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ABSTRACT 

 

 A comprehensive study on cold season inversion fog at Salt Lake City, Utah, has 

been performed.  First, the connection between stable valley airmasses and fog events was 

investigated using soundings and reported automated surface observing system (ASOS) 

data from Salt Lake International Airport (KSLC) for eighteen cold seasons (October to 

March, during 1997-2015).  A chi-square test of independence was performed on identified 

stable valley airmasses and fog events to determine whether the two are correlated.  

Conditional probabilities were then computed to investigate the occurrence of fog, given 

the presence of a stable valley airmass.  These probabilities are compared against that of 

random fog generation in mid-winter.  It was concluded that the dependence between stable 

valley airmasses and fog events is statistically significant and that the presence of such 

airmasses makes the formation of fog more likely in mid-winter. 

 The Weather Research and Forecasting (WRF) model was then employed to 

simulate a wintertime inversion fog event in the Salt Lake Valley during IOP 2 of the 

Mountain Terrain Atmospheric Modeling and Observations Program (MATERHORN) 

Fog field campaign during January 2015.  Simulation results were compared to 

observations obtained from the field program.  Sensitivity to available cloud microphysical 

(CM), planetary boundary layer (PBL), radiation, and land surface schemes are examined.  

Results indicate that the numerical simulation of the fog events were not only sensitive to 

CM, PBL, radiation, and land surface schemes, but also to the lead time chosen before the 
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phenomenon is manifested. This study finds through the majority of experiments 

conducted that the synoptic setup in which fog forms can be accurately captured by 

numerical simulation.  Errors found in most experiments occur in the boundary layer, 

specifically modeled temperatures are up to three degrees higher than the observed 

temperatures.  Accurate representation of surface and boundary layer variables are vital in 

correctly predicting fog in a numerical model.  
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CHAPTER 1 

 

INTRODUCTION AND BACKGROUND 

 

1.1 Stable Valley Airmasses 

Stable airmasses are typically found in areas of complex terrain as the mountain 

barriers prevent movement of near-surface air.  The mountains can act to prevent the 

movement of very stable air from the valley in which it is confined.  However, it can also 

act to keep a very cold, stable airmass from moving into a mountainous region.  The 

stability of mountain valley airmasses is important to recognize as the meteorological 

conditions within these columns are conducive to persistent fog and poor air quality 

episodes (Wolyn and McKee 1989).  In this study, we examine two phenomena in 

particular:  deep stable layers and valley cold pools. 

A deep stable layer is a deep layer of at least moderate stability that is deeper than 

typical nocturnal inversions (Wolyn and McKee 1989).  The rigid mathematical definition 

for a deep stable layer in the intermountain United States is:  65% of the lowest 1.5 km of 

the 1200 UTC sounding (Mountain Standard Time or MST) has a lapse rate of 2.5 K/km 

or less.  This was determined using a study of four cities with sounding release sites located 

in a mountain basin:  Grand Junction, Salt Lake City, Winnemucca, and Boise.  The study 

was the earliest to describe and define this event in the intermountain western United 

States.  This definition will be used in Chapter 2 as the criteria for identifying deep stable 
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layers. 

A valley cold pool is a layer of cold, stagnant air that is confined by a topographic 

boundary (Whiteman, et al. 2001).  The airmass contained by the mountain valley can 

effectively be considered independent from its surroundings.  A temperature inversion or 

elevated statically stable layer acts as the boundary between the cold pool and the free 

atmosphere.  This boundary allows the atmospheric variables found in the valley to be 

decoupled from the upper air.  Compared to above-mountain conditions, the valley has 

colder temperature, higher stability, and weaker winds independent of the mean flow aloft 

in both speed and direction. 

Cold pools can be classified in two types:  diurnal and persistent (Lareau et al. 

2013).  Diurnal cold pools form during the evening under clear air conditions.  Emission 

of longwave radiation from the surface at night cools the surface and near-surface air.  This 

cooling is sufficient to create a temperature inversion at the surface, the air within and 

under the inversion being the cold pool.  Upon sunrise, the heating of the boundary layer 

near the ground and lowering of the upper boundary of the inversion creates a convective 

boundary layer and destroys the cold pool (Machalek 1974). 

Persistent cold pool events occur in the winter when these turbulent processes are 

not sufficient to mix out the column.  The creation of persistent cold pool events is complex 

and arise from a multitude of atmospheric processes.  Synoptically, differential temperature 

advection and subsidence modulate cold air pool strength and duration, a result of 

persistent ridging across the intermountain states (Wolyn and McKee 1989).  On the 

mesoscale, radiative, turbulent, and cloud processes affect their evolution (Lareau et al. 

2013). 
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Climatological studies of persistent valley cold pools show that the events most 

commonly occur in the winter months (Wolyn and McKee 1989; Whiteman et al. 1999, 

2001).  The average duration of a persistent valley cold pool event is typical of the synoptic 

scale, one or two days, but they can persist for eight days or more (Wolyn and McKee 

1989).  The strength can vary, however, as noted in Wolyn and McKee (1989) and 

Whiteman (1999).  These fluctuations can cause partial mix outs, or periods between cold 

air pool events (Holmes et al. 2015), of the valleys that contain the cold air pools. 

In addition, Whiteman et al. (1999) compiled a thorough analysis of the large-scale 

environment for these events.  Their paper states that the mechanisms that keep cold air 

pools in place, namely temperature inversions and elevated stable layers, are formed by 

warm air advection in tropospheric midlevels.  This makes the air above the terrain barrier 

much warmer than the air within it.  A setup like this is typically formed in environments 

downstream of synoptic-scale ridging and is usually broken up by a strong trough passage.  

Climatologically, these events are most common in the Northern Hemisphere winter 

months, as inversions and stable layers in warmer seasons are broken up daily by the 

growth of the daytime convective boundary layer (CBL).  Solar radiation is the driving 

force of these breakup events as a fraction of the solar radiation received on the valley floor 

and sidewalls is converted to sensible heat flux and provides energy to the valley 

atmosphere (Whiteman 1982) and causes the CBL to form.  This argument makes light of 

the fact that aspect, shadows, and snow cover are all important mechanisms in the 

effectiveness of CBL growth and cold air pool breakup. 

Cold air pool events have also been closely tied to high concentrations of pollutants.  

An investigation of the connections between meteorological variables in these cold air pool 
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environments and particulate air pollution was conducted in the Salt Lake Valley by 

Whiteman et al. (2014).  The aim of this study was to clarify the critical factors that control 

episodes of high particulate concentrations in the Salt Lake Valley and other similar basins 

and valleys which experience poor wintertime air quality.  Through an in-depth analysis, a 

bulk measure of stability in the valley was created and called the valley heat deficit.  It is 

the heat required to warm an atmospheric column with a 1 m2 base to the potential 

temperature at height h, bringing the underlying atmosphere to a dry adiabatic lapse rate.  

For the Salt Lake Valley, this height is 2200 m MSL, the average height of the surrounding 

topography.  The equation for this variable in the Salt Lake Valley is as follows: 

 
𝐻"" = 𝑐% 𝜌 𝑧 𝜃""))	+ − 𝜃- 𝑑𝑧

""))	+

/"00	+
 

(1.1) 

where 1288 m represents the height above sea level at the Salt Lake International Airport.  

It is found through climatology that a series of 3 or more twice-daily soundings each having 

H22 > 4.04 MJ m-2 is classified as a persistent cold air pool. 

 

1.2 Inversion Fog 

Fog is defined by the American Meteorological Society (AMS) glossary as water 

droplets suspended in the atmosphere in the vicinity of the earth’s surface that affects 

visibility.  It further states that such fog must reduce visibilities to less than one kilometer.  

The processes required to form fog occur on the mesoscale, meaning they have an expanse 

from a few to several hundred kilometers and can form and dissipate in less than a 

pendulum day (AMS Glossary).  Due to large impacts fog can cause on social, economic, 

and aviation activities, accurate prediction is very important. 
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Inversion fog is a wintertime radiation fog that forms when polar air stagnates in a 

valley under the dominance of a persistent high pressure system (Taylor, 1941).  It is 

different from typical valley radiation fog as warm air advection associated with the high 

pressure system creates a subsidence inversion that acts as a lid to keep the fog in a limited 

vertical expanse.  This type of fog is common in the western United States and central 

Europe during the winter (Byers, 1959).  The topography of a region is important in the 

development and persistence of this phenomenon.  A basin with limited drainage creates 

the ideal situation for the formation of inversion fog, as the cold air mass near the surface 

can remain in place. 

A subsidence inversion or elevated statically stable layer prevents vertical mixing 

from occurring.  This forms a lid over the basin which traps the cool air within the valley 

(Holets and Swanson 1981).  The air then becomes cooler and more saturated over time as 

longwave radiation is released from the valley floor and brings the temperature closer to 

the dew point.  Simultaneously, the inversion will lower throughout the prevailing high 

pressure system’s lifetime, concentrating the moisture in the airmass in a limited vertical 

expanse.  Lastly, anthropogenic injections of moisture and particulate matter aid in the 

moistening of the layer and provide sufficient cloud condensation nuclei for fog formation 

(Chachere and Pu 2016).  After the fog has formed, a major synoptic change such as a 

frontal system or pressure trough passage is required for vertical mixing and total 

dissipation of the inversion fog (Holets and Swanson 1981). 
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1.3 Numerical Simulations of Cold Air Pools 

Numerical studies have examined cold air pools for both idealized (Zängl 2005a; 

Lareau 2014) and actual topographic basins (Whiteman et al. 2001; Zängl 2005b, Billings 

et al. 2006, Neemann et al. 2015).  It was found that snow cover makes an incredible 

contribution to the final solution produced by the model (Billings et al. 2006), as snow-

free simulations were incapable of producing a cold pool.  Cloud cover is another 

important mechanism in the formation and maintenance of a cold air pool, as cloud 

longwave radiation can inhibit the low-level cooling necessary for a strong cold air pool 

(Zängl 2005a).  Finally, fog is known to form in cold air pools.  This creates an 

interesting problem if the environment of the cold air pool is near freezing, as numerical 

models struggle to accurately represent ice fog (Gultepe et al. 2014). 

In the Uintah Basin of Utah, Neemann et al. (2015) found that the Weather 

Research and Forecasting model (WRF) was able to simulate a strong capping inversion 

regardless of present snow or cloud cover characteristics.  However, the near surface 

variables were much more influenced by the presence of snow cover and cloud 

microphysics.  The microphysics used to present a realistic vertical profile of temperature 

and low clouds were heavily modified, suggesting that further understanding of 

microphysical processes in these valley cold pools are necessary in order to produce 

accurate simulations. 

 

1.4 Numerical Simulations of Fog 

Challenges of fog forecasting with the aid of numerical models have been 

documented for over forty years (Zdunkowski and Neilsen 1969; Zdunkowski and Barr 
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1972; Brown and Roach 1976; Turton and Brown 1987; Duynkerke 1990; Van der Velde 

et al. 2010; Steeneveld et al. 2014).  Fog forecasting requires an adequate representation 

of the boundary layer.  This involves being able to represent radiative cooling, 

turbulence, stratified layers, soil-vegetation-atmosphere exchanges, and advection 

(Bergot and Guédalia, 1994).  Unlike most meteorological processes, fog is classified as a 

“threshold phenomenon.”  This means that a certain threshold, in this case condensation, 

has to be accurately predicted in order for the phenomenon to be accurately represented.  

Condensation time is dependent on temperature and humidity of the lowest layers of the 

atmosphere, both of which must be predicted with great detail. 

At these low layers, however, turbulence is a factor.  Welch and Wielicki (1986) 

support that turbulence aids in the formation of fog, but other authors such as Roach et al. 

(1976) state that turbulence favors fog dissipation.  There is yet another school of thought 

contending that a better understanding of fog microphysics and its effect on formation is 

needed to develop an accurate fog forecasting model (Pagowski et al. 2004; Tardif 2007; 

Gultepe and Milbrandt 2007).  However, these near-surface atmospheric variables have 

notoriously been incorrectly forecast by numerical weather prediction (Liu et al. 2008; 

Zhang et al. 2013; Massey et al. 2014).  Due to a lack of intensive observations in the 

boundary layer, few studies have examined how these errors in near-surface temperature, 

relative humidity, etc., can affect fog prediction (Pu et al. 2016). 

The majority of studies made with mesoscale models have been concerned with 

advection fog over sea or coastal regions of the world (Ballard et al. 1991, Pagowski et 

al. 2004; Nakanishi and Niino 2006).  Van der Velde et al. (2010) assessed the strengths 

and weaknesses of mesoscale modeling for radiation fog at temperatures near freezing, 
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noting that two state-of-the-art models had problems simulating important aspects of the 

fog problem.  The Weather Research and Forecasting model (WRF) forecasts fog for 

very few permutations of available parameterization schemes and the High-Resolution 

Limited-Area Model (HIRLAM) is unable to model fog layer growth beyond the lowest 

model level.  In both models, fog does not persist. 

Terrain is another aspect of fog forecasting using NWP.  Models used in the 

forecasting of fog over complex terrain usually do not have sufficiently fine grid spacing 

to be able to capture local topographic variations (Price et al. 2011).  This can cause 

significant problems in capturing temperature variations created by valley cold air pools 

and warmer air above terrain height.  The errors caused by this lack of detail are directly 

proportional to the size of the topography being studied.  Bigger valleys, such as those 

studied in Persistent Cold-Air Pool Study (PCAPS; Lareau et al. 2013) are affected less 

than those studied in the Cold-Air Pooling Experiment (COLPEX; Price et al. 2011) and 

Meteor Crater Experiment (METCRAX; Whiteman et al. 2008).  The presence of 

mountain-induced flows can also complicate producing a correct model solution as 

channeled and katabatic winds can influence valley characteristics (Kalverla et al. 2016). 

 

1.5 Scope of This Study 

This study is a two-fold analysis, the first examining a connection between valley 

variables and inversion fog events in Salt Lake City, Utah.  As alluded to above, 

inversion fog mechanisms can occur within a deeper topographic inversion caused by 

valley stable layer processes.  Due to relatively calm winds and strong stratification, 

moisture introduced into a stable valley airmass has limited dispersion (Whiteman et al. 
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2001).  Thus, when confined to a valley or basin, moisture has no channel for vertical or 

lateral displacement during the cold pool event.  Within a stable valley, calm winds, clear 

skies, maximum radiative cooling, and trapping of moisture are observed.  These are also 

ingredients to a conducive fog environment.  However, so far, the relationship between 

stable valley boundary layers and fog has not been investigated.  In light of this fact, 

Chapter 2 describes a study which runs a statistical analysis on the frequencies of stable 

valley features and inversion fog events.  The aim of this analysis is to determine a 

statistically significant relation between the two phenomena.  Additionally, an analysis of 

the probability of occurrence of inversion fog given a valley stable layer is performed. 

The second part of this study focuses on the predictability of an inversion fog 

event using numerical simulations.  With an advanced research version of the Weather 

Research and Forecasting (WRF) model (Skamarock et al. 2008), numerical simulations 

are performed for an inversion fog event over the Salt Lake Valley during the Mountain 

Terrain Atmospheric Modeling and Observations Program (MATERHORN) (Fernando et 

al. 2015).  As part of the MATERHORN program, the MATERHORN-Fog field project 

was conducted from 07 January to 1 February 2015 (Pu et al. 2016).  Specifically, 

intensive observation periods (IOPs) 1 and 2 from MATERHORN-Fog were chosen for 

the numerical studies. 

Chapter 3 describes results from a series of WRF simulations of fog events during 

IOP 2 with sensitivity experiments of various WRF model physical parameterizations.  

The ultimate goal is to explore and understand factors and processes that could contribute 

to an accurate numerical simulation of inversion fog. 
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Chapter 4 includes conclusions from Chapters 2 and 3 and also several concluding 

remarks.



CHAPTER 2 

 

CONNECTIONS BETWEEN COLD AIR POOLS AND INVERSION 

FOG EVENTS IN SALT LAKE CITY1 

 

2.1 Introduction 

Salt Lake City is located in the Salt Lake Valley and surrounded by mountains 

except on the northwestern side where the Great Salt Lake sits (Figure 2.1).  Under the 

dominance of a high pressure system, the prevailing wind direction is from the northwest, 

channeling polar air over the Great Salt Lake and into the Salt Lake Valley.  The Great Salt 

Lake provides a source of moisture (Hill 1988), leading to the trapping of cold and moist 

airmasses in the valley.  During the cold season, cold pools and persistent inversions are 

often observed in Salt Lake City and its surrounding areas (Lareau et al. 2013, Whiteman 

et al. 2014) and are mentioned as one of the mechanisms that may have an effect on fog 

formation during this time of year.  In addition, Hodges and Pu (2015) found that the 

highest frequency of fog observations in Salt Lake City is in December and January.  This 

makes Salt Lake City an ideal site to study the correlations between cold pools and fog 

events. 

Section 2.2 describes the data and methods used in this study.  Climatology of the 

																																																								
1 This chapter has been adapted from an accepted article in Pure and Applied Geophysics (2016).  
doi:10.1007/s00024-016-1316-x 
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identified diurnal and persistent cold pools as well as their connection with fog events are 

presented in Section 2.3.  Section 2.4 presents the statistical test results and Section 2.5 

offers a discussion of these results. 

 

2.2 Data and Methods 

Sounding and automated surface observing system (ASOS) data were gathered for 

eighteen winters from the Salt Lake City International Airport (KSLC).  Consistent with 

Whiteman et al. (1999) and Hodges and Pu (2015), the cold season is considered to run 

from October to March, making the bounds of the dataset between October 1997 – March 

2015.  Before October 1997, the ASOS station was not operational at KSLC and visibility 

measurements were not consistent. The University of Wyoming Weather Lab archived the 

sounding data.  The University of Utah MesoWest database (Horel et al. 2002) provided 

the quality controlled ASOS data.  Throughout the duration of the study (October to March 

over eighteen years), soundings were unavailable for 87 days.2 

Fog events were identified using the ASOS observations such as visibility, relative 

humidity, current weather, etc.  The definition of fog from the AMS glossary states that the 

visibility must drop below 1 km, or 0.62 miles. However, ASOS stations report visibility 

																																																								
2 Dates with unavailable sounding data:  6 October 1997, 29 October 1997, 3 November 1997, 25 
December 1997, 29 December 1997, 23 January 1998, 3 February 1998, 27 February 1998, 11-12 March 
1998, 23 October 1998, 30 October 1998, 10 November 1998, 15 November 1998, 30 December 1998, 5 
January 1999, 22 January 1999, 28 January 1999, 30 January 1999, 3 February 1999, 6 February 1999, 11 
February 1999, 19-20 February 1999, 26 February 1999, 28 February 1999, 1-4 October 1999, 14 October 
1999, 18-24 October 1999, 27 October 1999, 11 November 1999, 12 December 1999, 15 February 2000, 9-
10 March 2000, 4 October 2000, 22 October 2000, 19 November 2000, 6 December 2000, 25 December 
2000, 31 December 2000, 4 March 2001, 8-9 March 2001, 18 March 2001, 24 October 2001, 11 November 
2001, 13-14 November 2001, 18 November 2001, 17 March 2002, 2 October 2003, 12 January 2004, 20 
January 2004, 4 February 2004, 12-13 March 2005, 12-13 February 2006, 20 March 2006, 10 February 
2007, 2 February 2008, 15 March 2008, 25 October 2008, 11 October 2009, 7 December 2009, 6 
November 2011, 7 December 2012, 27 March 2013, 23-24 December 2013, 10 January 2014, 20 March 
2014, 1 February 2015, 19 February 2015, and 6 March 2015. 
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in increments of 0.25 miles; thus, the visibility is reported as 0.5 miles and/or 0.75 miles 

instead of exactly 0.62 miles. Therefore, in this study, we choose to use a visibility 

requirement of less than 0.75 miles in order to meet the fog definition as closely as possible. 

The criteria used to determine fog is:  visibility of 0.75 miles or less and a relative humidity 

of at least 90%.  Fog that was coincident with precipitation is not included in this study 

because precipitation can interfere with the transmissometer used to measure visibility.  A 

transmissometer is a forward scatter visibility sensor which can consistently report 

visibility within 10-20% RMSE of observations.  Precipitation can also raise the relative 

humidity, causing erroneous “fog” to be reported by the ASOS station.  It is important to 

note that the definition of fog in this study may be different from the ASOS reported 

weather observations, as the instrumentation can occasionally report fog at visibilities 

above the set thresholds.  A fog event was counted if fog criteria were met for two or more 

consecutive, continuous hours from midnight to midnight local time.  Namely, fog events 

are defined on a daily basis in this study, therefore, there are not multiple fog events in any 

single day.  

A “near fog” condition was also defined by Hodges and Pu (2015) and was used to 

capture the borderline cases of fog and also to increase the size of total sample.  “Near fog” 

is defined as visibility of 3.0 miles or less and a relative humidity of at least 70%.  This is 

consistent with the definition of “near fog” provided by Bergot et al. (2007), as it describes 

an environment in which fog has the potential to form, but there is some force counteracting 

its development.  As with fog events, “near fog” conditions were considered if they were 

present for two consecutive hours or more on a given day.  It can be argued that haze can 

be a classification of “near fog” criteria, therefore, if the ASOS station reported haze as 
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current weather, it was included in this study. 

 Figure 2.2 presents a sample of a fog event and its subsequent breakup on December 

17, 2013.  Fog is found in the local morning time (about 00:00 to 10:00 AM MST) with 

low visibilities, near constant temperature, and high surface pressure under the dominance 

of a ridge.  As a low pressure trough moved through the area, there was enough turbulence 

to mix out the Salt Lake Valley and raise visibility.  These mix-out events are often seen 

accompanying pressure troughs, regardless if they are associated with frontal systems. 

In order to study the connection between valley stable layers and fog events, we 

examine the correspondence between the frequency of these stable phenomena and 

occurrence of fog events throughout each cold season and also the monthly means over the 

eighteen years. Since the soundings are mostly available at 00 UTC and 12 UTC, the 

statistics on diurnal variation of stable valley boundary layers is not possible, although the 

diurnal characteristics can still be identified.  A chi-square test for independence is 

employed to check whether the connection between cold pools and fog events is significant 

(Wilks 2011).  The first step in completing a chi-square test of independence is determining 

the degrees of freedom (DF) using the following formula: 

 𝐷𝐹 = 	 𝑟 − 1 × 𝑐 − 1  (2.1) 

where r is the number of rows in the contingency table, and c is the number of columns 

(Table 2.1).  Then, the expected frequency of each cell in the contingency table is calculated 

using the following formula: 

 
𝐸7,9 =

𝑛7×𝑛9
𝑛  

(2.2) 

where Er,c is the expected frequency count of a cell at a certain row r and column c, nr is 

the total observed frequency of referred columns, and n is the total sample size.  These 
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values appear as the italicized numbers in Table 2.1.  The test statistic is a chi-square 

random variable defined as: 

 
𝜒" =

𝑂7,9 − 𝐸7,9
"

𝐸7,9
 

(2.3) 

where Or,c is the observed frequency count of a cell in a certain row r and column c.  As is 

standard for chi-square tests of independence, two hypotheses are created:  a null 

hypothesis and an alternative hypothesis.  The null hypothesis states that the two 

phenomena in question are independent variables, and the alternative that they are not 

independent.  By comparing the test statistic to a chi-square distribution, we can calculate 

a p-value and evaluate the significance level to determine if these two variables have an 

association. 

 These contingency tables were made for the two different types of stable valley 

phenomena described in the introduction.  The first uses the Wolyn and McKee (1989) 

definition of a deep stable layer:  65% of the lowest 1.5 km of the 1200 UTC sounding has 

a lapse rate of 2.5 K/km or less.  Persistence was analyzed by looking at consecutive days 

meeting this criterion.  If it was met for one sounding, it is classified as diurnal or less than 

24 h.  If the necessary conditions were met for four or more consecutive soundings, it was 

classified as persistent, or lasting longer than 48 h.  Anything in between was classified as 

a short persistent deep stable layer, lasting between 24-48 h. 

 The second type of contingency table was created using the Whiteman et al. (2014) 

definition of cold pools, using the valley heat deficit definition.  Valley heat deficit (H22, 

Equation 1.1) values were calculated for the entire eighteen-year period.  If three or more 

consecutive soundings exhibited H22 > 4.04 MJ m-2, it was classified as a persistent cold 

air pool (Whiteman et al. 2014).  If a nocturnal sounding (0500 LST) had H22 > 4.04 MJ 
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m-2, but neither sounding before or after reached this threshold, it was considered a strong 

diurnal cold pool.  After neglecting all values higher than 4.04 MJ m-2, the average was 

calculated across the eighteen years, making H22_mean = 2.27 MJ m-2.  If a nocturnal 

sounding had 4.04 MJ m-2 > H22 > 2.27 MJ m-2, but neither sounding before or after reached 

this threshold, it was considered a weak diurnal cold pool.  A criteria was created for a 

weak persistent cold pool, 4.04 MJ m-2 > H22 > 2.27 MJ m-2 for three or more consecutive 

soundings, but there were zero events fitting this definition. 

 

2.3 Climatology:  Frequency of Deep Stable Layer, 

Cold Pool, and Fog Events 

 Figure 2.3 shows the frequency of diurnal and persistent deep stable layers, diurnal 

and persistent cold pools, fog and “near fog” events for each cold season over the eighteen 

years.  Overall, a total of 92 deep stable layer events occurred over the cold seasons during 

1997-2015 period.  Of these, 66 are classified as diurnal and 26 are classified as persistent 

deep stable layers, with durations between 18 h and 120 h (mean duration 38.9 h).  There 

were 1247 identified cold pool dates.  Weak diurnal cold pools accounted for 384 days, 

strong diurnal cold pools accounted for 244 days, and persistent cold pools accounted for 

618 days.  There were 374 dates identified with fog over the 1997-2015 cold seasons.  Of 

these, 151 met the true fog definition set by the AMS, and 223 met the “near fog.”  Recall 

that two continuous hours of fog have to be present in a midnight-to-midnight period in 

order to be counted as a fog date. 

 Persistent deep stable layer events are more common than diurnal events.  Of the 

eighteen winters studied, only three years show a higher frequency of a diurnal deep stable 
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layer.  There is wide interannual variability of these events, as some winters can have up 

to fifteen days identified with a deep stable layer, and some as little as one day per winter.  

The results from the diurnal cold pools are much more consistent.  On average, every winter 

has about forty-eight days in which a diurnal cold pool is identified.  There exists variability 

in the persistent cold pool data, with frequencies as low as eleven and as high as thirty-

three for a given winter.  Finally, fog shows the most variability of all, with some winters 

having as many as fifty days which experience some type of fog, and some having as few 

as ten.  

 The mean number of each type of event is by month is presented as Figure 2.4.  For 

the majority of these events, the highest frequencies are seen in the deep winter months, 

December and January.  Each event resembles a normal distribution around these two 

months, save for diurnal cold pools.  The highest frequency of diurnal cold pools is seen in 

October.  This is likely the result of the deep winter months being biased toward persistent 

cold air pools.  By looking at the fog distribution, it is easy to see why connecting the two 

phenomena can have an important impact on the residents of Salt Lake City.  January has 

the highest frequency of fog, nearly 10 days, one third of the month.  Based on Figure 2.4, 

a qualitative assessment can be made that these three phenomena appear to be well 

correlated, lending to the notion that deep stable layers, cold pools, and fog could have a 

statistical dependence upon one another. 
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2.4 Connection Between Cold Pools and Fog Occurrences 

2.4.1 Chi-square Test of Independence 

To determine if there is a significant association between fog events and cold pools, 

a test of independence is performed on the samples shown in Figure 2.3.   Specifically, a 

chi-square test is applied to determine whether we can achieve the distribution of two 

events using a normal fit, otherwise, they are assumed to have a statistical dependence. In 

order to do the test, a contingency table (Table 2.1) is established to show the 

correspondence between fog events and cold pools.  The chi-square test for independence 

is appropriate for our study because the dataset meets the four criteria for which this test is 

applicable: (1) it is a simple random sample (a set of observations drawn from a 

population), (2) the population (the total set of observations that can be made) is at least 

ten times the size of the sample, (3) the variables under study are categorical, and (4) in a 

contingency table, as shown in Table 2.1, the frequency for each cell is higher than five 

(Wilks 2011).  Note that because two variables can have a statistically significant 

association does not mean that the relationship is causal.  As a test standard the following 

hypotheses are stated: 

H0:  Valley stable airmasses and mountain valley fog events in Salt Lake City are 

independent. 

Ha:  Valley stable airmasses and mountain valley fog events in Salt Lake City are not 

independent. 

The significance level for which the data is tested is 0.05 for all tests. 

 We performed the chi-square test four times.  The first tests the statistical 

association between deep stable layers and true fog events (Case A).  The second iteration 
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tests the statistical association between deep stable layer events and “near fog” events (Case 

B).  The third tests the statistical association between cold air pool events and true fog 

events (Case C).  The fourth and lasts tests the statistical association between cold air pool 

events and “near fog” events (Case D).  The wording for each of the hypotheses were 

changed in accordance to which valley stable airmass was being tested at the time. 

Table 2.1 shows the distribution of events identified in which the criteria for each 

case were met.  It was created by considering every stable valley airmass identified over 

the eighteen-year period and was then divided into whether fog conditions occurred at the 

same time or not.  Using Equation (2.1), the dataset has two degrees of freedom.  For Case 

A, the highest number of coincident fog and deep stable layer events occurred in the diurnal 

and short persistent categories, both having a frequency of 14.  The frequency of long 

persistent deep stable layers associated with fog is not far behind, at 11.  In Case B, the 

highest frequency is seen in the short persistent deep stable layer category, 53, followed by 

diurnal, 26.  Case C shows the highest frequency of fog events occurred with strong 

persistent cold pools, 77, followed by strong diurnal cold pools, 13.  In Case C, the number 

of events associated with weak diurnal cold pools is an order of magnitude less, 3.  Finally, 

Case D echoes the distribution seen in Case C. 

The chi-square test statistic calculated for Case A is 7.50, for Case B is 8.14, for 

Case C is 133.29, and for Case D is 302.76.  A graph of each chi-square distribution for 

the deep stable layer cases is displayed in Figure 2.5, with the results from the cold air pool 

cases in Figure 2.6.  The p-values calculated in this test represent the percentage of data 

that is to the right of the test statistic in a chi-square distribution.  Specifically, it is the area 

to the right of the chi-square test statistic value under a chi-square distribution with the 
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appropriate degrees of freedom compared to the area of the entire chi-square distribution.  

This is the basis for accepting or rejecting our null hypothesis, for only if the p-value is 

below our test threshold can the null hypothesis be rejected, which is our goal.  For Case 

A, the p-value is 0.0275, much lower than the significance level of 0.05. As a result, we 

can reject the null hypothesis.  The p-value is 0.0171 for Case B, which allows a rejection 

of the null hypothesis once again.  For Case C and Case D, the p-values are 0, more than 

sufficient to reject the null hypothesis for the final two tests.  This means that all tests have 

the ability to reject the null hypothesis.  This evidence provides confidence that deep stable 

layer events are fog events are not independent variables, and neither are deep stable layer 

and “near fog” events.  Using the significance level of 0.05, we can say that these results 

are correct with 95% confidence.  There is also evidence showing that cold air pool events 

and fog events are not independent variables, and neither are cold air pool and “near fog” 

events.  Since the p-value for both of these tests is zero, we can say these events are not 

independent with 100% confidence. 

 

2.4.2 Probabilities of Occurrence 

Joint probabilities of fog with a preexisting stable valley airmass are calculated for 

deep stable layers and persistent cold pools using the definitions set by Wolyn and McKee 

(1989) and Whiteman et al. (2014), respectively.  This probability was compared to the 

probability of fog occurring randomly.  For this test, the following hypotheses are used: 

H0:  The probability of a random occurrence of fog is higher than the probability of a fog 

event with a preexisting stable valley airmass. 
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Ha:  The probability of a random occurrence of fog is lower than the probability of a fog 

event with a preexisting stable valley airmass. 

Each hypothesis was tested for the fog and “near fog” cases used in this study. 

The relative probabilities for each case is shown in Figure 2.7.  In order to determine 

if the cold pool is a precursor for predicting a fog event, it should be compared to the 

probability of random occurrence of fog.  This can be computed by dividing the number of 

days that fog or “near fog” criteria was met over the total number of days included in the 

study.  The probability of random occurrence, over all samples in eighteen years is 4.603% 

for fog, and 11.402% for “near fog.”  Comparing these results to the probabilities for fog 

and “near fog” given a deep stable layer, 15.038% and 34.586%, respectively, we see that 

in every case we can reject the null hypothesis.  Therefore, the chance of fog is higher with 

an existing deep stable layer than a random fog occurrence.  When compared to persistent 

cold air pools, there is a 20.052% chance of developing fog and a 46.615% chance of 

developing “near fog.” 

An important caveat to this analysis is that it was performed on a daily basis, 

meaning that the frequencies are skewed.  It should be noted that there are persistent 

episodes in which fog manifested later in the duration of the event.  Therefore, these 

percentages in the event-wise case can be accounting for days during an event in which fog 

had not developed, but will develop as the event persists instead of an event in which fog 

did not develop at all. 

 This above result confirms that:  the stable valley airmass can be an important 

precursor for predicting fog.  For all cases, by having an existing stable valley airmass, the 

chance of fog generation is higher than that of random occurrence.  The relationship to 
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“near fog” can also be useful for forecasters as these conditions can be preferential for a 

true fog event to form.  This can aid in the issuing of fog advisories during the cold season.  

It can also be used to predict IMC (instrument meteorological conditions), in which planes 

must fly without the guidance of visible landmarks.  This is especially useful in the Salt 

Lake Valley, home of Salt Lake International Airport. 

 

2.5 Discussion 

Relative humidity is the most stringent regiment that can be assessed in concert 

with low visibility to assess fog formation.  In order to test the robustness of the conclusion 

from this study, the analysis for Case A was performed twice, once with the above fog 

criteria (90% relative humidity coincident with visibilities less than 1 km) and again with 

fog criteria having a threshold of 80% relative humidity.  The latter test concluded a chi-

square test statistic of 9.2803 and a p-value of 0.0097.  By this loose criterion, the test 

remains valid, proving the null hypothesis can be rejected. 

Visibility criteria used for this study are consistent with those set by the AMS 

glossary, but these terms are developed for use in aviation meteorology, in which different 

types of flight rules are used depending on the visibility (Gultepe et al. 2014).  This can 

add a certain skew to our dataset because an event with sufficiently low visibility and high 

relative humidity does not mean fog is necessarily present.  An inherent uncertainty is 

therefore present in this dataset as fog events may be identified as “near fog” and some 

events that meet sufficient criteria may not accurately reflect fog conditions. 
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2.6 Conclusions 

Data from eighteen winters were compiled and analyzed to make the first study of 

the connection between cold air pools and fog occurrence in a mountain valley.  Salt Lake 

City was chosen as a test site because extensive cold pool and fog studies have been 

performed at this location (Hill 1988; Lareau et al. 2013; Whiteman et al. 2014; Hodges 

and Pu 2015).  The main conclusions from this study can be summarized as: 

1. Cold pools are important in the formation of fog events and “near fog” 

conditions in the Salt Lake Valley, as neither is statistically independent from 

another. 

2. The cold pool definition captures the most important aspects of the vertical 

profile associated with fog conditions. 

3. Fog is more likely to form in environments with a preexisting cold pool. 

4. Given a persistent cold pool, there is over a 45% chance of creation of a fog 

conducive environment. 
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Figure 2.1.  A satellite image of the Salt Lake Valley taken 21 October 2006.  The Great 
Salt Lake is visible in the upper left, the Wasatch range along the right, Oquirrh range along 
the left, and the Traverse are seen separating the Salt Lake Valley in the center from the 
Utah Valley at the very bottom.  The yellow start indicates the center of Salt Lake City.
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Figure 2.2.  Time series of visibility (blue), temperature (orange), and pressure (red) at Salt 
Lake International Airport (KSLC) on December 17, 2013.  Gray line shows the visibility 
criteria for which fog is defined.  Gray shaded areas show where fog criteria persists for 
more than two hours.
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Figure 2.3.  The distribution, identified by winter, of the six types of events detailed.  Top) 
Details persistent deep stable layer events (deep purple, meets Wolyn and McKee (1989) 
criteria for more than 24 h), and diurnal deep stable layer events (light purple, meets Wolyn 
and McKee (1989) for less than 24 h.  Middle) Details persistent cold pool events (deep 
blue, meets Whiteman et al. 2014 criteria for three consecutive soundings), and diurnal 
cold pool events (light blue, meets Whiteman et al. 2014 criteria for one 0500 MST 
sounding and neither adjacent 1700 MST soundings).  Bottom) Details true fog events by 
AMS definition (dark gray), and “near fog” events by Hodges and Pu (2015) definition 
(light gray).
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Figure 2.4.  Distribution of the mean number of cold pools and fog dates by month.  Top) 
Details persistent deep stable layer events (deep purple, meets Wolyn and McKee (1989) 
criteria for more than 24 h), and diurnal deep stable layer events (light purple, meets Wolyn 
and McKee (1989) for less than 24 h.  Middle) Details persistent cold pool events (deep 
blue, meets Whiteman et al. 2014 criteria for three consecutive soundings), and diurnal 
cold pool events (light blue, meets Whiteman et al. 2014 criteria for one 0500 MST 
sounding and neither adjacent 1700 MST soundings).  Bottom) Details true fog events by 
AMS definition (dark gray), and “near fog” events by Hodges and Pu (2015) definition 
(light gray).
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Figure 2.5.  Chi-square distributions for the two deep stable layer cases.  Chi-square test 
statistic values plotted on the x-axis.  Color fill represents the area above the test statistic 
values, indicating the p-value of the statistical test, which is also printed above each curve.
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Figure 2.6.  Chi-square distributions for the two cold air pool cases.  Chi-square test statistic 
values plotted on the x-axis.  Color fill represents the area above the test statistic values, 
indicating the p-value of the statistical test, which is also printed above each curve.
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Figure 2.7.  Probability of fog or  “near fog” generation randomly (gray) against the 
probability of the same events with a preexisting deep stable layer (purple) and a persistent 
cold air pool (blue).



	

 

31 

 
 
 
 
 
 
 
 
Table 2.1.  Contingency tables for Case A (deep stable layer vs. fog), Case B (deep stable 
layer vs. “near fog”), Case C (cold air pool vs. fog), and Case D (cold air pool vs. “near 
fog”).  Bold values indicate frequency of observation and italicized values in parentheses 
indicate expected values given a normal distribution. 



CHAPTER 3 

 

NUMERICAL SIMULATIONS OF AN INVERSION FOG 

EVENT IN THESALT LAKE VALLEY DURING 

MATERHORN-FOG IOPS 1 AND 2 

 

3.1 Introduction 

Due to large impacts fog can cause, accurate prediction of a fog event is very 

important.  It is especially essential for Salt Lake City because it is home to the Salt Lake 

City International Airport as well as a populous of over one million residents.  However, 

thus far, there have not been many studies to evaluate whether numerical weather 

prediction can accurately predict fog events (Zhou et al. 2012).  Very few studies 

emphasize inversion fog events.  As mentioned in the introduction, fog forecasting requires 

adequate representation of the boundary layer and near-surface atmospheric conditions.  

Due to a lack of intensive observations in the boundary layer, few studies have examined 

how these errors in near-surface temperature, relative humidity, etc., can affect fog 

predictions (Pu et al. 2016). 

In order to improve the understanding of complex-terrain meteorology over a wide 

range of scales and topographic features, the Mountain Terrain Atmospheric Modeling and 

Observations Program (MATERHORN) (Fernando et al. 2015) has been conducted in 
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northern Utah.  As part of the MATERHORN program, the MATERHORN-Fog field 

project was conducted from 07 January to 1 February 2015 (Gultepe et al. 2016).  The 

overall objective of this campaign is to improve the understanding of mechanisms 

associated with the formation, evolution, and dissipation of fog over complex terrain 

(Gultepe et al. 2016).  Over the course of the campaign, eleven intensive observational 

periods (IOPs) were performed, ten in January and one in February of 2015 over four major 

fog events. 

During the MATERHORN-Fog field observations, real-time forecasts were 

conducted with the WRF model (Pu et al. 2016).  The real-time forecasts were useful for 

planning operations during the field project, as well as the evaluation of the performance 

of the WRF model with observations after the field program.  Early evaluation shows the 

inability of the WRF model to reproduce correct forecasts of near-surface atmospheric 

variables.  The model was able to capture the elevated subsidence inversion commonly 

seen in valley cold pools associated with inversion fog events, but large errors in 

temperature, dew point, and wind speed were seen in the boundary layer. 

In light of the lack of understanding and studies of inversion fog events as well as 

the problems with the real-time WRF forecasts during the MATERHORN-Fog field 

program, in this chapter, we describe a series of numerical simulations of an inversion fog 

case over Salt Lake City during the MATERHORN-Fog field project.  Leveraged by the 

intense observations obtained during the field program, it is our purpose to further pinpoint 

the main problems with WRF in simulating the fog events.  Through different model 

configurations and a series of sensitivity studies, we will explore the factors and processes 

that could contribute to an accurate numerical simulation of inversion fog. 
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Section 3.2 describes MATERHORN-Fog IOPs 1 and 2.  The numerical model and 

experiment design are discussed in Section 3.3.  Results from the examination of sensitivity 

to CM, PBL, radiation, land surface schemes, and lead time are presented in Section 3.4.  

Finally, a discussion of the results follows in Section 3.5. 

 

3.2 Synoptic Overview of the Inversion Fogs During IOP 2 

The first and second IOP (IOP 1 and 2) from the MATERHORN-Fog campaign 

(Fernando et al. 2015) took place between 1500 MST 08 January 2015 and 1200 MST 09 

January, and 1400 MST 9 January 2015 and 1200 MST 10 January 2015, respectively.  The 

field campaign implemented radiosondes, sodar, and lidar instruments at the Salt Lake site, 

which is close enough (15 km) to the Salt Lake International Airport (KSLC) for METAR 

observations and NWS soundings to be sufficient proxy for current conditions in addition 

to MATERHORN specific observations.  The authors made use of the University of Utah’s 

MesoWest network (Horel et al. 2002) during this campaign and provided data real-time 

from surface observation stations.  Figure 3.1 illustrates a time series of visibility, 

temperature, and pressure at KSLC for the entirety of IOPs 1 and 2.  Two periods of near 

fog occur during these IOPs, with Near Fog Period 1 from 0000 MST to 1800 MST 09 

January and Near Fog Period 2 from 2200 MST 09 January to 1200 UTC 10 January 2015.  

IOPs 1 and 2 were conducted in a two-day fog event, beginning on January 8, 2015. 

Prior to fog formation, the prominent feature of the synoptic conditions at 0000 

UTC 8 January 2015 was the longwave ridge at 500 hPa (Figure 3.2).  It was oriented from 

NW-SE with the axis extending from the Pacific northwestern coast and curving down into 

western Texas.  It is important to mention this ridge, as it is a significant factor in the 
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development of the decoupled vertical profile needed for inversion fog formation in this 

region (Taylor 1941, Hodges and Pu 2015).  The orientation of the ridge is conducive for 

a favorable fog environment as warmer air was being advected in from the south at this 

level.  However, at 850 hPa (Figure 3.3) the axis of the ridge supported the advection of 

cooler temperatures from a relative temperature minimum in southeastern Oregon.  This 

type of advection pattern supports the formation of the temperature inversion displayed in 

the sounding at this time (Figure not shown), but it has not yet reached the surface, a 

scenario typical of fog conditions.  From 0000 UTC 8 January 2015 to 0000 UTC 9 January 

2015, the ridge changed its orientation from NW-SE to NNW-SSE, shifting the source 

region of the midlevels from the Pacific to warmer inland air.  After this shift, the 

temperature inversion extended to the surface and fog formed at the Salt Lake 

MATERHORN observation site. 

IOP 2 began with a 500 hPa ridge aligned in much the same fashion as during the 

previous twelve hours.  At 250 hPa (Figure 3.4), the strongest winds were downstream of 

the ridge, allowing it to remain relatively stationary and for the central pressure to build.  

The center of anticyclonic rotation was over Nevada at 1200 UTC 9 January at 500 hPa 

(Figure 3.5), leaving advection into this level unperturbed for 24 h.  The sounding (Figure 

3.6) shows a saturated surface as fog had formed in the valley within the previous 24 h.  

This can be seen as part of Near Fog Period 1 in Figure 3.1.  More importantly, it shows a 

decoupled wind profile between the surface and the air above terrain height (~2200 m).  A 

decoupling can be identified by low level winds that are independent of speed and direction 

of the air above them, a feature that is often coincident with a temperature inversion.  This 

is indicative of a cold air pool, and environment that is very important to the evolution of 
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fog (Wolyn and McKee 1989; Whiteman et al. 2014; Chachere and Pu 2016). By 0000 

UTC 10 January, a trough upstream of the dominating longwave ridge had reached the 

Pacific coast at 500 hPa (Figure 3.7).  Valley cold pools are often broken by strong trough 

passages, making this a strong indicator that the existing fog environment could soon be 

destroyed.  However, with the dropping temperatures associated with sunset and the 

inversion still present in the sounding (Figure 3.8), fog can once again be expected 

overnight throughout the end of IOP 2. 

The next 24 hours, from 1200 UTC 10 January 2015 and into 0000 UTC 11 January 

2015, the atmosphere began mixing with the approach of the low pressure trough at 500 

hPa (Figure not shown).  The trough passed over northern Utah between 1800 UTC and 

2300 UTC, but it was difficult to pinpoint an exact time of passage because there was never 

a complete dissolution of the stable airmass in the valley. 

 

3.3 Simulation Design 

Numerical simulations were performed using WRF Version 3.7 (Skamarock et al. 

2008).  Four one-way nested domains were used with a horizontal grid resolution of 30 

km, 10 km, 3.33 km, and 1.11 km (Figure 3.9).  The high-resolution domain (d04, 1.11 km 

resolution) is centered around the Great Salt Lake and the Salt Lake and Heber observation 

sites.  The model physics options are the same for every domain except for the cumulus 

scheme, where the Kain-Fritsch parameterization is only used for the two outer domains 

d01 and d02, at 30 km and 10 km grids, respectively.  The control run is set up with the 

Thompson microphysics scheme, the Rapid Radiative Transfer Model (RRTM) longwave 

radiation and Dudhia shortwave radiation schemes, and the YSU planetary boundary layer 
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scheme.  All details and descriptions of the parameterization schemes can be found in 

Skamarock et al. (2008).  The correct simulation of the near surface conditions is essential 

in attaining a correct fog forecast (Pu et al. 2016).  The Noah land surface model (Chen 

and Dudhia, 2001) was used, as it is an advanced land surface model that can predict 

surface temperature, soil moisture, and temperature in multiple soil layers.  The NCEP 

North American Model (NAM) analysis was used as the initial and boundary conditions.  

A 48 h simulation was conducted and was initialized at 1200 UTC 8 January. 

A real-time WRF forecast was conducted during the MATERHORN-Fog field 

campaign, with the same model setting as described above and 41 vertical sigma levels.  

Postfield evaluation (Pu et al. 2016) indicated that the largest errors that occurred in the 

real-time WRF forecasts are due to a misrepresentation of the boundary layer, especially 

near the surface (such as 2-m temperature and 10-m winds).  In order to better represent 

the vertical scale of valley phenomena, in this study we changed the number of model 

vertical levels from 41 to 61.  This included lowering the height of the bottom level of the 

model (~18 m in current control run versus ~30 m in the real-time WRF run) and placing 

the additional nineteen levels in the planetary boundary layer.  Figures 3.10-3.12 compares 

the near-surface relative humidity, temperature, and wind from model forecasts with 

tethersonde balloon taken during MATERHORN-Fog IOP 2 at the Heber site (the only 

tethersonde balloon site) at 0900 UTC 10 January 2015.  It clearly illustrates that the 

simulation with 61 vertical level resolution more accurately represents the lowest levels of 

the model domain.  Although the improvements are by fractions of degrees in temperature 

and less than five percent in relative humidity, it is these small changes that the model has 
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to capture in order to represent the conditions in which fog forms.  The results motivate us 

to set the vertical resolution for all experiments in this study to 61 levels. 

The WRF model has multiple options for each type of physical parameterization 

schemes.  In order to investigate the sensitivity of numerical prediction of inversion fog to 

various physical processes and in order to understand which processes might contribute to 

the fog development and evolution, a total of fourteen (including control) sensitivity 

experiments were conducted to compare results against the control described above.  For 

each of the sensitivity tests, only one type of parameterization varies from the control 

simulation in the WRF model.  Specifically, sensitivity to cloud microphysics (CM), 

planetary boundary layer (PBL), radiation, and land surface schemes were tested. 

Among these sensitivity experiments, four CM sensitivity experiments were 

performed with the Thompson (control), Thompson aerosol aware, Lin, and Morrison 

microphysics.  Two special experiments were conducted using the Thompson Aerosol 

Aware CM scheme to examine the effects of the aerosol concentration and how it acts as 

cloud condensation nuclei, an important component of fog formation.  This selection is 

based on the fact that Salt Lake City has particularly high concentrations of anthropogenic 

aerosols in the wintertime.  One experiment was run using a logarithmic decay of aerosol 

concentration with height (a sufficient approximation), and the other was run using a 

climatology of aerosols based on ten years of observed aerosol data that was collected and 

manually injected into the model (Colarco et al. 2010).  The Lin microphysics scheme uses 

a five-class hydrometeor system that includes ice sedimentation, which was employed to 

test ice fog conditions.  Finally, the Morrison scheme was chosen to test the sensitivity of 

single-moment vs. double-moment parameterizations of cloud microphysics. 
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One sensitivity experiment was conducted to examine how planetary boundary 

layer parameterization influenced the results and the Mellor-Yamada-Janjic (MYJ) PBL 

scheme was included in the sensitivity experiment.  This choice examined the influence of 

first order versus 1.5 order parameterization of vertical mixing. 

Two tests were implemented to study the differences that shortwave radiation 

schemes would produce on the results, and the Goddard and RRTMG shortwave radiation 

schemes were chosen to compare to the control.  The Goddard shortwave scheme will 

include an ozone profile that is not present in the control, and the RRTMG can interact 

with cloud fractions instead of only fully resolved clouds. 

A separate set of tests were performed to test the influence of longwave radiation 

parameterizations on the results, conducted with the Goddard and GFDL (Eta) longwave 

schemes.  The Goddard scheme was chosen for the same reason as above, but the GFDL 

scheme was chosen because it uses spectral calculation instead of a discrete calculation 

system. 

The land surface scheme was changed to the thermally diffusive scheme as another 

experiment.  This was chosen based on the thermally diffusive scheme’s ability to 

recognize snow cover at the surface.  The final experiment also changed the land surface, 

where a control simulation was initialized with forced albedo values from observations.  

Table 3.1 summarizes the configurations of all experiments. 

The evaluation of real-time WRF forecasts also shows that the simulation of fog 

events is sensitive to the forecast leading time (Pu et al. 2016).  Considering the model 

spin-up period, the initialization time of 1200 UTC 8 January, twenty-six hours before the 

start of IOP 2 was chosen for most of the simulations.  We then investigate the dependence 
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of the numerical simulations on initialization time.  Three simulations with the same 

configuration as the above control, Lin microphysical, and thermal diffusion land surface 

schemes were tested.  The initialization time was changed from 1200 UTC 8 January 2015 

to 0000 UTC 9 January 2015. 

Two algorithms for visibility were used in this study.  The first is based on Gultepe 

and Milbrandt (2009) and the parameterization is as follows: 

 𝑉𝐼𝑆@AB% = −0.000114𝑅𝐻".H) + 27.45 (3.1) 

Relative humidity values used for this parameterization were corrected, meaning they are 

calculated differently based on relative humidity to water at temperatures above 0.5 °C and 

relative humidity with respect to ice at temperatures below this value.  Instead of choosing 

0 °C as the threshold, this study choses 0.5 °C due to the nature of the temperature in this 

IOP to hover around freezing.  This calculation will include all of the borderline values. 

The second algorithm used is based on Stoelinga and Warner (1999).  This algorithm is 

based on the extinction of five types of hydrometeors:  cloud water (bcw), rain water (brw), 

cloud ice (bci), snow (bsn), and graupel (bgp).  Henceforth, this will be called the GSD 

parameterization as the algorithm was further developed by the Global System Division 

(GSD), ESRL/NOAA.  It is presented as follows: 

 𝛽 = 𝛽9N + 𝛽7N + 𝛽9O + 𝛽PQ + 𝛽R% + 1S/) (3.2) 

where b is the extinction coefficient for the five water species, calculated: 

 𝛽9N = 144.7𝐶9N).00 (3.3) 

 𝛽7N = 2.24𝐶7N).HU (3.4) 

 𝛽9O = 327.8𝐶9O (3.5) 
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 𝛽PQ = 𝛼PQ×𝐶PQ (3.6) 

 𝛽R% = 4.0𝐶R%).HU (3.7) 

where Ccw, Crw, Cci, Csn, and Cgp are the associated mass concentrations (g/m3) for cloud 

water, rain water, cloud ice, snow, and graupel, respectively.  This is then input into a 

visibility format: 

 𝑉𝐼𝑆YZ[7\ = 𝑚𝑖𝑛 90. ,
𝛼`OP
𝛽  (3.8) 

where 

 𝛼`OP = − ln 0.02  (3.9) 

by Kunkel (1984).  The extinction coefficient of snow (asn) varies with temperature as: 

 𝛼PQ = 10.× 1 − 𝛼cd+% + 6.0𝛼cd+% (3.10) 

where 

 0 < 𝛼cd+% < 1, 𝑖𝑓	0 < 𝑇𝑒𝑚𝑝 < 1 (3.11) 

 𝛼cd+% = 0, 𝑖𝑓	𝑇𝑒𝑚𝑝 < 1 (3.12) 

 𝛼cd+% = 1, 𝑖𝑓	𝑇𝑒𝑚𝑝 ≥ 1 (3.13) 

The impact of night and day is also taken into effect, and the visibility is modified as: 

 
𝑉𝐼𝑆YZ[7\_Q = 1.69×1.609×

𝑉𝐼𝑆YZ[7\
1.609

).0m

 
(3.14) 

 𝑉𝐼𝑆YZ[7\_[Q = 𝛼[Q×𝑉𝐼𝑆YZ[7\ + 1 − 𝛼[Q ×𝑉𝐼𝑆YZ[7\_Q (3.15) 

where adn is 0 for night time hours and 1 for day time hours.  VIShydro is then compared to 

a relative humidity visibility parameterization: 

 𝑉𝐼𝑆7Y = 60.0×𝑒𝑥𝑝 −2.5×𝑞7Y  (3.16) 

where 



 

 

42 

 
𝑞7Y = 𝑚𝑖𝑛 0.8,

𝑟ℎ
100.−0.15  

(3.17) 

with rh interpolated from the highest values of the lowest four model levels.  When VISrh 

is less than 10 km, the effect of low-level wind shear between the lowest 4 levels 

increasing from 4 to 6 m/s is taken into account.  This modification of visibility is: 

 𝑉𝐼𝑆7Y 𝑤𝑠 = 𝑉𝐼𝑆7Y + 𝛼NP×(10 − 𝑉𝐼𝑆7Y) (3.18) 

where aws is the impact factor of wind shear ranging from 0 to 1, 0 for wind shear equal 

to 4 m/s and 1 for with shear over 6 m/s.  After this computation is complete, the 

simplified form of the parameterization can be computed: 

 𝑉𝐼𝑆uvw = min	 𝑉𝐼𝑆7Y, 𝑉𝐼𝑆YZ[7\_[Q  (3.19) 

Results from these visibility algorithms will be analyzed compared to observations during 

MATERHORN IOPs 1 and 2. 

 

3.4 Evaluation of Simulation Results 

The results from the control and the sensitivity experiments will be compared with 

observations.  First, the synoptic conditions will be assessed to determine if, as in Pu et al. 

(2016), the errors are confined to the boundary layer.  Then, an evaluation of the control 

simulations is performed by comparing with observations taken during MATERHORN-

Fog.  This will be followed by a comparison of each sensitivity experiment to the control 

simulation. 
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3.4.1 Control Simulation vs. Observations 

3.4.1.1 Synoptic Conditions 

Figures 3.13-3.15 compare synoptic maps valid during the MATERHORN-Fog 

experiment with the WRF-generated control experiment solution valid at 1200 UTC 9 

January 2015 at 250 hPa, 500 hPa, and 700 hPa pressure levels.  As discussed in the 

synoptic overview, the most important features to be captured are the longwave ridges seen 

at each pressure level along with their associated high height features.  Dashed orange lines 

and blue “H”s have been drawn on each figure in order to better see their placement.  After 

a close comparison, it is noted that the WRF model captures the synoptic setup quite well.  

At each level, agreement is present in height, ridge placement, wind speed and direction, 

temperature, and relative humidity values are seen.  These results are consistent regardless 

of sensitivity experiment or lead time, indicating that the WRF model has sufficiently 

represented the synoptic background for IOPs 1 and 2. 

The only discrepancies can be found at the 700 hPa level, often at the top or near 

the top of the boundary layer throughout the entirety of the experiment.  Although the 

errors are slight (temperatures about two degrees warmer than observed), they should be 

associated with simulation errors in the boundary layer.  Pu et al. (2016) indicated 

apparent errors in these layers with the real-time WRF forecasts.  In the following 

sections, further evaluation in the boundary layer is conducted by comparing simulation 

results from various experiments with observations during MATERHORN-Fog. 
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3.4.1.2 Boundary Layer Conditions 

Figures 3.16-3.21 illustrates the results of the control simulation for the Salt Lake 

Valley site.  Figure 3.16 compares the sounding profiles from the control simulation and 

the National Weather Service sounding released at the Salt Lake City International Airport, 

less than 15 km from the Salt Lake Valley site.  The sounding reveals what the synoptic 

maps alluded to in the previous section:  errors are almost entirely confined to the boundary 

layer.  While there is evidence of a decoupling in the wind profile, coincident with the 

temperature inversion, the model is not producing fog due to errors in temperature and dew 

point temperature.  Temperatures are at most three degrees higher than observations 

throughout the boundary layer, and dew points are two degrees lower.  This creates 

erroneously low relative humidity values, as the absolute humidity predicted by the WRF 

is correct when compared to observations (Figure 3.19). 

Figures 3.17–3.21 display the time series of WRF control simulations of 

temperature, dew point temperature, relative humidity, absolute humidity, and wind speed 

with ASOS station data.  They show that the small errors in the prediction of near surface 

variables in the WRF can lead to big errors in a fog forecast.  Figures 3.17 and 3.18 shows 

that the model accurately captures the maximum temperatures and dew point temperatures 

seen in each diurnal cycle.  However, between 2300 MST 08 January and 0800 MST 09 

January, temperatures are over forecasted by as many as three degrees and dew point 

temperatures are over forecasted by as many as two degrees.  Looking at the absolute 

humidity time series (Figure 3.19), the WRF has produced more moisture during these 

hours than what is observed (a 0.08 g/m3 moisture bias). This is echoed in the relative 

humidity time series (Figure 3.20), where the WRF predicted much higher relative 
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humidity values than observed.  The wind speed time series (Figure 3.21), however, shows 

that the WRF solution has values within one meter per second of those observed.  An 

accurate forecast of this variable is vital in the prediction of fog, as winds that are too high 

can mechanically mix the column and advect what fog does form away from the 

observation site.  Figure 3.22 shows the visibility forecast from the relative humidity 

visibility algorithm.  The blue shading shows where near fog was observed at the Salt Lake 

Valley site, and the red shading shows where it is predicted by the model.  The relative 

humidity used in this algorithm is the corrected relative humidity as described above, where 

ice is taken into effect.  In the observations, the near fog was observed from 0000 MST to 

1500 MST 09 January and from 2200 MST 09 January to 0500 MST 10 January, but the 

model does not predict fog past 0800 MST 9 January.   

The second period of fog is missed altogether in Figure 3.22.  This is mainly due to 

a six-degree error in forecasted temperature by the WRF (Figure 3.17).  When combined 

with relatively little error in dew point temperature, the relative humidity is too low, as 

seen in Figure 3.20.  Erroneously low relative humidity values affect the way the RH 

visibility algorithm performs.  Figure 3.23 shows the GSD visibility time series.  Using this 

parameterization, the WRF does not produce the necessary conditions to predict fog. 

 

3.4.2 Sensitivity of Fog Simulations to WRF Physical 

Parameterization Schemes 

3.4.2.1 Microphysical Schemes 

Four cloud microphysics sensitivity tests were performed:  Thompson Aerosol 

Aware with climatology, Thompson Aerosol Aware without climatology, Lin, and 
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Morrison microphysics schemes.  Figures 3.24–3.29 shows results from the Thompson 

Aerosol Aware with climatology simulation and the Lin simulation in Figures 3.30–3.36.  

These two tests were chosen to be represented in the figure because there was no significant 

difference between the Thompson aerosol aware with climatology and without 

climatology, nor between the Morrison and the control.  The lack of difference between 

the aerosol schemes is surprising because Salt Lake City suffers from the trapping of 

anthropogenic particles in cold air pools during the winter, but because there are sufficient 

cloud condensation nuclei, this did not make much of a difference in the simulations.  Both 

Aerosol Aware schemes did not produce a valuable fog forecast mainly due to temperature 

error. 

Using the Lin microphysical scheme, the WRF model predicts near-surface 

atmospheric variables much more effectively than any of the other schemes, namely a sharp 

reduction in temperature error after 0500 MST 09 January.  Instead of the three-degree 

warm bias seen in the control and Thompson Aerosol Aware simulations, we see a cold 

bias in the Lin microphysics scheme after the above time.  At any given point after 0500 

MST 09 January, the modeled temperatures are about two degrees cooler than observed.  

This is due to the generation of clouds in the WRF (Figure 3.32).  They manifest at 0500 

MST 09 January, and remain over the Salt Lake Valley MATERHORN observation point 

through the end of the model simulation. 

Due to these changes in temperatures, one might expect the WRF to handle absolute 

humidity differently, and this is the case.  Looking at the absolute humidity time series 

(Figure 3.33), the maximum error seen throughout the duration of the simulation is 0.04 

g/m3, half of what was produced in the control simulation.  However, because the amount 
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of moisture is correct, the cold bias in temperature produces excess relative humidity after 

0500 MST 09 January (Figure 3.34).  The relative humidity values exceed the observations 

by as much as 20%.  This implies a bias when using the relative humidity to produce a 

visibility forecast, and this is seen in Figure 3.35.  The Lin cloud microphysics scheme, 

however, does produce a second period of fog where every other sensitivity test, thus far, 

has not (Figure 3.36).  There are periods of false positives (between 2000 MST 08 January 

and 0000 MST 09 January and between 1800 MST and 2200 MST 09 January).  The period 

between fog events is also forecast incorrectly, falling between 1200 MST 09 January and 

1600 MST 09 January, but the duration between fog events is four hours in both cases.  The 

GSD visibility algorithm was also tested for this experiment, and was able to represent two 

distinct periods of fog (Figure 3.37).  The first period was much shorter than observed, 

only lasting between 0600 and 1200 MST 09 January, and the second was longer than 

observed, spanning from 1600 MST 09 January to 0500 MST 10 January.  As with the 

relative humidity visibility algorithm, although the timing was wrong, the amount of time 

between each period of fog was forecast correctly. 

The Morrison cloud microphysics scheme (Figures not shown) echoed the errors 

seen in the control simulation.  Although the absolute humidity produced by the run was 

within one g/m3 of what was observed, the warm temperature bias produced relative 

humidity values that were too low to represent fog.  This problem was once again not 

remedied using the GSD visibility parameterization. 
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3.4.2.2 Planetary Boundary Layer Schemes 

To examine the effect of the planetary boundary layer (PBL) scheme, the MYJ 

scheme was chosen to compare against the control YSU PBL scheme.  The simulation 

results with the MYJ scheme are consistent with the control, the warm bias in temperature 

skewing the relative humidity toward drier than observed values.  Of particular interest in 

this iteration is the wind profile seen in the sounding at Salt Lake City (Figure 3.38).  The 

winds simulated throughout the boundary layer, specifically at the top of the temperature 

inversion, are much higher than observations.  The model produced winds are nearly five 

m/s in excess of the observations at terrain height. 

At the surface, the relative humidity values predicted by the model were also much 

too low in comparison to those observed, arising from errors in the forecast temperature 

(Figures 3.39 – 3.41).  Like every simulation except for the one with Lin microphysics 

scheme, fog under predicted using the relative humidity visibility algorithm (Figure 3.42), 

but it did not last long enough nor was the second fog period predicted.  The GSD visibility 

algorithm also did not produce visibilities lower than 6 km throughout the duration of the 

simulation (Figure 3.43).  This sensitivity test is among the weakest performers in capturing 

the fog. 

 

3.4.2.3 Land Surface Schemes 

Since the MATERHORN-Fog field campaign was conducted during the winter, it 

is important that the winter characteristics of the land surface be captured.  In order to 

accurately represent the present snow and ice cover, a sensitivity test was conducted using 

the thermal diffusion land surface scheme and another was run with forced initial albedo 
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values. 

Temperatures produced by the thermal diffusion scheme in the sounding presented 

in Figure 3.44 follow the observation much more closely than any of the sensitivity 

experiments in this study.  Figure 3.45 shows that the simulation has successfully 

reproduced temperatures with the most consistency with observations (within one half 

degree of observations) until 1000 MST 09 January.  This scheme then produces similar 

temperature errors throughout the duration of the simulation.  The simulated relative 

humidity values (Figure 3.46) also capture most of the signal seen in the observations until 

1000 MST 09 January.  After this time, temperatures begin to exceed those observed, and 

the relative humidity in turn becomes up to 20% less than witnessed.   The wind speeds 

were modeled with accuracy (Figure 3.47).  Like other simulations, the relative humidity 

visibility scheme captured the fog at the beginning of the first near fog period, but misses 

the second period entirely (Figure 3.48).  The GSD visibility scheme did not represent any 

fog (Figure 3.49). 

Forcing observed albedo values at the beginning of the simulation did not improve 

our forecast from the control simulation.  Warm temperature biases of the same magnitude, 

about three degrees, remain in the evening hours, leading to erroneously low relative 

humidity values (Figures 3.51 and 3.52, respectively).  With no negative contribution from 

the wind (Figure 3.53), this affects the relative humidity visibility algorithm (Figure 3.54), 

but despite the similarity in temperature between this simulation and the control, the results 

show less fog represented in this simulation.  One period of fog was forecast and it was 

before either period of fog was observed.  There is a slightly warmer temperature profile 

in this run than the control, with the difference in the two runs amounting to less than half 
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a degree.  However, this slight warming allows the temperatures to remain out of the 

threshold needed to calculate relative humidity with respect to ice instead of water.  

Therefore, although this run is no drier than the control, it is manifested differently due to 

how relative humidity is calculated.  The GSD visibility algorithm once again fails to show 

fog for this simulation (Figure 3.55). 

 

3.4.2.4 Radiation Schemes 

Radiation budgets have an influential impact on the formation and evolution of fog.  

The emission of longwave radiation is closely linked to the formation of daily radiation 

fog.  This process is a contributing factor to the fog seen at the forecast sites for the 

MATERHORN-Fog campaign.  Four sensitivity tests were run to test these influences, two 

with shortwave parameterizations and two with longwave. 

For the shortwave sensitivity experiments, the Goddard shortwave and RRTMG 

shortwave schemes were chosen to test against the RRTM scheme used in the control 

simulation.  The two schemes showed very similar results, so only the Goddard shortwave 

scheme is shown (Figures 3.56–3.61).  Persistent ridging across the forecast area during 

the entirety of MATERHORN-Fog allowed for clear skies throughout the period.  This 

means all incoming solar radiation reached the surface, creating little variability in the 

shortwave radiation.  Both schemes show higher temperatures than observations, a staple 

at this point in the analysis, and relative humidity values too low to account for fog 

formation.  Neither test accurately captured the extent of the first fog period nor forecasted 

the second. 
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For the longwave sensitivity experiments, the Goddard was once again chosen, but 

due to the lack of variability between the Goddard and the RRTMG, the GFDL (Eta) 

longwave scheme was chosen as the second option. However, this did not make much of a 

difference as the results do not have startling differences.  Therefore, the only scheme 

represented is the Goddard longwave scheme (Figures 3.62–3.67).  Temperature and 

relative humidity results are consistent with the other experiments, too warm and thusly 

too dry.  Overall, the results do not seem to be affected by testing the shortwave versus 

longwave radiation schemes. 

 

3.4.3 Sensitivity of Fog Simulations to Lead Time 

As seen in nearly every simulation, forecast errors were exacerbated after thirty 

hours of the simulation.  The smallest errors introduced in the beginning of the simulation 

can grow to serious proportions the longer the simulation is run.  This is a problem because 

it occurred in the middle of our fog forecast period, causing most of the simulations to miss 

the second fog period.  In order to examine the effect of lead time on the accurate 

representation of inversion fog in the numerical simulation, a sensitivity test was run with 

an initialization time of 0000 UTC 9 January.  This simulation was set with the same 

configuration as the control to see if forecasted variables were significantly improved. 

Figures 3.68–3.75 shows the results of the experiment with the control 

configuration initialized at 0000 UTC 9 January.  Immediately obvious is the dramatically 

better representation of relative humidity (Figure 3.72) compared to the control (Figure 

3.20).  However, this “better” representation is due to errors in variables that were handled 

more deftly in the control simulation.  A look at the temperature time series (Figure 3.69) 
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reveals that the errors that were present in the control simulation are not mitigated.  There 

still exists a three-degree warm bias in temperature overnight and errors are expounded late 

in the simulation (after 0500 MST 10 January).  A result of this simulation that was not 

present in the control is the warm bias in dew point temperatures.  Throughout the last 

forty-two hours of the simulation (2300 MST 08 January – 1700 MST 10 January), there 

exists at least a one-degree warm bias, with dew points up to five degrees warmer than 

observed.  Unlike the control, when the errors were confined to the overnight hours, this 

warm bias persists through the daylight hours as well. 

This leads to an over prediction of moisture, as evidenced by the absolute humidity 

graph (Figure 3.71).  Therefore, the WRF is picking up on more moisture than is observed, 

causing a moist bias for this simulation.  However, these biases are coincided in a way that 

makes an accurate representation of relative humidity possible.  Although the forecast in 

Figure 3.72 is the best produced by this sensitivity study, it is only due a miscalculation of 

other surface variables.  Using this configuration, two distinct periods of fog are captured 

using the relative humidity visibility algorithm, the first from 2300 MST 08 January to 

0800 MST 09 January, and the second from 1700 MST 09 January to 0900 MST 10 

January.  Both periods were not without their false positives at the beginning of each 

forecast period (Figure 3.74), but expansive enough to represent portions of the observed 

fog.  Using this configuration, we are still unable to produce an expansive enough forecast 

to capture the observations.  The GSD visibility algorithm only produced one period of 

forecasted fog in the second observed fog period. 
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3.5 Summary and Discussion 

The WRF model faced a challenge accurately predicting fog conditions at the 

surface.  Since fog is a “threshold phenomena,” the accuracy of its forecast is dependent 

on the accurate prediction of boundary layer temperature, dew point, and wind fields.  In 

this study, the WRF model struggled to produce fog conditions using algorithms based on 

both relative humidity and hydrometeor concentration critera. 

Most of the errors are confined to the boundary layer.  In most experiments, 

simulated temperatures were too warm when attempting to reproduce the fog present in 

MATERHORN-Fog IOPs 1 and 2, especially in the overnight hours.  Dew point 

temperatures were forecast much more proficiently than temperatures, leading to accurate 

representations of absolute moisture in the model.  This implies that errors seen in relative 

humidity values were nearly entirely dependent on errors in forecast temperature.  The 

most accurate surface variable forecast was surface wind speed, eliminating errors due to 

excessive mixing or advection at the surface. 

An investigation into the errors caused by incorrect representation of radiation at 

the surface was conducted.  The results are shown in Figures 3.76–3.79, for the control, 

Goddard shortwave, Goddard longwave, and control with forced initial albedo.  Figure 

3.76 shows that all experiments are capturing correct downward shortwave flux except for 

the Goddard longwave parameterization (green) which overestimates this value.  

Downward longwave radiation shows much more spread between the simulations, 

especially prevalent after 0500 MST 09 January (Figure 3.77).  However, none have more 

than a 20 W/m2 prolonged deviation from observations.  Upward shortwave radiation 

(Figure 3.78) is a different story, as all experiments overestimate observed values by at 
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least 20 W/m2, with the Goddard longwave scheme showing most error with values double 

of what was observed.  These errors are also seen in upward longwave radiation, but with 

underestimation (Figure 3.79).  Most errors show a -40 W/m2 bias overnight, a major 

contribution to the warm bias in temperatures seen in these hours in nearly every 

experiment. 

The lead time experiment shows that better prediction of observed fog is sensitive 

to when a run is initialized.  This is due to introduction of error early in a forecast that can 

be exacerbated as the run progresses.  The first set of experiments were initialized at 0500 

MST, right before sunrise.  As seen in every experiment, the near-surface variables were 

handled with much more proficiency in the daylight hours, allowing less error to be 

introduced early in the model simulation.  However, when initialized at 1700 MST, near 

nightfall, more error was introduced early because of the WRF’s inability to accurately 

capture the emission of longwave radiation from the surface.  Therefore, more error was 

introduced early in the forecast, causing for a bigger deviation from the observations.  It is 

important to consider when your model is initialized based on past performance so that you 

may mitigate the introduction of early-simulation error. 

The simulations that produced too much fog, although incorrect, are useful.  Fog 

poses a danger to commuters of all types:  drivers, bikers, and jet passengers.  Therefore, a 

forecast of fog can aid National Weather Service forecasters in the issuance of fog 

advisories.  This information can be invaluable to the citizens of the northern Utah valleys 

and can potentially lessen the risk of dangerous travel during these foggy periods.  It can 

also aid in the rescheduling of flights ahead of time so that commuters are not delayed and 

airports are not at a risk of lost revenue due to last-minute rescheduling.  However, as 
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indicated in this chapter, accurate prediction of fog depends on model configurations, 

physical parameterizations, and forecast lead time (implying a sensitivity to initial 

conditions).  Thus, it is still an area that needs further exploration in numerical weather 

prediction.
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Figure 3.1.  A time series of visibility (blue), temperature (orange), and pressure (red) for 
Salt Lake City for the entirety of MATERHORN-Fog IOP 1 and 2 (1500 MST January 8 
to 1200 MST 9 January, and 1400 MST January 9 to 1200 MST January 10, respectively).  
Two periods of near fog are indicated with gray arrows and shading, Near Fog Period 1 
from 0000 MST to 1800 MST January 9 and Near Fog Period 2 from 2200 MST January 
9 to 1200 MST January 10.
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Figure 3.2.  NOAA/NWS SPC 500 hPa map from 0000 UTC 08 January 2015.  
Geopotential height contours (solid lines), isotherms (red dashed lines), and wind barbs 
(speed in knots) contoured.



 

 

58 

 
 
 
 
 
 
 
 
 

 
Figure 3.3.  NOAA/NWS SPC 850 hPa map from 0000 UTC 08 January 2015.  
Geopotential height contours (solid lines), isotherms (red and blue dashed lines), wind 
barbs (speed in knots), and isodrosotherms (solid green lines) are contoured.
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Figure 3.4.  NOAA/NWS SPC 250 hPa upper air map from 1200 UTC 9 January 2015.  
Geopotential height contours (solid lines), streamlines (gray solid lines with arrows), 
isotherms (red dotted lines), wind barbs (speed in knots), and isotachs (filled contours) 
are analyzed. 
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Figure 3.5.  NOAA/NWS SPC 500 hPa upper air map from 1200 UTC 9 January 2015.  
Geopotential height contours (solid lines), streamlines (gray solid lines with arrows), 
isotherms (red dotted lines), and wind barbs (speed in knots) are analyzed.
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Figure 3.6.  Sounding from Salt Lake City International Airport (KSLC) from 1200 UTC 
9 January 2015.  Temperature (F) along x-axis and pressure (hPa) along y-axis.  
Temperature (C) (straight beige lines), dry adiabats (curved beige lines), moist adiabats 
(curved green lines), saturation mixing ratio lines (dotted straight green lines), and wind 
barbs (speed in knots) analyzed.  Temperature for this sounding is the solid black line, 
and dew point temperature for this sounding is the dotted black line.
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Figure 3.7.  NOAA/NWS SPC 500 hPa map valid at 0000 UTC 10 January 2015.  
Geopotential height contours (solid lines), isotherms (red dotted lines), and wind barbs 
(speed in knots) are analyzed. 
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Figure 3.8.  Sounding from Salt Lake City International Airport (KSLC) from 0000 UTC 
10 January 2015.  Temperature (F) along x-axis and pressure (hPa) along y-axis.  
Temperature (C) (straight beige lines), dry adiabats (curved beige lines), moist adiabats 
(curved green lines), saturation mixing ratio lines (dotted straight green lines), and wind 
barbs (speed in knots) analyzed.  Temperature for this sounding is the solid black line, 
and dew point temperature for this sounding is the dotted black line
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Figure 3.9.  Locations of model domains.  The resolutions for d01, d02, d03, and d04 are 
30 km, 10 km, 3.33 km, and 1.11 km, respectively.
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Figure 3.10.  Comparison of tethersonde balloon profiles taken during MATERHORN-Fog 
IOP 2 (black line) of near surface temperature with model solution from 41 vertical levels 
(red line) and 60 levels (blue line) at Heber site at 1100 UTC 10 January.
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Figure 3.11.  Comparison of tethersonde balloon profiles taken during MATERHORN-Fog 
IOP 2 (black line) of near surface relative humidity with model solution from 41 vertical 
levels (red line) and 60 levels (blue line) at Heber site at 1100 UTC 10 January.
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Figure 3.12.  Comparison of tethersonde balloon profiles taken during MATERHORN-Fog 
IOP 2 (black line) of near surface wind speed with model solution from 41 vertical levels 
(red line) and 60 levels (blue line) at Heber site at 1100 UTC 10 January.
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Figure 3.13.  250 hPa comparison of synoptic map (top) and associated WRF-generated 
solutions (bottom) from the control experiment initialized with a twenty-six-hour lead time 
for 1200 UTC 9 January 2015.
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Figure 3.14.  500 hPa comparison of synoptic map (top) and associated WRF-generated 
solutions (bottom) from the control experiment initialized with a twenty-six-hour lead 
time for 1200 UTC 9 January 2015.
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Figure 3.15.  700 hPa comparison of synoptic map (top) and associated WRF-generated 
solutions (bottom) from the control experiment initialized with a twenty-six-hour lead 
time for 1200 UTC 9 January 2015.
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Figure 3.16.  Sounding comparison at Salt Lake City International Airport (KSLC) from 
1200 UTC 09 January 2015 between observations and control model solution.  
Temperature (F) along x-axis and pressure (hPa) along y-axis.  Temperature (C) (straight 
beige lines), dry adiabats (curved beige lines), moist adiabats (curved green lines), 
saturation mixing ratio lines (dotted straight green lines), and wind barbs (speed in knots) 
analyzed.  Observed temperature for this sounding represented by the solid black line, 
and observed dew point temperature for this sounding represented the dotted black line.  
Modeled temperature for this sounding represented by the solid red line, and modeled 
dew point temperature for this sounding represented by the dotted red line.
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Figure 3.17.  Temperature time series comparison for duration of control model simulation.  
Observed temperature in black, model solution in red.
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Figure 3.18.  Dew point temperature time series comparison for duration of control model 
simulation.  Observed dew point temperature in black, model solution in red.
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Figure 3.19.  Absolute humidity time series comparison for duration of control model 
simulation.  Observed absolute humidity in black, model solution in red. 
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Figure 3.20.  Corrected relative humidity time series comparison for duration of control 
model simulation.  Observed corrected relative humidity in black, model solution in red.
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Figure 3.21.  Wind speed time series comparison for duration of control model simulation.  
Observed corrected relative humidity in black, model solution in red.
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Figure 3.22.  Visibility time series comparison calculated with respect to corrected relative 
humidity for control simulation.  Observed visibility is in black, model solution in red.  
Blue shading represents observed fog, and red shading represents fog in model solution.
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Figure 3.23.  Visibility time series comparison calculated with respect to GSD visibility 
algorithm for control simulation.  Observed visibility is in black, model solution in red.  
Blue shading represents observed fog, and red shading represents fog in model solution.
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Figure 3.24.  Sounding comparison at Salt Lake City International Airport (KSLC) from 
1200 UTC 09 January 2015 between observations and sensitivity test run with Thompson 
Aerosol Aware cloud microphysics.  Temperature (F) along x-axis and pressure (hPa) 
along y-axis.  Temperature (C) (straight beige lines), dry adiabats (curved beige lines), 
moist adiabats (curved green lines), saturation mixing ratio lines (dotted straight green 
lines), and wind barbs (speed in knots) analyzed.  Observed temperature for this sounding 
represented by the solid black line, and observed dew point temperature for this sounding 
represented the dotted black line.  Modeled temperature for this sounding represented by 
the solid red line, and modeled dew point temperature for this sounding represented by 
the dotted red line.
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Figure 3.25.  Temperature time series comparison for duration of Thompson Aerosol 
Aware model simulation.  Observed temperature in black, model solution in red.
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Figure 3.26.  Corrected relative humidity time series comparison for duration of Thompson 
Aerosol Aware model simulation.  Observed corrected relative humidity in black, model 
solution in red.
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Figure 3.27.  Wind speed time series comparison for duration of Thompson Aerosol Aware 
model simulation.  Observed corrected relative humidity in black, model solution in red.
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Figure 3.28.  Visibility time series comparison calculated with respect to corrected relative 
humidity for Thompson Aerosol Aware simulation.  Observed visibility is in black, model 
solution in red.  Blue shading represents observed fog, and red shading represents fog in 
model solution.
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Figure 3.29.  Visibility time series comparison calculated with respect to GSD visibility 
algorithm for Thompson Aerosol Aware scheme.  Observed visibility is in black, model 
solution in red.  Blue shading represents observed fog, and red shading represents fog in 
model solution.
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Figure 3.30.  Sounding comparison at Salt Lake City International Airport (KSLC) from 
1200 UTC 09 January 2015 between observations and sensitivity test run with Lin cloud 
microphysics.  Temperature (F) along x-axis and pressure (hPa) along y-axis.  Temperature 
(C) (straight beige lines), dry adiabats (curved beige lines), moist adiabats (curved green 
lines), saturation mixing ratio lines (dotted straight green lines), and wind barbs (speed in 
knots) analyzed.  Observed temperature for this sounding represented by the solid black 
line, and observed dew point temperature for this sounding represented the dotted black 
line.  Modeled temperature for this sounding represented by the solid red line, and modeled 
dew point temperature for this sounding represented by the dotted red line.
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Figure 3.31.  Temperature time series comparison for duration of Lin model simulation.  
Observed temperature in black, model solution in red.
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Figure 3.32.  Map of cloud fraction for d04 for Lin cloud microphysics sensitivity test, 
valid 0500 MST 09 January.  Red indicates a cloud fraction of 1, blue indicates a cloud 
fraction of 0.  Black star indicates MATERHORN Salt Lake Valley site.
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Figure 3.33.  Absolute humidity time series comparison for duration of Lin cloud 
microphysics model simulation.  Observed absolute humidity in black, model solution in 
red.
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Figure 3.34.  Corrected relative humidity time series comparison for duration of Lin cloud 
microphysics model simulation.  Observed corrected relative humidity in black, model 
solution in red.
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Figure 3.35.  Wind speed time series comparison for duration of Lin cloud microphysics 
model simulation.  Observed corrected relative humidity in black, model solution in red.
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Figure 3.36.  Visibility time series comparison calculated with respect to corrected relative 
humidity for Lin cloud microphysics simulation.  Observed visibility is in black, model 
solution in red.  Blue shading represents observed fog, and red shading represents fog in 
model solution.
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Figure 3.37.  Visibility time series comparison calculated with respect to the GSD visibility 
algorithm for the Lin cloud microphysics simulation.  Observed visibility is in black, model 
solution in red.  Blue shading represents observed near fog, and red shading represents fog 
in model solution.
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Figure 3.38.  Sounding comparison at Salt Lake City International Airport (KSLC) from 
1200 UTC 09 January 2015 between observations and sensitivity test run with the MYJ 
planetary boundary layer scheme.  Temperature (F) along x-axis and pressure (hPa) along 
y-axis.  Temperature (C) (straight beige lines), dry adiabats (curved beige lines), moist 
adiabats (curved green lines), saturation mixing ratio lines (dotted straight green lines), and 
wind barbs (speed in knots) analyzed.  Observed temperature for this sounding represented 
by the solid black line, and observed dew point temperature for this sounding represented 
the dotted black line.  Modeled temperature for this sounding represented by the solid red 
line, and modeled dew point temperature for this sounding represented by the dotted red 
line.
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Figure 3.39.  Temperature time series comparison for duration of MYJ planetary boundary 
layer model simulation.  Observed temperature in black, model solution in red.
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Figure 3.40.  Corrected relative humidity time series comparison for duration of MYJ 
planetary boundary layer model simulation.  Observed corrected relative humidity in 
black, model solution in red.
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Figure 3.41.  Wind speed time series comparison for duration of MYJ planetary boundary 
layer model simulation.  Observed corrected relative humidity in black, model solution in 
red.
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Figure 3.42.  Visibility time series comparison calculated with respect to corrected relative 
humidity for MYJ planetary boundary layer simulation.  Observed visibility is in black, 
model solution in red.  Blue shading represents observed fog, and red shading represents 
fog in model solution.
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Figure 3.43.  Visibility time series comparison calculated with respect to GSD visibility 
algorithm for the MYJ planetary boundary layer simulation.  Observed visibility is in black, 
model solution in red.  Blue shading represents observed near fog, and red shading 
represents fog in model solution.
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Figure 3.44.  Sounding comparison at Salt Lake City International Airport (KSLC) from 
1200 UTC 09 January 2015 between observations and sensitivity test run with the thermal 
diffusion land surface scheme.  Temperature (F) along x-axis and pressure (hPa) along y-
axis.  Temperature (C) (straight beige lines), dry adiabats (curved beige lines), moist 
adiabats (curved green lines), saturation mixing ratio lines (dotted straight green lines), and 
wind barbs (speed in knots) analyzed.  Observed temperature for this sounding represented 
by the solid black line, and observed dew point temperature for this sounding represented 
the dotted black line.  Modeled temperature for this sounding represented by the solid red 
line, and modeled dew point temperature for this sounding represented by the dotted red 
line.
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Figure 3.45.  Temperature time series comparison for duration of the thermal diffusion land 
surface model simulation.  Observed temperature in black, model solution in red.
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Figure 3.46.  Corrected relative humidity time series comparison for duration of MYJ 
planetary boundary layer model simulation.  Observed corrected relative humidity in 
black, model solution in red.
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Figure 3.47.  Wind speed time series comparison for duration of thermal diffusion land 
surface model simulation.  Observed corrected relative humidity in black, model solution 
in red.
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Figure 3.48.  Visibility time series comparison calculated with respect to corrected relative 
humidity for thermal diffusion land surface simulation.  Observed visibility is in black, 
model solution in red.  Blue shading represents observed fog, and red shading represents 
fog in model solution.
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Figure 3.49.  Visibility time series comparison calculated with respect to GSD visibility 
algorithm for thermal diffusion land surface simulation.  Observed visibility is in black, 
model solution in red.  Blue shading represents observed near fog, and red shading 
represents fog in model solution.
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Figure 3.50.  Sounding comparison at Salt Lake City International Airport (KSLC) from 
1200 UTC 09 January 2015 between observations and sensitivity test run with forced initial 
albedo values.  Temperature (F) along x-axis and pressure (hPa) along y-axis.  Temperature 
(C) (straight beige lines), dry adiabats (curved beige lines), moist adiabats (curved green 
lines), saturation mixing ratio lines (dotted straight green lines), and wind barbs (speed in 
knots) analyzed.  Observed temperature for this sounding represented by the solid black 
line, and observed dew point temperature for this sounding represented the dotted black 
line.  Modeled temperature for this sounding represented by the solid red line, and modeled 
dew point temperature for this sounding represented by the dotted red line. 
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Figure 3.51.  Temperature time series comparison for duration of the forced initial albedo 
simulation.  Observed temperature in black, model solution in red.
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Figure 3.52.  Corrected relative humidity time series comparison for duration of the forced 
initial albedo simulation.  Observed corrected relative humidity in black, model solution in 
red.
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Figure 3.53.  Wind speed time series comparison for duration of the forced initial albedo 
simulation.  Observed corrected relative humidity in black, model solution in red.
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Figure 3.54.  Visibility time series comparison calculated with respect to corrected relative 
humidity for the forced initial albedo simulation.  Observed visibility is in black, model 
solution in red.  Blue shading represents observed fog, and red shading represents fog in 
model solution.
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Figure 3.55.  Visibility time series comparison calculated with respect to GSD visibility 
algorithm for the forced initial albedo simulation.  Observed visibility is in black, model 
solution in red.  Blue shading represents observed fog, and red shading represents fog in 
model solution.
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Figure 3.56.  Sounding comparison at Salt Lake City International Airport (KSLC) from 
1200 UTC 09 January 2015 between observations and sensitivity test run with the Goddard 
shortwave radiation scheme.  Temperature (F) along x-axis and pressure (hPa) along y-
axis.  Temperature (C) (straight beige lines), dry adiabats (curved beige lines), moist 
adiabats (curved green lines), saturation mixing ratio lines (dotted straight green lines), and 
wind barbs (speed in knots) analyzed.  Observed temperature for this sounding represented 
by the solid black line, and observed dew point temperature for this sounding represented 
the dotted black line.  Modeled temperature for this sounding represented by the solid red 
line, and modeled dew point temperature for this sounding represented by the dotted red 
line.
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Figure 3.57.  Temperature time series comparison for duration of the Goddard shortwave 
radiation simulation.  Observed temperature in black, model solution in red.
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Figure 3.58.  Corrected relative humidity time series comparison for duration of Goddard 
shortwave radiation model simulation.  Observed corrected relative humidity in black, 
model solution in red.
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Figure 3.59.  Wind speed time series comparison for duration of Goddard shortwave 
radiation model simulation.  Observed corrected relative humidity in black, model solution 
in red.
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Figure 3.60.  Visibility time series comparison calculated with respect to corrected relative 
humidity for Goddard shortwave radiation simulation.  Observed visibility is in black, 
model solution in red.  Blue shading represents observed fog, and red shading represents 
fog in model solution.
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Figure 3.61.  Visibility time series comparison calculated with respect to corrected relative 
humidity for Goddard shortwave radiation simulation.  Observed visibility is in black, 
model solution in red.  Blue shading represents observed fog, and red shading represents 
fog in model solution.
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Figure 3.62.  Sounding comparison at Salt Lake City International Airport (KSLC) from 
1200 UTC 09 January 2015 between observations and sensitivity test run with the Goddard 
longwave radiation scheme.  Temperature (F) along x-axis and pressure (hPa) along y-axis.  
Temperature (C) (straight beige lines), dry adiabats (curved beige lines), moist adiabats 
(curved green lines), saturation mixing ratio lines (dotted straight green lines), and wind 
barbs (speed in knots) analyzed.  Observed temperature for this sounding represented by 
the solid black line, and observed dew point temperature for this sounding represented the 
dotted black line.  Modeled temperature for this sounding represented by the solid red line, 
and modeled dew point temperature for this sounding represented by the dotted red line.
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Figure 3.63.  Temperature time series comparison for duration of the Goddard longwave 
radiation simulation.  Observed temperature in black, model solution in red.
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Figure 3.64.  Corrected relative humidity time series comparison for duration of Goddard 
longwave radiation model simulation.  Observed corrected relative humidity in black, 
model solution in red.
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Figure 3.65.  Wind speed time series comparison for duration of Goddard longwave 
radiation model simulation.  Observed corrected relative humidity in black, model solution 
in red.
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Figure 3.66.  Visibility time series comparison calculated with respect to corrected relative 
humidity for Goddard longwave radiation simulation.  Observed visibility is in black, 
model solution in red.  Blue shading represents observed fog, and red shading represents 
fog in model solution.
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Figure 3.67.  Visibility time series comparison calculated with respect to the GSD visibility 
algorithm for Goddard longwave radiation simulation.  Observed visibility is in black, 
model solution in red.  Blue shading represents observed fog, and red shading represents 
fog in model solution.
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Figure 3.68.  Sounding comparison at Salt Lake City International Airport (KSLC) from 
1200 UTC 09 January 2015 between observations and sensitivity test run with the control 
configuration initialized at 0000 UTC 09 January.  Temperature (F) along x-axis and 
pressure (hPa) along y-axis.  Temperature (C) (straight beige lines), dry adiabats (curved 
beige lines), moist adiabats (curved green lines), saturation mixing ratio lines (dotted 
straight green lines), and wind barbs (speed in knots) analyzed.  Observed temperature for 
this sounding represented by the solid black line, and observed dew point temperature for 
this sounding represented the dotted black line.  Modeled temperature for this sounding 
represented by the solid red line, and modeled dew point temperature for this sounding 
represented by the dotted red line.
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Figure 3.69.  Temperature time series comparison for duration of the control simulation 
initialized at 0000 UTC 09 January.  Observed temperature in black, model solution in red.
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Figure 3.70.  Dew point temperature time series comparison for duration of the control 
simulation initialized at 0000 UTC 09 January.  Observed dew point temperature in black, 
model solution in red.
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Figure 3.71.  Absolute humidity time series comparison for duration of the control 
simulation initialized at 0000 UTC 09 January.  Observed absolute humidity in black, 
model solution in red.
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Figure 3.72.  Corrected relative humidity time series comparison for duration of the control 
simulation initialized at 0000 UTC 09 January.  Observed corrected relative humidity in 
black, model solution in red.
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Figure 3.73.  Wind speed time series comparison for duration of the control simulation 
initialized at 0000 UTC 09 January.  Observed wind speed in black, model solution in red.
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Figure 3.74.  Visibility time series comparison calculated with respect to corrected relative 
humidity for the control simulation initialized at 0000 UTC 09 January.  Observed visibility 
is in black, model solution in red.  Blue shading represents observed fog, and red shading 
represents fog in model solution.
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Figure 3.75.  Visibility time series comparison calculated with respect to the GSD visibility 
algorithm for the control simulation initialized at 0000 UTC 09 January.  Observed 
visibility is in black, model solution in red.  Blue shading represents observed fog, and red 
shading represents fog in model solution.
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Figure 3.76.  Downward shortwave radiation time series comparison between observations 
(black line) and control (red), Goddard shortwave (green), Goddard longwave (blue), and 
control with forced initial albedo (purple).  In this figure, the values for control, Goddard 
longwave, and control with forced initial albedo are the same.
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Figure 3.77.  Downward longwave radiation time series comparison between observations 
(black line) and control (red), Goddard shortwave (green), Goddard longwave (blue), and 
control with forced initial albedo (purple).
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Figure 3.78.  Upward shortwave radiation time series comparison between observations 
(black line) and control (red), Goddard shortwave (green), Goddard longwave (blue), and 
control with forced initial albedo (purple).
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Figure 3.79.  Upward longwave radiation time series comparison between observations 
(black line) and control (red), Goddard shortwave (green), Goddard longwave (blue), and 
control with forced initial albedo (purple).



 135 

 
 

 
 
 

 
 

 
 
 
 
 
Table 3.1.  A table detailing the configuration of each of the experiments conducted in this 
study. 



 

CHAPTER 4 

 

SUMMARY AND CONCLUDING REMARKS 

 

In this study, a two-fold experiment was performed.  First, data from eighteen 

winters were compiled and analyzed to make the first study of the connection between cold 

air pools and fog occurrences in a mountain valley.  Salt Lake City was chosen as a test 

site because extensive cold pool and fog studies have been performed in this location (Hill 

1988; Laureau et al. 2013; Hodges and Pu 2015).  It is found that cold pools are important 

in the formation of fog events in the Salt Lake valley, as neither is statistically independent 

from another. 

In the second portion of the study, the predictability of an inversion fog event was 

studied using the WRF model.  The results were evaluated against observations taken 

during MATERHORN-Fog IOP 2, a unique opportunity to have access to extensive fog 

observation data.  This study has formed the following main conclusions: 

• The synoptic setup in which fog forms can be accurately captured by 

numerical simulation. 

• Accurate specification of surface and boundary layer variables are vital in 

correctly predicting fog in a numerical model. 

• Fog forecasts are sensitive to planetary boundary layer, radiation, cloud 

microphysical, and land surface schemes. 
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• Accurate fog prediction is also sensitive to forecast lead time. 

Future works should be conducted for more case studies with comprehensive 

examination of the role of land surface, boundary layer, cloud microphysical, and radiation 

processes in fog formation and evolution.  The evaluation of the land surface representation 

such as albedo and surface emissivity should be conducted.  Finally, data assimilation at 

the surface should be investigated as an option to better represent current surface 

conditions.
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