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ABSTRACT

Energy generation through combustion of hydrocarbons continues to dominate as the

most common method for energy generation. In the U.S., nearly 84% of the energy consump-

tion comes from the combustion of fossil fuels. Because of this demand, there is a continued

need for improvement, enhancement, and understanding of the combustion process. As

computational power increases, and our methods for modelling these complex combustion

systems improve, combustion modelling has become an important tool in gaining deeper

insight and understanding of these complex systems. The constant state of change in

computational ability leads to a continual need for new combustion models that can take

full advantage of the latest computational resources. To this end, the research presented

here encompasses the development of new models which can be tailored to the available

resources, allowing one to increase or decrease the amount of modelling error based on

the available computational resources and desired accuracy. Principal component analysis

(PCA) is used to identify the low-dimensional manifolds which exist in turbulent combustion

systems. These manifolds are unique in there ability to represent a larger dimensional

space with fewer components, resulting in a minimal addition of error. PCA is well-suited

for the problem at hand because of its ability to allow the user to define the amount of

error in approximation, depending on the resources at hand. The research presented here

looks into various methods which exploit the benefits of PCA in modelling combustion

systems, demonstrating several models, and providing new and interesting perspectives for

the PCA-based approaches to modelling turbulent combustion.
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mixture fraction, ξ. Jacobian matrix restricted to ten principal variables. . . . 29

2.9 Daη values as a function of the mixture fraction along the burner axis for
flame HM1, varying the number of principal variables. . . . . . . . . . . . . . . . . . . . 31
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CHAPTER 1

INTRODUCTION

Energy generation through combustion of hydrocarbons continues to dominate as the

most common method for energy generation. In the U.S., nearly 84% of the energy

consumption comes from the combustion of fossil fuels [2]. Because of this demand, there

is a continued need for improvement, enhancement, and even understanding of the com-

bustion process. As computational power increases and our methods for modelling these

complex combustion systems improve, combustion modelling has become an important tool

in gaining deeper insights and understanding of these complex systems.

The constant state of change in computational ability leads to a continual need for new

combustion models that can take full advantage of the latest computational resources. To

this end, the research presented here encompasses an investigation into new models which

can be tailored to the available resources, allowing one to increase or decrease the amount

of modelling error based on the desired complexity of the model.

The body of the dissertation contains three publications which outline various aspects of

the development and use of these models, as well as an additional chapter discussing some

new concepts which are the basis for future work. In order to tie the concepts presented

in the dissertation together, this introductory chapter will briefly summarize the work in

these publications and provide the transitional discussion which is needed.

In order to develop a model which is adaptive to computation resources, a method for

identifying the key characteristics of the system and associating an importance to these

characteristics is needed. Recently, principal component analysis (PCA) began to receive

some attention for its application within the turbulent combustion field. PCA is well-suited

for this task as it analyzes the covariance between variables in a system and identifies a

linear representation of the system through orthogonal vectors, with each vector having an

associated level of importance.

The basic concepts of PCA are easily described in a 2D example. Figure 1.1 shows a

scatter plot of the variables X1 and X2. One can easily identify that the data have some
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degree of correlation. In order to perform a PC analysis, first the data must be centered

and scaled in order to compare the data evenly when computing the covariance matrix. In

general, the variables are centered and scaled according to the equation:

XiSC = (Xi − X̄i)/di (1.1)

where XiSC is the centered and scaled version of variable Xi, X̄i and di are the mean and

scaling factor of Xi. In general, di is taken as the standard deviation of the variable. Figure

1.2 shows the centered and scaled versions of X1 and X2. Given that the variables have been

scaled to the same relative size, the covariance matrix (S) of the data is now computed:

S =
1

n− 1
XTX. (1.2)

The covariance describes the correlations between variables, and is essential for identifying

the underlying structure in a data-set. Next, the eigenvalue decomposition of S follows

yielding the eigenvectors and eigenvalues of the system:

S = ALAT . (1.3)

The eigenvalues (L) in the system are interesting as they quantify the amount of variation

described by each of the corresponding eigenvectors (A). Now, given the basis matrix (A),

X is now projected onto the new basis in order to compute the PCs of the system:

Z = XA. (1.4)

A visualization of the PCs, Z, is given in Figure 1.3. It is important to note that until

now, no truncation has been made on the system, yielding 2 PCs, one for each of the

example variables. The figure shows that the variables appear to be orthogonal to each

other, describing different degrees of variation. Next, a truncation is made on A, leaving

Aq. This truncation reduces the number of PCs, leaving:

Zq = XAq. (1.5)

Zq is shown in Figure 1.4, showing the results from removing the first eigenvector (green

markers) or the second eigenvector (red markers). Because the first eigenvector pertains to

the majority of variance in the system (being that it corresponds to the first eigenvalue),

the truncation of this eigenvector leads to the poorest truncation in PC space. When the

second eigenvector is truncated, it is clear that the largest amount of variation in the system
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Figure 1.1: A scatter plot of example variables X1 (x-axis) versus X2 (y-axis), illustrating
the correlation between the variables.

Figure 1.2: Centered and scaled variables X1SC (x-axis) versus X2SC (y-axis) which have
been centered by their means and scaled by their standard deviations.
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Figure 1.3: Principal components Z1 (x-axis) versus Z2 (y-axis).
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remains. Now, Zq can be used to approximate the data. The following equation is used to

approximate X:

X ≈ ZqAq
T . (1.6)

The resultant approximation is shown in Figure 1.5, using either of the truncation’s

described above. Truncation of the second eigenvector results in the best approximation,

which is shown with the red markers. It is clear from the 2D example that PCA has the

ability to reduce the dimensionality of the data by identifying the underlying structure of the

system, and reducing in dimension by removing coordinates which describe smaller degrees

of variance. These properties are attractive, when looking at systems such as combustion,

where many of the variables can easily be described by the underlying structure or manifold

that the system naturally exhibits, thus allowing for a reduction in modelling parameters.

The initial application of PCA to combustion systems has produced promising results.

Parente [61] used PCA to identify the underlying behavior which governs the reaction and

evolution of the chemical species for a syngas [80] and methane flame [79]. Sutherland and

Parente take the PCA-based approach one step further by deriving transport equations for

the principal components, creating the concept of a model with the unique properties of

PCA [85]. The PC-transport model can then represent a system perfectly by transporting

all of the PCs for the system, or one can reduce the number of PCs, introducing some degree

of error (depending on the size of the reduction), and still maintain a good representation

of the system. This concept fulfills the basic requirements of a model, which can tune the

error in approximation based on the available computational resources and desired error.

In addition, the PC analysis identifies which PCs are most important to transport, allowing

one to make informed decisions for reducing the model while maintaining the largest degree

of accuracy.

Because of PCA’s unique ability in identifying the underlying structure or the low-

dimensional manifold in a system, various additional methods have been created which

utilize the basis derived from PCA, such as a principal variables analysis (PVA). PVA uses

the basis matrix from PCA to identify the principal variables in a system, or the variables

which contain most of the variation in a system. The PV analysis is very interesting

as it helps to identify which variables are pertinent to the description of a system. An

intuitive application of PCA and PVA to turbulent combustion can be seen in a time-scale

analysis. In general, the time-scales of a system (τa) can be identified through an eigenvalue

decomposition of the source-term Jacobian matrix [23]:

τa =
1

|λa|
(1.7)
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Figure 1.4: Principal components Z1 (x-axis) versus Z2 (y-axis) with the truncated
versions of PCs indicated in green and red markers.

Figure 1.5: Centered and scaled variables X1SC (x-axis) versus X2SC (y-axis) with
approximated versions using the truncated basis. The red markers show the truncation
where the 2nd component was removed, and the green markers show the truncation where
the 1st component was removed.



7

where λa is the set of eigenvalues from the decomposition. There is, however, an inherent

noise associated with this calculation due to the dormant chemical species in the system.

PVA can be used to identify the variables which are not dormant. When calculating the

time-scales with the PVs of the system, the results can be much more clear. This concept

is discussed thoroughly in the first publication: “A Novel Methodology for Chemical Time-

Scale Evaluation with Detailed Chemical Reaction Kinetics” found in Chapter 2.

The PVs of the system contain most of the pertinent evolution in the system. Accord-

ingly, Coussement et al. [16] developed a combustion model (MG-PCA) which transports

the PVs of the system and use the PC basis, A, in order to approximate the nontransported

species. Chapter 3, “Reduced-order PCA Models for Chemical Reacting Flows” is the

second publication, which describes the MG-PCA methods. A detailed description of the

approach is given and some changes to the model are suggested in order to increase the

accuracy for the model. With the changes in place, the model is tested in both a priori

studies and demonstrated within numerical solvers.

The implementation of the MG-PCA approach is straightforward, making it attractive

from an implementation perspective. However, use of the optimal basis calculated directly

from PCA remains the most attractive option, especially when the method is combined with

nonlinear regression [5, 72]. An important feature of PCA, when applied to combustion

systems, can be seen in a time-scale analysis. Based on the type of scaling used in PCA,

the leading PCs are, in general, heavily weighted with the major species in the system,

which evolve more slowly. Table 1.1 shows a comparison of the smallest relevant time-

scales calculated from simulation results comparing DNS, the MG-PCA approach, and the

standard PC-Transport approach (without regression). The simulations are for a premixed

syngas, and H2 jet running at stoichiometric conditions with unity Lewis number [18].

Here it is observed that the PCA approach, in general, reduces the stiffness of the system.

Because of this, there appears to be a greater advantage in directly transporting the PCs

of the system, especially if the system can be represented with fewer PCs.
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Table 1.1: Smallest relevant time-scale (τa) for a DNS case while comparing the MG-PCA
and PC-transport models.

Case DNS MG-PCA PC-transport

H2 2.32 10−8 2.32 10−8 2.55 10−7

syngas 2.34 10−8 2.34 10−8 2.60 10−7
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The third publication: ”Modelling Combustion Systems with Principal Component

Analysis Transport Equations”, is focused on the application of the PC-transport approach

in conjunction with the nonlinear regression. Various aspects of the PC-transport are

analyzed, including the effect of several regression methods on accuracy. Chapter 4 gives

the first demonstration of the PC-transport approach using nonlinear regression within a

numerical solver. First, a simple perfectly stirred reactor is shown, and this is followed by a

2D solution within a CFD solver. The results give the first glimpse at the potential of the

model.

Although the PC-transport model has several fundamental advantages, there are several

remaining issues and general concerns for the model. A major advantage is seen in doing

the PC-analysis on only the larger variables of the system (see Chapter 4) in an attempt

to remove some of the highly nonlinear effects from the manifold. Chapter 5 discusses the

potential for adding constrained equilibrium effects to the model in order to represent the

species not included in the PC analysis.

The fact that the PC basis is linear can be quite troublesome seeing that the combustion

systems under observation are highly nonlinear. Chapter 5 proposes a new model where

nonlinear effects of the system may be included in the model by preconditioning the data.

The concepts in Chapter 5 are demonstrated through a priori studies and show promising

results.



CHAPTER 2

A NOVEL METHODOLOGY FOR CHEMICAL

TIME-SCALE EVALUATION WITH

DETAILED CHEMICAL

REACTION KINETICS
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Smith, and Leonardo Tognotti

Published in Energy & Fuels, 2013, Vol. 27, p. 2255-2265

Reprinted with permission. Copyright 2013 American Chemical Society.

2.1 Abstract
Interaction between turbulent mixing and chemical kinetics is the key parameter which

determines the combustion regime: only understanding such interaction may provide in-

sight into the physics of the flame and support the choice and/or development of mod-

elling tools. Turbulence-chemistry interaction may be evaluated through the analysis of

the Damköhler number distribution, which represents the flow to chemical time-scale ra-

tio. Large Damköhler values indicate mixing controlled flames. On the other hand, low

Damköhler values corresponds to slow chemical reactions: reactants and products are

quickly mixed by turbulence so the system behaves like a perfect stirred reactor. The

calculation of the Damköhler number requires the definition of proper flow and chemical

time-scales. For turbulent conditions, various flow time-scale can be used, such as the

integral and Kolmogorov time-scales. Chemical time-scale calculation poses some issues.

In literature, several examples of Damköhler calculation are reported, but in most cases,

a global chemical reaction rate is used to estimate the chemical time-scale. A method

for considering more complex kinetic schemes is proposed by Fox [23], who defines the

chemical time-scale in terms of the inverse of the eigenvalues from the decomposition of the

chemical source term Jacobian matrix. The present work aims at developing a procedure
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for the calculation of the chemical time-scale (and thus of the Damköhler number) with

complex kinetics starting from the analysis of the Jacobian matrix of the chemical species

source terms. Emphasis is given on the dimension of the Jacobian matrix, as it is not

fully understood how the species for the time-scale calculation should be chosen. In other

words, one can refer to the full set of species (thus all species will have the same “weight”),

but also to a subset of them. The main concept is to perform a preliminary analysis,

based on Principal Variables (PV), to determine the relative importance of the chemical

species, in order to select an optimal subset for the chemical time-scale calculation. The

procedure is illustrated and applied for the Moderate and Intense Low-oxygen Dilution

(MILD) combustion as this kind of regime shows a strong coupling between turbulence

and chemistry, mainly because of slower reaction rates (due to the dilution of reactants) in

comparison with conventional combustion. The methodology is further validated on a DNS

data-set modelling a CO/H2 jet flame.

2.2 Introduction
Interaction between turbulent mixing and chemical kinetics is the key aspect in combus-

tion modelling as it determines the combustion regime. Therefore, a fundamental under-

standing of turbulence-chemistry interactions in reacting systems may provide the needed

insight into the physics of the flame, allowing an appropriate selection or development of

physical models. The Damköhler (Da) number characterizes the behavior between mixing

and reaction in a system, given by the ratio of a mixing or flow time-scale to a chemical

time-scale (τf/τc). The decision of the most relevant flow and chemical time-scales which

control the flame structure is important in obtaining meaningful parameters which describe

the system. When defining the Damköhler number for premixed flames, the flow time-scale

is generally defined by the ratio of the turbulent length scale to the turbulent intensity

(l/ν �), which is proportional to the integral time-scale (τI = k/ε), being the largest turbulent

time-scales in the system. The chemical time-scale, τc, is calculated from the ratio of the

flame thickness to the laminar flame speed (δ/sL) [90, 71], leaving a definition for the

Damköhler number as:

DaI =
kv�

εl
(2.1)

Another useful nondimensional number used in premixed flames is the Karlovits number

(Ka), defined for premixed flames as the ratio of the representative chemical time-scale to

the Kolmogorov mixing scale, leaving Ka = l2F /η
2, where η is the Kolmogorov length scale,

and lF is the flame thickness. This dimensionless number is relevant when looking at the
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ability of the mixing to alter the flame physics. For premixed flames, the following general

combustion regimes [68] are found:

• Laminar Flames (Re < 1) - Laminar flames with no turbulent structures effecting the

physics of the system.

• Thickened Flame (Re > 1, DaI � 1,Ka > 100) - A turbulent regime where the

reaction time-scales of the system are much slower than the mixing time-scales. Here

reactants and products are quickly mixed by turbulence as the mixing scales are small

enough to enter the inner reaction layer; accordingly, the system behaves like a perfect

stirred reactor leaving a system governed by the reaction scales.

• Thin Reaction Zones (Re > 1, 100 > Ka > 1) - A turbulent regime where the reaction

scales of the system are larger than the smallest mixing scales, and the smallest mixing

scales are not sufficiently small to enter the inner reaction layer where radicals begin to

react with the fuel, but large enough to perturb the inert preheat zone, thus distorting

the laminar flame structure.

• Flamelets (Re > 1,Ka < 1, DaI > 1) - The system is governed by the mixing as the

reaction times are all smaller than the smallest mixing scales; this is the case where

the flame preserves a laminar flamelet shape within the smallest turbulent structures.

In contrast to premixed flames, distinct regime definition for nonpremixed combustion

is difficult. The definition of a characteristic flame velocity such as that of premixed

combustion is not available [69], thus complicating the calculation of a reaction time-scale.

Nonpremixed flames exhibit multiple flow scales which may evolve temporally as well as

have dependence on spatial coordinates, and burner flow conditions [71]; this results in

multiple choices for definition of the flow scales. In addition to the Kolmogorov and

integral scales discussed with premixed combustion, the diffusion layer and reaction zone

are often described in nonpremixed combustion, the diffusion layer being the region where

mixture fraction changes significantly and the reaction zone corresponding to a region where

reaction rates are nonzero located immediately adjacent to the stoichiometric iso-surface

[71]. Many authors suggest the use of the inverse of the stoichiometric scalar dissipation

rate for the definition of a local mixing time τχ [71, 69]. The local mixing time is calculated

as τχ = 1/χst =

�
2 �D |∇ξ��st|

2
�−1

, where ξ��st is the mixture fraction fluctuation and D is the

thermal diffusivity [38]. Additionally literature shows the nonpremixed Damköhler number

being calculated using τI , and τη the Kolmogorov mixing time which defines the smallest
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scale of momentum differences [38]. The Batchelor scale τB is of interest as it defines

the smallest scale for scalar differences, which is a comparable to the definition of the

Kolmogorov scale except in terms of the reacting scalars. In general, for gaseous mixtures,

one assumes, τη ≈ τB. Three definitions of the Damköhler number for nonpremixed

combustion can be calculated depending on the choice of the mixing time: the integral

Damköhler number (DaI), the local mixing Damköhler number (Daχ), which uses the

local mixing time τχ, and the Kolmogorov Damköhler number (Daη). Several authors

have attempted to characterize nonpremixed combustion regimes. An example of one was

demonstrated by Poinsot [71], where Da and the turbulent Reynolds (Ret) number, defined

as τI
τη

= k/ε

(ν/ε)1/2
=

��
k2
νε

�
=

√
Ret, are used to characterize the regimes. When the

Damköhler number is large enough, the laminar flamelet assumption (LFA) applies, leaving

a transitional Damköhler number
�
DaLFA

I

�
where the combustion regime changes. Given

a sufficiently small Damköhler number, extinction occurs; here the transitional Damköhler

number DaEXT
I is defined. The following nonpremixed combustion regimes are generally

described in terms of the Damköhler number.

• Laminar (Ret < 1) - Simple diffusion flames with no turbulent structures effecting

the diffusion of fuel and oxidizers.

• Flamelet (Ret > 1, DaI ≥ DaLFA
I ) - A turbulent regime where mixing scales are

larger than reaction scales thus preserving the steady laminar flamelet.

• Unsteady (Ret > 1, DaLFA
I > DaI > DaEXT

I ) - A regime where mixing scales produce

instability in the flame front.

The determination of chemical time-scales for turbulent combustion systems is partic-

ularly difficult as detailed reaction mechanisms are often required for adequate description

of the combustion process. A definition of the laminar flame velocity sL, used for the

calculation of τc (δ/sL), does not exist for nonpremixed combustion. The chemical time (τc)

is determined from several different methods, including activation energy asymptotics[41],

global chemistry assumption [8], or the critical scalar dissipation rate at quenching τq =

1/χq, has been used for estimation of τc with complex chemistry cases [38]. At this time, a

clear definition for τc for complex chemistry systems involving detailed kinetic mechanisms

is needed, and it is the focus of this work. In most cases, a global chemistry assumption is

made to simplify the estimation of τc. An example of this is given by Kuo [40] where the

following definition is used:

DaI =

�
νK2

r

ε

�
(2.2)
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where ν is the kinematic viscosity, ε is the dissipation of turbulent kinetic energy, and Kr is

the kinetic constant of the global reaction. On the other hand, Fox [23] provides a method

for considering more complex kinetic schemes, suggesting that the chemical time-scale can

be defined in terms of the eigenvalues of the QxQ Jacobian matrix J of the chemical source

terms, whose elements Jij are given by (for an isothermal case):

Jij =
∂Ri

∂Yj
(2.3)

The eigenvalue decomposition of J leaves an expression for chemical time-scales as:

τa =
1

|λa|
(2.4)

where λa is the set of eigenvalues from a = 1, . . . , Q. Here Q is the number of species in

the detailed mechanism. In a complex kinetic scheme, for which the time-scales can range

over several orders of magnitude, the slowest chemical time-scale should be chosen for the

estimation of the Damköhler number:

τc = max (τa) (2.5)

Such an approach was recently applied by Rehm et al. [78] who calculated the Damköhler

number for a gasification system using the five most abundant species to define the Jacobian

matrix. Retaining all the species of the kinetic mechanism may lead to the determination

of nonmeaningful time-scales, due to the complete inactivity of some species in specific

regions of the flame. The choice of the species to be retained is not to date established and

is generally made by looking at the major species, as done in the work by Rehm et al. In

the present work, the selection of species to be retained is addressed and a newly proposed

method is presented in the subsequent section.

Upon determination of an appropriate expression for τc and τf , the evaluation of the

Damköhler number can easily allow one to identify the predominant combustion regime

and choose the appropriate turbulent combustion model. Existing turbulent combustion

models are generally well suited for (1) high Damköhler numbers where mixing dominates

the process or (2) low Damköhler numbers where chemistry dominates the physics and

finite rate chemistry models are required. An example of a high Damköhler number model

is the Steady Laminar Flamelets Model (SLFM) [67, 65], which treats the flame as an

ensemble of steady laminar diffusion flames. Here the mixture fraction variable is used

as an independent variable which defines the thermochemical state-space; mixture fraction

fluctuations are generally specified using an assumed shape of the PDF of the mixture
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fraction. The shape of the PDF is characterized by transporting the mean mixture fraction

and the variance of the mixture fraction. In lower Damköhler flows, turbulent structures

can enter the flame preheating zone and further mix and distort the flame front; these

unsteady effects require a modelling approach with higher coupling between the chemical

reactions and the turbulent mixing. A model such as Eddy Dissipation Concept (EDC)

[43, 44, 45, 46] transports the species involved in a detailed reaction mechanism, and treats

the flame as an ensemble of perfectly stirred reactors (PSR) where the PSR residence time

is a function of the local mixing time-scales. This allows for a more complex chemistry

tracking approach, while coupling the turbulent structures to the chemistry physics.

A particular combustion regime of interest in terms of the Damköhler analysis is the

flameless (or MILD) combustion regime. This regime is characterized by a strong coupling

between turbulence and chemistry, because of slower reaction rates (due to the dilution

of reactants) with respect to conventional combustion [8]. It is a widespread opinion that

for such a combustion regime, the Damköhler number approaches unity [25]. Indeed many

modelling investigations have shown that high Damköhler number approaches such as SLFM

are not suited for this combustion regime due to the slow chemistry[12]. Encouraging results

have been obtained through the EDC model [46, 10, 26, 59, 3, 58], especially for its capability

of handling detailed kinetic schemes [60]. However, some discrepancies are still observed

when using EDC and model modifications have been proposed in the literature for better

capturing flameless conditions [1, 4].

The objective of the present paper is that of defining a methodology for the deter-

mination of the principal variables of a reacting system, to allow the determination of a

chemical time-scale τc based on complex reaction schemes, so that a meaningful Damköhler

number may be calculated. Such a formulation is interesting for combustion processes where

detailed kinetics need to be taken into account like in flameless combustion. The proposed

choice of the size of the Jacobian matrix and of the variables that should be involved in

the chemical time-scale calculation becomes fundamental. The present paper proposes a

methodology based on principal variable analysis for the selection of the variables carrying

most of the relevant information. In the following section, the methodology is first presented

with an introduction to principal component analysis (PCA) and principal variables. Then

a discussion on the size of the Jacobian follows, to rigorously determine the minimum

number of species which should be included in the Jacobian calculation. Finally, results are

presented for a flameless combustion data-set [19], and as a consistency check, the approach

is demonstrated on a DNS data-set for nonpremixed syngas combustion.



16

2.3 Methodology

2.3.1 Principal component analysis

PCA [33, 31] is a statistical technique employed in the analysis of multivariate data-sets,

for detecting the directions that carry most of the data variability, thus providing an optimal

low-dimensional manifold of the system. For a data-set, X, consisting of n observations of

Q variables, the sample covariance matrix, S, of X can be defined as S = 1/ (n− 1)XTX.

Recalling the eigenvector decomposition of a symmetric, nonsingular matrix, S can be

decomposed as S = ALAT , where A is the (Q x Q) matrix whose columns are the

eigenvectors of S, and L is a (Q x Q) diagonal matrix containing the eigenvalues of S

in descending order, l1 > l2 > . . . > lp. The covariance matrix indicates the level of

correlation between the nondimensional variables. Values close to zero denote uncorrelated

variables whereas correlations close to one indicate strongly correlated variables. Based on

the correlation values, the redundant, less important information contained in the original

data-sets can be easily removed. Once the decomposition of the covariance matrix is

performed, the Principal Components (PCs), Z, are defined by the projection of the original

data onto the eigenvectors, A, of the covariance matrix, S, Z = XA. Then, the original

variables can be stated as a function of the PC as X = ZAT , being A orthonormal and,

hence, A−1 = AT . Nevertheless, the main objective of PCA is to replace the p elements

of X with a much smaller number, q, of PC, preserving at the same time the amount of

information originally contained in the data. If a subset of size q � Q is used, the truncated

subset of PC is Zq = XAq. This relation can be inverted to obtain:

Xq = ZqA
�
q (2.6)

where Aq is the matrix obtained by retaining only the first q columns of A. The linear

transformation provided by Equation 2.6 ensures that the new coordinate axes identified

by PCA are orthogonal and they provide independent and decreasing contributions to the

amount of original variance explained by the PC. Thus, if only the subsetAq ofA is retained,

Xq represents the best q-dimensional approximation of X in terms of squared prediction

error. Variables are generally centered before the PCA analysis, to convert observations to

fluctuations on the mean; moreover, scaling is applied when the elements of X have different

units or when they have different variances, as is the case for this investigation. A centered

and scaled variable can be defined as [61, 63]:

xj =
xj − xj

dj
. (2.7)
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where dj is the scaling parameter adopted for variable xj . Several scaling options are

available, including normalization by the variable range, standard deviation, maximum, and

average values [63, 5]. The present paper uses the standard deviation as scaling parameter.

This ensures that all the elements of the scaled X matrix have a standard deviation equal

to one and a covariance ranging from zero to one giving them similar relevance.

In the case of averaged data-sets, the insensitivity of the eigenvector matrixA to filtering

was recently demonstrated by Biglari and Sutherland [5]. Their results suggest the structure

of PCA defined byA remains relatively unchanged while using several filter widths, meaning

the low-dimensional manifold for the state variables is relatively insensitive to filtering. This

is significant as an averaged data-set may be sufficient for extracting PVs.

The low-dimensional manifold discussed in the context of PCA is fundamentally different

than low-dimensional manifolds used in many other models, such as the thermodynamic

manifold of rate-control constrained equilibrium (RCCE) [83], or the reaction-diffusion

manifold of flame prolongation of ILDM (FPI) [21, 22]. Here the manifold is empirically

based on the state-space from computed turbulent combustion data, whereas other tech-

niques construct the manifold from the solution of the conservation equations for simplified

systems such as laminar flames [72].

2.3.2 Principal variables

PVs represent an attempt to gain a physical understanding from principal component

analysis. PV algorithms try to link the PC back to a subset of the original variables, which

satisfies one or more optimal properties of PCA, such as the maximization of the variance

of the original data X. Then one can partition the set of variables into X (1) and X (2).

Where the expression for the sample covariance matrix is:

S =

�
S11 S12

S21 S22

�
(2.8)

The partial covariance for X (2) given X (1) can be expressed as:

S22,1 = S22 − S21S
−1
11 S12. (2.9)

With respect to Equation 2.9, PV techniques attempt to minimize the information carried

by the covariance matrix S22,1, by considering only the most important variables within

the data-set. Several PV methods exist in the literature [33]. In the present work, the

B2 backward method is considered. A PC analysis is performed on the original matrix

of Q variables and n observations. The eigenvalues of the covariance/correlation matrix
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are then computed and a criterion is chosen to retain q principal variables. Starting with

the last eigenvector of A corresponding to the smallest eigenvalue, the variable associated

with the highest eigenvector coefficient is discarded as the latter is highly correlated with

a component carrying the least variance. The process is then repeated for the next highest

eigenvalue until q PVs remain, leaving S22,1 as a (Q− q) × (Q− q) dimensional matrix.

The trace of S22,1 is employed to determine the number of variables q to be retained, once

a value for the loss in variance γ is set:

trace(S22,1(q))
trace(S) � γ for q = 1, 2, . . . , Q (2.10)

The term trace(S22,1(q))
trace(S) can be interpreted as the lost variance of X by selecting the subset

q. Generally, a value of γ = 0.01 is chosen, which implies a retention of 99% of the variance

in the system.

2.3.3 Jacobian matrix down-sizing

The variables extracted with the principal variable algorithms are used to compute

a subset of the full Jacobian matrix, only including the derivatives with respect to the

selected principal variables. This allows the determination of the modes to be compared

with the ones provided by the full Jacobian matrix, including all the species involved in

the original detailed kinetic mechanism. In all cases, the determination of the Jacobian

matrix is performed with an in house MATLAB R� code JACOBEN. The code is particularly

interesting as it formulates the chemical source term equations as symbolic expressions

and then uses the symbolic differentiation function in MATLAB R� to form the analytical

expressions for the derivatives of the chemical source terms with respect to chemical species.

The code requires the chemical mechanism to be in CHEMKIN format, as well as all

thermodynamic state-space parameters describing the turbulent combustion, including the

species mass fractions and temperature. A Jacobian matrix is then evaluated for every

observation provided in the thermodynamic state space input file.

Figure 2.1 summarizes the process used in order to calculate the Damköhler number.

Principal variables analysis as well as the mixing time-scales are calculated directly from

simulation data. The chemical mechanisms provide the chemical reactions which are used to

form the symbolic expressions for the chemical source terms, as well as the thermodynamic

information needed to calculate the equilibrium constants. Upon forming the Jacobian

matrix, the PV analysis identifies the subset of the Jacobian matrix used to calculate the

chemical time-scales.
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Figure 2.1: Flow diagram describing the process of analysis used to obtain the Damköhler
number. Here the subscripts i, r, and pv denote species, reaction number, and principal
variable, respectively.
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2.4 Test cases
First, a demonstration of the chemical time-scale approach is given based on a simulated

flameless combustion data-set where a reduced Damköhler number is expected. The simu-

lation data were provided by Aminian et al. [4] in reference to the jet in a hot co-flow (JHC)

burner designed by Dally [19] to emulate flameless combustion conditions. The experiments

by Dally consist of a jet with a CH4/H2 mixture (inner diameter of 4.25 mm) within an

annulus co-flow (inner diameter of 8.2 mm) of hot oxidizer gases from a porous bed burner

mounted upstream of the exit plane. The entire burner is placed inside a wind tunnel

feeding air at the same velocity as the hot co-flow. The experiments operate with a jet

Reynolds number of around 10,000 and different oxygen mass fraction, i.e. 3% (HM1), 6%

(HM2) and 9% (HM3) in the co-flow. The available experimental data consist of 280, 000

measurements of temperature and concentration of major (CH4, H2, H2O, CO2, N2, and

O2) and minor species (NO, CO, and OH ) at different locations. A detailed description of

the systems and tests can be found in the work by Dally [19].

The JHC was modeled with the Fluent 6.3 software by Ansys Inc. A 2D axisymmet-

ric domain was chosen with a structured grid containing 25,000 cells. The steady-state

Reynolds-Averaged Navier-Stokes (RANS) equations were solved with a modified version

of the k-� turbulence model (i.e. imposing C�1 = 1.6 for round jets) [51, 3]. The KEE-58

mechanism [7] consisting ofQ = 17 species and 58 reversible reactions was used. Turbulence-

chemistry interactions were modeled with the EDC model. The constant of the residence

time in the fine structures was set to 1.5 as this was found to improve substantially the

predictions of temperature and chemical species in flameless conditions [4]. Although the

reactions rates for the species in this model are directly tied to the mixing in the system,

the model parameters have been trained sufficiently to ensure the major species profiles

are accurate when compared with the experimental results. For the boundary conditions,

velocity inlet conditions were given to the unmixed fuel jet, co-flow oxidizer, and tunnel

air, paying particular attention to turbulent intensity [3]. The simulation results obtained

from the simulation of the JHC burner have been successfully validated [4] against the

available experimental data and they represent an ideal data-set for testing the proposed

methodology for chemical time-scale calculation in case of complex kinetic mechanisms.

Figure 2.2 shows the simulation results of temperature T for cases HM1, HM2, and HM3 as

a function of the mean mixture fraction. For the demonstration of the chemical time-scale

approach, the simulation data-set consisted of n = 25, 000 points, with Q = 17 variables,

being the 17 fine structure mass fractions of the chemical species.
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Figure 2.2: Temperature as a function of mixture fraction ξ for cases HM1, HM2, and
HM3.
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Second, in order to demonstrate consistency for the chemical time-scale approach, an

additional analysis on Direct Numerical Simulation (DNS) data, created by Sutherland [86]

using Sandia National Laboratories S3D [9] code, is shown. The code uses 8th order explicit

finite difference derivatives, and a 4th order, six-stage explicit Runge-Kutta time integrator.

Here a case with Re = 4500 , an inlet fuel stream containing 50%CO, 10%H2, and 40%N2

(by volume), and an oxidizer stream containing air are simulated. The domain consists of

a 2D rectangular mesh containing 2160 by 720 grid points evenly spaced. The oxidation

of the CO/H2 mixture was described using the mechanism developed by Yetter et al. [92]

The mechanism consists of Q = 12 species: H, O2, O, OH, H2, H2O, CO, CO2, HO2,

H2O2, HCO, N2 and 33 chemical reactions with the simulation data-set containing n = 4.7

million points taken from several snapshots in time with even intervals of 0.5 seconds.

2.5 Results and discussion
We first analyze the flameless combustion data-set. Figure 2.3a shows the largest

chemical time-scale of the system (τc) using Equation 2.5, and Figure 2.3b the Damköhler

number Daη, all as a function of the mean mixture fraction ξ. Here ξ is calculated using

Bilger’s mixture fraction formula [6] from the species, as in Dally and Christo [19, 10]. The

plotted data come from the axis of the cylindrical burner for all three systems (HM1-HM3).

In Figure 2.3, the results for τc and the Damköhler number are calculated using the full

Jacobian matrix for the chemical time-scales (Equations 2.3-2.5) and the Kolmogorov mixing

scale. From the analysis, it is clear that keeping all of the variables in the Jacobian matrix

does not help in identifying the relevant processes for the system under investigation. In

particular, if no filtering is applied to the original thermo-chemical state variables, the

analysis will point out the existence of the extremely slow time-scales of the nonreacting

species, as shown in Figure 2.3, leading to Daη values close to zero for all three systems.

A first attempt is then that of filtering out from the Jacobian analysis all the slow scales,

i.e. all values above 1000 seconds (limit for slow chemistry processes according to Fox [23]).

This results in the plots of Figure 2.4, showing the time-scales (Figure 2.4a) and Daη values

(Figure 2.4b) for a filtered Jacobian matrix. However, the new time-scale analysis does not

provide a clear insight into the investigated combustion system. The Daη values obtained

for the three cases appear similar in magnitude and simply shifted along the mixture fraction

axis going from case HM1 to case HM3. More importantly, the Daη values are in all cases

fairly large (≈ 8) near the stoichiometric mixture fraction, thus far from what would be

expected in flameless conditions. The results shown in Figure 2.3 indicate that keeping all
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Figure 2.3: Chemical time-scale τc (a), and Damköhler values Daη (b) as a function of
mixture fraction ξ. Full Jacobian matrix and unfiltered time-scales.
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Figure 2.4: Chemical time-scale τc (a), and Damköhler values Daη (b) as a function of
mixture fraction ξ for the full Jacobian matrix. Time-scales above 1000 seconds have been
removed.
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the thermo-chemical state variables in the Jacobian matrix does not allow identifying the

controlling chemical time-scale of the system. It is therefore very important to identify the

relevant variables for the time-scale analysis through a rigorous selection method.

According to the method shown by Rehm [78], one could now select the major species

in the system in order to capture the principal τc of the system. Selecting a mean mass

fraction criteria ≥ 0.01 leaves the major species: CH4, H2, O2, CO2, H2O, and CO. Figure

2.5 shows the resultant τc and Daη given the major species as PVs. It is observed that

the evaluation of Equations 2.3, 2.4, and 2.5 with the Jacobian matrix being calculated

with only the major species alone does not guarantee that the most meaningful or relevant

chemical time-scale will be expressed; in this case, it leaves a large maximum time-scale,

due to the fact that one or more of the species may contain dormant reaction rates (in

this case, the addition of CO is highly sensitive to the large time-scale), thus yielding an

unrealistic Damköhler number. The principal variables of the system which lead to the

calculation of a realistic τc can be identified using the methodology shown above. Equation

3.18 provides the normalized trace of the lost covariance given a guess for q. The criterion

of Equation 3.18 is met when q ≥ 10 for all three cases. Figure 2.6 shows the normalized

trace of the variance which is lost based on a given value of q. It can be inferred that

retaining ten PVs will yield a 1% loss of variance explained by keeping all of the variables.

Figure 2.7 shows in black and red, respectively, the chemical time-scales associated to the

Jacobian matrix of system HM1 with all the state variables and with ten PVs, determined

with method B2 (see Methodology Section). It can be observed that the slowest chemical

time-scale, which is mostly pertaining to the species CO2 in the present case, allows for a

description of the slow governing dynamics of the reacting system without showing the peaks

displayed by the largest (meaningful) time-scale of the full system, which come from the

complex interactions between the different chemical species. Figure 2.8 shows the chemical

time-scale, τc, and Damköhler, Daη, values as a function of mixture fraction, ξ, for the

Jacobian matrix calculated using ten principal variables for all three flames. Differently

from Figure 2.3, the results indicate a meaningful trend, showing increasing Daη values

when going from HM1 to HM3, i.e. increasing the oxygen in the co-flow from 3% to

9% and moving towards conventional flame conditions. It is interesting to note that the

evaluation of τc remains constant while using one to eleven PVs, as the first PV identified

by the system is in fact CO2. Upon addition of the twelfth PV (CO) the analysis of

the time-scales shows again the appearance of large chemical times, which are related to

inactive thermo-chemical variables and which should not be considered in the analysis. This
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Figure 2.5: Chemical time-scale τc (a), and Damköhler values Daη (b) as a function of
mixture fraction, ξ, using only the major species in the reduced Jacobian matrix.
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is confirmed by the analysis of Figure 2.9 , which shows the Daη values as a function of ξ

from data taken along the burner axis. When the number of PVs is greater than eleven,

the largest Daη values drop to zero (red markers) due to the appearance of large chemical

time-scales. The proposed methodology provides a very robust way for the determination

of the limiting time-scale associated to a chemically reacting system. In particular, it can

provide the variables that should not be included in a time-scale analysis as they do not

add useful information being inactive species.

Examination of the Damköhler number using different mixing scales is shown in Figures

2.10, 2.11, and 2.12. Here the area between the Damköhler numbers calculated using the

integral time-scale DaI and Kolmogorov time-scale Daη is shown. This Damköhler number

space is significant as it shows the range of the Damköhler numbers accessible between the

largest and smallest mixing scales, and can help in giving an idea of appropriate modelling

strategies. Figure 2.10 shows that the Kolmogorov mixing scales for the HM1 case near

ξst are smaller than the limiting chemical time-scales Daη < 1. In this case, the smallest

turbulent eddies are able to mix at a faster rate then the limiting reaction time. It is

observed that DaI > 1 for all three cases, meaning reaction occurs faster than the mixing

by the largest turbulent motions in the system. Because the integral time-scales are much

larger than the reaction scales, the system depends on the incorporation of mixing physics.

As would be expected if DaI < 1, a simple perfectly stirred reactor (PSR) model could

accurately represent the entire system. Dilution of O2 leads to slower limiting reactions and

lower Damköhler numbers, which brings the system closer to a PSR. Figures 2.11 and 2.12

show the smallest mixing scales are larger than the reaction scales; thus, the flame should

preserve more of a flamelet like shape and within the reaction zone, temperature gradients

are higher. Figure 2.13 shows the contour plots of Daη for the three cases including stream

lines of constant temperature. As one would expect, a higher O2 content in the co-flow

stream leads to faster combustion, and higher Damköhler numbers. The effect of this

is seen in Figure 2.13. In the case of diluted O2 (HM1), the reacting gases penetrate

further along the axis of the burner, leaving lower temperatures, Damköhler numbers, and

higher chemical time-scales. The chemical time-scale approach by Fox [23] allows additional

insight into the reaction times by observing weights in the eigenvector matrix from the

decomposition of the Jacobian of the source terms. Figure 2.14 shows the weights for the

eigenvectors corresponding to the calculated time-scales. The stacked bar chart shows the

sensitivity of the chemical time mode to the principal variables. As would be expected

the slow time-scales correspond to species such as CO2, O2, N2 and rapid time-scales
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Figure 2.10: Damköhler numbers calculated using the integral and the Kolmogorov time-
scales. The area bounded between the curves represents the range of Damköhler numbers
between the largest mixing scales (DaI) and the smallest mixing scales (Daη). The dashed
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data-set.



33

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

5

10

15

20

25

30

ξ

D
a
m

k
ö

h
le

r 
N

u
m

b
e
r

Figure 2.11: Damköhler numbers calculated using the integral and the Kolmogorov time-
scales. The area bounded between the curves represents the range of Damköhler numbers
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Figure 2.12: Damköhler numbers calculated using the integral and the Kolmogorov time-
scales. The area bounded between the curves represents the range of Damköhler numbers
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Figure 2.13: Contours showing Daη values along the radial and axial direction of the
burner. Colors in the graphs represent Daη and isolines show the temperature. Plots (a),
(b), and (c) show the contours for the cases HM1, HM2, and HM3, respectively.
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correspond to radical species where characteristic reaction times are expected to be very

small (H, HCO, H2O2, O, HO2, CH).

A simple comparison between the newly outlined approach for calculating τc and the

global chemistry approach [40] can be made using the one-step Westbrooke and Dryer

mechanism [55], assuming the oxidation of CH4 is the slower predominant chemical process

in the system. The one-step Westbrook and Dryer reaction is given with units of kcal, mol,

K, m3, and s as:

Reaction Reaction rate
CH4 + 2O2 → CO2 + 2H2O 1.3 · 108 · e−48.4/RTC−0.3

CH4
C1.3
O2

The units for the reaction rate constant are 1/s, leaving a simple expression which gives τc.

Figure 2.15 shows the results for the one-step global reaction time-scale (blue ‘+’ markers) in

comparison to the PV approach (black ‘x’ markers) both calculated from the HM1 data-set.

A similar value for the smallest scale time-scale near the stoichiometric mixture fraction

(ξst = 0.05) is observed, with large differences moving away from ξst in either direction. The

simulation results for HM1 were recalculated using EDC with the simple one-step reactions

for CH4 and H2 combustion. The chemical time-scale analysis now shows a large reduction

in τc (red ‘diamond’ markers) when using the simplified chemical reaction scheme in attempt

to model the diluted combustion. Figure 2.15 points out that more detailed chemistry is

needed to correctly account for the turbulence-chemistry interaction in the HM1 system.

Using EDC in combination with one-step chemistry leads to overestimation of chemical

time-scales, and over-prediction of temperature and reaction rates.

In order to verify the proposed methodology, the DNS data-set (described in the Test

Cases Section) is also analyzed using the new chemical time-scale approach. First τc is

calculated using the full Jacobian matrix containing the information from all of the variables,

including that which may produce slow dormant reaction times. The flow time-scale τf is

calculated as either the Kolmogorov time-scale τη =
�
ν
ε

�1/2
, or the integral time-scale τI = k

ε

where ε, the energy dissipation rate, is calculated from the velocity gradients. Figure 2.16

shows the results using the full Jacobian matrix.

Similar to the analysis shown in Figure 2.3, the dormant reaction times hide the actual

governing time-scales of the system. In order to perform the proposed approach, Equation

3.18 was used again to determine the number of principal variables required for sufficient

description of the data-set. Figure 2.17 shows the normalized trace of the variance which is

lost based on a given value of q, where q ≥ 2 will yield a 1% or less loss of variance. Figure

2.18 shows τc and Daη calculated for the given DNS data-set. The analysis showed a clear

definition of the dominant reaction time-scale while using one to eight principal variables.
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Upon addition of the ninth principal variable, which was H2O in this case, dormant reaction

times are observed. Figure 2.19 shows a range of Damköhler numbers comparing DaI and

Daη. Here we observe a large integral Damköhler number, thus a flamelet-like system

is expected (and observed), yet a Kolmogorov Damköhler number less then unity leaving

the nonpremixed reaction zones with enhanced mixing as the time-scales of the smallest

turbulent structures are smaller than the limiting reaction times, allowing mixing within

the reaction zones. The decrease in lost variance (shown in Figures 2.6 and 2.17) is much

faster for the CO/H2 data-set. In particular, the system has a limited degree of extinction

and re-ignition, leading to a simpler structure and minor influence of finite rate chemistry

effects, requiring a smaller number of PV (when compared with the CH4/H2 data-set). In

addition, larger fuels will inherently require more PVs, as seen when comparing the two

data-sets.

2.6 Conclusions
A method has been described for the calculation of chemical time-scales for turbulent

combustion data. The method identifies the limiting chemical time-scales by identifying the

principal variables of the system, and using them in the evaluation of the chemical source

term Jacobian. With a relevant definition of a mixing time-scale, the Damköhler number

may be calculated. The Damköhler number is useful in helping to identify combustion

regimes and appropriate modelling strategies. The presented method can be used in

turbulent flame studies in the following manner: First, a high fidelity numerical data-set

representative or relevant to a system of interest is generated and a PV analysis is performed

to extract the leading time-scales of the systems, using the proposed methodology based

on the eigenvalue decomposition of the down-scaled chemical Jacobian. The extracted

chemical time-scales are then compared to the mixing time-scales for the estimation of

the Damköhler number. A large Damköhler number corresponds to combustion regimes

dominated by mixing, indicating that flamelet-like modelling strategies are appropriate. On

the other hand, in case of slower chemistry or enhanced mixing, lower Damköhler numbers

are found and more advanced modelling strategies are required, in order to adequately

describe turbulence-chemistry interactions and finite-rate chemistry effects.
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3.1 Abstract
One of the most challenging aspects of turbulent combustion research is the development

of reduced-order combustion models which can accurately reproduce the physics of the

real system. The identification and utilization of the low-dimensional manifolds in these

system is paramount to understand and develop robust models which can account for

turbulence-chemistry interactions. Recently, principal components analysis (PCA) has been

given notable attention in its analysis of reacting systems, and its potential in reducing the

number of dimensions with minimum reconstruction error. The present work provides a

methodology which has the ability of exploiting the information obtained from PCA. Two

formulations of the approach are shown: Manifold Generated from PCA (MG-PCA), based

on a global analysis, and Manifold Generated from Local PCA (MG-L-PCA), based on

performing the PCA analysis locally. The models are created using the co-variance matrix

of an empirical data-set which is representative of the system of interest. The reduced

models are then used as a predictive tool for the reacting system of interest by transporting

only a subset of the original state-space variables on the computational grid and using the

PCA basis to reconstruct the nontransported variables. The present study first looks into

the optimal selection of the subset of transported variables and analyzes the effect of this

selection on the approximation of the state-space and chemical species source terms. Then,

a demonstration of various a posteriori cases is presented.
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3.2 Introduction
It is well-established that the ability to model industrial combustion systems is depen-

dent on the ability to represent the reaction system with a reduced number of parameters.

Literature enumerates numerous approaches to reduce the computational cost associated

with turbulent combustion problems. Several methods are based on the parameterization of

the state-space with a reduced number of optimal variables. This leads to fewer transport

equations, and provides a reduction in computation time. Several examples include: Steady

Laminar Flamelet Method (SLFM) [67, 66], Flamelet-Generated Manifold (FGM) [56, 88]

and Flamelet-Prolongation of ILDM model (FPI) [27, 21].

Recent work has been pushing for the development of a new class of models which are

entirely based on empirical data-sets. The concept is to use principal components analysis

(PCA) on empirical data-sets to identify a low-dimensional representation of the reacting

system. Previous work by Maas and Thévenin [42] applied PCA to premixed DNS cases, to

identify correlations between species concentrations. In the work by Parente et al. [61, 60],

PCA was used to identify the best linear representation of the underlying manifold contained

in these highly coupled reacting systems. Biglari and Sutherland [5] and Pope [72] extended

such a concept using the PCA basis in conjunction with nonlinear regression, maximizing the

size reduction for a given accuracy. Mirgolbabaei and Echekki [50] extended such an analysis

to the application of artificial neural networks, showing also the effect of minor species on

the accuracy in the reconstruction. Mirgolbabaei and Echekki [49] investigated the potential

of kernel PCA, showing the high compression potential derived by transforming the initial

problem into a nonlinear featured space where linear PCA is carried out. These works

show the capability of PCA to recover a highly accurate reconstruction of the state-space

variables with a significant dimension reduction. This indicates that a lower dimensional

manifold exists in turbulent reacting systems, and that PCA is well-suited for identifying

the manifold.

Various approaches have been developed in order to use the manifold identified by PCA.

The PC-score approach was first described by Sutherland and Parente [85] as a model which

transports the principal components (PCs) directly. Several other groups have proposed

transporting a subset of state-space variables and reconstructing the nontransported vari-

ables from the PC basis [16, 91]. In particular, the MG-PCA model by Coussement et al.

[16] was the first PCA model for which a posteriori validation was provided, by computing a

hydrogen flame-vortex interaction using a DNS solver. Finally, in the work by Najafi-Yazdi

et al. [52], PCA was used to identify optimal progress variables in the context of the
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flamelet-generated manifold approach.

The present paper focuses on the use of PCA for combustion models. Primarily, the

Manifold Generated from PCA (MG-PCA) model [16] is examined. In this model, transport

equations are solved for a subset of the originally transported variables which contain most

of the variance of a reacting system. The remaining variables are reconstructed from the

PCA basis which has been calculated a priori. The current work aims at extending the

analysis of the MG-PCA method by proposing an enhancement to the model to increase

its accuracy, investigating various a priori aspects of the MG-PCA models, and by showing

two a posteriori demonstrations of the model with a more challenging chemistry than

in [16]. The a priori investigation shows the improvement in accuracy provided by the

new model formulation, the effect of the various transported variables selection methods

and preprocessing techniques on size reduction, as well as on reconstruction of state-space

variables and source terms. Then two MG-PCA syngas (CO/H2 mixture) calculations are

shown, including a constant pressure auto-ignition case, and a turbulent syngas premixed

flame.

3.3 Principal component analysis
For a data-set X (n×Q), containing n samples of Q original variables, PCA provides an

approximation of the original data-set using only q (q < Q) linear correlations between the

Q variables [85, 61]. PCA starts with the computation of the sample co-variance matrix S:

S =
1

n− 1
XT X (3.1)

where the superscript T indicates the transpose matrix. Using the spectral decomposition,

S is then decomposed to:

S = ALAT (3.2)

where A (Q × Q) and L (Q × Q) are respectively the Q eigenvectors of S, called principal

components (PCs), and the eigenvalues of S, in decreasing order. The principal component

scores, Z (n × Q) , are then computed using the eigenvector matrix as:

Z = XA. (3.3)

One of the main advantages of PCA is that the original set of data (X) can be uniquely

recovered using the PCs and their associated scores:

X = ZA−1 (3.4)
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where it should be noted that A−1 = AT . However, the main objective of PCA is dimension

reduction. Indeed, if one only uses the first q PCs ( q < Q), an approximation of X based

on the first q eigenvectors (Xq) is obtained:

X ≈ Xq = ZqA
T
q (3.5)

where Xq is the approximation of X based on the first q eigenvectors of S, and Zq is the

n × q matrix of the principal component scores.

Finally, it should be stressed that throughout this paper, the data are preprocessed prior

to performing PCA. In particular, each variable of the original data-set X is centered and

scaled in order to increase the accuracy of the method [61, 63]. Applying centering and

scaling on the data-set reads:

Xs = (X−X)D−1 (3.6)

where X is a n×Q matrix containing the mean of each variable and D is a n×Q matrix

containing the standard deviation of each variable (see [63] for details).

Using the previous analysis, two general classes of PCA-based combustion models have

been identified:

• First, one can directly transport the principal components, as proposed in the work

by Sutherland and Parente [85]. The thermo-chemical state-space is then recovered

using Equation 3.5. While the approach is straightforward, it suffers from a major

drawback related to the PC source terms. In particular, the error associated to

the PCA reconstruction strongly affects the calculation of the source terms, whose

accuracy degrades very quickly when reducing the number of parameters defining the

manifold. This is due to the fact that PCA evenly distributes the reconstruction

error on the state variables, without taking into account the absolute size of the

variables. As a consequence, radical species present in very small amounts are affected

by reconstruction errors of the same order of magnitude as the major variables, leading

to an uncontrolled propagation of error when the source terms are calculated from

the approximated state-space [5]. Therefore, nonlinear regression techniques are being

used to parameterize the full thermo-chemical state.

• Second, one can transport a subset of the original variables and recover the remaining

variables using the information from PCA (MG-PCA). The MG-PCA approach was

developed [16] to better control the propagation of the reconstruction error. Such

an approach is based on the resolution of classic transport equations for the system
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principal variables. Indeed, Equation 3.5 indicates that Xq can be obtained from Zq.

Moreover, those scores can be approximated from a subset of the original variables

X(q) of size n× q composed of only q variables:

�Zq = X(q)
�
A(q)Tq

�−1
(3.7)

whereA(q)q is a (q ×q) matrix containing only the coefficients related to the q retained

variables. Combining Equations 3.5 and 3.7, one finds:

Xq = X(q)
�
A(q)Tq

�−1
AT

q (3.8)

or

Xq = X(q)B (3.9)

defining the matrix B (q ×Q) as:

B =
�
A(q)Tq

�−1
AT

q . (3.10)

Therefore, by transporting q variables (which can be temperature or species mass

fractions), it is possible to recover the (Q − q) remaining variables by retaining the

appropriate (Q − q) columns of the B matrix in Equation 3.9, corresponding to the

nontransported (Q− q) state variables:

Xq (Q− q) = X(q)B (Q− q) . (3.11)

By comparison with the score approach, this method requires the a priori selection

of q transported variables. This method allows one to better control the propagation

of the error linked to the model, which is the major advantage of MG-PCA.

MG-PCA allows the use of PCA locally [35]. Parente et al. [61] first applied the local

PCA formulation to turbulent combustion data, identifying the limitations of global PCA

for the analysis of highly nonlinear systems as the ones observed in combustion. In fact,

PCA tries to approximate the nonlinear chemical manifold by superimposing several linear

effects, resulting in a manifold size higher than the actual problem dimensionality. To avoid

such a problem, the local PCA approach was proposed to optimally partition the data into

clusters, based on an iterative algorithm which minimized the reconstruction error of the

state-space. However, the implementation of local PCA in terms of a combustion model

does not appear straightforward for two main reasons: first, the approach is based on the

resolution of transport equations for the scores, implying a modification of the PC definition
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with the cluster, and, second, the conditioning variable is not known a priori and it is not

guaranteed that it could be somehow related to any state variable1. On the other hand,

the use of local PCA appears well-suited in the MG-PCA context, as indicated in [16]. The

main steps of the approach, briefly indicated as MG-L-PCA, are:

• The principal variables are extracted from the full data-set, to define the transport

equations which need to be resolved in all identified clusters.

• Then, the matrices Aq and B are computed in each cluster, allowing an optimal local

reconstruction of the nontransported variables using Equation 3.5.

Differently from [61], the conditioning variables are chosen a priori to build continuous

clusters on the basis of a progress variable displaying a monotonic increase throughout

the flame. For premixed cases, as the ones described in the present paper, temperature

represents an optimal choice2 [16].

The MG-PCA algorithm can be divided into two parts:

• First, the data-set X is generated using a ”canonical reactor” with the same chemical

composition of the system to be simulated. Obviously, the data-sets should be

simple to compute, in order to generate combustion models of tailored-accuracy with

affordable computational resources. In the present work, a one-dimensional premixed

flame is used; however, for nonpremixed systems, steady laminar flamelets [66] with

varying strain-rate could be used.

• A principal component analysis is then performed to identify the manifold. The B

matrix is computed and the subset of q retained variables is identified. Note that

if the local formulation is used, one has to identify the clusters and compute their

corresponding B matrices.

Then the database is used in the flow solver:

• Transport equations are solved for the q nonconserved scalars.

• At the end of each temporal (or pseudo-temporal) iteration, the missing (Q − q)

variables are reconstructed using the B matrix (Equation 3.11) at every grid point.

1In the context of nonpremixed flames, it was shown that the conditioning variable corresponded quite
well to mixture fraction [61]

2For nonpremixed flames, mixture fraction would represent an optimal choice, as indicated in [61].
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• All the species are then available for the next temporal (or pseudo temporal) iteration.

The diffusion and source terms appearing in the conservation equations of the q

retained variables are computed using a CHEMKIN-like [36] formalism for all the

species (retained and recovered).

The B matrix and the coefficients used to center and scale the data are constants3.

Therefore, this algorithm requires only one matrix-vector multiplication. The computational

cost to recover nontransported species using the MG-PCA technique is therefore very low.

3.4 Challenges of the MG-PCA model
Before applying the MG-PCA model to actual computations, several issues must be

carefully addressed:

• A common issue in PCA-based models is the need for an empirical data-set which

represents the system of interest. The data-set also needs to be easy to compute (e.g.

1D flame solutions).

• The accuracy of the model will obviously rely on the accuracy of the reconstruction of

the missing variables. Since the method relies on the matrix B for the reconstruction

of the nontransported variables, its computation must be as accurate as possible. The

use of Equation 3.10 does not provide satisfactory results, as it will be shown below,

and an alternative optimal estimation of B must be provided for the success of the

method.

• The selection of the transported variables is crucial, requiring that the most informa-

tive variables in the data-sets be selected. Moreover, the number of transported

variables, q, must be appropriately selected to ensure that the source terms are

accurately reconstructed for the reduced set of scalar transport equations

• The scaling and centering coefficients (see Equation 3.6) have a great impact on the

accuracy of the method and they must be chosen with care.

3.4.1 Reference data-set

In order to address the issues presented above, an a priori demonstration is now pro-

vided to cover the aforementioned aspects using a DNS flame-turbulence data-set. The

3Note that if local-PCA is used, the coefficient for centering and scaling along with the B matrix are
dependent on the cluster which must first be identified [16].
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compressible flow solver YWC, developed at the EM2C Laboratory by Coussement et al.

[15, 17], is used to generated this data-set. The 2D flame turbulence field is initialized

using a 1D flame extended along the y-axis and by super-imposing a turbulence field. The

turbulence field is initialized using the Passot-Poquet spectrum [64] with Ret = 1423 giving

a Kolmogorov length scale of lk = 8.2 · 10−6. The initial turbulence field is shown in Figure

3.1. The computational domain extends are 8 · 10−3m in both x and y direction, and mesh

spacing is 1.25 ·10−6m. The fuel considered is syngas (CO/H2 mixture, 50/50 molar basis),

the oxidizer is air, and the equivalence ratio is φ = 0.88. Boundary conditions consist in a

inlet at x = xmin which imposes the turbulent field generated with a convection velocity of

4m/s along the x-axis. At x = xmax, an outlet boundary is imposed with p = 101, 325 Pa.

Remaining boundary conditions ensure periodicity along the y-axis. The chemical scheme

is the one from Davis et al. [20] including 12 species (Ns = 12): N2, O2, H2, H2O,

H2O2, CO, CO2, O, H, OH, HO2, and HCO. Thermo-chemical and transport properties

are computed using a CHEMKIN-like formalism [36]. The DNS field used to perform the

analysis below is taken at t = 7.118 10−4 s. Mass fraction of H2O (YH2O) and HCO (YHCO)

are given in Figure 3.2.

It is important to note that differential diffusion is used. With Ns = 12 and only a

constraint on mass conservation (here energy and elemental mass fractions are not constant),

there are Ns degrees of freedom, because pressure is also constant (p = patm). Therefore, a

true reduction of the state-space dimensionality is achieved if the proposed methods allow

one to transport less than q = 12 variables (if energy is included in the PCA analysis), while

maintaining accuracy.

3.4.2 Computation of the B matrix

The computation of the B matrix using Equation 3.10 is not optimal. To illustrate this,

we revisit the definition of the scores computed using Equation 3.7:

�Zq = X(q)
�
A(q)Tq

�−1
.

Depending on the number of retained principal variables contributing to the definition of

A(q)q, the approximated scores (�Zq) can result in a weak representation of the state-space.

This constrains the achievable reduction when Equation 3.8 is employed. However, being

that the MG-PCA model is built a priori, this limitation can be overcome by considering

the real q principal component scores, obtained using the first q components of Equation

3.3:

Zq = XAq. (3.12)
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Figure 3.1: Initial turbulence field for the 2D DNS, x-component velocity

Figure 3.2: YH2O, YHCO field for the 2D DNS, t = 7.11799 10−4 s.
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Here all of the state-space variables inX as well as all of the weights in the first q eigenvectors

are used instead of a subset. Thus, by using Zq instead of �Zq, there should be a general

decrease in reconstruction error in the nontransported species. In order to reflect this

change, the calculation of B is performed using:

B = X(q)+ Zq A
T
q (3.13)

which represents the solution in the least squares sense to the system given by Equation

3.12. The matrix X(q)+ is the pseudo inverse of X(q) of size q × n, which is given by

X(q)+ =
�
X(q)T X(q)

�−1
X(q)T . (3.14)

The two methods for the calculation of B are compared in Figure 3.3 with reference to

the 2D DNS data-set. The approximation error is reported using a normalized root mean

square distance identical to that used by Pope [72], defined as:

nrmsj =
1

std(φij)




�

1

N

n�

i=1

(φij − �φij

�2



1/2

. (3.15)

The nrms error statistic for the nontransported state variables are calculated, and the

largest nrms value is plotted. The figure illustrates the improvement in accuracy.

3.4.3 Selection of the transported variables

In the current approach, the method used to select the q transported variables which are

transported relies on the principal variables concept [30]. Principal components (PC) are

linear combinations of all the variables defining the data-set. However, these variables are

not necessarily equally important to the formation of the PCs. Some of the variables may

be critical whereas others may be redundant. Motivated by this fact, one can try linking the

PC back to a subset of the original variables, which satisfy one or more optimal properties

of PCA, such as the maximization of the variance of the original data X. A number of

methods exist for selecting a subset of q original variables. The following methods are

considered here:

• B2 backward and B4 forward methods [32]. Variables are determined by analyzing

the principal component weights (Aq). The B2 backward method removes variables

associated to the PC with the smallest eigenvalues. In contrast, the B4 forward method

identifies variables which are associated with the PC with the largest eigenvalues.
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• M2 backward method [39]. Variables are determined by comparing Z (Equation 3.3)

with an approximate Z̃. Here Z̃ is constructed from a subset of the original variables,

and the comparison is made to the original scores using a Procrustes analysis. Upon

selection of appropriate variables, the underlying structure of the data is preserved

and the PVs are identified as the subset of variables which have been used for the

approximation.

• McCabe criteria [48]. McCabe identified that the PCs satisfy a certain number of

optimality criterion. The criterion are based on partial co-variance matrices calculated

by selecting subsets of variables. In the current study, the MC1 and MC2 criterion are

used, which rely on the determinant (MC1 ) or trace (MC2 ) of the partial co-variance

matrices.

• Principal features [13]. Variables are identified by analyzing the correlation between

variable weights in Aq. Variables are grouped according to their correlation, and

the k-means algorithm [84] is used to extract a given number of variables from each

subset, thus providing a representation of each of the groups.

Next, the influence of the different PV approaches on the reconstruction of the state variables

is assessed and discussed. A useful metric for this task is one that describes the amount

of variance lost by the selection of q (the number of transported variables) [30]. One can

partition the variables into 2 groups, one for retained variables and the second for the

remaining variables. The sample co-variance matrix can then be calculated:

S =

�
S11 S12

S21 S22

�
(3.16)

and the partial co-variance can then be given as:

S22,1 = S22 − S21S
−1
11 S12. (3.17)

Taking the trace of the partial co-variance gives a quantitative value for the amount of

variance lost (λ) for a given number of principal variables:

λ = trace(S22,1(q))
trace(S) for q = 1, 2, . . . , Q . (3.18)

For example, if q = 0 then λ = 1, meaning all variance is lost, or when q = Q then λ = 0,

which means all of the original variance in the system is explained.

Figure 3.4 shows the resultant percentage of lost variance calculated from Equation

3.18, for the various PV selection methods. The figure shows that for q = 6 only 1% of the
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Figure 3.4: Lost variance (y-axis) while adding principal variables (x-axis). The trace is
given for the various PV selection methods highlighted in Section 3.4. Scaling: standard
deviation
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variance is lost while using the B4, B2, MC1, and MC2 methods; the PF, and M2 methods

do not achieve such a degree of lost variance until q = 7. It is also interesting to note that

several of the PV selection methods (M2, and PF) can indeed lose variance upon addition

of PVs. The B2, MC1, and MC2, method appear to show a consistent increase in explained

variance while adding principal variables. Table 3.1 shows with the acronym pv for the

principal variables selected by the different approaches, while using auto scaling (see Section

3.4.4), and q = 7. It can be observed that different sets of PV are identified, depending on

the selection method. However, a common logic seems to hold for all cases: all methods

tend to select the majority of the principal variables among the radical species (HCO, HO2,

OH, and H2O2) which identify ignition or reaction regions, whereas temperature (which is

forced to be a principal variable) and one other major variable are in general sufficient for

capturing slower changes in the system. The first benchmark among the sets of PV must

be carried out with respect to their ability of accurately reproducing the nontransported

state-space variables. Table 3.1 lists the nrms values for all the state variables reconstructed

using MG-PCA and the different PV selection approaches. It can be observed that almost

all methods provide a good approximation of the state-space, with an exception for M2 and

PF methods, which cannot properly recover some of the radical species (OH, H, HO2).

This can be explained by the fact that the methods that perform well select only one of

the major species while keeping several radical species, which are usually associated with

increased nonlinearity. It is interesting to note that the forward and backward methods

(B4 and B2) both select either of the major reaction products H2O and CO2, whereas the

McCabe methods keep either H2O or O2. The PV and M2 methods performed the worst

yielding nrms values greater than or equal to 10−1 for two or more of the variables . These

methods identified two or three major species as PVs, thus decreasing the models ability to

represent the minor species.

3.4.4 Centering and scaling

In order to optimally choose the scaling and centering coefficient, several methods will

be investigated. Before presenting the methods, it is useful to rewrite Equation 3.6 in a

scalar form for the sake of clarity:

xsj =
xj−xj

dj
for j = 1, . . . , Q. (3.19)

The centering and scaling coefficients, xj and dj are stored to be used in the prediction

step. The following scaling methods are adopted in the present work [63]:

• auto scaling, which adopts the standard deviation as the scaling factor, dj = sj ;
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Table 3.1: nrms distance for the reconstructed state-space with q = 7 while testing various
PV selection methods. The acronym pv indicates if the variable is a principal variable.
Scaling method: auto scaling.

B4 B2 M2 MC1 MC2 PF

T 1 pv pv pv pv pv pv
O2 2 10−1.9 10−2.1 pv 10−1.9 pv pv
H2 3 10−1.3 10−1.3 pv 10−1.3 10−1.4 10−1.4

H2O 4 pv 10−1.9 10−1.8 pv 10−1.9 pv
H2O2 5 pv pv pv pv pv pv
CO 6 10−1.8 10−1.9 10−2.0 10−1.8 10−1.8 10−2.1

CO2 7 10−1.7 pv pv 10−1.7 10−1.7 10−2.0

O 8 10−1.1 10−1.1 pv 10−1.1 10−1.1 pv
H 9 pv pv 10−0.9 pv pv 10−1.0

OH 10 pv pv 10−0.9 pv pv 10−1.0

HO2 11 pv pv 10−0.3 pv pv pv
HCO 12 pv pv pv pv pv pv
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• range scaling, which adopts the difference between the minimum and maximum vari-

able value as the scaling factor, dj = max (xj)−min (xj);

• pareto scaling [54], which adopts the square root of the standard deviation as the

scaling factor, dj =
√
sj ;

• vast (variable stability) scaling [37], which adopts the product between the standard

deviation and the coefficient of variation (sj/xj) as the scaling factor, dj = s2j/xj ;

• level scaling, which adopts the mean value as the scaling factor, dj =
1
N

�N
i=1 xj .

The B2 selection method presented some of the most promising results for the selection of

PVs; accordingly, an analysis is now given on the effects of scaling given that the transported

variables are selected using the B2 method. Table 3.2 shows the effect of scaling on the

reconstruction of the state variables for the DNS case. It is clear from Table 3.2 that the

scaling methods have a significant effect on the ability to reconstruct the nontransported

variables. The scaling results for the DNS case suggest that auto, range, and pareto scaling

provide the most accurate results.

While analyzing the trace using Equation 3.18, Figure 3.5 shows nearly consistent decay

in energy upon addition of variables over the various scaling methods, except for pareto

scaling. This is due to the very large weight given by such a scaling to temperature [63]

with respect to other variables. Thus, the scaled data (under pareto) attribute almost all of

the variance in the system to temperature. Temperature is the first PV so the lost variance

description is consistent with what is observed in Figure 3.5.

3.4.5 Comparison of the PC-score approach, MG-PCA,
and MG-L-PCA

Now a comparison of the three PCA-based modelling techniques is made a priori on the

2D DNS field in order to assess their performances. The classic PCA approach presented by

Sutherland and Parente [85] has the advantage of not requiring the selection of the systems

principal variables, and simply transports the Zq of the system (Equation 3.12). This gives

an equal distribution of error among all of the state-variables. Table 3.3 shows nrms and

R2 error (R2
j = 1−

�n
i=1(φij − �φij)2/

�n
i=1(φij −φj)

2) statistics for the PC-score approach

and the MG-PCA approach while attempting to reconstruct the state-space variables with

q = 7. MG-PCA has difficulty in reconstructing the O and H2 radicals, whereas the

PC-score reconstruction is much better overall for the state variables. Table 3.4 lists the R2

and nrms values for the species source terms, which are calculated using the approximate
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Table 3.2: nrms distance for the reconstructed state-space using q = 7 variables, while testing

various scaling methods. S = auto, R = range, P=pareto, V=vast, L=level.

State variables

S R P V L

T pv pv pv pv pv
O2 10−2.1 10−2.1 10−2.8 pv 10−2.0

H2 10−1.3 10−1.4 pv 10−1.4 10−1.3

H2O 10−1.9 10−1.8 pv 10−1.9 10−1.9

H2O2 pv pv 10−0.3 pv pv
CO 10−1.9 10−2.1 10−2.4 10−1.9 10−1.9

CO2 pv pv pv 10−1.8 pv
O 10−1.1 10−1.1 pv 10−1.1 pv
H pv pv 10−1.0 pv pv
OH pv pv pv pv 10−1.1

HO2 pv pv pv pv pv
HCO pv pv 10−0.4 pv pv
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Figure 3.5: Lost variance (y-axis) while adding principal variables (x-axis). The trace is
given for the various scaling methods highlighted in Section 3.4. PV selection: B2.
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Table 3.3: nrms distance and R2 statistics for the reconstructed state-space with q = 7. Scaling:

standard deviation. PV selection: B2.

MG-PCA

Variable nrms R2

T pv pv
O2 10−2.1 1
H2 10−1.3 0.998
H2O 10−1.9 1
H2O2 pv pv
CO 10−1.9 1
CO2 pv pv
O 10−1.1 0.994
H pv pv
OH pv pv
HO2 pv pv
HCO pv pv

PC-Score

Variable nrms R2

O2 10−2.0 1
H2 10−1.5 0.999
H2O 10−1.7 1
H2O2 10−2.6 1
CO 10−1.8 1
CO2 10−1.8 1
O 10−1.7 1
H 10−2.0 1
OH 10−1.8 1
HO2 10−3.5 1
HCO 10−2.2 1

Table 3.4: nrms distance and R2 statistics for the reconstructed source terms with q = 7.

Scaling: standard deviation. PV selection: B2.

MG-PCA

PV nrms R2

T 10−0.4 0.87
H2O2 10−0.8 0.98
CO2 10−1.3 0.99
H 10−0.2 0.61
OH 10−0.9 0.98
HO2 100.3 ¡ 0
HCO 10−0.5 0.90

PC-Score

PC nrms R2

PC 1 10−0.3 0.72
PC 2 100.7 ¡ 0
PC 3 100.4 ¡ 0
PC 4 10−0.2 0.65
PC 5 101.3 ¡ 0
PC 6 10−0.3 0.80
PC 7 100.3 ¡ 0
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state-space while retaining 7 PVs (MG-PCA) or PCs (PC-score) of the co-variance matrix,

i.e. q = 7. The source terms for the PCs
�
sz =

RiAz
γi

�
are also shown. Even though the

PC-score state-space analysis shows an accurate reconstruction of all state-space variables

(R2 of nearly 1 for all of the variables), the error statistics for the source terms show very

inaccurate approximations. This condition is complicated by the fact that in the PC-score

approach, all the source terms are needed and they should all be computed with great

precision. However, this requirement can never be fulfilled as a reconstruction error is always

present, without any distinction between the transported and nontransported variables. The

PC-score approach has a potential for higher compression, because the variance explained

by a linear combination of all of the variables is greater than that provided by a subset

of optimal variables. However, without a method to resolve the error propagation in the

source terms, the approach can be inaccurate.

3.4.6 MG-L-PCA

The initial analysis of the premixed syngas case indicates that MG-PCA can provide

the required precision if q = 7. Now the MG-L-PCA method is tested against MG-PCA to

investigate the potential of the local PCA formulation. By clustering the data according

to temperature, the MG-L-PCA method may now be used to attempt to create a better

local basis for the reconstruction of the nontransported variables. Figure 3.6 provides a

visualization of the error produced while varying q (x-axis) and c, the number of clusters

(y-axis). The gray scale in the figure represents the lowest R2 statistic for the reconstructed

state-space variables. The analysis confirms the earlier findings for MG-PCA, with a

minimum R2 of 0.994 while using q = 7 and c = 1 (this is in fact the MG-PCA model). By

adding clusters, one can better identify the local B matrix and get better reconstruction of

the state-space.

Figure 3.7 also confirms that a higher value of q and c are needed to capture the source

term with respect to the state-space, due to the error propagation in the nonlinear source

terms. Optimization figures, such as Figures 3.6 and 3.7, are very useful for deciding the

parameters of the reduced model to be implemented in a CFD solver, as it provides the

minimum number of cluster needed to achieve a desired reduction.

From the above analysis, it can be concluded that the application of MG-L-PCA has the

potential of providing accurate results while achieving a significant reduction state-space

variables.
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Figure 3.6: Minimum R2 statistic for the state variables as a function of the number of
retained variables (x-axis) and clusters (y-axis). Scaling: pareto. Fuel: Syngas.
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Syngas
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3.5 Results
The present section shows actual computations using the MG-PCA and MG-L-PCA

methods. The models employ the new definition of B (Equation 3.13), and a more com-

plicated chemistry, i.e. syngas, than in Coussement et al. [16]. First, an auto-ignition

(0D) case is considered with a new technique for cluster identification in the framework of

MG-L-PCA. Then, the 2D DNS data-set used in the a priori analysis is computed, training

the model on a 1D manifold obtained from a laminar premixed flame calculation.

3.5.1 Auto-ignition delay time

The auto-ignition delay time is a rigorous test that demonstrates the ability of a model

or a chemical kinetics mechanism to capture complex physical characteristic of the ignition

process. The auto-ignition delay time is often tested at various temperatures and pressures,

in order to asses the robustness of the model being applied. Accurate prediction of the

auto-ignition delay time is particularly important in systems with preheated, and premixed

mixtures, such as gas turbines. In the current study, a simplified case is examined with the

following assumptions: constant pressure, homogeneous, stagnant premixed fuel, mixture

temperature above the auto-ignition temperature of the fuel, and adiabatic conditions. The

process is modeled using the differential equations for the chemical species in the system,

and the temperature:
dYi
dt

=
1

ρ
Ws,iRi (3.20)

dT

dt
=

1

ρcP,mix

�
−

N�

i=1

hiWs,iRi

�
(3.21)

where Yi are the species mass fractions, Ws,i is the ith species molecular weight, Ri is the

molar source term for the ith species, hi is the molar enthalpy for species i, and cP,mix is the

heat capacity of the mixture. The equations are solved using an in-house implementation

of the batch reactor.

In contrast with the DNS case, which exhibits differential diffusion, the degrees of

freedom in this case are different. The auto-ignition cases solve 13 transport equations

and are constrained by the elemental balances (C,H,O), conservation of mass, and energy,

leaving 8 degrees of freedom.

As described in Section 3.4, a data-set is required before calculation in order to determine

the number of variables (q) required for a desired accuracy, the variables to transport, and

the matrix/matrices B (MG-PCA/MG-L-PCA). Initially, the full system of equations is

calculated at various running conditions in order to generate the data-sets required for the
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a priori construction of the model. The number of transported variables q, the transported

variables, and the B matrix/matrices are calculated from each case involving different initial

conditions. In the current study, the B2 selection method is used with pareto scaling.

The MG-PCA method shows very good accuracy when using 7 (13% reduction) of the

original 12 variables (see Figure 3.8b), which is consistent with the results found in the

a priori analysis. Minor differences are observed at smaller initial temperatures where

the ignition event takes much longer. It is observed that with 6 transported variables

that a considerable loss in accuracy occurs over the entire range of pressures and initial

temperatures (Figure 3.8a).

While using the MG-L-PCA method, proper clustering of the data is crucial in order to

achieve an accurate local reconstruction of the data. As temperature is directly transported

in this system, it is an optimal variable for identifying clusters, and at run time providing

the local B matrix which gives the most accurate reconstruction of the local state-space.

As one would suspect, problems may arise near cluster boundaries or when a given cluster

contains a highly nonlinear peak from one of the transported radical species. Because of

this, a clustering algorithm was developed which looks at the a priori data and finds local

extrema in the radical species profiles, and creates new cluster boundaries at these locations

in order to increase the accuracy and provide smoother transition between clusters.

In reference to Figure 3.9b, the results for MG-L-PCA show a much better approximation

while transporting as few as 5 variables (38% reduction). However, when moving to 4 vari-

ables (50% reduction), reasonable accuracy is observed with moderate initial temperatures,

with discrepancies at both higher and lower initial temperatures due to the error from the

model (see Figure 3.9a).

3.5.2 Flame-turbulence interaction

The present section reports the result of a DNS calculation of a flame-turbulence inter-

action case using the MG-PCA method. Numerical setup is exactly the same as in Section

3.4.1 and is not recalled. The simulation is performed using q = 8 (33% reduction) in

order to reconstruct quasi-exactly the missing variables R2 > 0.9999 for all variables, with

the original number of degree of freedom in the system as 12, since differential diffusion

is considered and therefore, a reduction of 4 degrees of freedom is achieved. Following

the conclusions of the previous sections, pareto scaling is used in combination with the B2

selection method, giving the following variables to be transported inside the solver : T ,

YH2, YH2O, YCO2, YO, YOH , YHO2, YHCO.



68

0.7 0.75 0.8 0.85 0.9 0.95 1
10

−3

10
−2

10
−1

10
0

10
1

1000/T [1/K]

A
u

to
−

ig
n

it
io

n
 d

e
la

y
 t

im
e
 [

m
s
]

 

 
1 atm (MG−PCA)
2 atm (MG−PCA)
3 atm (MG−PCA)
1 atm
2 atm 
3 atm

(a)

0.7 0.75 0.8 0.85 0.9 0.95 1
10

−3

10
−2

10
−1

10
0

10
1

1000/T [1/K]

A
u

to
−

ig
n

it
io

n
 d

e
la

y
 t

im
e
 [

m
s
]

 

 
1 atm (MG−PCA)
2 atm (MG−PCA)
3 atm (MG−PCA)
1 atm
2 atm
3 atm

(b)

Figure 3.8: Auto-ignition delay time using MG-PCA as a function of temperature for
various system pressures, while q = 6 (a) or q = 7 (b).
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Figure 3.9: Auto-ignition delay time using MG-L-PCA as a function of temperature for
various system pressures, while using q = 4 (a) or q = 5 (b).
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It should be stressed that the database used to train the model is the 1D laminar flame

which was extended along the y-axis to initialize the computation (see Section 3.4.1). This

1D laminar flame is a syngas-air flame at φ = 0.88; syngas and air have the same composition

as in the 2D DNS. Grid consists in 2501 points with a spacing of 1.25 ·10−5m. Inlet velocity

and temperature are set to 0.2m/s and 300K, respectively, and pressure is set to 101325Pa.

During the computation, portions of the state-space not included in the original manifold

are accessed due to the ability of the PCs to account for the flame-turbulence interactions.

Moreover, only one flame was necessary to train the model and it provided the transported

variables, and calculation of the scaling and centering coefficients for the full calculation.

Comparison of YH2O and YHCO fields are given in Figure 3.10, which shows a very good

agreement between the solutions. Figures 3.11 and 3.12 show scatter plots of YCO, YH ,

YH2O2, YHO2 vs temperature for DNS and MG-PCA computations. Again, a very good

agreement with DNS is observed. It appears that the model can naturally account for the

turbulence-chemistry interactions of the system, thanks to the higher number of degrees of

freedom available with respect to other methods such as ILDM or FPI and the appropriate

selection for the key variables to be transported in the code. The fact that a single 1D

laminar flame is sufficient to train the model for more complex flame-turbulence simulation

is also appealing, as it proves that the applicability of the model is not limited to the system

used to generate the database. Indeed, for a higher turbulence intensity and eddy size of

the same order of magnitude of the flame, it is expected that a single flame might not be

sufficient and that the effect of strain should be included in the manifold generation process.

3.6 Conclusions
PCA has demonstrated capability in identifying the low-dimensional manifold which

can accurately describe a chemically-reacting system with a reduced number of optimal

parameters. The MG-PCA approach provides a realistic application of PCA for combustion

systems through the use of principal variables. A comparison with the classic PC-score

approach indicated the strong potential of MG-PCA for the development of reduced-order

combustion models of tailored accuracy. The present paper provides an easy and effective

tool for the development of reduced models, whose implementation requires only minor

modifications of existing CFD codes, and for which the accuracy of the model can be

evaluated and tailored a priori. The main finding of the present paper can be summarized

as follows:
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DNS MG-PCA

Figure 3.10: Fields of YH2O (top) and YHCO (bottom) using DNS (left) and MG-PCA
(right) t = 7.11799 10−4 s.
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DNS MG-PCA

Figure 3.11: Scatter plot of (from top to bottom) YCO, YH vs temperature, using DNS
(left) and MG-PCA (right) t = 7.11799 10−4 s.
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DNS MG-PCA

Figure 3.12: Scatter plot of (from top to bottom) YH2O2, YHO2 vs temperature, using
DNS (left) and MG-PCA (right) t = 7.11799 10−4 s.
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• The calculation of the B matrix (Equation 3.13) using the actual Zq gives the MG-

PCA methods an increased accuracy in reconstruction of nontransported state-space

variables.

• The selection of the transported variables using the various principal variable selec-

tion methods greatly affects the reliability and accuracy of MG-PCA models, thus

justifying the need for optimal selection techniques, as the ones outlined here. As far

as the PV selection techniques are concerned, the B2 method was found to be the

most robust and the one providing the best approximation of the state-space.

• Scaling methods play a major role in the identification of the optimal projection matrix

Aq and subsets of transported variables. In particular, it was shown that scaling

methods other than the standard auto-scaling can also provide increased accuracy in

reproducing state-space variables and principal variable source terms. Among them,

auto, range, and pareto scaling provided the better results.

• The global MG-PCA approach can be effectively employed for simple fuels such as

hydrogen [16], or slightly more complex fuels like syngas under unity Lewis number

conditions. However, for larger mechanisms such as syngas or methane, and under

differential diffusion conditions, the MG-L-PCA formulation must be employed, in

order to achieve a significant reduction and to capture the nonlinear features of the

actual manifold underlying the chemically reacting system.

• The flame-turbulence interaction computation demonstrated the ability of the MG-

PCA method to perform an actual computation, it also demonstrated the good

accuracy of the method. Moreover, the proposed model is not bounded to the original

manifold used to train the model. Therefore, it naturally handles turbulence which is

a clear advantage.

Future work will attempt to further automate the manifold generation procedure within

CFD codes and to validate the overall approach on a broad range of combustion systems.

Also, the coupling of the proposed MG-L-PCA clustering technique with a complete flow

solver which should allow one to reduce arbitrarily the number of transported variables is

considered.
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4.1 Abstract
Modelling the physics of combustion systems remains a challenge due to a large range

of temporal and physical scales which are important in these systems. Detailed chemical

kinetic mechanisms are used to describe the chemistry involved in the combustion process

yielding highly coupled partial differential equations for each of the chemical species used

in the mechanism. Recently, Principal Components Analysis (PCA) has shown promise

in its ability to identify a low-dimensional manifold describing the reacting system. A

PC-based model has been developed which may be well-suited for combustion problems;

however, several challenging aspects of the model must be addressed. In this paper,

the parameterization of state-space variables and PC-transport equation source terms are

investigated. The ability to achieve highly accurate mapping through various nonlinear

regression methods is shown. In addition, the effect of PCA-scaling on the ability to

regress the surface is investigated. Finally, the present work demonstrates the capabilities

of the model by solving a reduced system represented by several PC-transport equations

for a perfectly stirred reactor (PSR) configuration and within a CFD solver simulating a

synthesis-gas jet.
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4.2 Introduction
The ability to accurately model a turbulent combustion system remains challenging

due to the complex nature of combustion systems. A simple fuel such as CH4 has been

accurately described using 53 species and 325 chemical reactions [81]. More complex

fuels require increasingly complex chemical mechanisms. Each resolved chemical species

requires a conservation equation which is a coupled, highly nonlinear partial differential

equation. Such systems are only possible to solve under very limited situations at this

time due to computational costs. This issue leads to the need of a reduced model which

can adequately describe the chemical reactions. Many methods attempt to reduce the

complexity of the mechanism by splitting the system into slow and fast variables, using

equilibrium assumptions for fast chemical processes, and occupying the computational

resources on the more pertinent evolution of species within the reacting system [23, 34].

Indeed, in these complex combustion reaction mechanisms many of the species evolve at

time-scales much smaller than the time-scales of interest, allowing for decoupling of fast

and slow processes while maintaining accuracy. Low-dimensional manifolds exist in these

systems which can describe the governing characteristics of the flames. Several models take

advantage of this, including models such as the steady laminar flamelet model (SLFM)

[66, 67, 70], flamelet-generated manifolds (FGM) [56, 89], or the flame prolongation of ildm

(FPI) [27, 21, 22] to name a few. As a fundamental example, the steady laminar flamelet

model uses the mixture fraction and mixture fraction variance to describe the flame as an

ensemble of steady laminar diffusion flames undergoing various strain rates. In many cases,

this provides a good representation of the entire system with a reduced number of variables.

Recently, principal component analysis (PCA) has been investigated for its use in

combustion modelling. Several advantages of PCA include: its ability to identify orthogonal

variables which are the best linear representation of the system; its ability to reduce in

dimensionality requiring fewer coordinates; and the ability to do the analysis on canonical

systems, such as the counter diffusion flame or empirical data-sets containing highly complex

turbulent chemistry interaction. Parente et al. [61, 60] used PCA to identify the low-

dimensional manifold in one-dimensional turbulence data, and experimental data. Biglari

and Sutherland [5] and Pope [72] enhanced the capability of the PCA concept by combining

the analysis with nonlinear regression, allowing a nonlinear mapping between state-space

variables and the linear PCA basis. Mirgolbabaei and Echekki [50] extended this concept

using artificial neural networks for the nonlinear mapping. In addition, several combustion

models have been proposed based on the concepts from PCA. Sutherland and Parente [85]
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derived transport equations for the principal components (PCs), and discussed the feasibility

of a model where the PCs are used directly to construct state-space variables. Biglari and

Sutherland [5] extended the concept of transporting the PCs by suggesting the nonlinear

regression in order to increase the accuracy and reducibility of the model. Coussement et al.

[16] and other groups [91] proposed transporting a reduced set of state-space variables and

used the PC basis for reconstructing the variables which are not represented. Najafi-Yazdi

et al. [52] used PCA to identify optimal progress variables to use the flamelet-generated

manifold framework.

The present work seeks to advance the understanding and application of the PC-transport

approach of Sutherland and Parente[85, 5] by first analyzing the effect of several scaling

methods on the PC basis, and the resultant ability to regress the nonlinear state-space

variables to the PC basis. Next, an analysis of nonlinear regression approaches is per-

formed showing the advantages and disadvantages of the regression methods that have

been suggested for the regression of the PC basis. Finally, an unsteady perfectly stirred

reactor (PSR) calculation is shown using the PC-transport approach, and this is followed

with a two-dimensional demonstration of the approach within a CFD solver.

Novel contributions of this work include a detailed comparison of regression methods

for capturing the PC basis, including a discussion on the degree of nonlinearity of the

state-space being represented by the PC basis, and finally, the first run-time demonstrations

of the PC-transport approach within a numerical solver while using nonlinear regression.

To the authors knowledge, all previous analyses of the original PC-transport concept using

nonlinear regression have been done through a priori analysis on various data-sets [85, 50].

4.3 Data-sets
PCA-based models require a hi-fidelity data-set in order to derive the PC-basis, and fully

parameterize the system. In general, a canonical reactor configuration which is appropriate

for the system is used to generate a training data-set, which is then used in the PC analysis

(see Section 4.4 for more detail) in order to construct the model. In the discussion that

follows, several data-sets have been selected:

- A one-dimensional turbulence (ODT) data-set is used in Section 4.5.1 for an a priori

analysis of the PC-transport model. The simulation is of a nonpremixed synthesis/air

jet. For brevity, full detail concerning the simulation can be found in [29, 73]. The

detailed reaction scheme for syngas [20] was used, the mechanism contains 11 chemical

species (H2, O2, O, OH, H2O, H, HO2, CO, CO2, HCO, N2), and uses 21 chemical
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reactions. The simulation is initialized with a temperature of 500K, with air as the

oxidizer (0.7241 N2 and 0.2759 O2 by mass) and an N2 diluted fuel stream containing

0.0078 H2, 0.5511 CO, and 0.4411 N2 by mass. The ODT realizations are saved

on a uniform grid of 672 grid points evenly spaced over a 0.01 m domain. The

velocity field is initialized with a Reynolds numbers of 2500. The ODT data-set is

particularly interesting because of the turbulence/chemistry interaction observed in

the data, including physical effects such as extinction and re-ignition. In the analysis

that follows, the capability of PCA in modelling these data is assessed.

- The unsteady solution to a perfectly stirred reactor (PSR) burning a stoichiometric

mixture of syngas is used in Section 4.5.2.1. The data-set is generated by setting the

inlet condition at 300K with a stoichiometric mixture of fuel and air, the vessel is

initialized at equilibrium conditions (constant pressure and enthalpy), and multiple

simulations are performed by varying the residence time in the vessel. All of the

unsteady data for the various simulations is used collectively for the PCA analysis.

The data-set is interesting in particular because it is trivial to solve, and does not

contain any of the turbulent interactions of the previous data-set, yielding a smoother

underlying manifold.

- Finally a laminar ODT solution is generated in order to give an ‘optimal’ manifold for

the demonstration of the model within a CFD algorithm. The solution is optimal in

the sense that absence of turbulent fluctuations leaves a smooth manifold which is eas-

ily regressed, when testing the model with nonlinear regression. The ODT simulation

is performed with the same kinetic mechanism and diffusion model (mixture-average

diffusion) of the ODT simulations discusses previously. The ODT code solves the

laminar problem by suppressing the creation of eddies in the system, and allowing

the system to diffuse. The inlet boundary condition is set by having the right half of

the domain an inlet of air (0.7241 N2 and 0.2759 O2 by mass) at 1 m/s and 300K

and the left half as the fuel (0.0078 H2, 0.5511 CO, and 0.4411 N2 by mass) at 300

K with two different velocities. There is a transitional region between the fuel and

oxidizer inlet where mixture fraction transitions smoothly from 1 to 0. The simulation

is initialized with the solution to a highly strained counter-diffusion flame. The fuel

stream velocities are initialized with either a higher velocity or a lower velocity, which

tend to push the solution towards equilibrium or extinction, respectively.
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Throughout the paper the coefficient of determination (R2) and the normalized root mean

square error (nrms error) are used as a means of quantifying the error produced through

the application of the model:

R2 =

N�
i=1

(xpredicted,i − x̄)2

N�
i=1

(xi − x̄)2
(4.1)

nrms error =

�
N�
i=1

(xpredicted,i − xi)2

max(σ(xpredicted, x))
(4.2)

4.4 Theory
In this section, the basic concepts to PCA, the scaling used in PCA, and the various

regression methods are presented.

4.4.1 Principal component analysis

A data-set consisting of n observations and Q independent variables is organized as an

n × Q matrix (X). The data X is centered to zero by its corresponding means X̄, and

scaled by the diagonal matrix, D, containing the scaling value for each of the k variables:

Xs = (X− X̄)D−1 (4.3)

In a PC analysis, the principal components (Z) are identified by performing an eigenvalue

decomposition of the covariance matrix of Xs:

1

Q− 1
XsTXs = A−1LA (4.4)

The eigenvector matrix A (referred to here as a ‘basis matrix’) is then used to project the

original state-space into PC space:

Z = XsA (4.5)

Now given a subset of the basis matrixA, denoted asAq and applying the previous equation,

an approximation of the original centered and scaled state-space can be made using the

following:

Xs ≈ ZqA
T
q . (4.6)

In the PC analysis, the largest eigenvalues correspond to the first columns of A. This

means the largest amount of variance in the original variables is described by the first PCs.
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Accordingly, when one truncates the basis matrix (Aq), the resultant approximation from

Equation 4.6 may yield very accurate results, while representing the system with fewer

variables.

In the work of Sutherland and Parente [85], a combustion model is proposed where

conservation equations for the PCs are derived from the general species transport equation

[71]:
∂

∂t
(ρYk) +

∂

∂xi
(ρuiYk) =

∂

∂xi

�
ρDk

∂Yk
∂xi

�
+Rk (4.7)

One can easily derive the transport equations for the PCs (Zq) given the basis matrix A,

the scaling vector dk, being the diagonal components of D, and the centering vector Ȳk:

∂

∂t
(ρZq) +

∂

∂xi
(ρuiZq) =

∂

∂xi

�
DZq

∂

∂xi
(Zq)

�
+ sZq (4.8)

sZq=
1

ρ

Q�

k=1

Rk

dk
Akq (4.9)

According to the proposed formulation, one can theoretically utilize PCA with its inherent

advantages. These advantages include: the ability to represent the system with a reduced

number of variables; the option to include a predetermined amount of reconstruction error

(dependent on q, the number of retained PCs), and possibly a reduction in stiffness if the

selected PCs are highly weighted with major species.

The scaling matrix D from Equation 4.3 plays a crucial role in PCA. Without scaling, it

may be difficult to compute the correlation structure of variables with different magnitudes.

The following scaling methods where adopted for this study [33, 63]:

- auto scaling (std), uses the standard deviation sk. Auto scaling leaves all columns of

X̃ with a standard deviation of one, and now the data are analyzed on the basis of

correlations instead of covariances, dk = sk.

- range scaling (range), uses the difference between the minimum and the maximum

variable value, dk = max
�
Xk − X̄k

�
−min

�
Xk − X̄k

�
.

- pareto scaling (pareto), adopts the square root of the standard deviation as scaling

factor, dk =
√
sk.

- variable stability scaling (vast), gives an emphasis to variables which do not show

strong variation, by using the product between the standard deviation and the coef-

ficient of variation, dk = sk
sk
X̄k

.
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- level scaling (level), uses the mean value of the variables dk = X̄k.

As will be shown, the scaling of the data-set effects the accuracy of the approximation made

in Equation 4.6. The weakest issue with PCA-based models, for use in combustion systems,

is that the linear model is attempting to model a highly nonlinear system. In order to take

full advantage of the PC analysis, Biglari and Sutherland [5] suggests applying a nonlinear

mapping to the linear underlying surface by using nonlinear regression. It has been shown

[5, 50, 72] that the nonlinear regression allows one to fully utilize the underlying manifold

identified by the principal component analysis. It is important to note that the linear basis

derived from the PC analysis is critical as it allows for the derivation of simple transport

equations; however, by using nonlinear functions within this basis, the model is allowed to

capture the nonlinearities which are always present in combustion systems.

4.4.2 Regression models

In this study, nonlinear regression is used to model the highly nonlinear state-space

variables as a function of the principal components (Z). In place of Equation 4.6, now the

various state-space variables and PC source terms (sZ) are mapped to the PC basis using

the nonlinear regression function fΦ:

Φ ≈ fΦ (Zq) (4.10)

where Φ represents the state-space variables, or in terms of regression, the dependent

variables (i.e. Yi, T , ρ, and, sZ).

Until now, two nonlinear regression methods have been applied to mapping Φ to Z.

In the work of Biglari and Sutherland [5] and Pope [72], multivariate adaptive regression

splines are used. In the work of Mirgolbabaei and Echekki [50], artificial neural networks are

investigated. Here, in addition to previously used regression techniques, several other meth-

ods are investigated, including support vector regression, and gaussian process regression.

In summary, the following regression techniques are investigated:

- Linear Regression Model (LIN)

The linear model applied in multiple dimensions is of the form:

Φ = Za+ v (4.11)

where a is the regression coefficient vector and v is the intercept vector [11].

- Multivariate Adaptive Regression Splines (MARS)

Multivariate adaptive regression splines use the concept of building up the model from
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product spline basis functions. This model creates a number of basis functions, and

automatically determines knot location and implements splines at knot boundaries.

The model is of the form:

Φ =
M�

m=1

amBm(Z). (4.12)

where Bm are the basis functions and am are the expansion coefficients [24].

- Artificial Neural Networks (ANN)

Artificial neural networks uses the concept of networking various layers of estimation

resulting in a highly accurate output layer. Following the theory of Pao [57], the

model works as follows: first, t hidden networks (NETt) are calculated as a weighted

(wt) sum of the training data inputs (ki = [Z,Φ]):

NETt =
N�

i=1

wtiki + bi. (4.13)

A sigmoid transfer function is then used to generate an output for the network:

Zt = [1 + exp (−NETt)]
−1 . (4.14)

Next, the output networks are calculated:

NET =
h�

t=1

νtZt + bo (4.15)

Again, the network is scaled and a prediction of Φ is then given:

Φ = [1 + exp (−NET )]−1 . (4.16)

In the present study, one hidden layer with 20 neurons is used with one neuron in the

output layer.

- Support Vector Regression (SVR)

Support vector regression is a subset of support vector machines (SVM). The idea

behind SVR is again to create a model which predicts sZ given Z using learning

machines which implement the structural risk minimization inductive principle. The

basic model form is

Φ =
N�

i=1

(α∗
i − αi)K (Z0,Zi) (4.17)

where α∗
i and αi are Lagrange multipliers, and K (Z0,Zi) is the kernel operator [82].

In the current study, a radial-based kernel was used and the optimum kernel hyper-

parameter as well as the insensitive-loss function were determined by doing various

calculations over a range of input parameters.
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- Gaussian Process Regression (GPR)

Gaussian process regression is founded on the idea that dependent variables can be

described by a gaussian distribution [53, 75]:

Φ ∼ N
�
0,K (Z,Z) + σ2

nI
�

(4.18)

Here Z is the data matrix containing all sample points in PC space; K (Z,Z) is the

kernel function for Z; in the current study, the gaussian kernel is used:

K (Zp,Zq) = σ2
sexp

�
−1

2
(Zp,Zq)

T W (Zp,Zq)

�
. (4.19)

Given query points Z∗ it can be shown that a prediction Φ∗ can be made using the

following formula:

Φ∗ = KT
∗
�
K+ σ2

nI
�−1

Φ (4.20)

where K∗ = K (Z,Z∗) and K = K (Z,Z). The initial guess for the kernel’s hyper-

parameters: the characteristic length scale, and signal variance, were one. A gradient-

based marginal likelihood optimization was used to determine these values.

4.5 Results and discussion
In the current section, the feasibility of the model is assessed on an ODT nonpremixed

data-set. Both scaling and regression methods are tested on the data. Based on the

conclusions from the a priori study the model is then tested in a PSR, and the initial

results to 2D laminar simulation are presented utilizing the presented approach.

4.5.1 A priori model evaluation

The effect of the various scaling methods and the optimal regression method are now

tested in order to assess the feasibility of the model on a combustion data-set. The current

section analyzes the ODT data-set discussed in Section 4.3.

4.5.1.1 Scaling

The chemical species mass fractions X ( where Q = 11) are now tested for the various

scaling methods discussed in Section 4.4.1, using Equation 4.6. Figure 4.1 shows the

nrms error for the reconstruction of several major species on the left (CO, CO2, H2O),

and several radical species on the right (HCO, HO2, OH) while varying q. It is obvious

from Figure 4.1 that pareto scaling had a distinct advantage for the major species, mostly

due to the fact that the scaling is 1/σ2. In general, most of the scaling methods have

trouble with the smaller variables, such as the radicals, with level scaling appearing to give
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Figure 4.1: Nrms error values for several major species (left), and minor species (right),
while varying q, the number of PCs, and the scaling method.
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the best results for the current case. The implications of the various scaling strategies are

profound. In the case of pareto scaling, the weighting is attractive as it gives more weight

and importance to major variables. The scaling effects are important as well when looking

at the ability of the reduced model when computing the reaction source terms sZ.

The calculation of the chemical species reaction rates is done using Cantera [28]. The

reaction rates are now computed from the originalX and the approximation, using Equation

4.9. Figure 4.2 shows the nrms error for sZ1 for the various scaling methods while varying

q. An nrms error lower than 10−2 is not achieved until q = 8 for all of the scaling methods.

This indicates that the error from Equation 4.6 is propagating into the calculation of sZ.

Due to the linear nature of the PC-based model, a large value for q is required to

accurately recover the highly nonlinear reaction rates. With differential diffusion, enthalpy

and elemental mass fractions are not constant, yielding 11 degrees of freedom for the ODT

data-set. With q = 8, only a minor reduction is achieved. An alternative to the direct

reconstruction of X is to use nonlinear regression functions, which can be used to map

the nonlinear reaction rates or nonlinear species concentrations to the lower dimensional

representation given by the PCs.

4.5.1.2 Regression

In order to map the highly nonlinear reaction rate surface (dependent variables) to PC

space (independent variables) it is useful to understand how nonlinear the reaction rates

and other state-space variables are with respect to the underlying manifold represented by

the principal components. A simple way to do this in multiple dimensions is to divide the

independent variable space onto a coarse grid, and assess locally the variation of dependent

variables within a local section of the independent variable space. Locally, if the dependent

variable has a large variation, then the ability to regress the dependent variable locally will

be more difficult because of the nonlinear nature or even local scatter in the data. The

following equation is used to calculate the locally normalized variance for the ith coarse grid

cell (χi
Φ):

χi
Φ =

ν(Φ(Zq
i))

ν(Φ(Zq))
(4.21)

where ν (x) =
�
(x− �x�)2

�
is the variance function which is calculated on the observations

within the ith coarse grid cell (Φ(Zq
i)) or for all observations (Φ(Zq)). Now, summing over

all course grid cells in PC space, we obtain the overall manifold nonlinearity for dependent

variable Φ:

χΦ =
c�

i=1

χi
Φ (4.22)
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Figure 4.2: Nrms error values for sZ1 while varying q, the number of PCs, and the scaling
method.
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Table 4.1 shows the manifold nonlinearity calculation for various dependent variables while

changing the scaling methods. It is clear from the analysis that some scaling methods have

distinct advantages for several of the dependent variables. In particular, pareto scaling has

an advantage when comparing several major species (O2, CO, CO2, and N2), temperature,

and density, with a weaker performance for some of the radical species (OH, H). All

methods show the regression for sZ1 is challenging; however, the regression for sZ2 appears

promising with pareto scaling.

Given the results for both the state-space reconstruction, and the manifold nonlinearity,

it is clear that the pareto scaling method has some unique advantages for this particular

data-set dealing with syngas combustion. With this observation in mind, the various

regression models are now tested with the pareto scaling method. The nonlinear regression

analysis is done using a combination of computing software packages including the statistical

computing software R [74], and MATLAB [47]. The R code implementations for LIN,

MARS, ANN, and SVR were used. For GPR, the MATLAB toolbox gpml [75] was employed.

The analysis is done on n = 5000 sample points evenly distributed over Z space. The

analysis is done using q = 2 and 3.

Table 4.2 shows the regression results for sZ1 as a function of Z, with q = 2 and q = 3.

As expected, the linear regression method has difficulty mapping the highly nonlinear

dependent variables. Complex methods also struggle with the mapping while q = 2.

When moving to q = 3, the later 3 methods are beginning to show higher accuracy. In

this particular case, GPR produces the most accurate reconstruction. The approximation

shows a vast improvement especially if compared with the results of the direct computation

(Equation 4.9), with the same level of accuracy being achieved with q = 8.

4.5.1.3 Subset PCA

In the work of Mirgolbabaei and Echekki [50], the PCA analysis is done on a subset

of species in order to recover sufficiently accurate source terms. This has the benefit of

removing certain species which may be contributing highly nonlinear source terms to sZq .

The drawback to doing this is that there is no guarantee that the underlying manifold

computed from the subset will be able to adequately predict the species removed from the

analysis. In the current study, the retained species are selected by choosing variables which

tend to pertain to the slower chemical time-scales of the system, such as the major species.

The following subset of species were selected for the present analysis: H2 O2, H2O, CO,

and CO2.

With the selected subset of species, the PCA analysis is repeated, again with pareto
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Table 4.1: Manifold nonlinearity (χΦ) for state-space variables, Φ while using different
scaling methods.

χΦ std range pareto vast level

H2 5.7 11.4 10.8 12.3 3.5
O2 4.0 1.9 0.3 0.7 4.9
O 12.6 11.8 17.2 28.8 7.5
OH 16.6 17.3 21.5 41.5 6.8
H2O 6.1 5.1 4.9 5.3 7.0
H 14.6 22.3 30.0 46.1 5.2

HO2 7.1 9.6 6.2 3.3 7.2
CO 2.4 1.3 0.1 1.8 1.7
CO2 5.0 5.0 0.8 3.0 6.2
HCO 6.9 14.6 18.1 29.4 2.5
N2 1.7 0.7 0.1 0.7 1.4
T 7.0 6.5 2.0 4.0 9.2
ρ 7.8 6.9 2.5 5.0 9.6
sZ1 256.5 292.2 300.5 404.0 210.1
sZ2 150.0 172.7 25.8 143.7 95.9

Table 4.2: Nrms error and R2 statistics for the prediction of sZ1 while using pareto
scaling and q = 2 or q = 3.

Method nrms error (q = 2) R2 (q = 2) nrms error (q = 3) R2 (q = 3)

LIN 0.99 0.02 0.67 0.55
MARS 0.30 0.91 0.26 0.93
ANN 0.22 0.95 0.20 0.96
SVR 0.23 0.95 0.19 0.97
GPR 0.22 0.95 0.18 0.97
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scaling. Figure 4.3 shows the scree plot [33], which gives the percentage of variance

accounted for while selecting q PCs. The figure compares the full PCA version using 11

variables and the subset PCA using 5. It is clear that the PCA based on the subset of

variables represents the variation in the system with fewer variables.

Table 4.3 shows the error statistics for the entire set of Φ while using gaussian process

regression and pareto scaling. It is interesting to note even though several of these variables

were not included in the analysis, the PCA basis computed from the major species in

combination with the nonlinear regression is sufficient for mapping these highly nonlinear

minor species.

One of the biggest advantages behind using PCA for combustion modelling is PCA’s abil-

ity in deriving orthogonal variables which best parameterize the reaction system, through

a linear representation. It is useful to relate the PCs to physical variables. In the current

study, the eigenvector weights reveal interesting details into what the PCs physically mean.

Table 4.4 shows the basis matrix weights from the PCA analysis on the major species.

The weights from the first PC have large positive values for carbon containing variables

(CO, CO2), and a large negative value on the oxidizer (O2). This appears to be very

similar in nature to Bilger’s mixture fraction [6], ξ. Figure 4.4 shows a plot of Z1 against

ξ; the plot shows that Z1 is clearly correlated with ξ. The weights for Z2 show positive

correlations for H2, O2, and CO, with negative correlations for H2O and CO2. These

weights appear to be related to the extent of reaction, where reactants have negative

stoichiometric coefficients, and products have positive reaction coefficients. With a larger

initial mass-based concentration of CO (compared with H2), a large amount of CO2 is

produced, and a much smaller amount of H2 is present leading to a smaller positive weight

on H2 and smaller negative weight for the product H2O.

It is interesting to point out that without any prior understanding or assumptions on the

combustion systems, the PC analysis has automatically identified two important variables

which are often used to characterize combustion systems.

It is evident that the linear PC model in conjunction with a nonlinear regression has the

potential of delivering very accurate state-space variables as well as reaction rates for a given

system of interest. To the authors knowledge, no actual computation of the PC-transport

approach exist in the literature. The following section gives two simplified demonstrations

of the model within a numerical solver.
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Figure 4.3: Scree plot from the eigenvalue matrix, showing the fraction of explained
variance (y-axis) as a function of the number of PCs (q) for the system containing a subset
of the original species (’x’ markers), and the fulls system (’o’ markers).

Table 4.3: nrms error and R2 statistics for the prediction of Φ while using pareto scaling
and q = 2.

Φ nrms error R2

H2 0.05 0.997
O2 0.04 0.999
O 0.06 0.996
OH 0.07 0.995
H2O 0.06 0.997
H 0.05 0.997

HO2 0.17 0.969
CO 0.05 0.998
CO2 0.05 0.997
HCO 0.03 0.999
N2 0.04 0.998
T 0.04 0.998
ρ 0.04 0.999
sZ1 0.22 0.949
sZ2 0.16 0.974
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Table 4.4: Eigenvector matrix, A, from the PC analysis.

species weight Z1 Z2 Z3 Z4 Z5

H2 0.047 0.117 -0.302 0.900 0.288
O2 -0.627 0.119 -0.034 -0.230 0.734
H2O 0.176 -0.186 0.895 0.222 0.292
CO 0.624 0.656 -0.040 -0.243 0.348
CO2 0.431 -0.713 -0.325 -1.124 0.414

Figure 4.4: A scatter plot of mixture fraction (x-axis) versus Z1 (y-axis), illustrating the
correlation between the variables.
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4.5.2 A posteriori model evaluation

In order to demonstrate the approach a perfectly stirred reactor and a 2D jet flame

are investigated. First, the proposed method is demonstrated in a PSR, comparing the

calculations using the full set of equations to the standard PC-transport approach, and the

PC-transport approach using nonlinear regression. Second, a 2D syngas jet is calculated

using the PC-transport approach with nonlinear regression. The computation is done

in ARCHES, a CFD software developed during the last decade through awards granted

between the University of Utah and the Department of Energy [77, 76].

4.5.2.1 Perfectly stirred reactor

An implementation for the perfectly stirred reactor was made using MATLAB. The

following governing equations were implemented and solved using the cvode toolbox in

MATLAB [14]:
dρYi
dt

=
ρ

τ
Y 0
i − ρ

τ
Yi +RiWs,i (4.23)

where Yi and Ri are the ith species mass fraction and molar reaction rate (kmole/m3/s),

τ (seconds) is a constant representing the residence time through the reactor, Ws,i is the

ith species molecular mass, and ρ is the density (kg/m3). The temporal solution to the

equations are solved using the Newton nonlinear solver, and the BDF multistep method.

The problem is initially solved using a stoichiometric mixture of syngas-air using the same

mechanism which was used for the ODT data-set ([20]), where the mechanism includes 11

chemical species and 21 reactions. The inlet conditions for the reactor (Y 0
i ) are set at an

equivalence ratio of 1 with a temperature of 300K. The initial conditions for the reactor (Yi)

are set at the equilibrium conditions of the inlet and the system is run until a steady-state

solution is reached. The PSR is modelled assuming constant volume, residence time, and

pressure. Multiple simulations are performed by varying the residence time and saving the

temporal solution until steady-state is reached. The PCA process described in Section 4.4.1

is then applied to the data to create the basis matrix Aq, and the regression functions fΦ

for the state-space variables, Φ. The approach is then tested with various values of τ , which

were not used when creating the data-set.

The regression of Φ is carried out using q = 2 resulting in R2 of 0.9995 or higher for

all variables including sZq . The simulations are then performed with 2 transport equations

instead of 11, yielding a significant reduction. Figures 4.5a-4.10b show the temperature

and species mass fractions of the system. The markers show the steady-state solution for

a given τ using the PC-transport model. The underlying solid-lines in the figures show the
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(a)

(b)

Figure 4.5: PSR temperature as a function of the residence time, with the solid-line
representing the full solution. The markers represent the results for the model with GPR
regression (a) using q = 2 PCs, and the standard model without regression (b) while varying
q.
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(a)

(b)

Figure 4.6: Major species products as a function of the residence time, with the solid-line
representing the full solution. The markers represent the results for the model with GPR
regression (a) using q = 2 PCs, and the standard model without regression (b) while varying
q.
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(a)

(b)

Figure 4.7: Major species reactants as a function of the residence time, with the solid-line
representing the full solution. The markers represent the results for the model with GPR
regression (a) using q = 2 PCs, and the standard model without regression (b) while varying
q.
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(a)

(b)

Figure 4.8: Minor species as a function of the residence time, with the solid-line represent-
ing the full solution. The markers represent the results for the model with GPR regression
(a) using q = 2 PCs, and the standard model without regression (b) while varying q.
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(a)

(b)

Figure 4.9: Minor species as a function of the residence time, with the solid-line represent-
ing the full solution. The markers represent the results for the model with GPR regression
(a) using q = 2 PCs, and the standard model without regression (b) while varying q.
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(a)

(b)

Figure 4.10: Minor species as a function of the residence time, with the solid-line
representing the full solution. The markers represent the results for the model with GPR
regression (a) using q = 2 PCs, and the standard model without regression (b) while varying
q.
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full solution calculated over a range of residence times. The top plot (a) shows the results of

the model using GPR for the nonlinear mapping with q = 2, and the results on the bottom

(b) show the standard model without the regression step while varying q. The results show

remarkable accuracy for the model with regression over the range of residences times for the

predicted temperatures, and both major and minor species. A similar degree of accuracy is

not observed in the model without regression until q = 7. In the current system, constant

enthalpy and elemental mass is observed yielding 7 degrees of freedom, which would imply

virtually no reduction due to the degrees of freedom.

4.5.2.2 Syngas jet flame

In order to provide a demonstration of the approach within a CFD solver, a combustion

data-set with several important features is needed:

- Representative Data-set

The data-set used to train the PC-transport model must be representative of the

system of interest. This clearly implies that a canonical reactor of lesser computational

costs needs to be used to develop the data-set. It has been demonstrated [5] that the

low-dimensional manifolds may in fact be invariant under certain conditions, allowing

a system to be modeled using PCA calculated from a similar combustion case. In

addition, the model is describing the temporal evolution of the species in the system;

accordingly, the data-set must contain the temporally evolving profiles of the species.

- Source Terms

In order to use the approach in combination with nonlinear regression for sZ, the

chemical species source-terms must be available. Due to this, the use of experimental

data-sets would be unlikely, and numerical data-sets which employ detailed kinetic

mechanisms are more appropriate.

- Manifold Limits

Again, because all of the state-space variables (including ρ) are tabulated before hand,

Z space must span all realizable values. In the context of nonpremixed combustion,

the limits of the manifold may likely exist when the system exhibits mixing with no

reactions occurring, and the equilibrium solution.

- Accurate Regression

In order to preserve mass, and stay within the limits of the manifold, the regression

of the source-terms, in particular, needs to be accurate.
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For a demonstration of the approach within a CFD solver, a data-set meeting the

aforementioned criterion is needed. Accordingly, the laminar data-set mentioned in Section

4.3 was developed.

The PC analysis of the laminar data-set was done using the same subset of chemical

species in Section 4.5.1.3 (H2 O2, H2O, CO, and CO2). Table 4.5 shows the results for the

gaussian process regression of Φ for the laminar system. The weights of Aq are given in

Table 4.6, and the correlation between the Z1 and mixture fraction is shown in Figure 4.11.

Again, it is observed that Z1 and Z2 are similar to mixture fraction and extent of reaction.

It is important to note that even though high correlation between Z1 and mixture fraction

is observed, sZ1 is nonzero. However, as one would guess, sZ1 is much smaller than sZ2 (2

orders of magnitude, when comparing means).

With an accurate reconstruction of Φ, a 2D syngas jet flame is carried out solving for

2 transport equations (q = 2). The jet’s inlet boundary consists of a partially premixed

mixture of syngas and air with a mixture fraction of 0.79, at equilibrium conditions (T ≈

1025 K). The jet has a velocity of 25 m/s with a co-flow of air at 0.1 m/s and 300 K. The

domain is a 2D square of 0.5 m2 represented with 15002 grid points, and a jet diameter of

0.01 m. The simulation is performed within the Uintah Framework using the simulation

software ARCHES. The explicit algorithm of ARCHES is limited to a maximum time-step

size of 1e− 7 s, reaching a physical time of 0.25 s. Figure 4.12a shows the original manifold

contained in the ‘training’ data-set and Figure 4.12b shows the manifold calculated from

the simulation data at t = 0.25 s, with the gray-scale representing sZ2 . Here the x and y

axis show Z1 and Z2, respectively. It is observed that all of the points are bound to the

manifold with no points leaving the observed space in the ‘training’ data. It is apparent

that the Damköhler number of the system is large, as much of the data from the calculation

is near the equilibrium solution.

The density (left) and temperature (right) fields at t = 0.25 s are shown in Figure 4.13,

as well as Z1 (left) and Z2 (right), as well as their source terms in Figures 4.14 and 4.15. A

small standoff distance of approximately the same size as the jet inlet (0.01 m) is observed.

Z is very insightful, as Z1 is very similar to the Bilger’s mixture fraction, in describing the

degree of mixing between the premixed fuel stream and the surrounding air. Z2 is very

similar to the extent of reaction, showing the progress of the reaction as it proceeds to

equilibrium conditions. Figures 4.16-4.20 show the species mass fractions fields computed

from the model. It is evident from Figure 4.16 that most of the fuel has already been

consumed before the jet exits the domain. Figure 4.17 shows good correlation between the
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Table 4.5: Nrms error and R2 statistics for the prediction of Φ for the laminar data-set
while using pareto scaling and q = 2.

Φ nrms error R2

H2 0.05 0.998
O2 0.02 0.999
O 0.07 0.996
OH 0.08 0.993
H2O 0.07 0.996
H 0.18 0.973

HO2 0.12 0.981
CO 0.01 1
CO2 0.01 1
HCO 0.30 0.940
N2 0.01 1
T 0.03 0.999
ρ 0.02 0.999
sZ1 0.11 0.988
sZ2 0.06 0.996

Table 4.6: Eigenvector matrix, A, from the PC analysis.

species weight Z1 Z2 Z3 Z4 Z5

H2 1.771 -1.064 3.272 27.491 3.972
O2 -1.831 -1.025 0.321 -0.297 2.331
H2O 0.191 3.253 -12.323 1.087 3.414
CO 1.881 -0.679 0.131 -0.325 1.119
CO2 0.224 -3.390 1.281 -0.246 1.459
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Figure 4.11: A scatter plot of mixture fraction (x-axis) versus Z1 (y-axis), illustrating the
correlation between the variables.
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(a)

(b)

Figure 4.12: Scatter plots representing the q = 2 dimensional manifold with Z1 on the x-
axis, Z2 on the y-axis, and the gray-scale representing sZ1 . Plot (a) shows the representation
of the manifold from the training data-set, and the plot (b) shows the represented manifold
from the simulation results.
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Figure 4.13: Density (left) and temperature (right) fields from the ARCHES calculation
at t = 0.25 seconds.

Figure 4.14: Z1 (left) and Z2 (right) fields from the ARCHES calculation at t = 0.25
seconds. Z1 is highly correlated with Bilger’s mixture fraction, and Z2 is related to the
extent of reaction being highly correlated with the temperature of the system.



106

Figure 4.15: sZ1 (left) and sZ2 (right) fields from the ARCHES calculation at t = 0.25
seconds.

Figure 4.16: CO (left) and H2 (right) species mass fraction fields from the ARCHES
calculation at t = 0.25 seconds.
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Figure 4.17: CO2 (left) and H2O (right) species mass fraction fields from the ARCHES
calculation at t = 0.25 seconds.

Figure 4.18: O2 (left) and OH (right) species mass fraction fields from the ARCHES
calculation at t = 0.25 seconds.
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Figure 4.19: O (left) and H (right) species mass fraction fields from the ARCHES
calculation at t = 0.25 seconds.

Figure 4.20: HCO (left) and HO2 (right) species mass fraction fields from the ARCHES
calculation at t = 0.25 seconds.
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species products H2O and CO2 and the extent of reaction of the system.

4.6 Conclusion
The current work has addressed the ability to use nonlinear regression methods to

estimate source-terms for the PC-transport combustion model. Various nonlinear regression

methods have been analyzed showing the ability to produce accurate estimation even when

using a lower number of Z. In particular, the SVM and GPR methods have shown improved

accuracy for estimating Φ. In addition, the effect of the various PCA-scaling methods on

the regressibility of the system has been assessed. The pareto scaling method appears to

achieve the greatest reduction with fewer components, and produces a highly regressible

surface. The current work outlines an example of an a priori analysis which provides the

best regression and scaling method for a given turbulent combustion data-set.

The work includes the first demonstrations of the PC-transport model using nonlinear

regression within a numerical solver. In the case of the PSR, the model provided a compu-

tational reduction factor of 0.71, resulting in a very accurate representation of the original

system with q = 2 variables of the 7 degrees of freedom in the system. The approach

was demonstrated for the first time within a CFD solver. The CFD calculation can be

considered a good proof of concept for the proposed approach. The results indicate that

the simulation accesses part of the chemical state in the original training data without

leaving the manifold.
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CHAPTER 5

ADVANCING THE PCA APPROACH FOR

COMBUSTION SYSTEMS

5.1 Introduction
In the current chapter, several new concepts are presented which seek to advance the

PCA-combustion work given in the previous chapters, specifically for nonpremixed flows.

Results from Chapter 5 have not been published; accordingly, the presentation will be less

formal than what has been presented so far. The outline for this chapter is as follows:

- Principal Component Constrained Equilibrium (PCCE)

In Section 4.5.1.3, the PCA basis was calculated from a reduced-set of species mass

fractions. The fact that the PCA basis is not calculated on the entire state-space

can lead to issues, such as attempting to represent the other species mass fractions

which were not used in the PC analysis, or not being able to adequately estimate

other state variables such as temperature or density. Because of these issues, the

PCCE framework was developed. Given the PC basis which represents the reduced-set

of mass fractions, the remaining state-space variables are then estimated through

equilibrium assumptions. If the mixture fraction is known the mass represented by

the PCs and the total mass of the system are used to define the remaining mass which

is allowed to reach equilibrium.

- Mixture Fraction Conditioned Principal Component Analysis (MF-PCA)

In Section 4.5.1.3, the identity of the first principal component Z1 was highly corre-

lated with the mixture fraction variable, ξ. Indeed, in the context of nonpremixed

combustion, the mixture fraction variables is essential and intuitive, as the PC analysis

confirms. Given that Z1 from Section 4.5.1 has a nonzero reaction source-term

sZ1 , there seems to be an advantage in removing the variations in mixture fraction

space from the system, doing the PC analysis on the conditioned data, and using

mixture fraction to reconstruct the nonlinearity. Following this concept, the MF-PCA
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framework was developed in-order to take full advantage of the systems nonlinearity

described in mixture-fraction space.

5.2 PCCE
In order to increase the accuracy of the PC-Transport model, Chapter 4 discussed the

ability to do the analysis on a reduced-set of variables. This concept leads to several

issues which need to be addressed. The fact that the PC-basis is now optimal for only

the major species does not guarantee a good representation of the minor species in the

system, or the estimation of other state-space variables such as density and temperature.

As discussed in the introduction, the basic idea behind PCCE is that while we represent

a subset of chemical species using the PC-basis, the remaining variables can be estimated

using equilibrium approximations. In order to describe the PCCE model, a simple theory

section is now given, followed by a results section demonstrating the method on a simple

strained flamelet solution of CH4.

5.2.1 PCCE theory

The general idea behind PCCE is that the majority of the mass in the system is being

described by the PCs and evolves according to the source terms for the PCs. The small

percentage of mass in the system, which in general represents minor and radical species, is

assumed to evolve infinitely fast, and the conversion of this mass to species mass fractions

can be fully described through equilibrium assumptions. Accordingly, the model name

describes very well what is occurring: the principal components of the system are being used

as a constraint, i.e. being held constant, during an equilibrium calculation which determines

the final state of the minor species of the system. In other words, the equilibrium calculation

of the small percentage of mass in the system is constrained by the large percentage of mass

which is held constant during the equilibrium calculation.

Before discussing the constrained equilibrium calculation it is necessary to derive the

equations which give the quantity of mass which is described by the PCs, and mass which

is free to move toward equilibrium. In general, the ith elemental mass fraction for a system

containing E elements is given by the following equation:

Ki =
YCiWe,i�E

j=1 (YCjWe,j)
. (5.1)

where Y is row vector of species mass fractions, Ci is a column vector describing the number

of i atoms for each of the Q species. We,i and We,j are the atomic weights for element i, or
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element j. For a system with a unity Lewis number, an estimation of the total elemental

mass in the system is easily derived from the mixture fraction variable, ξ:

KT
e =

�
Kfuel

e −Koxid
e

�
ξ +Koxid

e (5.2)

Here the superscripts T , fuel, and oxid represent the total, fuel stream, and oxidizer stream

elemental mass fractions. It is clear from Equation 5.2 that KT
e changes as a function of

mixture fraction. Figure 5.1 shows KT
e as a function of mixture fraction for a syngas system

(0.5 H2, and 0.5 CO by volume) mixing with air.

As mentioned previously, the PC-transport equations in general will describe the evo-

lution of the c major chemical species in the system. The ith elemental mass fractions

represented by PCs (Z) is given by:

KZ
i =

YcCc,iWe,i�E
j=1 (YcCc,jWe,j)

. (5.3)

Here Yc is a row vector of the c chemical species mass fractions, used in the PC analysis,

Cc,i is a column vector describing the number of i atoms for the c species in the system.

Given a system without differential diffusion, it is now trivial to define the elemental mass

in the system that is allowed to go to equilibrium:

Kres
e = KT

e −KZ
e (5.4)

Here the superscript res, refers to the residual elemental mass that is not accounted for by

the c species in the PCA analysis that is now assumed to proceed to equilibrium.

Now that the definition of the constrained elemental mass as well as the residual ele-

mental mass have now been addressed, a discussion on how the equilibrium calculation is

performed is given. The equilibrium described here refers to the minimization of Gibbs free

energy which is carried out with a constant enthalpy, and constant pressure. In general, for

a combustion system with low mach numbers, the pressure remains relatively constant; in

addition, given the unity Lewis number assumption, the mass based enthalpy is a function

of mixture fraction. Assuming the mixture is an ideal gas, the following equation describes

the Gibbs function of the mixture [87]:

Gmix =
�

Niḡi,T =
�

Ni
�
ḡoi,T +RuT ln (Pi/P )

�
(5.5)

where Ni is the number of moles of species i, ḡi,T and ḡoi,T are the Gibbs free energy of

species i in the gas mixture at current conditions and at standard sate, and Pi is the partial

pressure of species i. In order to constrain the equilibrium calculation, a slight modification
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Figure 5.1: Total elemental mass fractions (KT
e ) for the flamelet data-set as a function of

mixture fraction
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of Equation 5.5 is required. Given a data-set with Q species and E elements, the system is

now split into the c species which were used in the PC analysis and the Q− c species which

are determined by equilibrium assumptions. Now, a definition of the Gibbs function is as

follows:

Gmix =
c�

i∈c
N const.

i

�
ḡ◦i,T +RuT ln

�
P const.
i /P

��
+

Q−c�

i/∈c

Ni
�
ḡ◦i,T +RuT ln (Pi/P )

�
(5.6)

Equation 5.6 shows that the Gibbs function is given by the contributions from the con-

strained species, which are held constant (indicated by the superscript const.), as well as

the species which are free to go to equilibrium. The implementation of the above equation

was done in Cantera [28]. Now, through the modified minimization of the Gibbs function,

the equilibrium state can be estimated, giving an approximation for the Q−c minor species

in the system as well as the temperature and resultant density. The only inputs to the

system are the species mass fractions for the c represented species, the enthalpy for a given

mixture fraction, the pressure of the system, and Kres
e which are allowed to proceed to

equilibrium.

5.2.2 PCCE results and conclusions

In order to demonstrate the approach, a simple 1D counter diffusion flame data-set

was generated. The GRI3.0 mechanism was used to describe the reactions in the system

[81], with the oxidizer being air (0.21 O2, and 0.79 N2 by vol.) and the fuel being pure

methane. The stoichiometric strain-rate of the flame, χ, was set to 0.1 1/s, with an initial

temperature of 300 K. The computational package Cantera [28] was used to generate the

data-set as well as perform the equilibrium calculations. The ordering for the constraints

applied to the system was done according to the largest mean values for the data-set and

are as follows for the first 12 chemical species: N2, CH4, H2O, CO2, O2, CO, C2H2, H2,

OH, C2H4, NO, and O. As an example, when c = 4, the i ∈ c species are given as follows:

i = [N2, CH4, H2O,CO2].

Table 5.1 shows the fraction of elemental mass remaining while varying the number

of constraints (c) on the system. With c = 1, the equilibrium solution of the system is

obtained. As the first constraint was that of N2, nearly all of the elemental mass of N in

the system was in the form of N2; accordingly, Table 5.1 shows that virtually no N2 remains

for equilibrium. Upon addition of the 6th species, 5 percent or less of all of the elemental

mass fractions remains for the equilibrium calculation. Figures 5.2-5.3 show Ke for the

elements while varying c, confirming the results shown in Table 5.1. As c increases, KZ
e
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Table 5.1: Fraction of total elemental mass remaining 1−
�

Kres
e while varying the number

of constraints on the system.

c O H C N

1 1.0 1.0 1.0 0.0
2 1.0 0.22 0.22 0.0
3 0.58 0.05 0.22 0.0
4 0.31 0.05 0.11 0.0
5 0.11 0.05 0.11 0.0
6 0.0 0.05 0.02 0.0

Figure 5.2: KO (left) and KH (right) elemental mass fractions as a function of mixture
fraction while varying the number of constraints.

Figure 5.3: KC (left) and KN (right) elemental mass fractions as a function of mixture
fraction while varying the number of constraints.
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increases gradually while approaching KT
e , leaving an ever-decreasing value for Kres

e . In

other words, as more constraints are applied, the amount of mass described by Z increases,

leaving less mass to be approximated from the equilibrium assumptions. Accordingly, one

would assume an increase in accuracy as c increases.

The model is now applied to the data-set while varying c. For the results given here, it

is assumed that the constrained species are represented perfectly from the regression of the

PC basis, giving a better view of the error produced by using the equilibrium assumptions.

Figure 5.4 shows the results for density (ρ with the units kg/m3), and temperature (T in

Kelvin) as a function of ξ while varying c. Only minor discrepancies are observed when

c > 6 for both T and ρ. When examining the minor species in the system, which are

not represented in the PC basis, a clear advantage is seen by using the model. Figure 5.5

shows the model approximation to CO (left) and H2 (right) mass fractions while using

1− 5 constraints for CO and 1− 7 constraints for H2. It is evident that for CO, adequate

representation is obtained with as few as 4 constraints, and 6 constraints are needed to

reduce the error inH2. While looking at smaller species such as O andH, more discrepancies

are seen, and as would be expected, a larger number of constraints are required to achieve

higher accuracy. The draw back to adding constraints is the equilibrium calculation becomes

more complicated because fewer species are available for equilibrium (as more constrained

variables in the system are present). In addition, the more constraints used results in adding

more nonlinearity to PC space, which in turn makes the nonlinear regression more difficult.

The preliminary results presented here indicate that PCCE has the potential for de-

livering highly accurate state-space variable such as temperature and density, with only a

few constraints. Several of the minor species were also approximated with fewer than 7

constraints in the PCCE methodology. From this analysis, it is clear that PCCE can be

very beneficial in its application to combustion systems.

5.3 MF-PCA
Turbulent combustion systems are inherently nonlinear. This is obvious when looking

at the reaction-rates for chemical species, which are generally of the form:

Ri = −A exp(−Ea/T ) Cα
i Cβ

j (5.7)

where A is the preexponential factor, Ea is the activation energy which has been scaled by

the gas constant, T is the temperature, and Ci represents the molar concentration of species

i. The large degree of coupling through net production rates from these reactions as well

as the diffusion terms leave a highly complex nonlinear system which is extremely difficult
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Figure 5.4: Temperature (left) and density (right) as a function of mixture fraction while
varying the number of constraints.

Figure 5.5: CO (left) and H2 (right) mass fractions as a function of mixture fraction while
varying the number of constraints.
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to model. The PC-transport approach of Sutherland and Parente [85] seeks to represent

this system with PCA, a linear model. Through nonlinear regression, the mapping of the

state-space variables to the linear basis can be achieved; otherwise, a large number of PCs

is required to adequately represent the state-space (see Section 4.5.1.2).

Chapter 4 showed an analysis of the basis matrix A of a nonpremixed syngas-jet data-set.

In that system, Z1 was highly correlated with mixture-fraction. This clearly indicates that

the largest amounts of variation in the syngas data-set is described by the mixture fraction

(see Figure 4.4). An attractive option for PCA would be to have a basis matrix A which

changes as a function of mixture fraction, thus providing a large degree of nonlinearity to

the model. This concept was demonstrated in the work of Parente [62] for a nonpremixed

DNS case where PCA was performed locally based on clustering the data in mixture fraction

space. The local PC information dramatically increases the accuracy of the reconstruction.

However, it is difficult to exploit this behavior within a combustion model, as the transport

equations for the PCs are defined by the basis calculated from PCA, and changing the basis

would change the identity of the transported variable.

The MF-PCA approach is a concept which has the potential of coupling the nonlinear

effects seen in mixture fraction space with the PC analysis. The basic concept is to

precondition the species mass fractions by subtracting the mixture-fraction dependent mean

for each of the chemical species. This idea is illustrated in Figure 5.6a, which shows the

radical species OH as a function of mixture fraction. The red markers in Figure 5.6a show

the conditioning function which is dependent on mixture fraction and changes for each of

the chemical species. Application of the conditioning leaves Figure 5.6b, which shows the

conditioned OH radical with no variation in mixture fraction space. Now, the PC analysis

is carried out on the conditioned data-set, with the understanding that the PCs are now

attempting to represent a system which contains fewer nonlinearities.

By conditioning the species mass fractions, the traditional transport equations defined

by Sutherland and Parente [85] need to be reformulated. The following section describes

the theory involved behind the conditioning, as well as the derivation for the new transport

equations. In addition, a simple demonstration of the approach is presented on the same

ODT data-set which was used in Chapter 4.

5.3.1 MF-PCA theory

Conditioning of the data requires an independent variable which can be used to map

some function, fi, to the ith species mass fraction. Bilgers mixture fraction [6] is optimal

for this and is defined as follows:
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(a)

(b)

Figure 5.6: OH radical (a) and conditioned OH radical (b) as a function of mixture
fraction, with red markers representing the condition function fOH(ξ).
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ξ =
2KC/wC +KH/2wH − 2

�
KO −Koxid

O

�
wo

2Kfuel
C /wC +Kfuel

H /2wH + 2Koxid
O wo

. (5.8)

Here the elemental mass fractions and molecular weights are the same as those which were

described in Section 5.2. Mixture fraction is particularly interesting as it describes the

change in chemical space from an oxidizer (ξ = 0) to a fuel (ξ = 1). Often much of the

nonlinearity in the reacting species is observed when plotted in mixture fraction space.

Given a data-set with n observations, where each observation contains all of the species

mass fractions, a value of ξ can be calculated for each observation. Figure 5.6a shows a

plot of the n observations for the OH radical as a function of ξ. Using nonlinear regression,

in this case, gaussian process regression (GPR) was used, a condition function is generated

which returns the conditioned mean for species Yi as a function of ξ:

Y ∗
i = fi(ξ) (5.9)

Before applying PCA, the species mass fractions are conditioned by fi, thus altering the

definition of the PCs:

Zq =
Ns�

i=1

Ai,q (Yi − fi) . (5.10)

In order to generate transport equations for the new PCs, it is natural to start with the

chemical species transport equations:

∂ρYi
∂t

+ ρu ·∇Yi +∇ · (ρD∇Yi) = Ri (5.11)

By conditioning Yi and then projecting the PC basis, the following transport equation is

found for Zq:

∂ρZq

∂t
+ ρu ·∇Zq +∇ · (ρD∇Zq) =

Ns�

i=1

[Ai,qRi]− ρD�ξ
Ns�

i=1

�
Ai,q

∂2fi
∂ξ2

�
(5.12)

The last term on the right-hand side of Equation 5.12 represents the source term of the

projected conditioning function, or in other words, the source term for the underlying

manifold. The term ρD�ξ is the scalar dissipation rate. The term
�Ns

i=1

�
Ai,q

∂2fi
∂ξ2

�
has

been referred to as the curvature of the manifold [72].

Equation 5.12 is a specific derivation for Zq in the case that fi is a function of ξ. If one

desired to use alternative independent variables for creating fi, a general solution to the

transport equations for Zq may be useful. In place of solving for an analytical expression
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for the manifold source term, which resulted in Equation 5.12, the expression may be solved

numerically:

∂ρZq

∂t
+ ρu ·∇Zq +∇ · (ρD∇Zq) =

Ns�

i=1

[Ai,qRi]−
D

Dt

�
Ns�

i=1

[Ai,qfi]

�
(5.13)

Projection of the conditioning function into PC space appears as follows:

Zf
q =

Ns�

i=1

[Ai,qfi] (5.14)

The last term in Equation 5.13 can literally be interpreted as the rate of change of the

manifold in PC space, Zf
q . In order to close Equation 5.13, an additional transport equation

for Zf
q is solved:

D

Dt

�
Zf
q

�
=

∂ρ
�
Zf
q

�

∂t
+ ρu ·∇

�
Zf
q

�
+∇ ·

�
ρD∇

�
Zf
q

��
(5.15)

5.3.2 MF-PCA results and conclusions

Now, a simple a priori demonstration is given, testing the MF-PCA approach on the

syngas ODT data-set referred to in Section 4.3 (please refer to Section 4.3 for a review of

the pertinent details for this data-set).

First, the ability of the MF-PCA approach to reconstruct the species mass fractions is

analyzed and compared with the standard PCA approach. Here the following equation is

used to reconstruct the species mass fractions:

Yi ≈
Ns�

i=1

(Ai,qZq) + fi(ξ) (5.16)

Table 5.2 shows the nrms and R2 values for the reconstruction of the species mass fractions

using either the MF-PCA or the standard PCA approach. The approaches are compared

assuming q = 1. It is only fair to state that the MF-PCA approach will also required mixture

fraction, whereas the PC-transport approach has no such requirement. Because mixture

fraction is a conserved scalar which changes very slowly compared to reacting chemical

species, the comparison is fair, as the PCs always require a source-term. The results show

that the reconstruction using the MF-PCA approach is significantly better for the chemical

species. A similar pattern is to be expected for the reaction source-terms computed from

the approximate species mass fractions. Table 5.2 also shows the error in reconstruction for

sZ1 , for either approach. Again, the MF-PCA model appears to have a much more accurate

representation of the reaction rates.
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Table 5.2: nrms and R2 error for the reconstruction of the species mass fractions and sZ1

using the standard PCA approach or MF-PCA

Yi R2 (PCA) R2 (MF-PCA) nrms (PCA) nrms (MF-PCA)

H2 < 0 0.941 1.026 0.244
O2 0.997 1 0.054 0.015
O < 0 0.943 1.032 0.239
OH 0.032 0.978 0.984 0.149
H2O 0.885 0.970 0.339 0.174
H 0.531 0.953 0.685 0.216

HO2 < 0 0.891 2.835 0.330
CO 0.883 0.999 0.342 0.025
CO2 0.722 0.998 0.527 0.043
HCO 0.355 0.975 0.803 0.160
sZ1 0.086 0.807 0.956 0.440
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In order to reduce the complexity of sZ , PCA is now done on a reduced-set of species

mass fractions (see Section 4.5.1.3). The scaled basis matrix for the new PCs is given in

Table 5.3. With the nonlinear effects seen in mixture fraction space removed, Z1 closely

resembles the extent of reaction. The weights corresponding to the reactants: H2, O2, and

CO, are negative with positive weights for the products: H2O, and CO2.

Now, a comparison between the models where a reduced-set of species is used in the

analysis can be made. Table 5.4 shows the reconstruction of the reduced-set of species for

both of the approaches, where q = 1 for the MF-PCA, and standard PCA approaches. The

MF-PCA again shows a significant improvement on the reconstruction.

Next, the ability to use nonlinear regression (GPR) for the entire set of state-space

variables, Φ = {Yi, T, ρ, sZ}, is checked and compared to what was reported in Section

4.5.1.3. Table 5.5 shows the approximation error for Φ using gaussian process regression

with q = 1. In this case, the regression takes the form:

Φ ≈ fΦ (Zq, ξ) (5.17)

The results for the regression show good accuracy for all variables except for HO2. The

results for sZ1 are more accurate than what is found in the standard approach presented in

Table 4.3. In addition, the results from Table 4.3 were a function of 2 principal components,

again strengthening the case made for MF-PCA.

5.4 Conclusions
The results in this section demonstrate two promising concepts which seek to advance

PCA-based combustion models.

PCCE has the potential of delivering highly accurate state-space variables in the case

where PCA has been done on a reduced-set of chemical species. This approach may be

useful in a scenario where nonlinear regression has difficulty in accurately mapping the

species which were not represented in the analysis to the PC basis. The example given here

demonstrates the models estimation of temperature, density, and several chemical species

which were not constrained in the PC analysis. The model appeared to be very accurate

on the data-set when up to 7 constraints where used.

MF-PCA has shown promise in its ability to add a nonlinear functionality to the original

PCA method. In the demonstration given here, MF-PCA consistently decreased the error

in approximation when compared to the standard PCA method. The major drawback of the

approach is increased complexity in the transport equations. An analytical derivation was

provided for the conditioned PC transport equations where the conditioning is a function
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Table 5.3: Eigenvector matrix, A, from the PC analysis.

species weight Z1 Z2 Z3 Z4 Z5

H2 -0.066 0.261 -0.022 -0.065 0.970
O2 -0.469 0.247 0.080 -0.830 -0.154
H2O 0.141 -0.881 0.119 -0.373 0.227
CO -0.542 -0.251 -0.787 0.151 0.023
CO2 0.680 0.179 -0.599 -0.381 -0.042

Table 5.4: nrms and R2 error for the reconstruction of a reduced-set of species mass
fractions and sZ1 using the standard PCA approach or MF-PCA. Here a comparison is
made when q = 1 for both approaches.

Yi R2 (PCA) R2 (MF-PCA) nrms (PCA) nrms (MF-PCA)

H2 < 0 0.940 1.016 0.244
O2 0.996 1 0.060 0.015
H2O 0.882 0.970 0.343 0.174
CO 0.887 0.999 0.336 0.025
CO2 0.715 0.998 0.534 0.043
sZ1 0.486 0.975 0.717 0.159

Table 5.5: nrms error and R2 statistics for the prediction of Φ while using pareto scaling
and q = 1.

Φ nrms error R2

H2 0.091 0.992
O2 0.005 1
O 0.061 0.996
OH 0.080 0.994
H2O 0.047 0.998
H 0.095 0.991

HO2 0.246 0.938
CO 0.005 1
CO2 0.009 1
HCO 0.064 0.996
N2 0.005 1
T 0.021 1
ρ 0.026 0.999
sZ1 0.131 0.983
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of mixture fraction. For generalization, a numerical derivation is given as well where the

manifold source is computed by adding an additional transport equation.



CHAPTER 6

CONCLUSION

The preliminary research related to the use of principal component analysis in turbulent

combustion systems has proven fruitful and merits continued study, development, and

application within the field of turbulent combustion. The application of PCA to combustion

has led to several important observation concerning inherent strengths and weaknesses of

approach.

- Strengths

• PCA identifies orthogonal variables and gives a corresponding importance (eigen-

value) for each variable. In the case of turbulent combustion, it has been shown

that the identified variables may have very rational definitions such as mixture

fraction or extent of reaction. This is very attractive as one with no prior

information about the system can rely on PCA to identify these fundamental

variables and list them in order of importance.

• PCA is used to reduce the dimensionality of a system. This reduction applied

to nonlinear data may be limited. However, in conjunction with nonlinear

regression, a significant reduction can be achieved while maintaining reasonable

accuracy. Depending on the computational resources and permissible error, the

model can be tailored to the needs of the user.

• The PC-transport approach will most likely lead to a reduction in stiffness. This

is evident because the leading PCs are generally highly correlated with larger

species which are evolving more slowly in the system.

- Weaknesses

• A major draw-back to the approach is the fact that the PC basis is linear.

Turbulent combustion systems are indeed nonlinear, thus the direct application

of the approach may not result in a significant reduction. The development of
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MF-PCA and MG-L-PCA attempt to reconcile this by adding some affect of

nonlinearity to the system.

• Several disadvantages come from the fact that the approach requires data. For

example, in order to use the PC-transport model with regression, a numerical

data-set is required in order to resolve the source term issues.

Much of the work and development presented in the dissertation seeks to take advantage of

the strengths from the approach and to avoid or overcome the weaknesses. An example of

this can been seen in the MF-PCA approach which seeks to add nonlinearity to the system

though preconditioning. Given a new perspective on the research that has been completed,

several concepts are of interest for future work:

- The discussion on the Damköler number in Chapter 2 has opened up an interest in

using the analysis to better inform which PCs are resolved (temporally, and physically)

in the context of LES.

- The initial CFD results presented in Chapter 4 require validation and uncertainty

quantification. The approach, until now, has only been demonstrated. Future work

will include simulations which can easily be compared with experimental data.

- The MF-PCA approach has shown much promise. Future work may include imple-

mentation of the MF-PCA model in ARCHES.

Many of the ideas and concepts presented in this dissertation have come from the diligent

efforts of students, committee members, and advisors. Using these resources as groundwork,

several original contributions were presented in the dissertation:

- Chemical Time-Scales

Chapter 2 presented a novel technique for the calculation of chemical time-scales for

turbulent combustion data. The approach identifies the limiting chemical time-scales

in a system by utilizing a PCA-based analysis which identifies the principal variables

in the system. With a clear identity for the key variables in the system, the source-

term Jacobian approach is able to provide clear results free of dormant or redundant

reaction time-scales. The approach has already been used in an analysis from another

author [18].

- Modified MG-PCA

Chapter 3 presents a modification to the original MG-PCA and MG-L-PCA ap-



128

proaches. This modification utilizes the true PCs of the system instead of an ap-

proximation which was used previously. The effect of this modification increases the

accuracy of the method, and in some cases, allows an additional reduction of 1 − 2

PVs.

- Auto-ignition MG-PCA

Chapter 3 also includes the first results for MG-PCA and MG-L-PCA in an unsteady

constant pressure batch reactor. The results show a decrease in computational time,

when compared to the full simulation. The MG-L-PCA approach reduced the required

computation by 38%.

- Regression Accuracy Study

Chapter 4 provides more detail concerning the PC-transport approach. In particular,

the ability to map the nonlinear state-space variables and source terms to the PC basis

was assessed. It was shown that support vector regression, artificial neural network

regression, and gaussian process regression provide superior results to previously

demonstrated regression methods.

- Perfectly Stirred Reactor Demonstration

Chapter 4 shows the PC-transport approach using nonlinear regression within a

numerical solver for the first time. The demonstration compares the full PSR results to

a PSR simulation with 2 PCs using nonlinear regression, or 7 PCs using the standard

approach. The results are very promising, showing the ability to predict various

residence times with reasonable accuracy and reducing the computation by 75%.

- Arches Implementation

The PC-Transport approach is demonstrated for the first time within a CFD-solver.

A 2D syngas case, where the model has been trained on a simple laminar data-

set is demonstrated. The results are promising revealing several important physical

phenomena such as flame stand-off and ignition.

- PCCE

Chapter 5 outlines the principal component constrained equilibrium approach. PCCE

is demonstrated through a priori studies and shows the ability to estimate minor

species when PCA is done on a reduced set of major species.

- MF-PCA

Chapter 5 introduces the mixture-fraction conditioned PCA model. The MF-PCA
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model provides a distinct advantage in first conditioning the nonlinear data according

to mixture fraction, and then using PCA.

The dissertation provides a step-forward in research as far as PCA-based combustion

modelling is concerned. The dissertation also leaves many interesting future outlets for

continued development and application.
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