are formed makes clarification of their specific 

developmental roles difficult to assess.  This said, Drosophila has proven itself to be an 

invaluable model for elucidating glycan structure and for identifying how glycans are 

utilized, which in turn has provided insights into their function in other organisms as well 

(Haltiwanger and Lowe, 2004; Moulton and Letsou, 2016). 

Protein glycosylation primarily occurs in the endoplasmic reticulum and Golgi 

apparatus, although the addition of a single O-GlcNAc residue is carried out by the O-

GlcNAc transferase (OGT) on a subset of proteins that reside in the cytoplasm and 

nucleus (Varki, 2017).  Glycosylated proteins, termed glycosaminoglycans (GAGs), are 

delineated based on where the protein is glycosylated and which sugars are used to 

glycosylate it.  Sugars can be added to Ser/Thr residues via an oxygen group (O-

linkage) or at Asn via a nitrogen side group (N-linkage).  O-linked glycan chains are 

formed by the addition of single sugar residues in chains initiated by the addition of a 

GalNAc residue.  Large glycoproteins that carry many clustered O-linked glycosyl chains 

are called mucins (Varki, 2017).  Mucins are frequently found as transmembrane 

glycoproteins or in mucous secretions and function as facilitators of signal transduction, 

mediators of cell adhesion, and preventers of tissue desiccation.  Mucins have been 

implicated in various diseases including cancer, with diverse malignancies promoting 

their own growth and survival by enhancing the expression of mucins on their cell 

surfaces, and eye diseases, with mucins functioning to lubricate and protect the eye 

(Jass and Walsh, 2001; Kufe, 2009; Mantelli and Argüeso, 2008). 

Peters’ Plus Syndrome, a rare anomaly associated with Peters’ anomaly (corneal 
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opacity due to failure of the cornea to detach from the lens or iris), and growth defects 

have been demonstrated to be caused by a glycosyltransferase important in mucin 

formation (Maillette de Buy Wenniger-Prick and Hennekam, 2002).  Specifically, Peters’ 

Plus Syndrome is caused by mutations in B3GLCT (OMIM) but the precise role mucins 

play in the etiology of this disease remain unexplored. 

We are leveraging the genetic toolkit available in Drosophila melanogaster to 

interrogate the role of mucins in Peters’ Plus Syndrome with the specific goal to 

understand the etiology of Peters’ Plus associated growth and corneal defects.  To this 

end, we mutated the Drosophila ortholog of B3GLCT, CG9109, which we have named 

sugarcoated (sgct).  sgct shares 37.3% amino acid identity across the entire protein 

length with the human B3GLCT gene (Fig. 3.1) along with complete conservation of 

transferase domains.  Herein, we demonstrate that loss of sgct in Drosophila results in 

failure of developing fly larvae to grow and molt.  Furthermore, targeted loss of sgct in 

oocytes results in termination of oocyte development and sterility.  Both larval and 

oogenetic phenotypes are due to the failures of cells to enlarge during development.  

Tissues typically grow by employing cell division, whereas some postmitotic tissues can 

grow only by increasing cell size (hypertrophy).  One tissue that grows primarily by 

hypertrophy is bone (Burdan et al., 2009).  In the growth plate, chondrocyte populations 

initially expand mitotically, but as individual chondrocytes mature, they become 

postmitotic and enlarge only by cell hypertrophy.  We provide evidence that mucins 

generated by the Drosophila homolog of B3GLCT, sgct, are required for hypertrophic 

cell growth in the developing Drosophila larva.  Findings from this study lend new insight 

into the etiology of growth defects associated with Peters’ Plus Syndrome. 
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Materials and methods 

Fly strains 

The Oregon R strain served as the wild-type in all experiments.  The 

Tubulin:Gal4 stock was a gift of Mark Metzstein, and the maternal-driving Gal4 were 

obtained from the BDSC (stock number 31777) and described previously (FlyBase, 

2003, version FB2017_01, released February 14, 2017). CG9107 RNAi strain was 

obtained from the BDSC (stock number 43547).  

 

Phenotypic analysis 

Cuticle analysis was performed by dark field microscopy after embryos were 

incubated in one-step mounting media at 37°C for 18 hrs.  Lethal stage analyses were 

performed by plating embryos on grape juice agar plate and recording observed 

proportion of dead embryos after 48 hrs.  RNA in situ hybridization and 

immunohistochemistry staining procedures were all described previously (Humphreys et 

al., 2013).  In brief, rabbit anti-phospho-Smad1,5 Ser463/465 (1:20, Cell Signaling 

Technology) antibody or digoxigenin-labeled anti-sense RNA probes were incubated 

overnight on fixed embryo clutches.  After several washes, secondary antibodies 

targeting pMad, goat anti-rabbit alkaline phosphatase (Jackson ImmunoResearch) or 

goat anti-rabbit Alexa Fluor 488 (Invitrogen Molecular Probes), or digoxigenin-labeled 

RNA probes, mouse anti-digoxigenin alkaline phosphatase Fab fragments (Roche), were 

incubated with the embryos overnight.  The following day, alkaline phosphatase 

detection was performed using nitro blue tetrazolium chloride and 5-Bromo-4-chloro-3-

indolyl phosphate followed by dehydration in methanol and overnight incubation in 80% 

glycerol.  Fluorescein-conjugated chitin-binding probe (New England BioLabs) was used 

to examine embryonic trachea by incubating embryos in the probe solution overnight 

and examining the trachea using darkfield microscopy on a Zeiss Axioskop.  All larval 
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measurements were made by imaging live larvae on a Zeiss Axioskop and quantifying 

area in Image J.  Fluorescently stained embryos were mounted in Vectashield Mounting 

Media with DAPI (H-1200; Vector Laboratories) and imaged with a FV1000 Olympus 

confocal microscope (Fluorescence Microscopy Core Facility at the University Of Utah 

School Of Medicine). 

 

Feeding assay 

 Larval feeding was monitored by allowing larvae to feed on yeast paste 

containing Bromophenol Blue.  Later, larvae were collected, washed thoroughly in PBS, 

and their guts examined under DIC imaging on a Zeiss Axioskop for the presence of 

blue dye.  Larvae were also switched between feeding on dyed food for 24 hrs. and non-

dyed food for 24 hrs. and examined using the same method to examine gut clearance 

over time. 

 

Cryo EM studies 

 Larvae were collected and aged to the indicated time and high-pressure 

freezing/fixation were performed as described previously (Watanabe et al., 2013).  All 

freezing and EM imaging were carried out by the technicians at the EM core at the 

University of Utah. 

 

Results 

 We employ reverse genetic approaches to characterize roles of 

glycosyltransferases implicated in human diseases for which there are currently no good 

genetic models.  One such disease, Peters’ Plus Syndrome, results from mutations in 

the B3GLCT gene for which there is a single ortholog in the fly, CG9109, which we have 

named sugarcoated (sgct).  sgct is maternally deposited (Fig. 3.2 A) and ubiquitously 
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expressed during embryogenesis (Fig. 3.2 B) suggestive of a role for sgct in 

development and pointing to the potential value of the sgct fly as an animal model of 

Peter’s Plus.  As a first step in creating this model, we generated a null allele of sgct by 

P-element mobilization (Fig. 3.2 D), designated sgct11c.  We confirmed that sgct 

expression is eliminated in sgct11c homozygotes by RNA hybridization in situ (Fig. 3.2 C).  

Although this allele disrupted the neighboring gene, CG9107, targeted disruption of this 

gene by RNAi resulted in no embryonic lethality or cuticle defects (Fig. 3.2 E, compare 

wild-type in D).  We examined the requirements of both maternal and zygotic sgct 

transcripts on development.  

 

Maternal sgct is required for oocyte enlargement 

 We recombined the sgct allele onto an FRT containing chromosome and 

obtained females which were heterozygous for this (sgct FRT) and a female sterile allele 

in cis to an FRT at the same chromosomal position (OvoD FRT).  We also crossed in an 

ovarium-specific expressing FLPase transgene to generate females producing oocytes 

completely lacking sgct.  We discovered that females lacking sgct expression in the 

germline are sterile.  In an analysis of hundreds of sgct flies, we recovered only two eggs 

(Fig. 3.3 B), both of which were misshapen and harbored fused dorsal appendages (Fig. 

3.3 A).   Next, we used phase microscopy to assess sgct ovaries.  We dissected 

individual ovarioles, stained them using DAPI, and examined them using a confocal 

microscope using darkfield and phase contrast microscopy techniques.  Ovarioles 

obtained from sgct mosaic flies contained egg chambers that failed to elongate or grow 

throughout oogenesis (Fig. 3.3 E, E’) in contrast to wild-type egg chambers (Fig. 3.3 C, 

C’).  Furthermore, egg chamber development failed to complete, similar to egg 

chambers in the female sterile OvoD background (Fig. 3.3 D, D’).  This defect in egg 

chamber growth and development is not due to a failure to specify an oocyte as a single 
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cell within each egg chamber properly expresses the oocyte maker orb in ovarioles 

derived from wild-type and sgct mosaic females (Fig. 3.3 F-G).  Oocyte growth is a non-

mitotic event and occurs by cell hypertrophy via endocytic take-up of vitelogenin 

(Schonbaum et al., 2000).  

 

Zygotic sgct is required for larval cell enlargement 

sgct11c embryos are fully viable, hatch into larvae, and exhibit no obvious cuticle 

defects (data not shown).  Rather, sgct11c homozygotes exhibit lethality and growth 

defects during larval stages.  Although sgct11c larvae are no smaller than their wild-type 

counterparts at 24 hrs. after egg lay (AEL) (Fig. 3.4 A), they fail to grow in size and are 

significantly smaller than wild-type larvae by 5 hrs. after larval hatching (Fig. 3.4 A).  

Even though sgct larvae continue to eat throughout their lives (Fig. 3.4 D-E; compare 

wild-type in B-C), sgct larvae fail to molt at any point after 48 hrs. AEL and retain their 

signature L1 mouth hooks throughout their lives (Fig. 3.5 C-D; compare wild-type in A-

B).  sgct larvae suffer a fully penetrant larval lethality by 120 hrs. AEL, the time at which 

wild-type larvae transition into pupae.   

Drosophila larval cells grow by hypertrophy and this is the primary contributor of 

organismal growth between L1 and L3.  In order to determine the magnitude of growth 

failure, I measured cell size in sgct larvae compared to wild-type. Cell areas were the 

same in wild-type and sgct11c homozygotes at the time of hatching (24 hrs. AEL), but 

while wild-type cells exhibit a significant three-fold expansion in size by 120 hrs. AEL, (3r 

larval instar stage) cell size in sgct11c homozygotes remains unchanged (Fig. 3.6). These 

data demonstrate that sgt11c larval cells like sgt11c oocytes fail to hypertrophy during 

development and point to a previously unrecognized role for B3GLCT and mucins in this 

process. 

sgct larvae fail to grow to any detectable degree (Fig. 3.7 A) and are fragile; even 
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the gentlest handling of sgct larvae resulted in cuticle rupture and death.  Moreover, 

when sgct larvae were allowed to hatch on adhesive tape, their mere crawling across the 

tape led to their death by cuticle breakage (Fig. 3.7 B).  These observations led us to 

speculate that sgct fragility is associated with failures in cuticle deposition.  To test this 

idea, we examined wild-type and mutant larval cuticles at 24 and 120 hrs. AEL by cryo 

EM, first visualizing cuticle gross morphology and second measuring cuticle thickness.  

While there were no measurable differences in cuticle thickness or organization at early 

time points (Fig. 3. 7 G, I), cuticles from sgct larvae were thinner and morphologically 

disordered in comparison to wild-types at 120 hrs. AEL (corresponding to the L3 stage in 

a wild-type larva) (Fig. 3.7 H, J).  Abnormal morphologies included cuticle inclusions 

(arrowhead), cuticle blebbing (asterisk), and improper layering of the cuticle (arrow) (Fig. 

3.7 I-J).  In terms of cuticle patterning, we observed disorganization of the cuticle layers 

and a loss of directionality of the stereotypic chevron-shaped wedges within each layer.  

In sgct, these wedges did not point in a consistent direction within or between cuticle 

layers.  We suspect that these differences lead to the cuticle weakness observed and 

the ease with which the larvae are ruptured.  Although cuticle defects were observed in 

dorsal trunk formation during late stages of embryogenesis (Fig. 3.7 F), these defects 

were detected only rarely (compare wild-type in C and mmy1 with stereotypic cuticle 

defects in D).  

 

Discussion 

 Mucins are expressed in various tissues and perform diverse functions including 

regulating cell proliferation and cell secretion.  Cell growth and proliferation are often 

correlated and occur concomitantly during tissue growth.  However, in both vertebrates 

and invertebrates, there is a subset of nonmitotic tissues that undergo growth by cell 

hypertrophy rather than hyperplasia.  In the case of Drosophila, larvae are mostly 
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composed of cells that grow in size and drive larval growth.  These cells undergo 

endoreplication and duplicate their genome without completing cytokinesis (Edgar and 

Orr-Weaver, 2001) and, by our analysis grow by more than three-fold during larval 

development.  Herein, we have described our discovery of a critical role for the 

glycosyltransferase, sgct, in hypertrophic growth of cells during Drosophila larval 

development and oogenesis and in the proper secretion of the larval cuticular 

exoskeleton. 

 Mutations in the human homolog of sgct, B3GLCT, result in a congenital disease 

called Peters’ Plus Syndrome associated with congenital defects including growth 

defects and Peter’s anomaly.  We propose the sgct fly as a genetically tractable model 

for this disease which has proven useful in gaining insight into the etiology of the growth 

and corneal defects associated with this disorder which warrant further exploration.  

Specifically, failure in cells to grow by hypertrophy may be the primary defect in the 

bones of Peters’ Plus patients.  Additionally, the failure of cuticle secretion observed in 

sgct suggests that corneal cells of Peters’ Plus patients may not be secreting mucins 

which could help the cornea detach from other cell layers in the eye.  While insights 

gained from our exploration of sgct phenotypes in the fly, much remains unknown 

regarding the function of mucins in the Peters’ Plus phenotypes.  Undoubtedly, the fly 

will serve as an important springboard into exploration of the roles of mucins and provide 

a model in which to test hypotheses and identify therapeutic interventions for this and 

other human diseases. 
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Fig. 3.1 Alignment of B3GLCT and sgct. Human B3GLCT and Drosophila sgct share 

37.3% amino acid identity and are predicted homologs. 
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Fig. 3.2 sgct is maternally-deposited and zygotically expressed. sgct RNA 

transcripts can be detected in early blastoderm embryos (A), demonstrating maternal 

deposition of sgct, and ubiquitously in dorsal-closure stage embryos (B).  Removal of 

the last exon of sgct by imprecise P-element excision (sgct11c) ablates all detectable 

sgct expression by RNA in situ analysis (C).  No embryonic phenotypes are observed 

in embryos expressing RNAi targeting the CG9107 locus (F) compared to wild-type 

(E). 
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Fig. 3.3 sgct female germline fail to produce viable eggs and to elongate egg 

chambers. sgct11c homozygous female germline result in a nearly complete ablation 

of fecundity and a failure of egg chambers to elongate during oogenesis.  This failure 

occurs despite the ability of the oocyte to be specified during oogenesis. 
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Fig. 3.4 sgct larvae fail to grow with age. sgct11c homozygous larvae are viable 

but fail to grow compared to wild-type, despite their ability to eat and clear gut 

contents. 

Fig. 3.5 sgct larvae fail to molt. sgct11c 

homozygous larvae retain mouthooks 

indistinguishable from wild-type L1 

larvae demonstrating an inability to molt 

and shed their exoskeleton. 

Fig. 3.6 sgct larvae fail to expand cell 

area during development. sgct11c 

homozygous larvae fail to expand cell 

area during larval development 

compared to an over 300% in growth in 

cell area in wild-type during the same 

time course. 
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Fig. 3.7 sgct larvae exhibit cuticle defects. sgct11c homozygous larvae exhibit a 

fragile cuticle phenotype and burst easily upon handling.  Although sgct11c exhibit 

embryonic tracheal defects, they occur at low frequency.  sgct11c larvae also exhibit 

completely penetrant cuticle deposition and patterning defects.  Although cuticle is 

deposited normally at early larval stages, over time, this cuticle fails to expand and 

develops structural abnormalities such as inclusions (arrowheads), belbbing (asterisk) 

and disorganization of cuticle directionality (arrows). 



 

 

CHAPTER 4 

 

DPP SIGNALING IS ANTAGONIZED BY A 

CHONDROITIN-SULFATE SINK 

 

The contents of this chapter is a manuscript that I am co-authoring which is currently 
being prepared for submission.  I contributed to the writing of this manuscript and carried 
out the experiments and imaging to generate Figure 4.7.  
 
 
 

Abstract 

Decapentaplegic (Dpp) signaling simultaneously regulates epidermal and 

mesodermal processes in early Drosophila development.  In the epidermis, Dpp directs 

the changes in cell shape and position underling the morphogenetic process of dorsal 

closure, while in the adjacent mesoderm it promotes organogenesis of the heart.  The 

Dpp source for both processes is the epidermal leading edge (LE).  Here we show that 

proper signal propagation in both tissues relies on a mesodermally-derived chondroitin-

modified signaling sink.  Loss of chondroitin by mutation of the gene encoding either the 

GalNAc epimerase Gale or the GalNAc transferase Wanderlust increases Dpp activity in 

both the epidermis and the mesoderm, providing the first in vivo evidence for the long-

theorized sink.  Moreover, our demonstration that the Dpp sink resides in cells 

immediately adjacent to the Dpp source, and in a neighboring tissue, underscores the 

importance of highly coordinated tissue functions in signal propagation – both with 

respect to signal production and elimination.  

 

 

http://topics.sciencedirect.com/topics/page/Bone_morphogenetic_protein
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Introduction 

Critical to the development of all multicellular organisms is the ability to transform 

equipotent embryonic cells into distinct tissues and organs.  One way this cellular 

diversity is achieved is via morphogen signaling.  Morphogens were first defined by Alan 

Turing in his 1952 landmark paper (Turing, 1952) as diffusible chemicals that form 

signaling gradients and by which different chemical concentrations determine different 

cellular reactions.  In 1969, Lewis Wolpert refined our understanding of morphogen 

gradients with the French Flag model (Wolpert, 1969).  In this revised model, a diffusible 

ligand forms a gradient across a signaling field (or between a source and distant cells), 

and cells within the signaling field act in accordance with the level of signal observed.  

Among others researching cellular signaling it was quickly noted that generation of a 

stable continuous gradient requires a “sink”, a signal-destroying component located at a 

distance from the source (Crick, 1970).  Without a sink, signal is expected to accumulate 

at uniform levels across the field but, until now, the genetic and molecular nature of a 

signaling sink, working either locally or at a distance, has not been identified.  We have 

shown previously that Dpp gradient formation is modulated by UDP-glucose (Humphreys 

et al., 2013), and here we extend our study to mechanism, showing that chondroitin 

sulfate (CS), a proteoglycan formed from UDP-glucose, functions as the Dpp sink in the 

embryonic mesoderm.  These results are notable as they provide evidence for the first-

ever localized signaling sink functioning in vivo and thus also provide the capstone piece 

to a long-held seminal theory in developmental biology.  

Dpp belongs to the Bone Morphogenic Protein (BMP) group of evolutionarily-

important signaling molecules conserved in vertebrates and invertebrates, with evidence 

suggesting a common ancestor at least 600 million years ago (Padgett et al., 1993).  

BMPs were first identified and named for their ability to induce bone development (Urist, 

1965).  Since their discovery, BMPs have been shown to play roles in diverse 
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developmental and morphological processes, including organogenesis, wound healing, 

and stem cell maintenance (Frasch, 1995; Lyons et al., 1990; Mandel et al., 2010; 

Winnier et al., 1995; Kawase et al., 2004; Shivdasani and Ingham, 2003; Song et al., 

2004; Ying et al., 2003).  BMPs are diffusible ligands that form signaling gradients within 

and between tissues and signal through binding to a dimeric receptor complex 

containing type I and type II subunits; varying the components of the receptor affects 

specificity to specific BMP ligands.  When the ligand-receptor complex is formed, the 

type I receptor subunit is activated by phosphorylation.  In its turn, the activated type I 

receptor phosphorylates a Smad signal transducer; upon entering the nucleus, Smads 

binds to BMP-responsive targets to activate and enhance transcription (Massagué, 

1998).   

While several molecules that refine signaling range have been characterized 

(e.g., Thickveins [Tkv], Syndecan [Sdc], and others), the long-sought sink has eluded 

detection and characterization.  The problem is made only more complex by the 

regulators’ shared participation in multiple signaling pathways (Nishihara, 2010).    

Mummy (Mmy), a UDP-N-acetylglucosamine pyrophosphorylase that synthesizes 

UDP-GlcNAc, functions in the epidermis to limit Dpp/BMP signaling (Humphreys et al., 

2013).  UDP-GlcNAc is essential for the synthesis of heparin sulfate proteoglycans 

(HSPGs), which have been shown in Drosophila and other eukaryotes to play essential 

roles in modulating the effects of morphogens (Dpp/BMP, Wingless (Wg)/WNT, and 

Hedgehog (Hh)), usually as a facilitator of long-range signaling (Akiyama et al., 2008; 

Beckett et al., 2008; Belenkaya et al., 2004; Capurro et al., 2008; Gallet et al., 2008; 

Gumienny et al., 2007).  This said, we have not found any effect of loss of the HSPG, 

Syndecan, on epidermal Dpp/BMP signaling (not shown), and thus we speculated that 

there must be another requirement for UDP-GlcNAc in regulating epidermal Dpp/BMP 

signaling.   Here we report our identification of two components of the chondroitin sulfate 
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(CS) synthesis pathway, wanderlust (wand), a gene with homology to the evolutionarily-

conserved Chondroitin sulfate synthase 2, and its upstream partner UDP-galactose 4’-

epimerase (Gale), as antagonists of Dpp/BMP signaling in the embryonic Drosophila 

epidermis and in the underlying mesoderm.  Notably, the transcripts corresponding to 

both wand and Gale are expressed in a single row of mesodermal cells underlying the 

Dpp-secreting leading edge cells (LE) of the epidermis.  Taken together, our data point 

to CS as an important developmental regulator, one which fulfills the requirements of a 

signaling sink and converts a potentially long-range signaling molecule into a shorter-

range signaling molecule. 

 

Results 

mmy mutants are defective in glycosylation 

mmy codes for the single Drosophila UDP-N-acetylglucosamine 

pyrophosphorylase, an enzyme catalyzing the final step of UDP-GlcNAc biosynthesis 

(Araújo et al., 2005).  Certain mmy hypomorphs, such as mmy1, exhibit defects in dorsal 

closure yet have intact chitin, indicating that the mmy1 dorsal closure defect stems from 

an alternative requirement for UDP-GlcNAc (Humphreys et al., 2013; Tonning et al., 

2006).  Aside from chitin synthesis, UDP-GlcNAc is utilized for a variety of functions 

including N- and O-linked glycosylation as well as synthesis of glycosyl-

phospatidylinostiol (GPI), heparin sulfate (HS), and chondroitin sulfate (CS) (Breitling 

and Aebi, 2013; Hardingham and Fosang, 1992; Low, 1989; Wells et al., 2001).  To 

determine whether mmy hypomorphs have a loss in UDP-GlcNAc synthesis that is 

sufficient to produce glycosylation defects, we used Western blot analysis to probe shifts 

in the molecular weight of Dally-like protein (Dlp), an HS proteoglycan consisting of a 

protein core of 85 kDa weight and attached HS chains of variable lengths (Fig. 4.1).  In 

wild-type embryonic lysates, HS-modified Dlp appears as a broad band in the 130–160 
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kDa range of the blot, whereas in two independently generated mmy hypomorphs the 

Dlp band shifts to average 100 kDa; these data indicate that HS chains are truncated in 

mmy mutants and confirm that animals harboring hypomorphic alleles of mmy and 

exhibiting Dpp signaling abnormalities have insufficient UDP-GlcNAc levels to carry out 

full glycosylation.   

 

Epidermal BMP/Dpp signaling is regulated by the chondroitin 

biosynthetic pathway 

More than two dozen transferases function downstream of Mmy to effect 

glycosylation. To identify the transferase(s) functioning downstream of Mmy in regulating 

Dpp/BMP signaling, we disrupted each of the predicted Drosophila β-1,3 

glycosyltransferases (Correia et al., 2003) by RNAi. To this end, we used the tubulin 

Gal4 (tub-Gal4) driver to mediate ubiquitous expression of UAS-RNAi’s targeting each of 

the transferases. Analysis of cuticle phenotypes revealed that loss of only one β-1,3 

glycosyltransferase (CG43313) results in embryonic lethality and a loss-of-function 

cuticle phenotype that is shared with mmy and indicative of hyperactive Dpp signaling 

(Fig. 4.2 B,C,E).  The CG43313-encoded transferase, which we have named Wanderlust 

(Wand), is homologous to human Chondroitin sulfate synthase 2 and catalyzes the 

elongation of chondroitin sulfate (Yada et al., 2003) (Fig. 4.2).  Two previously described 

alleles of wand (CG43313PL61 and CG43313PL69) are likely hypomorphic; they were 

generated by P-element insertion into the gene region (Bourbon et al., 2002) and when 

homozygosed yield a fully penetrant larval lethality (data not shown). 

Chondroitin synthesis lies downstream of Mmy in a linear biochemical pathway 

(Fig. 4.3 A).  To confirm that the effects of wand RNAi are due to a loss of chondroitin, 

we turned to the gene functioning directly upstream of wand in the chondroitin 

biosynthetic pathway.  The Drosophila gene UDP-galactose 4'-epimerase (Gale) is 
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required to convert UDP-GlcNAc into UDP-GalNAc (Sanders et al., 2010), the substrate 

of chondroitin sulfate synthases. Given this function, genetic and biochemical models 

predict that Gale embryos will suffer an embryonic lethality and share a loss-of-function 

cuticle phenotype with mmy and wand mutants.  In examining cuticles from animals 

homozygous for two publically available amorphic alleles of Gale, we found that this 

prediction holds true (Fig. 4.3 D).  The shared loss-of function phenotype of genes 

encoding three sequentially acting enzymes in the CS biosynthetic pathway (mmy, Gale, 

and wand) indicates that CS is an important protein modification enacting Dpp 

antagonism.   

The dorsal-open, ventral-hypotrophic cuticle phenotypes observed in Gale and 

wand mutants are well-characterized signatures of ectopic epidermal Dpp/BMP signaling 

(Humphreys 2013; Bates et al., 2008; Byars et al., 1999; Riesgo-Escovar et al., 1997).  

To directly test the hypothesis that Gale and Wand are required (like Mmy) to limit Dpp 

signaling in the embryonic epidermis of Drosophila, we compared epidermal Dpp activity 

in wild-type, Gale, and wandRNAi (null) embryos.  To do this, we used immunostains with 

antibodies directed against pMAD (the phosphorylated [activated] form of the Dpp signal 

transducer Mothers against dpp) and hybridizations in situ with dpp (a transcriptionally 

regulated target of the pathway).  

In previous studies of epidermal MAD activity, we showed that pMAD is broadly 

distributed in the epidermis of wild-type embryos undergoing germ band extension, while 

later in development (in dorsal closure stages of embryogenesis), pMAD 

immunoreactivity disappears (Humphreys et al. 2013).  Here, when we examined the 

epidermal Dpp signaling domain in Gale and wand mutant embryos, we found that 

although early pMAD profiles are similar in wild-type and mutant embryos (data not 

shown), differences are very clear later in development.  Dpp signaling, which is 

normally attenuated during dorsal closure in wild-type embryos, persists temporally and 
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extends to greater depths in the epidermis of mutant embryos. Specifically, we observed 

that P-Mad-positive Dpp signaling fields are expanded in Gale and wandRNAi mutants in a 

manner that is analogous to that observed in mmy mutants (Fig.  4.3 J-M, J’-M’).   

Results from hybridization studies in whole mount embryos in situ are consistent 

with those from immunostains.  We observed LE-restricted epidermal dpp expression in 

wild-type embryos, from germ band extended to germ band retracted stages of 

development (Fig. 4.3 F).  In contrast, in similarly staged mmy, Gale, and wand mutant 

embryos, we observed broad ectopic epidermal dpp expression (Fig. 4.3 G-I).  

Integration of epidermal and mesodermal regulators of BMP/Dpp signaling 

With the expectation that spatial patterns of Gale and/or wand expression might 

suggest a mechanism for CS-mediated Dpp signal antagonism, we next examined the 

genes’ expression in hybridization studies of whole mount embryos in situ.  While Gale is 

not maternally deposited, it is expressed in a single row of mesodermal cells underlying 

the epidermal LE (Fig. 4.4 A-B).    

Unlike Gale, wand is maternally deposited in the early syncytial blastoderm; more 

notable, however, is our observation that as for Gale, the zygotic wand transcript is first 

visible in a single row of mesodermal cells underlying the LE epidermis (Fig. 4.4 D-E).  

The quantities and timing of Gale and wand expression are consistent with measures 

reported in the modENCODE database (Graveley et al., 2011), and while Gale 

expression diminishes in stage 13 embryos, wand expression appears to become 

stronger (Fig. 4.4 C,F).   To ascertain whether Gale and wand are expressed in cardiac 

or pericardial cells (the two dorsal-most rows of mesoderm in stage 13 embryos), we 

compared wand expression to that of a cardiac cell marker (tinman; [tin]) and a 

pericardial cell marker (zfh1) (Lockwood and Bodmer, 2002; Su et al., 1999).  wand and 

tin are expressed in the same cells (Figs. 4.4 G-I, G’-I’), placing wand in the cardiac cells 

of the developing Drosophila heart, a tissue that in fact contacts the epidermal leading 
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edge and requires Dpp for its specification (Frasch, 1995).  

Intriguingly, wand is also expressed in tissues that rely upon Dpp signaling for 

patterning and growth such as the gastric cecae and wing imaginal disc (Fig. 4.5 A-B).  

However, it is the co-expression of wand and the archetypal dpp reporter tin  (Frasch, 

1995; Xu et al., 1998; Yin and Frasch, 1998) in cardiac cells that led to our speculation 

that wand might be a transcriptionally-regulated target of Dpp that functions in a negative 

feedback loop.   To test this idea, we examined wand expression in wild-type embryos, 

and in embryos either lacking Dpp signaling (JraIA109) or ectopically expressing Dpp 

signaling (mmy1, and rawIG).  While tin expression is either absent or reduced in cardiac 

cells in JraIA109 mutants and expanded in the mesoderm in rawIG mutants (Lockwood and  

Bodmer, 2002; Yang and Su, 2011), wand expression in embryos with perturbed 

epidermal Dpp signaling is indistinguishable from that of wild-type (Figs. 4.5 C-E).  

These data show that wand expression is independent of Dpp and thus not part of a 

negative feedback loop. 

 

CS functions as a signaling sink 

Chondroitin sulfated proteoglycans are extracellular proteins that are found 

almost ubiquitously on cell surfaces and in extracellular matrix.  As such, the expression 

of the CS proteoglycan biosynthetic genes wand and gale in cardiac cells underlying the 

LE, coupled with their genetic loss-of-function epidermal phenotypes, point to two 

possibilities for mesodermal CS function.  First, CS might function as a canonical DPP 

sink, limiting an essential Dpp activity in both tissues: in the epidermis for dorsal closure 

and in the mesoderm for dorsal vessel (Drosophila heart) formation.  Alternatively, a CS-

modified extracellular matrix protein might be required for vectorial signaling: drawing 

signal to the mesoderm to promote dorsal vessel formation at the same time that it limits 

Dpp signaling activity in the epidermis.  Genetic tests were used to distinguish between 
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sink and vectorial signaling roles for CS.  In this regard loss of a CS sink is expected to 

lead to Dpp gain-of function phenotypes in both tissues, while loss of a vectorial signal 

facilitator is expected to lead to a Dpp gain-of-function phenotype in the epidermis, but to 

a loss-of-function phenotype in the mesoderm.  Knowing that both wand and gale lead to 

Dpp gain-of-function phenotypes in the epidermis, we next tested for mesodermal 

phenotypes in mutants.  To do this, we used the B2-3-20 enhancer trap to monitor Dpp-

dependent specification of embryonic cardiac cells (Fig. 4.6 A) (Bier et al., 1989).  

wandRNAi embryos exhibit a striking Dpp gain-of-function phenotype (Fig. 4.6 E), with 

even a greater excess of cardiac cells than has been reported previously for raw nulls 

(Fig. 4.6 C) (Klinedinst and Bodmer, 2003; Yang and Su, 2011).  Thus, as depletion of 

CS leads to Dpp gain-of-function phenotypes in both the epidermis and the mesoderm, 

the molecule fulfills the criteria for sink function.  In contrast mutations in sdc (which 

encodes an HS proteoglycan) and mmy (which is required for both HS and CS 

synthesis) lead to Dpp loss-of-function phenotypes – evidenced as a failure to specify 

cardiac cells in embryonic hemisegments (Fig. 4.6 B, D) (Knox et al., 2011).   

We were somewhat surprised to see that the gain of Dpp in raw and wand 

mesodermal phenotypes were so different, with the wand phenotype appearing 

significantly stronger.  While it is clear that Dpp is ectopically produced in both raw and 

wand, the use of a previously described Dpp reporter (Johnson et al., 2003) suggests 

that the differences observed between these genotypes can be explained by the 

difference in this reporter expression.  In raw, the reporter is expressed broadly in the 

epidermis (Fig. 4.7 C) whereas in wild-type and mmy embryos (Fig. 4.7 A-B), there is no 

detectable difference in the reporter expression and staining is only present in the LE.  

This suggests that the Dpp produced in raw must not be an efficient source for function 

in the mesoderm.  In wand on the other hand, the failure of the sink allows for excess 

dpp to be immediately available to its target cells in the dorsal most region of the 
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epidermis and underlying mesoderm.  These data are consistent with the difference in 

JNK activation in the epidermis between raw and mmy where JNK is activated broadly in 

raw mutants but unchanged from wild-type in mmy.  Therefore, we conclude that the 

Dpp reporter serves as a readout of JNK-dependent dpp expression.  

Finally, having identified CS as an important modification in Dpp signal 

regulation, we tested whether the known cardiac CS proteoglycans sdc and trol either 

singly or together are sufficient to define the mesodermal sink.  The role of sdc in 

mesodermal Dpp signaling plus its expression in cardiac cells makes it an attractive 

candidate as the mesoderm-expressed Dpp sink.  However, sdc mutant embryos do not 

have cuticle defects associated with ectopic dpp transcription, nor do they exhibit ectopic 

epidermal dpp transcript in situ (data not shown).  Thus, while sdc is an important 

effector of mesodermal Dpp signaling, it is not the Dpp sink.  Similarly, trol mutant 

embryos did not exhibit cuticle defects associated with ectopic Dpp signaling, nor did we 

observe ectopic expression of dpp in the epidermis (data not shown).  Last, we tested if 

the signal antagonist may not be tied to any particular protein, but is due to a 

combination of CS-modified proteins; thus, the overlapping cardiac expression domains 

of sdc and trol could compensate for the loss of one or the other.  To test this model, we 

examined cuticle phenotypes and dpp expression in trol sdc double mutant embryos.  

While nearly 50% of double mutant animals failed to deposit a cuticle, we did not 

observe mmy-like cuticles or dpp expansion in trol mutants, sdc mutants, or trol sdc 

double mutants in excess of background levels (data not shown). We did not study the 

effects of kon-tiki or multiplexin loss of function, so one of these CS proteoglycans might 

still have a role in Dpp signal antagonism.  The exact CS-modified protein(s) that enable 

the sink has yet to be identified. 
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Discussion 

Embryonic cells differentiate, migrate, and divide in coordinated and repeatable 

patterns during development, and this reproducible execution is due in part to 

morphogen signaling.  Morphogens as first defined by Alan Turing in his landmark 

paper, “The Chemical Basis of Morphogenesis,” are diffusible chemicals that can self-

organize to form a signaling gradient, wherein differential signal concentrations 

determine cellular reaction (Reviewed in Rogers and Schier, 2011; Turing, 1952).  In 

1969, Lewis Wolpert refined our understanding of morphogen gradients with the French 

Flag model, wherein a diffusible ligand forms a gradient between a source and distant 

cells, and cells produce a response that is dictated by the local concentration of 

morphogen the cell perceives (Wolpert, 1969).  Shortly afterwards, Francis Crick 

realized that signal production and spreading will eventually lead to an even distribution 

of signal across all cells and noted that generation of a stable continuous gradient 

requires a “sink,” a signaling component located at a distance from the source that 

destroys the signal (Crick, 1970).  Morphogen gradients could most easily be explained 

by rapid, free diffusion in a closed system with constant destruction of the signaling 

ligand by a signaling sink.  In time the model would be refined, in that in order to form a 

stable gradient, a sink need not be localized, and the effect of ligands binding to their 

receptors could in fact be sufficient to form a stable signaling gradient (Yu et al., 2009); 

overexpression studies indicated that receptors can serve as a sink for their ligands, as 

indicated by decreased signaling of Drosophila BMP homologue Decapentaplegic (Dpp) 

in cells adjacent to where the receptor Thickveins (Tkv) is ectopically increased (Lander 

et al., 2009; Mizutani et al., 2005).  Additionally, not all morphogens establish gradients 

through the classical source-sink mechanism; the shape of the Bicoid gradient is 

primarily established through mRNA diffusion and distribution (Lipshitz, 2009; Spirov et 

al., 2009).  
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Despite the fact that a localized sink, either near or distant from the signaling 

source, has never been successfully identified in vivo, there is compelling evidence that 

one might exist.  Several molecules have been shown to have the ability to bind to 

extracellular ligands and in some cases remove them from the system. With respect to 

BMP/Dpp signaling, there is evidence that the proteoglycan Perlecan serves as a sink 

for growth factors in the mammalian growth plate (Aviezer et al., 1994; Deguchi et al., 

2002; Mongiat et al., 2000; Smith et al., 2007).  In Drosophila, artificial BMP/Dpp sinks 

can be created through overexpression of heparan sulfate (HS) proteoglycans Dally and 

Dally-like (Belenkaya et al., 2004b) or overexpression of signaling receptors (Lander et 

al., 2009; Mizutani et al., 2005).  In Drosophila Decapentaplegic (Dpp) signaling, for 

instance, a localized sink could be functioning to restrict Dpp to the hub cells of 

Drosophila adult testes and ovaries, as well as the leading edge of the mesoderm and 

epidermis during embryonic dorsal closure (Humphreys et al., 2013; Kawase et al., 

2004; Shivdasani and Ingham, 2003; Song et al., 2004; Yang and Su, 2011)   

In this study, we have shown evidence of the first genetically-defined localized 

signaling sink that converts a long-range signaling molecule into a short range one (Fig. 

4.8).  Our identification of wand and Gale as Dpp signaling antagonists points to CS as 

an important molecule functioning in shaping Dpp gradients in Drosophila development.  

Consistent with this idea is that Drosophila are reported to have high chondroitin-4-

sulfate expression in ovaries (Pinto et al., 2004), but little de novo heparan sulfate 

synthesis in embryos until about 10–12 hrs. AEL; there is a significant component of CS 

present in the embryo at this point, though whether it is maternally deposited or made de 

novo is unknown (Pinto et al., 2004).  CS-C is only detected in trace amounts in 

Drosophila larvae, and chondroitin during embryonic and adult life is 4-sulfated or 

unsulfated (Pinto et al., 2004).  CS is more prevalent than heparan sulfate at all stages 

in Drosophila development, having nearly equal levels in embryos, and approximately 
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20:1 and 10:1 ratios of CS to HS in 3rd instar larvae and adults, respectively (Toyoda et 

al., 2000).  

We have previously noted in wild-type embryos that Mad phosphorylation rapidly 

decays in the epidermis during dorsal closure in a mmy-dependent fashion (Humphreys 

et al., 2013).  Interestingly, the onset of expression of wand in the mesoderm adjacent to 

the leading edge coincides with this decay; further work will determine if CS synthesis 

might be the critical step in transitioning epidermal Dpp from a long-range to a short-

range signal during dorsal closure.  Experimental evidence has suggested that altering 

the heparan/chondroitin balance may be important in transitioning CS from a signaling 

mediator to a signaling sink. Mammalian Perlecan is involved in FGF delivery, and it can 

be modified by CS and HS.  However, FGF is not released to its receptor if Perlecan is 

highly CS-modified; thus, CS may mark the change between a signaling effector and a 

sink in this protein (Smith et al., 2007).  Unlike in the dorsolateral epidermis, the wing 

disc is an area of long-range Dpp signaling (Lecuit et al., 1996; Nellen et al., 1996; 

Schwank et al., 2011).  Though wand expression would likely lead to CS synthesis in the 

wing disc, this does not transition Dpp to a short-range signal in this context; thus the 

presence of CS does not strictly define short-range signaling.   Context is very important 

in determining the interactions between CS proteoglycans and extracellular signaling 

molecules, and timing, dosage, sulfation, and other factors can determine whether the 

effect of a proteoglycan is positive, negative, or neutral on extracellular signals (Bai et 

al., 1999; Li et al., 2010; Mizumoto et al., 2013; Olivares et al., 2009; Shintani et al., 

2006). 

The embryonic epidermis is not the only tissue where Dpp signal is restricted to a 

short range.  A similar restriction of Dpp signaling is seen in the stem cell niche of the 

testis, where Dpp expressed in somatic cells of the testes  maintains the germline stem 

cells (Kawase et al., 2004; Michel et al., 2011; Song et al., 2004).  It has also been 
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demonstrated that BMP signaling is, at least in part, modulated by an extracellular matrix 

containing type IV collagen in the Drosophila ovaries by sequestration of the ligand, Dpp 

(Wang, et al., 2008).  Whether signaling range in these contexts is also restricted by 

chondroitin sulfate is unknown. 

It may at first be surprising that Gale and wand mutants were not generated in 

the Heidelberg screens for mutants affecting the embryonic pattern of cuticle (Jürgens et 

al., 1984).  After all, this was the screen that generated alleles of dpp antagonists, 

including mmy and raw (Bates et al., 2008; Byars et al., 1999; Humphreys et al., 2013). 

This could be due to the fact that wand is maternally deposited, and this maternal 

transcript may be sufficient to complete embryonic patterning in the absence of zygotic-

encoded wand.  In fact, the two alleles of wand that we tested failed to reproduce the 

mmy mutant phenotype.  The phenotypes of Gale and mmy mutant embryos might be 

less severe than those seen in wand RNAi embryos for a few different reasons.  First, 

there is a salvage pathway for hexosamines (including GalNAc) that allows them to 

reenter the pathway downstream of mmy and Gale (Vocadlo et al., 2003).  As wand 

functions downstream of salvage, GalNAc recovered in the salvage pathway would still 

be blocked from being polymerized into CS in the RNAi embryos.   

A second factor could be enzymatic redundancy.  It is notable that wand is not 

the only predicted chondroitin synthase in the Drosophila genome.  CG9220 is predicted 

to encode an enzyme with similar function to wand (Wilson, 2002).  Protein domain 

prediction identifies a chondroitin N-acetylgalactosaminyltransferase domain.  Further 

study will determine if the expression patterns of CG9220 and wand are complimentary 

or overlapping.  Mice null for wand homologue Css2 have no obvious phenotypic or 

morphological changes, perhaps due to redundancy of CS synthesis enzymes (Ogawa 

et al., 2012).  Indeed, loss-of-function of Css2 decreases the quantity of CS chains 

exceeding 10 kDa in weight, but does not affect the total number of CS chains attached 
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to core proteins (Ogawa et al., 2012).  Similarly, mutations in Gale may have partially 

penetrant effects due to potentially redundant enzymatic activities from the product of 

CG5955, a predicted UDP-glucose 4-epimerase (Flybase).  However, CG5955 is not 

found in embryos until 16 hrs. after egg lay, according to the modENCODE RNA 

expression database (Celniker et al., 2009).   

Tangential to the goal of this study was the observation that Dlp levels are 

decreased when glycosylation is inhibited in mmy mutant embryos.  In many cases, 

glycosylation has been demonstrated to be dispensable for the interaction of a 

proteoglycan and signaling ligands.  The C. elegans glypican LON-2 is an antagonist of 

BMP signaling (Gumienny et al., 2007; Taneja-Bageshwar and Gumienny, 2012).  LON-

2 has two functional domains that are able to bind to BMP; the C-terminal domain 

contains heparan sulfate attachment sites, while the N-terminal domain has no 

attachments but is able to bind to BMP and inhibit signaling independent of the C-

terminal.  In Drosophila the protein Dally does not require HS attachment to complete its 

role in Dpp signaling, though HS does make it more efficient (Kirkpatrick et al., 2006b).  

Expression of a dally construct with all HS attachment sites removed was able to 

partially rescue some signaling defects in dally mutant animals, especially in wing 

formation (Kirkpatrick et al., 2006b).  These data are complicated by the fact that the 

authors were unable to determine how much Dally was generated by the rescue 

construct.  As partial loss of HS chains may decrease glypican stability, future studies on 

the role of HS and CS modification on protein function and interaction should take care 

to ensure that alterations in HS and CS levels do not result in unintended reduction in 

protein stability. Overall, the data presented here indicate that CS production may be 

utilized to create an extremely sharp signaling gradient, and this mechanism may be 

used in other organisms and developmental systems toward the same end.  Increasing 

CS production might even be explored as a potential therapy for diseases caused by an 
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overabundance of BMP signaling activity. 

Loss of function of raw, an antagonist of JNK, the transcriptional activator of 

epidermal dpp expression in the epidermis (Bates et al., 2008; Byars et al., 1999), leads 

to overspecification of cardiac cells (Fig. 4.6 C) (Yang and Su, 2011) (Klinedinst and 

Bodmer, 2003; Yang and Su, 2011). While the raw phenotype is modest, wandRNAi 

embryos have a clearer excess of cardiac cells (Fig. 4.6 E). The differences in 

overspecification likely reflect the different origins of Dpp, which is produced by both the 

activation of JNK and by Dpp autoregulation in the leading edge. Specifically, JNK 

activity initiates Dpp production and Dpp signaling maintains its own production during 

dorsal closure. A tool developed by Newfeld (dpp151H, Johnson et al., 2003) was reported 

to be activated by Dpp autoregulation.  In our hands, however, even though Dpp is 

produced and maintained ectopically in the epidermis of mmy and raw mutants, this 

reporter construct is only activated ectopically in raw (Fig. 4.7 C) whereas mmy and wild-

type embryos are indistinguishable (Fig. 4.7 A-B). We hypothesize that this reporter line 

is activated by JNK rather than dpp autoregulation and that whereas ectopic Dpp activity 

in raw mutant embryos results from derepression of Jun in the epidermis, ectopic Dpp 

activity in mutants in UDP-GlcNAc pathway results from direct derepression of Dpp.  

Thus, in the case of raw, where Dpp signals from a broad epidermal source to the 

underlying mesoderm, overspecification of cardiac cells is low.  On the other hand, in the 

case of mmy, where there is too much Dpp signal emanating from a physiologically 

relevant source due to a failure in the sink, extensive overspecification of cardiac cells is 

observed. Taken together, these data suggest that Dpp produced in excess in and 

around the leading edge and maintained by autoregulation and not by JNK is 

responsible for ectopic cardiac cell specification in the mesoderm and also results in 

epidermal failures in dorsal closure and patterning (Fig. 4.8). 
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Materials and methods 

Drosophila strains 

Fly lines used for this study include w1118, mmy1, mmyP15133, Tub-Gal4 

(Bloomington), mmyl(2)03851 (M. Krasnow), GaleF00624.4 and GaleΔy (J. Fridovich-Kiel), sdc23 

and sdc97 (G. Vorbrüggen), B2-3-20 (E. Bier), CG43313PL61 and CG43313PL69 (A. 

Vincent), and the Vienna Drosophila UAS-shRNA lines (Dietzl et al., 2007) v2598, 

v2601, v2826, v5027, v6176, v6177, v7262, v7263, v7394, v7427, v7949, v8107, 

v12079, v13474, v16981, v16982, v21761, v26517, v29084, v29085, v33366, v33368, 

v35572, v35573, v42781, v44939, v45194, v45457, v46419, v46421, v51977, v100016, 

v100185, v101307, v101417, v101660, v102288, v104256, v104281, v105791, v106134, 

v106605, v106839, and v107840 (VDRC). 

 

Cuticle analyses 

For embryonic cuticle analysis, animals were dechorionated in 50% bleach 

solution and incubated overnight at 60°C in One-Step Mounting Medium (30% CMCP-

10, 13% lactic acid, 57% glacial acetic acid).  In some cases embryos were devitellinized 

prior to One-Step Mounting Medium incubation by shaking for 1 min. in equal parts 

methanol and heptane.  Cuticles were visualized with dark field microscopy.  

 

RNA in situ hybridization 

For in situ hybridization, we generated digoxigenin-labeled probes as described 

previously (Byars et al., 1999). Probes were detected with anti-digoxigenin-AP Fab 

fragments (Roche), and visualized with DIC optics.   

 

 

 



76 
 

Immunolocalization 

Alkaline phosphase immunolocalization studies were performed as described 

(Sullivan et al., 1999).  Fluorescent Phospho-Mad visualization was performed as 

previously described (Humphreys et al., 2013) using confocal techniques.  For 

immunolocalization studies, we used rabbit anti-Phospho-Smad1,5 Ser463/465 (1:20, 

Cell Signaling Technology), mouse anti-β-Gal (1:500, Promega), goat anti-mouse 

alkaline phosphatase (1:2000, Promega), goat anti-rabbit alkaline phosphatase 

(concentration) (Jackson ImmunoResearch), and goat anti-rabbit Alexa Fluor 488 

antibodies (1:200, Invitrogen Molecular Probes). 

 

Western blotting 

For Western blotting studies, control and experimental protein lysates were made 

from embryos 5-17 hrs. after egg lay (AEL).  Absence of a GFP-marked balancer 

chromosome was used to distinguish mutant homozygote embryos from wild-type 

siblings.  Protein lysates were separated on SDS-acrylamide gel and analyzed by 

Western blotting using anti-Dally-like protein antibody (1:1000, Developmental Studies 

Hybridoma Bank) and anti-Tubulin control (1:50000, 1:10,000).  HRP-conjugated rabbit-

anti-mouse was used as the secondary antibody (Jackson). Blots were stripped using a 

mild stripping protocol (Abcam) prior to being re-probed for Tubulin control. 
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Fig. 4.1  mmy hypomorphs have defective glycosylation.  A Western blot analysis 
of Dally-like protein (Dlp).  Dlp consists of a core protein with molecular weight 85 
kDa, which is post-translationally modified by glycosylation with heparin sulfate chains 
of variable length.  The glycosylated protein appears as a smear of products of 
approximate molecular weight 13-160 kDa.  The core protein is denoted by the black 
arrow in the sugarless lane, as sugarless, is required to initiate heparin sulfate 
attachment; the presence of glycosylated Dlp, is likely the product of enzyme 
translated from maternal mRNA.  A reduction in Dlp molecular weight is observed in 
two independently generated hypomorphic mmy mutants, suggesting decreased 
availability of UDP-GlcNAc for post-translational glycosyl modifications; there is also a 
generalized decrease of band intensity in mmy mutant lysates, suggesting a 
decrease of Dlp protein in these genetic backgrounds. 
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Fig. 4.2  wand is homologous to Chondroitin sulfate synthase 2.  Multiple 
sequence alignment between Chondroitin sulfate synthase 2 (M. musculus), 
Chondroitin sulfate synthase 2 (H. sapiens), CG43313 (D. melanogaster), and 
Chondroitin sulfate synthase 2 (C. elegans).  Sequences were aligned using ClustalX 
2.1 (Larkin et al., 2007) and the alignment was shaded according to BLOSSUM62 
scores using Jalview 2.8.1 (Waterhouse et al., 2009). 
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Fig. 4.3  Chondroitin sulfate synthesis is required for Dpp antagonism.  (A).  
Biochemical pathway for converting GlcNAc-1-P to chondroitin.  (B) A wild-type 
cuticle.  (C) A mmy1 mutant cuticle has dorsal pucker, germband retraction and head 
involution defects, and hypotrophy of the ventral denticle belts. These phenotypes are 
shared by loss-of-function of downstream genes (D) Galactose epimerase (Gale), 
which converts UDP-GlcNAc to UDP-GalNAc, and (E) wand, which encodes a 
putative chondroitin sulfate synthase.  This shared cuticle phenotype is indicative of 
ectopic dpp in the epidermis (F-I) dpp in situ in stage 13 embryos.  (F) Lateral view of 
a wild-type embryo, dpp expression is restricted to the single row of leading edge 
epidermal cells during dorsal closure.  Expansion of dpp transcription into the 
dorsolateral epidermis is observed in (G) mmy1, (H) GaleF00624.4, and (I) CG43313 
embryos  (J-M) pMad in the epidermis of Drosophila embryos, single slices.  (K) 
mmy1, (L) GaleF00624.4, mutants, and (M) wand RNAi embryos have an expansion of 
Dpp signaling activity in the epidermis beyond what is observed in (J) wild-type 
embryos. 
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Fig. 4.4  Embryonic expression patterns of Gale and wand.  Gale mRNA (A) is not 
maternally deposited.  (B) Expression behind the epidermal leading edge initiates 
during embryonic stage 11, (C) but diminishes by stage 13.  wand RNA (D) is 
maternally deposited.  (E) Cardiac expression of wand initiates during stage 12 and 
continues through (F) stage 13 of embryogenesis.  (G-I) A comparison of tissue 
expression of three transcripts, (G) tinman, a cardiac marker; (H) wand; and (I) zfh1, 
a pericardial cell marker.  (G’-I’) Black arrows denote the epidermal leading edge, 
whereas the white arrow depicts the location of mRNA transcript in situ.  The gap 
distance between the two arrows is similar in tinman and wand RNA localization 
studies, suggesting that wand is expressed in cardiac cells, and not pericardial cells. 
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Fig. 4.5  Expression of wand in 3
rd

 instar larvae and transcriptional control of 
wand in embryos.  (A) wand mRNA is expressed in the gastric cecae (GC), but is 
absent from the rest of the foregut and midgut, including the proventriculus (P).  (B) 
wand mRNA is also present in imaginal discs, such as this wing disc.  wand remains 
restricted to the cardiac cells and its expression is not ablated in (C) JraIA109, (D) 
rawIG, and (E) mmy1 mutant embryos. 
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Fig. 4.6  Cardiac cells, visualized with anti-β-galactosidase.  (A) Cardiac cells 
in a wild-type embryo; these cells lie directly underneath the LE epidermis.  (B) 
Hemisegment loss of cardiac cells occurs in sdc23 mutants.  Genetic interactions 
between sdc and dpp mutants suggest that sdc, possibly in concert with Dpp 
signaling, is required for cardiac specification.  (C) raw1 mutants exhibit 
overspecification of cardiac cells, due to ectopic Dpp signaling.  (D) mmy1 mutants 
have hemisegment loss of cardiac cells, similar to sdc mutants.  This may be a 
result of mmy mutants having defective sdc function.  (E) Tub-wand shRNA 
embryos have overspecification of cardiac cells.  The differences in mmy1 and 
wand shRNA phenotypes may be due to the fact that mmy mutants have disrupted 
sdc function due to loss of both CS and HS.  Sdc in Tub-wand shRNA embryos 
would have decreased CS attachment, but would retain HS and be capable of 
participating in Dpp signaling. 
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Fig. 4.7  The reporter dpp
151H

 is a JNK activity reporter, not a dpp expression 

reporter.  We fail to observe expanded reporter expression in the epidermis of mmy
1
 

(B) even though dpp is ectopically expressed beyond the LE; this is indistinguishable 

from wild-type (A).  In contrast, in raw
IG

 (C), where JNK signaling and dpp expression 

are expanded beyond the LE, dpp
151H

 reporter expression is present beyond the LE. 

Fig. 4.8  Model for CS-mediated embryonic Dpp antagonism.  (A) Dpp secreted 
from the LE of the epidermis.  It signals back to the LE to promote further dpp 
transcription, and to the mesoderm to specify cardiac cell fate.  Chondroitin sulfate, 
synthesized in the mesoderm, prevents excess Dpp signal from reaching the 
dorsolateral epidermis and mesoderm.  (B) If the chondroitin sulfate sink is lost, Dpp 
access to dorsolateral epidermis and mesoderm is unrestricted; excess signaling 
results in ectopic dpp transcription and ectopic specification of cardiac cells. 



 

 

CHAPTER 5 

 

MODELING CONGENITAL DISEASE AND INBORN ERRORS 

OF DEVELOPMENT IN DROSOPHILA MELANOGASTER 

 

Disease Models & Mechanisms (2016) 9: 253-269.  Modeling congenital disease and 

inborn errors of development in Drosophila melanogaster.  M. J. Moulton and A. Letsou. 

© Owned by the authors, published by The Company of Biologists, 2016.  This is an 

open access article. 
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CHAPTER 6 

 

FUTURE DIRECTIONS 

 

 The findings described in this dissertation provide mechanistic insight into the 

integral and diverse roles that glycans play in Dpp signaling, cell hypertophic growth, 

and mucin secretion.  My studies have also lent insight into the way in which glycans can 

regulate complex developmental processes by integrating nutritional status.  That being 

said, there is still much to discover in the field of glycobiology.  It is clear that, even as 

we’ve been able to answer some questions, many more have come to light.  It is 

anticipated that the work outlined here will provide a springboard for identifying important 

questions and will provide a platform with which to interrogate them. 

 While I have discovered a novel role for Sax in Dpp signal transduction and 

demonstrated that its function is repressed by Sxc-mediated O-glycosylation, the site(s) 

of O-glycosylation remains unprobed.  We plan to exploit advances in both genome 

editing and mass spectrophotometry to identify the site(s) of Sax glycosylation.  

Specifically, numerous candidate sites for O-glycosylation are predicted by in silico 

algorithms, and these will be considered for targeted mutation and functional probes for 

effects on Dpp signaling.  Additionally, Flag-Sax can be immunopurified from embryos 

and submitted to tandem mass spectrometry analysis to identify all O-glycosylation 

modification sites.  This approach may also prove useful in testing whether reciprocity 

between O-glycosylation and phosphorylation is occurring on Sax.  This said, reciprocity 

might also be tested via Western blot analysis, by probing immunopurified Sax for O-

GlcNAc after phosphatase treatment.  Altogether, these studies would confirm the 
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presence of O-GlcNAc on endogenous Sax and provide additional insight into the 

mechanism of Sxc-mediated Dpp antagonism during dorsal closure. 

 It also remains unclear whether Sxc functions broadly throughout development 

as a Dpp signaling antagonist.  As described previously, maternal loss of sxc plays no 

role in embryonic development suggesting that at least during early embryogenesis 

when Dpp is required to specify dorsal fates, sxc is not acting as a signaling repressor.  

However, whether or not sxc functions to antagonize Dpp signaling in the larval wing 

imaginal disc, where Dpp signaling is required for proper growth and patterning of the 

wing disc, has not been probed.  It is evident from modENCODE data that sxc is 

expressed in the wing disc, although I have demonstrated that sxc expression is not 

always correlated with its role as a Dpp signaling antagonist.  It remains to be seen, 

even if sxc antagonizes Dpp signaling in the wing disc, whether it does so via inhibition 

of Sax-dependent Dpp signaling or via some other mechanism.  Although Sax is also 

expressed in the wing disc, prediction of Sxc targets has proven difficult and therefore, it 

is unknown whether Sax would also be glycosylated in this context.  Dpp signaling in the 

wing disc has been extensively studied and no role of Sax-dependent Dpp signaling has 

been reported to date.  However, it is entirely possible that, like during dorsal closure, 

Dpp activity through Sax is inhibited by Sxc, and thus any Sax phenotype would be 

masked unless observed in a sxc mutant background. 

 Further interrogation into the conservation of Sax glycosylation is warranted, 

including an examination of whether the human ortholog of Sax, ACVR1 is also modified 

by glycosylation.  The R260H mutation in human ACVR1 protein leads to ectopic 

activation of BMP signaling even in the absence of ligand and results in the disease, 

Fibrodysplasia Ossificans Progressiva, resulting in ossification of soft tissue.  It remains 

to be seen whether this activating mutation could be antagonized by glycosylation of 

some other residue to repress ACVR1 activity.  Experiments carried out in human cell 
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lines could begin to unravel the nascent glycosyl modifications on ACVR1 and explore 

any key differences in ACVR1 derived from FOP patients.  Furthermore, the fly could be 

used to generate similar activating mutations in Sax to explore mechanism of ectopic 

BMP signal induction. 

 In addition to the role of O-glycans in Dpp signal antagonism, much remains 

unknown about the role of extracellular O-glycans, mucins, in development and the 

regulation of cell size.  While Drosophila mucin core proteins have been identified and 

described previously (Syed et al., 2008), none of these have been assayed for cell 

growth phenotypes in either larvae or the female germline even though several are 

expressed in the right time and place to have a role, such as Muc12Ea, which is 

expressed in the ovary.  Targeted mutagenesis by CRISPER/CAS9 or targeted 

knockdown via RNAi of these mucins could be utilized to identify which protein is 

modified by sgct to enact a cell growth pathway.  Furthermore, a genome-wide approach 

to identify modifiers of the cell growth pathway could be utilized.  Using this approach, 

mothers with sgct germlines could be mutagenized and mutant lines recovered that 

restore female fertility; or sgct larvae could be mutagenized and larvae that grow beyond 

L1 size could be selected for further analysis.  These approaches have the ability to 

reveal a wide array of genes involved in this potentially complex cell growth pathway and 

would also provide the potential to recover an allelic series which would prove useful in 

follow-up analyses.  Results from a screen would provide candidate interacting genes 

likely including mucin core proteins and/or genes involved in endoreplication.  As 

candidate genes are discovered and validated, we can use our genetic model of Peters’ 

Plus Syndrome to further probe mechanisms of mucins in cell growth and better our 

model to recapitulate additional phenotypes in Peters’ Plus patients. 

 

 



113 
 

References 

Syed, Z.A., Hard, T., Uv, A., and van Dijk-Hard, I.F. (2008). A potential role for 

Drosophila mucins in development and physiology. PLoS One 3, e3041. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX A 
 
 
 

WNT/LEF1-DEPENDENT HYPOTHALAMIC 
 

NEUROGENESIS MEDIATES ANXIETY 
 

 
 
The following was submitted to PLoS Biology, May 2017. 

  



115 
 

 

 

 

 

 

Wnt/Lef1-dependent hypothalamic neurogenesis mediates 
anxiety  

 

 

Yuanyuan Xie1, Dan Kaufmann2†, Matthew J. Moulton3†, John A. Gaynes1, 
Samin Panahi1, Dingxi Zhou1,7, Hai-Hui Xue4, Camille M. Fung5, Edward M. 

Levine6‡, Anthea Letsou3, KC Brennan2, Richard I. Dorsky1* 

1Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, 
UT 84112, USA. 

2Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA. 

3Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, 
USA. 

4Department of Microbiology, Carver College of Medicine, University of Iowa, 
Iowa City, IA 52242, USA. 

5Division of Neonatology, Department of Pediatrics, University of Utah School of 
Medicine, Salt Lake City, UT 84158, USA. 

6Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, 
University of Utah, Salt Lake City, Utah 84132, USA. 

7School of Life Sciences, Peking University, Beijing 100871, China. 

 

†These authors contributed equally to this work. 

‡Current address: Department of Ophthalmology and Visual Sciences, Vanderbilt 
University School of Medicine, Nashville, TN 37232, USA. 

*Corresponding author. Email: richard.dorsky@neuro.utah.edu 

 

 
  



116 
 

Abstract 

Homologous neuronal circuits mediate specific behaviors in diverse animal 

species, suggesting that the molecular mechanisms underlying circuit development may 

also be conserved. Here we demonstrate that the Wnt/ß-catenin mediator Lef1 is 

specifically required for the differentiation of hypothalamic neurons that regulate anxiety 

and growth rate in both zebrafish and mice, although the identity of Lef1-dependent 

neurons is different between the two species. We further show that zebrafish and 

Drosophila have common Lef1-dependent gene expression in their respective 

neuroendocrine organs, consistent with a shared molecular pathway that diverged in 

mammals. Together this work suggests that Lef1 regulates an ancient mechanism of 

circuit development that is fundamentally important for animal behavior.  

 

Results 

Individual transcription factors can regulate the development of neuronal 

subtypes involved in specific behaviors (1).  However it is not clear whether they function 

similarly in diverse species, and the upstream signals have not been identified. Wnt/ß-

catenin signaling represents an intriguing candidate pathway for coupling extracellular 

signals to the transcription of evolutionarily selected target genes. Our laboratory 

previously showed a conserved role for Wnt/ß-catenin activity mediated by Lef1 in 

hypothalamic neurogenesis (2), so we sought to determine whether Lef1-dependent 

neurons have a defined behavioral function.  

In lef1 null zebrafish mutants the caudal hypothalamus begins to be reduced in 

size between 3-4 days postfertilization (dpf) (Fig. A.1 A, A.5 A-C), and contains fewer 

Wnt-responsive cells (3) (Fig. A.1B-D). Mutants also have fewer serotonergic ependymal 

cells and fewer GABAergic HuC/D+ neurons (Fig. A.11 E-H, A.5 D-G), but not th2+ 

dopaminergic neurons (4) (Fig. A.5 H-J), indicating a loss of specific neuronal 
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populations. BLBP+ cells were not reduced (Fig. A.5 K-M), confirming that Wnt signaling 

is dispensable for the development of hypothalamic radial glia (2, 5).  

While cell proliferation in the caudal hypothalamus of lef1 mutants was normal at 

3 dpf and beyond (Fig. A.1 I-K, A.5 N-S), we observed an increase in apoptosis (Fig. A.1 

L). Loss of p53 rescued apoptosis, but not neurogenesis (Fig. A.1 L-N), suggesting a 

primary defect in progenitor differentiation, which we confirmed using BrdU labeling (Fig. 

A.5 T-V). Transplantation of cells during gastrulation (6) (Fig. A.1 O), rescued 

neurogenesis only in wild-type donor cells (Fig. A.1 P-S) demonstrating that Lef1 directly 

promotes the differentiation of hypothalamic neurons.  

 RNA-seq analysis of the 3 dpf hypothalamus identified 138 differentially 

expressed protein-coding genes with an adjusted P-value < 0.1, among which 129 were 

reduced in lef1 mutants. QIAGEN Ingenuity Pathway Analysis identified significant 

association of these genes with anxiety and depression (Fig. A.2 A). Among 38 genes 

tested by in situ hybridization on 3 dpf offspring of lef1+/- incrosses, 26 showed 

predicted hypothalamic expression changes in approximately 25% of embryos (Fig. A.2 

B-C, A.6 A-C), including several known Wnt targets (7) (Fig. A.2 B). We also observed 

expression in the adult caudal hypothalamus of 23 out of 24 genes tested (Fig. A.6 D), 

suggesting simultaneous presence of Wnt activity and Lef1-dependent neuronal 

populations throughout life. 

lef1 mutants raised with siblings had decreased survival and were smaller (Fig. 

A.7 A, C). When separated at 15 dpf mutants survived normally (Fig. A.7 B, C) but were 

still smaller even at culture densities that maximize growth (8) (Fig. A.2 D) (Fig. A.7 D). 

We performed a novel tank diving test to measure exploratory behavior (9), and found 

that lef1 mutant larvae had a longer latency to enter the upper half of a novel tank and 

spent less overall time in this zone (Fig. A.2 E-F, A.7 E), consistent with increased 

anxiety. 
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Other defects in zebrafish lef1 mutants could affect behavior (2, 10), so we next 

created a tissue-specific mouse model using Nkx2.1Cre and Lef1flox alleles (11, 12). Lef1 

is expressed in the caudal mouse hypothalamus from embryonic (E) day 10.5 to 

adulthood (13, 14), and while Lef1 null mutants exhibit postnatal lethality and a smaller 

body size, no hypothalamic phenotypes have been reported (15). We confirmed loss of 

hypothalamic Lef1 and Wnt reporter expression (16) in mutant (Lef1CKO) mice (Fig. A.8 

C-H), which were viable, fertile, and morphologically indistinguishable from controls 

(Lef1CON). However, both male and female Lef1CKO mice gained weight more slowly after 

weaning (Fig. A.3 A-B). 

Using an elevated plus maze test we found that male but not female Lef1CKO 

mice spent significantly less time in the open arms and more time in the closed arms 

(Fig. A.3 C-D, A.9 A-M). In an open field test, male and estrous female Lef1CKO mice 

spent significantly less time in the center zone than littermate controls.  However there 

was no effect in diestrous females (Fig. A.3 E-G, A.9 N-P). These results are consistent 

with elevated anxiety in Lef1CKO mice despite normal mobility (Fig. A.9 A, N, O), which 

may also contribute to their reduced growth rate (Fig. A.3 A, B) (17).  

 We performed RNA-seq at E14.5 with dissected hypothalami of male Lef1CON 

and Lef1CKO mice, and surprisingly identified only one affected protein-coding gene with 

an adjusted P-value < 0.1 and greater than a two-fold change, Pro-melanin 

concentrating hormone (Pmch). Pmch expression in the posterior periventricular 

hypothalamus normally overlaps with Lef1, and extends into the lateral hypothalamus 

(Fig. A.3 I-N) (18). We confirmed loss of Pmch expression by quantitative PCR (qPCR) 

and immunohistochemistry in E14.5 Lef1CKO embryos, and loss of the Wnt/Lef1 target 

Sp5 by qPCR (Fig. A.3 H, A.8 I-K).  

 RNA-seq analysis at P22, when Lef1CKO mice begin to exhibit a growth defect 

(Fig. A.3 A-B) identified only 2 affected protein-coding genes with an adjusted P-value < 
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0.1: Pmch and Tacr3. We confirmed reduced expression of Pmch and Tacr3, as well as 

Cartpt, all of which are co-expressed in the same neurons (19), at P22 using qPCR and 

in situ hybridization (Fig. A.3 H, O-T, A.7 K). While ablation of Pmch+ neurons leads to 

reduced body weight, the underlying mechanism remains unclear (20, 21). However 

characterization of their inputs and activity supports a role for these cells in mediating 

stress and anxiety (22).  

Orthologs of several Lef1-dependent zebrafish genes such as Corticotropin 

releasing hormone binding protein (Crhbp) regulate anxiety and body growth in the 

mouse (24), and are also expressed with or adjacent to Lef1 in the mouse hypothalamus 

(18, 23). However we found that their expression, as well as expression of genes 

encoding peptide hormones such as Pomc, Hcrt, Npy, and Agrp, was unaffected in 

Lef1CKO mice (Fig. A.3 H, A.8 K-M). In addition we confirmed that expression of zebrafish 

pmch orthologs does not depend on lef1 (Fig. A.10 A-D) (25). Therefore, while the 

resulting behavioral function may be conserved, it is likely that the identity of Lef1-

dependent neurons has changed between fish and mammals.  

It is thus possible that Lef1-dependent neurons in zebrafish represent a more 

evolutionarily ancient pathway, whereas the anatomy and function of Lef1-dependent 

Pmch+ neurons in mice may be specific to mammals (26). Interestingly, anxiety 

pathways in Drosophila involve Corticotropin releasing hormone signaling (27), and we 

observed co-expression of the lef1 ortholog pan and crhbp ortholog CG15537 in the 

Drosophila neuroendocrine pars lateralis (PL) primordia at stage 16 (Fig. A.4 A-D) (28). 

We examined CG15537 expression in Drosophila pan mutants (29) and found a specific 

loss of expression in the PL (Fig. A.4 E-F), consistent with regulation by Wnt activity.   

Together this work supports an evolutionarily conserved role for Wnt signaling in 

the development of hypothalamic neurons that regulate anxiety. While the pathway has 

been associated with multiple behavioral disorders in other brain regions (30), our 
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findings may prove useful for the diagnosis and treatment of neuroendocrine-related 

anxiety disorders.  

 

Materials and methods 

Subjects: zebrafish 

All experimental protocols were approved by the University of Utah Institutional 

Animal Care and Use Committee and were in accordance with the guidelines from the 

National Institutes of Health. Zebrafish (Danio rerio) were bred and maintained as 

previously described (31). Wild-type strains were *AB. The following mutant and 

transgenic strains were used: lef1zd11 (32), Tg(top:GFP)w25 (33), Tg(dlx6a-1.4dlx5a-

dlx6a:GFP) ot1 (34), Tg(h2afv:GFP)kca6 (35), Tg(th2:GFP-Aequorin)zd201 (36), p53e7 (37). 

lef1-/-  homozygous mutants were identified between 3 dpf and 10 dpf by DASPEI 

staining as described previously (38) and at or after 15 dpf by loss of caudal fin (32); 

wild-type and heterozygous siblings were used as controls. Primers for genotyping are 

listed in Table A.2.  

 

Subjects: mice 

Male and female C57BL/6J mice were group-housed with 2-5 mice per cage in a 

reverse 12 h light/dark cycle with ad libitum access to food and water. All experimental 

protocols were approved by the University of Utah Institutional Animal Care and Use 

Committee and were in accordance with the guidelines from the National Institutes of 

Health. Mice were 19-20 and 15-20 weeks old at the time of behavioral tests for male 

and female animals, respectively. Ai9 reporter RosatdTomato (line 007905) (39), Nkx2.1Cre 

(line 008661) (40) and TCF/Lef:H2B-GFP mice (line 013752) (41) were purchased from 

Jackson Laboratories. Lef1flox/flox mice were provided by H.H.X (42). All strains were 

maintained on a C57BL/6J background except TCF/Lef:H2B-GFP mice, which were 
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originally on a C57BL/6 × 129 background. Male Nkx2.1Cre/Cre;Lef1flox/+ and female 

Lef1flox/flox;RosatdTomato/tdTomato mice were used to generate conditional knockout (Lef1CKO: 

Nkx2.1Cre/+;Lef1flox/flox;RosatdTomato/+) and control (Lef1CON: 

Nkx2.1Cre/+;Lef1flox/+;RosatdTomato/+) offspring. Females were maintained by inbreeding. 

Male breeders were maintained by interbreeding Nkx2.1Cre/Cre;Lef1+/+ and 

Nkx2.1Cre/Cre;Lef1flox/+ for less than 5 generations to avoid potential artifacts caused by 

Cre homozygous inbreeding (43). In approximately 10% of experimental animals, Ai9 

reporter expression was observed throughout the body consistent with published 

literature (40); such animals were not used for experiments. Sex at E14.5 was 

determined by genotyping by Jarid 1c (44). When generating experimental mice for 

measuring body weight and behavioral tests, each litter was culled to 8 pups at P0. 

Primers for genotyping are listed in Table A.2. 

 

Subjects: Drosophila 

Wild-type Drosophila melanogaster were Canton-S strain. pan+/- (w1118; 

pan2/P{ActGFP}unc-13GJ) was purchased from Bloomington (BL4759). 

 

Zebrafish transplantation experiments 

At the sphere stage, 10–50 blastula cells from donor embryos were transplanted 

using a glass micropipette into the dorsal side of shield stage host embryos, 20-40 

degrees from the animal pole, representing the hypothalamus anlage (45). Embryos 

were then raised to 5 dpf for immunohistochemistry. Donor and host embryos were 

retained for genotyping to identify lef1 mutants.  
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BrdU labeling 

Four dpf zebrafish embryos were incubated in E3 media containing 10 mM BrdU 

(Sigma) at 28.5 °C for the indicated time before being washed in E3 media at least 3 

times.  

 

Immunohistochemistry: zebrafish 

Embryos and larvae were fixed in 4% paraformaldehyde (PFA) for 3 hrs. at room 

temperature (RT) or overnight (O/N) at 4 °C followed by brain dissection. Brains were 

either dehydrated in methanol and stored at -20 °C, or immediately processed for 

immunohistochemistry. For 3 dpf embryos, 5% sucrose was included in the fixative to 

ease dissection. Brains were treated with 0.5 U Dispase (Gibco #17105-041) in 2% 

PBST (PBS/2% Triton X-100) for 60 mins. at RT. For BrdU, PCNA, pH3 or Caspase-3 

staining, brains were washed in water for 5 mins. twice, followed by incubation in 2 N 

HCl for 60 mins. at RT, followed by two more water washes. Brains were then blocked in 

5-10% goat serum in 0.5% PBST for 60 mins. at RT. Embryos were incubated in primary 

antibodies in block O/N at 4 °C and secondary antibodies and Hoechst 33342 (Life 

Technologies, H3570) in block O/N at 4 °C before mounting in Fluoromount-G 

(SouthernBiotech) with the ventral hypothalamus facing the coverslip.  

Primary antibodies were all used at 1:500 dilution except as noted: chicken anti-

GFP (Aves Labs, GFP-1020), rabbit anti-GFP (Molecular Probes, A11122), mouse anti-

HuC/D (Molecular Probes, A21271), rabbit anti-5-HT (ImmunoStar, 541016), rabbit anti-

pH3 (1:400, Cell Signaling, 9713), rabbit anti-active Caspase-3 (BD Pharmingen, 

559565), rabbit anti-BLBP (Abcam, ab32432), mouse anti-PCNA (Sigma, P8825) and 

chicken anti-BrdU (ICL, CBDU-65A-Z). 

Secondary antibodies were all used at 1:500 dilution: goat anti-mouse Alexa Fluor 

448 (Invitrogen, A11001), goat anti-rabbit Alexa Fluor 488 (Invitrogen, A11008), donkey 
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anti-chicken Alexa Fluor 488 (Jackson ImmunoResearch, 703-545- 155), goat anti-rabbit 

cy3 (Jackson ImmunoResearch, 111-165-003), goat anti-mouse cy3 (Jackson 

ImmunoResearch, 115-165-003), goat anti-mouse Alexa Fluor 647 (Invitrogen, A21235), 

goat anti-rabbit Alexa Fluor 647 (Invitrogen, A21244) and goat anti-chicken Alexa Fluor 

647 (Invitrogen, A21449). Hoechst 33342 (1:10,000) was used to stain nuclei. 

 

Immunohistochemistry: mice 

E14.5 embryo heads were dissected in PBS and fixed in 4% PFA at RT for 1.5 hrs. 

or O/N at 4 °C. Brains were dissected and cryoprotected in 15% and then 30% sucrose, 

embedded in OCT, and stored at -80 °C. Brains were cryosectioned at a thickness of 16 

µm, air dried and stored at -80 °C. Air-dried sections were then washed in PTW 

(PBS+0.1% Tween 20) for 3 times, followed by permeabilization in 0.25% PBST for 5 

mins. and blocking in 10% goat serum in PTW for 60 mins. Sections were incubated in 

primary antibodies in blocking solution O/N at 4 °C and secondary antibodies in blocking 

solution for 2 hrs. at RT, followed by Hoechst 33342 stain for 10 mins. at RT before 

mounting in Fluoromount-G. Antibodies used were as described above except rabbit 

anti-LEF1 (1:200, Cell Signaling, 2230), goat anti-Pmch (1:500, Santa Cruz, sc14509) 

and donkey anti-goat Alexa Fluor 647 (1:400, Invitrogen, A21447).  

 

Probes for in situ hybridization 

In situ hybridization probes were made by a clone-free method as described 

previously (46, 47), with DNA templates purified using Zymo Research DNA clean & 

concentratorTM-5 kit. Primers were designed by Primer-BLAST (48) except for mouse 

genes with primer sequences available from the Allen Brain Atlas (ABA) (49) or 

Genepaint Atlas (50). A full list of primers used to make probes is in Table A.3. cDNA 

made from 3 dpf zebrafish embryos, P2 and P60 mouse hypothalamus and adult 
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Drosophila was used as the initial template for PCR to generate T7 promoter-containing 

DNA. RNA probes for zebrafish lef1 (51) and axin2 (52) were previously described. RNA 

probes for Drosophila pan were generated with a cDNA library.  

 

Whole mount in situ hybridization: zebrafish 

Zebrafish whole mount in situ hybridization was performed as described previously 

(53) except that adult zebrafish were fixed in 4% PFA O/N at 4 °C followed by washing in 

PBS and brain dissection. All tissues were treated for 30 mins. with 10 µg/ml Proteinase 

K. Pigmented embryos were bleached in 1% H2O2/5% Formamide/0.5× SSC O/N at RT. 

Embryos and adult brains were imaged in 100% glycerol and PBS, respectively.  

For automated whole mount in situ hybridization, all steps following probe 

hybridization and before color reaction were performed using a BioLane HTI (Intavis). 

 

Section in situ hybridization: mice 

Twenty-five µm brain cryosections were collected and post-fixed as previously 

described (54) (http://developingmouse.brain-map.org/docs/Overview.pdf). In situ 

hybridization was then performed as described (45).  

 

Whole mount in situ hybridization: Drosophila 

Drosophila whole mount in situ hybridization was performed as described 

previously (46). 

 

Body length: zebrafish 

Zebrafish from a single home tank were anesthetized using Tricaine in shallow 

water. Images were acquired of immobilized, nonoverlapping fish with a ruler for scale. 

Body length was calculated by measuring the distance between the mouth and the 
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anterior edge of the tail fin, using ImageJ.  

 

Novel tank diving test 

Five fish from lef1+/- incrosses were raised per tank starting at 5 dpf. lef1 mutants 

and controls were separated at 15 dpf. Novel tank diving tests were performed on 16 dpf 

larvae during the early afternoon of the same days. Novel rectangular tanks (16.6 cm × 

9.5 cm × 12.3 cm) were illuminated by a centered white light, and videos were acquired 

with a mounted Nokia Lumia 640 phone 1080p camera. For each experiment, single 

mutant and control larvae were netted and then removed simultaneously from their 

home cages and transferred to novel tanks with identical water volume. Any larvae that 

were not immediately released from the net were excluded from analysis. The order of 

netting mutant and control fish was rotated between trials. Videos were then imported 

and analyzed using Ethovision XT v.11.5 (Noldus, Leesburg, VA), with a tracking period 

of 2 mins. beginning 1 min. after release into the novel tank to decrease water agitation 

resulting from netting. Tracks were analyzed for time in upper half of the tank and 

latency to enter the upper half of the tank. 

 

Body weight: mice 

All pups were weaned at P21 immediately following the first weighing. Pups 

weighing less than 6.5 g were excluded from analysis. All mice were weighed during the 

morning of the same days of the following weeks.    

 

Behavior tests: mice 

Group housed mice were allowed to acclimate to the animal facility for behavioral 

tests 9 days after an on-campus transfer. Each mouse was handled daily for 2 mins., 

during mid-morning for 7 days before commencement of behavioral testing using the 
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cupped hand method (57). A vaginal lavage procedure was done after daily handling for 

estrous phase evaluation for 7 days, as previously reported (58). Female mice in their 

proestrus or estrus phases were collectively grouped as “Estrus” and females in their 

metestrus and diestrus phases were collectively grouped as “Diestrus.” All mice were 

acclimated to the behavior room for 1 hr. under red light (69 lux) before commencement 

of tests. Open field and elevated plus maze behavioral tests were performed in order, 

once daily for two days, from 9 am to 5 pm. The experimenter was blinded to genotype. 

 

Open field test 

Each mouse was placed in a circular plexiglass chamber (4.5’’ diameter × 3’’ 

height) located inside an illuminated (330 lux) circular open field (OF) arena (110 cm 

diameter) and allowed to acclimate for 1 min to decrease movement bias resulting from 

experimenter handling. After 1 min the plexiglass chamber was manually removed from 

outside the arena, and the mouse was allowed to freely explore the OF arena for 10 

mins. Movement was video recorded and analyzed using Ethovision v.9 (Noldus, 

Leesburg, VA). The center zone of the OF arena was defined as 4% center area of the 

total area.  

 

Elevated plus maze 

The elevated plus maze (EPM) apparatus was elevated 60 cm from the floor, 

having two open arms (35 cm × 5 cm) and two closed arms (35 cm × 16 cm) connected 

by a central platform (5 cm × 5 cm). The EPM was illuminated by a white light (205 lux) 

at the center platform. Each mouse was placed in a rectangular opaque white plexiglass 

chamber (2’’ × 3’’ × 5’’) located on the center platform, and allowed to acclimate for 1 

min before commencement of the test. The white chamber was mechanically elevated 

from outside of the maze and the mouse was allowed to freely explore the EPM for 5 
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mins. Behavior was video recorded and analyzed using Ethovision v.9 (Noldus, 

Leesburg, VA).  

 

RNA-seq: zebrafish 

Embryos were fixed for 1.5 hrs. in 4% PFA/5% sucrose in PBS at RT, followed by 

hypothalamus dissection. For each biological replicate, 28-38 dissected hypothalami 

were pooled for lef1 mutant and control samples. RNA was extracted using a 

RecoverAll™ Total Nucleic Acid Isolation Kit for FFPE (Ambion, AM1975) according to 

the manufacturer’s instructions. Three biological replicates were obtained on different 

days. A total of 300 ng RNA per sample was submitted to the High Throughput Genomic 

Core at the University of Utah for: RNA quality control by High Sensitivity R6K 

ScreenTape, RNA concentration by vacuum drying, cDNA library prep by Illumina 

TruSeq Stranded RNA Kit with Ribo-Zero Gold and sequencing by HiSeq 50 Cycle 

Single-Read Sequencing version 3. RNA-seq reads were mapped to the GRCz10 

zebrafish genome assembly and differential gene expression analysis was carried out by 

the Bioinformatics Core at the University of Utah using DESeq2.  

 

RNA-seq: mice 

 E14.5 and P22 non-weaned male Lef1CON and Lef1CKO hypothalami were dissected 

using a fluorescent microscope in ice-cold PBS while tail tissue was retained for 

genotyping. E14.5 tissues were immediately immersed in RNAlater (Thermo Fisher) and 

stored at 4 °C. P22 tissues were immediately homogenized in TRIzol (Thermo Fisher) 

and stored at -80 °C. Three biological replicates were prepared from 5 pooled (E14.5) or 

single (P22) hypothalami pooled from Lef1CON and Lef1CKO mice, and RNA was extracted 

on the same day using TRIzol followed by an RNeasy Mini Kit (Qiagen) with on-column 
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DNase digestion (Sigma). One µg of RNA per sample was submitted to the High 

Throughput Genomic Core at the University of Utah for RNA quality control with Agilent 

RNA ScreenTape, cDNA library prep with Illumina TruSeq Stranded RNA Kit with Ribo-

Zero Gold and sequencing using HiSeq 50 Cycle Single-Read Sequencing version 4. 

RNA-seq reads were mapped to GRCm38 and differential gene expression analysis was 

carried out using the same methods as for zebrafish RNA-seq.  

 

qPCR 

RNA from male and female mice was prepared as described above for RNA-seq. 

2.5 µg of RNA was used for cDNA synthesis with a SuperScript III Reverse 

Transcriptase kit (Invitrogen). qPCR was performed using Platinum SYBR Green master 

mix (Invitrogen) on 96-well CFX Connect (Biorad) plates or 384-well QuantStudio 12K 

Flex (Life Technologies) plates at the Genomics Core at the University of Utah, 

according to manufacturer’s instructions. Gapdh was used to normalize quantification, 

and reverse transcriptase was omitted for controls. qPCR primers were designed from 

PrimerBank (59) and are listed in Table A.4. qPCR analysis was performed with the 

∆∆Ct method to determine relative expression change (60). Dissociation curve analysis 

was performed to confirm the specificity of amplicons.  

 

Image analysis and cell counting 

Fluorescent images of dissected zebrafish and mouse brains were obtained with an 

Olympus FV1000 confocal microscope at the Cell Imaging Core at the University of 

Utah. Z-stack images were all maximum intensity z-projections of 3 µm slices; single- or 

double-labeled cells were manually counted in FV1000 ASW 4.2 Viewer. All the 

zebrafish and mouse in situ hybridization images were obtained with an Olympus SZX16 

dissecting microscope except those in Fig. S2C and Fig. 3O-T which were obtained with 
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an Olympus BX51WI compound microscope. Two months postfertilization (mpf) 

zebrafish images in Fig. S3A-B were acquired using a Leica MZ16 microscope. 

Drosophila in situ hybridization images were obtained with a Zeiss Axioskop.  

 

Ingenuity Pathway Analysis (IPA) 

Because IPA (QIAGEN, Redwood City, www.qiagen.com/ingenuity) did not support 

zebrafish genes at the time when tested, 129 mouse orthologous genes were identified 

corresponding to total 138 zebrafish protein-coding genes with adjusted P-value smaller 

than 0.1. IPA was performed according to QIAGEN’s instruction and “diseases and 

functions” were extracted from the software.  

 

Statistical analysis 

No statistical methods were used to predetermine sample size. For behavioral 

assays, sample size was determined based on accepted practice. The experiments were 

not randomized. Due to visible phenotypes, the investigators were not blinded to 

outcome assessment except for whole mount in situ hybridization of zebrafish lef1+/- 

incrosses, Drosophila pan+/- incrosses, and mouse body weight and behavioral assays. 

Two-tailed unpaired Student’s t tests were performed for all statistical analysis, except 

mouse body weight (two-way ANOVA with repeated measures), using GraphPad Prism 

software v6. Outliers were identified by Grubbs’ test for mouse behavioral assays. 

Significance was assigned at P < 0.05. 
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Fig. A.1. lef1 promotes neurogenesis in the zebrafish caudal periventricular 

hypothalamus. (Hc). (A) Reduced Hc size in lef1 mutants by 4 dpf. (B-D) Fewer Wnt-

responsive cells in the Hc of 3 dpf lef1 mutants. (E-H) Loss of 5-HT+ and ventricular 

HuC/D+ cells in the Hc of 3 dpf lef1 mutants (yellow rectangles). (I-K) Normal mitosis in 

3 dpf lef1 mutants. (L) Increased Caspase3+ (Cas3+) cells in 3 dpf lef1 mutants is 

rescued by loss of p53. (M and N) lef1;p53 double mutants still lack ventricular HuC/D+ 

cells (yellow rectangles) at 3 dpf. (O-S) Rescue of ventricular HuC/D+ expression by 

transplanting labeled wild-type cells into a 5 dpf unlabeled lef1-/- host. Yellow rectangle 

in (P) depicts area in (Q-S). All images show ventral view of whole-mounted brain with 

anterior on top. Data are mean ± SEM, except mean ± SD in (A). ***P < 0.001, **P < 

0.01, *P < 0.05, ns. P > 0.05 by two-tailed unpaired Student’s t tests. All scale bars are 

25 µm except 12.5 µm in (Q-S). See Table A.1 for description of confocal imaging, 

quantification and experimental n. 
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Fig. A.2. Lef1 activates zebrafish hypothalamic genes and regulates behaviors 
associated with anxiety. (A) Ingenuity Pathway Analysis for 129 mouse orthologs of 
138 hypothalamic lef1-dependent genes revealed 20 genes associated with anxiety and 
depressive disorder. (B and C) Whole mount in situ hybridization of 3 dpf control and 
lef1 mutant embryos for known Wnt targets (B) and genes associated with anxiety and 
depressive disorder (C) shows specific loss of expression in the caudal hypothalamus of 
lef1 mutants. Red and yellow arrows indicate gene expression in caudal and rostral 
hypothalamus, respectively. Scale bar: 100 µm. (D) lef1 mutants are smaller than 
controls at 30 dpf when raised at 5 fish per tank separated by genotype. n = 25, 30 for 
control and mutant, respectively. (E and F) lef1 mutants display reduced exploratory 
behavior in a novel tank diving test, with a longer latency to enter (E) and less time spent 
in (F) the upper zone of a novel tank. Data are mean ± SEM. **P < 0.01, ***P < 0.001 by 
two-tailed unpaired Student’s t tests.  
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Fig. A.3. Hypothalamic Lef1 regulates growth, anxiety, and Pmch+ neuron 
formation in mice. (A and B) Male Lef1CKO (CKO-M) (A, F1,26 = 22.2) and female Lef1CKO 
(CKO-F) (B, F1,25 = 8.842) gained weight more slowly than controls (CON) after weaning. 
(C and D) Elevated plus maze (EPM). CKO-M spend less time in the open arms (C) and 
more time in the closed arms (D). (E-G) Open field test (OFT). CKO-M (E) and CKO-F in 
estrus (F), but not in diestrus (G), spend less time in the center zone. (H) qPCR analysis 
of hypothalamic gene expression in male E14.5 and P22 mice. (I-N) E14.5 sagittal 
images (www.genepaint.org) show co-expression of Lef1 (I-K, red arrows) and Pmch (L-
N) in the hypothalamus (18). (O-T) Reduced expression of Pmch (O and R), Cartpt (P 
and S) and Tacr3 (Q and T) in the lateral hypothalamus of P22 CKO-M from 25 µm 
coronal sections. Data are mean ± 95% CI in (A and B), mean ± SEM in (C-G) and mean 
± SD in (H). ***P < 0.001, **P < 0.01, *P < 0.05, ns. P > 0.05 by two-way ANOVA with 
repeated measures (A and B) and two-tailed unpaired Student’s t tests (C-H). n = (A) 27, 
27; (B) 26, 26 for CON and CKO, respectively. Outliers in (E and F) depicted in black 
were excluded using the Grubbs’ test (P < 0.05). Scale bars: 400 µm in (I) and (L); 30 
µm in (O).   
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Fig. A.4. Loss of Drosophila Crhbp ortholog expression in pan mutants. Whole 
mount in situ hybridization images of stage 16 Drosophila embryos for the Lef1 ortholog 
pan (A and C) and Crhbp ortholog CG15537 (B, D, E and F). Yellow and red arrows 
indicate gene expression in the pars intercerebralis (PI) and pars lateralis (PL), 
respectively. Co-expression of pan (A and C) and CG15537 (B and D) in the PL 
primordia of wild-type embryos. Expression of CG15537 is specifically lost in the PL 
primordia of pan-/- (F, n = 32 (22.5%)) embryos compared to control siblings (E, n = 110 
(77.5%)). Scale bar: 150 µm. 
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Fig. A.5. lef1 regulates neurogenesis in the zebrafish caudal periventricular 
hypothalamus (Hc). (A-C) Progressive reduction of Hc size in lef1 mutants compared to 
controls after 5 dpf calculated by area of confocal ventricular slices. Hc was defined as 
an oval indicated by red outline in (B). The area of the oval was calculated by the 
equations shown with lengths of a1, a2, b1, b2 measured by ImageJ in (C). (D-G) 
Ventricular HuC/D+ cells co-express GABAergic lineage marker dlx5/6:GFP in the 3 dpf 
Hc. Three confocal channel-split magnified images of the region depicted by the yellow 
rectangle in (D) are shown in (E-G). (H-J) Normal th2:GFP+ cells in the Hc of a 3 dpf lef1 
mutant. (K-M) Increased BLBP+ cells in the Hc of a 3 dpf lef1 mutant. Higher 
magnification views of yellow rectangles in single channel are shown in the insets. (N-S) 
Normal proliferation in the Hc of a 5 dpf lef1 mutant as shown by pH3+ (N) and PCNA+ 
(O-Q) cells, and 1 day BrdU labeling (R and S). (T-V) BrdU pulse-chase (T) to measure 
birth of 5-HT+ and HuC/D+ cells. lef1 mutants have fewer 5-HT+/BrdU+ cells (U) and 
ventricular HuC/D+/BrdU+ cells (V). Data are mean ± SEM, except mean ± SD in (A, U, 
V). ***P < 0.001, **P < 0.01, *P < 0.05, ns. P > 0.05 by two-tailed unpaired Student’s t 
tests. All images are confocal ventricular slices. All scale bars are 25 µm except 12.5 µm 
in (E) (see Table A.1 for information of quantification and more n numbers).  
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Fig. A.6. Whole mount in situ hybridization for zebrafish Lef1-dependent genes 
identified from RNA-seq. (A) 3 dpf control and lef1 mutant embryos following in situ 
hybridization. Red and yellow arrows indicate gene expression in caudal and rostral 
hypothalamus, respectively. Lateral (adarb2, ccdc129, foxb2, klf17, mmp17b and 
slc18a2) or ventral (other genes) views were selected for optimal expression 
visualization. All genes have reduced expression in Hc of lef1 mutants except klf17, 
which has ectopic expression in Hc. (B) Expression following in situ hybridization on 3 
dpf offspring from lef1+/- incrosses. 50-85 embryos were analyzed per gene. (C) Images 
of 3 dpf wild-type brains centered on Hc from ventral view. (D) Gene expression in the 
hypothalamus of 4 mpf female wild-type zebrafish from ventral view. All genes tested 
showed strong expression in adult Hc except prox2 with weak expression and adarb2 
with no expression. Images of ventral view have anterior on top; images of lateral view 
have anterior on the left. Scale bars: 0.1 mm in (A); 5 µm in (C); 0.2 mm in (D).  
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Fig. A.7. Physiological and behavioral analysis of zebrafish lef1 mutants. (A-C) lef1 
mutants have a smaller body size and higher lethality rate when raised together with 
control siblings. Larvae were sorted by genotype from offspring of lef1+/- incrosses at 15 
dpf and raised at 25 per tank. Body length and number of surviving fish at 2 months 
postfertilization (mpf) are shown in (C). (D) When raised at 1 or 5 per tank, wild-type fish 
had maximal growth. Data are mean ± SD. (E) 2 mins. swimming traces of 16 dpf control 
and lef1 mutant siblings in the novel tank diving tests. Scale bars: 0.5 cm.  
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Fig. A.8. Cellular and molecular phenotypes in mouse Lef1CKO hypothalamus. (A 
and B) P50 female Nkx2.1Cre/+;Lef1flox/+;RosatdTomato/+ (CON-F) expresses tdTomato in the 
hypothalamus. Red fluorescence (A) and bright field (B) ventral view images of the same 
brain with anterior on top are shown. (C and D) Lef1 protein expression is lost in the 
hypothalamus of E14.5 Lef1CKO (CKO-M) compared to Lef1CON (CON-M) controls. 
Coronal images are Z-projections of 16 µm confocal optical sections, shown with dorsal 
side on top. (E-H) Wnt reporter TCF/Lef:H2B-GFP expression is reduced in the 
hypothalamus of CKO (H) compared to CON (G) at E14.5. Green fluorescence (G and 
H) views of yellow rectangles in bright field (E and F) view images of the same brain are 
shown, respectively. Images are ventral views with anterior side on top. (I and J) Loss of 
Pmch+ cells in the hypothalamus of E14.5 CKO. Higher magnification views of yellow 
rectangles are shown in the insets. Coronal images are Z-projections of 16 µm confocal 
optical slices, shown with dorsal side on top. (K) Real-time PCR (qPCR) analysis of 
hypothalamic gene expression in female mice. Pmch expression is reduced in 
hypothalami dissected from female Lef1CKO (CKO-F) mice compared to female Lef1CON 
(CON-F) mice at both E14.5 and P22. CKO-F also has reduced expression of the 
Wnt/Lef1 target Sp5 at E14.5 and the Pmch+ neuron co-expressing genes Cartpt and 
Tacr3 at P22, but normal expression of Crhbp. Data are mean ± SD. *P < 0.05, ***P < 
0.001, ns. P > 0.05 by two-tailed unpaired Student’s t tests. (L and M) Normal Crhbp 
expression in the hypothalamus of P22 CKO-M from 25 µm coronal section in situ 
hybridization, shown with dorsal side on top. 3V: 3rd ventricle. Scale bars: 100 µm in (B, 
C, E and I); 25 µm in (G); 500 µm in (L).  
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Fig. A.9. Mouse anxiety tests. Elevated plus maze (A-M). Distance travelled (A-C), 
percentage of time in the open arms (D and E) and closed arms (F and G), number of 
entries into the open arms (H-J) and closed arms (K-M) are shown for male mice (A, H 
and K), female mice in estrus (B, D, F, I and L) and female mice in diestrus (C, E, G, J 
and M). Open field test (N-P). Distance travelled is shown for male mice (N), female 
mice in estrus (O) and diestrus (P). n = 12, 9 for male CON, CKO; n = 12, 6 for female 
CON, CKO in estrus; n = 11, 16 for female CON, CKO in diestrus. Data are mean ± 
SEM. ***P < 0.001, **P < 0.01, ns. P > 0.05 by two-tailed unpaired Student’s t tests. 
Outliers depicted in black were excluded from statistical analysis using the Grubbs’ test 
(P < 0.05).  

  



143 
 

 

Fig. A.10. Normal expression of pmch and pmchl in zebrafish lef1 mutants. (A and 
B) Whole mount in situ hybridization images for pmch (A) and pmchl (B) in the 
hypothalamus of 3 dpf zebrafish lef1+/- and lef1-/- embryos. (C and D) Images of 3 dpf 
wild-type brains centered on Hc from ventral view for pmch (C) and pmchl (D). Scale 
bar: 100 µm in (A); 5 µm in (C). Images of dorsal or ventral views have anterior on top; 
images of lateral views have anterior on the left. 
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Table A.1.  Details of confocal images. Quantification and number of samples (n) for 
Fig. 1 and Fig. S1. 
 

 

Sample size  
number of cells counted on 

confocal 

picture control mutant 

Figure 1  

A 

3 dpf n = 5 n = 5 

  

4 dpf n = 5 n = 3 

5 dpf n = 5 n = 4 

B, C    z-stack 

D n = 4 n = 3 left half of ventricular slice  

E, F    ventricular slice 

G n = 14 n = 12 left half of z-stack 
 

H n = 5 n = 5 left half of ventricular slice 

I, J    z-stack 

K n = 5 n = 5 entire z-stack of hypothalamus 

 
L 

p53+/- n = 11 n = 8 
entire z-stack of hypothalamus 

p53-/- n = 10 n = 10 

M, N    ventricular slice 

P    ventricular slice 

Figure S1  

A 

6 dpf n = 8 n = 7 

 

 

8 dpf n = 8 n = 6 

10 dpf n = 6 n = 6 

15 dpf n = 3 n = 4 

J n = 14 n = 12 left half of z-stack 

M n = 5 n = 5 left half of z-stack 

N n = 7 n = 9 entire z-stack of hypothalamus 

Q n = 7  n = 6 left half of ventricular slice 

adjacent to the ventricle 

S n = 6 n = 6 entire z-stack of hypothalamus 

U, V n = 3 n = 3 entire z-stack of hypothalamus  
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Table A.2. Primer sequences for genotyping. Restriction enzyme BsaJI is used after 
PCR for lef1zd11.  

 

Gene species  Primer Sequence 

lef1zd11 zebrafish 
F CACTCTCTCCAGCCCAACATT 

R TGTTACTGTTGGGACTGATTTCTG 

p53e7/e7  zebrafish 

F GATAGCCTAGTGCGAGCACACTCTT 

R-wt AGCTGCATGGGGGGGAT 

R-mut AGCTGCATGGGGGGGAA 

Lef1-flox mouse 
F GCAGATATAGACACTAGCACC 

R TCCACACAACTAACGGCTAC 

Tcf7-flox mouse 
F AGCTGAGCCCCTGTTGTAGA 

R TTCTTTGACCCCTGACTTGG 

Nkx2.1-Cre mouse 
F ATGCTTCTGTCCGTTTGCCG 

R CCTGTTTTGCACGTTCACCG 

Jarid 1c mouse 
F CTGAAGCTTTTGGCTTTGAG 

R CCACTGCCAAATTCTTTGG 

Rosa-

TdTomato 
mouse 

F-wt AAGGGAGCTGCAGTGGAGTA 

R-wt CCGAAAATCTGTGGGAAGTC 

F-mut CTGTTCCTGTACGGCATGG 

R-mut GGCATTAAAGCAGCGTATCC 

TCF/Lef1:

H2B-GFP 
mouse 

F ACAACAAGCGCTCGACCATCAC 

R AGTCGATGCCCTTCAGCTCGAT 
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Table A.3. Primer sequences for synthesizing in situ hybridization probes. Reverse 

primers also included a T7 promoter-containing sequence 

“CCAAGCTTCTAATACGACTCACTATAGGGAGA” that was added 5’ to the listed 

sequences above (47). All primers were designed by Primer-BLAST except mouse 

genes Cartpt (ABA experiment 72077479), Crhbp (ABA experiment 77455017), Pmch 

(Genepaint set MH227) and Tacr3 (ABA experiment 80342167).  

 

Zebrafish 

gene 
Forward Reverse 

adarb2 TCGCAGTAAGAAGCAGGCAA GACGGTAACAAGTGGGCAGA 

bsx ACCGACCAGAGTGATTTTGT TCTTCATTGTCGTCCAGCGT 

camk1ga CGCCCTGAAGTGTGTGAAGA GATGCATTGATGGCACGCTT 

ccdc129 CGGGACATTTCCGTACTCGT CTGCTGTACTTATTCCAGAGGGT 

chgb CCCGAGCTACGTCAACAAAA CTTTTAACTCCTGTTGCGGGG 

cracr2aa AAGAGGTGCGGAGTCTTTGG ATCCTGCGGAGCTGGTTTTT 

crhbp GCTGGGTGATGAAGGGTGAG ACTTGTGCAGTACCCCTCATTT 

dkk1b TGCTCTCTACTGCATGCCTC TAGTGTCTCTGGCATGTGTGC 

foxb2 CGGCCAGGGAAGAACTCCTA TCGGTGTAGGTTTGATGGGC 

gad2 GCTGGAAACGGCAGTCAAAG GGCACGTATCCCTTCTGCTT 

grin2cb GGGTGTTTGGGTCCCTCTCT TGTATCCAGGCCCCAAAAGC 

hdc GTGTTCATAGTTTTACTGCGTCCT ACAGTGTATAGCGTGAGGGA 

hrh4 (1 of 2) TCGACCTATACGCAGGGAGT GCTACCAAGACCAAGGAGAGT 

htr1ab TGCCGATGGCTGCTCTTTAC GCGAGTTTGAATAGCCGAGC 

isl1l GGTTGTGGGCTTGAGATCCT TGATGTCCGTTGGACTTGCT 

klf17 ACTAACCCAAGGGCTGGAGA TGTACGTTTTCCCGCATCCA 

mmp17b GCAGTCGCCAAAATTCGAGG AACATGCCCCCTTTGAGTCC 

msi2a AGAGGCTTCGGCTTCGTAAC ACAGCAGTTGCGATGTTGGT 

msi2b TTTGAGAACGAGGATGTGGTGG GGCCTTTACCTCAAATGAGATGG 

ndufa4l2a AAACACCCAGGACTGATCCC CTGCGTCTTCTGTTGGCCTT 

nos1 GCGTTTTCCCTGGCAACAAT TTCTTTGGTCTTCCGGGCTC 

notum1a TATTTCTTGAGGGCGGCTGG GTCTTGTAGACTGCGGTCCC 

PDE9A (2 of 

2) 
GGAGGACGCGGAGATAATGG ATGTGTTGCTCCAGACAGGG 

penka CCTGTCTCGTGCTCATGGTT GGACGTGACCCAGAAATGGT 

pmch AGCTAGGTTCTGCAACCATCA CATACATTTCTGCTCGTCATGTT 

pmchl AACCGCTAAAGCAAACGCTC TTCAGATAAACAGCATCAAGTTGTA 

prlra AGTGGTTTTTCTCTCATCTCTGAC CTTTGAGCATCCAGGTGAGGA 

prox2 CTGAGCAGAACTGTGAGCGA TGGAACCTGGAAGTCGTTGG 

rspo1 TCGACCCCGACTCTTCATCT GGACTTAACCGAGCCAGCAT 

si:dkey-

219c10.4 
CCGTGTGACATTCGGGATCT GTTGTTGTACCCCGGATGGT 

si:dkey-

85n7.8 
TGCTGACCTTTCTGAGGGGA ACACCAAAAGAGGTTTGGGAAG 

slc18a2 TCAAACACCAGTCAAGCAACT TAGCGTTTCCTCGTTCCTCG 

slc6a4b GAAGGAGACCAGCGTATGGG CTCCGATGATGTAGCCGACC 

sp5a AGGAACGACACACTACAGGC ACCGTAAACCTTCCCGCATC 
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Table A.3 cont. 

 

Mouse gene   

sp5l GTTTCCCAGCCACATGCAAC ATGCTCCCATCGCAACCATT 

tacr1b TTCTGGTGTCGGTAGTGGGA ACTGTGGTTTCCATTCGGCT 

tph1a CTGCGGTTGTGTTTTCCCTG CCCAGTGAAGCCAGACCAAT 

tshz3a CTGTCAGCCCTCTAAGTGCC CCTCTAGCTGGCGATACAGC 

Cartpt GCTACCTTTGCTGGGTGC  CAACAGGGAAAGAGCCCA  

Crhbp AAGGGGAGAGAGCCGCTA TTTCCATTTGCTGCCCAT 

Pmch GCACTCTTGTTTGGCTTTATGC GAGGTTTAATGCACACGTCAAGC 

Tacr3 GAGGACCGTCACCAACTATTTC AGCTCATCGTAGCTGGAGACTT 

Drosophila 

gene 
  

CG15537 CCCAGTGTAAAGCGGTCCTT GGTTCTGATAGCGACCGGAG 

 

 

 

Table A.4. Primer sequences for qPCR. 

Gene 
PrimerBank 

ID 
 Primer Sequence 

amplicon 

size 

Sp5 11967967a1 
F TGGGTTCACCCTCCAGACTTT 

195 
R CCGGCGAGAACTCGTAAGG 

Pmch 12861395a1 
F GTCTGGCTGTAAAACCTTACCTC 

161 
R CCTGAGCATGTCAAAATCTCTCC 

Cartpt 7304945a1 
F CCCGAGCCCTGGACATCTA 

103 
R GCTTCGATCTGCAACATAGCG 

Tacr3 10946720a1 
F CTGGGCTTGCCAGTGACAT 

173 
R CGCTTGTGGGCCAAGATGAT 

Crhbp 162287189c2 
F CTTACCCTCGGACACTTGCAT 

130 
R GGTCTGCTAAGGGCATCATCT 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX B 
 
 
 

SHIFTING PARADIGMS: PHOSPHORYLATION OF JUN 
 

IS REQUIRED FOR STABILITY NOT ACTIVITY 
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Introduction 

Multicellular organisms are built and sustained via a series of conserved 

biological processes requiring relay of extracellular stimuli to intracellular transducers 

(signal transduction). One key signal transduction pathway is the mitogen-activated 

protein kinase (MAPK) pathway, an evolutionarily conserved kinase cascade whose 

members are phosphorylated and activated in sequence, leading ultimately to the 

phosphorylation of target transcription factors. Our unexpected finding that an 

unphosphorylated target of the kinase cascade is active in vivo, leads us to postulate 

that phosphorylation is not (as previously thought) an on/off switch for transcription factor 

activation, but rather a modulator of transcription factor activity. 

The MAPK family includes three subgroups: extracellular-signal regulated kinase 

(ERK), p38, and Jun N-terminal kinase (JNK). The JNK signaling pathway, which is the 

focus of the studies described here, is conserved in all eukaryotes from Caenorhabditis 

elegans to humans and evolved from the stress-activated kinase in yeast, known as 

HOG1 (Cobb and Goldsmith, 1995). Pathway members were initially discovered as UV-

stress-responsive kinases that phosphorylate mammalian Jun (Adler et al., 1992; 

Derijard et al., 1994; Kyriakis et al., 1994).  Notably, the list of stresses that activate JNK 

signaling has grown, primarily through studies in Drosophila, to include oxidative, 

immune, and wound stresses (Bidla et al., 2007; Bosch et al., 2005; Karkali and 

Panayotou, 2012; Riesgo-Escovar et al., 1996). Jun, the phosphorylation target of JNK, 

is a bZIP DNA-binding protein that is part of the AP-1 transcription factor important for 

gene regulation (Karin, 1995), and much has been construed regarding its post-

translational regulation.  

Studies in vitro have been instrumental in delimiting the transactivation domain of 

Jun; it contains four serines and threonines (S63/73, T91/93) in the N-terminus, and 

phosphorylation at these sites increases the DNA-binding and transcriptional activity of 
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the AP-1 transcription factor (Behrens et al., 1999; Papavassiliou et al., 1995; Pulverer 

et al., 1991), a heterodimer of Jun and Fos. While a central role for Jun phosphorylation 

in enhancing transcriptional activity of AP-1 is clear, our understanding of the 

mechanistic requirements for phosphorylation in vivo is surprisingly limited. Analysis of 

Jun post-translational regulation has been conducted almost exclusively using 

biochemical strategies in vitro, where studies reveal what a protein can do, not 

necessarily what it does do. Below, we describe our use of a powerful Jun assay system 

in vivo (Drosophila embryos) that complements decades of Jun studies in vitro.  

Historically, the fruit fly Drosophila melanogaster has provided a powerful 

experimental platform for studying conserved signaling pathways. In this regard, 

disruption of the JNK pathway midway in embryogenesis results in a well-characterized 

and easily identified dorsal closure (DC) defect (Rios-Barrera and Riesgo-Escovar, 

2013).  DC is an essential embryonic process during which the laterally-positioned 

epidermal sheets extend to the dorsal midline where they fuse to enclose the entire 

embryo in epidermis. At the molecular level, DC initiates with JNK signaling and target 

gene expression (dpp) in the dorsal-most cells of the lateral epidermal sheet (the leading 

edge [LE]). Tight control of JNK signaling is vital, as not only do loss-of-function mutants 

disrupt DC, but so also do gain-of-function mutants (Bates et al., 2008). Indeed, these 

complementary phenotypes underscore the power of the DC system for studying JNK 

pathway architecture in vivo. 

The Letsou lab uses the fruit fly, Drosophila melanogaster, to understand JNK 

signaling. Importantly, our breakthrough finding that unphosphorylated Jun is active in 

vivo is paradigm shifting. In this regard, our studies reveal a new role for phosphorylation 

in regulating JNK signaling. Since JNK signaling is involved in a host of processes 

integral to normal animal development and physiology, it is crucial that we understand if 

Jun phosphorylation functions as an on/off switch or instead as a more fluid regulator of 
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Jun activity (i.e. a dimmer switch). This distinction is important because the maintenance 

of tight control of JNK signaling, both spatially and temporally, is essential to organismal 

viability; dysregulated JNK signaling leads to developmental defects as well as 

devastating diseases such as cancer.  

It has long been known that N-terminal phosphorylation of Jun increases target 

gene expression (Pulverer et al., 1991). Although N-terminal phosphorylation is 

considered to be synonymous with Jun activity and although phosphorylation of proteins 

has generally been considered to be an on/off switch for activity, this has never been 

unequivocally demonstrated for Jun. Indeed, current dogma largely ignores an almost 

20-year-old report showing that Jun phosphorylation at its N-terminus stabilizes the 

protein in vitro such that phospho-Jun is resistant to degradation while unphosphorylated 

Jun is prone to rapid degradation (Musti et al., 1997). As a first test of whether Jun-N-

terminal phosphorylation acts as an on/off switch in an in vivo system, we generated 

UAS-Jun transgenic flies where Jun is either wild-type (Jun+; N-terminal serines and 

threonines remain intact) or nonphosphorylatable (JunA; N-terminal serines and 

threonines are replaced by alanines). In an analysis of transgene function (where cuticle 

phenotype correlates to signaling activity), we found that the nonphosphorylatable JunA 

transgene rescues the Jra mutant, just not as effectively as Jun+ (Jud & Letsou, 

unpublished).  These data show that phosphorylation is not essential for Jun activity and 

that phosphorylation is not simply an on/off switch for Jun activity. 

I tested whether Jun N-terminal phosphorylation stabilizes Jun and whether 

unphosphorylated Jun is preferentially degraded via the ubiquitin pathway. At the heart 

of this study is the postulated link connecting Jun phosphorylation state to Jun 

degradation. It is intriguing to speculate that graduated and quantitative regulation of 

JNK signaling (rheostasis) provides beneficial flexibility to an organism’s response to 

internal and/or external developmental challenges (e.g., an ability to reset a threshold 
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activation response in answer to an environmental stress). 

 

Materials and methods 

Drosophila strains 

Fly lines for this study include Oregon R for wild-type, bsk1, bsk2, JraIA109, rawIG, 

P(otu-GAL4::VP16.R, w*; P(GAL4-nos.NGT)40; P(GAL4::VP16-nos.UTR)CG6325MVD1 

(maternal GAL4 line), that are all available from the Bloomington Drosophila Stock 

Center at Indiana University.  Additional lines generously gifted to our lab includes 

P(tubP-GAL4)LL7/TM3,P(Dfd-GMR-nvYFP)3 Sb1 (Mark Metzstein) and ago1 and ago3 

(Kenneth Moberg).  Double mutants were generated using standard mating protocols 

and/or recombination and were tested for the presence of the mutant alleles by standard 

complementation testing.  For all assays, homozygous mutant embryos older than 6 hrs. 

after egg lay were identified by the absence of a balancer chromosome containing twi-

GAL4, UAS-GFP.  

 

Phenotypic analysis 

Embryonic lethal cuticular phenotypes were viewed after mounting dechorionated 

and devitellinized samples in one-step mounting media (30% CMCP-10, 13% lactic acid, 

57% glacial acetic acid).  Hybridizations in situ were performed using digoxigenin-

labeled RNA probes and 1:2000 α-DIG AP-conjugated Fab fragments (11093274910; 

Roche Diagnostics) as previously described (Byars et al., 1999).  Cuticles were imaged 

using dark field optics on a Zeiss Axioskop microscope with AxioVision camera. 

 

Protein studies 

For immunoblot studies, proteins for control and experimental lysates were 

prepared from embryos collected over 2 hrs. and aged from 0-12 hrs. after egg lay (AEL) 
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or collected over 4 hrs. and aged to 8-12 hrs. AEL. Lysates were prepared as a 2:1 ratio 

(embryos: volume [µL]) under denaturing conditions with 1x Laemmli buffer (125mM 

Tris-base pH=6.8, 2% SDS, 10% glycerol, 5% 2-mercaptoethanol, 0.05% bromophenol 

blue).  Protein lysates were separated on SDS-acrylamide gels, transferred to PVDF 

membranes (IPSN08132; Merck Millipore Ltd.) and analyzed by Western blotting with 

the rabbit α-Jun antibody (25763 1:200; Santa Cruz Biotechnology) and HRP-conjugated 

goat α-rabbit (1:1000; Chimicon) antibodies.  Antibodies were diluted in TBS or TBST 

(0.05% Tween), each with 1x Western Blocking Reagent (11 921 673 001; Roche 

Diagnostics).  Chemiluminescence was visualized by luminol (sc-2048; Santa Cruz 

Biotechnology), and the Amersham Hyperfilm ECL (28906835; GE Healthcare) was 

developed on the AFP Mini-Medical series developer. 

 

Results 

 Previous reports of raw have demonstrated a clear increase in phosphorylated 

Jun protein (Humphreys et al., 2013), but the mechanism by which this accumulation 

occurs remains elusive.  This could be due to genetic interactions between raw and June 

kinases, where Raw antagonizes a Jun kinase, or by stabilization of phospho-Jun 

protein where Raw antagonizes Jun degradation.  Herein, I test both models of Jun 

accumulation and demonstrate that Raw does not antagonize a kinase, but rather 

influences the stability of Jun protein. 

The Letsou lab has examined the role Jun kinases on the raw mutant phenotype, 

including bsk, p38, and rolled and found that none of these kinases play any role on the 

raw mutant phenotype (Jud & Letsou, unpublished).  However, these experiments only 

probed Jun kinase activity using zygotic loss-of-function alleles.  Therefore, I examined 

the role of the only maternally-derived Jun kinase, bsk, on the raw cuticle defects 

observed (Fig. B.1 A-B, Flybase, 2003).  To this end I tested the function of maternal-bsk 
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on the raw cuticle phenotype, specifically the dorsal pucker and hypotrophy of the 

ventral denticle belts.  I eliminated bsk expression in early wt and rawIG embryos by 

driving expression of a UAS:bskRNAi transgene with a maternal set of Gal4 drivers (ref).  

(Fig. B.1 C-D).  I observed no difference in cuticle phenotype (Fig. B.1 E) as compared 

to previously reported raw mutants (Byars et al., 1999) demonstrating that maternal bsk 

plays no role in the raw mutant phenotype and that Raw does not antagonize a Jun 

kinase.  

Next, I examined whether Raw antagonizes Jun stabilization by testing for 

genetic interactions between raw and the ubiquitin proteasome pathway. It has been 

demonstrated that mammalian c-Jun is degraded by the ubiquitin proteasome pathway 

(reviewed in Davis et al., 2014).  Fbw7 (archipelago (ago) in Drosophila) codes for the 

ubiquitin ligase targeting c-Jun for degradation (Davis et al., 2004; Wei et al., 2005).  If 

the raw-dependent accumulation of Jun is due to failures in the ubiquitin proteasome 

pathway, I expect ago and raw to share loss-of-function phenotypes, specifically a dorsal 

pucker and hypotrophy of the ventral denticle belts.  First, I examined cuticle phenotypes 

of ago1 null mutants and observed a loss-of-function phenotype similar to that of raw 

nulls (Fig. B.1 F).  As expected for a null mutation, the phenotype observed in ago1 

mutants was not enhanced when ago1 was placed in trans to a deficiency, thus 

confirming that it is a null for this phenotype (Fig. B.2 A). 

Given the shared loss-of-function phenotypes observed in both raw and ago, I 

tested for genetic interactions between these two genes by examining the cuticle 

phenotype of ago1 homozygotes in a rawIG heterozygous background.  I observed 

enhancement of the ago phenotype demonstrating a role for ago in that the raw mutant 

phenotype (Fig. B.2 B).  Last, I examined the cuticle phenotypes of maternal and zygotic 

loss of ago1 and ago3 mutants and observed a worsening of the phenotype compared to 

the zygotic loss alone (Fig. B.2 C-D).  These data, taken together, demonstrate a role for 
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maternal and zygotic ago in the raw cuticle phenotype.  

 These genetic data demonstrating a role for ago in the raw cuticle phenotype 

suggest that the accumulation of Jun observed in raw is due to an inability for Jun to be 

degraded in raw.  I, therefore, examined the role of ago on Jun protein accumulation in 

zygotic and maternal/zygotic ago mutants.  I observed no change in Jun protein levels in 

the zygotic mutants alone, but a two-fold increase in protein in the maternal/zygotic 

mutants (Fig. B.3) demonstrating that Ago plays a critical role in Jun protein stability in 

vivo. 

 

Discussion 

  While JNK signaling has been well-studied in diverse metazoans, much remains 

to be understood about how this pathway is antagonized to prevent or limit its activity in 

vivo.  Herein, I characterized the role of ago in Jun stability and JNK signaling.  I 

demonstrated that an ubiquitin ligase, ago, is responsible for maintaining biologically 

appropriate levels of Jun in the cell, but that, along with previous unpublished reports 

(Jud & Letsou, unpublished), a Jun kinase is not responsible for the elevated Jun levels 

we observe in raw mutants.  I demonstrated a genetic interaction between ago and raw 

and postulate that Jun may be brought to Ago by Raw, in order that Jun may be 

degraded.  Thus, phosphorylated Jun accumulates in raw due to alterations in its 

stability such that it remains unable to be degraded by the ubiquitin proteasome 

pathway.  This is in contrast to the widely-held view that phosphorylated Jun is bioactive 

and that the unphosphorylated Jun protein is not.  These data, together with unpublished 

data from the Letsou Lab (Jud & Letsou, unpublished), establish a new paradigm for Jun 

activity in vivo. 
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Fig. B.1. Maternal bsk does not contribute to the raw phenotype. bsk is 
maternally loaded and zygotically expressed in wild-type embryos (A-B) and 

expression is ablated using maternal bsk
RNAi

 in raw bsk mutant embryos (C-D).  Loss 
of maternal bsk and zygotic raw and bsk (E) results in cuticle phenotypes 

indistinguishable from raw embryos.  ago
1
 embryos exhibit raw-like phenotypes (F). 
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Fig. B.2. ago and raw genetically interact and maternally-derived ago 

contributes to embryogenesis. ago
1
 is defined as a null in this study as the ago

1
 

allele in trans to a deficiency (A) does not worsen the ago
1
 phenotype previously 

reported (A).  Loss of ago in a raw/+ background worsens the phenotype of ago alone 
(B).  Loss of maternally- and zygotically-derived ago result in worsened phenotypes 
compared to ago alone (C-D). 
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Fig. B.3. Ago is required for degradation of Jun.  Jun levels are increased in raw 
as previously reported (A) but not significantly increased in ago zygotic mutants.  
However, depletion of ago maternally and zygotically results in increased Jun protein 
levels compared to wild-type (B). 
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