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ABSTRACT

Nondestructive evaluation (NDE) is a means of assessing the reliability and integrity

of a structural component and provides such information as the presence, location, extent,

and type of damage in the component. Structural health monitoring (SHM) is a subfield of

NDE, and focuses on a continuous monitoring of a structure while in use. SHM has been

applied to structures such as bridges, buildings, pipelines, and airplanes with the goal of

detecting the presence of damage as a means of determining whether a structure is in need

of maintenance.

SHM can be posed as a modeling problem, where an accurate model allows for a

more reliable prediction of structural behavior. More reliable predictions make it easier

to determine if something is out of the ordinary with the structure. Structural models can

be designed using analytical or empirical approaches. Most SHM applications use purely

analytical models based on finite element analysis and fundamental wave propagation

equations to construct behavioral predictions. Purely empirical models exist, but are less

common. These often utilize pattern recognition algorithms to recognize features that

indicate damage.

This thesis uses a method related to the k-means algorithm known as dictionary learn-

ing to train a wave propagation model from full wavefield data. These data are gathered

from thin metal plates that exhibit complex wavefields dominated by multipath interfer-

ence. We evaluate our model for its ability to detect damage in structures on which the

model was not trained. These structures are similar to the training structure, but variable

in material type and thickness. This evaluation will demonstrate how well learned dictio-

naries can both detect damage in a complex wavefield with multipath interference, and

how well the learned model generalizes to structures with slight variations in properties.

The damage detection and generalization results achieved using this empirical model are

compared to similar results using both an analytical model and a support vector machine

model.
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CHAPTER 1

INTRODUCTION

1.1 Motivation
Nondestructive evaluation (NDE) is a means of assessing the reliability and integrity

of a structural component and provides information such as the presence, location, extent,

and type of damage in the component [1]. Structural health monitoring (SHM) is a sub-

field of NDE, and focuses on a continuous monitoring of a structure while in use. SHM has

been applied to structures such as bridges [2], buildings [3], and airplanes [4] with the goal

of detecting the presence of damage as a means of determining whether a structure is in

need of maintenance [5].

SHM can be posed as a modeling problem, where an accurate model allows for a

more reliable prediction of structural behavior. More reliable predictions make it easier to

determine if something is out of the ordinary with the structure. Structural models can be

designed using analytical or empirical approaches. Most SHM applications use purely an-

alytical models based on finite element analysis and fundamental wave propagation equa-

tions to construct behavioral predictions [6]. Other methods, such as sparse wavenumber

analysis [7], combine analytical models with empirical data in a hybrid approach. Sparse

wavenumber analysis uses analytically derived wave propagation equations together with

empirical waveform signals to find the model constants that best recreate the true signal.

Purely empirical models exist, but are less common. These often utilize pattern recognition

algorithms to recognize features that indicate damage [8].

Analytical models have the advantage of using fundamental principles. Though an

analytical model can be fundamentally correct, it often represents an oversimplification

of the actual phenomenon. For this reason, analytical models of complex structures are

unreliable in realistic conditions, and are typically only used to analyze simple geometries

in controlled conditions [7].

Empirical models are constructed from data rather than fundamental principles. Ob-
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servations of the phenomenon are recorded and used to generate a predictive model. If

this is done correctly, these models can be generalized to other phenomena. An advantage

of using an empirical model is its ability to model more complex structures than is pos-

sible with analytical models, including geometric complexity and multipath interference.

However, there are much fewer guarantees that the resulting model will be correct or that

it will be able to predict results that were not observed in the training of the model.

Techniques for training empirical models exist in the fields of machine learning and

artificial intelligence and have been widely applied in many fields, such as data science

[9], speech recognition [10], image processing and computer vision [11], and robotic ma-

nipulation and motion planning [12]. A few of these techniques include support vector

machines [13], artificial neural networks [6], and genetic algorithms [14], and unsupervised

algorithms such as k-means and nearest neighbor [15].

This thesis uses a method related to the k-means algorithm known as dictionary learn-

ing to train a wave propagation model from full wavefield data. These data are gathered

from thin metal plates that exhibit complex wavefields dominated by multipath interfer-

ence. We evaluate our model for its ability to detect damage in structures on which the

model was not trained. These structures are similar to the training structure, but variable

in material type and thickness. This evaluation will demonstrate how well learned dictio-

naries can both detect damage in a complex wavefield with multipath interference, and

how well the learned model generalizes to structures with slight variations in properties.

The damage detection and generalization results achieved using this empirical model are

compared to similar results using both an analytical model and a support vector machine

model.

The following sections provide a brief review of SHM and some of its uses in history,

followed by a review of common damage detection methods. An abundance of analytical

modeling techniques is noted. Empirical modeling of acoustic signals is then reviewed

through the discussion of three machine learning algorithms: support vector machines,

artificial neural networks, and genetic algorithms. A background for compressed sensing

is also addressed, which will serve as a foundation for our empirical modeling method

based on dictionary learning [16].
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1.2 Background
Structural Health Monitoring (SHM) is used to continuously assess the damage state

of a structure with the intent of answering the following questions [17]:

1. Is there damage present in the structure?

2. Where is the damage located?

3. What type of damage is present?

4. How extensive is the damage?

5. How much useful life remains in the structure?

SHM is related to the fields of condition monitoring [18], nondestructive evaluation

(NDE) [1], statistical process control [19], and damage prognosis [20]. Some of these

describe continuous monitoring, while others require a removal of the structure from

service, which describes an NDE paradigm. NDE methods are more intrusive, but often

provide much more detailed information about the damage state of the structure.

SHM methods are divided into two categories in this background: methods that use

acoustic signals and methods that use ultrasonic signals. Regardless SHM methods find

features that model the properties and dynamic response of a material and watch to see if

they change. This is done almost exclusively through baseline subtraction or through the

use of predictive analytical models that are used to recover baseline data. If a change is

detected, damage is indicated [21]. If the change can be detected locally, then the damage

has been located [22]. The way in which a feature changes can be an indicator of the type

of damage present, and the extent of the change can indicate the size of the damage [23]. If

the changes in features can be mapped to particular material properties, such as flexibility,

stress, and/or strain, then a prognosis can be made to determine the remaining useful life

of the structure [20].

A key challenge to this paradigm is that structural parameters are affected by envi-

ronmental and operational variation, which are not indicators of damage. This can lead

to false positives in damage detection and is prevalent in both acoustic and ultrasonic

signal propagation [21, 24]. Signal interpretation and feature extraction are also challenges,
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especially with ultrasonic signals, which can be very complex due to their high-frequency

nature. This complexity often makes analytical models inadequate for predictive baseline

subtraction. These challenges of environmental sensitivity and signal complexity will be

addressed at the end of this section.

The following subsection reviews a brief history of SHM applications, followed by a

description of some of the parameters and techniques used for both acoustic and ultra-

sonic damage detection. Finally, the challenges of environmental sensitivity and signal

complexity are addressed. Note that a more detailed history of SHM applications can be

found in the works of Doebling et al. [5], Sohn et al. [25], and Farrar et al. [8].

1.2.1 Brief History of SHM Applications

Damage detection in one form or another has been practiced for thousands of years.

For example, a person with a trained ear, who is familiar with the normal response of

the structure (train wheels, etc.), can do a tap test to listen for structural abnormalities

[26]. While similar damage detection methods have been used for a very long time, ad-

vances in electrical measurement instruments have made it possible in the last 70 years to

better quantify damage detection efforts. This has allowed for these methods to be more

automatic, consistent, and sensitive. In recent years, the ever accelerating advances in

microchip electronics and sensor technology have led to continued improvement in these

areas.

Early attempts at quantifiable damage detection were made in the 50s with rotating

machinery such as mills, lathes, engines, generators, and so forth. [27]. This falls under

the the related field of condition monitoring. The types of damage that can typically be

detected include damaged or loose bearings [28], misaligned shafts [29], and chipped

gear teeth [30]. These attempts have been generally successful for a number of reasons,

including: minimal operational and environmental variations, well defined damage type

and location, large databases that include data from damage systems, and clear and quan-

tifiable economic benefits.

Towards the 1970s and 80s, many attempts were made to identify damage on offshore

platforms, such as pile drivers and oil rigs [31]. Shifts in the structure’s natural frequency,

modal shape, curvature, and flexibility were used to detect the existence and location of
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damage. These methods are theoretically sensitive to changes in mass and stiffness of the

structure. In practice however, these detection methods proved to be too insensitive to

damage, and too sensitive to changes caused by aquatic growth and on-board tank levels

[31]. These factors cause variations in natural frequencies and modal shapes that are of the

same magnitude as detectable damage, often making it impossible to distinguish between

the two [32].

Around this same time period, the aerospace community began to study the use of

vibration-based damage detection in conjunction with the development of the first space

shuttle [33]. The shuttle modal inspection system (SMIS) [34] was developed to identify

fatigue damage in components such as control surfaces, fuselage panels, and lifting sur-

faces. These systems are covered by thermal protection and are hard to access using other

methods. SMIS proved to be a successful method of fatigue damage detection.

High frequency ultrasonic signals (>20 kHz) have been used throughout the history

of damage detection, and for many of the attempts mentioned above. More recently,

however, increasing sensitivity and speed of measurement devices have made it possible

to detect higher level modes of vibration, which contain even more data about the damage

state of a structure [35]. Piezoelectric ceramic sensors are commonly used for the measure-

ment of ultrasonic signals. Reliable manufacturing of these sensors has been around since

the 1950s [36]. These have been used heavily for ultrasonic damage detection in the past

two decades [37] by using the sensors in a sparse array arrangement, similar to those used

in radiology [38] and seismology [39].

Another common measurement device is called a laser doppler vibrometer (LDV). One

of the first uses of an LDV for damage detection was in 1990 by Sriram et al. [40], who

used the device to measure the modal properties of a structure. Previously, accelerometers

and piezoelectrics were used widely for these measurements. LDVs have also been used

to measure full grids of evenly spaced ultrasonic measurements over the surface of struc-

tures, also known as full wavefield measurements [41]. This type of data provides a wealth

of information about the properties and dynamic responses of a structure. However, the

use of full wavefield data for damage detection is still an area of active research, limited to

simple 2D structures.
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1.2.2 Acoustics

Acoustic signals are fairly easy to capture, and provide much information about the

general state of the structure as a whole, such as the natural frequencies, mass, and flexi-

bility. These features can be used for damage detection by comparing the signal features to

an empirical baseline of the feature, or a baseline prediction using an analytical model.

Both approaches have been attempted. Changes in these properties, however, are not

only indicative of damage, but also environmental and operational variations [42]. For

this reason, acoustic damage detection is often most successful in controlled environments

where these variations either do not exist, or can be measured and compensated for.

There are a number of damage sensitive features that can be extracted from an acoustic

signal, and each provides specific insight into the damage state of a structure. These

features are discussed in the following sections.

1.2.2.1 Modal Frequency Shift

Overall, a frequency shift due to damage in a structure is very small. Extremely sen-

sitive sensors need to be used or a large amount of damage must be present to be able

to adequately detect damage. Also, other variations in structural parameters could cause

frequency shifts that are of the same magnitude as that of actual damage, such as environ-

mental conditions. Therefore, damage detection using this method only realistically works

in a controlled environment, such as with manufacturing quality control. Also, because

natural frequency is a global property, it is hard to locate the damage after detecting it [5].

Vandiver et al. [21] describe a technique that can be used to detect subsurface struc-

tural failures by detecting changes in natural frequencies of the structure. The technique

involves the use of accelerometers to pick up vibrations excited by the wind and waves

of the ocean. The natural frequencies of the structure can then be extracted from the

accelerometer data. Shifts in the natural frequency over time indicate changes in mass

and stiffness of the structure. This technique has been used before for damage detection

in buildings and rotating machinery such as generators and jet engines. By comparing

frequency changes between modes one can determine whether or not the damage is in

a location that causes stiffness in a predominantly X or Y direction. This method works

best with large amounts of structural damage and is limited in its ability to detect small
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amounts of damage.

Farrar et al. [2] performed vibration tests in the fracture-critical I-40 bridge over the Rio

Grande. Cuts were made in the bridge grinders to simulate fatigue cracks in the bridge,

and both passive and active excitations were used to acquire the resonant frequencies of

the bridge. Resonant frequency shifts were seen for both methods, and both indicated

damage in the bridge.

1.2.2.2 Modal Shapes

Modal shapes alone do not typically give a good indication of damage. They can,

however, provide spatial information about damage location, and can be effective when

coupled with frequency shift features. The effectiveness of this method depends highly on

the selection of which modes are used.

Kam and Lee [23] used modal shapes and natural frequencies to identify the location

and size of a crack in a structure. The cracked structure was discretized into a number

of elements. The location of the crack was identified through the determination of the

sectional parameters of the elements using a Taylor series estimated eigencouple (modal

shape and natural frequency). The crack size was estimated by analyzing the strain ener-

gies (calculated from the modal shapes) of the structure with and without damage.

Lam et al. [22] defined a mode shape normalized by the change in natural frequency

of another mode as a damage signature. The signature is a function of damage location

but not of damage extent. An analytical model was then used to derive the signatures

for damage in different locations. The measured signatures were matched to the damage

state by selecting which analytical signature gave the best match using modal assurance

criterion (MAC). MAC is one of many ways to determine the level of correlation between

modes.

1.2.2.3 Modal Curvature and Mode Shape Derivatives

Modal curvature also provides spatial information about the damage. Curvature needs

to be calculated through a measurement of the strain. It can also be calculated directly from

the mode shapes, but provides less accurate results.

Salawu and William [43] used a modal shape curvature measure for finding damage

location and extent. They compared this result to a mode shape relative difference method.
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This was done without extensive computation or a theoretical damage model. Simulated

data were used to determine the effectiveness of the method without measurement error.

They demonstrated that the curvature change does not typically give a good indication of

damage using experimental data.

Chance et al. [44] used a simple linear analytical model to produce modal shapes from

both damaged and undamaged structures from which modal curvatures are derived. To

validate the linear model, a nonlinear forced response analysis was carried out using a

bilinear stiffness element.They found that numerically calculating curvature from mode

shapes did not produce accurate results. Measured strains were instead used to calculate

the modal curvature and the results improved.

1.2.2.4 Dynamic Flexibility

A flexibility matrix relates static applied force to a resulting displacement [5]. Ap-

proximations of this flexibility matrix are calculated using mass-normalized mode shapes

and frequencies extracted from empirical data. Typically, flexibility matrices are compared

to a baseline flexibility matrix to detect damage, but anomalies can be noticed without a

baseline.

Aktan et al. [45] used modal flexibility obtained by postprocessing the frequencies and

mass normalized modal vectors as structural damage indicators. The reliability of modal

flexibility was verified by comparing bridge deflections derived from modal flexibility to

actual static deflection of the bridge. Analytical models, tuned by experimental data from

the bridges, were used as a basis for condition assessment. Continued work in this area

can be found in research done by Toksoy and Aktan [46] and Pandey and Biswas [47].

1.2.2.5 Empirical Modeling of Acoustic Signals

By processing large amounts of data from both damaged and undamaged structures,

a notion of damage can be empirically modeled using statistical pattern recognition (SPR)

techniques. This model can then be used to detect the presence of damage in new signals.

In contrast to the simple single or double featured damage detection techniques normally

used for acoustic signals, this SPR method can find more complex relationships between

the presence of damage and a combination of multiple features. This often allows even

further insight into the damage state of the structure. The following presents three of these
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techniques and a few of their applications.

1.2.2.5.1 Artificial Neural Networks

Artificial neural networks (ANN) work well for damage detection due to their ability

to model arbitrarily complex functions with features. However, large amounts of labeled

data (i.e., damaged and undamaged) are required for training a network, as well as many

training iterations. A guide for developing neural networks for pattern recognition can be

found in [48].

Instead of using an analytical model, the self organizing properties of neural networks

can use structural measurements to develop an empirical model that represents all of the

material behavior within one unified environment. Ghaboussi et al. [49] developed an

empirical model of the behavior of concrete in a state of plane stress caused by different

types of loading. This was done using a backpropagation neural network.

Kudva et al. [6] used finite-element analysis to create a data set of strain measurements

taken at discrete locations. These data were then used to train a neural network to deduce

damage size and location. The results for localization were very good, but damage size

deduction proved to be more difficult.

1.2.2.5.2 Support Vector Machines

Like ANNs, support vector machines (SVM) also need labeled undamaged and dam-

aged data to be able to distinguish which features indicate damage most clearly, but the

largest margin approach used in this method requires less data than ANN. Kernels can

also be used to train an SVM to model nonlinear relationships. Burgess [50] provided a

tutorial for the development of SVM for pattern recognition.

Worden and Lane [13] used an SVM to do fault classification of ball bearings and dam-

age localization on a framework structure. Worden also compared the SVM approach to

other established means of pattern recognition such as neural networks, nearest neighbor,

and kernel discriminant analysis. Kernel discriminant analysis [51] was able to consis-

tently outperform the SVM approach, though SVM algorithms generally produce very

good results.

Widodo et al. [52] provided a review of methods used for machine condition monitor-
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ing, including neural networks, fuzzy expert systems, condition-based reasoning, random

forests, and so forth. The SVM method resulted in very generalized results.

1.2.2.5.3 Genetic Algorithms

Genetic algorithms converge on a modeling function using a Darwinistic approach

which favors functions that demonstrate best fitness, or best performance.

Rao et al. [14] used a genetic algorithm approach to find the relationship between

residual forces and damage location and extent. The resulting model was validated using

an analytical model, which had excellent agreement.

1.2.3 Ultrasonics

Ultrasonic signals are those that are above 20 kHz in frequency and can be transmitted

through a structure as guided waves. Guided waves are high-frequency signals with

wavelengths that are much smaller than the physical dimensions of the propagating struc-

ture. They often have to be actively excited in the structure, either by a separate sensor or

an impact, and usually give information about the part of the structure between excitation

and measurement. Guided waves attenuate little over large areas of the structure and are

therefore useful for SHM. Guided waves in a plate are known as Lamb waves [53]. Other

types of guided waves are Rayleigh and Love waves, commonly used in seismology [54];

Perekis waves, which are used in shallow water acoustics [55]; and electromagnetic waves

transmitted through wires, used in electronics and power systems [56].

In this section we discuss the propagation of ultrasonic signals through structures as

guided waves, and their use in damage detection. This is most often done using Lamb

waves. First, some of the challenges of using ultrasonic signals are discussed, namely

complexity and variability. Then a review of common damage detection techniques is

addressed, including the use of three different types of data set: sparse array data, full

wavefield data, and partial wavefield data.

1.2.3.1 Complexity

Ultrasonic signals can give far more insight into the properties and dynamic responses

of a structure than lower frequency acoustics often can, but they introduce the challenge of

complexity due to the multimodal nature of higher frequency signals. These modes are a



11

result of interference patterns created by the interaction of the guided waves with the top

and bottom of the guide plate [53]. Each mode travels at a different velocity as a function of

frequency [57] and distorts the waves as they propagate through the plate. Furthermore,

as frequency increases, more modes are present in the signal. The more modes that are

excited, the more information that can be extracted about the material state, though higher

modes are increasingly difficult to detect and measure. At frequencies under 500 kHz,

two modes are almost always present: the zeroth antisymmetric mode and the zeroth

symmetric mode.

To better understand and visualize complex guided waves, the velocity of each mode

can be plotted as function of frequency. These are called the dispersion curves of the wave.

These dispersion curves are often used to tune analytical modeling parameters. The tuned

parameters can then be used to predict signal responses to compare with true signals and

to facilitate damage detection.

There are many methods that have been attempted to extract dispersion curves from

guide waves. The two-dimensional discrete Fourier transform (2D-DFT) has been used

to identify and measure the amplitude of individual Lamb waves [57], and to find the

thickness, bulk velocities, and elastic constants of waves [58]. There are also many time-

frequency analysis methods that use the reassigned spectrogram [59], pseudo-WignerVille

distribution [60], or wavelet transform[61]. Time-domain matching pursuit approaches

[62, 63] and other model-based strategies [64, 65] also exist.

These methods are good at analyzing guided waves but are not accurate enough to

build an effective model for damage detection. Also, most of these methods do not work

outside of ideal circumstances, when the plate is not of infinite length and width and

multipath inference caused by reflections is present.

1.2.3.2 Variability

Another significant challenge to overcome when working with ultrasonic signals is

very similar to that of acoustics signals: Environmental and operational variations can

result in a false positive damage detection. This is because environmental parameters

such as temperature [66] and applied stress [67] have a direct effect on material properties.

Temperature produces the largest effect [68] and has therefore been addressed most often
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in the literature. Temperature can affect the velocity of the waves in a plate and change the

dispersion curve. Operational variations such as slight shifts in the structure during data

acquisition and varying bond integrity of sensors often have a very similar effect.

The following are some of the methods used to account for these variations. Tempera-

ture variation will be used as an example for each method. One of the simplest methods

used to account for temperature variation is to measure the temperature at time of data

acquisition and account for it in the material model [69]. Another method is to take a

baseline of the data at a number of different temperatures. Then when detecting damage,

the baseline that most resembles the new measurement will be used to compare against

[24]. These first two methods work well, but require additional baseline data.

Methods that do not need additional baseline data include local peak coherence [70–

72] and optimal signal stretch (OSS) [73]. Both work by approximating the temperature

change as a stretching of the signal. Local peak coherence is quick, but is sensitive to other

variations that cannot be modeled as a stretching of the data. OSS correlates each signal

with a library of stretched replicas of a single baseline, and is more robust, but not as

efficient.

An additional method uses an analytical wave propagation model together with com-

pressed sensing [74] to recover a version of the input signal that represents a measurement

from the undamaged version of the structure in question, but with all of the same vari-

ations as the input signal. A baseline subtraction then cancels out the effects of those

variations, and differences only indicate damage in the original signal [7].

1.2.3.3 Ultrasonic Methods of Damage Detection

Structural damage detection with ultrasonic signals can be approached in a number of

different ways: using spare sensor arrays, full wavefield data, or partial wavefield data.

1.2.3.3.1 Sparse Array

Sparse sensor arrays use a small number of sensors, often around 3-5, distributed

over the area of interest to detect damage. Damage is detected most successfully when

it is encompassed by the sensors. High localization accuracy and resolution constitute a

successful damage localization. Dense sensor arrays are also used in SHM, but usually
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only on large structures when spatial distribution is difficult to achieve [75]. Both sparse

and dense sensor arrays are often used in radiology [38], seismology [39], and underwater

acoustics [76]. The use of sparse sensor arrays in SHM is a more recent application, and

usually consists of piezoelectric sensors being permanently bonded to the surface of a

structure.

Most methods used for detecting damage with spares sensor arrays again depend on

comparing signals to a baseline recorded from the undamaged structure. A simple method

uses the peak amplitude or energy of the waveform difference as an indicator of damage.

This approach is useful when the signal variations are caused by damage alone.

Because other variables, such as temperature, can cause signals to vary, additional time

and frequency domain features can be used to account for those effects. Gao et al. [37]

introduced a signal difference coefficient that is not a function of amplitude changes. Only

signal shape changes are detected. Michaels et al. [77] used a differential feature-based

classifier for the same effect. Lu and Michaels [78] attempted to normalize for the effect of

wetting and physical contact on a plate by selecting many differential signal features and

using a voting method to determine if the structure is damaged.

Damage can also be located by finding the sensor that is nearest to the damage. Mal et

al. [79] used a damage correlation index that depends on the differences found between the

dynamic responses of the two signals. This is done using the frequency response function.

Zhao et al. [80] expanded on this method with RAPID (reconstruction algorithm for

probabilistic inspection of defects) by spatially distributing and summing signal difference

coefficients in elliptical patterns for all transducer pairs.

Another method for damage visualization, called delay-and-sum, delays received sig-

nals and sums them according to appropriate spatial rules for each point on the image.

This is often used for phased array imaging techniques. Wang [81] developed a digital

imaging method based on this delay-and-sum algorithm. Michaels and Michaels [82]

applied this imaging method using both raw and envelope-detected signal differences to

create localized images at multiple frequencies. A combination of these images increased

damage localization accuracy. Fromme [83] created delay-and-sum images using both

finite element and experimental data to locate damage on a steel plate.
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1.2.3.3.2 Full Wavefield

Full wavefield data consists of evenly spaced point scans done in a grid pattern over

the interrogated surface of a structure using a laser doppler vibrometer (LDV). Instead of

a sparse representation of the wave propagation over the structure, a full image is now

available without the need for any additional processing. Full wavefield images contain

a wealth of information about the structure, much of which can be used for damage

detection, but it takes a long time to actually produce the scan.

One of the first uses of an LDV for structural health monitoring was done by Staszewski

et al. [41]. The results of this work proved that Lamb waves can be measured accurately

by an LDV. This was done by comparing a full wavefield scan to a theoretical model and

similar measurements taken using piezoelectric sensors. The full wavefield scan produced

using the LDV was then used to identify the location and extent of damage on a metal

plate using a simple amplitude comparison method [84].

There have been many works since that have used LDVs to facilitate damage identifi-

cation. Some of these include the use of an LDV to detect fatigue cracks [85], the use of a

3D LDV for fatigue crack detection [86], and the use of a laser as an actuator as well as a

sensor for a complete noncontact approach to damage detection [87].

Other methods for damage detection and localization with a full wavefield include

work done by Ruzzene [88], who used a frequency-wavenumber domain filter to remove

incident waves from the wavefield image, isolate reflections caused by material flaws, and

improve damage visualization. Sohn et al. [89] used an accumulated mass-normalized

kinetic energy to visualize a delamination in a composite plate. He then used a Laplacian

image filter to highlight the damaged area. In this same work, Sohn used local wavenum-

ber analysis to visualize this same damage type.

1.2.3.3.3 Partial Wavefield

The full wavefield is not always necessary when detecting damage. A small percentage

of the wavefield, coupled with a model of the wave propagation through the plate, can

be used to recovery a full wavefield. The key to success with partial wavefields is the

accuracy of the propagation model. With this model, compressed sensing [74] can be used

to recover model parameters from the partial wavefield. Then the model and parameters
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can be combined to recover the entire wavefield.

Harley and Moura [7] demonstrated a method of parameter recovery using an analyt-

ical model and compressed sensing. Alguri and Harley [90] and Esfandabadi et al. [91]

have used these same parameter recovery techniques using an empirical model created

through dictionary learning. These topics will be discussed in more detail as it is the main

topic of this thesis.

1.3 Recent Work
The purpose of this section is to provide a review of more recent literature used in

the development of the current work. First, the theory of compressed sensing and its use

in SHM are discussed. Second, the theory of dictionary learning is discussed along with

its uses for SHM. The limitations of the current methods will then be considered and the

methodology of this thesis proposed.

1.3.1 Compressed Sensing

An LDV can measure enormous amounts of vibration data with relative ease, but the

time it takes to acquire a full wave field measurement is far too long. A detailed scan

of 10,000 points and 100 averaging signals can take around seven hours. If even more

resolution is required, or a larger scan area, scans can take much longer. This extended

acquisition time makes the process practically unusable for regular inspection and damage

detection, especially for SHM, which demands a continuously monitored structure.

A technique called compressed sensing can be used to recover a full wave field scan

using only a fraction of the wavefield. A 7 hour scan can be recovered over 100X faster

using a partial scan of 3 minutes or less. With such fast scanning speeds, it is possible to

achieve semicontinuous damage detection which can be used in the time frame of SHM.

However, it is important to note that compressed sensing does require a model of the wave

propagation to be able to recover the wavefield. The recovery will have the same spatial

structure as the model while having the same frequency and amplitude structures of the

partial scan data.

The abstract framework of compressed sensing was presented by Donoho [74]. A basis

pursuit method was presented for the compression of signal data sets. For compressed
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sensing to be effective, the data set needs to be sparse in a known basis. Sparsity is a

measure of how much redundancy can be found in a data set, and refers to the smallest

number of common bases the data set can be broken into. If few bases are needed to

represent the whole data set, then the data set is sparse. Compressed sensing is applicable

to full wavefield data because much of the data measured in a wavefield is redundant in

certain domains and can be compressed into a smaller set of base signals. In other words, a

small linear combination of bases can be used to recover a much larger set of signals with

high accuracy. Compressed sensing has been used for both dispersion curve recovery

[92] and full wave field recovery [90], using analytical models composed of different basis

domains.

Ianni et al. [93] tested different bases (Fourier, curvelets, and wave atom domains) for

use with compressed sensing to examine which one produces the best recovery of the full

wave field. They were able to recover a field with reasonable accuracy using only 34%

of the original data. The Fourier domain proved to provide the best recovery. Success

in the Fourier domain was ascribed to 1) the fast computation of the Fourier transform,

2) the sparse representation of Lamb wave signals in the Fourier domain, and 3) the high

incoherence of Fourier exponentials with the sampling schemes used (jittered subsampling

and furthest-point sampling).

Harley and Moura [7] demonstrated that compressed sensing can be used to recover

dispersion curves using orthogonal matching pursuit (OMP). This method is called sparse

wavenumber analysis. The result was possible because the wavenumber domain is sparse

in nature. A comparison between basis pursuit denoising and OMP was discussed, along

with the construction of the wave propagation model used in sparse wavenumber analysis

[92].

This same method of sparse wavenumber analysis was used again by Harley [94] to

recover full data sets for standing waves on a string, Lamb waves in an isotropic plate,

and guided waves in a unidirectional, anisotropic plate. He was able to accurately predict

149 765 experimental time-domain measurements from 36 local measurements.
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1.3.2 Dictionary Learning

Compressed sensing allows for quick recovery of full wave field data, but this recovery

is highly dependent on the wave propagation model used for the recovery. The use of an

analytical model does not allow for the full exploitation of the rich information that can be

found in full wavefield scans. However, there is a way to create an empirical model using

the full wavefield scans themselves. This process is called dictionary learning [16].

If constructed correctly, a learned dictionary empirical model will facilitate in the re-

covery of wavefields that include more detailed features than those recovered using ana-

lytical models, such as multipath interactions. This empirical model should also be able

to generalize for some material and environmental variations and can be used for damage

detection with structures of similar geometry.

Dictionary learning is a process through which a basis (or dictionary) is learned given

a signal training set. It has two steps: a sparse coding step (compressed sensing), and

a dictionary update step. The sparse coding step can be accomplished using a sparse

approximation algorithm such as orthogonal matching pursuit (OMP) [95]. The dictionary

update step can be solved using a gradient decent procedure such as method of optimal

directions (MOD) [96].

Tosic and Frossard [16] have provided a detailed overview of dictionary learning the-

ory and methodology. Many examples for dictionary learning application were also pre-

sented and discussed.

An extremely flexible and efficient algorithm for dictionary learning was developed

by Aharon et al.[15] called the K-SVD algorithm. This approach solves for the dictionary

iteratively by updating one basis column (dictionary atom) at a time while finding a sparse

recovery in between each atom’s update. K-SVD can use any dictionary update algorithm

or sparse coding algorithm desired because the two stages are separate in the pursuit

algorithm that K-SVD is derived from.

Alguri and Harley [90] use the K-SVD algorithm to build an empirical wave propaga-

tion model to produce more accurate recoveries than with the analytical model. From just

24 measurements, they show that they can predict and extrapolate guided wave behavior

with accuracies greater than 92%.

Bianco and Gerstoft [97] used the K-SVD algorithm to improve sound speed profile



18

(SSP) resolution. SSPs were modeled using empirical orthogonal functions, resulting in a

very low working resolution. The resolution was improved by generating a dictionary of

shape functions for sparse processing (e.g., compressive sensing) that optimally compress

SSPs.

1.4 Conclusion
In this section, we address the limitations to the current methods of damage detection

using analytical and hybrid modeling techniques, and the scope of the the thesis defined.

A description of the methodology and an outline contents of the remaining chapters are

also provided.

1.4.1 Limitations of Current Methods and Scope of Thesis

Each of the damage detection methods discussed depends heavily on the use of either

baseline data from the undamaged version of the structure or a predictive model used to

recover the baseline data. These predictive models are often created using fundamental

equations and finite element analysis. Acoustic signals can be used to detect damage by

comparing the values of features (such as natural frequency, modal shape and curvature,

and flexibility matrices) to baseline values. Machine learning algorithms such as SVMs,

ANNs, or genetic algorithms can also be used to create a model that can directly predict

the damage state of a structure, but these also require large amounts of baseline data from

the undamaged structure, as well as data from the damaged version of the structure. The

latter is not often available.

The use of ultrasonics for damage detection is very similar. For all three types of data

sets, (sparse arrays, full wavefield, and partial wavefield) each compares measurements

to an acquired baseline, or modeled baseline, of the undamaged form of the structure.

Ultrasonics have the important advantage of being more descriptive than acoustic signals

because of their increased complexity, but this also makes them harder to predict and

analyze. A correct model of the wave propagation is therefore even more important for

the use of ultrasonic signals for damage detection.

The problem with using baseline data is that many different undamaged baseline states

exist for a given structure throughout its life. These varying states are due to many differ-
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ent factors, such as temperature, applied stress, and differing methods of data acquisition,

all of which are not indicative of actual damage. To avoid the need to take multiple

sets of baseline data for each of these healthy states or eliminate the need for baseline

acquisition entirely, predictive models can be used to recover baseline data based on the

current environmental state of the structure. While predictive models work well for mod-

eling simple signals and structures, they can model only a limited amount of information

from ultrasonic wavefields, and cannot accurately model wavefields of more geometrically

complex structures, such as those that exist in real life applications.

This thesis addresses this problem by using an empirical model constructed using true

experimental measurements. This method has been shown to more accurately model

metal plates with more complex geometric shapes and more complex signal propagation

caused by multipath interference. This method has also been shown to accurately recover

wavefields from structures with different material characteristics than that of the structure

from which the model was derived. This empirical model has also been used in a simple

damage detection method to detect simulated damage on metal plates in the presence of

environmental and operational variations.

While wavefield methods of damage detection have previously been limited to lengthy

NDE applications, the use of compressed sensing improves full wavefield sampling speeds

by a factor of over 100. The resulting sample time of 3 minutes puts this method in

the realm of semicontinuous monitoring that can be used for SHM and can be used as

a reliable means of screening for structural damage before more extensive NDE methods

are performed.

As opposed to the work done by Alguri and Harley [90], which used simulated data

to train a dictionary and evaluated the recovery data for accuracy, the current work goes a

step further and trains dictionaries on empirical data and uses the dictionaries for damage

detection. The data used for this work are full wavefield scans of small metal plates,

acquired using an LDV data acquisition system constructed for this purpose.

1.4.2 Methodology and Outline

The following outlines the remaining chapters and briefly describes the methodology

of each.
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1.4.2.1 Chapter 2

Data acquisition of the full wavefield data used for empirical model construction and

damage detection is described using a system built by the author. This system was built

using a 2-axis stepper motor platform, a stationary mounted laser doppler vibrometer,

and National Instruments software/hardware together with third party motor drivers. A

validation of the system, and the specifications for the design, including hardware and

software descriptions, are included in the following chapter.

1.4.2.2 Chapter 3

The empirical model described in this thesis is created using a method that combines

compressed sensing and dictionary learning to converge on an accurate wave propagation

model. The exact algorithm used for this purpose is the K-SVD algorithm, designed by

Aharon [15]. A full wavefield data set in the low ultrasonic frequency range is used as

the input to create the model. This empirical model and an analytical model are each

evaluated for model accuracy using a recovery correlation. The empirical model recovers

the wavefield data at above 98% accuracy, which is a significant improvement over the

20% accuracy achieved using an analytical model.

Both the empirical and analytical models are evaluated for how well they generalize to

different types of material and operational variations. Both of these models, together with

a third support vector machine model, are used to detect simulated damage in the metal

plates. The empirical model predicted damage with 100% accuracy, while the analytical

model and SVM model predicted damage with 57% and 64% accuracies respectively.

1.4.2.3 Chapter 4

Chapter 4 summarizes and discusses the above results, the advantages and disadvan-

tages of the empirical model for use in damage detection are discussed, and future work

is proposed.



CHAPTER 2

EXPERIMENTAL SETUP FOR DATA

ACQUISITION

2.1 Introduction
The following chapter discusses the experimental setup for full wavefield data acqui-

sition (DAQ) of acoustic Lamb waves. The constructed DAQ system uses hardware and

software from National Instruments (NI), a 3D laser doppler vibrometer with single axis

movement for focusing the laser, and a third party X-Y stepper motor stage. The system is

capable of 150 mm by 150 mm scan areas.

The intent of this chapter is to provide the information necessary to allow the reader

to build and operate a similar DAQ system. An appendix to this thesis is also provided

to address the common system problems for troubleshooting, and additional options for

expansion and modification of the system for customized use.

Included in this chapter are three sections. Section 2 contains a review of the hardware

used in the system, and lists relevant specifications of the hardware. Section 3 describes the

system software and the custom user interface used for control of the DAQ system. Section

4 then presents a validation of the system, and an analysis of the system performance,

using the metrics of signal to noise ratio and repeatability.

The LabVIEW code and and select hardware data sheets are available by request.

2.2 Hardware Specifications
The following section reviews the hardware components necessary for the construction

of the DAQ system. Manufacturers and model numbers will be provided, along with

hardware specifications that are relevant to the characterization of the system. A more

detailed list of specifications can be found in the individual data sheets and manuals for

each component. These are typically found online on manufacturer websites and should

be provided with any hardware purchase. Select data sheets are also available by request
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to the author.

The system includes eight main components. An overview of the components and how

they are connected is provided in Table 2.1. A System diagram can be found in Figure 2.1.

This section is divided into three subsections. Section 1 reviews the NI hardware

included in the system. Section 2 lists the hardware used for data acquisition. Section

3 addresses motion control hardware. Each subsection will include a subsystem overview,

Table 2.1. Hardware components included in the data acquisition system, with listed input
and output connections.

System Components and Connections
Component Input Output
PXI 1000 Chassis Outlet power (holds cards)

7344 motion card – to UMI
6052E DAQ card – to BNC
8360 interface card – to laptop

DC power supply Outlet power to UMI
UMI 7774 from power supply/motion card to drivers
Motor drivers from UMI to stage
Stepper motor stage from drivers –
BNC 2120 from DAQ card/LDV to piezo actuator
Piezo actuator from BNC –
Vibrometer (LDV) – to BNC

7344Motion
6052EDAQ
8360Interface

PXI Chassis 1000

Laptop
MXI

DC Power Supply

UMI 7774

BNC 2120 Vibrometer Controller

X-Y Stage

Vibrometer

Z A
xis M

otion Fiber O
ptic

X

Z
Y

Drivers

AO

AI

Piezo

Figure 2.1. System diagram of the data acquisition system, including all of the major
components and connections.
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and subheadings for each component in the subsystem.

2.2.1 National Instruments Hardware

There are four components necessary for the implementation of a National Instruments

(NI) system used for the current work: PXI chassis, application cards that are inserted

into the chassis, interface boards that allow input/output access to the application cards,

and a connection from the PXI chassis to a computer that runs LabVIEW software. The

connection between the chassis and computer usually includes an interfacing application

card for the chassis and some kind of express card for the computer. Laptop express cards

are often inserted into an MXI card slot.

The following is a review of the hardware used in the current system.

2.2.1.1 PXI 1000 Chassis

The PXI 1000 chassis includes a system controller slot and seven peripheral module

slots. One of the peripheral module slots is a star trigger slot that can provide individual

triggers to all other peripherals. Star triggering is not used in the current setup. The system

controller slot is not used either. There is an optional backup battery pack and mounting

capabilities that are also not used. The fan speed is adjustable, but only the default speed

was used. There is also a trigger bus that allows for triggering between modules. The

chassis is powered through a standard AC connection, and provides and output of 150 W

to the peripheral slots.

Inserted in the chassis were three application cards. In place of a built in system

controller, a PXI interface card was used to interface the chassis with an external laptop.

The second card was a PXI 7344 4-axis motion controller card, and the third card was a PXI

6052E legacy DAQ card. These cards will be discussed in more detail below.

A system reference clock of 10 MHz is supplied individually to each module. An exter-

nal clock can be sourced, which would override the system clock. There is an independent

buffer for impedance matching, with a delay of 1 ns, that drives the clock signal to the

peripheral slots.

A picture of the PXI chassis can be found in Figure 2.2. A summary of system specifi-

cations can be found in Table 2.2 and system connections in Table 2.3.
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Figure 2.2. PXI 1000 chassis.

Table 2.2. Specifications for the PXI 1000 chassis.
Specifications

Peripheral Slots 7
System Clock Speed 10 Mhz
System Clock delay 1 ns

Table 2.3. Connections for the PXI 1000 chassis.
Connections

Power Supply Standard 120 V AC
Star Peripheral Slot PXI 8360 (Interface)
Peripheral Slot PXI 7344 (Motion)
Peripheral Slot PXI 6052E (DAQ)

2.2.1.2 Motion Controller Card: PXI 7344

The 7344 is a powerful tool for motion control. It has 4 axes of motion, and is capable

of closed loop servo control, and open and closed loop control of stepper motors. This

is accomplished through Pulse Width Modulation (PWM) signals of ±10V. Closed loop

control can be done using quadrature encoders or analog inputs and triggers. All stepper

axes support full, half, and micro stepping applications.

The 7344 controllers are capable of performing arbitrary and complex motion trajecto-

ries. These motion profiles are controlled with enhanced PID/PIVff servo updates at 62

µs per axis. Each axis has motion input/output (I/O) ports, end-of-travel and home limit

switch inputs, and encoder feedback rates up to 20 MHz. There are also four analog inputs
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which have a multiplexer scans rate of 50 µs, which can be used for±10V signals, feedback

inputs, joystick inputs, monitoring of analog sensors, and 32 bits of nondedicated digital

I/O.

The 7344 uses a real-time 32 bit CPU, and can perform up to 10 simultaneous motion

programs. real-time system integration (RTSI) bus allows for high speed connectivity and

synchronization of image and data acquisition devices.

The 7344 motion card is inserted into a peripheral slot of the PXI 1000, and is connected

to a motion interface board through two 68-pin digital I/O connectors. A summary of

system specifications can be found in Table 2.4.

2.2.1.3 Universal Motion Interface (UMI): UMI 7774

The UMI is an interface board used to connect the 7344 controller to the motion system.

It is simply used to provide access to the I/O capabilities of the controller card. The

board is powered to allow switches and digital I/O to toggle high and low, to power LED

indicators, and to provide power to the connected motor drivers. There is an option for

optically isolated power used in the optical isolation output circuitry for the drive enable

outputs and digital output signals. The specifications for the board are the same as the

7344 controller because the UMI just relays information.

There are power, disable, enable, and limit switch LED indicators to indicate the state

of corresponding ports on the board. The 4 axes each have both a feedback and control

connector. There are also toggle switches that can be used to set the fault, enable, and limit

LEDs active high or low. There is a global stop connector, as well as trigger/break point

and digital I/O connectors.

Table 2.4. Specifications for the PXI 7344 motion card.
Specifications

Number of Control Axes 4
Axis Update Rate 62 µs per axis
Max Quadrature Frequency 20 MHz
CPU Real-time 32 bit
Analog inputs 4
Analog scan rate 50 µs per enabled ADC channel
Digital I/O 32 bits
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For the current system, only the open loop stepper control was used. Encoders were

therefore not wired, and neither were limit switches, though the stepper motor stage had

both of these components. Details are discussed more below in the section on the stepper

motor stage.

The UMI requires a 24 VDC power supply, which will be described later in this section.

A picture of the UMI can be found in Figure 2.3.

2.2.1.4 Data Acquisition (DAQ) Card: PXI 6052E

The 6052E is fairly capable DAQ device. It has a midrange sampling rate and numerous

analog and digit I/O ports and a very high resolution. Digital and analog triggering are

available on this card. However, this card is a legacy model and is no longer currently

produced. The PXI 6251 could be a good replacement that is currently available and has a

higher sampling rate.

For the current system, only one analog output and one analog input were used. This

is all that was necessary to excite the piezoelectric actuator and receive a reading from the

vibrometer.

The 6052E DAQ card is inserted into a peripheral slot in the PXI 1000 chassis, and is

connected to a DAQ I/O board using a 68-pin conductor cable (NI part SH68-68-D1). A

summary of system specifications can be found in Table 2.5.

2.2.1.5 Data Acquisition Interface: BNC 2120

The BNC 2120 is a terminal block for the the chosen DAQ card and simply provides an

easy to use interface for the inputs and outputs of the card. There is no power terminal to

Figure 2.3. Universal motion interface (UMI 7774).
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Table 2.5. Specifications for the PXI 6052E DAQ card.
Specifications

Max Sampling Rate 333 kS/s
Output Rate 333 kS/s
Input Resolution 16 bits
Output Resolution 16 bits
Input Range ±10V
Output Range ±10V
Analog Outputs 2
Analog Inputs 16 SE/8 DI
Digital I/O 8
Counter/Timers 2, 24 bit

the board. There are a few indicator LEDs that indicate the state of some of the terminals,

options for toggling analog channels to either floating or ground ground sources, and

controls for a function generator section. The connectors in the board correspond to the

inputs and outputs of the the chosen DAQ card.

In the current system, the 68 conductor cable (NI part SH68-68-D1) used above connects

this device to the 6052E. A picture of the BNC 2120 can be found in Figure 2.4.

2.2.1.6 PXI Interface Module: PXI 8360

The 8360 refers to the PXI interface module application card that is inserted into the PXI,

and the express card that is inserted into the computer. This express card can either be an

MXI interface, which is inserted into an MXI slot on a laptop, or a card that can be inserted

into a PCI slot on a desktop mother board. These all allow for a connection between the PXI

Figure 2.4. Data acquisitions interface (BNC 2120).
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chassis and a computer with LabVIEW. This connection eliminates the need for a system

controller in the PXI. In the current system a laptop MXI slot was used to interface with

the PXI. These interface modules are capable of 110 MB/s sustained throughput.

2.2.2 Data Acquisition Hardware

There are three main components of data acquisition hardware included in the current

system: the laser doppler vibrometer (LDV), piezoelectric actuators, and a standard vibra-

tion isolation table. The actuator is used to excite the dynamics of the structure, the LDV to

measure the propagating Lamb waves along the surface of the structure, and the isolation

table to damp outside vibrations from interfering.

Piezoelectrics can be used as simple, consistent, and inexpensive actuators that can

transmit acoustic signals such as swept sinusoidal waves. They are useful for the current

application, because a consistent excitation is needed for successful SHM applications.

Variations in the excitation of the structure might lead to an operational variation that

results in a false positive detection of damage.

LDVs can come in many forms, but generally consist of three components: a controller,

which generates the laser, processes the reflected laser, and measures the frequency shift;

a sensor head that focuses the laser and receives the reflected light from the specimen; and

a heavy duty fiber optic cable that tethers the two. Most of the system specifications for

the LDV system, such as the frequency range of operation and sensitivity, are determined

by the controller chassis. Polytec controller modules can be selected for different types

of demodulation, input and output connectors, internal laser units, and include integra-

tor modules and even remote control modules. These are each chosen to match specific

measurement needs and inserted into the controller chassis. The sensor head can then be

attached to the controller, and the controller to analog input on your DAQ device. Sensor

head specifications typically include standoff distance and spot diameter.

The isolation table is good practice, and can be used to ensure that outside frequencies

within a certain bandwidth do not interfere with measurements. The isolation mounts

used with the current system are pneumatic isolation mounts of type XL-B from Newport

Cooperation.
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2.2.2.1 Laser Doppler Vibrometer (LDV)

The current system uses a Polytec 3D laser vibrometer system with a CLV 3000 con-

troller chassis, and a CLV 3D sensor head. Three CLV-M200 input modules with three

CLV-M030.B decoder modules are included. The geometry calculation and output mod-

ule CLV-M000.G1 is used. A monitor output module CLV-M000.M is also used to allow

access to the individual laser beam velocity signals before calculating the X, Y, and Z axis

velocities.

Though this is a 3D vibrometer, the vibrometer was only used in a single-point con-

figuration for Z axis vibration measurements. The Polytec 3D laser vibrometer system

promises high sensitivity even without a reflective surface.

It should also be noted that the LDV was mounted to the vertical test stand, which

is sold optionally with the 3D LDV from Polytec, and this test stand was bolted to the

breadboard table top of the isolation table to keep the setup from moving.

The Z axis signal output on the LDV controller is connected to an analog input on the

BNC 2120 using a BNC cable. A picture of the vibrometer can be found in Figure 2.5, and

the LDV controller in Figure 2.6. A summary of system specifications can be found in Table

2.6.

Figure 2.5. Polytec 3D laser vibrometer.
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Figure 2.6. Polytec laser vibrometer controller.

Table 2.6. Specifications for the Polytec 3D laser vibrometer.
Specifications

Controller
Frequency Range 0.5 Hz to 250 kHz
Sensitivity Range 0.1, 0.5, 2.5 m

s
Scaling factor 5, 25, 125 mm/s

V
Filter 10 Hz high pass
Analog Velocity Output ±10 V

Sensor Head
Laser Type Helium-Neon (HeNe), 633 nm (red)
Laser Output <1 mW per beam
Laser Beam Incline 12◦

Standoff Distance 140 mm
Spot Size 65 µm

2.2.2.2 Piezoelectric Actuators

Piezoelectrics can come in the form of small, round, layered ceramic wafers with pos-

itive and negative leads. These can then be glued to the structure and connected to any

analog voltage to create a vibration. They can also be embedded into a housing, such as

those sold by Vallen Systeme: www.vallen.de/. These can be coupled to the structure

using coupling fluid and removed and reapplied easily.

The sensors used in the current system are permanently attached wafers purchased

from Steminc-Piezo, part number SMD07T02R412WL. The glue used to adhere the sensors

was a combination of medium 5-15 second flexible INSTA-FLEX+TM cyanoacrylate from

Metra Electronics Corporation and an INSTA-SETTM accelerator form Bob Smith Indus-

tries. The INSTA-FLEXTM can be applied to the structure, and the INSTA-SETTM to the
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sensor. When they come in connect, the glue hardens quickly to adhere the sensor to the

structure. The only connection necessary for the piezoelectric sensor is to the DAQ analog

output from the NI BNC 2120. This is done using a BNC to banana clip cable to allow for

quick switching between sensors being used to actuate.

A picture of the piezoelectric actuator can be found in Figure 2.7. A summary of system

specifications can be found in Table 2.7.

2.2.3 Motion Control Hardware

The motion control hardware includes three parts, an X-Y stage, motor drivers for the

stage motors, and a DC power supply to power the drivers. The stage that was chosen for

the current system uses stepper motors for precise and repeatable movement, even without

encoder feedback. There are two drivers, one for each motor, which are controlled by the

NI UMI motion interfacing board. These drivers drive each stepper motor separately for

X-Y movement of the stage. The DC power supply used in the system is also used to power

the the UMI board.

2.2.3.1 Stepper Motor Stage

The stepper motor stage used in the current system is built by Ludl Electronic Products

Ltd. The stage has 2-axes with an optional third rotation axis in the middle, which is not

Figure 2.7. Steminc-Piezo piezoelectric actuator (SMD07T02R412WL).

Table 2.7. Specifications for the Steminc-Piezo piezoelectric actuator (SMD07T02R412WL).
Specifications

Piezo Material SM412
Dimensions 7mm dia. x 0.2mm thickness
Resonant frequency 300 KHz±10 KHz
Electromechanical coupling coefficient Kp ≥55%
Resonant impedance Zm ≤10.0
Static capacitance Cs 3000pF±15%@1kHz
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included on this model. There are forward and backward limit switches on both the X

and Y directions, and rotary encoders on both of the motors. There are also “SmartStage”

memory chips for each axis that are not currently used.

Only the motors are wired in the current system. The limit switches and encoders are

not wired for current use. As is, the stepper motors provide very accurate and repeatable

control. There has been no noticeable skipping of steps (drifting of the motors) on the stage

after numerous 10000 points scans.

The stage was aligned with the LDV by bolting the stage to the breadboard table top

of the isolation table. Both motors on the stage are connected to stepper motor driver

described below, providing 2 phase control of the motors.

A picture of the stage can be found in Figure 2.8. A summary of system specifications

can be found in Table 2.8.

2.2.3.2 Motor Drivers

The motor driver chosen was a TB6600, which has six selectable resolutions ( pulses
revolution )

and 8 selectable currents. It can be powered by a large range of voltages and deliver high

current to the motors or limit the current when necessary. There is also an enable port, high

speed photoelectric isolation of the input signal, casing to protect the circuitry, and built

in heat sink. It also has built in thermal and voltage protection circuits. These qualities

allow the driver to work in a variety of different situations and drive many different types

Figure 2.8. Ludl Electronic Products Ltd. stepper motor stage.
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Table 2.8. Specifications for the Ludl Electronic Products Ltd. stepper motor stage.
Specifications

Stage
Travel Range 8 inches by 8 inches
Lead Screw 4mm pitch
Resolution 0.4 micron
Accuracy ±5 microns/200mm
Repeatability ±1.5 micron

Stepper Motors
Type Permanent Magnet, 4-phase bipolar
Step Count 200 steps/revolution
Current draw 1A per phase, 4A

Encoders
Type Relative Rotary
Counts per Revolution 2500, quadrature to 10000

of motors. For our system, a current of 0.5 amperes was used and a step resolution of 200

pulse/rev.

A picture of a driver can be found in Figure 2.9. A summary of system specifications

can be found in Table 2.9 and system connections in Table 2.10.

2.2.3.3 DC Power Supply

The power supply used was built by Condor D.C. Power Supplies Inc., model HB24-

1.2-A+. The supply can be powered by 100 to 240 VAC at standard frequencies. The output

voltage is 24V, and output current is 1.2 A. The output current proved to be sufficient for

Figure 2.9. Stepper motor driver (TB6600).



34

Table 2.9. Specifications for the motor driver (TB6600).
Specifications

Max voltage 50 V
Current Range 0.5, 1, 1.5, 2, 2.5, 2.8, 3, 3.5 A
Resolution Range 200, 400, 800, 1600, 3200, 6400 pulse/rev

Table 2.10. Connections for the motor driver (TB6600).
Connections

Power 9V-40V DC
To UMI Pulses (PUL)
To UMI Direction (DIR)
To UMI Enable (ENA)
To motor A+, A-, B+, B- coil wires, each driver

the application, but the ideal power supply would be able to supply the total 4 A for each

motor and 1.5 A for the UMI board. This kind of current draw is not likely necessary for

normal use of the system.

2.3 Software Specifications
A review of the software specifications of the DAQ system are discussed in the follow-

ing chapter. Nation Instruments (NI) Laboratory Virtual Instrument Engineering Work-

bench (LabVIEW) was used to interface the NI hardware to the motion stage and laser

doppler vibrometer (LDV).

Section 1 will include a description of the DAQ program and its various components.

The code created for this system can be provided at request to the author. Section 2

describes the graphical user interface used to control the system.

2.3.1 Data Acquisition Program

The following is an outline of the pieces used to build the LabVIEW program for the

system. A bare bones event capture program was created to capture bottom clicks on

the front control panel. These buttons are Initialize, Global Stop, Step, Home, and Get

Data. Initialize disables the limit switches and clears the power status of the motion card

so that it is ready to use. Global Stop terminates the entire program, but it can only

be used between event captures. If a hard stop is required while an event is still being
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processed (this most often happens during the Get Data event), the “Abort Execution”

button provided next to the LabVIEW “Run” button can be used. Use of “Abort Execution”

should be avoided especially during used of the Get Data— function as to not lose track

of the current stage position, but is available if needed.

Step uses the example VI One Axis Move to move the X or Y axis either relative to

the current position (relative movement), or relative to the home position (absolute move-

ment). The Step command can be used to position the stage in the a new home position

and is used in conjunction with Home. All movements in this program are commanded

in millimeters, and converted to stepper step counts within the program. Home will set

the X and Y motion axes to zeros, which is the start position of the X-Y inspection grid

movement.

Get Data is by far the most complex event. It prompts a “Get User Input” dialog box

where the parameter values for the scanning grid and data acquisition are entered, such as

grid size, step size, DAQ frequency, and excitation signal type. These parameters are then

used to create and travel along an X-Y grid, and are also fed into the DAQ sub-VI that is

executed at each step in the grid. The grid motion control and DAQ VI will be described

in more detail below.

The user interface for the data acquisition program can be seen in Figure 2.10 and the

block diagram view of part of the code for the Get Data function can be found in Figure

2.11.

2.3.1.1 Motion Control Virtual Instrument

The example X-Y Grid Inspection (Template) was used as a foundation for the motion

control VI. This can be found by going to Help-Find Examples, then searching for the

name. This example VI takes inputs of grid size, steps size, ramp up/down velocity,

and ramp up/down acceleration, and outputs corresponding PWM signals to the X-Y

motors to move in a grid fashion. The entire example VI was copied and pasted into

the event capture program described above. A conditional box is provided in the example

where a measurement can be taken at each position before moving to the next step. The

DAQ VI described below was inserted here in sequence with a 100ms wait command to

always allow for enough time for the stage to stop moving and the data acquisition to
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Figure 2.10. Graphical user interface for data acquisition system.

Figure 2.11. Box diagram for a portion of the data acquisition code that is launched when
the Get Data button is pressed.
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take place before the next step. This wait command may need to be increased if a longer

data acquisition time is needed. A longer acquisition time would be required if longer

excitation signals or more averaging are used.

2.3.1.2 DAQ Virtual Instrument

The DAQ VI used is a VI that has been used by Professor Joel Harley’s research group

for other applications, and was provided by him. This program allows for options of

waveform type, length of transmitted signal, number of measurements, length of received

signal, sampling rate, transmitter max voltage, receiver max voltage (used to control res-

olution), number of averaging measurements, and measurement file save location. The

default used for the current application is a swept sinusoidal chirp from 1 to 150 kHz with

a signal length of 1000 samples and excited at±10 V. The signal was sampled at 300 kHz for

3000 samples, using a max of±5 V for higher resolution measurements, and 100 averaging

measurements at each location. This VI was also capable of filtering, but filtering was not

use in our application.

2.3.2 User Interface

The user interface button functions have been described somewhat already, but there

are a few more things to mention concerning the user interface (see Figure 2.10). The input

boxes, “Motion Type,” “Axis,” “Velocity,” “Acceleration,” and “Target Position” are all

used to determine what kind of motion will occur when using the Step button. “Motion

Type” allows the user to set an absolute or relative step. “Axis” determines whether

the step will be along the X or Y axis. “Velocity” determines how quickly the stage will

move. “Acceleration” determines how quickly the stage gets up to speed, and back to zero.

“Target Position” is how much the Step command will move the stage along the current

axis, relative to the current position (relative motion type), or the home position (absolute

motion type). Both positive and negative values can be entered for “Target Position” to

move up and down an axis.

A slow ramp up velocity (acceleration) is important to keep the stepper motors from

over/under stepping do to momentum. However, an acceleration that is too slow signif-

icantly increases the scan time, because it must be repeated as many times as there are

points to scan. Default values of velocity = 100 RPM and acceleration = 10 RPS/S are used.
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These values allow for smooth, quick, and repeatable movements that do not cause the

motors to drift or miss step.

There are five indicators on the control panel. The first is an X-Y position history which

shows the grid being used for a grid inspection during a scan. The scan progress is tracked

using a white line drawn from point to point. A transmitted signal waveform and its

Fourier transform are displayed, as well as the received signal and its Fourier transform.

When the Get Data button is pressed, a “Get User Input” window opens. This dialog

box can be seen in Figure 2.12; the “Data” and “Material” boxes will be used to name

two files, one with the data (date material.csv) and the other a description of the data,

containing all of the data input into this window (date material desc.csv). The description

file can be used to later process the data file correctly.

Inputs for the grid inspection are also available. “Grid Dim. X” and “Grid Dim. Y”

determine the number of division in the grid in the X and Y directions, and “Step Size X”

and “Step Size Y” determine the distance between scan points. If both grid dimensions are

set to 99 by 99 divisions and step sizes to 1 mm each, the resulting grid will be 99 by 99

mm, and 10,000 points at 100 points by 100 points.

Parameters for the excitation signal (output), and acquisition of the signal (input) are

also entered here, and the physical channels used for each are selected. Physical param-

eters of the scan can be entered here, such as material dimensions, material thickness,

excitation sensor location, and start scan location on the material. These will each be stored

in the the description file for the scan. There is also an input box for the file location path,

and a save data toggle. Pressing the OK button starts the scan.

2.4 System Validation and Performance
It is important to validate the DAQ system and ensure that it is working correctly before

use. If the system is not exciting the correct signal and measuring the responses that we

would expect, then the system can’t be used for damage detection. It is also important

to understand the limitations of the data acquired through the system. These issues are

addressed in this section. Included in this section is a validation of the DAQ system, and

a performance analysis which considers both the signal-to-noise ratio and repeatability of

the measurements. Future work on the system is also proposed.
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Figure 2.12. “Get User Data” dialog box.
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2.4.1 Validation

The DAQ system is validated by comparing the wave velocities measured by the sys-

tem to theoretical wave velocities for a signal of the same frequency traveling through

the same material. To accomplish this a 100 kHz frequency signal was excited in an

aluminium plate, using a piezoelectric actuator, and measured 60 mm away. The walls of

the plate were sufficiently far away that the zeroth symmetric mode (S0) mode and zeroth

antisymmetric (A0) mode, the dominant modes in a signal of this frequency, could both

travel to the point of measurement before the reflected waveforms could interfere. The

group velocity of the S0 mode and A0 mode excited at 100 kHz in a 1.6 mm aluminium

plate are roughly 5.5 mm
µs and 2 mm

µs respectively [60]. Traveling at those velocities, the S0

mode should begin to be seen at 11 µs, and the A0 at 30 µs.

The waveform measured using the DAQ system is shown in Figure 2.13. It can be seen

that the A0 mode lines up very well with the theoretical arrival time of the mode. The

S0 mode, however, is too faint to be seen at such a low frequency. The alignment of the

A0 mode suggests that the system is in fact exciting the correct signal in the material and

measuring the true waveform.

Another validation can be performed using a full wavefield image acquired using the

system. In Figure 2.14, three wavefield snapshots can be seen, taken at three different

times: 23.33, 30, and 36.66 µs. A wavefield peak was tracked in each of these snapshots
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Wave Velocity

100 kHz Signal

Theoretical S0 mode begins
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Figure 2.13. A 100 kHz waveform sampled at 2 MHz. The zeroth antisymmetric (A0) is
clearly visible, but the zeroth symmetric mode (S0) is too faint to be seen. A0 mode appears
to arrive close to its theoretical arrival time.
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Figure 2.14. Snapshots of a full wavefield scan at 23.33, 30, and 36.66 µs, with a peak
tracked through each one. The peak is moving at 2.03 mm

µs , well within normal ranges for a
chirp of 1 kHz to 150 kHz. The color maps range from -0.3 V (dark) to 0.3 V (light).

and found at 50, 37.5, and 23 mm respectively. The wave traveled 13.5 mm in 6.66 µs with

a velocity of 2.03 mm
µs . This is within a reasonable range because the wavefield is excited by

a swept sinusoid from 1 kHz to 150 kHz, and A0 modes could travel anywhere from < 1
mm
µs to just over 2.5 mm

µs . The complex combination of wave propagation modes makes it

hard to determine exactly how fast the peak should be moving, but 2.03 mm
µs is reasonable.

Also note in Figure 2.14 that the wave propagation is clear and well defined.

The excitation signal (swept sinusoidal signal, or chirp) used in Figure 2.14 is the same

used for all of the scans examined in Chapter 3 of this thesis. Figure 2.15 illustrates what a

swept sinusoid (1-150 kHz) excitation and a corresponding measured signal look like. The

excitation signal shown here changes amplitude towards higher frequencies because the

sampling rate used to excite the signal was barely double the highest frequency present in

the signal. The frequencies are preserved in the signal, but the amplitudes vary somewhat.
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Figure 2.15. Swept sinusoidal signal and the corresponding measured waveforms using
both a piezoelectric sensor and a vibrometer.
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The swept sinusoid is excited at ±10 V and is captured at a lower voltage due to the

sensitivity of the sensor. A piezoelectric sensor often outputs measurements in the range

of ±0.5 V, and a vibrometer ±3 V. The vibrometer is more sensitive to the excited signal,

but it will be shown later that the piezoelectric sensor has a better signal-to-noise ratio

and better repeatability than the vibrometer. However, measuring a full wavefield with

piezoelectric sensors would be very hard, time consuming, and inflexible. A Pearson

correlation between the piezoelectric measurement and the vibrometer signal shows only

a 5% correlation. The captured signals are obviously different and should not be used

interchangeably.

2.4.2 Performance

To quantify the performance of the DAQ system, signal-to-noise ratio (SNR) and re-

peatability were calculated using single point measurements. After single point measure-

ments are considered, the SNRs of full wavefields are calculated. These wavefields were

taken from different metals with varying thicknesses. The repeatability of a full wavefield

scan is also addressed. The SNR and repeatability of a full wavefield is found to be very

similar to that of a single point measurement.

To create the data set used to calculate SNR and repeatability, a single point was chosen

on an aluminium metal plate of 1.6 mm thickness. A piezoelectric sensor was adhered to

the bottom of the plate at that point and the the laser of the vibrometer focused on top.

The excitation was measured five times by each sensor at 10 V, and an additional five

times at 5 V each, totalling 20 measurements. The plate was then removed and remounted

with mounting tape and placement guides. The 10 V measurements were then repeated

(10 measurements), then the plate was reset again. The plate was reset a total of four

times for five different sets of 10 V measurements, totalling 50 measurements plus the ten

5 V measurements. The excitation signal used was a swept sinusoid (1-150 kHz). This

performance data set is further described in Table 2.11.

2.4.2.1 Signal-to-Noise Ratio

A noise signal set was created by taking the measurement from both the piezoelectric

sensor and vibrometer without an excitation, repeated five times (10 measurements). The

SNR was calculated in MATLAB using these noise signals, and signals from the perfor-
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Table 2.11. Signal set used for evaluating the signal-to-noise ratio and repeatability of the
DAQ system measurements. This data set consists of single point signals, all of which
were acquired on a 1.6 mm thick aluminium plate using a swept sinusoidal (1-150 kHz)
excitation.

Performance Data Set
Indices Sensor Voltage

1-5 Piezo 10 V
6-10 Piezo 5 V

11-15 Vibrometer 10 V
16-20 Vibrometer 5 V

...reset plate...
21-25 Piezo 10 V
26-30 Vibrometer 10 V

...reset plate...
31-35 Piezo 10 V
36-40 Vibrometer 10 V

...reset plate...
41-45 Piezo 10 V
46-50 Vibrometer 10 V

...reset plate...
51-55 Piezo 10 V
56-60 Vibrometer 10 V

mance data set described above.

An SNR is calculated for each signal with each of the five corresponding noise signals,

resulting in five SNR values per signal. The average of all of these values for all of the

signals and their standard deviation (STD) are listed in Table 2.12. The SNR is computed

using the ratio of the summed squared magnitude of the signal to that of the noise. The

noise was acquired by taking a measurement without exciting a vibration in the plate.

Table 2.13 lists SNR values for full wavefield scans taken on both aluminium and steel,

with thicknesses of 1.6 and 6.35 mm. This is done by finding five SNR values for each

Table 2.12. Average signal-to-noise ratio (SNR) and standard deviation (STD) for a large
set of signals taken using the DAQ system.

Single point SNR
Sensor Voltage SNR STD
Piezo 10 V 28.96 dB 0.31 dB
Piezo 5 V 23.88 dB 0.31 dB

Vibrometer 10 V 21.36 dB 1.96 dB
Vibrometer 5 V 15.16 dB 1.96 dB
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Table 2.13. Average signal-to-noise ratio (SNR) and standard deviation (STD) for all of the
signals found in a full wavefield data set. A 10 V swept sinusoidal excitation signal (1-150
kHz) was used, and the measurement was taken using a vibrometer.

Full Wavefield SNR
Material Thickness SNR STD

Aluminium 1.6 mm 24.42 dB 2.01 dB
Aluminium 1.6 mm 26.78 dB 2.01 dB
Aluminium 6.35 mm 17.12 dB 2.14 dB

Steel 1.6 mm 23.00 dB 2.17 dB
Steel 6.35 m 3.18 dB 2.06 dB

signal using each of the five noise signals, resulting in 50000 SNR values. The average

of all of these, and their STD, are reported. The SNR values for the 1.6 mm thick plates

are of a similar value to those found for single point signals using the 10 V vibrometer

measurements, which were also measured on a 1.6 mm thick plate.

2.4.2.2 Repeatability

The repeatability of the system is evaluated by taking Pearson correlations between sig-

nals measured both with and without resetting of the plate. The plate is reset by removing

it from the stage and then remounting it using mounting tape and placement guides. The

process of resetting the plate is a significant source of operational variability that is present

in the system, and it is important to note the effect that it has on the repeatability of the

signal measurements.

From the performance data set described above, only the 10 V signals are used here.

Each group of ten signals is separated by a resetting of the plate, five for one sensor and five

for the other. To evaluate the repeatability of the measurements without resetting the plate,

each group of five is correlated with themselves in every possible pair. To evaluate the

repeatability of the measurements with resetting of the plate, every unique combination

of signals from different groups is correlated. The averages and STDs of these two sets of

correlations are found in Table 2.14.

The piezoelectric sensor has an almost perfect repeatability with a 99.58% average

correlation, which is 5% higher than the vibrometer. This is likely because the piezoelectric

sensor is glued to the plate, and has no real chance of moving. The vibrometer also contains

slightly more noise than the piezoelectric, which could add to the difference. When the
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Table 2.14. Average correlation between repeated signals with and without resetting the
plate in between scans, and the corresponding standard deviation (STD).

Single Signal Repeatability
Sensor Reset? Correlation STD
Piezo No 99.58% 0.41%
Piezo Yes 95.01% 2.52%

Vibrometer No 96.02% 0.30%
Vibrometer Yes 89.24% 4.53%

plate is reset, the average correlation for each sensor drops 5-7%, a somewhat uniform

amount. This is likely caused by the change in how the plate is adhered to the stage. The

vibrometer likely drops a few percent extra, 7% instead of 5%, because resetting the plate

causes the laser to be focused on a slightly different location than it was before, while the

piezoelectric sensor never moves.

The repeatability of a full wavefield scan was evaluated by correlating every signal in

the first wavefield with every signal in a second wavefield in a single correlation. Both

wavefield were taken using the exact same 1.6 mm aluminium plate, piezoelectric ex-

citation sensor, and swept sinusoid signal (1-150 kHz). The plate was reset in between

scans. These two wavefields had a correlation of 86.38%, 3% lower than the single signal

correlation of the same type, but still within one standard deviation.

2.5 Conclusion
This chapter has described in detail the hardware and software components used in

the construction of a data acquisition system for full Lamb wavefield data. To accomplish

this, we have used a National Instruments motion control system and DAQ card, a laser

doppler vibrometer, and a 2-axis stepper motor stage. The system was validated using

wave velocity measurements, and the performance was measured using signal-to-noise

and scan repeatability metrics.

In Chapter 3 of this thesis, the wavefields that have been acquired using this system are

used to explore the dictionary damaged detection technique introduced in Chapter 1.



CHAPTER 3

DAMAGE DETECTION USING DICTIONARY

LEARNING

3.1 Introduction
Sparse wavenumber analysis (SWA) has demonstrated the use of an analytical dictio-

nary for the recovery of Lamb wave dispersion curves [7]. This method successfully sepa-

rates different modes of vibration and measures their amplitude and velocity. This result is

achieved using sparse coding [74], which is facilitated by the sparse nature of Lamb waves

in the frequency-wavenumber domain. SWA assumes that the propagation medium has

infinite boundaries and that only incident waves are present. This is a powerful result that

can be used to detect damage on simple structures, but Lamb waves on real structures have

added complexity due to multipath interference. This complexity makes it very difficult

to use SWA to detect damage on real world structures.

In this chapter, we model this multipath interference by learning a dictionary using

empirical Lamb wave data. This learned dictionary is constructed using the K-SVD al-

gorithm that will be addressed later in this chapter [15]. The result of sparse coding

using this learned dictionary is a sparse representation of the signal set that is similar

to the dispersion curves recovered using SWA. However, this sparse representation no

longer represents the velocities and amplitudes of the different modes directly, but a linear

combination of base patterns found in the signal set. Though this new frequency-“pattern”

domain is only loosely connected to the frequency-wavenumber domain, Lamb waves are

expected to be sparse in this new domain as well. This is because the frequency-pattern

domain represents a combination of incident and reflection waves which are both individ-

ually sparse in this framework.

Dictionary learning produces a dictionary that can model the complex relationships

between interfering modes from multiple primary and reflective sources. This dictionary
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can only be used for the geometric structure that it was trained on, but is no longer

constrained by unrealistic assumptions that make damage detection difficult in real world

circumstances. This learned dictionary is capable of modeling complex wavefields with

full wavefield recovery correlations of 98% as opposed to the 20% achieved using an

analytical dictionary. It has also been shown that a learned dictionary trained on one

structure can distinguish between undamaged and damaged states on a structure that

is identical in geometry, but variable in material and thickness. This detection has been

accomplished with 100% accuracy using the learned dictionary, as opposed to 50-60%

using an analytical dictionary. These damage detection results are also compared to a

second empirical model approach that uses a support vector machine, which achieved at

most 83% accuracy when trained on one structure and used to predict damage on another.

Chapter 3 is outlined as follows. Section 2 provides an overview of the K-SVD dic-

tionary learning algorithm and the equations used to construct the analytical dictionary

used for SWA. The support vector machine framework is also reviewed briefly. Section 3

describes the data set used to for dictionary learning and damage detection, then details

the process for detecting damage using dictionaries and support vector machines. Finally,

Section 4 contains the results of damage detection using learned dictionaries, analytical

dictionaries, and support vector machines. Damage is detected on structures other than

those that the models were trained with to evaluate the generalizability of the models.

3.2 Model Construction and Damage Detection
This section discusses the details of constructing a dictionary using dictionary learning,

and a method that uses these dictionaries to detect structural damaged. This section con-

cludes with a description of parameter choices for bot learned dictionaries and analytical

dictionaries, which will be described in the next section.

3.2.1 Dictionary Learning

Dictionary learning is essentially a method of matrix decomposition that enforces sparse

representations of the training signals. Figure 3.1 illustrates a detailed view of this de-

composition. A dictionary consists of columns (called dictionary atoms) of signal bases.

The number of dictionary atoms is a set parameter and is usually much smaller than
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Figure 3.1. Description of the matrices involved in a dictionary decomposition.

the number of signals used to train the dictionary. Limiting the number of atoms in the

dictionary forces it to include only the most general bases that can be found in the highest

number of training signals.

Linear combinations of the atoms can approximately reconstruct the signals in the

training set. The coefficients of the linear combination are encoded in a sparse matrix

during the dictionary learning process. The dictionary D is multiplied by this sparse

matrix X to recover the training set Y. The sparse matrix is said to be sparse because

the number of atoms that can be used to reconstruct a signal, and therefore the number of

nonzero entries in each column of the matrix, are limited to a number much smaller than

the number of atoms in the dictionary. This sparsity is also a set parameter.

Dictionary learning requires two inputs: an initial dictionary and a training signal set

represented in a sparse domain. The sparsity of a signal set is a measure of how much

redundancy can be found in the set and refers to the smallest number of common bases

the set can be broken into. If few bases are needed to recover the data set with high

accuracy, then the set is sparse in that particular domain. To train our dictionary, we

input a random dictionary of complex numbers and wavefield snapshots in time that have

been transformed into the Fourier domain which serve as our training signals. Dictionary

learning is effective with these snapshots because spatial wavefield data has been shown

to be sparse in the Fourier domain [7].

The dictionary learning objective function is

min
X,D
‖Y−DX‖2

F s.t. ‖xi‖0 ≤ T ∀i, (3.1)

where Y is the signal training set, D is the dictionary, and X is the sparse coefficient matrix.

To enforce sparsity of the coefficient matrix X, each column is limited to T nonzero entries.

The optimization is approached iteratively and is done in two steps: a sparse coding step
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and a dictionary update step. The sparse coding step fixes the dictionary D and updates

the sparse matrix X. The dictionary update step fixes X and updates one column in D.

To train our dictionary, we use the K-SVD algorithm developed by Aharon et al. [15].

This algorithm updates the dictionary one atom at a time between sparse coding steps

instead of all at once. This method provides a superior solution in a fewer number of

iterations. The following describes the sparse coding step and dictionary update step used

in the K-SVD algorithm in further detail.

3.2.1.1 Sparse Coding

During the sparse coding step of K-SVD, D is held constant and the sparse matrix X

is updated. The goal is a minimize ‖Y−DX‖2
F subject to X being sparse. This objective

function can be rewritten as

‖Y−DX‖2
F =

N

∑
i=1
‖yi −Dxi‖2

2 . (3.2)

The overall objective function (with the sparsity constraint) can be written as N separate

problems of the form

min
X
‖yi −Dxi‖2

2 s.t. ‖xi‖0 ≤ T ∀i. (3.3)

where N is the number signals input into the algorithm and the number of columns in X.

This problem can be solved by using any pursuit algorithm. We use orthogonal matching

pursuit (OMP) for reasons of speed and efficiency [95, 98, 99].

3.2.1.2 Dictionary Update

In the dictionary update step, we fix X, and instead of updating the entire dictionary D,

we only update one column at a time. The kth dictionary column will be indicated by dk,

and the corresponding kth row in X by xT
k . The objective function can again be rewritten as

‖Y−DX‖2
F =

∥∥∥∥∥Y−
K

∑
j=1

djxT
j

∥∥∥∥∥
2

F

=

∥∥∥∥∥(Y−∑
j 6=k

djxT
j

)
− dkxT

k

∥∥∥∥∥
2

2

=
∥∥∥Ek − dkxT

k

∥∥∥2

F
.

(3.4)

Ek contains the portions of the objective function that are not changing during this update.

It is also important that only the portions of Ek that are directly related to dk are used for
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the optimization. To satisfy this, we employ a matrix Ωk such that xT
k Ωk = xR

k , where the

row vector xR
k contains only the non-zero values in xT

k . For example, if xT
k = [2, 0, 0, 6, 0],

then xR
k = [2, 6]. Likewise, EkΩk = ER

k , where ER
k is an error matrix that contains only the

signals that are currently using the dk atom. Equation 3.4 is multiplied by Ωk to create the

new objective function: ∥∥∥EkΩk − dkxk
TΩk

∥∥∥2

2
=
∥∥∥ER

k − dkxk
R

∥∥∥2

2
. (3.5)

The minimization can now be accomplished using singular value decomposition (SVD)

[100], which results in ER
k = U∆VT. The updated dictionary atom d̃k is the first column of

U.

The sparse coding step and dictionary update step will continue to iterate until a stop-

ping criterion is reached. We use a set number of iterations for our training. The result is

a dictionary that, if all the parameters have been chosen correctly, models the geometric

signal structures found in the training set and a sparse matrix that can be used to recover

the training set with high accuracy. For recovering other sets of signals with the same

geometric structure as the training set, we apply a single sparse coding step to a small

subset of the new signals and the trained dictionary.

3.2.2 Dictionary Recovery Correlation

After a dictionary is created, it can be used to detect damage by calculating a dictionary

recovery correlation. Figure 3.2 illustrates the process of calculating the recovery correla-

tion. Given a dictionary and a partial signal set, the recovery correlation can be calculated

in three steps: sparse coding of the partial signal set Ỹ given the dictionary D to calculate

the sparse matrix X; multiplication of the sparse matrix X and the full dictionary D to

recover the full signal set Ŷ; and finally, correlation between the input signal set Y and

the recovery Ŷ to get the recovery correlation C. Each of these three steps will now be

addressed in more detail.

Only a small spatial subset of the wavefield is actually needed to calculate the recovery

correlation - about 400 of the full 10,000 points. This 400 point scan can be performed in

under 4 minutes. The reason for the choice of 400 samples is discussed in the following

subsection. Since the full dictionary D is trained using a full wavefield Y, only the rows in

the dictionary that correspond to the exact spatial points in the partial sample set are used
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Figure 3.2. The entire dictionary damage detection process from dictionary construction,
to dictionary recovery correlation.

when performing sparse coding. A sparse coding technique called orthogonal matching

pursuit [95] takes the partial dictionary D̃ with and the partial signal set Ỹ and calculates

the sparse matrix X.

The sparse matrix X can then be multiplied by the full dictionary D to recover an

estimate of the full data set Ŷ. The resulting Ŷ is a full wavefield recovered from a partial

sampling. If there is damage present in the measured structure, the recovery Ŷ will not

reconstruct the damage because it was recovered from a dictionary representing a pristine

structure. The partial signal set Ỹ correlated with the corresponding rows in the recov-

ered signal set Ŷ gives the recovery correlation C. A high correlation indicates a healthy,

undamaged structure. A correlation below a certain threshold indicates damage.

3.2.3 Dictionary Hyperparameters

There are a number of hyper-parameters that can be adjusted during both the dic-

tionary learning and analytical dictionary construction process. Each has been given a
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variable name for easier referencing. These hyper-parameters are shown in Table 3.1.

Dictionary learning uses all of these parameters. Constructing an analytical dictionary

uses all of these parameters except the number of iterations i, but the number of atoms

in the dictionary (a) and the number of sparse elements in the sparse matrix (v) are very

different. Both methods share the same number of spatial samples s and time samples t

used in recovery.

For dictionary learning, a and v do not actually effect the results of damage detect

beyond small changes in the margin of classification. Larger dictionaries (larger a) with

more sparse elements (larger v) tend to have slightly larger classification margins, but

the difference is not significant. The number of iterations (i) has little effect as long as

the training root mean square error has begun to converge to 2 decimal places. The time

sample size (t) was chosen to include a vast majority of the reflections in the plate, and

ends when the signal starts to diminish and be less meaningful. By t = 800 the A0 mode

has reflected about 40 times.

For analytical dictionaries, a and v also did not have a very large effect on the results.

The values chosen reflect best practice. The wavenumbers chosen to populate the atoms

(a) in the dictionaries where spaced 0.6 m−1 apart in a range of 1 to 630 m−1. The number

of sparse elements (v) in the matrix where chosen according to the literature [7], and to be

small to encourage sparsity. Increasing the number of sparse elements (v) increased the

recovery correlations, but does not increase damage detection accuracy, which seemed to

fluctuate based only on chance.

The hyper-parameter that has the greatest effect in damage classification accuracy is the

Table 3.1. The dictionary construction hyper-parameters are each assignment a variable
for easier referencing, and the values chosen for each are listed. “LD” stands for learned
dictionary, and “AD” for analytical dictionary.

Dictionary Hyper-parameters
Variable LD Value AD Values Description

a 100 1049 Number of atoms in the dictionary
v 1 3 Number of sparse elements in sparse matrix
i 50 NA Number of training iterations
s 400 400 Spatial sample size used in recovery
t 800 800 Time sample size used in recovery correlation
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number of spatial samples s that are used in recovery. If a sample size that is too small is

used, the classification margins decrease for plates with the lower signal to noise ratio, such

as for thicker plates. For all the plate, A smaller sample size s gives worse classification,

and larger s gives better classification. The sample size s = 400 is chosen to ensure correct

classification for a learned dictionary with as small a sample size as possible. A smaller

sample size ensures that measurements can be taken as quickly as possible. Note that for

analytical dictionaries, the number of spatial samples s used only affected the variability

of the recovery correlations, not the classification accuracy.

3.3 Comparative Methods
Two alternative damage detection methods will be used in comparison to the learned

dictionary results. These include the use of an analytical dictionary, which will be used

to detect damage using the same method as the learned dictionary, and a support vector

machine method. The following is a description of both of these methods.

3.3.1 Analytical Dictionary

An analytical dictionary is compared to the learned empirical dictionary. The analytical

dictionary that we use comes from a method for dispersion curve recovery called sparse

wavenumber analysis (SWA) [7]. The full process of recovering wavefield data with the

analytical dictionary can be split into two steps: a dictionary construction step and a sparse

coding step. SWA uses wave propagation theory to derive a dictionary, and then uses a

pursuit algorithm such as basis pursuit [7] or orthogonal matching pursuit [92] to calculate

the dispersion curves, represented by a sparse matrix, found in a measured wavefield.

Note that the construction of the dictionary is completely separate from the second sparse

coding step.

It is also important to note that while the sparse matrix calculated from a well-structured

analytical dictionary defines the dispersion curves of the wavefield, the sparse matrix

of our learned dictionaries does not. The following overviews the steps used for the

construction of the analytical dictionary.

The wave propagation model used in the derivation is

Y(d, ω) = ∑
m

1√
km(ω)d

S(ω)Gm(ω)e−jkm(ω)d, (3.6)
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which represents a Lamb wave signal between any two transducers on a plate, given a par-

ticular frequency ω and a distance d from the source. The received wave Y(d, ω) is a sum

of each of the guided wave modes m = 1, 2, . . . . Each mode has a frequency-dependant

amplitude Gm(ω) and frequency-dependant dispersion relation km(ω) such that the mode

velocity varies as a function of frequency. The signal S(ω) is the original source excitation.

A set of M different distance measurements at one frequency ωn is represented as an

M× 1 vector

yn = Φ(d)Dkxn = [Y(d1, ωn), . . . , Y(dM, ωn)]
T. (3.7)

The vector xn is an K × 1 matrix that represents the amplitudes of K discretized wave

numbers k1, k2, . . . , kK for a single frequency ωn. d = [d1, . . . , dM] describes the travel

distances corresponding to yn. The relationship between the sparse vector xn and the signal

yn is the analytical dictionary that we are interested in. The analytical dictionary D =

Φ(d)Dk, where

Dk = diag[k−
1
2

1 , k−
1
2

2 , . . . , k−
1
2

N ], (3.8)

Φ(d) = [d−
1
2

i e−jk jdi ]ij. (3.9)

3.3.2 Support Vector Machine (SVM)

The support vector machine (SVM) is a common machine learning technique used for

classification. We will use it for binary classification between undamaged and damaged

structures, and compare it with our dictionary learning results. The following is brief

description of the SVM model used in this chapter. A more detailed description of the

SVM algorithm can be found in [50].

For SVM, we define x to be a high dimension vector of features acquired from the

structure. The boolean valued y represents the true damaged state, where y = 1 denotes

damaged and y = 0 denotes undamaged. We assume y = f (x), where f is an unknown

function that maps a feature vector to the damage state. The goal of an SVM is to learn

a model function such that prediction ŷ = f̂ (x), where f̂ is a learned approximation of

f represented by a linear weighted vector w. This vector w can be described as a high-

dimensional plane that will separate the feature vector points x that are labeled damaged

from those that are labeled undamaged.
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During the training phase, a set of feature vectors xi, where 1 ≤ i ≤ M, are input into

the algorithm. Each xi is coupled with a true label yi. The weighted vector w is randomly

initialized with the same number of elements as a feature vector xi. A prediction is made

by computing wT
i xi where ŷi = 1 if wT

i xi ≥ 0 and ŷi = 0 if wT
i xi ≤ 0. The method by

which the vector w will update is based on whether or not that prediction ŷi is correct. The

update step of the SVM is the heart of the SVM algorithm, and will be explored in more

detail.

3.3.2.1 Update Rule

The objective function for a soft SVM

Jt = min
w

1
2

wTw + C ∑ max(0, 1− yiwTxi), (3.10)

where the term C ∑ max(0, 1− yiwTxi) is the loss function, in this case a hinge loss, and
1
2 wTw is the regularizer. The minimization of the loss function biases the equation to-

wards making correct predictions. The minimization of the regularizer biases the solution

towards smaller classifiers, which has the effect of producing the largest margin separator

between the two classifications. C is a generalization parameter that can be adjust to ensure

that the learned vector w (model) generalizes to feature vectors not seen during training.

Because the hinge loss function C ∑ max(0, 1− yiwTxi) is not continuous, and therefore

not differentiable, Equation 3.10 is solved using a stochastic subgradient descent. The

stochastic update of the vector w is wi+1 = wi − r∇Jt, where r is a learning rate, and

∇Jt =

{
if ŷi = yi w
if ŷi 6= ŷi w− Cyixi.

(3.11)

Then the updated wi+1, which is calculated after every training example xi, is

wi+1 = (1− r)wi +

{
if ŷi = yi 0
if ŷi 6= ŷi rCyixi.

(3.12)

After training, the vector w is used to predict the damage state ŷ of similar structures given

a feature vector x from that structure.

To choose the hyper-parameters of learning rate r, generalization parameter C, and the

number of times to iterate through the example set, a cross-validation was performed. This

cross validation was performed by splitting the training set into five parts and validating

for highest prediction accuracy.
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3.3.2.2 Feature Extraction

The feature vectors xi mentioned above are created using single point signals from the

Lamb wavefields described in the experimental setup section of this chapter. To create

the feature vector, the time domain signal was transformed into both the Fourier domain

and the Mellin domain [101]. The following eight features were extracted from these two

domains and the values were placed in a 16× 1 feature vector.

Features 1 through 3 are the amplitude of the first three peaks. Features 4 and 5 are

the mean and variance of the of peak amplitudes greater than 20% of the maximum peak

amplitude. Feature 6 is the variance of the of peak amplitudes greater than 60% of the

maximum peak amplitude. Feature 7 is kurtosis, which is a measure of the tailedness of

the probability distribution of a real-valued random variable. Kurtosis is a descriptor of

the shape of a probability distribution, and is calculated using

K[X] =
µ4

σ4 =
E[(X− µ)4]

(E[(X− µ)2])2 . (3.13)

Feature 8 is the curve length, calculated using

L =
N

∑
i=2
|x(i)− x(i− 1)|. (3.14)

These features were selected to correspond with features used in the literature for damaged

detection using ultrasonic guided waves, namely [101].

3.3.2.3 SVM Damage Detection

An SVM model is a high dimensional vector w whose dot product with an input signal

will predict whether the signal came from an undamaged or damaged plate. This model

vector must first be trained using labeled data (undamaged or damaged labels). Each

spatial signal yi, where 1 ≤ i ≤ M, from the wavefields is used for training. These training

vectors are denoted as xi in the SVM notation above. To train, the model vector predicts the

damage state of the input signal using a dot product, and updates based on the outcome

of the prediction. After a certain number of iterations, the model accuracy stops increasing

and the SVM training terminates. More details of the training process can be found in the

the SVM subsection above.

The benefit of using an SVM to detect damage is that only one signal from the wavefield

is required to detect damage, instead of 400. However, the damaged data required to train



57

the model is not often available, and the accuracy of this damage detection technique,

using Lamb waves, is very low. This is demonstrated later in this chapter.

3.4 Experimental Setup
The data acquisition system described in Chapter 2 was used to acquire wavefield data.

This full wavefield data was acquired from four metal plates: a 1.6 mm aluminium plate, a

second identical 1.6 mm aluminium plate, a 6.35 mm aluminium plate, and a 1.6 mm steel

plate. These plates are named “A,” “B,” “C,” and “D,” respectively, for easier referencing

later in the chapter. An undamaged and damaged scan were done for each of these four

plates, resulting in eight wavefields. Each plate was reset in between undamaged and

damaged scans for each. The damaged state of each plate was simulated using a scatterer.

Our scatterer was a small steel washer attached to the bottom of the plate using coupling

fluid, which had a wave scattering effect on the structure. The outer diameter of the washer

was 10 mm, the inner diameter 4 mm, and the thickness 1 mm. The total weight of the

washer was about 2 grams. Each wavefield scan is 100 points by 100 points, or 10,000

spatial points total. These scans each cover a 99 mm by 99 mm area in the center of 108

mm by 108 mm metal plates. An excitation sensor is adhered to the bottom of each plate,

offset from the center by about 20 mm, and excited using a ±10 V swept sinusoid of 1kHz

to 150 kHz. The size of each wavefield matrix is 10,000 points in space by 3001 points in

time. The signals were sampled at 300kHz. A detailed description of the raw data is found

in Table 3.2.

Table 3.2. Raw data used for damage detection and dictionary learning. Four plates of
different materials and thickness where scanned twice, producing an undamaged and
damaged scan for each plate. The four plates are named “A,” “B,” “C,” and “D”.

Raw Data: Wavefields
Material Index Plate Thickness Damage?

Aluminium 1 A 1.6 mm No
Aluminium 2 A 1.6 mm Yes
Aluminium 3 B 1.6 mm No
Aluminium 4 B 1.6 mm Yes
Aluminium 5 C 6.35 mm No
Aluminium 6 C 6.35 mm Yes

Steel 7 D 1.6 mm No
Steel 8 D 1.6 mm Yes
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3.5 Damage Detection Results
The following section details the damage detection results using the data set and meth-

ods described in Section 3. Results for the learned dictionaries are presented first, the

analytical dictionary second, and the support vector machines last.

3.5.1 Learned Dictionary

Figure 3.3 contains the damage detection results for learned dictionaries. Each row of

the figure contains results using a dictionary trained by the undamaged scan of one of the

four plates and tested on the other three. Each dot in the plots represents a different ran-

dom sampling of 400 spatial points taken from either the undamaged or damage version

of the plate. We used 26 such samplings of 400 for each damage classification. Of the 26

samplings, 13 are from the undamaged plate and 13 are from the damaged plate.

The results show that undamaged and damaged samplings are separable with 100%

accuracy for every plate with any of the four dictionaries. Note that 100% accuracy seems

to be achievable for any dictionary trained using any number of atoms higher than 50 and

with any number of sparse elements. Dictionary sizes of 50 to 300 atoms were attempted

with 1 to 15 sparse elements, each resulting in 100% accuracy. The critical parameter in

this result is the use of 400 samples per plate sampling. At 300 samples, the undamaged

and damaged samplings for plate C begin to blend together.

Samplings from plate C are especially difficult to classify because the magnet used to

simulate damage on the plate was the same weight as the one used on the thinner plates.

Since plate C has 4 times more mass than the other plates, the simulated damage was

relatively small. The larger the sample size, the clearer the results and the more sensitive

the method is to small amounts of damage. Therefore a higher sample size is required to

classify samplings from the thicker plate. If a larger mass was used for the plate C damage

simulation, it is possible that all the plates would classify as 100% using a smaller and

quicker to acquire sample size.

3.5.2 Analytical Dictionary

Figure 3.4 contains damage detection results using the analytical dictionary designed

for SWA [7]. Only one dictionary is used, and it is tested on all four plates. The dictionary
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Figure 3.3. Results for damage detection using a learned dictionary. Each row shows
results for a dictionary trained using one of the plates, then tested on the other three plates.
The x axis is a random number, used for recovery correlation clarity.
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Figure 3.4. Results for damage detection using an analytical dictionary. The dictionary
is tested on all four plates. The x axis is a random number, used for recovery correlation
clarity.

parameters are chosen to reflect the best results. The data and spatial and time sample

sizes used are the same as those used for the learned dictionary damage detection. This is

done to provide a fair comparison between the two.

The results show that most of the recovery correlations sit around 15-20% with little to

no separation between the undamaged and damaged samplings. Classification using the

analytical dictionary averages around 64%. It is important to note that the results are are

very inconsistent between plates and between trials. The range of recovery correlations is

so small that one attempt will classify the points very well, and the next, with 26 different

randomly selected points, will not. To eliminate as much of this uncertainty as possible, the

results shown reflect 100 different samplings instead of 26, but the results still demonstrate

a large accuracy variance.
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3.5.3 Support Vector Machine

The results for damage detection using an SVM can be found in Table 3.3 and Table 3.4.

Table 3.3 contains results when using all of the features, and Table 3.4 contains results for

just the Fourier domain features. All of the spatial signals from one wavefield, both un-

damaged and damaged, are used to train four different predictors. These were each tested

on the remaining three plates for damaged detection accuracy. Overall, SVM achieves an

average classification accuracy of 52%. As expected, the best results are achieved when

training with a 1.6 mm aluminum plate and testing with a 1.6 mm aluminum plate. Using

only the Fourier domain features gave slightly better results at an average of 64%, instead

of the 52% achieved using all of the features.

3.6 Conclusion
In this chapter we have demonstrated the effectiveness of a learned dictionary in mod-

eling wavefields that contain complex multipath interference. The learned dictionary was

able to recover full wavefields from as little 4% of the original wavefield with up to 98%

accuracy, as opposed to the 20% recovery correlations achieved using analytical dictionar-

ies.

Table 3.3. Damage detection accuracy using support vector machines: includes all fea-
tures.

Damage Detection Accuracy: SVM
Trained by→ A B C D

A – 51% 52% 50%
B 50% – 51% 54%
C 52% 53% – 56%
D 53% 44% 54% –

Table 3.4. Damage detection accuracy using support vector machines: includes only
Fourier features.

Damage Detection Accuracy: SVM
Trained by→ A B C D

A – 61% 50% 51%
B 83% – 77% 50%
C 79% 79% – 53%
D 72% 68% 63% –
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Methods for structural damage detection using a learned dictionary model, an analyti-

cal dictionary model, and a support vector machine were presented. Using the dictionary

damage detection method, we demonstrated the ability of a learned dictionary to detect

damage on a structure with both velocity and amplitude variations in the wavefield due

to changes in material and thickness. We achieved a 100% accuracy using learned dictio-

naries, as opposed to 57% and 64% accuracies achieved using an analytical dictionary and

support vector machines.



CHAPTER 4

CONCLUSION

4.1 Summary
In this thesis, we have accomplished three major tasks: We built and validated a system

for the purpose of acquiring full wavefield data of guided Lamb waves; we showed that

dictionary learning can be used to recover wavefield data with multipath interference with

98% accuracy; and finally, we demonstrated that learned dictionaries can generalize to

different materials and thicknesses for use in damage detection. This damage detection

was performed with 100% accuracy for each wavefield, regardless of the source of the

learned dictionary.

These results have significantly improved our ability to detect damage with full wave-

field data containing large amounts of multipath interference. This is an important im-

provement because most real world structures have very complex wave propagation pat-

terns due to reflections from boundaries and fasteners. Damage detection for more and

more complex structures could be facilitated by learned dictionaries to enable more com-

plex structures to benefit from non-destructive evaluation and structural health monitor-

ing.

The ability of learned dictionaries to generalize makes it possible for one dictionary to

detect damage in everything with a similar geometry. This would eliminate the need for

multiple dictionary models, unless the geometry changes, which simplifies the damage

detection process and reduces the amount of baseline data necessary.

4.2 Future Work
Dictionary propagation models have huge potential for future development. The fol-

lowing section lists possible future work to further develop these capabilities and adapt

the data acquisition system to accompany these developments.
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4.2.1 Damage Detection and Dictionary Learning

Currently we are able to detect damage with a single dictionary on variable structures,

addressed separately. It would be better to be able to be able to address all structures with

the same threshold. This would eliminate the need to calibrate a new threshold for each

variation of the geometry for which the dictionary was learned. To accomplish this, the

dictionary would need to generalize better. Two thoughts on how to achieve this include

training a dictionary using input from multiple wavefields, or training a dictionary on only

the first 10 or 20 reflections instead of the full 60 or 70.

In this thesis we have tested for dictionary model generalization for changes in material

and thickness, but other variations could be explored. These variations could include

variations in temperatures, large spatial shifts in the measured data, and variations in

applied stress.

Learned dictionaries can be applied to visualize and locate damage. Sparse wavenum-

ber analysis has been used to recovery undamaged versions of structures, then that recov-

ery is subtracted from the original wavefield to better visualize portions of the wavefield

that indicate damage. Further sparse array processing can be done after this portion of the

signal is isolated, which will locate damage with a high resolution. This same approach

can be used with learned dictionary to produce the same results but for wavefields with

multipath interference.

Learned dictionaries have been shown to model and recover wavefield data with mul-

timodal interference with high accuracy. In this thesis, a small metal plate was used to

show this, but more work can be done the test how well this would work in increasingly

complex wavefields. Learned dictionary models could be explored for materials with

fasteners (rivets, bolts, etc.) or anisotropic material properties and could be applied to

three-dimensional objects.

4.2.2 DAQ System

There are a few simple alterations that could be made to the platform to improve its

performance. The scan area of the DAQ system could be increased by purchasing or

building a larger stage. A new DAQ card could be purchased to increase the sampling rate,

but a new laser doppler vibrometer would be needed to measure at higher frequencies.
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Encoder feedback control and limit switches could easily be attached to ensure that the

system performs consistently.

Another addition to the system that would improve usability and reduce operational

variability would be the construction of a sensor embedded scanning guide. The scanning

guide would be attached to the stage and metal plates would be clamped to the top of the

guide. A guide insert could be used on top of the scanning guide to adapt to different

geometries. The excitation signal would come from the embedded sensor which would be

coupled with the metal plate using coupling fluid, not permanently glued. Such a scanning

guide would allow for quick repeatable scans with reduced operational variability and

reduced set up. In the right circumstances more sensors can be embedded in the scanning

guide and used to measure partial wavefields for damage detection. This could possibly

be done simultaneously to speed up data acquisition of the partial wavefield.

The scanning capabilities of the platform can be expanded to three-dimensional object

wavefields. This would require a motion system that is capable of additional degrees

of freedom to be able to scan objects from different angles. A sturdy design would be

necessary as to limit excess movement in the system while the vibrometer is taking data

and allow precise and repeatable measurements. Setting up the laser to be able to refocus

for different scanning distances would simplify the motion system. Computer vision algo-

rithms might be necessary to be able to model the surfaces of the object to allow the system

to know how far away the surface of the object is, and what direction is perpendicular to

the surface. Motion planning algorithms may also be needed to create a path that will scan

each important point along the surface of the object and feedback control systems may be

needed to ensure that the path is followed.

Improvements on the LabVIEW software used to control the system include error and

exception capturing, stop capabilities in the middle of a movements and/or wavefield

measurements, simpler user interface for saving the data in the correct location, a random

sampling function that would take a quick partial wavefields given sample size over a

given area, and a plot for RMS visualization of a wavefield during scanning.
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DAQ SYSTEM USERS GUIDE

This appendix provides additional information on the construction and operation of

the DAQ system described in Chapter 2 of this thesis. Additional information on select

hardware used to build the system will be discussed in Section A.1, including some sug-

gestions for alternative hardware. Section A.2 gives a brief introduction to LabVIEW pro-

gramming, avenues of pursuing help with LabVIEW, and a list of packages to include for

LabVIEW installation when working with the DAQ system program described in Chapter

2. Section A.3 provides a setup procedure for the system, and Section A.4 gives solutions

to common problems with the system.

A.1 Adapting the System
Some of the choices made while developing this system were largely arbitrary, or based

on what hardware was readily available at the time. A similar performing system could

have been developed using different hardware. The following sections provide a more

details overview of some of the system componenets that could be developed different

depending on what hardware is available to the reader.

Nation Instruments hardware will be addressed first, then laser doppler vibrometer

hardware, and finally piezoelectric actuators.

A.1.1 Nation Instruments Hardware

There are four components necessary for the implementation of a National Instruments

(NI) system used for the current work: PXI chassis, application cards that are inserted

into the chassis, interface boards that allow input/output access to the application cards,

and a connection from the PXI chassis to a computer that runs LabVIEW software. The

connection between the chassis and computer usually includes an interfacing application

card for the chassis and some kind of express card for the computer. Laptop express cards
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are often inserted into an MXI card slot, though these are becoming increasingly hard to

find on laptops, while desktop computer express cards can be inserted into the PCI or

PCI-e slot of a motherboard. All of this will, of course, require the use of correct connector

cables which will either be provided with the system, or described in the data sheet for the

particular component.

Many other types of systems are produced by NI that require slightly different setups.

There exist different chassis other than PXI, with different sized cards slots. There also exist

application cards that can be inserted directly into the PCI or PCI-e slots on the mother-

board of a desktop computer. A separate chassis is not needed in this case. CompactDAQ

devices also exist, which include removable module boxes for different uses. These often

connect through a Universal Serial Bus (USB) but may not provide truly simultaneous data

acquisition. CompactRIO devices have embedded field-programmable gate array (FPGA)

chips that allow for real-time processing, and a rugged build. Many more devices exist

with varying specifications. NI systems are customizable and different systems may have

widely varying applications. Third party systems can also be coupled with NI systems

for more customization. Multiple chassis can also be synchronized to work in tandem for

bigger systems.

Different applications cards have different capabilities, including: truly simultaneous

DAQ measurements; different clock and sampling rates; different sensitivity, resolution,

or precision; different usability and connectibility with existing systems, and much more.

Given the variability of NI systems, the reader is refereed to the NI website and specific

component data sheets for further reading and guidance: www.ni.com/. Sales persons and

technicians are also available for consulting and are best reaches by submitting a service

request through a user account setup on the website, or by calling them directly through

customer service or sales.

A.1.2 Laser Doppler Vibrometer (LDV)

Laser doppler vibrometers (LDV) can come in many forms, but generally consist of

three components: a controller, which generates the laser and processes the reflected light

to measures the frequency shift; a sensor head that focuses the laser and receives the

reflected light from the specimen; and a heavy duty fiber optic cable that tethers the two.
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Most of the system specifications for the LDV system, such as the frequency range of oper-

ation and sensitivity, are determined by the controller chassis. Polytec controller modules

can be selected for different types of demodulation, input and output connectors, internal

laser units, and include integrator modules and even remote control modules. These are

each chosen to match specific measurement needs and inserted into the controller chassis.

The sensor head can then be attached to the controller, and the controller to the analog

input on your DAQ device. Sensor head specifications typically include standoff distance

and spot diameter.

The choice of modules in the controller is often determined by the input laser used.

This being the case, the input laser is typically the main system design decision, and the

decoder and output modules often come recommended to fit the laser choice. Integrator

modules then come recommended for the choice of decoder. A controller module can also

be used, which allows for switching to different ranges of sensitivity, and provides a switch

to turn filtering on and off.

Polytec seems to sell that largest variety of vibrometers: www.polytec.com/. There are

many companies (OMETRON, OMS Corporation, Wavelength Opto-Electronic, Optomet,

etc.) that have developed laser vibrometry solutions for specific applications, but their

selections are specialized and limited.

While all LDVs operate in a similar fashion, utilizing the doppler effect to determine the

velocity of the object that the laser hits, there are a number of different types which offer

different advantages. The following are a few from the Polytec website. A single-point

vibrometer, as one might expect, measures vibration at a single point in the plane incident

to the the laser beam. This means that if the laser were directed at some angle other than 90

degrees from the structure, some combination of the out-of-plane and in-plane vibration

velocities would be measured. A 3D vibrometer uses this effect with three different lasers

to measure the vibrations of a structure in the X, Y, and Z directions; Z being incident to the

laser beam. There also exists scanning vibrometers that use an X-Y mirror to interrogate

large area of a structure quickly. The operation is similar to a single-point or 3D vibrometer,

but the laser can be redirected quickly using the mirrors for quick, successive, multi-point

scans. 3D scanning vibrometers exist, which couple the advantages of 3D measurements

and quick area scans, but are very expensive.
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These different types of vibrometers can be packaged in mobile devices for field mea-

surements or in stationary bench top equipment. The frequency ranges available span

from kilo-Hertz to mega-Hertz, 24 MHz being the highest found on the Polytec website.

Prices also range from a few thousand dollars for a low frequency, single-point vibrometer,

to tens of thousands or more for a high frequency, 3D or scanning vibrometer.

There are many other designations for vibrometers that offer a slightly different per-

formance such as rotational, differential, multibeam, and self mixing [102] vibrometers.

There also exists a continuous scan laser doppler vibrometer which continuously scans a

surface to determine its motion at many point simultaneously [103]. These types are left to

the reader to further explore.

The current system uses a stage for X-Y movement. This was done because scanning

vibrometers are expensive and one was not available for this work. Using a scanning vi-

brometer could possibly decrease operational variation compared to measurements taken

using a stage. However, the stage allows the use of the 3D vibrometer, which has its own

particular benefits of being able to measure vibrations in any direction on the structure.

Also, because of the high number of averaged measurements needed to decrease noise,

the scanning vibrometer would not provide for a much faster scan, just the potential of a

simpler setup.

To improve sensitivity of the LDV measurements, reflective tape such as 3MTM

ScotchliteTM can be applied to the surface of the specimen to increase reflected light to the

LDV.

A.1.3 Piezoelectric Actuators

Each piezoelectric sensor has a frequency spectrum of operation that needs to be

matched with the frequency spectrum for the LDV being used to measure the excited

vibrations. The most common frequency ranges are between 100 and 400 kHz, but can go

as low as 20 kHz, and as high as 600-700 kHz. However, these devices often operate best

at one or two peak frequencies, which can make it troublesome to excite a swept sinusoid.

There also exist broad band sensors, but they are often between 100-900 kHz, which would

require a faster LDV and DAQ device. Some nonhoused piezoelectric wafers can achieve

higher frequencies (1-10 MHz), but are much more flimsy and usually need to be attached
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permanently to the structure for use. These can be found on www.steminc.com/PZT/.

In place of piezoelectric actuators, an impact can be used to excite vibrations in a

structure. This is often done by dropping a hammer or pin on the structure. Impact excita-

tions are consistently and often require large setups. It is also hard to know exactly what

kind of signal was excited in the structure. There is also the possibility of damaging the

system with an impact, and damage caused by a nondestructive evaluation is undesirable.

Piezoelectrics are simply a more versatile, easy to use, and repeatable method of generating

ultrasonic frequencies.

A.2 LabVIEW: Brief Introduction
LabVIEW is a visual programming language developed by NI:

www.ni.com/labview/. It can be used to program applications using graphical program-

ming blocks (or Virtual Instruments (VI)), strung together using input and output wires

that are used to propagate variables between the VIs. LabVIEW is often used for data

acquisition, instrument control, and automation in industrial and research environments,

and is available for use on various operating systems, including: MAC OS, Windows, and

many versions of Unix and Linux.

When developing LabVIEW applications, there are two panels that can be used. The

first is the block diagram panel (see Figure A.1), which can be used to arrange all of the

VI blocks necessary for the application, and the second is a control panel (see Figure

A.2). Each system variable, represented as input and output wires to VIs in the block

diagram window, can be represented in the control panel view using controls or indicators.

Indicators allow the user to see what the program is doing (the variable states) during

execution, and controls allows for user input into the system.

In the block diagram view, many blocks for mathematical operations and transfor-

mations are available for use, as well as more complicated blocks that can be used for

conditional and iterative programming, timing, data type conversion, data structuring,

interfacing with hardware, ect. Many VI blocks are only available if the correct package

is downloaded and installed. Packages can be installed either during the main program

installation or at some later point in time.

LabVIEW add-on packages are categorized into six categories: Design, Deploy, Inter-
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Figure A.1. Box diagram for a portion of the data acquisition code that is launched when
the Get Data button is pressed.

Figure A.2. Graphical user interface for data acquisition system.
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face, Integrate, Analyze, and Validate. Packages included in each section are listed on the

NI website. NI hardware components have recommended LabVIEW packages that can be

used for hardware interfacing, also known as device drivers.

Within LabVIEW, there are abundant example VIs available in the help drop down

menu that come prebuilt with the main installation and with each package. It is generally

a good idea to search these examples before beginning the development of any application

to see if the VI you need already exists, or if there is an example that can be easily modified

to fit your application needs. These examples are also a good source to turn to for learning

how to use a certain VI if the help dialog box isn’t clear enough.

A.2.1 LabVIEW Helps

To get started, NI provides many tutorials on their website for a complete introduction

to LabVIEW and it’s capabilities. Comprehensive introductory books are also for sale.

There also exist many forums managed by NI where more specific questions can be ad-

dressed. If even more specific help is necessary, NI support can be contacted by submitting

a service request through your NI user account. NI support may request a copy of the code

or a screen shot of the error, and may need a few days to explore the problem. Each support

request opened in your user account will be assigned to a specific person that you can then

contact by phone or email for help with that problem.

A.2.2 Installation and Registration

The current system runs the Windows version of LabVIEW 2015 64-bit and 32-bit, and

uses the Motion, DAQmx, and SignalExpress packages. The 32-bit version of LabVIEW

is required for LabVIEW use of NI motion control. The 64-bit environment was used

to develop the DAQ application VI, and then the DAQ VI was inserted into the motion

control VI, which was developed in the 32-bit environment.

Other possibly useful packages for future development of this system could include:

Advanced Signal Processing Toolkit, Sound and Vibration Toolkit with included Sound

and Vibration Assistant, NI Motion Assistant, and LabVIEW SoftMotion Module.
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A.3 System Setup
System setup can be somewhat detailed, and, if not done correctly the system will not

work as intended. It is important to power all of the components in the right sequence to

allow the NI components to boot up before use. Please adhere to the following instructions

for powering on the system, setting up the scanning program, and preparing the specimen

for scanning. A diagram of the system componenets can been found in Figure A.3 for

reference. Ensure all hardware componenets are connected correctly now. See also Figure

A.2 to identify the correct buttons mentioned below.

A.3.1 Power on System

Before the system is powered, all of the components should be plugged into the same

power strip, but the DC power supply that powers the UMI should be unplugged. The

cords from the drivers should also be unplugged from the UMI to start. The order in

which you should power the system is as follows:

1. Turn on the power strip.

2. Turn on the main power switch for the PXI chassis in the back, and then flip the

standby power switch in front.

7344Motion
6052EDAQ
8360Interface

PXI Chassis 1000

Laptop
MXI

DC Power Supply

UMI 7774

BNC 2120 Vibrometer Controller

X-Y Stage

Vibrometer

Z A
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X

Z
Y

Drivers

AO

AI

Piezo

Figure A.3. System diagram of the data acquisitions system, including all of the major
components and connections.
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3. . . . wait 20 seconds . . .

4. Turn on the computer (the computer should only be powered on once the PXI chassis

is turned on and running).

5. Plug in the DC power supply, powering the UMI.

6. Turn the key on the LDV controller to turn on the LDV laser.

7. Remove the cap from the LDV sensor head when ready to start scan.

A.3.2 Prepare Program Parameters

After the computer is booted up, the following steps will need to be taken to start using

the system.

1. Initialize the UMI (see instructions below).

2. Plug the drivers into the UMI board into the correct axes.

3. Locate and open the program called “DAQ Motion Stage.”

4. Once in the program, click initialize in the top left hand corner.

5. Position the stage at the home position using the Step function.

6. Press home to set the start position of the scan.

7. Press get data and enter the parameters of the scan.

The UMI is initialized by going in to the Measurement and Automation Explorer (MAX)

that is installed with LabVIEW. In the far left pane go to My System - Devices and Interfaces

- NI Motion Devices - PXI-7344(1), and then click Initialize in the pane just to the right.

The “DISABLED” LED should now be off. The motor drivers can now be plugged into

UMI 7774 (ensure the drivers are set to the correct current and step size). Next, find the

LabVIEW program used to control the stage, called “DAQ Motion Stage”. This program

should be opened in the 2015 version of 32 bit LabVIEW. A control panel should open

with the buttons described above, and some indicators showing a grid path and four

waveforms. Click Initialize to clear the motion card and disable limit switches.
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After you have prepared the specimen for scanning and attached it to the plate (see

“Prepare Specimen for Scanning” section below), use the Step button to position the LDV

where you would like to start the scan, and press Home to set the current location as the

scan start position. Press Get Data and use the pop up “Get User Input” window to fill in

the parameters desired for the scan. When you press “OK,” the scan will start. Each point

scan will be appended in a new row in a file that is saved to the location indicated in the

“Get User Input” window. A scan of 10,000 points is usually about one half of a gigabyte,

so be sure to have enough room.

A.3.3 Prepare Specimen for Scanning

The following procedure is the current best practice for preparing a plate to be scanned:

1. Glue a piezoelectric sensor the the bottom of the plate in the correct location.

2. Place three or four bits of mounting tape on the bottom of the plate.

3. Align the edges of the plate to the moving portion of the stage using two straight

edges, and press down firmly.

4. Use the center of the plate to focus the laser using the Z axis motion laser mount.

Move the sensor head up or down until the three laser dots converge on a single

point.

5. Align the laser to the correct location and Home the position.

6. Use the Get Data button to enter the scanning parameters and start the scan.

The metal plate being scanned is positioned on the motion stage using two straight

edges to be flush with the moving portion of the stage, and mounted using three or four

12× 12× 3 mm pieces of mounting tape. The sensor, previously glued to the underside of

the plate, is connected to the DAQ interface analog output using banana clips. This cord

needs to be secured to the moving portion of the stage in such a way that it will not put

stress on the sensor, interfere with the motion of the stage, or come loose throughout the

entire grid inspection movement. A piece of 5 by 5 mm mounting tape is placed flush with

the corner that is opposite from the corner where the scan is started. The scan is started
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2 grid divisions outside the material from one corner in both the X and Y directions, and

continued until at least 2 grid divisions outside the material on the far corner. This can

best be done by aiming the laser directly at the corner of the material, then stepping back 2

times the grid division size in both axes and using the Home button to set the start position

of the scan. The resulting scan will shows the entire wavefield of the plate, and also the

orientation because of the tape that will also be clearly visible on the scan. It may also be

helpful to use the Step function to move the entire scanning grid distance to ensure that

there are no collisions or limits reached.

A.4 System Troubleshooting
This section addresses some of the common problems found using the DAQ system,

and their solutions.

A.4.1 Motion Stage Will not Move and/or the UMI Is Disabled

If the motion stage doesn’t move when commanded, this is often because the setup

sequence was not done correctly. Usually the UMI was not initialized through MAX,

the motor drivers were plugged in during power up and initialization, or sometimes

the UMI is disabled after a long idle period for the system. These all can be fixed by

closing all LabVIEW programs, ensuring that the drivers are disconnected from the UMI,

re-initializing the UMI through MAX, plugging the drivers back in, and then opening the

DAQ motion stage program and initializing the whole system with the initialize button. If

this doesn’t work, shut everything down and go through the system setup again with the

correct sequence.

If a correct setup does not fix the problem, ensure that all the wires are connected

correctly and try again.

A.4.2 Received Signal Does not Look Correct

If the received signal from the LDV does not look correct, there could a number of

things causing this. First, make sure that the cap is removed from the optic lens of the LDV,

and that the laser is focused on the surface of the material. This can be done by using the

vertical mount controller to adjust the height of the laser head until the three laser dots of

the LDV converge into one on the surface of the material. Also ensure that the piezoelectric
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sensor is receiving the excitation signal. Usually there is an audible sound if it is, but this

can also be checked by connecting the excitation signal to a separate oscilloscope, and

verifying connections with a multimeter.

If the received signal still does not look correct, then the LDV controller might need

to be plugged into the same power strip as the NI equipment to ensure that there are no

ground loops. If all of the equipment is plugged into the same power strip already, a

different power strip may be required. There is likely some grounding problem created by

the power strip that is interfering with the functionality of the LDV.

If the signal weakens part-way through a scan, the leads connecting the piezoelectric

sensor and the DAQ card interface likely came loose. The wires may need to be more

effectively secured so as to not come loose or interfere with the motion of the stage. This

can best be done by taping the wires to the same surface that the plate is mounted to, and

then doing a trial run of the full motion of the stage to make sure that nothing will snag.

If there are random signals dispersed through the scan that do not look correct, but the

rest do, it could be that the system was not entirely isolated during the scan and someone

entered the room and/or tampered with the scans while in progress. Alternatively, the

surface quality of the material might be affecting the scans. The material surface might

need to be polished, or reflective tape applied to the surface, for better measurements.

A.4.3 Computer Goes to Sleep in the Middle of a Scan

Computer settings can be adjusted to not allow the system to go to sleep. Instructions

for this can be found online for Windows. It might also be important to make sure your

internet connection and MXI and USB ports don’t go to sleep or time out either. This would

be done through the same settings.

A.4.4 New Scan Saved Over Previous Scan

If the name of the scan is not changed in-between scans, the data and description files

from the previous scan may be either written over, or the new data may be appended to

the old data. If the files were appended to, but not written over, then the data might be

saved by opening the files and extracting the correct lines of data. However, sometimes

the data are just lost, so be very careful to change the name of the destination file when

starting a new scan.
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