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ABSTRACT

Parrondo games with spatial dependence have been studied by Ethier and Lee. More

precisely, they studied Toral’s Parrondo games with N players arranged in a circle. The

players play either game A or game B. In game A, a randomly chosen player wins or loses

one unit according to the toss of a fair coin. In game B, which depends on parameters

p0, p1, p2, p3 ∈ [0, 1], a randomly chosen player wins or loses one unit according to the toss

of a pm-coin, where m ∈ {0, 1, 2, 3} depends on the winning or losing status of the player’s

two nearest neighbors. In this dissertation, we study a spatially dependent game A, which

we call game A′, introduced by Xie and others and considered by Ethier and Lee. Noting

that game A′ is fair, we say that the Parrondo effect occurs if game B is losing or fair and

the random mixture C ′ := γA′ + (1 − γ)B [respectively, the nonrandom periodic pattern

C ′ := (A′)rBs] is winning. With p1 = p2 and the parameter space being the unit cube, we

investigate numerically the region in which the Parrondo effect appears. We give sufficient

conditions for the ergodicity of an interacting particle system in {0, 1}Z corresponding to the

random mixture C ′ := γA′+(1−γ)B by applying a theorem of Liggett, and also by means of

“annihilating duality”. We also show that limN→∞ µ
N
(γ,1−γ)′ and limN→∞ µ

N
[r,s]′ exist under

certain conditions, where µN(γ,1−γ)′ denotes the mean profit per turn at equilibrium to the

N players playing the random mixture C ′ := γA′ + (1− γ)B, and µN[r,s]′ denotes the mean

profit per turn at equilibrium to the N players playing the nonrandom periodic pattern

C ′ := (A′)rBs.
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CHAPTER 1

INTRODUCTION

The Parrondo effect, in which there is a reversal in direction in some system parameter

when two similar dynamics are combined, is the result of an underlying nonlinearity. It was

first described by Spanish physicist J. M. R. Parrondo in 1996 in the context of games of

chance: He showed that it is possible to combine two losing games to produce a winning

one. His motivation was to provide a simplified model of the so-called flashing Brownian

ratchet of Ajdari and Prost [1]. Other versions of Parrondo’s games followed, including

Toral’s [19] spatially dependent games. These games were modified by Xie et al. [21], and

it is the goal of this dissertation to explore the latter games in greater depth than was done

by Ethier and Lee [10].

1.1 Parrondo’s original capital-dependent
games (1996)

The original capital-dependent games of Parrondo were motivated by the flashing Brow-

nian ratchet of Ajdari and Prost [1]. This object is well explained in a figure (and caption)

from Parrondo and Dinis [2]; see Figure 1.1. (An earlier version of this figure is in Faucheux

and others [12].)

Parrondo’s idea was to discretize space and time in the flashing Brownian ratchet,

replacing continuous-time Markov processes by discrete-time Markov chains, which could

be interpreted as cumulative profit in a sequence of games of chance. His games can be

described as follows.

First, we define a p-coin to be a coin whose probability of heads is p. Let p0 := 1
10 and

p1 := 3
4 . In game A, the player tosses a 1

2 -coin. The rules of game B are more complicated.

In game B, if the player’s current cumulative capital is a multiple of 3, a p0-coin is tossed,

otherwise a p1-coin is tossed. So game B is capital-dependent. In both games, the player

wins one unit with heads and loses one unit with tails. Figure 1.2 explains these rules via
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a diagram.

The player’s cumulative profit from game A behaves as a simple symmetric random

walk in Z. The player’s cumulative profit from game B behaves as an asymmetric random

walk in Z with state-dependent probabilities. These probabilities were chosen to make the

game asymptotically fair. Nevertheless, the random mixture C := 1
2A + 1

2B (toss a fair

coin to decide which game to play, A or B) is a winning game. (See Figure 1.3.) Moreover,

repeated periodic patterns such as ABB, AAB, and AABB are winning as well (and these

patterns are analogous to the flashing Brownian ratchet). The only exception is the pattern

AB, which is fair. (See Figure 1.4.)

Other forms of Parrondo’s games have been introduced, such as history-dependent games

(Parrondo, Harmer, and Abbott [18]) and multiplayer games (e.g., Dinis and Parrondo [17];

Toral, [19], [20]), but it is Toral’s [19] spatially dependent games that we want to focus on.

1.2 Toral’s (2001) spatially dependent games

Toral [19] introduced what he called cooperative Parrondo games with spatial depen-

dence. (We prefer the term spatially dependent Parrondo games so as to avoid conflict with

the field of cooperative game theory.) The games depend on an integer parameterN ≥ 3, the

number of players, and four probability parameters, p0, p1, p2, p3. The players are arranged

in a circle and labeled from 1 to N (so that players 1 and N are nearest neighbors). At

each turn, a player is chosen at random to play. Suppose player x is chosen. In game A, he

tosses a fair coin. In game B, he tosses a pm-coin (i.e., a coin whose probability of heads

is pm), where m ∈ {0, 1, 2, 3} depends on the winning or losing status of his two nearest

neighbors. A player’s status as winner (1) or loser (0) is decided by the result of his most

recent game. Specifically,

m =


0 if x− 1 and x+ 1 are both losers,

1 if x− 1 is a loser and x+ 1 is a winner,

2 if x− 1 is a winner and x+ 1 is a loser,

3 if x− 1 and x+ 1 are both winners,

where N + 1 := 1 and 0 := N because of the circular arrangement of players. Player x wins

one unit with heads and loses one unit with tails. See Figure 1.5 for clarification.

These games have been studied in detail in a series of papers by Ethier and Lee ([6],

[7], [8], [9]). For example, with Toral’s [19] choice of parameters, namely (p0, p1, p2, p3) =
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(1, 0.16, 0.16, 0.7), we can compute the asymptotic profit per turn to the set of N players,

for 3 ≤ N ≤ 19. See Table 1.1. In most cases the Parrondo effect (two fair or losing games

combine to win) is present. In the cited papers, a strong law of large numbers and a central

limit theorem are obtained. In particular, the asymptotic cumulative profits per turn exist

and are the means in the SLLN (see Table 1.1). Further, it seems clear that these means

converges as N → ∞. This has been proved under certain conditions (see Ethier and Lee

[8]).

1.3 The spatially dependent games of
Xie and Others (2011)

Notice that Toral’s [19] game A is not spatially dependent (the coin tossed does not

depend on the status of the nearest neighbors). Xie and others. [21] proposed a modification

of game A that is spatially dependent as well as being a fair game. To distinguish, we call

that game A′. The games depend on an integer parameter N ≥ 3, the number of players,

and four probability parameters, p0, p1, p2, p3. The players are arranged in a circle and

labeled from 1 to N (so that players 1 and N are nearest neighbors). At each turn, a player

is chosen at random to play. Suppose player x is chosen. In game A′, he chooses one of his

two nearest neighbors at random and competes with that neighbor by tossing a fair coin.

The results is a transfer of one unit from one of the players to the other, hence the wealth

of the set of N players is unchanged. In game B, he tosses a pm-coin (i.e., a coin whose

probability of heads is pm), where m depends on the status of his nearest neighbors. A

player’s status as winner (1) or loser (0) is decided by the result of his most recent game.

Specifically,

m =


0 if x− 1 and x+ 1 are both losers,

1 if x− 1 is a loser and x+ 1 is a winner,

2 if x− 1 is a winner and x+ 1 is a loser,

3 if x− 1 and x+ 1 are both winners,

where N + 1 := 1 and 0 := N because of the circular arrangement of players. Player x wins

one unit with heads and loses one unit with tails. See Figure 1.6 for clarification.

These games were studied by Xie and others [21] and Ethier and Lee [10]. Only the

random mixture case was treated, and convergence of the means has not yet been addressed.

Our aim in this thesis is to fill in these gaps in the literature. Further, we want to understand
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this model as well as Toral’s model is understood.

We begin by establishing a strong law of large numbers and a central limit theorem,

especially in the periodic pattern case, in Chapter 2. In Chapter 3, we compute various

means numerically and use computer graphics to visualize the Parrondo region. Then

we address the issue of convergence of means, which involves certain interacting particle

systems. We establish ergodicity of the interacting particle systems in Chapter 4 under

certain conditions, and we extend this in Chapter 5 using “annihilating duality.” Chapter

6 then proves the convergence, both in the random mixture setting and in the periodic

pattern setting.
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theory for the price of a stock very similar to Einstein’s [14].
Recently this link between probability, statistical mechanics
and economics has crystallized in a new field: econophysics
[15].

Some of the aforementioned constructive role of noise
has been observed in complex systems beyond physics.
Stochastic resonance, for instance, has an increasing
relevance in the study of perception and other cognitive
processes [10, 16]. Similarly, we expect that other elemen-
tary stochastic phenomena such as rectification will be
observed in many situations not restricted to physics.

With this idea in mind, Parrondo’s paradox came up as a
translation to simple gambling games of a Brownian
ratchet discovered by Ajdari and Prost [4]. The ratchet
was afterwards named by Astumian and Bier the flashing
ratchet [6] and it was related to the idea proposed by
Magnasco [5] that biological systems could rectify fluctua-
tions to perform work and systematic motion.

The paradox does not make use of Brownian particles,
but only of the simpler fluctuations arising in a gambling
game. However, it illustrates the mechanism of rectification
in a very sharp way, and for this reason we think that it
could contribute to extend the ‘noisy revolution’, i.e. the
idea that noise can create order, to those fields where
stochastic dynamics is relevant.

The paper is organized as follows. In section 2 we briefly
review the flashing ratchet and explain how it can rectify
fluctuations. Section 3 is devoted to the original Parrondo’s
paradox. There we introduce the paradoxical games as a
discretization of the flashing ratchet, discuss an intuitive
explanation of the paradox that we have called reorganiza-
tion of trends, and present an extension of the original
paradox inspired by this idea. In section 4 we introduce
several versions of the games involving a large number of
players. Some interesting effects can be observed in these
collective games: redistribution of capital brings wealth
[17], and collective decisions taken by voting or by
optimizing the returns in the next turn can lead to worse
performance than purely random choices [18, 19]. Finally,
in section 5 we briefly review the literature on the paradox
and present our main conclusions.

2. Ratchets

Here we revisit the flashing ratchet [4, 6], one of the
simplest Brownian ratchets and the most closely related to
the paradoxical games. We refer to the exhaustive review by
Reimann on Brownian ratchets [7] or the special issue in
Applied Physics A, edited by Linke [8], for further
information on the subject.

Consider an ensemble of independent one-dimensional
Brownian particles in the asymmetric sawtooth potential
depicted in figure 1. It is not difficult to show that, if the
potential is switched on and off periodically, the particles

exhibit an average motion to the right. Let us assume that
the temperature T is low enough to ensure that kT is much
smaller than the maxima of the potential, and that we start
with the potential switched on and with all the particles
around one of its minima, as shown in the upper plot of
figure 1. When the potential is switched off, the particles
diffuse freely, and the density of particles spreads as
depicted in the central plot of the figure. If the potential
is then switched on again, each particle will move back to
the initial minimum or to one of the nearest neighbouring
minima, depending on its position. Particles within the dark
region will move to the right-hand minimum, those within
the small grey region will move to the left-hand minimum,
and those within the white region will move back to their
initial positions. As is apparent from the figure and due to
the asymmetry of the potential, more particles fall into the
right-hand minimum and thus there is a net motion of
particles to the right. For this to occur, the switching can be
either random or periodic, but the average period must be
of the order of the time to reach the nearest barrier by free
diffusion (see [4, 6] for details).

This motion can be seen as a rectification of the thermal
noise associated with free diffusion. The diffusion is
symmetric: some particles move to the right and some to
the left, but their average position does not change.
However, when the potential is switched on again, most

Figure 1. The flashing ratchet at work. The figure represents
three snapshots of the potential and the density of particles.
Initially (upper figure), the potential is on and all the particles
are located around one of the minima of the potential. Then the
potential is switched off and the particles diffuse freely, as shown
in the centred figure, which is a snapshot of the system
immediately before the potential is switched on again. Once
the potential is connected again, the particles in the darker
region move to the right-hand minimum whereas those within the
small grey region move to the left. Due to the asymmetry of the
potential, the ensemble of particles move, on average, to the
right.

148 J. M. R. Parrondo and L. Dinı́s

Figure 1.1. The flashing ratchet at work. The figure represents three snapshots of the
potential and the density of particles. Initially (upper figure), the potential is on and all
the particles are located around one of the minima of the potential. Then the potential
is switched off and the particles diffuse freely, as shown in the centred figure, which is
a snapshot of the system immediately before the potential is switched on again. Once
the potential is connected again, the particles in the darker region move to the right-hand
minimum whereas those within the small grey region move to the left. Due to the asymmetry
of the potential, the ensemble of particles move, on average, to the right. (Figure and caption
used by permission from Parrondo and Dinis, 2004 [17].)
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game A game B

toss fair coin current fortune a multiple of 3?
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Figure 1.2. Parrondo’s capital-dependent games without a bias parameter.
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��[���[� + �] ≤ � - �� ��[[� + � + ��]]� �] �� - �[�����[���[� + �� �] ≠ �]]��

��[[� + ��]] = �� [���[� - �] ≤ � - �� ��[[� - � + ��]]� �] �[�����[���[� - �� �] ≠ �]] +
��[���[� + �] ≤ � - �� ��[[� + � + ��]]� �] �� - �[�����[���[� + �� �] ≠ �]]���

���[[�]] = ���[��[[� + ��]] �� {�� -�� �� �}]�
���[[�]] = ���[��[[� + ��]] �� {�� -�� �� �}]��

�����[
����[{��������[�����[{�� ���[[�]]}� {�� �� ��}]� ������ → ����� ��������� → {-�� �}�

��������� → ����]� ��������[�����[{�� ���[[�]]}� {�� �� ��}]� ������ → �����
��������� → {-�� �}� ��������� → ������]� ����[�� {�� �� ��}� ��������� → ���]�

��������[{����[�����[���� �������� → ��]� {��� ���}]�
����[�����[���� �������� → ��]� {��� -��}]�
����[�����[��=(�/�)(�+�)�� �������� → ��]� {��� ���}]}]}]]�
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Figure 1.3. Cumulative expected profit from Parrondo’s capital-dependent games.
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Figure 1.4. Cumulative expected profit from Parrondo’s capital-dependent games, cont.
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game A game B

choose a player, say x, at random

?

choose a player, say x, at random

?
x tosses a fair coin

?

check status of players x− 1, x+ 1

• loser, loser: x tosses a p0-coin
• loser, winner: x tosses a p1-coin
• winner, loser: x tosses a p2-coin
• winner, winner: x tosses a p3-coin









�

J
J
J
JĴ

x wins 1 x loses 1









�

J
J
J
JĴ

x wins 1 x loses 1

heads tails

heads tails

Figure 1.5. Toral’s spatially dependent, or cooperative, Parrondo games, with parameters
N ≥ 3 and p0, p1, p2, p3 ∈ [0, 1]. (A player’s status as winner or loser depends on the result
of his most recent game. Players are labeled from 1 to N ; player 0 is player N and player
N + 1 is player 1. A p-coin is one for which the probability of heads is p.)
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Table 1.1. Means for Toral’s (2001) games, assuming (p0, p1, p2, p3) = (1, 0.16, 0.16, 0.7).
Entries give µB and µC with C := 1

2A+1
2B, C := AB, C := ABB, C := ABBB, C := AAB,

C := AABB, and C := AAAB to six significant digits (in most cases) for 3 ≤ N ≤ 18.
Notice that µB < 0 for 3 ≤ N ≤ 19 except for N = 4, 7, 8, so the Parrondo effect is present
except in 26 of the 113 (= 16 × 7 + 1) cases. The seven blank entries were not computed.
The N =∞ row gives the limits as N →∞. (Used by permission from Ethier and Lee [6],
[7].)

N µB µ(A+B)/2 µAB µABB µABBB µAAB µAABB µAAAB

3 −0.0909091 −0.0183774 −0.00695879 −0.0274821 −0.0402157 0.00067249 −0.0148718 0.00179203
4 0.0799608 0.0171357 0.00877041 0.0234583 0.0356946 0.00352220 0.0101194 0.00244238
5 −0.00219465 0.00405176 0.00466232 0.00501198 0.00434917 0.00320648 0.00465517 0.00240873
6 −0.0189247 0.00463310 0.00497503 0.00590528 0.00513509 0.00325099 0.00498178 0.00241857
7 0.00350598 0.00482261 0.00496767 0.00621483 0.00637676 0.00326314 0.00497331 0.00242540
8 0.000698188 0.00479021 0.00494802 0.00604194 0.00599064 0.00327193 0.00495138 0.00243115
9 −0.00189233 0.00479036 0.00493507 0.00598135 0.00588386 0.00327802 0.00493728 0.00243582

10 −0.000332809 0.00479099 0.00492347 0.00593756 0.00584200 0.00328237 0.00492494 0.00243961
11 −0.000466527 0.00479089 0.00491339 0.00589846 0.00578690 0.00328558 0.00491438 0.00244272
12 −0.000676916 0.00479089 0.00490464 0.00586697 0.00574489 0.00328800 0.00490531 0.00244529
13 −0.000562901 0.00479089 0.00489699 0.00584063 0.00571065 0.00328986 0.00489744 0.00244745
14 −0.000569340 0.00479089 0.00489026 0.00581820 0.00568131 0.00329133 0.00489056 0.00244927
15 −0.000586184 0.00479089 0.00488431 0.00579891 0.00565623 0.00329249 0.00488449 0.00245083
16 −0.000578161 0.00479089 0.00487900 0.00578213 0.00563452 0.00329343 0.00487912 0.00245217
17 −0.000578345 0.00479089 0.00487426 0.00576740 0.00561552 0.00329420 0.00487432 0.00245334
18 −0.000579652 0.00479089 0.00486999 0.00575438 0.00559876 0.00329483 0.00487001 0.00245437
19 −0.000579095 0.00479089

∞ 0.00479089 0.00479089 0.00554084 0.00532972 0.00329853 0.00479089 0.00246903
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game A′ game B

choose a player, say x, at random

?

choose a player, say x, at random

?
choose y from x’s nearest neighbors at random

? ?

check status of players x− 1, x+ 1

• loser, loser: x tosses a p0-coin
• loser, winner: x tosses a p1-coin
• winner, loser: x tosses a p2-coin
• winner, winner: x tosses a p3-coin

x and y compete by tossing a fair coin









�

J
J
J
JĴ

heads tails

y pays 1 to x x pays 1 to y 







�

J
J
J
JĴ

x wins 1 x loses 1

heads tails

Figure 1.6. Satially dependent, or cooperative, Parrondo games of Xie and others [21],
with parameters N ≥ 3 and p0, p1, p2, p3 ∈ [0, 1]. (A player’s status as winner or loser
depends on the result of his most recent game. Players are labeled from 1 to N ; player 0 is
player N and player N + 1 is player 1. A p-coin is one for which the probability of heads is
p.)



CHAPTER 2

SLLN/CLT FOR THE GAMES OF

XIE AND OTHERS

In this chapter, we restate the strong law of large numbers (SLLN) and the central limit

theorem (CLT) of Ethier and Lee [5], and we apply them to the Parrondo games of Xie and

others. [21].

2.1 SLLN and CLT of Ethier and Lee

Ethier and Lee [5] proved an SLLN and a CLT for the Parrondo player’s sequence of

profits, motivated by game B and the random mixture C := γA+ (1− γ)B. A subsequent

version, stated later, treats the case of periodic patterns.

Consider an irreducible aperiodic Markov chain {Xn}n≥0 with finite state space Σ0.

It evolves according to the one-step transition matrix P = (Pij)i,j∈Σ0 . Let us denote its

unique stationary distribution by the row vector π = (πi)i∈Σ0 . Let w : Σ0 × Σ0 7→ R be

an arbitrary function, which we write as a matrix W = (w(i, j))i,j∈Σ0 and refer to as the

payoff matrix. Define the sequences {ξn}n≥1 and {Sn}n≥1 by

ξn := w(Xn−1, Xn), n ≥ 1, (2.1)

and

Sn := ξ1 + · · ·+ ξn, n ≥ 1. (2.2)

Let Π denote the square matrix each of whose rows is π, and let Z := (I − (P −Π))−1

denote the fundamental matrix. Denote by Ṗ and P̈ the Hadamard (entrywise) products

P ◦W and P ◦W ◦W (so Ṗij := Pijw(i, j) and P̈ij := Pijw(i, j)2). Let 1 := (1, 1, . . . , 1)T

and define

µ := πṖ1 and σ2 := πP̈1− (πṖ1)2 + 2πṖ (Z −Π)Ṗ1. (2.3)
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Theorem 2.1 (Ethier and Lee [5]). Under the above assumptions, and with the distribution

of X0 arbitrary,
Sn
n
→ µ a.s.

and, if σ2 > 0,
Sn − nµ√

nσ2
→d N(0, 1).

If µ = 0 and σ2 > 0, then −∞ = lim infn→∞ Sn < lim supn→∞ Sn =∞ a.s.

To illustrate this theorem, let us consider the capital-dependent Parrondo games of

Section 1.1. The underlying Markov chain {Xn}n≥0 has state space Σ0 := {0, 1, 2} and

one-step transition matrix

PB :=

 0 1/10 9/10
1/4 0 3/4
3/4 1/4 0

 .

Its unique stationary distribution is πB = (1/13)(5, 2, 6). The payoff matrix has the form

W :=

 0 1 −1
−1 0 1
1 −1 0

 .

We find that

µB = πBṖB1 = 0.

We can apply the same argument to

PA :=

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0


with unique stationary distribution πA = (1/3)(1, 1, 1) to get

µA = πAṖA1 = 0,

a result that is obvious without calculation. Finally, the (1
2 ,

1
2) random mixture has one-step

transition matrix

PC :=
1

2
(PA + PB) =

 0 3/10 7/10
3/8 0 5/8
5/8 3/8 0


with unique stationary distribution πC = (1/709)(245, 180, 284). We get

µC = πCṖC1 =
18

709
≈ 0.0253879.

This is perhaps the best known example of Parrondo’s paradox, and the SLLN justifies the

conclusion: Two fair games combine to win.
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We can also derive a CLT, which requires the fundamental matrix

ZB := (I − (PB −ΠB))−1 =
1

2197

1725 −38 510
−95 1938 354
425 118 1654

 .

We find that

σ2
B = πBP̈B1− (πBṖB1)2 + 2πBṖB(ZB −ΠB)ṖB1 =

(
9

13

)2

≈ 0.479290.

Similarly,

ZA := (I − (PA −ΠA))−1 =
1

9

7 1 1
1 7 1
1 1 7

 ,

hence,

σ2
A = πAP̈A1− (πAṖA1)2 + 2πAṖA(ZA −ΠA)ṖA1 = 1,

as is obvious without the formula. Finally,

ZC := (I − (PC −ΠC))−1 =
1

502681

392265 22884 87532
23585 408580 70516
80305 39900 382476

 ,

and we conclude that

σ2
C = πCP̈C1− (πCṖC1)2 + 2πCṖC(ZC −ΠC)ṖC1 =

311313105

356400829
≈ 0.873492.

In each case we have a CLT.

Next we turn to another SLLN and CLT of Ethier and Lee [5] , this one motivated by

the case of periodic patterns.

Let PA and PB be one-step transition matrices for Markov chains in a finite state space

Σ0. Fix integers r, s ≥ 1. Assume that P := P r
AP

s
B, as well as all cyclic permutations of

P r
AP

s
B, are ergodic, and let the row vector π be the unique stationary distribution of P . Let

Π be the square matrix each of whose rows is equal to π, and let Z := (I − (P −Π))−1 be

the fundamental matrix of P . Given a real-valued function w on Σ0×Σ0, define the payoff

matrix W := (w(i, j))i,j∈Σ0 . Define ṖA := PA ◦W , ṖB := PB ◦W , P̈A := PA ◦W ◦W ,

P̈B := PB ◦W ◦W , where ◦ denotes the Hadamard (entrywise) product. Let

µ[r,s] :=
1

r + s

[ r−1∑
u=0

πP u
AṖA1 +

s−1∑
v=0

πP r
AP

v
BṖB1

]
,

and

σ2
[r,s] =

1

r + s

[ r−1∑
u=0

[πP u
AP̈A1− (πP u

AṖA1)2]
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+

s−1∑
v=0

[πP r
AP

v
BP̈B1− (πP r

AP
v
BṖB1)2]

+ 2
∑

0≤u<v≤r−1

πP u
AṖA(P v−u−1

A −ΠP v
A)ṖA1

+ 2
r−1∑
u=0

s−1∑
v=0

πP u
AṖA(P r−u−1

A −ΠP r
A)P v

BṖB1

+ 2
∑

0≤u<v≤s−1

πP r
AP

u
BṖB(P v−u−1

B −ΠP r
AP

v
B)ṖB1

+ 2

( r−1∑
u=0

r−1∑
v=0

πP u
AṖAP

r−u−1
A P s

B(Z −Π)P v
AṖA1

+
r−1∑
u=0

s−1∑
v=0

πP u
AṖAP

r−u−1
A P s

B(Z −Π)P r
AP

v
BṖB1

+
s−1∑
u=0

r−1∑
v=0

πP r
AP

u
BṖBP

s−u−1
B (Z −Π)P v

AṖA1

+
s−1∑
u=0

s−1∑
v=0

πP r
AP

u
BṖBP

s−u−1
B (Z −Π)P r

AP
v
BṖB1

)]
,

where 1 denotes a column vector of 1s with entries indexed by Σ0. Let {Xn}n≥0 be a non-

homogeneous Markov chain in Σ0 with one-step transition matrices PA, . . . ,PA (r times),

PB, . . . ,PB (s times), PA, . . . ,PA (r times), PB, . . . ,PB (s times), and so on. For each

n ≥ 1, define ξn := w(Xn−1, Xn) and Sn := ξ1 + · · ·+ ξn.

Theorem 2.2 (Ethier and Lee [5]). Under the above assumptions, and with the distribution

of X0 arbitrary,
Sn
n
→ µ[r,s] a.s.

and, if σ2
[r,s] > 0, then

Sn − nµ[r,s]√
nσ2

[r,s]

→d N(0, 1) as n→∞.

To illustrate this result, we consider the capital-dependent Parrondo games of Section

1.1, and we take r = s = 2. Then

P = P 2
AP

2
B =

1

320

162 59 99
151 58 111
111 47 162

 .

Its unique stationary distribution is π = (1/6357)(2783, 1075, 2499), and the fundamental

matrix is
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Z =
1

525348837

569627023 10027235 −54305421
22416463 532826915 −29894541
−58953137 −14383645 598685619

 .

In this example, ṖA1 = 0, P̈A = PA, and P̈B = PB, and this simplfies the mean and

variance formulas considerably. Specifically, we have

µ[2,2] =
1

4
πP 2

A(I + PB)ṖB1

and

σ2
[2,2] =

1

4

[
2 + 2− (πP 2

AṖB1)2 − (πP 2
APBṖB1)2

+ 2πṖA(PA −ΠP 2
A)(I + PB)ṖB1 + 2πPAṖA(I −ΠP 2

A)(I + PB)ṖB1

+ 2πP 2
AṖB(I −ΠP 2

APB)ṖB1

+ 2πṖAPAP
2
B(Z −Π)P 2

A(I + PB)ṖB1 + 2πPAṖAP
2
B(Z −Π)P 2

A(I + PB)ṖB1

+ 2πP 2
AṖBPB(Z −Π)P 2

A(I + PB)ṖB1 + 2πP 2
APBṖB(Z −Π)P 2

A(I + PB)ṖB1
]
.

We conclude that

µ[2,2] =
4

163
≈ 0.0245399 and σ2

[2,2] =
1923037543

2195688729
≈ 0.875824.

These numbers are consistent with Ethier and Lee [5].

2.2 Application to game B

The Markov chain formalized by Mihailović and Rajković [16] keeps track of the status

(loser or winner, 0 or 1) of each of the N ≥ 3 players of game B, which was described in

Chapter 1. Its state space is the product space

Σ := {η = (η(1), η(2), . . . , η(N)) : η(x) ∈ {0, 1} for x = 1, . . . , N} = {0, 1}N

with 2N states. Let mx(η) := 2η(x−1)+η(x+1) ∈ {0, 1, 2, 3}. Of course η(0) := η(N) and

η(N+1) := η(1) because of the circular arrangement of players. Also, let ηx be the element of

Σ equal to η except at the xth coordinate. For example, η1 := (1−η(1), η(2), η(3), . . . , η(N)).
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The one-step transition matrix PB for this Markov chain depends not only on N but on

four parameters, p0, p1, p2, p3 ∈ [0, 1]. It has the form

PB(η, ηx) :=

{
N−1pmx(η) if η(x) = 0,

N−1qmx(η) if η(x) = 1,
x = 1, . . . , N, η ∈ Σ, (2.4)

and

PB(η, η) := N−1

( ∑
x:η(x)=0

qmx(η) +
∑

x:η(x)=1

pmx(η)

)
, η ∈ Σ, (2.5)

where qm := 1−pm for m = 0, 1, 2, 3, and empty sums are 0. The Markov chain is irreducible

and aperiodic if 0 < pm < 1 for m = 0, 1, 2, 3. Under slightly weaker assumptions (see Ethier

and Lee [8]), the Markov chain is ergodic, which suffices. For example, if p0 is arbitrary

and 0 < pm < 1 for m = 1, 2, 3, or if 0 < pm < 1 for m = 0, 1, 2 and p3 is arbitrary, then

ergodicity holds.

It appears at first glance that the theorem does not apply in the context of game B

because the payoffs are not completely specified by the one-step transitions of the Markov

chain. Specifically, a transition from a state η to itself results whenever a loser loses or a

winner wins, so the transition does not determine the payoff.

Our original Markov chain has state space Σ := {0, 1}N and its one-step transition

matrix PB is given by (2.4) and (2.5). Assuming it is ergodic, let π denote its unique

stationary distribution. The approach in Ethier and Lee [6] augments the state space,

letting Σ∗ := Σ × {1, 2, . . . , N} and keeping track not only of the status of each player as

described by η ∈ Σ but also of the label of the next player to play, say x. The new one-step

transition matrix P ∗B has the form

P ∗B((η, x), (ηx, y)) :=

{
N−1pmx(η) if η(x) = 0,

N−1qmx(η) if η(x) = 1,
(η, x) ∈ Σ∗, y = 1, 2, . . . , N,

and

P ∗B((η, x), (η, y)) :=

{
N−1qmx(η) if η(x) = 0,

N−1pmx(η) if η(x) = 1,
(η, x) ∈ Σ∗, y = 1, 2, . . . , N,

where qm := 1 − pm for m = 0, 1, 2, 3 and mx(η) := 2η(x − 1) + η(x + 1). This remains

an ergodic Markov chain, and its unique stationary distribution π∗ is given by π∗(η, x) =

N−1π(η). Further, the payoff matrix now has each nonzero entry equal to ±1, so the

theorem applies.



18

However, there is a drawback to this approach, namely that it is not clear that the

variance parameter (σ∗)2 is the same as the original one, σ2. (It is easy to verify that

µ∗ = µ.) Therefore, we take a different approach, namely the one used by Ethier and Lee

[11] in their study of two-dimensional spatial models.

Here a different augmentation of Σ is more effective. We let Σ◦ := Σ×{−1, 1} and keep

track not only of η ∈ Σ but also of the profit from the last game played, say s ∈ {−1, 1}.

The new one-step transition matrix P ◦B has the form, for every (η, s) ∈ Σ◦,

P ◦B((η, s), (ηx, 1)) :=

{
N−1pmx(η) if η(x) = 0,

0 if η(x) = 1,
(2.6)

P ◦B((η, s), (ηx,−1)) :=

{
0 if η(x) = 0,

N−1qmx(η) if η(x) = 1,
(2.7)

for x = 1, . . . , N , and

P ◦B((η, s), (η, 1)) := N−1
∑

x:η(x)=1

pmx(η), (2.8)

P ◦B((η, s), (η,−1)) := N−1
∑

x:η(x)=0

qmx(η), (2.9)

where qm := 1 − pm for m = 0, 1, 2, 3, 4, and mx(η) = 2η(x − 1) + η(x + 1). There are

two inaccessible states, (0, 1) and (1,−1), but the Markov chain remains ergodic. Let π◦

denote the unique stationary distribution, which has entry 0 at each of the two inaccessible

states. The payoff function w◦ can now be defined by

w◦((η, s), (ηx, t)) = t if η(x) = (1− t)/2, w◦((η, s), (η, t)) = t

for all (η, s) ∈ Σ◦, x = 1, 2, . . . , N , and t ∈ {−1, 1}, and w◦ = 0 otherwise. This allows us to

define the matrix W ◦ and then Ṗ ◦B := P ◦B ◦W ◦ and P̈ ◦B := P ◦B ◦W ◦ ◦W ◦, the Hadamard

(or entrywise) products. Theorem 2.1 yields the following.

Theorem 2.3. Let 0 < pm < 1 for m = 0, 1, 2 or for m = 1, 2, 3, so that the Markov

chain with one-step transition matrix P ◦B is ergodic, and let the row vector π◦B be its unique

stationary distribution. Define

µ◦B = π◦BṖ
◦
B1, (σ◦B)2 = π◦BP̈

◦
B1− (π◦BṖ

◦
B1)2 + 2π◦BṖ

◦
B(Z◦B − 1π◦B)Ṗ ◦B1.

where 1 denotes a column vector of 1s with entries indexed by Σ◦B and Z◦B := (I − (P ◦B −

1π◦B))−1 is the fundamental matrix. (Notice that 1π◦B is the square matrix each of whose
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rows is equal to π◦B.) Let {X◦n}n≥0 be a time-homogeneous Markov chain in Σ◦ with one-step

transition matrix P ◦B, and let the initial distribution be arbitrary. For each n ≥ 1, define

ξn := w◦(X◦n−1, X
◦
n) and Sn := ξ1 + · · · + ξn. Then limn→∞ n

−1Sn = µ◦B a.s. and, if

(σ◦B)2 > 0, then (Sn − nµ◦B)/
√
n(σ◦B)2 →d N(0, 1) as n→∞.

We next show that there is a simpler expression for this mean and variance. Let us

define

µB := πBṖB1, σ2
B := πBP̈B1− (πBṖB1)2 + 2πBṖB(ZB − 1πB)ṖB1, (2.10)

where 1 is the column vector of 1s of the appropriate dimension, ṖB is PB with each qm

replaced by −qm, and P̈B = PB. This “rule of thumb” for ṖB requires some caution: It

must be applied before any simplifications to PB are made using qm = 1− pm. Of course,

πB is the unique stationary distribution, and ZB is the fundamental matrix, of PB.

Theorem 2.4.

µ◦B = µB (2.11)

and

(σ◦B)2 = σ2
B. (2.12)

Remark. Before proving this, let us explain its significance. µ◦B and (σ◦B)2 are the mean

and variance that appear in the SLLN and the CLT. They are defined in terms of P ◦B, the

augmented one-step transition matrix. µB and σ2
B are defined analogously in terms of PB,

the original one-step transition matrix, using the rule of thumb.

Proof. To emphasize the fact that P ◦B((η, s), (ζ, t)) does not depend on s, we write it

temporarily as P ◦B((η, ·), (ζ, t)). This leads to

µ◦B = π◦BṖ
◦
B1 =

∑
η,s,ζ,t

π◦B(η, s)Ṗ ◦B((η, ·), (ζ, t)) =
∑
η,ζ

πB(η)ṖB(η, ζ) = πBṖB1 = µB.

(2.13)

To show that (σ◦B)2 = σ2
B, we need to show that

π◦BṖ
◦
B(Z◦B − 1π◦B)Ṗ ◦B1 = πBṖB(ZB − 1πB)ṖB1.

Now, by Kemeny and Snell [14], ZB −1πB =
∑∞

m=1(Pm−1
B −1πB), so it is enough to show

that

π◦BṖ
◦
B((P ◦B)m−1 − 1π◦B)Ṗ ◦B1 = πBṖB(Pm−1

B − 1πB)ṖB1, m ≥ 1,
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or that

π◦BṖ
◦
B(P ◦B)m−1Ṗ ◦B1 = πBṖBP

m−1
B ṖB1, m ≥ 1.

Given m ≥ 1, we have

π◦BṖ
◦
B(P ◦B)m−1Ṗ ◦B1

=
∑

η,s,ζ,t,ξ,u,φ,v

π◦B(η, s)Ṗ ◦B((η, ·), (ζ, t))(P ◦B)m−1((ζ, ·), (ξ, u))Ṗ ◦B((ξ, ·), (φ, v))

=
∑

η,ζ,t,ξ,φ,v

πB(η)Ṗ ◦B((η, ·), (ζ, t))Pm−1
B (ζ, ξ)Ṗ ◦B((ξ, ·), (φ, v))

=
∑
η,ζ,ξ,φ

πB(η)ṖB(η, ζ)Pm−1
B (ζ, ξ)ṖB(ξ, φ)

= πBṖBP
m−1
B ṖB1,

which completes the proof.

2.3 Application to game C ′ := γA′ + (1− γ)B

This case is not much different from the previous one. Notice that, if game A′ is played,

the profit to the set of N players is 0, since game A′ simply redistributes capital among

the players. So we can use the same augmentation of the state space as before, except

that 0 is now a possible value of the profit from the last game played. In other words,

Σ◦ := Σ×{−1, 0, 1}. The transition probabilities require some new notation. Let ηx,x±1,±1

be the element of Σ representing the players’ status after player x plays player x±1 and wins

(1) or loses (−1). Of course player 0 in player N and player N + 1 is player 1. For example,

η1,2,−1 = (0, 1, η(3), . . . , η(N)) (player 1 competes against player 2 and loses, leaving player

1 a loser and player 2 a winner, regardless of their previous status). Then

P ◦C′((η, s), (ηx, 1)) =

{
(1− γ)N−1pmx(η) if η(x) = 0,

0 if η(x) = 1,
(2.14)

P ◦C′((η, s), (ηx,−1)) =

{
0 if η(x) = 0,

(1− γ)N−1qmx(η) if η(x) = 1,
(2.15)

P ◦C′((η, s), (η
x,x−1,−1, 0)) = γ(4N)−1, (2.16)

P ◦C′((η, s), (η
x,x−1,1, 0)) = γ(4N)−1, (2.17)

P ◦C′((η, s), (η
x,x+1,−1, 0)) = γ(4N)−1, (2.18)

P ◦C′((η, s), (η
x,x+1,1, 0)) = γ(4N)−1, (2.19)
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for x = 1, 2, . . . , N , and

P ◦C′((η, s), (η, 1)) = (1− γ)N−1
∑

x:η(x)=1

pmx(η), (2.20)

P ◦C′((η, s), (η,−1)) = (1− γ)N−1
∑

x:η(x)=0

qmx(η). (2.21)

Of course, we could also define PC′ = γPA′ + (1− γ)PB. We notice that Theorems 2.5

and 2.6 hold in this framework without change.

Theorem 2.5. Let 0 < pm < 1 for m = 0, 1, 2 or for m = 1, 2, 3, so that the Markov chain

with one-step transition matrix P ◦C′ := γP ◦A′ + (1− γ)P ◦B is ergodic, and let the row vector

π◦C′ be its unique stationary distribution. Define

µ◦(γ,1−γ)′ = π◦C′Ṗ
◦
C′1, (σ◦(γ,1−γ)′)

2 = π◦C′P̈
◦
C′1− (π◦C′Ṗ

◦
C′1)2 + 2π◦C′Ṗ

◦
C′(Z

◦
C′ − 1π◦C′)Ṗ

◦
C′1.

where 1 denotes a column vector of 1s with entries indexed by Σ◦ and Z◦C′ := (I − (P ◦C′ −

1π◦C′))
−1 is the fundamental matrix. (Notice that 1π◦C′ is the square matrix each of whose

rows is equal to π◦C′.) Let {X◦n}n≥0 be a time-homogeneous Markov chain in Σ◦ with one-step

transition matrix P ◦C′, and let the initial distribution be arbitrary. For each n ≥ 1, define

ξn := w◦(X◦n−1, X
◦
n) and Sn := ξ1 + · · · + ξn. Then limn→∞ n

−1Sn = µ◦(γ,1−γ)′ a.s. and, if

(σ◦(γ,1−γ)′)
2 > 0, then (Sn − nµ◦(γ,1−γ)′)/

√
n(σ◦(γ,1−γ)′)

2 →d N(0, 1) as n→∞.

Let us define

µ(γ,1−γ)′ := πC′ṖC′1, σ2
(γ,1−γ)′ := πC′P̈C′1− (πC′ṖC′1)2 + 2πC′ṖC′(ZC′ − 1πC′)ṖC′1,

(2.22)

where 1 is the column vector of 1s of the appropriate dimension, ṖC′ is (1−γ)ṖB with each

qm replaced by −qm, and P̈C′ = (1 − γ)PB. This “rule of thumb” for ṖC′ requires some

caution: It must be applied before any simplifications to PC′ are made using qm = 1− pm.

Of course, πC′ is the unique stationary distribution, and ZC′ is the fundamental matrix, of

PC′ . Notice that Ṗ ◦A′ = 0, so Ṗ ◦C′ = (1− γ)Ṗ ◦B and P̈ ◦C′ = (1− γ)P̈ ◦B.

Theorem 2.6.

µ◦(γ,1−γ)′ = µ(γ,1−γ)′ (2.23)

and

(σ◦(γ,1−γ)′)
2 = σ2

(γ,1−γ)′ . (2.24)
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2.4 Application to game C ′ := (A′)rBs

Next we need versions of the SLLN and the CLT suited to game C ′ := (A′)rBs. The

key result is Theorem 2.2.

For the same reason as before, the theorem does not apply directly to PA′ and PB.

Therefore, we again consider the Markov chains in the augmented state space Σ◦ := Σ ×

{−1, 0, 1} with one-step transition matrix P ◦A′ and P ◦B. The definitions are as in (2.14)–

(2.21) with γ = 1 or γ = 0. With W ◦ as before, the theorem applies.

Fix r, s ≥ 1. Assume that P ◦ := (P ◦A′)
r(P ◦B)s, as well as all cyclic permutations of

(P ◦A′)
r(P ◦B)s, are ergodic, and let the row vector π◦ be the unique stationary distribution

of P ◦. Let

µ◦[r,s]′ :=
1

r + s

s−1∑
v=0

π◦(P ◦A′)
r(P ◦B)vṖ ◦B1

and

(σ◦[r,s]′)
2 = 1− 1

r + s

s−1∑
v=0

(π◦(P ◦A′)
r(P ◦B)vṖ ◦B1)2

+
2

r + s

[ ∑
0≤u<v≤s−1

π◦(P ◦A′)
r(P ◦B)uṖ ◦B((P ◦B)v−u−1 − 1π◦(P ◦A′)

r(P ◦B)v)Ṗ ◦B1

+
s−1∑
u=0

s−1∑
v=0

π◦(P ◦A′)
r(P ◦B)uṖ ◦B(P ◦B)s−u−1(Z◦ − 1π◦)(P ◦A′)

r(P ◦B)vṖ ◦B1

]
.

Let {X◦n}n≥0 be a temporally nonhomogeneous Markov chain in Σ◦ with one-step transition

matrices P ◦A′ , . . . ,P
◦
A′ (r times), P ◦B, . . . ,P

◦
B (s times), P ◦A′ , . . . ,P

◦
A′ (r times), P ◦B, . . . ,P

◦
B

(s times), and so on. For each n ≥ 1, define ξn := w◦(X◦n−1, X
◦
n) and Sn := ξ1 + · · ·+ ξn.

Theorem 2.7. Under the above assumptions, and with the distribution of X0 arbitrary,

Sn
n
→ µ◦[r,s]′ a.s.

and, if (σ◦[r,s]′)
2 > 0, then

Sn − nµ◦[r,s]′√
n(σ◦[r,s]′)

2
→d N(0, 1) as n→∞.

Again there are simpler expressions for this mean and variance. We define µ[r,s]′ in terms

of π, PA′ , PB, and ṖB in the same way that µ◦[r,s]′ was defined in terms of π◦, P ◦A′ , P
◦
B, and

Ṗ ◦B. (ṖB is defined by the rule of thumb.) Finally, σ2
[r,s]′ is defined analogously to (σ◦[r,s]′)

2.
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Theorem 2.8.

µ◦[r,s]′ = µ[r,s]′ (2.25)

and

(σ◦[r,s]′)
2 = σ2

[r,s]′ . (2.26)

Proof. Eq. (2.25) follows exactly as in (2.13). Eq. (2.26) is proved in the same way as (2.24).



CHAPTER 3

NUMERICAL COMPUTATIONS

In this chapter, we compute vairious means numerically by using the reduced state space

and use computer graphics to visualize the Parrondo region of the Parrondo games of Xie

at al.

3.1 State-space reduction

Let us begin by explaining what we mean by state-space reduction, which is an important

method for simplifying our computations.

In general, consider an equivalence relation ∼ on a finite set E. By definition, ∼ is

reflexive (x ∼ x), symmetric (x ∼ y implies y ∼ x), and transitive (x ∼ y and y ∼ z

imply x ∼ z). It is well known that an equivalence relation partitions the set E into

equivalence classes. The set of all equivalence classes, called the quotient set, will be denoted

by Ē. Let us write [x] := {y ∈ E : y ∼ x} for the equivalence class containing x. Then

Ē = {[x] : x ∈ E}.

Now suppose X0, X1, X2, . . . is a (time-homogeneous) Markov chain in E with transition

matrix P . In particular, P (x, y) = P(Xt+1 = y | Xt = x) for all x, y ∈ E and t = 0, 1, 2, . . ..

Under what conditions on P is [X0], [X1], [X2], . . . a Markov chain in the “reduced” state

space Ē? A sufficient condition, apparently due to Kemeny and Snell ([14], p. 124), is that

P be lumpable with respect to ∼. By definition, this means that, for all x, x′, y ∈ E,

x ∼ x′ implies
∑
y′∈[y]

P (x, y′) =
∑
y′∈[y]

P (x′, y′). (3.1)

Moreover, if (3.1) holds, then the Markov chain [X0], [X1], [X2], . . . in Ē has transition

matrix P̄ given by

P̄ ([x], [y]) :=
∑
y′∈[y]

P (x, y′). (3.2)

Notice that (3.1) ensures that (3.2) is well defined.
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For Parrondo games with one-dimensional spatial dependence, the state space, assuming

N ≥ 3 players, is

Σ := {η = (η(1), η(2), . . . , η(N)) : η(x) ∈ {0, 1} for x = 1, 2, . . . , N} = {0, 1}N ,

which has 2N states. A state η ∈ Σ describes the status of each of the N players, 0 for

losers and 1 for winners. We can also think of Σ as the set of N -bit binary representations

of the integers 0, 1, . . . , 2N − 1, thereby giving a natural ordering to the vectors in Σ.

Ethier and Lee [6] used the following equivalence relation on Σ: η ∼ ζ if and only if

ζ = ησ := (η(σ(1)), . . . , η(σ(N))) for a permutation σ of (1, 2, . . . , N) belonging to the cyclic

group G of order N of the rotations of the players. If, in addition, p1 = p2, the permutation

σ can belong to the dihedral group G of order 2N of the rotations and reflections of the

players. They verified the lumpability condition, with the result that the size of the state

space was reduced by a factor of nearly N (or 2N if p1 = p2) for large N . It should be

noted that a sufficient condition for the lumpability condition in this setting is that, for

every η, ζ ∈ Σ,

P (ησ, ζσ) = P (η, ζ) for all σ ∈ G (3.3)

or for all σ in a subset of G that generates G.

To fully justify this, the following lemma is useful.

Lemma 3.1 (Ethier and Lee [7]). Fix N ≥ 3, let G be a subgroup of the symmetric

group SN . Let P be the one-step transition matrix for a Markov chain in Σ with a unique

stationary distribution π. Assume that

P (ησ, ζσ) = P (η, ζ), σ ∈ G, η, ζ ∈ Σ. (3.4)

Then π(ησ) = π(η) for all σ ∈ G and η ∈ Σ.

Let us say that η ∈ Σ is equivalent to ζ ∈ Σ (written η ∼ ζ) if there exists σ ∈ G such

that ζ = ησ, and let us denote the equivalence class containing η by [η]. Then, in addition,

P induces a one-step transition matrix P̄ for a Markov chain in the quotient set (i.e., the

set of equivalence classes) Σ̄ defined by the formula

P̄ ([η], [ζ]) :=
∑
ζ′∈[ζ]

P (η, ζ ′), (3.5)
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Furthermore, if P̄ has a unique stationary distribution π̄, then the unique stationary distri-

bution π is given by π(η) = π̄([η])/|[η]|, where |[η]| denotes the cardinality of the equivalence

class [η].

The lemma will apply to PA′ and PB (hence PC′) if we can verify (3.4) for G being the

cyclic group of rotations or, if p1 = p2, the dihedral group of rotations and reflections.

The practical effect of this is that we can reduce the size of the state space (namely, 2N )

to what we will call its effective size, which is simply the number of equivalence classes. For

example, if N = 3, there are eight states and four equivalence classes, namely

0 = {000}, 1 = {001, 010, 100}, 2 = {011, 101, 110}, 3 = {111}.

Notice that we label equivalence classes by the number of 1s each element has. If N = 4,

there are 16 states and six equivalence classes, namely

0 = {0000},

1 = {0001, 0010, 0100, 1000},

2 = {0011, 0110, 1001, 1100},

2′ = {0101, 1010},

3 = {0111, 1011, 1101, 1110},

4 = {1111}.

In these two cases, it does not matter which of the two equivalence relations we use; the

result is the same.

The number of equivalence classes with G being the group of cyclic permutations follows

the sequence A000031 in the The On-Line Encyclopedia of Integer Sequences (Sloan, 2016),

described as the number of necklaces with N beads of two colors when turning over is

not allowed. There is an explicit formula in terms of Euler’s phi-function. If p1 = p2, we

can reverse the order of the players, and the number of equivalence classes with G being

the dihedral group follows the sequence A000029 in the OEIS, described as the number

of necklaces with N beads of two colors when turning over is allowed. Again, there is an

explicit formula. See Table 3.1.
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To illustrate our approach in a tractable case, we focus on the case N = 4. Here Σ has

16 states, ordered as the 4-bit binary representations of the number 0–15. First, PB has

the form

PB :=
1

4



d0 p0 p0 0 p0 0 0 0 p0 0 0 0 0 0 0 0
q0 d1 0 p1 0 p0 0 0 0 p2 0 0 0 0 0 0
q0 0 d2 p2 0 0 p1 0 0 0 p0 0 0 0 0 0
0 q1 q2 d3 0 0 0 p1 0 0 0 p2 0 0 0 0
q0 0 0 0 d4 p0 p2 0 0 0 0 0 p1 0 0 0
0 q0 0 0 q0 d5 0 p3 0 0 0 0 0 p3 0 0
0 0 q1 0 q2 0 d6 p2 0 0 0 0 0 0 p1 0
0 0 0 q1 0 q3 q2 d7 0 0 0 0 0 0 0 p3

q0 0 0 0 0 0 0 0 d8 p1 p0 0 p2 0 0 0
0 q2 0 0 0 0 0 0 q1 d9 0 p1 0 p2 0 0
0 0 q0 0 0 0 0 0 q0 0 d10 p3 0 0 p3 0
0 0 0 q2 0 0 0 0 0 q1 q3 d11 0 0 0 p3

0 0 0 0 q1 0 0 0 q2 0 0 0 d12 p1 p2 0
0 0 0 0 0 q3 0 0 0 q2 0 0 q1 d13 0 p3

0 0 0 0 0 0 q1 0 0 0 q3 0 q2 0 d14 p3

0 0 0 0 0 0 0 q3 0 0 0 q3 0 q3 q3 d15



,

where the diagonal entries are chosen to make the row sums equal to 1:

d0 := 4q0,

d1 = d2 = d4 = d8 := p0 + q0 + q1 + q2,

d3 = d6 = d9 = d12 := p1 + p2 + q1 + q2,

d5 = d10 := 2(p0 + q3),

d7 = d11 = d13 = d14 := p1 + p2 + p3 + q3,

d15 := 4p3,

and qm := 1− pm for m = 0, 1, 2, 3. This is consistent with Eq. (12) of Xie and others [21].

For the equivalence relation mentioned above, there are six equivalence classes, namely,

{0000}, {0001, 0010, 0100, 1000}, {0011, 0110, 1001, 1100}, {0101, 1010}, {0111, 1011, 1101,

1110}, and {1111}. Denoting the states by their decimal representations (0–15), the equiva-

lence classes are {0}, {1, 2, 4, 8}, {3, 6, 9, 12}, {5, 10}, {7, 11, 13, 14}, and {15}. It will be con-

venient to reorder the states temporarily. Within each equivalence class, we order elements

so that each is a fixed rotation of the preceding one, that is, {0000}, {1000, 0100, 0010, 0001},

{1100, 0110, 0011, 1001}, {1010, 0101}, {1110, 0111, 1011, 1101}, and {1111}, or {0}, {8, 4,

2, 1}, {12, 6, 3, 9}, {10, 5}, {14, 7, 11, 13}, and {15}. We now order states in this order: 0,
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8, 4, 2, 1, 12, 6, 3, 9, 10, 5, 14, 7, 11, 13, 15, which leads to an alternative form for the

transition matrix, namely

PB :=
1

4



d0 p0 p0 p0 p0 0 0 0 0 0 0 0 0 0 0 0

q0 d8 0 0 0 p2 0 0 p1 p0 0 0 0 0 0 0
q0 0 d4 0 0 p1 p2 0 0 0 p0 0 0 0 0 0
q0 0 0 d2 0 0 p1 p2 0 p0 0 0 0 0 0 0
q0 0 0 0 d1 0 0 p1 p2 0 p0 0 0 0 0 0

0 q2 q1 0 0 d12 0 0 0 0 0 p2 0 0 p1 0
0 0 q2 q1 0 0 d6 0 0 0 0 p1 p2 0 0 0
0 0 0 q2 q1 0 0 d3 0 0 0 0 p1 p2 0 0
0 q1 0 0 q2 0 0 0 d9 0 0 0 0 p1 p2 0

0 q0 0 q0 0 0 0 0 0 d10 0 p3 0 p3 0 0
0 0 q0 0 q0 0 0 0 0 0 d5 0 p3 0 p3 0

0 0 0 0 0 q2 q1 0 0 q3 0 d14 0 0 0 p3

0 0 0 0 0 0 q2 q1 0 0 q3 0 d7 0 0 p3

0 0 0 0 0 0 0 q2 q1 q3 0 0 0 d11 0 p3

0 0 0 0 0 q1 0 0 q2 0 q3 0 0 0 d13 p3

0 0 0 0 0 0 0 0 0 0 0 q3 q3 q3 q3 d15



.

The lumpability condition requires that, within each block, row sums be equal. That this

condition is met can be seen at a glance. Moreover, we can also see that the sufficient

condition (3.3) holds as well. Because of how we ordered the states, this condition requires

that each block be constant along each diagonal parallel to the main diagonal (assuming

periodic boundary conditions).

We conclude that

P̄B =
1

4



4q0 4p0 0 0 0 0
q0 p0 + q0 + q1 + q2 p1 + p2 p0 0 0
0 q1 + q2 p1 + p2 + q1 + q2 0 p1 + p2 0
0 2q0 0 2(p0 + q3) 2p3 0
0 0 q1 + q2 q3 p1 + p2 + p3 + q3 p3

0 0 0 0 4q3 4p3

 .

(3.6)

We turn next to game A′. Again there are 16 states (namely, the 4-bit binary represen-

tations of the integers 0–15) and the transition matrix has the form
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PA′ :=
1

8



0 2 2 0 2 0 0 0 2 0 0 0 0 0 0 0
0 2 1 1 0 2 0 0 1 1 0 0 0 0 0 0
0 1 2 1 1 0 1 0 0 0 2 0 0 0 0 0
0 1 1 2 0 1 0 1 0 0 1 1 0 0 0 0
0 0 1 0 2 2 1 0 1 0 0 0 1 0 0 0
0 0 0 1 0 4 1 0 0 1 0 0 1 0 0 0
0 0 1 0 1 1 2 1 0 0 1 0 0 0 1 0
0 0 0 1 0 2 1 2 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 2 1 2 0 1 0 0 0
0 1 0 0 0 1 0 0 1 2 1 1 0 1 0 0
0 0 0 1 0 0 1 0 0 1 4 0 1 0 0 0
0 0 0 1 0 0 0 1 0 1 2 2 0 1 0 0
0 0 0 0 1 1 0 0 1 0 1 0 2 1 1 0
0 0 0 0 0 2 0 0 0 1 0 1 1 2 1 0
0 0 0 0 0 0 1 1 0 0 2 0 1 1 2 0
0 0 0 0 0 0 0 2 0 0 0 2 0 2 2 0



.

To verify the lumpability condition we reorder the states and rewrite the matrix in block

form as we did for PB:

PA′ :=
1

8



0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0

0 2 1 0 1 1 0 0 1 2 0 0 0 0 0 0
0 1 2 1 0 1 1 0 0 0 2 0 0 0 0 0
0 0 1 2 1 0 1 1 0 2 0 0 0 0 0 0
0 1 0 1 2 0 0 1 1 0 2 0 0 0 0 0

0 1 1 0 0 2 0 0 0 1 1 1 0 0 1 0
0 0 1 1 0 0 2 0 0 1 1 1 1 0 0 0
0 0 0 1 1 0 0 2 0 1 1 0 1 1 0 0
0 1 0 0 1 0 0 0 2 1 1 0 0 1 1 0

0 0 0 0 0 1 1 1 1 4 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 0 4 0 0 0 0 0

0 0 0 0 0 1 1 0 0 2 0 2 1 0 1 0
0 0 0 0 0 0 1 1 0 0 2 1 2 1 0 0
0 0 0 0 0 0 0 1 1 2 0 0 1 2 1 0
0 0 0 0 0 1 0 0 1 0 2 1 0 1 2 0

0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 0



.

Again the condition is clearly met, and we have

P̄A′ =
1

4



0 4 0 0 0 0
0 2 1 1 0 0
0 1 1 1 1 0
0 0 2 2 0 0
0 0 1 1 2 0
0 0 0 0 4 0

 . (3.7)
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We next check (3.4) in the general case when G is the cyclic subgroup of rotations of

(1, 2, . . . , N), that is, the group generated by

(σ(1), σ(2), . . . , σ(N)) := (2, 3, . . . , N, 1). (3.8)

Indeed, for such σ,

PB(ησ, (ηx)σ) = PB(ησ, (ησ)σ−1(x))

=

{
N−1pmσ−1(x)(ησ) if ησ(σ−1(x)) = 0

N−1qmσ−1(x)(ησ) if ησ(σ−1(x)) = 1

=

{
N−1pmx(η) if η(x) = 0

N−1qmx(η) if η(x) = 1

= PB(η, ηx) (3.9)

for x = 1, . . . , N and all η ∈ Σ, where the third equality uses

mx(ησ) = mσ(x)(η). (3.10)

If p1 = p2, then (3.9) also applies to the order-reversing permutation (or reflection) of

(1, 2, . . . , N),

(σ(1), σ(2), . . . , σ(N)) := (N,N − 1, . . . , 2, 1). (3.11)

For PA′ , we can verify the lumpability condition (3.3) by observing that, if (σ(1), . . . ,

σ(N)) = (2, 3, . . . , N, 1), then

PA′(ησ, ζσ) = (4N)−1
N∑
x=1

[δ((ησ)x,x−1,−1, ζσ) + δ((ησ)x,x−1,1, ζσ)

+ δ((ησ)x,x+1,−1, ζσ) + δ((ησ)x,x+1,1, ζσ)]

= (4N)−1
N∑
x=1

[δ((ησ)σ
−1(x),σ−1(x−1),−1, ζσ) + δ((ησ)σ

−1(x),σ−1(x−1),1, ζσ)

+ δ((ησ)σ
−1(x),σ−1(x+1),−1, ζσ) + δ((ησ)σ

−1(x),σ−1(x+1),1, ζσ)]

= (4N)−1
N∑
x=1

[δ((ηx,x−1,−1)σ, ζσ) + δ((ηx,x−1,1)σ, ζσ)

+ δ((ηx,x+1,−1)σ, ζσ) + δ((ηx,x+1,1)σ, ζσ)]

= (4N)−1
N∑
x=1

[δ(ηx,x−1,−1, ζ) + δ(ηx,x−1,1, ζ) + δ(ηx,x+1,−1, ζ) + δ(ηx,x+1,1, ζ)]

= PA′(η, ζ)
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since (ησ)σ
−1(x),σ−1(x±1),s = (ηx,x±1,s)σ. If (σ(1), . . . , σ(N)) = (N,N − 1, . . . , 2, 1), then the

same sequence of identities holds.

A fairly explicit formula for P̄B is given in Ethier and Lee (2012a). First, define the

function s : Σ̄ 7→ {0, 1, . . . , N} by s([η]) := η(1) + η(2) + · · · + η(N); it counts the number

of 1s in each element of an equivalence class. Then

P̄B([η], [ζ]) =


N−1

(∑
x:η(x)=0 qmx(η) +

∑
x:η(x)=1 pmx(η)

)
if [ζ] = [η]

N−1
∑

x:η(x)=1,ηx∼ζ qmx(η) if s([ζ]) = s([η])− 1

N−1
∑

x:η(x)=0,ηx∼ζ pmx(η) if s([ζ]) = s([η]) + 1

0 otherwise

for all [η], [ζ] ∈ Σ̄. A formula for P̄A′ is

P̄A′([η], [ζ]) =


(4N)−1

∑N
x=1

(
1[ζ](η

x,x−1,−1) + 1[ζ](η
x,x−1,1)

+ 1[ζ](η
x,x+1,−1) + 1[ζ](η

x,x+1,1)
)

if |s([ζ])− s([η])| ≤ 1

0 otherwise

for all [η], [ζ] ∈ Σ̄. This generalizes (3.7).

3.2 Means and variances

We saw in Theorems 2.6 and 2.8 that the means and variances that appear in the SLLNs

and CLTs of Sections 2.2–2.4 (namely, µ◦B, µ◦(γ,1−γ)′ , µ
◦
[r,s]′ , (σ◦B)2, (σ◦(γ,1−γ)′)

2, and (σ◦[r,s]′)
2)

are equal to the corresponding quantities defined in terms of the original transition matrices

(namely, µB, µ(γ,1−γ)′ , µ[r,s]′ , σ
2
B, σ2

(γ,1−γ)′ , and σ2
[r,s]′). We claim that the corresponding

quantities defined in terms of the reduced transition matrices (namely, µ̄B, µ̄(γ,1−γ)′ , µ̄[r,s]′ ,

σ̄2
B, σ̄2

(γ,1−γ)′ , and σ̄2
[r,s]′) are also equal. First, we define

µ̄B := π̄B
˙̄PB1, (3.12)

µ̄(γ,1−γ)′ := (1− γ)π̄C′
˙̄PB1, (3.13)

µ̄[r,s]′ :=
1

r + s

s−1∑
v=0

π̄P̄ r
A′P̄

v
B

˙̄PB1, (3.14)

σ̄2
B := π̄B

¨̄PB1− (π̄B
˙̄PB1)2 + 2π̄B

˙̄PB(Z̄B − 1π̄B) ˙̄PB1, (3.15)

σ̄2
(γ,1−γ)′ := π̄C′

¨̄PC′1− (π̄C′
˙̄PC′1)2 + 2π̄C′

˙̄PC′(Z̄C′ − 1π̄C′)
˙̄PC′1, (3.16)

σ̄2
[r,s]′ := 1− 1

r + s

s−1∑
v=0

(π̄P̄ r
A′P̄

v
B

˙̄PB1)2

+
2

r + s

[ ∑
0≤u<v≤s−1

π̄P̄ r
A′P̄

u
B

˙̄PB(P̄ v−u−1
B − 1π̄P̄ r

A′P̄
v
B) ˙̄PB1
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+

s−1∑
u=0

s−1∑
v=0

π̄P̄ r
A′P̄

u
B

˙̄PBP̄
s−u−1
B (Z̄ − 1π̄)P̄ r

A′P̄
v
B

˙̄PB1

]
. (3.17)

Theorem 3.2.

µB = µ̄B, µ(γ,1−γ)′ = µ̄(γ,1−γ)′ , µ[r,s]′ = µ̄[r,s]′

and

σ2
B = σ̄2

B, σ2
(γ,1−γ)′ = σ̄2

(γ,1−γ)′ , σ2
[r,s]′ = σ̄2

[r,s]′ .

Proof. A result of Ethier and Lee [7] implies that, ifQ is aG-invariant square (not necessarily

stochastic) matrix (i.e., Q(ησ, ζσ) = Q(η, ζ) for all η, ζ ∈ Σ and all σ ∈ G), then

πQ1 = π̄Q̄1.

Repeated application of this identity gives the desired conclusions.

The formulas for the means and variances with bars are computable for 3 ≤ N ≤ 18, at

least. We give results for the three choices of the parameter vector (p0, p1, p2, p3) treated

by Ethier and Lee [6] in Table 3.2, 3.3, and 3.4 and three other choices in Table 3.5, 3.6,

and 3.7.

3.3 Computer graphics

Ethier and Lee [10] sketched, for games A′, B, and C ′ := 1
2A
′ + 1

2B, the Parrondo and

anti-Parrondo regions when 3 ≤ N ≤ 9. They assumed that p1 = p2 and relabeled p3 as p2.

In other words, their parameter vector was of the form (p0, p1, p1, p2). (The reason for this

simplification is that a three-dimensional figure is easier to visualize than a four-dimensional

figure.) See Figure 3.1, which includes only the cases 3 ≤ N ≤ 8. The figures for games

A′, B, and C ′ are distinctively different from those for games A, B, and C := 1
2A+ 1

2B. In

both cases, the general shape of the Parrondo and anti-Parrondo regions does not change

much, once N ≥ 5.

Here we do the same for games A′, B, and (A′)rBs for [r, s]′ = [1, 1]′, [2, 1]′, [1, 2]′, [2, 2]′

and 3 ≤ N ≤ 6 in Figure 3.2, 3.3, 3.4, and 3.5 respectively. Larger N could be considered,

but it would be very time-consuming.
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Table 3.1. The size and effective size of the state space when there are N players. (Used
by permission from Ethier and Lee [6].)

number of size of effective size effective size
players state space not assuming assuming
N 2N p1 = p2 p1 = p2

3 8 4 4
4 16 6 6
5 32 8 8
6 64 14 13
7 128 20 18
8 256 36 30
9 512 60 46

10 1024 108 78
11 2048 188 126
12 4096 352 224
13 8192 632 380
14 16384 1182 687
15 32768 2192 1224
16 65536 4116 2250
17 131072 7712 4112
18 262144 14602 7685
19 524288 27596 14310
20 1048576 52488 27012
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Table 3.2. Mean profit per turn at equilibrium in the games of Xie and others (2011),
assuming (p0, p1, p2, p3) = (1, 0.16, 0.16, 0.7). Results are given to six significant digits.
Notice that µB < 0 for 3 ≤ N ≤ 19 except for N = 4, 7, 8, so the Parrondo effect is present
except in 28 of the 113 cases. The entries corresponding to N = ∞ are limits as N → ∞
(see Theorem 6.3). The blank entries were not computed. The behavior in the µ[1,1]′ column
cannot easily be explained.

N µB µ(1/2,1/2)′ µ[1,1]′ µ[1,2]′ µ[1,3]′ µ[2,1]′ µ[2,2]′ µ[3,1]′

3 −0.0909091 −0.0766158 −0.105479 −0.102038 −0.0993971 −0.0724638 −0.0773252 −0.0547919
4 0.00799608 0.0156538 0.00471698 0.0148270 0.0239996 0.00325815 0.0125698 0.00247440
5 −0.00219465 0.00565126 0.00593697 0.00950811 0.00863794 0.00345975 0.00774689 0.00248827
6 −0.0189247 0.00671656 0.00640351 0.00955597 0.00994894 0.00363075 0.00745377 0.00255559
7 0.00350598 0.00680337 0.00660065 0.00923799 0.00960154 0.00380363 0.00724937 0.00263585
8 0.000698188 0.00678290 0.00670338 0.00901760 0.00922885 0.00393034 0.00713139 0.00270983
9 −0.00189233 0.00678314 0.00676079 0.00887095 0.00900601 0.00402382 0.00705972 0.00277296

10 −0.000332809 0.00678338 0.00679458 0.00876090 0.00884263 0.00409432 0.00701287 0.00282563
11 −0.000466527 0.00678336 0.00681519 0.00867466 0.00871398 0.00414879 0.00698037 0.00286945
12 −0.000676916 0.00678336 0.00682799 0.00860524 0.00861168 0.00419181 0.00695667 0.00290610
13 −0.000562901 0.00678336 0.00683598 0.00854800 0.00852823 0.00422647 0.00693865 0.00293700
14 −0.000569340 0.00678336 0.00684090 0.00849991 0.00845874 0.00425488 0.00692447 0.00296329
15 −0.000586184 0.00678336 0.00684381 0.00845891 0.00839996 0.00427852 0.00691300 0.00298586
16 −0.000578161 0.00678336 0.00684537 0.00842351 0.00834957 0.00429845 0.00690350 0.00300539
17 −0.000578345 0.00678336 0.00684603 0.00839260 0.00830588 0.00431545 0.00689547 0.00302245
18 −0.000579652 0.00678336 0.00684607 0.00836539 0.00826762 0.00433011 0.00688859 0.00303744
19 −0.000579095 0.00678336

∞ 0.00678336 0.00678336 0.00792947 0.00768253 0.00451510 0.00678336 0.00325825
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Table 3.3. Mean profit per turn at equilibrium in the games of Xie and others [21], assuming
(p0, p1, p2, p3) = (0.7, 0.68, 0.68, 0). Results are given to six significant digits. Notice that
µB < 0 for 3 ≤ N ≤ 19 except N = 3, 5, so the Parrondo effect is present except in 15 of
the 107 cases. The entries corresponding to N = ∞ are limits as N → ∞ (see Theorem
6.3). The blank entries were not computed.

N µB µ(1/2,1/2)′ µ[1,1]′ µ[1,2]′ µ[1,3]′ µ[2,1]′ µ[2,2]′ µ[3,1]′

3 0.0710383 0.0525560 0.0636364 0.0684422 0.0697086 0.0453956 0.0547457 0.0346926
4 −0.0425713 0.00095265 0.0131579 0.00461772 −0.00332027 0.00948905 0.00383213 0.00732323
5 0.00257895 0.00765099 0.0114243 0.00947342 0.00771190 0.00914217 0.00893883 0.00720557
6 −0.0102930 0.00684126 0.0103803 0.00812693 0.00550684 0.00876089 0.00887906 0.00705384
7 −0.00722622 0.00691714 0.00975869 0.00772430 0.00542861 0.00845243 0.00877155 0.00690363
8 −0.00808338 0.00691038 0.00932190 0.00733991 0.00509927 0.00821008 0.00862704 0.00677033
9 −0.00784318 0.00691100 0.00900193 0.00706166 0.00488742 0.00801817 0.00848795 0.00665614

10 −0.00790952 0.00691094 0.00875695 0.00684162 0.00470929 0.00786365 0.00836210 0.00655914
11 −0.00789119 0.00691095 0.00856340 0.00666505 0.00456481 0.00773709 0.00825093 0.00647657
12 −0.00789624 0.00691095 0.00840660 0.00652010 0.00444435 0.00763177 0.00815337 0.00640584
13 −0.00789485 0.00691095 0.00827699 0.00639908 0.00434270 0.00754288 0.00806773 0.00634480
14 −0.00789523 0.00691095 0.00816807 0.00629653 0.00425580 0.00746692 0.00799229 0.00629171
15 −0.00789513 0.00691095 0.00807523 0.00620855 0.00418071 0.00740130 0.00792555 0.00624519
16 −0.00789516 0.00691095 0.00799517 0.00613226 0.00411520 0.00734408 0.00786619 0.00620414
17 −0.00789515 0.00691095 0.00792541 0.00606547 0.00405756 0.00729375 0.00781314 0.00616766
18 −0.00789515 0.00691095
19 −0.00789515 0.00691095

∞ −0.00789515 0.00691095 0.00691095 0.00506459 0.00316518 0.00651648 0.00691095 0.00556811
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Table 3.4. Mean profit per turn at equilibrium in the games of Xie and others [21],
assuming (p0, p1, p2, p3) = (0.1, 0.6, 0.6, 0.75). Results are given to six significant digits.
Notice that µB < 0 for 3 ≤ N ≤ 19, so the Parrondo effect is present in all 107 cases. The
entries corresponding to N =∞ are limits as N →∞ (see Theorem 6.3). The blank entries
were not computed.

N µB µ(1/2,1/2)′ µ[1,1]′ µ[1,2]′ µ[1,3]′ µ[2,1]′ µ[2,2]′ µ[3,1]′

3 −0.190476 0.0250737 0.0459318 0.0459668 0.0355311 0.0285193 0.0313076 0.0210062
4 −0.0858189 0.0175362 0.0143678 0.0270909 0.0320082 0.00877193 0.0193958 0.00639330
5 −0.0389980 0.0169208 0.0153125 0.0243523 0.0288300 0.00901530 0.0166844 0.00648456
6 −0.0183165 0.0168327 0.0157452 0.0240900 0.0280593 0.00924263 0.0165391 0.00658522
7 −0.00924232 0.0168224 0.0160005 0.0239721 0.0276476 0.00941580 0.0165074 0.00667774
8 −0.00528548 0.0168213 0.0161641 0.0238960 0.0273667 0.00954592 0.0165118 0.00675629
9 −0.00356984 0.0168212 0.0162764 0.0238393 0.0271612 0.00964554 0.0165279 0.00682153

10 −0.00282963 0.0168212 0.0163577 0.0237943 0.0270043 0.00972360 0.0165471 0.00687564
11 −0.00251155 0.0168211 0.0164188 0.0237576 0.0268804 0.00978610 0.0165662 0.00692084
12 −0.00237531 0.0168211 0.0164664 0.0237269 0.0267800 0.00983717 0.0165840 0.00695896
13 −0.00231709 0.0168211 0.0165043 0.0237008 0.0266969 0.00987957 0.0166002 0.00699142
14 −0.00229226 0.0168211 0.0165351 0.0236782 0.0266269 0.00991530 0.0166148 0.00701933
15 −0.00228169 0.0168211 0.0165607 0.0236585 0.0265671 0.00994578 0.0166279 0.00704355
16 −0.00227719 0.0168211 0.0165822 0.0236412 0.0265154 0.00997208 0.0166396 0.00706473
17 −0.00227528 0.0168211 0.0166006 0.0236258 0.0264703 0.00999500 0.0166501 0.00708341
18 −0.00227446 0.0168211
19 −0.00227412 0.0168211

∞ 0.0168211 0.0168211 0.0233648 0.0257907 0.0103217 0.0168211 0.00737111
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Table 3.5. Mean profit per turn at equilibrium in the games of Xie and others [21],
assuming (p0, p1, p2, p3) = (0, 0.8, 0.8, 0.5). Results are given to six significant digits. Notice
that µB = −1 for 3 ≤ N ≤ 17, so the Parrondo effect is present in all 105 cases. The entries
corresponding to N =∞ are limits as N →∞ (see Theorem 6.3).

N µB µ(1/2,1/2)′ µ[1,1]′ µ[1,2]′ µ[1,3]′ µ[2,1]′ µ[2,2]′ µ[3,1]′

3 −1 0.0700935 0.125641 0.120719 0.0949431 0.0793651 0.0832734 0.0587049
4 −1 0.0312943 0.0277778 0.0518280 0.0569121 0.0173333 0.0391038 0.0127193
5 −1 0.0334457 0.0297026 0.0466364 0.0552000 0.0177825 0.0328559 0.0128710
6 −1 0.0329776 0.0306359 0.0458271 0.0523336 0.0182363 0.0324445 0.0130605
7 −1 0.0329365 0.0311909 0.0455525 0.0512224 0.0185913 0.0323592 0.0132431
8 −1 0.0329318 0.0315485 0.0453778 0.0505181 0.0188624 0.0323574 0.0134018
9 −1 0.0329314 0.0317936 0.0452410 0.0500111 0.0190722 0.0323834 0.0135356

10 −1 0.0329313 0.0319703 0.0451282 0.0496216 0.0192379 0.0324177 0.0136478
11 −1 0.0329313 0.0321027 0.0450332 0.0493112 0.0193714 0.0324528 0.0137424
12 −1 0.0329313 0.0322052 0.0449521 0.0490575 0.0194808 0.0324861 0.0138225
13 −1 0.0329313 0.0322865 0.0448820 0.0488459 0.0195720 0.0325166 0.0138912
14 −1 0.0329313 0.0323523 0.0448208 0.0486666 0.0196490 0.0325441 0.0139505
15 −1 0.0329313 0.0324067 0.0447670 0.0485126 0.0197149 0.0325688 0.0140021
16 −1 0.0329313 0.0324522 0.0447192 0.0483788 0.0197718 0.0325688 0.0140474
17 −1 0.0329313 0.0324907 0.0446700 0.0482615 0.0198214 0.0326108 0.0140874

∞ −1 0.0329313 0.0329313 0.0439298 0.0464462 0.0205333 0.0329313 0.0147142
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Table 3.6. Mean profit per turn at equilibrium in the games of Xie and others [21],
assuming (p0, p1, p2, p3) = (0.78, 0.65, 0.65, 0). Results are given to six significant digits.
Notice that µB < 0 for 3 ≤ N ≤ 17 except for N = 3, 5, so the Parrondo effect is present
except in 14 of the 105 cases. The entries corresponding to N = ∞ are limits as N → ∞
(see Theorem 6.3). The blank entries were not computed.

N µB µ(1/2,1/2)′ µ[1,1]′ µ[1,2]′ µ[1,3]′ µ[2,1]′ µ[2,2]′ µ[3,1]′

3 0.0649566 0.0478973 0.0569837 0.0623296 0.0637036 0.0409447 0.0502669 0.0313571
4 −0.0388363 0.00577713 0.0173010 0.0105370 0.0034869 0.0125786 0.00889721 0.00973808
5 0.00672837 0.0117080 0.0156329 0.0146990 0.0131555 0.0121857 0.0133209 0.00958235
6 −0.0119357 0.0109211 0.0146005 0.0132671 0.0108107 0.0117909 0.0131938 0.00941062
7 −0.00448927 0.0110144 0.0139764 0.0128216 0.0107077 0.0114764 0.0130462 0.00924977
8 −0.00756841 0.0110033 0.0135325 0.0123876 0.0102846 0.0112301 0.0128741 0.00911021
9 −0.00631011 0.0110047 0.0132049 0.0120781 0.0100324 0.0110351 0.0127156 0.00899195

10 −0.00682669 0.0110045 0.0129524 0.0118314 0.00981392 0.0108779 0.0125752 0.00889207
11 −0.00661495 0.0110045 0.0127520 0.0116336 0.00963960 0.0107491 0.0124525 0.00880731
12 −0.00670177 0.0110045 0.0125890 0.0114710 0.00949408 0.0106417 0.0123457 0.00873485
13 −0.00666618 0.0110045 0.0124539 0.0113350 0.00937165 0.0105509 0.0122523 0.00867238
14 −0.00668077 0.0110045 0.0123400 0.0112197 0.00926711 0.0104733 0.0121703 0.00861808
15 −0.00667479 0.0110045 0.0122427 0.0111207 0.00917686 0.0104061 0.0120980 0.00857051
16 −0.00667724 0.0110045 0.0121586 0.0110348 0.00909819 0.0103475 0.0120337 0.00852853
17 −0.00667623 0.0110045 0.0120853 0.0109595 0.00902901 0.0102959 0.0119764 0.00849125

∞ 0.0110045 0.0110045 0.00982296 0.00795942 0.00949246 0.0110045 0.00787643
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Table 3.7. Mean profit per turn at equilibrium in the games of Xie and others [21],
assuming (p0, p1, p2, p3) = (0.9, 0.54, 0.54, 0.05). Results are given to six significant digits.
Notice that µB < 0 for 3 ≤ N ≤ 17 except for N = 3, 5, so the Parrondo effect is present
except in 14 of the 105 cases. The entries corresponding to N = ∞ are limits as N → ∞
(see Theorem 6.3). The blank entries were not computed.

N µB µ(1/2,1/2)′ µ[1,1]′ µ[1,2]′ µ[1,3]′ µ[2,1]′ µ[2,2]′ µ[3,1]′

3 0.0186100 0.0138568 0.0163482 0.0180393 0.0184102 0.0118203 0.0146580 0.00906909
4 −0.0116982 0.00305201 0.00641026 0.00478337 0.00286234 0.00469314 0.00405576 0.00364322
5 0.00304411 0.00465818 0.00591223 0.00587933 0.00545615 0.00455730 0.00524184 0.00358348
6 −0.00560270 0.00442670 0.00559742 0.00542162 0.00470623 0.00443058 0.00518684 0.00352406
7 −0.00099606 0.00446002 0.00540436 0.00527306 0.00466731 0.00433109 0.00513152 0.00347081
8 −0.00358987 0.00445522 0.00526572 0.00512618 0.00450849 0.00425351 0.00507162 0.00342552
9 −0.00217231 0.00445591 0.00516276 0.00502269 0.00442020 0.00419216 0.00501795 0.00338753

10 −0.00296007 0.00445581 0.00508303 0.00493948 0.00434044 0.00414271 0.00497098 0.00335562
11 −0.00252629 0.00445583 0.00501949 0.00487281 0.00427808 0.00410213 0.00493028 0.00332863
12 −0.00276636 0.00445582 0.00496765 0.00481785 0.00422566 0.00406830 0.00489498 0.00330560
13 −0.00263387 0.00445583 0.00492455 0.00477187 0.00418172 0.00403968 0.00486424 0.00328578
14 −0.00270711 0.00445582 0.00488816 0.00473281 0.00414416 0.00401518 0.00483730 0.00326856
15 −0.00266666 0.00445582 0.00485701 0.00469924 0.00411176 0.00399397 0.00481355 0.00325349
16 −0.00268901 0.00445582 0.00483005 0.00467007 0.00408351 0.00397545 0.00479249 0.00324019
17 −0.00267666 0.00445582 0.00480648 0.00464450 0.00405867 0.00395913 0.00477371 0.00322838

∞ 0.00445582 0.00445582 0.00425571 0.00370360 0.00445582 0.00303347
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N = 3 N = 4

N = 5 N = 6

N = 7 N = 8

Figure 3.1. For 3 ≤ N ≤ 8 and γ = 1/2, the blue surface is the surface µB = 0, and
the red surface is the surface µ(1/2,1/2)′ = 0, in the (p0, p2, p1) unit cube. The Parrondo
region is the region on or below the blue surface and above the red surface, while the
anti-Parrondo region is the region on or above the blue surface and below the red surface.
Here (p0, p1, p1, p3) is relabeled as (p0, p1, p1, p2). (Used by permission from Ethier and Lee
[10].)
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N = 3 N = 4

N = 5 N = 6

Figure 3.2. For 3 ≤ N ≤ 6, the blue surface is the surface µB = 0, and the red surface
is the surface µ[1,1]′ = 0, in the (p0, p2, p1) unit cube. The Parrondo region is the region
on or below the blue surface and above the red surface, while the anti-Parrondo region is
the region on or above the blue surface and below the red surface. Here (p0, p1, p1, p3) is
relabeled as (p0, p1, p1, p2).
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N = 3 N = 4

N = 5 N = 6

Figure 3.3. For 3 ≤ N ≤ 6, the blue surface is the surface µB = 0, and the red surface
is the surface µ[2,1]′ = 0, in the (p0, p2, p1) unit cube. The Parrondo region is the region
on or below the blue surface and above the red surface, while the anti-Parrondo region is
the region on or above the blue surface and below the red surface. Here (p0, p1, p1, p3) is
relabeled as (p0, p1, p1, p2).
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N = 3 N = 4

N = 5 N = 6

Figure 3.4. For 3 ≤ N ≤ 6, the blue surface is the surface µB = 0, and the red surface
is the surface µ[1,2]′ = 0, in the (p0, p2, p1) unit cube. The Parrondo region is the region
on or below the blue surface and above the red surface, while the anti-Parrondo region is
the region on or above the blue surface and below the red surface. Here (p0, p1, p1, p3) is
relabeled as (p0, p1, p1, p2).
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N = 3 N = 4

N = 5 N = 6

Figure 3.5. For 3 ≤ N ≤ 6, the blue surface is the surface µB = 0, and the red surface
is the surface µ[2,2]′ = 0, in the (p0, p2, p1) unit cube. The Parrondo region is the region
on or below the blue surface and above the red surface, while the anti-Parrondo region is
the region on or above the blue surface and below the red surface. Here (p0, p1, p1, p3) is
relabeled as (p0, p1, p1, p2).



CHAPTER 4

A BASIC SUFFICIENT CONDITION FOR

ERGODICITY

So far, the state space of our basic Markov chain has been ΣN := {0, 1}N , though we

have usually omitted the subscript N for convenience. Now we want to regard the players,

originally labeled from 1 to N , as labeled from lN to rN , where

lN :=

{
−(N − 1)/2 if N is odd,

−N/2 if N is even,
rN :=

{
(N − 1)/2 if N is odd,

N/2− 1 if N is even.

Then we can speed up time, playing N games per unit of time, and our process is described

in the limit as N → ∞ by an interacting particle system in the state space Σ := {0, 1}Z.

The details of this limit operation are postponed to Chapter 6. Initially, our concern is with

the ergodicity of the limiting interacting particle system.

In this chapter, we apply Liggett’s [15] sufficient condition for ergodicity of an interacting

particle system, first to ΩA′ , the interacting particle system corresponding to game A′,

then to ΩB, the spin system corresponding to game B (this part has already been done),

and finally to ΩC′ , the interacting particle system corresponding to the random mixture

C ′ := γA′ + (1− γ)B.

4.1 Analysis of ΩA′

The generator ΩA′ of the interacting particle system corresponding to game A′ can be

described as follows. For η ∈ Σ := {0, 1}Z and x ∈ Z, define ηx and xηx+1 in Σ by

ηx(y) :=

{
1− η(x) if y = x,

η(y) otherwise,
and xηx+1(y) :=


η(x+ 1) if y = x,

η(x) if y = x+ 1,

η(y) otherwise.

Then

(ΩA′f)(η) :=
∑
x

c′(x, η)[f(ηx)− f(η)] +
1

2

∑
x

[f(xηx+1)− f(η)] (4.1)
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for f ∈ C(Σ) depending on only finitely many coordinates, where

c′(x, η) :=
1

2
[1{η(x)=η(x+1)} + 1{η(x)=η(x−1)}].

To see where (4.1) comes from, recall from Section 2.3 the notation ηx,x±1,±1. We define

ηx,x−1,−1(y) :=


1 if y = x− 1,

0 if y = x,

η(y) otherwise,

ηx,x−1,1(y) :=


0 if y = x− 1,

1 if y = x,

η(y) otherwise,

ηx,x+1,−1(y) :=


0 if y = x,

1 if y = x+ 1,

η(y) otherwise,

ηx,x+1,1(y) :=


1 if y = x,

0 if y = x+ 1,

η(y) otherwise.

Thus,∑
x

(
1

4
f(ηx,x−1,−1) +

1

4
f(ηx,x−1,1) +

1

4
f(ηx,x+1,−1) +

1

4
f(ηx,x+1,1)− f(η)

)
=

1

4

∑
x

[f(ηx,x−1,−1)− f(η)] +
1

4

∑
x

[f(ηx,x−1,1)− f(η)]

+
1

4

∑
x

[f(ηx,x+1,−1)− f(η)] +
1

4

∑
x

[f(ηx,x+1,1)− f(η)]

=
1

2

∑
x

[f(ηx−1,x,1)− f(η)] +
1

2

∑
x

[f(ηx,x+1,−1)− f(η)]

=
1

2

∑
x:(η(x−1),η(x))=(0,0)

[f(ηx−1)− f(η)] +
1

2

∑
x:(η(x−1),η(x))=(0,1)

[f(x−1ηx)− f(η)]

+
1

2

∑
x:(η(x−1),η(x))=(1,1)

[f(ηx)− f(η)] +
1

2

∑
x:(η(x),η(x+1))=(0,0)

[f(ηx+1)− f(η)]

+
1

2

∑
x:(η(x),η(x+1))=(1,0)

[f(xηx+1)− f(η)] +
1

2

∑
x:(η(x),η(x+1))=(1,1)

[f(ηx)− f(η)]

=
1

2

∑
x:(η(x),η(x+1))=(0,0)

[f(ηx)− f(η)] +
1

2

∑
x:(η(x),η(x+1))=(0,1)

[f(xηx+1)− f(η)]

+
1

2

∑
x:(η(x),η(x+1))=(1,1)

[f(ηx+1)− f(η)] +
1

2

∑
x:(η(x),η(x+1))=(0,0)

[f(ηx+1)− f(η)]

+
1

2

∑
x:(η(x),η(x+1))=(1,0)

[f(xηx+1)− f(η)] +
1

2

∑
x:(η(x),η(x+1))=(1,1)

[f(ηx)− f(η)]

=
1

2

∑
x:η(x)=η(x+1)

[f(ηx)− f(η)] +
1

2

∑
x:η(x)=η(x+1)

[f(ηx+1)− f(η)] +
1

2

∑
x

[f(xηx+1)− f(η)]

=
1

2

∑
x:η(x)=η(x+1)

[f(ηx)− f(η)] +
1

2

∑
x:η(x−1)=η(x)

[f(ηx)− f(η)] +
1

2

∑
x

[f(xηx+1)− f(η)]

=
∑
x

c′(x, η)[f(ηx)− f(η)] +
1

2

∑
x

[f(xηx+1)− f(η)].
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Thus, the generator ΩA′ is the sum of a spin system generator and an exclusion process

generator.

Liggett’s [15] Theorem I.4.1 (page 31) gives a sufficient condition for ergodicity of an

interacting particle system. The requirement is that M < ε, where M is given by (I.3.8)

(page 26) defined in terms of cT (u) (page 23) which in turn is defined in terms of cT (η, dζ)

(page 22), and ε is also defined in terms of cT (η, dζ) (page 24). The various formulas are

given below.

Our first goal is to calculate M and ε in the case of the interacting particle system with

generator ΩA′ . For each η ∈ Σ := {0, 1}Z and finite T ⊂ Z, cT (η, dζ) is assumed to be a

finite positive measure on {0, 1}T . Define ηζ by

ηζ(x) =

{
ζ(x) if x ∈ T
η(x) if x /∈ T

for ζ ∈ {0, 1}T . What is cT (η, dζ)? We answer this using

(ΩA′f)(η) =
∑
T

∫
{0,1}T

cT (η, dζ)[f(ηζ)− f(η)]

=
∑
x

∫
{0,1}

c{x}(η, dζ)[f(ηζ)− f(η)]

+
∑
x

∫
{0,1}×{0,1}

c{x,x+1}(η, dζ)[f(ηζ)− f(η)]

=
∑
x

∑
ζ∈{0,1}

c{x}(η, {ζ})[f(ηζ)− f(η)]

+
∑
x

∑
ζ∈{(0,0),(0,1),(1,0),(1,1)}

c{x,x+1}(η, {ζ})[f(ηζ)− f(η)]

=
∑
x

c{x}(η, {1− η(x)})[f(η1−η(x))− f(η)]

+
∑

x:(η(x),η(x+1))=(1,0)

c{x,x+1}(η, {(0, 1)})[f(xηx+1)− f(η)]

+
∑

x:(η(x),η(x+1))=(0,1)

c{x,x+1}(η, {(1, 0)})[f(xηx+1)− f(η)]

=
∑
x

c′(x, η)[f(ηx)− f(η)]

+
1

2

∑
x:(η(x),η(x+1))=(1,0)

[f(xηx+1)− f(η)] +
1

2

∑
x:(η(x),η(x+1))=(0,1)

[f(xηx+1)− f(η)]

=
∑
x

c′(x, η)[f(ηx)− f(η)] +
1

2

∑
x

[f(xηx+1)− f(η)]. (4.2)

We conclude that
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c{x}(η,G) = δ1−η(x)(G)c′(x, η) and c{x,x+1}(η,H) = δ(1−η(x),1−η(x+1))(H)1
21{η(x)6=η(x+1)},

where δu is the unit mass concentrated at u. Here G ⊂ {0, 1} and H ⊂ {(0, 0), (0, 1), (1, 0),

(1, 1)}.

We can now evaluate M . For u ∈ Z and finite T ⊂ Z, let cT (u) := sup{‖cT (η, dζ) −

cT (η′, dζ)‖TV : η(y) = η′(y) ∀ y 6= u}, where ‖ · ‖TV denotes the total variation norm of a

measure on {0, 1}T .1 Then

M = sup
x∈Z

∑
T3x

∑
u:u6=x

cT (u)

= sup
x∈Z

∑
T3x

∑
u:u6=x

sup
η(x)=η′(x)∀x 6=u

‖cT (η, dζ)− cT (η′, dζ)‖TV

= sup
x∈Z

[ ∑
u:u6=x

sup
η∈Σ
‖c{x}(η, dζ)− c{x}(ηu, dζ)‖TV

+
∑
v:v 6=x

sup
η∈Σ
‖c{x,x+1}(η, dζ)− c{x,x+1}(ηv, dζ)‖TV

+
∑
w:w 6=x

sup
η∈Σ
‖c{x−1,x}(η, dζ)− c{x−1,x}(ηw, dζ)‖TV

]

= sup
x∈Z

[ ∑
u:u6=x

sup
η∈Σ

sup
A⊂{0,1}

|c{x}(η,A)− c{x}(ηu, A)|

+
∑
v:v 6=x

sup
η∈Σ

sup
B⊂{(0,0),(0,1),(1,0),(1,1)}

|c{x,x+1}(η,B)− c{x,x+1}(ηv, B)|

+
∑
w:w 6=x

sup
η∈Σ

sup
C⊂{(0,0),(0,1),(1,0),(1,1)}

|c{x−1,x}(η, C)− c{x−1,x}(ηw, C)|
]

= sup
x∈Z

[ ∑
u:u6=x

sup
η∈Σ
|c′(x, η)− c′(x, ηu)|+ 2 · 1

2

]
= sup

x∈Z

∑
u:u6=x

sup
η∈Σ
|c′(x, η)− c′(x, ηu)|+ 1

= sup
x∈Z

[
sup
η∈Σ
|c′(x, η)− c′(x, ηx+1)|+ sup

η∈Σ
|c′(x, η)− c′(x, ηx−1)|

]
+ 1

= 2, (4.3)

where the last step uses Table 4.1; by definition,

c′(x, η) =
1

2
[1{η(x)=η(x+1)} + 1{η(x)=η(x−1)}] (4.4)

c′(x, ηx+1) =
1

2
[1{ηx+1(x)=ηx+1(x+1)} + 1{ηx+1(x)=ηx+1(x−1)}]

1‖µ1 − µ2‖TV = supA |µ1(A)− µ2(A)|. This refers to Durrett [3].
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=
1

2
[1{η(x)=1−η(x+1)} + 1{η(x)=η(x−1)}] (4.5)

c′(x, ηx−1) =
1

2
[1{ηx−1(x)=ηx−1(x+1)} + 1{ηx−1(x)=ηx−1(x−1)}]

=
1

2
[1{η(x)=η(x+1)} + 1{η(x)=1−η(x−1)}] (4.6)

Next, we evaluate ε.

ε = inf
u∈Z

inf
η=η′ off u, η(u)6=η′(u)

∑
T3u

[cT (η, {ζ ∈ {0, 1}T : ζ(u) = η′(u)})

+ cT (η′, {ζ ∈ {0, 1}T : ζ(u) = η(u)})]

= inf
u∈Z

inf
η∈Σ

[
c{u}(η, {ηu(u)}) + c{u}(ηu, {η(u)})

+ c{u,u+1}(η, {ζ ∈ {0, 1}{u,u+1} : ζ(u) = ηu(u)})

+ c{u,u+1}(ηu, {ζ ∈ {0, 1}{u,u+1} : ζ(u) = η(u)})

+ c{u−1,u}(η, {ζ ∈ {0, 1}{u−1,u} : ζ(u) = ηu(u)})

+ c{u−1,u}(ηu, {ζ ∈ {0, 1}{u−1,u} : ζ(u) = η(u)})
]

= inf
u∈Z

inf
η∈Σ

[
c{u}(η, {1− η(u)}) + c{u}(ηu, {1− ηu(u)})

+ c{u,u+1}(η, {ζ ∈ {0, 1}{u,u+1} : ζ(u) = 1− η(u)})

+ c{u,u+1}(ηu, {ζ ∈ {0, 1}{u,u+1} : ζ(u) = η(u)})

+ c{u−1,u}(η, {ζ ∈ {0, 1}{u−1,u} : ζ(u) = 1− η(u)})

+ c{u−1,u}(ηu, {ζ ∈ {0, 1}{u−1,u} : ζ(u) = η(u)})
]

= inf
u∈Z

inf
η∈Σ

[
c′(u, η) + c′(u, ηu) + 2 · 1

2

]
= inf

x∈Z, η∈Σ
[c′(x, η) + c′(x, ηx)] + 1

= 2, (4.7)

where the last step uses Table 4.2; by definition,

c′(x, η) =
1

2
[1{η(x)=η(x+1)} + 1{η(x)=η(x−1)}], (4.8)

c′(x, ηx) =
1

2
[1{ηx(x)=ηx(x+1)} + 1{ηx(x)=ηx(x−1)}]

=
1

2
[1{1−η(x)=η(x+1)} + 1{1−η(x)=η(x−1)}]. (4.9)

We conclude that M = ε = 2. Since M < ε is a sufficient condition for ergodicity, the

condition is inconclusive for ergodicity in this case. However, these calculations will prove

useful in analyzing ΩC′ .
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4.2 Analysis of ΩB

Our second goal is to calculate M and ε in the case of the spin system with generator

ΩB. For each η ∈ Σ := {0, 1}Z and finite T ⊂ Z, cT (η, dζ) is assumed to be a finite positive

measure on {0, 1}T . For each x ∈ Z, define ηx by

ηx(y) :=

{
1− η(x) if y = x,

η(y) if y 6= x.

Then, given parameters p0, p1, p2, p3 ∈ [0, 1],

(ΩBf)(η) :=
∑
x

c(x, η)[f(ηx)− f(η)]

for f ∈ C(Σ) depending on only finitely many coordinates, where

c(x, η) =

{
pmx(η) if η(x) = 0,

qmx(η) if η(x) = 1,
(4.10)

qm := 1− pm for m = 0, 1, 2, 3, and mx(η) := 2η(x− 1) + η(x+ 1) ∈ {0, 1, 2, 3}.

What is cT (η, dζ) here? Recall that, for ζ ∈ {0, 1}T ,

ηζ(x) :=

{
ζ(x) if x ∈ T ,

η(x) if x /∈ T .

We answer this using

(ΩBf)(η) =
∑
T

∫
{0,1}T

cT (η, dζ)[f(ηζ)− f(η)]

=
∑
x

∫
{0,1}

c{x}(η, dζ)[f(ηζ)− f(η)]

=
∑
x

∑
ζ∈{0,1}

c{x}(η, {ζ})[f(ηζ)− f(η)]

=
∑
x

c{x}(η, {1− η(x)})[f(ηx)− f(η)]

=
∑
x

c(x, η)[f(ηx)− f(η)].

We conclude that c{x}(η,G) = δ1−η(x)(G)c(x, η) for all G ⊂ {0, 1}, where δu is the unit

mass at u.

We can now evaluate M . For u ∈ Z and finite T ⊂ Z, let cT (u) := sup{‖cT (η, dζ) −

cT (η′, dζ)‖TV : η(y) = η′(y) ∀ y 6= u}, where ‖ · ‖TV denotes the total variation norm of a

measure on {0, 1}T . Then

M = sup
x∈Z

∑
T3x

∑
u:u6=x

cT (u)
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= sup
x∈Z

∑
T3x

∑
u:u6=x

sup
η(x)=η′(x)∀x 6=u

‖cT (η, dζ)− cT (η′, dζ)‖TV

= sup
x∈Z

∑
u:u6=x

sup
η∈Σ
‖c{x}(η, dζ)− c{x}(ηu, dζ)‖TV

= sup
x∈Z

∑
u:u6=x

sup
η∈Σ

sup
A⊂{0,1}

|c{x}(η,A)− c{x}(ηu, A)|

= sup
x∈Z

∑
u:u6=x

sup
η∈Σ
|c(x, η)− c(x, ηu)|.

Next,

ε = inf
u∈Z

inf
η=η′ off u, η(u)6=η′(u)

∑
T3u

[cT (η, {ζ : ζ(u) = η′(u)}) + cT (η′, {ζ : ζ(u) = η(u)})]

= inf
u∈Z

inf
η∈Σ

[c{u}(η, {ηu(u)}) + c{u}(ηu, {η(u)})]

= inf
u∈Z

inf
η∈Σ

[c{u}(η, {1− η(u)}) + c{u}(ηu, {1− ηu(u)})]

= inf
u∈Z

inf
η∈Σ

[c(u, η) + c(u, ηu)]

= inf
x∈Z, η∈Σ

[c(x, η) + c(x, ηx)].

Therefore the sufficient condition for ergodicity in this case is that

sup
x∈Z

∑
u:u6=x

sup
η∈Σ
|c(x, η)− c(x, ηu)| < inf

x∈Z, η∈Σ
[c(x, η) + c(x, ηx)], (4.11)

which is the same result as (III.0.6) of Liggett (1985).

Now we use (4.10), in which case the right side of (4.11) is 1. On the left side of (4.11),

the sum has only two terms, corresponding to u = x± 1. We can evaluate the left side with

the help of Table 4.3.

The result is that (4.11) is equivalent to

max(|p0 − p1|, |p2 − p3|) + max(|p0 − p2|, |p1 − p3|) < 1.

The volume of the subset of the parameter space [0, 1]4 for which this inequality holds is,

by Mathematica, 7/12.

Ethier and Lee [8] used other methods to show that ergodicity holds on a subset of

volume estimated to be 0.789.
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4.3 Analysis of ΩC ′ := γΩA′ + (1− γ)ΩB

Our third goal is to calculate M and ε in the case of the interacting particle system with

generator ΩC′ . For each η ∈ Σ := {0, 1}Z and finite T ⊂ Z, cT (η, dζ) is assumed to be a

finite positive measure on {0, 1}T . Define ηx, xηx+1, and ηζ by

ηx(y) :=

{
1− η(x) if y = x,

η(y) if y 6= x,
xηx+1(y) :=


η(x+ 1) if y = x,

η(x) if y = x+ 1,

η(y) otherwise,

ηζ(x) :=

{
ζ(x) if x ∈ T ,

η(x) if x /∈ T ,

for ζ ∈ {0, 1}T and x ∈ Z. Then

(ΩC′f)(η) := γ(ΩA′f)(η) + (1− γ)(ΩBf)(η)

= γ
∑
x

c′(x, η)[f(ηx)− f(η)] +
γ

2

∑
x

[f(xηx+1)− f(η)]

+ (1− γ)
∑
x

c(x, η)[f(ηx)− f(η)], (4.12)

where

c′(x, η) :=
1

2
[1{η(x)=η(x+1)} + 1{η(x)=η(x−1)}], c(x, η) =

{
pmx(η) if η(x) = 0,

qmx(η) if η(x) = 1,

qm := 1− pm for m = 0, 1, 2, 3, and mx(η) := 2η(x− 1) + η(x+ 1) ∈ {0, 1, 2, 3}.

The generator ΩC′ is the sum of a spin system generator and an exclusion process

generator. What is cT (η, dζ)? It should be a mixture of the measures found in Sections 4.1

and 4.2. We conclude that

c{x}(η,G) = δ1−η(x)(G)[γc′(x, η) + (1− γ)c(x, η)],

c{x,x+1}(η,H) = δ(1−η(x),1−η(x+1))(H)
γ

2
1{η(x)6=η(x+1)}.

We can now evaluate M . For u ∈ Z and finite T ⊂ Z, let cT (u) := sup{‖cT (η, dζ) −

cT (η′, dζ)‖TV : η(y) = η′(y) ∀ y 6= u}, where ‖ · ‖TV denotes the total variation norm of a

measure on {0, 1}T . Then

M = sup
x∈Z

∑
T3x

∑
u:u6=x

cT (u)

= sup
x∈Z

∑
T3x

∑
u:u6=x

sup
η(y)=η′(y)∀ y 6=u

‖cT (η, dζ)− cT (η′, dζ)‖TV
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= sup
x∈Z

[ ∑
u:u6=x

sup
η∈Σ
‖c{x}(η, dζ)− c{x}(ηu, dζ)‖TV

+
∑
v:v 6=x

sup
η∈Σ
‖c{x,x+1}(η, dζ)− c{x,x+1}(ηv, dζ)‖TV

+
∑
w:w 6=x

sup
η∈Σ
‖c{x−1,x}(η, dζ)− c{x−1,x}(ηw, dζ)‖TV

]

= sup
x∈Z

[ ∑
u:u6=x

sup
η∈Σ

sup
G⊂{0,1}

|c{x}(η,G)− c{x}(ηu, G)|

+
∑
v:v 6=x

sup
η∈Σ

sup
H⊂{(0,0),(0,1),(1,0),(1,1)}

|c{x,x+1}(η,H)− c{x,x+1}(ηv, H)|

+
∑
w:w 6=x

sup
η∈Σ

sup
H⊂{(0,0),(0,1),(1,0),(1,1)}

|c{x−1,x}(η,H)− c{x−1,x}(ηw, H)|
]

= sup
x∈Z

[ ∑
u:u6=x

sup
η∈Σ
|γc′(x, η) + (1− γ)c(x, η)− [γc′(x, ηu) + (1− γ)c(x, ηu)]|

+ sup
η∈Σ

sup
H⊂{(0,0),(0,1),(1,0),(1,1)}

|c{x,x+1}(η,H)− c{x,x+1}(ηx+1, H)|

+ sup
η∈Σ

sup
H⊂{(0,0),(0,1),(1,0),(1,1)}

|c{x−1,x}(η,H)− c{x−1,x}(ηx−1, H)|
]

= sup
x∈Z

∑
u=x±1

sup
η∈Σ
|γc′(x, η) + (1− γ)c(x, η)− [γc′(x, ηu) + (1− γ)c(x, ηu)]|+ 2 · γ

2

= sup
x∈Z

[
sup
η∈Σ
|γ[c′(x, η)− c′(x, ηx+1)] + (1− γ)[c(x, η)− c(x, ηx+1)]|

+ sup
η∈Σ
|γ[c′(x, η)− c′(x, ηx−1)] + (1− γ)[c(x, η)− c(x, ηx−1)]|

]
+ γ

= max

[∣∣∣∣γ2 + (1− γ)(p0 − p1)

∣∣∣∣, ∣∣∣∣γ2 + (1− γ)(p2 − p3)

∣∣∣∣]
+ max

[∣∣∣∣γ2 + (1− γ)(p0 − p2)

∣∣∣∣, ∣∣∣∣γ2 + (1− γ)(p1 − p3)

∣∣∣∣]+ γ, (4.13)

where the last step requires clarification. Notice first that

c′(x, η) =
1

2
[1{η(x)=η(x+1)} + 1{η(x)=η(x−1)}],

c′(x, ηx+1) =
1

2
[1{ηx+1(x)=ηx+1(x+1)} + 1{ηx+1(x)=ηx+1(x−1)}]

=
1

2
[1{η(x)=1−η(x+1)} + 1{η(x)=η(x−1)}],

c′(x, ηx−1) =
1

2
[1{ηx−1(x)=ηx−1(x+1)} + 1{ηx−1(x)=ηx−1(x−1)}]

=
1

2
[1{η(x)=η(x+1)} + 1{η(x)=1−η(x−1)}],
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c(x, η) =

{
pmx(η) if η(x) = 0,

qmx(η) if η(x) = 1,

c(x, ηx+1) =

{
pmx(ηx+1) if η(x) = 0,

qmx(ηx+1) if η(x) = 1,
c(x, ηx−1) =

{
pmx(ηx−1) if η(x) = 0,

qmx(ηx−1) if η(x) = 1,

where qm := 1− pm for m = 0, 1, 2, 3 and mx(η) := 2η(x− 1) + η(x+ 1) ∈ {0, 1, 2, 3}. The

last line of (4.13) is from Tables 4.4–4.6 below.

Next, we evaluate ε.

ε = inf
u∈Z

inf
η=η′ off u, η(u) 6=η′(u)

∑
T3u

[cT (η, {ζ ∈ {0, 1}T : ζ(u) = η′(u)})

+ cT (η′, {ζ ∈ {0, 1}T : ζ(u) = η(u)})]

= inf
u∈Z

inf
η∈Σ

[
c{u}(η, {ηu(u)}) + c{u}(ηu, {η(u)})

+ c{u,u+1}(η, {ζ ∈ {0, 1}{u,u+1} : ζ(u) = ηu(u)})

+ c{u,u+1}(ηu, {ζ ∈ {0, 1}{u,u+1} : ζ(u) = η(u)})

+ c{u−1,u}(η, {ζ ∈ {0, 1}{u−1,u} : ζ(u) = ηu(u)})

+ c{u−1,u}(ηu, {ζ ∈ {0, 1}{u−1,u} : ζ(u) = η(u)})
]

= inf
u∈Z

inf
η∈Σ

[
c{u}(η, {1− η(u)}) + c{u}(ηu, {1− ηu(u)})

+ c{u,u+1}(η, {ζ ∈ {0, 1}{u,u+1} : ζ(u) = 1− η(u)})

+ c{u,u+1}(ηu, {ζ ∈ {0, 1}{u,u+1} : ζ(u) = 1− ηu(u)})

+ c{u−1,u}(η, {ζ ∈ {0, 1}{u−1,u} : ζ(u) = 1− η(u)})

+ c{u−1,u}(ηu, {ζ ∈ {0, 1}{u−1,u} : ζ(u) = 1− ηu(u)})
]

= inf
u∈Z

inf
η∈Σ

[
γ[c′(u, η) + c′(u, ηu)] + (1− γ)[c(u, η) + c(u, ηu)]

]
+ 2 · γ

2

= 1 + γ, (4.14)

where the last line of (4.14) requires clarification. First, notice that

c′(u, η) =
1

2
[1{η(u)=η(u+1)} + 1{η(u)=η(u−1)}],

and

c′(u, ηu) =
1

2
[1{ηu(u)=ηu(u+1)} + 1{ηu(u)=ηu(u−1)}] =

1

2
[1{1−η(u)=η(u+1)} + 1{1−η(u)=η(u−1)}].

The last step of (4.14) is from column 7 of Table 4.7.

We have proved the following theorem.
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Theorem 4.1. The interacting particle system in Σ := {0, 1}Z with generator ΩC′ :=

γΩA′ + (1− γ)ΩB, where 0 < γ < 1, is ergodic if

max

[∣∣∣∣γ2 + (1− γ)(p0 − p1)

∣∣∣∣, ∣∣∣∣γ2 + (1− γ)(p2 − p3)

∣∣∣∣]
+ max

[∣∣∣∣γ2 + (1− γ)(p0 − p2)

∣∣∣∣, ∣∣∣∣γ2 + (1− γ)(p1 − p3)

∣∣∣∣] < 1. (4.15)

The volume of the subset of the parameter space [0, 1]4 for which (4.15) holds with

γ = 1/2 is, by Mathematica, 5/6. Of the six examples studied in Section 3.2, namely

(p0, p1, p2, p3) = (1, 0.16, 0.16, 0.7), (0.7, 0.68, 0.68, 0), (0.1, 0.6, 0.6, 0.75), (0, 0.8, 0.8, 0.5),

(0.78, 0.65, 0.65, 0), and (0.9, 0.54, 0.54, 0.05), the third, fourth, and sixth satisfy (4.15) with

γ = 1/2.

If we assume that p1 = p2, then the volume of the subset of the parameter space [0, 1]3

for which (4.15) holds is, by Mathematica, 3/4. In fact, we plot the three-dimensional

volume as a function of γ in Figure 4.1.

Notice that the volume is 3/4 if and only if γ ≥ 1/3.
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Table 4.1. Calculations for the last step of (4.3).

(. . . , η(x− 1), η(x), η(x+ 1), . . .) (4.4), (4.5), (4.6) (∗) (∗∗)

(. . . , 0, 0, 0, . . .) 1, 1
2 ,

1
2

1
2

1
2

(. . . , 0, 0, 1, . . .) 1
2 , 1, 0

1
2

1
2

(. . . , 0, 1, 0, . . .) 0, 1
2 ,

1
2

1
2

1
2

(. . . , 0, 1, 1, . . .) 1
2 , 0, 1

1
2

1
2

(. . . , 1, 0, 0, . . .) 1
2 , 0, 1

1
2

1
2

(. . . , 1, 0, 1, . . .) 0, 1
2 ,

1
2

1
2

1
2

(. . . , 1, 1, 0, . . .) 1
2 , 1, 0

1
2

1
2

(. . . , 1, 1, 1, . . .) 1, 1
2 ,

1
2

1
2

1
2

(∗) := |c′(x, η)− c′(x, ηx+1)|, (∗∗) := |c′(x, η)− c′(x, ηx−1)|.
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Table 4.2. Calculations for the last step of (4.7).

(. . . , η(x− 1), η(x), η(x+ 1), . . .) (4.8), (4.9) c′(x, η) + c′(x, ηx)

(. . . , 0, 0, 0, . . .) 1, 0 1

(. . . , 0, 0, 1, . . .) 1
2 ,

1
2 1

(. . . , 0, 1, 0, . . .) 0, 1 1

(. . . , 0, 1, 1, . . .) 1
2 ,

1
2 1

(. . . , 1, 0, 0, . . .) 1
2 ,

1
2 1

(. . . , 1, 0, 1, . . .) 0, 1 1

(. . . , 1, 1, 0, . . .) 1
2 ,

1
2 1

(. . . , 1, 1, 1, . . .) 1, 0 1



58

Table 4.3. Evaluating the left side of (4.11).

η(x− 1) η(x+ 1) mx(η) mx(ηx−1) mx(ηx+1)

0 0 0 2 1
0 1 1 3 0
1 0 2 0 3
1 1 3 1 2
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Table 4.4. Calculations for the last step of (4.13).

1 2 3 4 5 6(
η(x− 1), η(x), η(x+ 1)

)
c′(x, η) c′(x, ηx+1) c′(x, ηx−1) c(x, η) c(x, ηx+1) c(x, ηx−1)

(0, 0, 0) 1 1
2

1
2 p0 p1 p2

(0, 0, 1) 1
2 1 0 p1 p0 p3

(0, 1, 0) 0 1
2

1
2 q0 q1 q2

(0, 1, 1) 1
2 0 1 q1 q0 q3

(1, 0, 0) 1
2 0 1 p2 p3 p0

(1, 0, 1) 0 1
2

1
2 p3 p2 p1

(1, 1, 0) 1
2 1 0 q2 q3 q0

(1, 1, 1) 1 1
2

1
2 q3 q2 q1
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Table 4.5. Calculations for the last step of (4.13), continued.

7 8 9 10(
η(x− 1), η(x), η(x+ 1)

)
γ
(
1− 2

)
(1− γ)

(
4− 5

)
γ
(
1− 3

)
(1− γ)

(
4− 6

)
(0, 0, 0) γ

2 (1− γ)(p0 − p1) γ
2 (1− γ)(p0 − p2)

(0, 0, 1) −γ
2 (1− γ)(p1 − p0) γ

2 (1− γ)(p1 − p3)

(0, 1, 0) −γ
2 (1− γ)(q0 − q1) −γ

2 (1− γ)(q0 − q2)

(0, 1, 1) γ
2 (1− γ)(q1 − q0) −γ

2 (1− γ)(q1 − q3)

(1, 0, 0) γ
2 (1− γ)(p2 − p3) −γ

2 (1− γ)(p2 − p0)

(1, 0, 1) −γ
2 (1− γ)(p3 − p2) −γ

2 (1− γ)(p3 − p1)

(1, 1, 0) −γ
2 (1− γ)(q2 − q3) γ

2 (1− γ)(q2 − q0)

(1, 1, 1) γ
2 (1− γ)(q3 − q2) γ

2 (1− γ)(q3 − q1)
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Table 4.6. Calculations for the last step of (4.13), continued.

|7 + 8| |9 + 10|

(0, 0, 0)
∣∣γ

2 + (1− γ)(p0 − p1)
∣∣ ∣∣γ

2 + (1− γ)(p0 − p2)
∣∣

(0, 0, 1)
∣∣γ

2 + (1− γ)(p0 − p1)
∣∣ ∣∣γ

2 + (1− γ)(p1 − p3)
∣∣

(0, 1, 0)
∣∣γ

2 + (1− γ)(p0 − p1)
∣∣ ∣∣γ

2 + (1− γ)(p0 − p2)
∣∣

(0, 1, 1)
∣∣γ

2 + (1− γ)(p0 − p1)
∣∣ ∣∣γ

2 + (1− γ)(p1 − p3)
∣∣

(1, 0, 0)
∣∣γ

2 + (1− γ)(p2 − p3)
∣∣ ∣∣γ

2 + (1− γ)(p0 − p2)
∣∣

(1, 0, 1)
∣∣γ

2 + (1− γ)(p2 − p3)
∣∣ ∣∣γ

2 + (1− γ)(p1 − p3)
∣∣

(1, 1, 0)
∣∣γ

2 + (1− γ)(p2 − p3)
∣∣ ∣∣γ

2 + (1− γ)(p0 − p2)
∣∣

(1, 1, 1)
∣∣γ

2 + (1− γ)(p2 − p3)
∣∣ ∣∣γ

2 + (1− γ)(p1 − p3)
∣∣
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Table 4.7. Calculations for the last step of (4.14).

1 2 3 4 5 6 7(
η(u− 1), η(u), η(u+ 1)

)
c′(u, η) c′(u, ηu) c(u, η) c(u, ηu) γ

(
1 + 2

)
(1− γ)

(
3 + 4

)
(5 + 6

)
(0, 0, 0) 1 0 p0 q0 γ 1− γ 1

(0, 0, 1) 1
2

1
2 p1 q1 γ 1− γ 1

(0, 1, 0) 0 1 q0 p0 γ 1− γ 1

(0, 1, 1) 1
2

1
2 q1 p1 γ 1− γ 1

(1, 0, 0) 1
2

1
2 p2 q2 γ 1− γ 1

(1, 0, 1) 0 1 p3 q3 γ 1− γ 1

(1, 1, 0) 1
2

1
2 q2 p2 γ 1− γ 1

(1, 1, 1) 1 0 q3 p3 γ 1− γ 1



63

������� ���������[�����[���[���[� / � + (� / �) (�� - ��)]� ���[� / � + (� / �) (�� - ��)]] +
���[���[� / � + (� / �) (�� - ��)]� ���[� / � + (� / �) (�� - ��)]] < �]�

{��� �� �}� {��� �� �}� {��� �� �}� {��� �� �}]

�������
�

�

������� ���������[�����[���[���[�� - ��]� ���[�� - ��]] + ���[���[�� - ��]� ���[�� - ��]] < �]�
{��� �� �}� {��� �� �}� {��� �� �}� {��� �� �}]

�������
�

��

���������[�����[���[���[� / � + (� / �) (�� - ��)]� ���[� / � + (� / �) (�� - ��)]] +
���[���[� / � + (� / �) (�� - ��)]� ���[� / � + (� / �) (�� - ��)]] < �]�

{��� �� �}� {��� �� �}� {��� �� �}� {��� �� �}]
�

�

���������[�����[���[���[�� - ��]� ���[�� - ��]] + ���[���[�� - ��]� ���[�� - ��]] < �]�
{��� �� �}� {��� �� �}� {��� �� �}� {��� �� �}]
�

��

������� ���[�_] �=
���������[�����[���[���[� / � + (� - �) (�� - ��)]� ���[� / � + (� - �) (�� - ��)]] < � / �]�
{��� �� �}� {��� �� �}� {��� �� �}]�

����[���[�]� {�� �� �}� ��������� → {��� ��}]

�������

0.0 0.2 0.4 0.6 0.8 1.0

0.55

0.60

0.65

0.70

0.75

0.80

������� ��������[���[�]� � < � < �]

Figure 4.1. Assuming p1 = p2, the three-dimensional volume of the subset of the parameter
space for which (4.15) holds is plotted as a function of γ.



CHAPTER 5

ERGODICITY VIA DUALITY

Duality is a valuable tool for finding conditions under which an interacting particle

system is ergodic. We will focus on what is known as annihilating duality because that is

the type of duality that works best for ΩB.

5.1 Duality for ΩB

We begin with the case of ΩB, reviewing certain results of Ethier and Lee [8]. Recall

that p0, p1, p2, p3 ∈ [0, 1] are the parameters of the process, Σ := {0, 1}Z is the state space,

and the generator is

(ΩBf)(η) :=
∑
x∈Z

c(x, η)[f(ηx)− f(η)]

for all f ∈ C(Σ) depending on only finitely many coordinates, where ηx is the configuration

that differs from η only ar x,

c(x, η) :=

{
pmx(η) if η(x) = 0,

qmx(η) if η(x) = 1,
(5.1)

qm := 1− pm for m = 0, 1, 2, 3, and mx(η) := 2η(x− 1) + η(x+ 1) ∈ {0, 1, 2, 3}.

The state space of the dual process is the countable set Y := {A ⊂ Z∪{∞} : A is finite}.

(Here, A is a finite set having nothing to do with game A or game A′.) The duality function

to which we will restrict attention is defined on Σ× Y by

H2(η,A) =

{∏
x∈A∩Z[2η(x)− 1] = (−1)|{x∈A∩Z:η(x)=0}| if ∞ /∈ A,

−
∏
x∈A∩Z[2η(x)− 1] = −(−1)|{x∈A∩Z:η(x)=0}| if ∞ ∈ A,

where η ∈ X and A ∈ Y . The result of Liggett [15] that we will use here is originally due

to Holley and Stroock [13].

Lemma 5.1 (Liggett [15], Section III.4). Consider the spin system generator

(Ω2f)(η) :=
∑
x∈Z

c2(x, η)[f(ηx)− f(η)],
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defined for all f ∈ C(Σ) depending only on finitely many coordinates. If the flip rates

c2(x, η) have the form

c2(x, η) :=
1

2
c(x)

{
1− [2η(x)− 1]

∑
A∈Y

p(x,A)H2(η,A)

}
, (5.2)

where c(x) ≥ 0 for all x ∈ Z, supx∈Z c(x) < ∞, p(x,A) ≥ 0 for all x ∈ Z and A ∈ Y ,∑
A∈Y p(x,A) = b(x) ≤ 1 for all x ∈ Z, and supx∈Z c(x)

∑
A∈Y p(x,A)|A| <∞, then

Ω2H2(η,A) =
∑
B∈Y

q2(A,B)[H2(η,B)−H2(η,A)]− V (A)H2(η,A),

where q2 is the infinitesimal matrix

q2(A,B) :=
∑

x∈A∩Z
c(x)

∑
F :F∆(A−{x})=B

p(x, F ) ≥ 0, B 6= A,

and V (A) :=
∑

x∈A∩Z c(x)[1−b(x)] ≥ 0. This establishes that the spin system with generator

Ω2 and the jump process with infinitesimal matrix q2 are in duality with respect to H2. If,

in addition, infx∈Z c(x)[1− b(x)] > 0, then the spin system is ergodic.

Remark. The nonegativity assumption on p(x,A) is not a serious restriction because the

sign of H2(η,A) changes when ∞ is added to the finite set A ⊂ Z.

Since our flip rates (5.1) are translation invariant [meaning c(x, η) = c(x + 1, η(· − 1))]

and nearest neighbor [meaning c(x, η) depends only on η(x−1), η(x), and η(x+1)], there are

nine parameters necessary to specify (5.2), namely c(0) = c(x) and p(0, A) = p(x, x+A) as

A ranges over the eight subsets of {−1, 0, 1} and furthermore each such A may be augmented

by including ∞. The basic requirement of our spin system is that c(x, η) + c(x, ηx) = 1 for

all η ∈ Σ and x ∈ Z, and this implies that three of the eight probabilities are 0 (namely,

the ones corresponding to A ∩ Z = {−1, 0}, A ∩ Z = {0, 1}, and A ∩ Z = {−1, 0, 1}) and

c(0) is determined. Indeed,

1 =
1

2
c(0)

{
1− [2η(0)− 1]

∑
A∩Z⊂{−1,0,1}

p(0, A)H2(η,A)

}

+
1

2
c(0)

{
1− [2η0(0)− 1]

∑
A∩Z⊂{−1,0,1}

p(0, A)H2(η0, A)

}

=
1

2
c(0)

{
1− [2η(0)− 1]

∑
A∩Z=∅,{−1},{1},{−1,1}

p(0, A)H2(η,A)
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− [2η(0)− 1]
∑

A∩Z={0},{−1,0},{0,1},{−1,0,1}

p(0, A)H2(η,A)

}

+
1

2
c(0)

{
1 + [2η(0)− 1]

∑
A∩Z=∅,{−1},{1},{−1,1}

p(0, A)H2(η,A)

+ [2η(0)− 1]
∑

A∩Z={0},{−1,0},{0,1},{−1,0,1}

p(0, A)(−H2(η,A))

}

= c(0)

{
1−

∑
A∩Z={0}

p(0, A)(2 · 1{∞/∈A} − 1)

− [2η(0)− 1]
∑

A∩Z={−1,0},{0,1},{−1,0,1}

p(0, A)H2(η,A)

}
,

and the latter sum must be 0 for the result to be constant in η.

This leaves five remaining parameters, which we will denote by z∅, z−1, z0, z1, and z−1,1,

the interpretation being that zA = p(0, A) if zA ≥ 0 and zA = −p(0, A ∪ {∞}) if zA < 0.

They must satisfy

2−1(1− z0)−1(1 + z∅ − z−1 − z0 − z1 + z−1,1) = p0,

2−1(1− z0)−1(1 + z∅ − z−1 − z0 + z1 − z−1,1) = p1,

2−1(1− z0)−1(1 + z∅ + z−1 − z0 − z1 − z−1,1) = p2,

2−1(1− z0)−1(1 + z∅ + z−1 − z0 + z1 + z−1,1) = p3,

(5.3)

where (1 − z0)−1 is c(0) and the coefficient of each zA is −1 raised to the number of 0s

in A when (η(−1), η(0), η(1)) = (0, 0, 0), (0, 0, 1), (1, 0, 0), and (1, 0, 1), respectively. The

corresponding equations for η(0) = 1 are

2−1(1− z0)−1(1− z∅ + z−1 − z0 + z1 − z−1,1) = q0,

2−1(1− z0)−1(1− z∅ + z−1 − z0 − z1 + z−1,1) = q1,

2−1(1− z0)−1(1− z∅ − z−1 − z0 + z1 + z−1,1) = q2,

2−1(1− z0)−1(1− z∅ − z−1 − z0 − z1 − z−1,1) = q3,

If there is a solution of (5.3) with

|z∅|+ |z−1|+ |z0|+ |z1|+ |z−1,1| < 1, (5.4)

this ensures the ergodicity of the spin system.
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The linear system is underdetermined, and a solution to (5.3) is given by

z∅ = (p0 + p1 + p2 + p3 − 2)(1− z0)/2,

z−1 = −(p0 + p1 − p2 − p3)(1− z0)/2,

z1 = −(p0 − p1 + p2 − p3)(1− z0)/2,

z−1,1 = (p0 − p1 − p2 + p3)(1− z0)/2,

(5.5)

in which case (5.4) reduces to, if 0 ≤ z0 < 1,

1

2
(|p0 + p1 + p2 + p3 − 2|+ |p0 + p1 − p2 − p3|

+ |p0 − p1 + p2 − p3|+ |p0 − p1 − p2 + p3|)(1− z0) + z0 < 1, (5.6)

which holds if and only if it holds for z0 = 0. Replacing |p0+p1−p2−p3| by (p0+p1−p2−p3)

and −(p0 + p1 − p2 − p3), and similarly for the other three terms, we get 16 inequalities,

which are jointly equivalent to

p0, p1, p2, p3 ∈ (2p− 1, 2p) ∩ (0, 1), p := (p0 + p1 + p2 + p3)/4.

The 4-dimensional volume of this region is 2/3. We have just rederived, with a little more

detail, a result of Ethier and Lee (2013a).

5.2 Duality for ΩA′

We recall that ΩA′ has the form

(ΩA′f)(η) :=
∑
x∈Z

c′(x, η)[f(ηx)− f(η)] +
1

2

∑
x∈Z

[f(xηx+1)− f(η)], (5.7)

where

c′(x, η) :=
1

2
[1{η(x)=η(x+1)} + 1{η(x)=η(x−1)}].

and

ηx(y) :=

{
1− η(x) if y = x,

η(y) if y 6= x,
xηx+1(y) :=


η(x+ 1) if y = x,

η(x) if y = x+ 1,

η(y) otherwise.

Because of the second sum in (5.7), this is not the generator of a spin system (because the

spin may change at more than one coordinate at a time). Therefore, the duality method

of the preceding section does not apply directly. Nevertheless, there may still be a jump
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Markov process in Y that is dual to our interacting particle system with respect to the

function H2. That is what we investigate in this section.

First, we consider the first sum in (5.7), namely

(Ω1f)(η) :=
∑
x∈Z

c′(x, η)[f(ηx)− f(η)].

Recalling that c2 involves nine unknown parameters and there are eight equations (for the

eight values of (η(x − 1), η(x), η(x + 1))), we can hope for solutions, and indeed there are

some. Notice that

c′(x, η) =
1

2

[
1 + [2η(x)− 1][2η(x+ 1)− 1]

2
+

1 + [2η(x)− 1][2η(x− 1)− 1]

2

]
=

1

2

[
1 + [2η(x)− 1]

(
1

2
H2(η, {x+ 1}) +

1

2
H2(η, {x− 1})

)]
=

1

2

[
1− [2η(x)− 1]

(
− 1

2
H2(η, {x+ 1})− 1

2
H2(η, {x− 1})

)]
, (5.8)

which, for 0 ≤ z0 < 1, is of the form (5.2) with c(x) = 1, p(x, {x − 1,∞}) = 1
2 , p(x, {x +

1,∞}) = 1
2 , and p(x,A) = 0 otherwise. Thus b(x) = 1 and the sufficient condition for

ergodicity fails, at least for this component of the generator by itself. That is not a concern

because we are interested in ΩA′ only for the role it plays in ΩC′ := γΩA′ + (1− γ)ΩB.

Next, let us consider the second sum in (5.7), namely

(Ω2f)(η) :=
1

2

∑
x∈Z

[f(xηx+1)− f(η)].

We notice that

H2(xηx+1, A) =

{
H2(η,A) if x, x+ 1 ∈ A or if x, x+ 1 /∈ A,

−H2(η,A) if x ∈ A, x+ 1 /∈ A or if x /∈ A, x+ 1 ∈ A,

so

Ω2H2(η,A) =
1

2

∑
x∈Z

[H2(xηx+1, A)−H2(η,A)]

=
1

2

∑
x∈Z:x∈A, x+1/∈A or x/∈A, x+1∈A

−2H2(η,A)

= −|{x ∈ Z : x ∈ A, x+ 1 /∈ A or x /∈ A, x+ 1 ∈ A}|H2(η,A)

= −V2(A)H2(η,A)

for all η ∈ Σ and A ∈ Y . Here V2(A) = 0 if A = ∅ or A = {∞}, but otherwise V2(A) ≥ 2.

This fits into the duality framework with q2(A,B) = 0 for all A,B ∈ Y .
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5.3 Duality for ΩC ′ := γΩA′ + (1− γ)ΩB

Now we put our results together. Because the exclusion process part does not contribute

to the jump rates of the dual process in Y , we need only consider the spin system parts.

These have flip rates in the mixed generator ΩC′ equal to

γc′(x, η) + (1− γ)c(x, η)

=
γ

2

[
1− [2η(x)− 1]

(
− 1

2
H2(η, {x+ 1})− 1

2
H2(η, {x− 1})

)]
+

1− γ
2

(1− z0)−1

[
1− [2η(x)− 1]

∑
A∈Y :A∩Z=∅,{−1},{0},{1},{−1,1}

zAH2(η, x+A)

]

=
γ

2
(1− z0)−1

[
1− z0 − [2η(x)− 1]

(
− 1− z0

2
H2(η, {x+ 1})− 1− z0

2
H2(η, {x− 1})

)]
+

1− γ
2

(1− z0)−1

[
1− [2η(x)− 1]

∑
A∈Y :A∩Z=∅,{−1},{0},{1},{−1,1}

zAH2(η, x+A)

]

=
γ

2
(1− z0)−1

[
1− [2η(x)− 1]

(
− 1− z0

2
H2(η, {x+ 1}) + z0H2(η, {x})

− 1− z0

2
H2(η, {x− 1})

)]
+

1− γ
2

(1− z0)−1

[
1− [2η(x)− 1]

∑
A∈Y :A∩Z=∅,{−1},{0},{1},{−1,1}

zAH2(η, x+A)

]
,

using (5.2) and (5.8) but with the quantities zA as in (5.5). The condition (5.4) for ergodicity

becomes, if 0 ≤ z0 < 1,

1 > |(1− γ)z∅|+ | − γ(1− z0)/2 + (1− γ)z−1|+ | − γ(1− z0)/2 + (1− γ)z1|

+ |(1− γ)z−1,1|+ |γz0 + (1− γ)z0|

=
1

2
{(1− γ)|p0 + p1 + p2 + p3 − 2|

+ |(1− γ)(p0 + p1 − p2 − p3) + γ|

+ |(1− γ)(p0 − p1 + p2 − p3) + γ|

+ (1− γ)|p0 − p1 − p2 + p3|}(1− z0) + z0, (5.9)

As in (5.6), this holds if and only if it holds for z0 = 0. Our sufficient condition for ergodicity

is

(1− γ)|p0 + p1 + p2 + p3 − 2|+ |(1− γ)(p0 + p1 − p2 − p3) + γ|

+ |(1− γ)(p0 − p1 + p2 − p3) + γ|+ (1− γ)|p0 − p1 − p2 + p3| < 2. (5.10)
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We have proved the following theorem.

Theorem 5.2. The interacting particle system in Σ := {0, 1}Z with generator ΩC′ :=

γΩA′ + (1− γ)ΩB, where 0 < γ < 1, is ergodic if (5.10) holds.

To see that this is an improvement over the result of Chapter 4, take γ = 1/2. Then

the 4-dimensional volume of the region where the inequality is satisfied is equal to 11/12.

If p1 = p2, the 3-dimensional volume of the region where the inequality is satisfied is equal

to 5/6.

We continue to assume that γ = 1/2, so it is actually the union of the two parameter

sets (the one from the basic inequality and the one from duality) that is relevant. Its

4-dimensional volume could not be determined, but, assuming p1 = p2, its 3-dimensional

volume is, from Mathematica, 7/8:
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Of the six examples studied in Chapter 3, only three belong to this union.



CHAPTER 6

CONVERGENCE OF MEANS

We would like to prove that limN→∞ µ
N
(γ,1−γ)′ and limN→∞ µ

N
[r,s]′ exist under certain

conditions, where µN(γ,1−γ)′ denotes the mean profit per turn at equilibrium to the N players

playing the (γ, 1 − γ) random mixture of games A′ and B (the Parrondo games of Xie

and others [21]), and µN[r,s]′ denotes the mean profit per turn at equilibrium to the N

players playing games A′ and B in the nonrandom periodic pattern A′, A′, . . . , A′ (r times),

B,B, . . . , B (s times), A′, A′, . . . , A′ (r times), B,B, . . . , B (s times), etc. The first result is

relatively straightforward, while the second requires more work. The key step for the second

result is to prove that the sequence of discrete generators converges to the generator of an

interacting particle system. We treat the simple case of r = s = 1 first, then r = s = 2, and

finally the general case.

6.1 Convergence of means in
random mixture case

We want to show that our sequence of discrete-time Markov chains, suitably rescaled,

converges in distribution to an interacting particle system on Z. The limiting process is

characterized in terms of its generator. First, we need to define generators corresponding

to game A′, game B, and game C ′. The state space is

Σ := {0, 1}Z = {η = (. . . , η(−2), η(−1), η(0), η(1), η(2), . . .) : η(i) ∈ {0, 1} for all i ∈ Z}.

For η ∈ Σ and x ∈ Z define ηx,−1 and ηx,1 to be the elements of Σ given by

ηx,−1(y) :=


1 if y = x− 1,

0 if y = x,

η(y) otherwise,

ηx,1(y) :=


0 if y = x,

1 if y = x+ 1,

η(y) otherwise.

For example, η0,1 := (. . . , η(−2), η(−1), 0, 1, η(2), η(3), . . .). And let ηx be the element of Σ

equal to η except at the xth coordinate. Then the generators are
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(ΩA′f)(η) :=
∑
x∈Z

[
1

4
f(ηx,x−1,−1) +

1

4
f(ηx,x−1,1) +

1

4
f(ηx,x+1,−1) +

1

4
f(ηx,x+1,1)− f(η)

]
=
∑
x∈Z

[
1

4
f(ηx,−1) +

1

4
f(ηx−1,1) +

1

4
f(ηx,1) +

1

4
f(ηx+1,−1)− f(η)

]
=
∑
x∈Z

[
1

2
f(ηx,−1) +

1

2
f(ηx,1)− f(η)

]
, (6.1)

(ΩBf)(η) :=
∑
x∈Z

c(x, η)
[
f(ηx)− f(η)

]
, (6.2)

and

(ΩC′f)(η) :=
[
γΩA′f + (1− γ)ΩBf

]
(η) (6.3)

for functions f ∈ C(Σ) depending on only finitely many coordinates, where

c(x, η) :=

{
pmx(η) if η(x) = 0,

qmx(η) if η(x) = 1,
(6.4)

qm := 1− pm for m = 0, 1, 2, 3, and mx(η) := 2η(x− 1) + η(x+ 1) ∈ {0, 1, 2, 3}.

Next, it is necessary to be shown that this interacting particle system is the limit in

distribution of the N -player model as N → ∞. Furthermore, we need to adjust the state

space by relabeling the players. Specifically, we let

ΣN := {η = (η(lN ), . . . , η(−1), η(0), η(1), . . . , η(rN )) : η(x) ∈ {0, 1} for x = lN , . . . , rN},

where

lN :=

{
−(N − 1)/2 if N is odd,

−N/2 if N is even,
rN :=

{
(N − 1)/2 if N is odd,

N/2− 1 if N is even.

It should be noted that players lN and rN are nearest neighbors. We denote the Markov

chain in ΣN by {XN
k , k = 0, 1, 2, . . .}.

First, let us analyze game A′. The one-step transition matrix PA′ of the Markov chain

in the state space ΣN has the form

PA′(η, ξ) :=
1

4N

∑
lN≤x≤rN

[δ(ηx,x−1,−1, ξ) + δ(ηx,x−1,1, ξ) + δ(ηx,x+1,−1, ξ) + δ(ηx,x+1,1, ξ)]

=
1

4N

∑
lN≤x≤rN

[δ(ηx,−1, ξ) + δ(ηx−1,1, ξ) + δ(ηx,1, ξ) + δ(ηx+1,−1, ξ)]

=
1

2N

∑
lN≤x≤rN

[
δ(ηx,−1, ξ) + δ(ηx,1, ξ)

]
,
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where δ(η, ξ) is the Kronecker delta, which is 1 if η = ξ and is 0 otherwise; the sum over x

ranges over {lN , . . . , rN}, and lN − 1 := rN and rN + 1 := lN . Next, we have the one-step

transition matrix PB of the form

PB(ξ, ζ) :=
1

N

∑
y

[1− c(y, ξ)]δ(ξ, ζ) +
1

N

∑
y

c(y, ξ)δ(ξy, ζ),

where the sum over y also ranges over {lN , . . . , rN}; c(y, ξ) is as in (6.4), except that

lN − 1 := rN and rN + 1 := lN . In addition, ξy is equal to ξ except at the yth coordinate.

We speed up time in the N -player model so that N one-step transitions occur per unit

of time. Then the discrete generator corresponding to game A′ is

(ΩN
A′f)(η) = NE

[
f(XN

1 )− f(η) | XN
0 = η

]
= N

∑
ξ∈ΣN

PA′(η, ξ)
[
f(ξ)− f(η)

]
= N

∑
ξ∈ΣN

1

2N

∑
lN≤x≤rN

[
δ(ηx,−1, ξ) + δ(ηx,1, ξ)

][
f(ξ)− f(η)

]
=

1

2

∑
lN≤x≤rN

[
f(ηx,−1)− f(x) + f(ηx,1)− f(η)

]
=

∑
lN≤x≤rN

[
1

2
f(ηx,−1) +

1

2
f(ηx,1)− f(η)

]
. (6.5)

The discrete generator corresponding to game B is

(ΩN
B f)(η) = NE

[
f(XN

1 )− f(η) | XN
0 = η

]
= N

∑
ξ∈ΣN

PB(η, ξ)
[
f(ξ)− f(η)

]
= N

[ ∑
lN≤x≤rN :η(x)=0

N−1pmx(η)

[
f(ηx)− f(η)

]
+

∑
lN≤x≤rN :η(x)=1

N−1qmx(η)

[
f(ηx)− f(η)

]]
=

∑
lN≤x≤rN :η(x)=0

pmx(η)

[
f(ηx)− f(η)

]
+

∑
lN≤x≤rN :η(x)=1

qmx(η)

[
f(ηx)− f(η)

]
. (6.6)

Hence the discrete generator corresponding to game C ′ is

(ΩN
C′f)(η) =

[
γΩN

A′f + (1− γ)ΩN
B f
]
(η)
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= γ
∑

lN≤x≤rN

[
1

2
f(ηx,−1) +

1

2
f(ηx,1)− f(η)

]

+ (1− γ)

[ ∑
lN≤x≤rN :η(x)=0

pmx(η)

[
f(ηx)− f(η)

]
+

∑
lN≤x≤rN :η(x)=1

qmx(η)

[
f(ηx)− f(η)

]]
. (6.7)

We define ψN : B(Σ) 7→ B(ΣN ) by

(ψNf)(η(lN ), . . . , η(rN )) := f(. . . , 1, 1, η(lN ), . . . , η(rN ), 1, 1, . . .). (6.8)

Lemma 6.1. If f ∈ C(Σ) depends on η only through the 2K + 1 components η(x) for

−K ≤ x ≤ K, then

(ΩN
A′ψNf)(η) = ψN (ΩA′f)(η), (6.9)

(ΩN
BψNf)(η) = ψN (ΩBf)(η), (6.10)

and

(ΩN
C′ψNf)(η) = ψN (ΩC′f)(η) (6.11)

for all η ∈ ΣN and N ≥ 2K + 4.

Proof. The left side of (6.9) is

∑
lN≤x≤rN

[
1

2
f(. . . , 1, 1, ηx,−1, 1, 1, . . .) +

1

2
f(. . . , 1, 1, ηx,1, 1, 1, . . .)− f(. . . , 1, 1, η, 1, 1, . . .)

]
,

where η ∈ ΣN , while the right side of (6.9) is

∑
x∈Z

[
1

2
f((. . . , 1, 1, η, 1, 1, . . .)x,−1) +

1

2
f((. . . , 1, 1, η, 1, 1, . . .)x,1)− f(. . . , 1, 1, η, 1, 1, . . .)

]
,

where again η ∈ ΣN .

If lN+1 ≤ x ≤ rN−1, then we have f(. . . , 1, 1, ηx,−1, 1, 1 . . .) = f((. . . , 1, 1, η, 1, 1 . . .)x,−1)

and f(. . . , 1, 1, ηx,1, 1, 1 . . .) = f((. . . , 1, 1, η, 1, 1 . . .)x,1). Thus a sufficient condition for (6.9)

is that K ≤ rN − 1 and −K ≥ lN + 1. Equivalently, it suffices that

K ≤ min(rN − 1,−lN − 1) = rN − 1 =

{
(N − 1)/2− 1 if N is odd,

N/2− 2 if N is even.

Therefore it suffices that N ≥ 2K + 3 if N is odd, while N ≥ 2K + 4 if N is even. Hence,

N ≥ 2K + 4 is certainly sufficient. Similarly, we can prove (6.10) and (6.11).
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Lemma 6.1 implies that the process {XN
bNtc} converges in distribution to the interacting

particle system {Xt} by Theorem 1.6.5 and 4.2.6 of Ethier and Kurtz [4]. It also implies

that, if the interacting particle system has a unique stationary distribution, then the unique

stationary distribution of the N -player Markov chain converges to it in the topology of

weak convergence, essentially by Proposition I.2.14 of Liggett [15]. Let us assume that

the interacting particle system with generator ΩC′ has a unique stationary distribution π,

and let us denote the unique stationary distribution of the N -player Markov chain for the

(γ, 1− γ) random mixture of games A′ and B by πN . (We previously denoted the latter by

π but now it is necessary to make the dependence on N explicit.) We do not use boldface

for πN or π because it is no longer useful or possible, respectively, to think of them as row

vectors.) Let us denote their −1, 1 two-dimensional marginals by πN−1,1 and π−1,1. Then we

have

µN(γ,1−γ)′

= πN−1,1(0, 0)(2p0 − 1) + πN−1,1(0, 1)(2p1 − 1) + πN−1,1(1, 0)(2p2 − 1) + πN−1,1(1, 1)(2p3 − 1)

→ π−1,1(0, 0)(2p0 − 1) + π−1,1(0, 1)(2p1 − 1) + π−1,1(1, 0)(2p2 − 1) + π−1,1(1, 1)(2p3 − 1)

=: µ(γ,1−γ)′ , (6.12)

hence µN(γ,1−γ)′ , the mean profit per turn at equilibrium to the N players playing the (γ, 1−γ)

random mixture of games A′ and B, converges as N →∞ to a limit that can be expressed

in terms of an interacting particle system. We have proved the following.

Theorem 6.2. Fix γ ∈ (0, 1). Assume that the interacting particle system on Z with

generator ΩC′ := γΩA′ + (1− γ)ΩB is ergodic with unique stationary distribution π. Then

limN→∞ µ
N
(γ,1−γ)′ = µ(γ,1−γ)′, where µ(γ,1−γ)′ is as in (6.12).

6.2 Convergence of generators:
Case of r = s = 1

We will need PA′(η, ξ), PB(ξ, ζ), and (PA′PB)(η, ζ) before we evaluate (ΩN
[1,1]′f)(η),

where the discrete generator ΩN
[1,1]′ corresponds to the nonrandom pattern [1, 1]′, that is,

A′BA′BA′B · · · , and with N games played per unit of time.

The state space is

ΣN := {η = (η(lN ), . . . , η(−1), η(0), η(1), . . . , η(rN )) : η(x) ∈ {0, 1} for x = lN , . . . , rN},
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where

lN :=

{
−(N − 1)/2 if N is odd,

−N/2 if N is even,
rN :=

{
(N − 1)/2 if N is odd,

N/2− 1 if N is even.

For x = lN , . . . , rN , let ηx,1 be the element of ΣN whose yth component is equal to η(y)

if y 6= x, x + 1, 0 if y = x, 1 if y = x + 1; let ηx,−1 be the element of ΣN whose yth

component is equal to η(y) if y 6= x, x − 1, 0 if y = x, 1 if y = x − 1. For example,

η0,1 := (η(lN ), . . . , η(−1), 0, 1, η(2), . . . , η(rN )). Note that rN + 1 := lN and lN − 1 := rN

here, since players lN and rN are nearest neighbors.

Then the one-step transition matrix PA′ of the Markov chain in the state space ΣN has

the form

PA′(η, ξ) :=
1

2N

∑
x

[
δ(ηx,−1, ξ) + δ(ηx,1, ξ)

]
,

where δ(η, ξ) is the Kronecker delta, which is 1 if η = ξ and is 0 otherwise; the sum over x

ranges over {lN , . . . , rN}. Next, we have the one-step transition matrix PB of the form

PB(ξ, ζ) :=
1

N

∑
y

[1− c(y, ξ)]δ(ξ, ζ) +
1

N

∑
y

c(y, ξ)δ(ξy, ζ),

where the sum over y also ranges over {lN , . . . , rN}; c(y, ξ) is equal to pmy(ξ) if ξ(y) = 0

and is equal to qmy(ξ) if ξ(y) = 1; here qm := 1 − pm for m = 0, 1, 2, 3 and my(ξ) :=

2ξ(y− 1) + ξ(y+ 1) ∈ {0, 1, 2, 3}. In addition, ξy is equal to ξ except at the yth component.

The discrete generator has the form

(ΩN
[1,1]′f)(η) =

N

2

∑
ζ

[f(ζ)− f(η)](PA′PB)(η, ζ).

To evaluate this, we begin with

(PA′PB)(η, ζ)

=
∑
ξ

PA′(η, ξ)PB(ξ, ζ)

=
∑
ξ

[
1

2N

∑
x

[
δ(ηx,−1, ξ) + δ(ηx,1, ξ)

]]

·
[

1

N

∑
y

[1− c(y, ξ)]δ(ξ, ζ) +
1

N

∑
y

c(y, ξ)δ(ξy, ζ)

]
=

1

2N2

∑
ξ

∑
x,y

[
(1− c(y, ξ))δ(ηx,−1, ξ)δ(ξ, ζ) + (1− c(y, ξ))δ(ηx,1, ξ)δ(ξ, ζ)
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+ c(y, ξ)δ(ηx,−1, ξ)δ(ξy, ζ) + c(y, ξ)δ(ηx,1, ξ)δ(ξy, ζ)
]

=
1

2N2

∑
x

∑
y

[
(1− c(y, ηx,−1))δ(ηx,−1, ζ) + (1− c(y, ηx,1))δ(ηx,1, ζ)

]
+

1

2N2

∑
x

∑
y

[
c(y, ηx,−1)δ((ηx,−1)y, ζ) + c(y, ηx,1)δ((ηx,1)y, ζ)

]
. (6.13)

Hence, for f ∈ B(ΣN ),

(ΩN
[1,1]′

f)(η)

=
1

4N

∑
x

∑
y

[
(1− c(y, ηx,−1))[f(ηx,−1)− f(η)] + (1− c(y, ηx,1))[f(ηx,1)− f(η)]

]
+

1

4N

∑
x

∑
y

[
c(y, ηx,−1)[f((ηx,−1)y)− f(η)] + c(y, ηx,1)[f((ηx,1)y)− f(η)]

]
. (6.14)

Now suppose that f ∈ B(Σ) depends only on η(−(K−2)), . . . , η(K−2) for some integer

K ≥ 2, and define fN := ψNf ∈ B(ΣN ). Then we can write the discrete generator acting

on fN as

(ΩN
[1,1]′fN )(η)

=
1

4N

[ ∑
|x|≤K

∑
|y|≤K

[
(1− c(y, ηx,−1))[fN (ηx,−1)− fN (η)] + (1− c(y, ηx,1))[fN (ηx,1)− fN (η)]

]
+
∑
|x|≤K

∑
|y|>K

[
(1− c(y, ηx,−1))[fN (ηx,−1)− fN (η)] + (1− c(y, ηx,1))[fN (ηx,1)− fN (η)]

]
+
∑
|x|>K

∑
|y|≤K

[
(1− c(y, ηx,−1))[fN (ηx,−1)− fN (η)] + (1− c(y, ηx,1))[fN (ηx,1)− fN (η)]

]
+
∑
|x|>K

∑
|y|>K

[
(1− c(y, ηx,−1))[fN (ηx,−1)− fN (η)] + (1− c(y, ηx,1))[fN (ηx,1)− fN (η)]

]]

+
1

4N

[ ∑
|x|≤K

∑
|y|≤K

[
c(y, ηx,−1)[fN ((ηx,−1)y)− fN (η)] + c(y, ηx,1)[fN ((ηx,1)y)− fN (η)]

]
+
∑
|x|≤K

∑
|y|>K

[
c(y, ηx,−1)[fN ((ηx,−1)y)− fN (η)] + c(y, ηx,1)[fN ((ηx,1)y)− fN (η)]

]
+
∑
|x|>K

∑
|y|≤K

[
c(y, ηx,−1)[fN ((ηx,−1)y)− fN (η)] + c(y, ηx,1)[fN ((ηx,1)y)− fN (η)]

]
+
∑
|x|>K

∑
|y|>K

[
c(y, ηx,−1)[fN ((ηx,−1)y)− fN (η)] + c(y, ηx,1)[fN ((ηx,1)y)− fN (η)]

]]
.

(6.15)

Let us analyze each term in (6.15). The first term becomes O(N−1) because∣∣∣∣ ∑
|x|≤K

∑
|y|≤K

[
(1− c(y, ηx,−1))[fN (ηx,−1)− fN (η)] + (1− c(y, ηx,1))[fN (ηx,1)− fN (η)]

∣∣∣∣



78

≤
∑
|x|≤K

∑
|y|≤K

[
|fN (ηx,−1)− fN (η)|+ |fN (ηx,1)− fN (η)|

]
≤ (2K + 1)2 sup

η,x

[∣∣fN (ηx,−1)− fN (η)
∣∣+
∣∣fN (ηx,1)− fN (η)

∣∣]
≤ 4(2K + 1)2 sup

η

∣∣f(η)
∣∣.

The fifth term becomes O(N−1) in the same way as the first term.

Since |x| > K in the third term, fN (ηx,−1) = fN (ηx,1) = fN (η). Hence the third term

is zero.

Also |x| > K and |y| > K imply that fN (ηx,−1), fN (ηx,1), fN ((ηx,−1)y), and fN ((ηx,1)y)

are equal to fN (η). This causes the fourth and the eighth terms to be zero.

The second and sixth terms combine because |y| > K implies fN ((ηx,−1)y) = fN (ηx,−1)

and fN ((ηx,1)y) = fN (ηx,1), so we have

1

4N

∑
|x|≤K

∑
|y|>K

[
[fN (ηx,−1)− fN (η)] + [fN (ηx,1)− fN (η)]

]
=

1

4

∑
|x|≤K

(
N − (2K + 1)

N

)[
[fN (ηx,−1)− fN (η)] + [fN (ηx,1)− fN (η)]

]
=

1

2

∑
|x|≤K

[
1

2
fN (ηx,−1) +

1

2
fN (ηx,1)− fN (η)

]
+O(N−1).

Since |x| > K implies fN ((ηx,−1)y) = fN ((ηx,1)y) = fN (ηy), the seventh term becomes

1

4N

∑
|x|>K

∑
|y|≤K

[
c(y, ηx,−1)[fN ((ηx,−1)y)− fN (η)] + c(y, ηx,1)[fN ((ηx,1)y)− fN (η)]

]
=

1

4

∑
|y|≤K

(
N − (2K + 1)

N

)
c(y, η)

[
[fN (ηy)− fN (η)] + [fN (ηy)− fN (η)]

]
=

1

2

∑
|y|≤K

c(y, η)
[
fN (ηy)− fN (η)

]
+O(N−1),

where we are also using c(y, ηx,−1) = c(y, η) if |x| > K and |y| ≤ K with possible exceptions

if |x − y| = 1 or 2. But in such a case, fN (ηy) − fN (η) = 0 since f depends only on

η(−(K − 2)), . . . , η(K − 2). Thus we can conclude that

(ΩN
[1,1]′fN )(η)

=
1

2

∑
|x|≤K

[
1

2
fN (ηx,−1) +

1

2
fN (ηx,1)− fN (η)

]
+

1

2

∑
|y|≤K

c(y, η)
[
fN (ηy)− fN (η)

]
+O(N−1)

=
1

2
ψN
(
ΩA′f + ΩBf

)
(η) +O(N−1),
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where f ∈ B(Σ) depends on η through the 2K−3 components η(x) for−(K−2) ≤ x ≤ K−2.

Here we recall that ΩA′f and ΩBf are as in (6.1) and (6.2).

6.3 Convergence of generators:
Case of r = s = 2

The discrete generator with r = s = 2 has the form

(ΩN
[2,2]′f)(η) =

N

4

∑
ζ

[f(ζ)− f(η)](P 2
A′P

2
B)(η, ζ).

First, we compute

(P 2
A′P

2
B)(η, ζ)

=
∑
ξ,τ,φ

PA′(η, ξ)PA′(ξ, τ)PB(τ, φ)PB(φ, ζ)

=
∑
ξ,τ,φ

[
1

2N

∑
w

[δ(ηw,−1, ξ) + δ(ηw,1, ξ)]

][
1

2N

∑
x

[δ(ξx,−1, τ) + δ(ξx,1, τ)]

]

·
[

1

N

∑
y

(1− c(y, τ))δ(τ, φ) +
1

N

∑
y

c(y, τ)δ(τy, φ)

]
·
[

1

N

∑
z

(1− c(z, φ))δ(φ, ζ) +
1

N

∑
z

c(z, φ)δ(φz, ζ)

]
=

1

4N4

∑
ξ,τ,φ

∑
w,x,y,z

[
(1− c(y, τ))(1− c(z, φ))δ(ηw,−1, ξ)δ(ξx,−1, τ)δ(τ, φ)δ(φ, ζ)

+ (1− c(y, τ))c(z, φ)δ(ηw,−1, ξ)δ(ξx,−1, τ)δ(τ, φ)δ(φz, ζ)

+ c(y, τ)(1− c(z, φ))δ(ηw,−1, ξ)δ(ξx,−1, τ)δ(τy, φ)δ(φ, ζ)

+ c(y, τ)c(z, φ)δ(ηw,−1, ξ)δ(ξx,−1, τ)δ(τy, φ)δ(φz, ζ)

+ (1− c(y, τ))(1− c(z, φ))δ(ηw,−1, ξ)δ(ξx,1, τ)δ(τ, φ)δ(φ, ζ)

+ (1− c(y, τ))c(z, φ)δ(ηw,−1, ξ)δ(ξx,1, τ)δ(τ, φ)δ(φz, ζ)

+ c(y, τ)(1− c(z, φ))δ(ηw,−1, ξ)δ(ξx,1, τ)δ(τy, φ)δ(φ, ζ)

+ c(y, τ)c(z, φ)δ(ηw,−1, ξ)δ(ξx,1, τ)δ(τy, φ)δ(φz, ζ)

+ (1− c(y, τ))(1− c(z, φ))δ(ηw,1, ξ)δ(ξx,−1, τ)δ(τ, φ)δ(φ, ζ)

+ (1− c(y, τ))c(z, φ)δ(ηw,1, ξ)δ(ξx,−1, τ)δ(τ, φ)δ(φz, ζ)

+ c(y, τ)(1− c(z, φ))δ(ηw,1, ξ)δ(ξx,−1, τ)δ(τy, φ)δ(φ, ζ)

+ c(y, τ)c(z, φ)δ(ηw,1, ξ)δ(ξx,−1, τ)δ(τy, φ)δ(φz, ζ)

+ (1− c(y, τ))(1− c(z, φ))δ(ηw,1, ξ)δ(ξx,1, τ)δ(τ, φ)δ(φ, ζ)
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+ (1− c(y, τ))c(z, φ)δ(ηw,1, ξ)δ(ξx,1, τ)δ(τ, φ)δ(φz, ζ)

+ c(y, τ)(1− c(z, φ))δ(ηw,1, ξ)δ(ξx,1, τ)δ(τy, φ)δ(φ, ζ)

+ c(y, τ)c(z, φ)δ(ηw,1, ξ)δ(ξx,1, τ)δ(τy, φ)δ(φz, ζ)

]
=

1

4N4

∑
w

∑
x

∑
y

∑
z

[
(1− c(y, (ηw,−1)x,−1))(1− c(z, (ηw,−1)x,−1))δ((ηw,−1)x,−1, ζ)

+ (1− c(y, (ηw,−1)x,−1))c(z, (ηw,−1)x,−1)δ(((ηw,−1)x,−1)z, ζ)

+ c(y, (ηw,−1)x,−1)(1− c(z, ((ηw,−1)x,−1)y))δ(((η
w,−1)x,−1)y, ζ)

+ c(y, (ηw,−1)x,−1)c(z, ((ηw,−1)x,−1)y)δ((((η
w,−1)x,−1)y)z, ζ)

+ (1− c(y, (ηw,−1)x,1))(1− c(z, (ηw,−1)x,1))δ((ηw,−1)x,1, ζ)

+ (1− c(y, (ηw,−1)x,1))c(z, (ηw,−1)x,1)δ(((ηw,−1)x,1)z, ζ)

+ c(y, (ηw,−1)x,1)(1− c(z, ((ηw,−1)x,1)y))δ(((η
w,−1)x,1)y, ζ)

+ c(y, (ηw,−1)x,1)c(z, ((ηw,−1)x,1)y)δ((((η
w,−1)x,1)y)z, ζ)

+ (1− c(y, (ηw,1)x,−1))(1− c(z, (ηw,1)x,−1))δ((ηw,1)x,−1, ζ)

+ (1− c(y, (ηw,1)x,−1))c(z, (ηw,1)x,−1)δ(((ηw,1)x,−1)z, ζ)

+ c(y, (ηw,1)x,−1)(1− c(z, ((ηw,1)x,−1)y))δ(((η
w,1)x,−1)y, ζ)

+ c(y, (ηw,1)x,−1)c(z, ((ηw,1)x,−1)y)δ((((η
w,1)x,−1)y)z, ζ)

+ (1− c(y, (ηw,1)x,1))(1− c(z, (ηw,1)x,1))δ((ηw,1)x,1, ζ)

+ (1− c(y, (ηw,1)x,1))c(z, (ηw,1)x,1)δ(((ηw,1)x,1)z, ζ)

+ c(y, (ηw,1)x,1)(1− c(z, ((ηw,1)x,1)y))δ(((η
w,1)x,1)y, ζ)

+ c(y, (ηw,1)x,1)c(z, ((ηw,1)x,1)y)δ((((η
w,1)x,1)y)z, ζ). (6.16)

Next, assume that f ∈ B(Σ) depends only on η(−(K−2)), . . . , η(K−2) for some integer

K ≥ 2, and put fN := ψNf ∈ B(ΣN ). Then the discrete generator with r = s = 2 acting

on fN reduces to

(ΩN
[2,2]′fN )(η)

=
1

16N3

∑
w

∑
x

∑
y

∑
z

[
(1− c(y, (ηw,−1)x,−1))(1− c(z, (ηw,−1)x,−1))

·
[
fN ((ηw,−1)x,−1)− fN (η)

]
+ (1− c(y, (ηw,−1)x,−1))c(z, (ηw,−1)x,−1)

[
fN (((ηw,−1)x,−1)z)− fN (η)

]
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+ c(y, (ηw,−1)x,−1)(1− c(z, ((ηw,−1)x,−1)y))
[
fN (((ηw,−1)x,−1)y)− fN (η)

]
+ c(y, (ηw,−1)x,−1)c(z, ((ηw,−1)x,−1)y)

[
fN ((((ηw,−1)x,−1)y)z)− fN (η)

]
+ (1− c(y, (ηw,−1)x,1))(1− c(z, (ηw,−1)x,1))

[
fN ((ηw,−1)x,1)− fN (η)

]
+ (1− c(y, (ηw,−1)x,1))c(z, (ηw,−1)x,1)

[
fN (((ηw,−1)x,1)z)− fN (η)

]
+ c(y, (ηw,−1)x,1)(1− c(z, ((ηw,−1)x,1)y))

[
fN (((ηw,−1)x,1)y)− fN (η)

]
+ c(y, (ηw,−1)x,1)c(z, ((ηw,−1)x,1)y)

[
fN ((((ηw,−1)x,1)y)z)− fN (η)

]
+ (1− c(y, (ηw,1)x,−1))(1− c(z, (ηw,1)x,−1))

[
fN ((ηw,1)x,−1)− fN (η)

]
+ (1− c(y, (ηw,1)x,−1))c(z, (ηw,1)x,−1)

[
fN (((ηw,1)x,−1)z)− fN (η)

]
+ c(y, (ηw,1)x,−1)(1− c(z, ((ηw,1)x,−1)y))

[
fN (((ηw,1)x,−1)y)− fN (η)

]
+ c(y, (ηw,1)x,−1)c(z, ((ηw,1)x,−1)y)

[
fN ((((ηw,1)x,−1)y)z)− fN (η)

]
+ (1− c(y, (ηw,1)x,1))(1− c(z, (ηw,1)x,1))

[
fN ((ηw,1)x,1)− fN (η)

]
+ (1− c(y, (ηw,1)x,1))c(z, (ηw,1)x,1)

[
fN (((ηw,1)x,1)z)− fN (η)

]
+ c(y, (ηw,1)x,1)(1− c(z, ((ηw,1)x,1)y))

[
fN (((ηw,1)x,1)y)− fN (η)

]
+ c(y, (ηw,1)x,1)c(z, ((ηw,1)x,1)y)

[
fN ((((ηw,1)x,1)y)z)− fN (η)

]]
. (6.17)

We replace
∑

w

∑
x

∑
y

∑
z in (6.17) by( ∑

|w|≤K

+
∑
|w|>K

)( ∑
|x|≤K

+
∑
|x|>K

)( ∑
|y|≤K

+
∑
|y|>K

)( ∑
|z|≤K

+
∑
|z|>K

)

and conclude the following.

• The term for which all of |w|, |x|, |y|, and |z| are less than or equal to K contribute

at most (16N3)−1(2K + 1)4 2 supη |f(η)|.

• The terms for which three of |w|, |x|, |y|, and |z| are less than or equal to K contribute

at most 4(16N3)−1(N − (2K + 1))(2K + 1)3 2 supη |f(η)|.

• The terms for which two of |w|, |x|, |y|, and |z| are less than or equal to K contribute

at most 6(16N3)−1(N − (2K + 1))2(2K + 1)2 2 supη |f(η)|.

• The term for which none of |w|, |x|, |y|, and |z| is less than or equal to K is equal to

0.
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The contributions to (6.17) described in the four cases above will be O(N−1). So it is

enough to analyze the cases in which one of |w|, |x|, |y|, and |z| is less than or equal to K.

First, we consider the case in which only |w| ≤ K (or similarly only |x| ≤ K). This case

contributes

1

16N3

∑
|w|≤K

∑
|x|>K

∑
|y|>K

∑
|z|>K

[
(1− c(y, (ηw,−1)x,−1))(1− c(z, (ηw,−1)x,−1))

·
[
fN (ηw,−1)− fN (η)

]
+ (1− c(y, (ηw,−1)x,−1))c(z, (ηw,−1)x,−1)

[
fN (ηw,−1)− fN (η)

]
+ c(y, (ηw,−1)x,−1)(1− c(z, ((ηw,−1)x,−1)y))

[
fN (ηw,−1)− fN (η)

]
+ c(y, (ηw,−1)x,−1)c(z, ((ηw,−1)x,−1)y)

[
fN (ηw,−1)− fN (η)

]
+ (1− c(y, (ηw,−1)x,1))(1− c(z, (ηw,−1)x,1))

[
fN (ηw,−1)− fN (η)

]
+ (1− c(y, (ηw,−1)x,1))c(z, (ηw,−1)x,1)

[
fN (ηw,−1)− fN (η)

]
+ c(y, (ηw,−1)x,1)(1− c(z, ((ηw,−1)x,1)y))

[
fN (ηw,−1)− fN (η)

]
+ c(y, (ηw,−1)x,1)c(z, ((ηw,−1)x,1)y)

[
fN (ηw,−1)− fN (η)

]
+ (1− c(y, (ηw,1)x,−1))(1− c(z, (ηw,1)x,−1))

[
fN (ηw,1)− fN (η)

]
+ (1− c(y, (ηw,1)x,−1))c(z, (ηw,1)x,−1)

[
fN (ηw,1)− fN (η)

]
+ c(y, (ηw,1)x,−1)(1− c(z, ((ηw,1)x,−1)y))

[
fN (ηw,1)− fN (η)

]
+ c(y, (ηw,1)x,−1)c(z, ((ηw,1)x,−1)y)

[
fN (ηw,1)− fN (η)

]
+ (1− c(y, (ηw,1)x,1))(1− c(z, (ηw,1)x,1))

[
fN (ηw,1)− fN (η)

]
+ (1− c(y, (ηw,1)x,1))c(z, (ηw,1)x,1)

[
fN (ηw,1)− fN (η)

]
+ c(y, (ηw,1)x,1)(1− c(z, ((ηw,1)x,1)y))

[
fN (ηw,1)− fN (η)

]
+ c(y, (ηw,1)x,1)c(z, ((ηw,1)x,1)y)

[
fN (ηw,1)− fN (η)

]]
=

1

16N3

∑
|w|≤K

∑
|x|>K

∑
|y|>K

∑
|z|>K

{
2
[
fN (ηw,−1)− fN (η)

]
+ 2
[
fN (ηw,1)− fN (η)

]}
=

1

4N3

∑
|w|≤K

[
N − (2K + 1)

]3[1

2
fN (ηw,−1) +

1

2
fN (ηw,1)− fN (η)

]

=
1

4

∑
|w|≤K

[
1

2
fN (ηw,−1) +

1

2
fN (ηw,1)− fN (η)

]
+O(N−1). (6.18)

Next, we consider the case in which only |y| ≤ K (or similarly only |z| ≤ K). This case

contributes
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1

16N3

∑
|w|>K

∑
|x|>K

∑
|y|≤K

∑
|z|>K

[
(1− c(y, η))(1− c(z, η))

[
fN (η)− fN (η)

]
+ (1− c(y, η))c(z, η))

[
fN (η)− fN (η)

]
+ c(y, η)(1− c(z, ηy)

[
fN (ηy)− fN (η)

]
+ c(y, η)c(z, ηy)

[
fN (ηy)− fN (η)

]
+ (1− c(y, η))(1− c(z, η))

[
fN (η)− fN (η)

]
+ (1− c(y, η))c(z, η)

[
fN (η)− fN (η)

]
+ c(y, η)(1− c(z, ηy))

[
fN (ηy)− fN (η)

]
+ c(y, η)c(z, ηy)

[
fN (ηy)− fN (η)

]
+ (1− c(y, η))(1− c(z, η))

[
fN (η)− fN (η)

]
+ (1− c(y, η))c(z, η)

[
fN (η)− fN (η)

]
+ c(y, η)(1− c(z, ηy))

[
fN (ηy)− fN (η)

]
+ c(y, η)c(z, ηy)

[
fN (ηy)− fN (η)

]
+ (1− c(y, η))(1− c(z, η))

[
fN (η)− fN (η)

]
+ (1− c(y, η))c(z, η)

[
fN (η)− fN (η)

]
+ c(y, η)(1− c(z, ηy))

[
fN (ηy)− fN (η)

]
+ c(y, η)c(z, ηy))

[
fN (ηy)− fN (η)

]]
=

1

4N3

∑
|w|>K

∑
|x|>K

∑
|y|≤K

∑
|z|>K

c(y, η)
[
fN (ηy)− fN (η)

]
=

1

4N3

∑
|y|≤K

[
N − (2K + 1)

]3
c(y, η)

[
fN (ηy)− fN (η)

]
=

1

4

∑
|y|≤K

c(y, η)
[
fN (ηy)− fN (η)

]
+O(N−1), (6.19)

where we are also using, for example, c(y, (ηw,−1)x,−1) = c(y, η) if |w| > K, |x| > K, and

|y| ≤ K with possible exceptions if |w − y| = 1 or 2 or |x − y| = 1 or 2. But in such a

case, fN (ηy) − fN (η) = 0 since f depends only on η(−(K − 2)), . . . , η(K − 2). Finally, we

conclude that

(ΩN
[2,2]′fN )(η)

=
1

4

∑
|w|≤K

[
1

2
fN (ηw,−1) +

1

2
fN (ηw,1)− fN (η)

]]
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+
1

4

∑
|x|≤K

[
1

2
fN (ηx,−1) +

1

2
fN (ηx,1)− fN (η)

]]
+

1

4

∑
|y|≤K

c(y, η)
[
fN (ηy)− fN (η)

]
+

1

4

∑
|z|≤K

c(z, η)
[
fN (ηz)− fN (η)

]
+O(N−1)

=
1

2

∑
|w|≤K

[
1

2
fN (ηw,−1) +

1

2
fN (ηw,1)− fN (η)

]]
+

1

2

∑
|y|≤K

c(y, η)
[
fN (ηy)− fN (η)

]
+O(N−1)

=
1

2
ψN
(
ΩA′f + ΩBf

)
(η) +O(N−1),

as desired.

6.4 Convergence of generators: General case

The discrete generator for the nonrandom periodic pattern (A′)rBs has the form, for

f ∈ B(ΣN ),

(ΩN
[r,s]′f)(η0) =

N

r + s

∑
ηr+s

[f(ηr+s)− f(η0)](P r
A′P

s
B)(η0, ηr+s).

We begin by evaluating

(P r
A′P

s
B)(η0, ηr+s)

=
∑

η1,η2,...,ηr+s−1

PA′(η
0, η1)PA′(η

1, η2) · · ·PA′(ηr−1, ηr)

× PB(ηr, ηr+1)PB(ηr+1, ηr+2) · · ·PB(ηr+s−1, ηr+s)

=
∑

η1,η2,...,ηr+s−1

r∏
i=1

PA′(η
i−1, ηi)

r+s∏
i=r+1

PB(ηi−1, ηi)

=
∑

η1,η2,...,ηr+s−1

r∏
i=1

[
1

2N

∑
xi

[δ((ηi−1)xi,−1, ηi) + δ((ηi−1)xi,1, ηi)]

]

×
r+s∏
i=r+1

[
1

N

∑
xi

(1− c(xi, ηi−1))δ(ηi−1, ηi) +
1

N

∑
xi

c(xi, η
i−1)δ((ηi−1)xi , η

i)

]
=

1

2rN r+s

∑
A⊂{1,...,r}

∑
B⊂{r+1,...,r+s}

∑
η1,η2,...,ηr+s−1

∏
i∈Ac

[∑
xi

δ((ηi−1)xi,−1, ηi)

]

×
∏
i∈A

[∑
xi

δ((ηi−1)xi,1, ηi)

] ∏
i∈Bc

[∑
xi

(1− c(xi, ηi−1))δ(ηi−1, ηi)

]
×
∏
i∈B

[∑
xi

c(xi, η
i−1)δ((ηi−1)xi , η

i)

]
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=
1

2rN r+s

∑
A⊂{1,...,r}

∑
B⊂{r+1,...,r+s}

∑
η1,η2,...,ηr+s−1

∑
xi:i∈Ac

∑
xi:i∈A

∑
xi:i∈Bc

∑
xi:i∈B

×
∏
j∈Ac

[
δ((ηj−1)xj ,−1, ηj)

] ∏
j∈A

[
δ((ηj−1)xj ,1, ηj)

]
×
∏
j∈Bc

[
(1− c(xj , ηj−1))δ(ηj−1, ηj)

] ∏
j∈B

[
c(xj , η

j−1)δ((ηj−1)xj , η
j)
]

=
1

2rN r+s

∑
A⊂{1,...,r}

∑
B⊂{r+1,...,r+s}

∑
xi:i∈{1,2,...,r+s}

×
∏
j∈Bc

[
1− c(xj , ((· · · ((· · · (((η0)x1,a1)x2,a2) · · · )xp,ap) · · · )xr,ar){xl:l∈B,l<j})

]
×
∏
j∈B

c(xj , ((· · · ((· · · (((η0)x1,a1)x2,a2) · · · )xp,ap) · · · )xr,ar){xl:l∈B,l<j})

× δ(((· · · ((· · · (((η0)x1,a1)x2,a2) · · · )xp,ap) · · · )xr,ar){xl:l∈B}, η
r+s), (6.20)

where Ac := {1, 2, . . . , r} −A and Bc := {r + 1, r + 2, . . . , r + s} −B; also p ∈ {1, 2, . . . , r}

and

ap =

{
−1 if p ∈ Ac,

1 if p ∈ A.
Here, for example, η{xl:l∈B} denotes η with the spins flipped at each site xl with l ∈ B.

These site labels need not be distinct, so if there are multiple flips at a single site, only the

parity of the number of flips is relevant.

Next, assume that f ∈ B(Σ) depends only on η(−(K−2)), . . . , η(K−2) for some integer

K ≥ 2, and put fN := ψNf ∈ B(ΣN ). Then the discrete generator for the pattern (A′)rBs,

acting on fN , reduces to

(ΩN
[r,s]′fN )(η0) =

N

r + s

∑
ηr+s

[fN (ηr+s)− fN (η0)](P r
A′P

s
B)(η0, ηr+s)

=
1

r + s

1

2rN r+s−1

∑
A⊂{1,...,r}

∑
B⊂{r+1,...,r+s}

∑
xi:i∈{1,2,...,r+s}

×
∏
j∈Bc

[
1− c(xj , ((· · · ((· · · (((η0)x1,a1)x2,a2) · · · )xp,ap) · · · )xr,ar){xl:l∈B,l<j})

]
×
∏
j∈B

c(xj , ((· · · ((· · · (((η0)x1,a1)x2,a2) · · · )xp,ap) · · · )xr,ar){xl:l∈B,l<j})

× [fN (((· · · ((· · · (((η0)x1,a1)x2,a2) · · · )xp,ap) · · · )xr,ar){xl:l∈B})− fN (η0)]

(6.21)

We replace
∑

xi:i∈{1,2,...,r+s} in (6.21) by(∑
i∈Ac

+
∑
i∈A

) ∑
|xi|≤K

∑
|xm|>K:m∈{1,2,...,r+s},m 6=i

+
∑
i∈B

∑
|xi|≤K

∑
|xm|>K:m∈{1,2,...,r+s},m 6=i

(6.22)
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since each sum
∑

xi
can be written as

∑
|xi|≤K +

∑
|xi|>K resulting in 2r+s multiple sums in

which each of those multiple sums with two or more sums of the form
∑
|xi|≤K contributes

at most O(N−1) and those without the form
∑
|xi|≤K , where i ∈ {1, 2, . . . , r} ∪B are 0. So

it is enough to analyze the cases in which only one of the |xi|’s is less than or equal to K.

We consider first the first term in (6.22). It contributes

1

r + s

1

2rN r+s−1

∑
A⊂{1,...,r}

∑
B⊂{r+1,...,r+s}

[ ∑
i∈Ac

∑
|xi|≤K

[fN ((η0)xi,−1)− fN (η0)]

+
∑
i∈A

∑
|xi|≤K

[fN ((η0)xi,1)− fN (η0)]

]
×

∑
|xm|>K:m∈{1,2,...,r+s},m 6=i

∏
j∈Bc

[
1

− c(xj , ((· · · ((· · · (((η0)x1,a1)x2,a2) · · · )xp,ap) · · · )xr,ar){xl:l∈B,l<j})
]

×
∏
j∈B

c(xj , ((· · · ((· · · (((η0)x1,a1)x2,a2) · · · )xp,ap) · · · )xr,ar){xl:l∈B,l<j})

=
1

r + s

1

2rN r+s−1

∑
A⊂{1,...,r}

∑
B⊂{r+1,...,r+s}

[ ∑
i∈Ac

∑
|xi|≤K

[fN ((η0)xi,−1)− fN (η0)]

+
∑
i∈A

∑
|xi|≤K

[fN ((η0)xi,1)− fN (η0)]

]
×

∑
|xm|>K:m∈{1,2,...,r+s},m 6=i

∏
j∈Bc

[
1− c(xj , (· · · ((· · · (((η0)x1,a1)x2,a2) · · · )xp,ap) · · · )xr,ar)

]
×
∏
j∈B

c(xj , (· · · ((· · · (((η0)x1,a1)x2,a2) · · · )xp,ap) · · · )xr,ar)

=
1

r + s

1

2rN r+s−1

[
N − (2K + 1)

]r+s−1
∑

A⊂{1,...,r}

[
|Ac|

∑
|x|≤K

[fN ((η0)x,−1)− fN (η0)]

+ |A|
∑
|x|≤K

[fN ((η0)x,1)− fN (η0)]

]

=
1

r + s

1

2rN r+s−1

[
N − (2K + 1)

]r+s−1
∑

A⊂{1,...,r}

[
|Ac|

∑
|x|≤K

fN ((η0)x,−1)

+ |A|
∑
|x|≤K

fN ((η0)x,1)− r
∑
|x|≤K

fN (η0)

]

=
1

r + s

1

N r+s−1

[
N − (2K + 1)

]r+s−1
[
r

2

∑
|x|≤K

fN ((η0)x,−1)

+
r

2

∑
|x|≤K

fN ((η0)x,1)− r
∑
|x|≤K

fN (η0)

]
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=
r

r + s

∑
|x|≤K

[
1

2
fN ((η0)x,−1) +

1

2
fN ((η0)x,1)− fN (η0)

]
+O(N−1)

=
r

r + s
ψN (ΩA′f)(η0) +O(N−1), (6.23)

where, in the second equality,

∑
|xm|>K:m∈{1,2,...,r+s},m 6=i

∑
B⊂{r+1,...,r+s}

∏
j∈Bc

[
1

− c(xj , (· · · ((· · · (((η0)x1,a1)x2,a2) · · · )xp,ap) · · · )xr,ar)
]

×
∏
j∈B

c(xj , (· · · ((· · · (((η0)x1,a1)x2,a2) · · · )xp,ap) · · · )xr,ar)

=
∑

|xm|>K:m∈{1,2,...,r+s},m 6=i

r+s∏
j=r+1

[
1− c(xj , (· · · ((· · · (((η0)x1,a1)x2,a2) · · · )xp,ap) · · · )xr,ar)

+ c(xj , (· · · ((· · · (((η0)x1,a1)x2,a2) · · · )xp,ap) · · · )xr,ar)
]

= [N − (2K + 1)]r+s−1,

and in the fourth equality,

1

2r

∑
A⊂{1,...,r}

|Ac| = 1

2r

∑
A⊂{1,...,r}

|A| = 1

2r

r∑
i=0

i

(
r

i

)
=
r

2
.

Next, we consider the second term in (6.22). It contributes

1

r + s

1

2rN r+s−1

∑
A⊂{1,...,r}

∑
B⊂{r+1,...,r+s}

∑
i∈B

∑
|xi|≤K

[fN ((η0)xi)− fN (η0)]

×
∑

|xm|>K:m∈{1,2,...,r+s},m 6=i

∏
j∈Bc

[
1

− c(xj , ((· · · ((· · · (((η0)x1,a1)x2,a2) · · · )xp,ap) · · · )xr,ar){xl:l∈B,l<j})
]

×
∏
j∈B

c(xj , ((· · · ((· · · (((η0)x1,a1)x2,a2) · · · )xp,ap) · · · )xr,ar){xl:l∈B,l<j})

=
1

r + s

1

2rN r+s−1

∑
A⊂{1,...,r}

r+s∑
i=r+1

∑
|xi|≤K

c(xi, η
0)[fN ((η0)xi)− fN (η0)]

×
∑

|xm|>K:m∈{1,2,...,r+s},m 6=i

∑
B⊂{r+1,...,r+s}:i∈B

∏
j∈Bc

[
1− c(xj , η0)

] ∏
j∈B−{i}

c(xj , η
0)

+O(N−1)

=
1

r + s

1

2rN r+s−1

[
N − (2K + 1)

]r+s−1
(6.24)

·
∑

A⊂{1,...,r}

r+s∑
i=r+1

∑
|xi|≤K

c(xi, η
0)[fN ((η0)xi)− fN (η0)] +O(N−1)
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=
1

r + s

1

2rN r+s−1

[
N − (2K + 1)

]r+s−1
2r

r+s∑
i=r+1

∑
|xi|≤K

c(xi, η
0)[fN ((η0)xi)− fN (η0)]

+O(N−1)

=
1

r + s

1

N r+s−1

[
N − (2K + 1)

]r+s−1
s
∑
|x|≤K

c(x, η0)[fN ((η0)x)− fN (η0)] +O(N−1)

=
s

r + s

∑
|x|≤K

c(x, η0)[fN ((η0)x)− fN (η0)] +O(N−1)

=
s

r + s
ψN (ΩBf)(η0) +O(N−1), (6.25)

where the first and second equalities require clarification.

In the first equality we used

∑
B⊂{r+1,...,r+s}

∑
i∈B

=

r+s∑
i=r+1

∑
B⊂{r+1,...,r+s}:i∈B

and

c(xj , ((· · · ((· · · (((η0)x1,a1)x2,a2) · · · )xp,ap) · · · )xr,ar){xl:l∈B,l<j}) = c(xj , η
0)

with possible exceptions if

{xj − 1, xj , xj + 1} ∩
[ ⋃
p∈Ac
{xp, xp − 1} ∪

⋃
p∈A
{xp, xp + 1} ∪

⋃
p∈B
{xp}

]
6= ∅.

That excludes at most 4r + 3s of the N possible values of xj , hence involves an error of at

most O(N−1). In the second equality,∑
|xm|>K:m∈{1,2,...,r+s},m 6=i

∑
B⊂{r+1,...,r+s}:i∈B

∏
j∈Bc

[
1− c(xj , η0)

] ∏
j∈B−{i}

c(xj , η
0)

=
∑

|xm|>K:m∈{1,2,...,r+s},m 6=i

∏
j∈{r+1,...,r+s}−{i}

[
1− c(xj , η0) + c(xj , η

0)
]

= [N − (2K + 1)]r+s−1.

Therefore, we conclude that

(ΩN
[r,s]′ψNf)(η0) = ψN

(
r

r + s
ΩA′f +

s

r + s
ΩBf

)
(η0) +O(N−1), (6.26)

as desired.

6.5 Convergence of means in periodic pattern

Since (6.26) holds, uniformly over ΣN , the unique stationary distribution πN of P r
A′P

s
B

converges weakly to the unique stationary distribution πr/(r+s) of the interacting particle
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system with generator ΩC′ , provided that ergodicity holds for the limiting interacting

particle system. Here, ΩC′ = γΩA′ + (1− γ)ΩB with γ := r/(r + s), specifically

(ΩC′f)(η) = γ
∑
x

c′(x, η)[f(ηx)− f(η)]

+ γ
∑
x

[f(xηx+1)− f(η)] + (1− γ)
∑
x

c(x, η)[f(ηx)− f(η)], (6.27)

where ηx is η except at coordinate x, and

xηx+1(y) :=


η(x+ 1) if y = x,

η(x) if y = x+ 1,

η(y) otherwise,

so xηx+1 interchanges the spins at adjacent sites x and x+ 1. In addition,

c′(x, η) :=
1

2
[1{η(x)=η(x+1)} + 1{η(x)=η(x−1)}] and c(x, η) :=

{
pmx(η) if η(x) = 0,

qmx(η) if η(x) = 1,

where qm := 1− pm for m = 0, 1, 2, 3, and mx(η) := 2η(x− 1) + η(x+ 1) ∈ {0, 1, 2, 3}. Our

aim is to prove the following theorem.

Theorem 6.3. Fix integers r, s ≥ 1 and put γ := r/(r + s). Assume that the interacting

particle system on Z with generator ΩC′ as in (6.27) is ergodic with unique stationary

distribution πγ. Then limN→∞ µ
N
[r,s]′ = µ(γ,1−γ)′, where µ(γ,1−γ)′ is as in (6.12).

Proof. The mean profit per turn to the ensemble of N players playing the nonrandom

periodic pattern (A′)rBs is

µN[r,s]′ =
1

r + s

s−1∑
v=0

∑
η∈ΣN

(πNP r
A′P

v
B)(η)

1

N

∑
z

[2pmz(η) − 1]. (6.28)

The sum over η in (6.28) can be expressed, using (6.20), as∑
η0,η

πN (η0)(P r
A′P

v
B)(η0, η)

1

N

∑
z

[2pmz(η) − 1]

=
1

2rN r+v

∑
η0

πN (η0)
∑

A⊂{1,...,r}

∑
B⊂{r+1,...,r+v}

∑
xi:i∈{1,2,...,r+v}

×
∏
j∈Bc

[
1− c(xj , ((· · · ((· · · (((η0)x1,a1)x2,a2) · · · )xp,ap) · · · )xr,ar){xl:l∈B,l<j})

]
×
∏
j∈B

c(xj , ((· · · ((· · · (((η0)x1,a1)x2,a2) · · · )xp,ap) · · · )xr,ar){xl:l∈B,l<j})

× 1

N

∑
z

[2pmz(((···((···(((η0)x1,a1 )x2,a2 )··· )xp,ap )··· )xr,ar ){xl:l∈B})
− 1]
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=
1

2rN r+v

∑
η0

πN (η0)
∑

A⊂{1,...,r}

∑
B⊂{r+1,...,r+v}

∑
xi:i∈{1,2,...,r+v}

×
∏
j∈Bc

[
1− c(xj , η0)

] ∏
j∈B

c(xj , η
0)

1

N

∑
z

[2pmz(η0) − 1] +O(N−1)

=
1

2rN r+v

∑
η0

πN (η0) (2r)(1)[N − (2k + 1)]r+v
1

N

∑
z

[2pmz(η0) − 1] +O(N−1)

=
1

N

N∑
z=1

∑
η0

πN (η0)[pmz(η0) − qmz(η0)] +O(N−1)

=

1∑
k=0

1∑
l=0

(πN )−1,1(k, l)[2p2k+l − 1] +O(N−1)

=
1∑

k=0

1∑
l=0

(πr/(r+s))−1,1(k, l)[2p2k+l − 1] + o(1).

So we have, with γ := r/(r + s),

µN[r,s]′ → (1− γ)
1∑

k=0

1∑
l=0

(πγ)−1,1(k, l)[2p2k+l − 1] = µ(γ,1−γ)′ ,

as required.



APPENDIX A

µB AND µC′ FROM MATHEMATICA

This code calculates µB and µC′ for C ′ := 1
2A
′ + 1

2B assuming p0 = 0, p1 = p2 = 0.8,

and p3 = 0.5 with 3 ≤ N ≤ 10.

DateList[]

ClearAll[‘‘Global *̀’’]

For[n = 3, n ≤ 10, n++, Print[n]; p0=.; p1=.; p2=.; p3=.; q0=.; q1=.; q2=.; q3=.;

group = PermutationGroup[DihedralGroup[n]//GroupGenerators]; (*dihedral group*)

sigma = IntegerDigits[Range[0, 2∧n− 1], 2, n];

Do[permuted[i] = Permute[sigma[[i]], group], {i, 1, 2∧n}];

(*orbitofithelementofSigmaunderG, withduplication*)

Do[digit[x ]:=FromDigits[permuted[i][[x]], 2]; list[i] = Table[digit[x], {x, 1, 2n}],

{i, 1, 2∧n}]; (*setoforbitelementsindecimalform, withduplication*)

class[1] = {0}; (*the first equivalence class*)

num = 1;

For[j = 2, j ≤ 2∧(n− 1), j++,

For[test = 1; k = 1, k ≤ j − 1, k++, If[Sort[list[k]] == Sort[list[j]], test = 0]];

If[test == 1, num = num + 1; class[num] = DeleteDuplicates[Sort[list[j]]]]];

(*generates list of equivalence classes*)

num = num + 1; (*number of equivalence classes*)

class[num] = {2∧n− 1}; (*the last equivalence class*)

For[i = 1, i ≤ num, i++, state[i] = IntegerDigits[class[i], 2, n]];

(*the binary states belonging to equivalence class i*)

For[i = 1, i ≤ num, i++,

ones[i] = (sum = 0; For[k = 1, k ≤ n, k++, If[state[i][[1, k]] == 1, sum+=1]]; sum)];

(*number of ones in each element of equivalence class i*)
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diff[x , y ]:=(sum = 0; For[k = 1, k ≤ n, k++, sum+=Abs[x[[k]]− y[[k]]]]; sum);

(*the Hamming distance between states x and y*)

p[0] = p0; p[1] = p1; p[2] = p2; p[3] = p3; q[0] = q0; q[1] = q1; q[2] = q2; q[3] = q3;

pBbar = ConstantArray[0, {num, num}];

For[i = 1, i ≤ num, i++,

For[j = 1, j ≤ num, j++,

If[i == j, For[k = 1, k ≤ n, k++,

If[state[i][[1, k]] == 1,

If[k == 1, pBbar[[i, j]]+=p[2state[i][[1, n]] + state[i][[1, k + 1]]]/n,

If[k == n, pBbar[[i, j]]+=p[2state[i][[1, k − 1]] + state[i][[1, 1]]]/n,

pBbar[[i, j]]+=p[2state[i][[1, k − 1]] + state[i][[1, k + 1]]]/n]],

If[k == 1, pBbar[[i, j]]+=q[2state[i][[1, n]] + state[i][[1, k + 1]]]/n,

If[k == n, pBbar[[i, j]]+=q[2state[i][[1, k − 1]] + state[i][[1, 1]]]/n,

pBbar[[i, j]]+=q[2state[i][[1, k − 1]] + state[i][[1, k + 1]]]/n]]]],

If[ones[j] == ones[i] + 1, For[m = 1,m ≤ Length[class[j]],m++,

If[diff[state[j][[m]], state[i][[1]]] == 1,

For[k = 1, k ≤ n, k++, If[state[j][[m, k]] > state[i][[1, k]],

If[k == 1, pBbar[[i, j]]+=p[2state[i][[1, n]] + state[i][[1, k + 1]]]/n,

If[k == n, pBbar[[i, j]]+=p[2state[i][[1, k − 1]] + state[i][[1, 1]]]/n,

pBbar[[i, j]]+=p[2state[i][[1, k − 1]] + state[i][[1, k + 1]]]/n]]]]]],

If[ones[j] == ones[i]− 1, For[m = 1,m ≤ Length[class[j]],m++,

If[diff[state[j][[m]], state[i][[1]]] == 1,

For[k = 1, k ≤ n, k++, If[state[j][[m, k]] < state[i][[1, k]],

If[k == 1, pBbar[[i, j]]+=q[2state[i][[1, n]] + state[i][[1, k + 1]]]/n,

If[k == n, pBbar[[i, j]]+=q[2state[i][[1, k − 1]] + state[i][[1, 1]]]/n,

pBbar[[i, j]]+=q[2state[i][[1, k − 1]] + state[i][[1, k + 1]]]/n]]]]]]]]]]]

pBbardot = ConstantArray[0, {num, num}];

For[i = 1, i ≤ num, i++,

For[j = 1, j ≤ num, j++,

If[i == j, For[k = 1, k ≤ n, k++,

If[state[i][[1, k]] == 1,



93

If[k == 1, pBbardot[[i, j]]+=p[2state[i][[1, n]] + state[i][[1, k + 1]]]/n,

If[k == n, pBbardot[[i, j]]+=p[2state[i][[1, k − 1]] + state[i][[1, 1]]]/n,

pBbardot[[i, j]]+=p[2state[i][[1, k − 1]] + state[i][[1, k + 1]]]/n]],

If[k == 1, pBbardot[[i, j]]-=q[2state[i][[1, n]] + state[i][[1, k + 1]]]/n,

If[k == n, pBbardot[[i, j]]-=q[2state[i][[1, k − 1]] + state[i][[1, 1]]]/n,

pBbardot[[i, j]]-=q[2state[i][[1, k − 1]] + state[i][[1, k + 1]]]/n]]]],

If[ones[j] == ones[i] + 1, For[m = 1,m ≤ Length[class[j]],m++,

If[diff[state[j][[m]], state[i][[1]]] == 1,

For[k = 1, k ≤ n, k++, If[state[j][[m, k]] > state[i][[1, k]],

If[k == 1, pBbardot[[i, j]]+=p[2state[i][[1, n]] + state[i][[1, k + 1]]]/n,

If[k == n, pBbardot[[i, j]]+=p[2state[i][[1, k − 1]] + state[i][[1, 1]]]/n,

pBbardot[[i, j]]+=p[2state[i][[1, k − 1]] + state[i][[1, k + 1]]]/n]]]]]],

If[ones[j] == ones[i]− 1,

For[m = 1,m ≤ Length[class[j]],m++,

If[diff[state[j][[m]], state[i][[1]]] == 1,

For[k = 1, k ≤ n, k++, If[state[j][[m, k]] < state[i][[1, k]],

If[k == 1, pBbardot[[i, j]]-=q[2state[i][[1, n]] + state[i][[1, k + 1]]]/n,

If[k == n, pBbardot[[i, j]]-=q[2state[i][[1, k − 1]] + state[i][[1, 1]]]/n,

pBbardot[[i, j]]-=q[2state[i][[1, k − 1]] + state[i][[1, k + 1]]]/n]]]]]]]]]]]

one = ConstantArray[1, {num, 1}];

pBbardotone = pBbardot.one;

pAbar = ConstantArray[0, {num, num}];

For[i = 1, i ≤ num, i++,

For[j = 1, j ≤ num, j++, If[i == 1, pAbar[[i, i+ 1]] = 1,

If[i == num, pAbar[[i, i− 1]] = 1,

If[ones[j] == ones[i] + 1, For[m = 1,m ≤ Length[class[j]],m++,

If[diff[state[j][[m]], state[i][[1]]] == 1,

For[k = 1, k ≤ n, k++,

If[k < n, If[state[i][[1, k]] + state[i][[1, k + 1]] == 0&&

state[j][[m, k]] + state[j][[m, k + 1]] == 1, pAbar[[i, j]]+=1/(2n)],

If[state[i][[1, k]] + state[i][[1, 1]] == 0&&
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state[j][[m, k]] + state[j][[m, 1]] == 1, pAbar[[i, j]]+=1/(2n)]]]]]];

If[ones[j] == ones[i]− 1, For[m = 1,m ≤ Length[class[j]],m++,

If[diff[state[j][[m]], state[i][[1]]] == 1,

For[k = 1, k ≤ n, k++,

If[k < n, If[state[i][[1, k]] + state[i][[1, k + 1]] == 2&&

state[j][[m, k]] + state[j][[m, k + 1]] == 1, pAbar[[i, j]]+=1/(2n)],

If[state[i][[1, k]] + state[i][[1, 1]] == 2&&

state[j][[m, k]] + state[j][[m, 1]] == 1, pAbar[[i, j]]+=1/(2n)]]]]]];

If[ones[j] == ones[i], For[m = 1,m ≤ Length[class[j]],m++,

If[diff[state[j][[m]], state[i][[1]]] == 0,

For[k = 1, k ≤ n, k++,

If[k < n, If[state[i][[1, k]] + state[i][[1, k + 1]] == 1&&

state[j][[m, k]] + state[j][[m, k + 1]] == 1, pAbar[[i, j]]+=1/(2n)],

If[state[i][[1, k]] + state[i][[1, 1]] == 1&&

state[j][[m, k]] + state[j][[m, 1]] == 1, pAbar[[i, j]]+=1/(2n)]]]];

If[diff[state[j][[m]], state[i][[1]]] == 2,

For[k = 1, k ≤ n, k++,

If[k < n,

If[(state[i][[1, k]] == 0&&state[i][[1, k + 1]] == 1&&state[j][[m, k]] ==

1&&state[j][[m, k + 1]] == 0)‖

(state[i][[1, k]] == 1&&state[i][[1, k + 1]] == 0&&state[j][[m, k]] ==

0&&state[j][[m, k + 1]] == 1), pAbar[[i, j]]+=1/(2n)],

If[(state[i][[1, k]] == 0&&state[i][[1, 1]] == 1&&state[j][[m, k]] ==

1&&state[j][[m, 1]] == 0)‖

(state[i][[1, k]] == 1&&state[i][[1, 1]] == 0&&state[j][[m, k]] ==

0&&state[j][[m, 1]] == 1), pAbar[[i, j]]+=1/(2n)]]]]]]]]]];

p0 = 0; p1 = 0.8; p2 = p1; p3 = 0.5;

q0 = 1− p0; q1 = 1− p1; q2 = 1− p2; q3 = 1− p3;

pi = Array[x, {num}];

solB = Solve[{pi == pi.pBbar, pi.one == 1}, pi];

Print[‘‘muB=’’, N [pi.pBbardotone/.solB]];



95

pCbar = (1/2)pAbar + (1/2)pBbar;

pCbardotone = (1/2)pBbardotone;

solC = Solve[{pi == pi.pCbar, pi.one == 1}, pi];

Print[‘‘muC’=’’, N [pi.pCbardotone/.solC]]]

DateList[]



APPENDIX B

GRAPH OF PARRONDO REGION FROM

MATHEMATICA

This code sketches graph of Parrondo region assuming p1 = p2 with N = 3, 4.

ClearAll[‘‘Global *̀’’]

For[n = 3, n ≤ 4, n++, Print[n];

Print[DateList[]]; p0=.; p1=.; p2=.; p3=.; q0=.; q1=.; q2=.; q3=.;

group = PermutationGroup[DihedralGroup[n]//GroupGenerators]; (*dihedral group*)

sigma = IntegerDigits[Range[0, 2∧n− 1], 2, n];

Do[permuted[i] = Permute[sigma[[i]], group], {i, 1, 2∧n}];

(*orbitofithelementofSigmaunderG, withduplication*)

Do[digit[x ]:=FromDigits[permuted[i][[x]], 2];

list[i] = Table[digit[x], {x, 1, 2n}], {i, 1, 2∧n}];

(*setoforbitelementsindecimalform, withduplication*)

class[1] = {0}; (*the first equivalence class*)

num = 1;

For[j = 2, j ≤ 2∧(n− 1), j++, For[test = 1; k = 1, k ≤ j − 1, k++,

If[Sort[list[k]] == Sort[list[j]], test = 0]];

If[test == 1, num = num + 1; class[num] = DeleteDuplicates[Sort[list[j]]]]];

(*generates list of equivalence classes*)

num = num + 1; (*number of equivalence classes*)

class[num] = {2∧n− 1}; (*the last equivalence class*)

For[i = 1, i ≤ num, i++, state[i] = IntegerDigits[class[i], 2, n]];

(*the binary states belonging to equivalence class i*)

For[i = 1, i ≤ num, i++, ones[i] = (sum = 0;
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For[k = 1, k ≤ n, k++, If[state[i][[1, k]] == 1, sum+=1]]; sum)];

(*number of ones in each element of equivalence class i*)

diff[x , y ]:=(sum = 0; For[k = 1, k ≤ n, k++, sum+=Abs[x[[k]]− y[[k]]]]; sum);

(*the Hamming distance between states x and y*)

p[0] = p0; p[1] = p1; p[2] = p2; p[3] = p3; q[0] = q0; q[1] = q1; q[2] = q2; q[3] = q3;

pBbar = ConstantArray[0, {num, num}];

For[i = 1, i ≤ num, i++, For[j = 1, j ≤ num, j++, If[i == j,

For[k = 1, k ≤ n, k++, If[state[i][[1, k]] == 1,

If[k == 1, pBbar[[i, j]]+=p[2state[i][[1, n]] + state[i][[1, k + 1]]]/n,

If[k == n, pBbar[[i, j]]+=p[2state[i][[1, k − 1]] + state[i][[1, 1]]]/n,

pBbar[[i, j]]+=p[2state[i][[1, k − 1]] + state[i][[1, k + 1]]]/n]],

If[k == 1, pBbar[[i, j]]+=q[2state[i][[1, n]] + state[i][[1, k + 1]]]/n,

If[k == n, pBbar[[i, j]]+=q[2state[i][[1, k − 1]] + state[i][[1, 1]]]/n,

pBbar[[i, j]]+=q[2state[i][[1, k − 1]] + state[i][[1, k + 1]]]/n]]]],

If[ones[j] == ones[i] + 1, For[m = 1,m ≤ Length[class[j]],m++,

If[diff[state[j][[m]], state[i][[1]]] == 1,

For[k = 1, k ≤ n, k++, If[state[j][[m, k]] > state[i][[1, k]],

If[k == 1, pBbar[[i, j]]+=p[2state[i][[1, n]] + state[i][[1, k + 1]]]/n,

If[k == n, pBbar[[i, j]]+=p[2state[i][[1, k − 1]] + state[i][[1, 1]]]/n,

pBbar[[i, j]]+=p[2state[i][[1, k − 1]] + state[i][[1, k + 1]]]/n]]]]]],

If[ones[j] == ones[i]− 1, For[m = 1,m ≤ Length[class[j]],m++,

If[diff[state[j][[m]], state[i][[1]]] == 1,

For[k = 1, k ≤ n, k++, If[state[j][[m, k]] < state[i][[1, k]],

If[k == 1, pBbar[[i, j]]+=q[2state[i][[1, n]] + state[i][[1, k + 1]]]/n,

If[k == n, pBbar[[i, j]]+=q[2state[i][[1, k − 1]] + state[i][[1, 1]]]/n,

pBbar[[i, j]]+=q[2state[i][[1, k − 1]] + state[i][[1, k + 1]]]/n]]]]]]]]]]]

pBbardot = ConstantArray[0, {num, num}];

For[i = 1, i ≤ num, i++, For[j = 1, j ≤ num, j++,

If[i == j, For[k = 1, k ≤ n, k++, If[state[i][[1, k]] == 1,

If[k == 1, pBbardot[[i, j]]+=p[2state[i][[1, n]] + state[i][[1, k + 1]]]/n,

If[k == n, pBbardot[[i, j]]+=p[2state[i][[1, k − 1]] + state[i][[1, 1]]]/n,
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pBbardot[[i, j]]+=p[2state[i][[1, k − 1]] + state[i][[1, k + 1]]]/n]],

If[k == 1, pBbardot[[i, j]]-=q[2state[i][[1, n]] + state[i][[1, k + 1]]]/n,

If[k == n, pBbardot[[i, j]]-=q[2state[i][[1, k − 1]] + state[i][[1, 1]]]/n,

pBbardot[[i, j]]-=q[2state[i][[1, k − 1]] + state[i][[1, k + 1]]]/n]]]],

If[ones[j] == ones[i] + 1, For[m = 1,m ≤ Length[class[j]],m++,

If[diff[state[j][[m]], state[i][[1]]] == 1, For[k = 1, k ≤ n, k++,

If[state[j][[m, k]] > state[i][[1, k]],

If[k == 1, pBbardot[[i, j]]+=p[2state[i][[1, n]] + state[i][[1, k + 1]]]/n,

If[k == n, pBbardot[[i, j]]+=p[2state[i][[1, k − 1]] + state[i][[1, 1]]]/n,

pBbardot[[i, j]]+=p[2state[i][[1, k − 1]] + state[i][[1, k + 1]]]/n]]]]]],

If[ones[j] == ones[i]− 1, For[m = 1,m ≤ Length[class[j]],m++,

If[diff[state[j][[m]], state[i][[1]]] == 1,

For[k = 1, k ≤ n, k++, If[state[j][[m, k]] < state[i][[1, k]],

If[k == 1, pBbardot[[i, j]]-=q[2state[i][[1, n]] + state[i][[1, k + 1]]]/n,

If[k == n, pBbardot[[i, j]]-=q[2state[i][[1, k − 1]] + state[i][[1, 1]]]/n,

pBbardot[[i, j]]-=q[2state[i][[1, k − 1]] + state[i][[1, k + 1]]]/n]]]]]]]]]]]

one = ConstantArray[1, {num, 1}];

pBbardotone = pBbardot.one;

pAbar = ConstantArray[0, {num, num}];

For[i = 1, i ≤ num, i++, For[j = 1, j ≤ num, j++,

If[i == 1, pAbar[[i, i+ 1]] = 1, If[i == num, pAbar[[i, i− 1]] = 1, If[ones[j] == ones[i] + 1,

For[m = 1,m ≤ Length[class[j]],m++,

If[diff[state[j][[m]], state[i][[1]]] == 1,

For[k = 1, k ≤ n, k++, If[k < n,

If[state[i][[1, k]] + state[i][[1, k + 1]] == 0

&&state[j][[m, k]] + state[j][[m, k + 1]] == 1, pAbar[[i, j]]+=1/(2n)],

If[state[i][[1, k]] + state[i][[1, 1]] == 0

&&state[j][[m, k]] + state[j][[m, 1]] == 1, pAbar[[i, j]]+=1/(2n)]]]]]];

If[ones[j] == ones[i]− 1, For[m = 1,m ≤ Length[class[j]],m++,

If[diff[state[j][[m]], state[i][[1]]] == 1,

For[k = 1, k ≤ n, k++, If[k < n,
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If[state[i][[1, k]] + state[i][[1, k + 1]] == 2

&&state[j][[m, k]] + state[j][[m, k + 1]] == 1, pAbar[[i, j]]+=1/(2n)],

If[state[i][[1, k]] + state[i][[1, 1]] == 2

&&state[j][[m, k]] + state[j][[m, 1]] == 1, pAbar[[i, j]]+=1/(2n)]]]]]];

If[ones[j] == ones[i],

For[m = 1,m ≤ Length[class[j]],m++,

If[diff[state[j][[m]], state[i][[1]]] == 0,

For[k = 1, k ≤ n, k++,

If[k < n, If[state[i][[1, k]] + state[i][[1, k + 1]] == 1

&&state[j][[m, k]] + state[j][[m, k + 1]] == 1, pAbar[[i, j]]+=1/(2n)],

If[state[i][[1, k]] + state[i][[1, 1]] == 1

&&state[j][[m, k]] + state[j][[m, 1]] == 1, pAbar[[i, j]]+=1/(2n)]]]];

If[diff[state[j][[m]], state[i][[1]]] == 2, For[k = 1, k ≤ n, k++,

If[k < n,

If[(state[i][[1, k]] == 0&&state[i][[1, k + 1]] == 1

&&state[j][[m, k]] == 1&&state[j][[m, k + 1]] == 0)

‖(state[i][[1, k]] == 1&&state[i][[1, k + 1]] == 0

&&state[j][[m, k]] == 0&&state[j][[m, k + 1]] == 1), pAbar[[i, j]]+=1/(2n)],

If[(state[i][[1, k]] == 0&&state[i][[1, 1]] == 1

&&state[j][[m, k]] == 1&&state[j][[m, 1]] == 0)

‖(state[i][[1, k]] == 1&&state[i][[1, 1]] == 0&&state[j][[m, k]] == 0

&&state[j][[m, 1]] == 1), pAbar[[i, j]]+=1/(2n)]]]]]]]]]];

p2 = p1;

q0 = 1− p0; q1 = 1− p1; q2 = 1− p2; q3 = 1− p3;

pi = Array[x, {num}];

solB = Solve[{pi == pi.pBbar, pi.one == 1}, pi];

muB:=N [pi.pBbardotone/.solB];

pCbar = pAbar.(pBbar);

pCbardot = pAbar.(pBbardot);

pCbardotone = pCbardot.one;

solC = Solve[{pi == pi.pCbar, pi.one == 1}, pi];
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muC′:=N [((0.5) ∗ pi.pCbardotone)/.solC];

MatrixForm[pBbar];

MatrixForm[pBbardot];

MatrixForm[pBbardotone];

MatrixForm[pAbar];

Print[ContourPlot3D[{muB == 0, muC′ == 0}, {p0, 0, 1}, {p1, 0, 1}, {p3, 0, 1},

AxesLabel→ {Style ["p0 ", Italic, 16] , Style ["p1", Italic, 16] ,

Style [" p3", Italic, 16]} , LabelStyle→ 12,

ContourStyle→ {RGBColor[135/255, 206/255, 235/255], Red},

ViewPoint→ {3.3,−1.6, 1.7}]]

Print[DateList[]]

Print[‘‘***************************************************************’’]]
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