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ABSTRACT 

Observational studies are a frequently used “tool” in the field of road safety 

research because random assignments of safety treatments are not feasible or ethical. 

Data and modeling issues and challenges often plague observational road safety studies, 

and impact study results. The objective of this research was to explore a selected number 

of current data and modeling limitations in observational road safety studies and identify 

possible solutions.  

Three limitations were addressed in this research: (1) a majority of statistical road 

safety models use average annual daily traffic (AADT) to represent traffic volume and do 

not explicitly capture differences in traffic volume patterns throughout the day, even 

though crash risk is known to change by time of day, (2) statistical road safety models 

that use AADT on the “right-hand side” of the model equation do not explicitly account 

for the fact that these values for AADT are estimates with estimation errors, leading to 

potential bias in model estimation results, and (3) the current state-of-the-practice in road 

safety research  often involves “starting over” with each study, choosing a model 

functional form based on the data fit, and letting the estimation results drive 

interpretations, without fully utilizing  previous study results.  

These limitations were addressed by: (1) estimating the daily traffic patterns (by 

time of day) using geo-spatial interpolation methods, (2) accounting for measurement 

error in AADT estimates using measurement error models of expected crash frequency, 
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and (3) incorporating prior knowledge on the safety effects of explanatory variables into 

regression models of expected crash frequency through informative priors in a Bayesian 

methodological framework. These alternative approaches to address the selected 

observational road safety study limitations were evaluated using data from rural, two-lane 

highways in the states of Utah and Washington. The datasets consisted of horizontal 

curve segments, for which crash data, roadway geometric features, operational 

characteristics, roadside features, and weather data were obtained.  

The results show that the methodological approaches developed in this research 

will allow road safety researchers and practitioners to accurately evaluate the expected 

road safety effects. These methods can further be used to increase the accuracy and 

repeatability of study results, and ultimately expand the current practice of evaluating 

regression models of expected crash frequency in observational road safety studies.  
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CHAPTER 1 

 

 

INTRODUCTION 

The World Health Organization (WHO) has reported that approximately 1.3 

million people are killed in traffic crashes every year, and between 20 and 50 million 

suffer from nonfatal injuries (1-2). These numbers suggest that traffic crashes represent a 

major public health burden on a global scale. By the year 2030, traffic crashes are 

projected to reach fifth place among leading causes of death in the world (1,3). Traffic 

crashes can have devastating and long-lasting consequences for those involved and their 

families. The overall economic and societal impact costs of traffic crashes in the United 

States totaled approximately $242 billion and $836 billion, respectively, in 2010 (4). 

Given the magnitude of these impact costs, there is a need to identify and take effective 

actions to prevent and mitigate the negative outcomes of traffic crashes and improve road 

safety. 

Recently released U.S. figures from the National Highway Traffic Safety 

Administration (NHTSA) for the year 2013 show a 3.1 percent decrease in motor vehicle 

crash fatalities from the previous year and nearly a 25 percent decline in overall highway 

fatalities since 2004 (5-6). Similar to fatality trends, the number of people injured fell 

from 2,500,000 to 2,313,000 in the years 2006 to 2013 (7). Despite increasing traffic on 

the roadways, traffic fatalities and injuries have stabilized and even diminished in the 

recent years, specifically since 2006. Several studies have associated this decreasing 



2 

 

 

trend in traffic fatality and injury numbers to be the result of various factors, including 

changes in roadway design, improved vehicle design, advances in medical treatment,  

laws to reduce drunk driving and increase seat belt use, better-trained novice drivers, 

economic trends, and increased funding for safety infrastructure improvements (8-13). 

Concerning the possible contribution of road safety research to that progress, it was 

demonstrated by Elvik et al. (2009) that road safety measures based on the findings of 

research projects have made major contributions to reducing the number of traffic 

fatalities and injuries in the best performing countries (14).  

Road safety research started more than 80 years ago to address the practical 

information needs identified as a result of increasing numbers of traffic fatalities and 

injuries (3). One of the early documented research studies on accident proneness was 

carried out in the mid- to late-1920s (15-16). Over the years, the changing environment of 

the road transport system, vehicle technology, and the understanding gained about 

combinations of factors that contribute to crash occurrence resulted in exploring different 

avenues to road safety research. These include human factors research (e.g., driver 

simulation, test track, and naturalistic driving studies), behavioral research, vehicle 

research and testing, vehicle crashworthiness, advanced vehicle technologies, event data 

recorders, observational road safety studies, and statistical road safety modeling, to name 

a few (17).  

Observational studies serve as a major source of knowledge for researchers and 

other decision makers on the expected road safety effects of highway and traffic 

engineering decisions. Despite methodological challenges, high-quality observational 

studies have emerged and played an important role in informing road safety management 
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practices. Using retrospective and observational data, researchers seek to estimate the 

safety effect of a treatment by observing the same units (e.g., drivers, vehicles of some 

type, road segments, or intersections, to name a few) before and after the treatment or by 

comparing units found to have one treatment with other units that have a different 

treatment (18).  

Observational Road Safety Studies 

Observational studies are needed when random assignments of units to treatment 

or control groups are not feasible or ethical. The mechanism of treatment or control 

assignment in observational studies is dictated either by choice of individual or some 

other factors. Therefore, the treated and control groups may have differed prior to 

receiving the treatment in ways that are relevant to outcomes of interest (19-22). Post- 

treatment differences may possibly be attributed to the treatment effect, these 

pretreatment differences, or both.  

Pretreatment differences (or selection biases) in observational studies are of two 

kinds: 1) those that have been accurately measured, called overt biases, and 2) those that 

have not been measured but are suspected to exist or that are not suspected at all, called 

hidden biases (19-20). Methods that account for overt biases and address uncertainty in 

hidden biases are proposed in the literature and are intended to support the possibility of 

making valid causal inferences in observational studies (23-25). There are two types of 

observational studies, before-after study designs and cross-sectional study designs.  

Before-After Study Designs 

Before-after road safety studies involve a treatment applied to a group of units at 

some point in time. Treatment effects are estimated by analyzing available data collected 
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for the treated units (and sometimes for another set of untreated units) from before and 

after the treatment (26-27). Before-after studies involve two basic tasks: 1) predicting 

what would have been the safety of the treated entities in the ‘after’ period had treatment 

not been applied, and 2) estimating what the safety of the treated entities in the ‘after’ 

period was (27).  

There are several methods to accomplish these two tasks when evaluating 

treatment effects using before-after data; however, the empirical Bayes method is 

considered the current state-of-the-practice (27-28). It accounts for regression-to-the-

mean bias, changes in traffic volume, and also appropriately evaluates sites with zero 

crash counts during the analysis period (26,29-31). In summary, it can be said that, based 

on evidence from actual studies and empirical data, the empirical Bayes methodology 

produces results that are more valid than those produced by more traditional approaches 

(32).  

All methods of accomplishing the prediction task of before-after studies (i.e., task 

1) consist of two consecutive steps: 1) estimating the expected number of crashes in the 

before period, and 2) using this and other information to predict how the expected 

number of crashes would have changed from the before to after period on the treated 

entities, if the treatment would not have been applied.  The predicted result of “what 

would have been” is then compared with the expected number of crashes in the after 

period with the treatment (i.e., task 2) to evaluate the safety effect of the treatment (27).  

A brief description of the empirical Bayes approach to estimating the expected 

number of crashes in the before period is provided as an example. According to this 

approach, the best estimate of expected crash frequency on a certain entity (road segment, 
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intersection, etc.) in the “before” period is obtained by combining two sources of 

information: (i) crash counts for that entity and (ii) information about the expected 

number of crashes on other similar entities (also known as reference group) (33). The 

expected number of crashes on these similar entities (i.e., reference group) is most 

commonly estimated using multivariate regression models. These multivariate regression 

models, also known as safety performance functions (SPFs), commonly provide an 

estimate of the expected number of crashes per some time period for a road segment or 

intersection as a function of traffic and road geometric characteristics.  Time trends that 

capture safety effects of other factors not measured or understood over time are also 

estimated using data from the reference group and can be incorporated directly into the 

regression model to predict “what would have been” for the treated entities had the 

treatment not been applied.  This approach assumes that the time trends observed at the 

reference group are the same as what the time trends would have been for the treatment 

group without the treatment.  

Since crashes are count outcomes, and the variance of crash counts is almost 

always greater than the mean (or overdispersion), negative binomial (NB) regression is 

commonly used to model the expected number of crashes as a function of traffic, 

geometric, and other explanatory, right-hand side variables (i.e., the SPF). The 

parameters of a negative binomial regression model are estimated using maximum 

likelihood, constructed based on the assumptions that the observations are independent. 

As an example, a negative binomial regression model of the expected number of crashes 

on a road segment is written as shown in the following equation:  

μi = exp(β0 + β1xi1 + β2xi2 +⋯+ βjxij + γ1t1 + γ2t2 +⋯+ γktk + εi)   Equation (1) 
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where: 

μi = dependent variable, expected number of crashes for a roadway segment i; 

xij = independent, explanatory variables specifying traffic, geometric, and other 

characteristics of a roadway segment i; 

tk = yearly indicators for the “unmeasured” independent variables that change with 

time; 

βj = regression parameters to be estimated that quantify the relationships between the 

explanatory variables and μi; 

γk = regression coefficient parameters for yearly indicators; 

β0 = intercept; 

εi = random error term, where exp (εi) is a gamma-distributed error term with mean 1 

and variance 𝛼. In the NB-2 model, the variance in the number of crashes is written as 

μi + αμi
2, with 𝛼 referred to as the dispersion parameter.  

The expected number of crashes for the before period at other similar entities, 

estimated by SPFs, and the observed number of crashes for the treated entities in the 

before period are used to estimate the expected number of crashes for the before period at 

the treated entities. Characteristics of road segments, including traffic volumes and 

patterns, weather, vehicles, and drivers, change with time. These trends are captured by 

SPFs both implicitly using the yearly indicators (as shown in the equation above) and 

explicitly by including the variables that change with time in the model, traffic volume 

being the most common. The yearly indicator coefficients are estimated along with other 

regression coefficients. What would have been the expected crash frequency in the after 

period at the treatment sites without the treatment is then calculated by taking the ratio of 
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predicted values from the SPFs in the after period to the predicted values from the SPFs 

in the before period, and then multiplying this ratio by the estimate of the expected 

number of crashes at the treated entities in before period (27,33). These “what would 

have been” estimates are then compared with estimated number of crashes in the after 

period with treatment to evaluate the safety effect of the treatment. Figure 1 illustrates an 

observational before-after study evaluation using the Empirical Bayes method.  

There are several practical limitations associated with before-after study designs 

(26,34): 

 Confounding Factors: There may be several improvements, in addition to the 

treatment of interest, that are implemented over the years. For example, when a 

road is rebuilt, several of its attributes are changed, and before-after studies are 

not practically feasible for the evaluation of many specific types of individual 

changes.  Estimates would reflect the combined effects of all changes in these 

cases.  

 Data and Duration: Several years of before and after period data are generally 

needed for an adequate sample of sites to handle the method with adequate 

statistical power. This data collection can be time consuming, and waiting several 

years after implementation is a practical concern in these types of studies.  

Ezra Hauer stated that “….opportunities to do observational before-after studies 

about, say, the safety effect of change in horizontal curvature, grade, lane width, etc. are 

few and imperfect” (18). For example, there may be a few projects where the degree of 

horizontal curvature is changed from 10 degrees to 5 degrees, yet there are many 

horizontal curves with degree of curvature 10 degrees and 5 degrees. In this case, cross-



8 

 

 

sectional studies are an option. In cross-sectional studies, a safety comparison is made 

between one group of entities having some common feature (degree of curvature equal to 

10 in this case) and a different group of entities not having that feature (degree of 

curvature not equal to 10 or equal to 5).  

In this case, one cannot know the change of safety from before to after of the 

same entities. Instead, the safety of two different groups of entities is compared. Given 

the limitations associated with observational before-after studies in terms of limited 

opportunities to perform them for some treatments of interest and insufficient data, 

observational cross-sectional studies can be very useful, but they also bring with them 

additional challenges. 

Cross-Sectional Study Designs 

Unlike before-after studies, cross-sectional studies do not require data from 

treated entities both before and after the treatment to evaluate that treatment’s safety 

effects. Instead, safety is compared at sites with and without the treatment of interest 

(26,29). In other words, in a before-after study, ‘treatment’ refers to something that has 

actually changed from before to after period on the treated entities. In a cross-sectional 

study, there is no such change; there is a difference between the units evaluated in terms 

of the treatment (18).  

Figure 2 illustrates the cross-sectional evaluation of a treatment. From the figure, 

the difference between the blue triangle and red triangle represents the estimated safety 

effect of the treatment. In practice, it is very difficult to find sites that are similar enough 

to each other, except for the treatment of interest, to avoid confounding influences. 

Hence, cross-sectional studies often use multivariate regression models. 
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Figure 1 Before-After Study Evaluation Using the Empirical Bayes Method 

(Adapted from FHWA, 2010) 

 

Figure 2 Cross-Sectional Study Evaluation (Adapted from FHWA, 2010) 
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Treatment effects are derived using the estimated regression coefficients for the 

variables representing the treatment of interest, while simultaneously accounting for other 

variables that also impact safety. As with SPFs, NB regression modeling is the most 

common approach used to model the expected number of crashes as a function of 

explanatory variables, including the variables that represent the treatment.  In this 

context, the NB regression model is expressed as given in the following equation:  

μi = exp(β0 + β1xi1 + β2xi2 +⋯+ βjxij + βczic + εi)                                  Equation (2) 

where: 

μi = dependent variable, expected number of crashes for a roadway segment i; 

xij = independent, explanatory variables specifying traffic, geometric, and other 

characteristics of a roadway segment i; 

zic = independent variable that corresponds to the treatment of interest; 

βj = regression parameters to be estimated that quantify the relationships between the 

explanatory variables and μi; 

βc = regression coefficient parameter for treatment-related variable; 

β0 = intercept; and 

εi = random error term, where exp (εi) is a gamma-distributed error term with mean 1 

and variance 𝛼. In the NB-2 model, the variance in the number of crashes is written as 

μi + αμi
2, with 𝛼 referred to as the dispersion parameter.  

The above equation is used to estimate the direction and magnitude of the safety 

effects of the treatment related variable, in addition to estimating the expected number of 

crashes. The direction of the regression coefficient parameter for treatment-related 

variable, βc is used to determine whether the treatment has a positive or negative effect 
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on reducing the expected number of crashes. If βc< 0, the treatment is said to have a 

positive effect on reducing the expected number of crashes, and vice versa.  

The magnitude of the regression coefficient parameter (i.e., βc) for the treatment- 

related variable is used to estimate the actual change caused by the treatment. For 

example, if the value of the regression coefficient estimate is βc (βc<0) for the treatment 

related variable (i.e., zic), the expected number of crashes decreases by βc times, if the 

treatment is applied, while all the other variables are constant. However, the regression 

models in these studies are also used to determine the safety effects of the right-hand side 

variables on expected number of crashes. For example, if the value of the regression 

coefficient estimate is β1 (β1 >0) for an explanatory variable, xi1, the expected number of 

crashes increase by β1 times, if the value of the explanatory variable increases by one 

unit, given all the other variables are constant.  

The major challenge with using cross-sectional studies is that the safety effect 

estimates may not represent the safety effects at all, but instead be an artifact of factors 

that were measured but could not be included in the model, factors that could not be 

measured, factors that were unknown, and/or the choice of functional form for 

explanatory variables included in the model specification (35).  

A leading scholar in observational road safety studies has also noted that cross-

sectional studies have not proven successful in terms of allowing cause and effect 

interpretations in road safety because of inconsistent results between the studies (18). 

Cross-sectional study designs usually do not consider a site-selection mechanism to 

minimize pretreatment differences while identifying treatment and control sites (29,34). 

Potential data and modeling issues that often plague observational study designs are 
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missing information on daily traffic patterns, measurement errors in right-hand side 

explanatory variables, invalid model assumptions, and uninformed selections of 

functional form (29,34,36-37). These issues can have huge impacts on regression 

coefficient estimates, and are particularly problematic with cross-sectional studies that 

seek to use regression models to estimate the effects of right-hand side (i.e., explanatory) 

variables on expected number of crashes.  Also, statistical road safety modeling 

techniques currently used are not sufficiently structured so that findings from different 

cross-sectional studies can converge on similar model forms and regression coefficient 

estimates. 

In summary, results obtained from cross-sectional study designs are usually not 

considered as reliable as those derived from well-designed before-after studies. Even with 

these drawbacks, there are still many benefits to conducting cross-sectional studies. The 

opportunities for conducting cross-sectional studies are plentiful and several years of 

before and after period data are not required. This is why much of what is thought to be 

known about the safety effects of many road features came from observational cross-

sectional studies, in particular, studies that use multivariate regression models to fit the 

data (18).  

Problem Statement 

As demonstrated in previous sections of this proposal, regression modeling of 

expected crash frequency plays a key role in observational before-after and cross-

sectional road safety studies. The regression models are: 1) used to estimate the expected 

number of crashes, and 2) in cross-sectional studies, used to estimate the effects of right-

hand side variables on expected number of crashes. Various challenges regarding both 
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data and regression modeling approaches exist. Left unaddressed, these challenges will 

continue to have a significant impact on the accuracy and repeatability of observational 

road safety study results. Three issues are particularly salient and were addressed in this 

research: 1) missing information on daily traffic patterns; 2) measurement errors in right-

hand side variables; and 3) modeling practices and assumptions, specifically related to 

letting statistical diagnostics drive the functional forms, letting estimation results drive 

the interpretations, and ‘starting over’ with each study.  

Information on Daily Traffic Patterns 

The selection and availability of right-hand side explanatory variables is an 

important step in the development of regression models of expected crash frequency. 

Currently, a majority of regression models capture the effect of traffic using average 

annual daily traffic (AADT) estimates, which represent an estimated average daily 

volume over the course of a year.  The AADT estimate turns out to be a highly influential 

right-hand side variable in the models, as it represents one part of an exposure term.  

However, models that use AADT alone do not explicitly capture what are 

expected to be significant safety effects of differences in traffic volume patterns 

throughout the day. For example, previous studies in the literature have shown that there 

are substantial differences in safety performance during the day and night. Fatal crash 

rates are reported as four times higher at night than during the day (38-40). It is 

reasonable to believe that the expected number of crashes would vary significantly with 

the amount of traffic during day versus night on a road segment.  However, these types of 

volume patterns are rarely available over the course of the lengthy study periods needed 

in road safety research. 
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Measurement Error in RHS Variables 

There are clearly cases when the key explanatory variables in regression models 

of expected crash frequency suffer from measurement error. Poor measurements of right-

hand side variables in regression models introduces bias and inconsistency in regression 

coefficient estimates, increases error dispersion, and masks the features of the data (41-

42). Current regression models of expected crash frequency do not explicitly account for 

the fact that some right-hand side variables used in the safety models are estimates 

themselves with estimation errors. For example, AADT estimates used in safety models 

(usually a single value of AADT) have significant uncertainty, because estimating these 

AADTs frequently involves extrapolating short-term counts over time and space. The 

effects of these measurement errors on the results of observational road safety studies 

have not been fully explored.  

Model Assumptions, Functional Form, and “Starting Over” 

The specifications of regression models of expected crash frequency are often 

driven solely by statistical significance, i.e., modelers rely on traditional statistical 

diagnostics to guide the model form (43). After a model form has been established, the 

explanatory variables that impact the expected crash frequency are explored by testing 

different model specifications. Researchers then let their model estimation results drive 

the interpretations (34). However, each new study typically ‘starts over,’ poses alternative 

forms and specifications, and chooses the one that fits the existing data best, without fully 

utilizing previous study results. Hence, a choice of appropriate model functional form 

that provides reliable associations between explanatory variables and crash outcomes and 

which converges on similar model forms and coefficient values is less clear in road safety 
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research (34). The effects of including prior knowledge in the form of informative priors 

in safety models have not been fully explored.   

Summary 

These three data and modeling issues are problematic for both before-after studies 

and cross-sectional studies. They are particularly problematic in cross-sectional studies 

where the sample of data and functional relationship chosen for the regression model can 

highly influence the result. This research seeks to further explore three key data and 

modeling limitations and identify possible solutions.  Results from this research were 

expected to improve the accuracy and repeatability of observational study results.  

Research Objectives and Scope 

The overall objective of this research was to further explore three key limitations 

in both data and regression modeling approaches used in observational road safety studies 

and identify possible solutions. Specifically, solutions that seek to develop more 

informed and complete model specifications using detailed datasets and empirically-

derived theory were developed and assessed. Given the framing of the problem, the 

research questions guiding this work are the following: 

1. Can traffic-related measures of exposure be developed at more disaggregate levels 

than annual average daily traffic in rural areas where the traffic volume data are 

limited, but traffic patterns during night and day are expected to have a large 

impacts on safety performance? How does accounting for exposure at more 

disaggregated levels than annual average daily traffic impact safety effects 

estimates of selected right-hand side variables as well as model prediction results? 

In particular: 



16 

 

 

a. Is kriging an effective spatial analysis approach for estimation of daily 

traffic patterns (by time-of-day) in rural areas, where data are limited? 

b. How does including the information on daily traffic patterns, specifically 

during the night and day, impact safety effects estimates of selected right-

hand side variables and model prediction results? 

2. How does accounting for measurement errors in right-hand side variables impact 

safety effects estimates of selected right-hand side variables in regression models 

of expected crash frequency? In particular: 

a. What are the impacts of ignoring measurement errors on the regression 

model estimation results? 

b. How do applying functional-type measurement error correction methods, 

Regression Calibration and Simulation Extrapolation, impact the safety 

effects estimates of selected right-hand side variables? 

3. Does incorporating prior knowledge of the safety effects of explanatory variables 

into Bayesian model formulations yield different conclusions with respect to 

model prediction results and safety effects estimates of selected right-hand side 

variables? In particular: 

a. How can informative priors for explanatory variables be developed using 

the results of previous observational road safety studies?  

b. How does including informative priors impact safety effects estimates of 

selected right-hand side variables and model prediction results?  

These research questions were explored using data from rural, two-lane highways 

in the States of Utah and Washington. The datasets consisted of horizontal curves, for 
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which crash data, roadway geometric features, operational characteristics, roadside 

features, and weather data were obtained. While the methodological framework was 

applied only to horizontal curves along rural, two-lane highways in this research, it is 

expected to be applicable to other site and facility types. Findings from this research are 

expected to lead to methodological advancements in observational road safety studies 

that increase the accuracy and repeatability of study results. 

The significance of this research lies in the application of new methodologies to 

improve road safety effect estimation and prediction using multivariate regression 

models. This research provides three major methodological contributions to facilitate the 

inclusion of new explanatory variables related to daily traffic patterns, correct for 

measurement errors, and incorporate past information and findings in safety models in 

addition to the available data. However, with the existing data sources, good quality data 

are not available that is suitable for application of these sophisticated methodologies, and 

validate their results completely.  In the context of this research, these new methods were 

incorporated in the regression model development based on certain assumptions (because 

of the data limitations) and they provide an alternative way to explicitly account for the 

issues that were left unaddressed in regression modeling of expected crash frequency 

until date.  

For road safety researchers and practitioners, these methods will pave the way for 

explicitly accounting for the limitations that are conveniently overlooked and not 

addressed currently in road safety research. The main study findings can be effective in 

estimating how the incorporation of these new methods affects the modeling results on a 

general level. However, in a real case study, true value of the data needed to employ and 
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derive useful conclusions is not available. With the increase in the availability of 

alternative data sources like light detection and ranging (LiDAR) and detailed roadway 

and roadside inventories, it is hoped that the application of these methods to the real- 

world case studies will be useful in deriving insights related to determining the specific 

impacts on safety effects estimates and model prediction results.    

 



 

CHAPTER 2 

 

 

LITERATURE REVIEW 

This chapter includes a summary of key literature review on alternative 

approaches that can overcome data and regression modeling issues in observational road 

safety studies. The literature review done for this research is three-fold. The first section 

describes the previous research on different measures of exposure that have been used in 

safety models, and the estimation of daily traffic patterns using different approaches. The 

second section describes the previous work on the effects of error-prone explanatory 

variables on parameter estimates, and the measurement error correction methods that are 

employed to correct for measurement error. The third and last section describes the 

previous work on Bayesian methodology that has been applied in the context of road 

safety research.   

Measures of Exposure 

In regression models of expected crash frequency, measures of exposure are 

considered key information. Exposure is generally expressed in a form related to amount 

of travel, but accurately defined as number of opportunities for traffic crashes to occur 

(44-46). The number of opportunities usually refers to amount of travel, which is the 

number of person miles or vehicle miles of travel performed (47). Two basic and 

different frameworks were suggested in the literature for the measurement of exposure 

relevant to road safety research. The first is to obtain the measurements of exposure at a 
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site using mechanical traffic counters, human observations, and automatic cameras. The 

second is to obtain data after the trips are completed, using in-person interviews, 

telephone interviews, and traffic surveys (48-50).  

However, with the era of Big Data, new technologies of data collection of various 

types and various sources are also available. GPS traces of vehicles, GSM traces of 

mobile phones, and social networking sites are used to derive information on exposure in 

present days. Choosing an appropriate measure of exposure depends on the intended use 

of data and population studied, as different exposure measures can produce different 

results (51).  

 Several types of exposure measures that are relevant to modeling expected 

number of crashes have been developed in the literature. For most of the trend studies and 

comparisons of road safety performance on an international and national level, the 

number of inhabitants or number of vehicles is used as the exposure measure (46,52). 

When calculating the crash rate on a certain part of the road network (i.e., at a segment or 

an intersection), the most frequently used measures of exposure are AADT, vehicle miles 

traveled in a given period, road segment length, or number of entering vehicles 

(45,46,53,54). However, some researchers argue that time spent traveling is a better 

measure of exposure than distance traveled, when comparing the risks of different travel 

modes (55). This is because time-based measures also take into account the variation in 

traveling patterns, speeds, and environmental factors that are particularly important to 

consider when comparing risk among different travel modes (56).  

Depending on the availability of data and scope of the analysis, some of the 

previous studies in the literature investigated the application of various exposure 
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measures and surrogates for exposure in modeling expected number of crashes. Total 

population, number of trips, number of registered vehicles or number of licensed drivers, 

gasoline prices and consumption, volume-to-capacity ratio, and traffic density, which are 

proxies for exposure, were used in modeling expected number of crashes (53,57-61).  

Despite the apparent simplicity of the definition and availability of different 

methods for measuring and including exposure variable in modeling expected crash 

frequency, there is still a considerable range of ideas in the literature as to which 

exposure measurement is most desirable to use and how it should be collected in a 

theoretically satisfactory way (50,62). Perhaps the best description of the current state in 

exposure measurement is that there is no general rule concerning the preferred and 

reliable measures of exposure and depends on data availability, quality, and objective of 

the analysis.  

Exposure and Road Safety 

The importance of exposure variables to modeling expected number of crashes, as 

mentioned previously, has been recognized in road safety research for over two decades. 

Road safety researchers have commonly used some combination of segment length (if the 

unit of interest is a segment) and the number of vehicles that pass by a fixed point (i.e.,  

traffic volume) during a specific time period as measures of exposure (45,54). Traffic 

volume is usually represented as average annual daily traffic in statistical road safety 

models.  AADT represents the average 24-hour traffic volume at a given location over a 

full 365-day period. AADT estimates are usually based on extrapolating short-term traffic 

counts conducted during a few days of the year, once every few years, over time and 

space. Initially, road safety researchers considered a linear relationship between traffic 
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volume and expected crash frequency (53). However, a significant body of published 

work has revealed a nonlinear relationship between crashes and traffic volume (58,63-

67). 

The nonlinear relationship between number of crashes and average annual daily 

traffic may be due to some factors overshadowed by this aggregated exposure measure. 

All of these aggregated measures of exposure, be it the most common measures or 

proxies (surrogates), do not consider temporal traffic variation (54). For example, these 

measures do not consider the possibility that number of crashes during a specific time of 

day or day of week is related to the prevailing flow rate at that time and the distribution 

of exposure measure may vary from daytime to nighttime or weekday to weekend.  

This discussion is supported by the findings of a study in which the crash rate for 

a million vehicles is higher at night than at other times of the day (39). The differences in 

safety performance during the day and night are widely recognized by other studies as 

well, with fatal crash rates reported as much as four times higher at night than during the 

day (38-40). This variation is largely attributed to differences in visibility and the human 

aspects of driving, such as biological clock influences on driver alertness and sleepiness 

(68-69).  

In addition to using aggregated AADT estimates in modeling the expected 

number of crashes, some of the studies have explored the interaction between traffic flow 

variables as exposure measures and road safety. Previous literature explored the 

interaction between hourly traffic volumes and expected crash frequency under different 

conditions of day, night, and environmental factors (58,63,70-77). Some other studies 

found that, considering variables, such as volume-to-capacity ratio, traffic density, and 



23 

 

 

variation in daily travel patterns, offers richer explanations of crash risk variation than 

traditional aggregated AADT estimates in statistical road safety models (39,57-60).  

Estimation of Daily Traffic Patterns 

Average annual daily traffic can be determined exactly at areas/sites having 

permanent automatic traffic recorders (ATRs) in continuous operation that record traffic 

flows throughout the year. These ATR stations are permanently installed throughout the 

roadway network. Coverage includes all functional classifications of highways, although 

coverage significantly decreases for lower classified roadways (78). At these permanent 

ATR stations, loop detectors, weigh-in-motion sensors, and/or other equipment are 

installed to count the number of vehicles passing through each location, continuously 

throughout the year (79-80). It can be said that the data obtained from ATR stations are 

the most reliable and comprehensive hourly traffic volume data at that location in a given 

time period. The number and spatial frequency of ATR sites vary by state and by region, 

as well as the functional class of the roadway (81). On average, one ATR station exists 

per 400 centerline miles of state-maintained roads and per 1,000 miles of all public roads 

(82). These ATR stations therefore do not cover majority of road segments. Utilizing data 

from ATRs alone is not practically feasible for road safety research.   

For a majority of roadway segments in a region or state where ATR coverage is 

limited, AADT is estimated by extrapolating short-term traffic counts over time and 

space. The short-term traffic counters cover a majority of road segments without the 

permanent counters, and the traffic volume data are collected once every year to few 

years, with the collection periods ranging from 1 to 7 days (83). The average of that 

sample, along with permanent counts and functional class criteria, are then used to 
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estimate AADT. These AADT estimates have significant uncertainty, and lack 

information on the daily traffic volume patterns throughout the 24-hour day. In order to 

estimate traffic volumes at locations where no ATRs or short-term counts are available,  

most widely used methods in the literature involved ordinary least-squares (OLS) 

regression with multiple right-hand side variables, time series analysis, neural networks, 

Gaussian maximum likelihood techniques, and nonparametric regression models (84-87).  

With advancements in spatial analysis techniques and availability of spatial 

datasets, researchers have also started to explore methods that utilize the spatial context 

of traffic data. Recent research suggested the use of spatial interpolation methods for 

traffic volume estimation at locations where traffic recorder stations are absent (82,88-

91). One of the most promising spatial interpolation methods is kriging, which in this 

context uses available data at existing ATR locations and spatial autocorrelation 

assumption to predict the traffic volumes at locations where volumes are unknown (92-

93). 

 Kriging has applications in a wide variety of fields, such as air quality analysis, 

natural resource analysis, and water studies (94-96). Kriging methods are capable of 

predicting variable values at unmeasured locations, while assessing the errors of these 

predictions. Most of the previous research on predicting traffic volumes at unmeasured 

locations relies on the notion that unobserved factors are autocorrelated over space, and 

the levels of autocorrelation decline with distance (82,89). There are much smaller 

number of studies that accounted for the influence of covariates on traffic volume 

predictions. These studies considered functional classification of the roadway, facility 

type, number of lanes, posted speed limit, and socio-demographic characteristics, in 
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addition to the spatial proximity assumption, to predict traffic volumes at unmeasured 

locations (90-91,97). In addition to these covariates, the differences in the total number, 

spatial frequency, and other known and unknown factors related to traffic counting 

stations will shape the modeling errors and ultimately have an effect on the spatial 

prediction of traffic volumes (81,90). The published literature concluded that inclusion of 

covariates resulted in minimizing the mean square prediction error in spatial (i.e., traffic 

volumes in this context) predictions (90,98).  

 One study that predicted traffic volumes and incorporated characteristics of 

covariates in spatial interpolation techniques used universal kriging combined with Trans 

CAD travel demand modeling software to obtain the shortest-path distances (90). 

However, there are many different ways to incorporate characteristics of covariates (also 

known as secondary information) in spatial analysis. In fields other than transportation, 

two multivariate geostatistical methods, ordinary cokriging (OCK) and universal kriging 

(or kriging with an external drift), have been used to incorporate both the spatial 

proximity and other covariates to make predictions at unmeasured locations (99-102). 

The studies showed that the spatio-temporal kriging with external drift predictions was 

physically more realistic, and resulted in a much higher estimation precision than other 

methods in both a statistical and qualitative way (103-104).  

In summary, there are a few studies that attempted to include covariates in spatial 

prediction models and they concluded that accounting for the association between the 

covariates and dependent variable is very important. In the context of this research, these 

associations are expected to greatly impact traffic volume predictions at unmeasured 

locations. The next section gives an overview on the implications of including error-
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prone explanatory variables in regression models of expected crash frequency. The 

section also includes information on the applications of different types of measurement 

error correction strategies in the literature. 

Measurement Error Models 

The quality of data is of central importance for the results of the statistical 

analysis. In many research areas, the measurement accuracy of a variable is a frequent 

issue. When the explanatory variables are measured with uncertainty/error, the problem is 

referred to as measurement error for continuous variables and misclassification for 

categorical variables (105). The implications of ignoring measurement errors in statistical 

road safety models are substantial, often resulting in unreliable parameter estimates 

(106). Statistical analysis that takes into account the measurement error is much more 

complicated than the ordinary regression analysis, and most of the statistical packages 

available do not provide standard programs (or packages) for correcting the effects of 

measurement error. Hence, the widely used approach is to ignore the measurement error 

and perform ‘naïve analysis’ (107).  

Ignoring measurement error in explanatory variables introduces bias and 

inconsistency in regression coefficient estimates, and increases error dispersion (41-42). 

Particularly, it attenuates the regression coefficient towards zero in comparison with the 

result computed from a regression on the same variable measured without error (107). In 

a multivariate regression model, some of the explanatory variables can be measured with 

and some without error; the parameter estimates of error-free explanatory variables can 

also be biased if there are measurement errors in other right-hand side variables and the 

direction of the bias depends on the correlation among the explanatory variables (108-
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111). In addition to the bias in regression coefficient estimates, measurement error may 

also mask the features of the data, therefore requiring much larger sample sizes to detect 

effects (41-42). Given these facts, it is surprising that measurement error is completely 

ignored in statistical road safety modeling.  

 In statistical road safety modeling, AADT usually turns out to be highly 

influential on expected number of crashes along with other roadway, roadside, and 

weather variables that are related to expected crash frequency (sometimes disaggregated 

by crash type and severity). As mentioned in the previous section, AADT estimates are 

obtained by extrapolating short-term traffic counts over time and space. This results in 

significant uncertainty in AADT estimates, which is also known as measurement error. 

The effects of error-prone explanatory variables on regression coefficient estimates have 

been recognized and adjustment methods have been applied in regression modeling for 

over two decades (112-113).  

 A number of methods have been developed to handle different types of 

measurement errors, study designs, and statistical analysis settings. The most currently 

available methods are suitable for handling continuous explanatory variables in 

generalized linear models; however, there have been fewer developments for applications 

to categorical explanatory variables (114-116). In order to appreciate the reliability of the 

results obtained from employing these methods to correct for measurement error in 

regression modeling, it is very important that the researchers and practitioners have a 

sense of the magnitude of the measurement errors associated with error-prone 

explanatory variables.  

As mentioned earlier, many correction strategies have been proposed to deal with 
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measurement error in continuous explanatory variables. These strategies can be broadly 

grouped into functional and structural type methods (41). Functional type approaches 

regard the error-prone explanatory variables to be unknown, nonrandom constants (or 

parameters), whereas the structural type approaches regard the error-prone explanatory 

variables to be random variables (105-106). The two functional-type measurement error 

methods that are widely applied to generalized linear models in previous published 

studies are Regression Calibration (RCAL) and Simulation Extrapolation (SIMEX) 

(108,117-118). Bayesian methods are an example of structural type approaches, which 

are implemented using Markov Chain Monte Carlo (MCMC) algorithms to correct for the 

measurement error in random explanatory variables (105).  

RCAL is a conceptually straightforward approach to bias reduction and has been 

successfully applied to a broad range of regression models (119). The estimator obtained 

from this method is fully consistent in linear and log-linear models, and approximately 

consistent in nonlinear models. The method is appropriate when a linear measurement 

error with a constant variance applies to the error-prone explanatory variable (120). 

RCAL was first studied and applied in the context of proportional hazards regression 

(121). Later, the method was applied to logistic regression and other generalized linear 

regression models (122-124).  

In the case of logistic regression, the method was found to be effective in a 

number of studies and applications (124). However, some studies also found that RCAL 

can be ineffective in reducing bias in nonlinear models when the effect of error-prone 

variable on response and the measurement error variance is large (119). The 

quantification of what is meant by ‘large’ is not clear in the literature yet, and no clear 
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distinction has been made on the successful or unsuccessful application of this method to 

the type of regression models.  

SIMEX is a widely applicable, simulation-based method of estimating and 

correcting for bias in a very broad range of settings, and is the only method that provides 

a visual display of the effects of measurement error on regression coefficient estimation 

(41,117,125). Similar to RCAL, the estimator obtained from SIMEX is fully consistent in 

linear models, and approximately consistent in nonlinear models. The method was first 

proposed by Cook and Stefanski and further developed by Stefanski and Cook (126). 

Later, there were many applications of this method in research fields like biostatistics, 

epidemiology, and ecology (127-130). The published studies found that the SIMEX 

method is effective in readily estimating and correcting the regression coefficient 

estimates that are biased due to error-prone explanatory variables in any type of 

regression models. One study by Fung et al. (1999) evaluated the two measurement error 

adjustment methods (RCAL, SIMEX) in Poisson regression and found that RCAL 

performed very well in terms of reducing attenuation bias in regression coefficient 

estimates and maintaining accurate standard errors of the regression coefficient estimates 

(113).  

Measurement error correction methods have been applied to very few studies in 

transportation engineering literature. Studies that applied measurement error models to 

error-prone average daily traffic estimates and work zone length during the work zone 

conditions found significant bias in regression coefficient estimates (131-132). In the 

field of road safety, El-Basyouny and Sayed proposed a lognormal measurement error 

model applicable to crash prediction models, and compared the regression coefficient 
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estimates obtained from this method with the parameter estimates of models that did not 

account for measurement error in traffic volume estimates (133). The study found that the 

bias in regression coefficient estimates increases with magnitude of measurement error in 

traffic volumes when developing a safety performance function (133). Despite the 

existing literature on the likely impacts of measurement error in explanatory variables on 

regression models of expected crash frequency, the application of measurement error 

correction strategies in road safety research has caught little attention. However, in recent 

years, there is an increased interest in the use of epidemiological methods in road safety 

research (26). The same concept of functional type measurement error correction 

strategies applied to epidemiological studies can be applied to road safety. In road safety, 

the entity of interest is a roadway segment or intersection, and the error-prone 

explanatory variable is traffic volume (i.e., AADT) estimates of a given roadway segment 

or intersection, while modeling expected crash frequency. 

Bayesian Framework in Road Safety 

Using conventional frequentist approaches, it is virtually impossible to 

accommodate past information unless the data from past and present are combined, to 

make it one complete dataset. However, this aggregation of data might ignore the 

diversity of data structures such as different time of data collection, changes of traffic 

environment and policies, driver behavioral changes, and other factors (134). Hence, a 

Bayesian framework is important to incorporate the accumulated knowledge from 

previous observational studies in the analysis.  

Bayesian statistics have some advantages when compared to maximum likelihood 

estimation (in frequentist approach), such as, interesting probabilistic interpretative 
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properties, superiority in dealing with uncertainty and randomness, and the ability to 

analyze complex data (135-137). In road safety studies, Bayesian methods have been 

widely applied for both identifying hotspot locations, and evaluating the effectiveness of 

countermeasures (27,32,138-143). Within the class of Bayesian formulations, empirical 

Bayes approach and hierarchical Bayes (also known as full Bayes) approach are 

commonly used in road safety research.  

In principle, priors formally represent available information. But in practice, 

noninformative and improper priors are often used in many studies  (144). These 

noninformative priors do not make use of real prior information and often times result in 

a posterior inference that is not quite credible. The use of informative priors in Bayesian 

road safety analysis is rare, perhaps because it is difficult to express prior knowledge as a 

probability distribution or because informative priors are perceived as overly subjective, 

or a fear that they could reduce model accuracy (145-147).  

A prior not only affects the precision of estimates, but also the location of 

posterior, therefore affecting predictive accuracy (145). The ability to incorporate 

informative priors in Bayesian analysis has been exploited in a little more detail in other 

disciplines such as ecology and water resources. Past research in ecological modeling 

suggests that including prior information in a Bayesian model will increase the precision 

of relevant parameter estimates and posterior predictive distributions (148). However, the 

effect on model accuracy is not known and can only be done through model validation.  

As mentioned earlier, most of the current studies that modeled expected number 

of crashes using Bayesian inference methods have incorporated noninformative priors (or 

vague priors), which ignored the merit of Bayesian inference methods.  Recently, 
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researchers started to incorporate prior information from previous studies and experts’ 

judgment, but very few studies focused on developing prior distributions of independent 

variables, using parameter estimates of variables obtained from previous studies (149-

150).  The road safety studies that have constructed informative priors based on historical 

data used power prior technique; method of moments, maximum likelihood estimation, 

maximum entropy estimation, starting from a noninformative pre-prior and fitting a prior 

based on confidence/credible interval matching (151-154).  

The findings from previous studies in the literature stated that the informative 

priors improved the model goodness-of-fit compared to the noninformative priors (151). 

This research specifically tends to use Bayesian formulations incorporating informative 

priors in the analysis based on regression coefficient parameters estimated from previous 

rigorous and well-defined observational studies, and accumulated knowledge in the field 

of road safety.  

Models of Expected Crash Frequency on Horizontal Curves 

In addition to the improvement that an appropriate exposure measure can bring to 

regression modeling of expected crash frequency, proper selection of explanatory 

variables is also needed when modeling expected number of crashes (53). Extensive 

research has been performed to examine the relationship between traffic crashes, traffic 

flow characteristics, roadway features, and geometric attributes. Many studies looked at 

horizontal curve features that affect crash performance and experience on rural, two-lane 

roads (155-161). The results were based on an analysis of horizontal curves, with 

corresponding crash, traffic, roadway, and geometry-related variables. Safety models 

developed with these variables revealed significantly more curve crashes for sharper 



33 

 

 

curves, narrower curve widths, lack of spiral transitions, and increased superelevation 

deficiency. The coordination and safety effects of interaction between horizontal and 

vertical alignments on rural, two-lane roads were investigated by Bella (2015), and Bauer 

et al. (2013), respectively (162-163). The results indicated that the expected crash 

frequency increases with curve length and increasing percent grade, with all other factors 

being the same. 

A significant amount of published literature exists that looked at the relationship 

between detailed cross-sectional characteristics (lane width, and shoulder width) and 

expected crash frequency (164-169). The results showed that cross-section of the 

roadway can have a significant impact on safety of rural, two-lane roads; earlier studies 

concluded that the expected crash frequency decreased with an increase in lane width. 

However, a recent study showed that after a minimum required lane width for the vehicle, 

any additional width beyond this minimum allows the driver to increase speed, which 

increases the expected crash frequency (164). Fitzpatrick et al. (2008) investigated how 

driveway density on rural two-lane highways impacted crash rates, using accident 

modification factors (170). The results showed that the probability of crash occurrence 

increases as number of driveways on rural two-lane roads increase. Many studies have 

also found that the risk of traffic crashes increase with high speeds and high traffic 

volumes on rural roads (171-174). There are relatively few studies that investigated the 

effect of weather on crashes in rural two-lane roads (175-177).  

Summary of the Literature Review 

In spite of the steady progress in the methodological advancements in multivariate 

regression modeling of expected crash frequency, there are still many fundamental data 
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and modeling issues in observational studies that have not been completely addressed. 

The three key data and modeling limitations that will be addressed in this research are: 

(1) a majority of statistical road safety models use AADT to represent traffic volume and 

do not explicitly capture differences in traffic volume patterns throughout the day, even 

though crash risk is known to change by time-of-day; (2) statistical road safety models 

that use AADT on the “right-hand side” of the model equation do not explicitly account 

for the fact that these values for AADT are estimates with estimation errors, leading to 

potential bias in model estimation results; and (3) the current state-of-the-practice in road 

safety research  often involves “starting over” with each study, choosing a model 

functional form based on the data fit, and letting the estimation results drive 

interpretations, without fully utilizing  previous study results.  

Each of these issues may substantially influence the estimated safety effects of 

explanatory variables as well as model prediction results, and ultimately influence the 

inferences drawn from the analysis of data. As road safety researchers continue to 

conduct more studies that help in exploring and understanding the relationships between 

explanatory variables and safety outcomes in detail, these issues will need to be 

addressed. This research will seek to provide key insights into these key data and 

modeling issues, and explore possible solutions. From the reviewed literature, the 

alternative approaches that will help in addressing these issues are identified.  

The daily traffic patterns (by time of day) will be estimated using the kriging 

approaches that have been applied in other fields such as air quality analysis, natural 

resource analysis, and water studies. The functional-type measurement error approaches, 

Regression Calibration and Simulation Extrapolation, will be useful in accounting for the 
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measurement error in AADT estimates while modeling the expected number of crashes. 

The prior knowledge on the safety effects of explanatory variables will be incorporated 

into the regression models of expected crash frequency using Bayesian methodological 

framework. More details on the specific methods and the data that will be used to address 

the three research questions are provided in the following sections.  



 

CHAPTER 3 

 

 

METHODOLOGY 

This section describes methods and approaches in detail that are used for 

addressing the selected observational road safety study data and modeling issues 

discussed in the previous sections. The methods described in this research are four-fold. 

The first section discusses the methods for estimating daily traffic patterns (by time of 

day). The traffic pattern estimates were then ultimately used in safety models. The second 

section describes the functional-type measurement error correction approaches that were 

employed to correct for measurement error in explanatory variables. The third section 

describes the basic safety modeling framework that was used to assess the potential 

modeling impacts of findings from the first two efforts on traffic pattern estimates and 

measurement error corrections. The fourth and final section discusses the Bayesian 

methodological framework that was used to incorporate informative priors while 

modeling expected crash frequency.  

Estimation of Daily Traffic Patterns 

For over 40 years, the research on the estimation of AADT was mostly based on 

the combined use of short-term traffic counts and factor approaches (i.e., using seasonal 

and monthly adjustment factors for different periods of the year). The fact that these 

AADT estimates have significant uncertainty, and lack information on the daily traffic 

volume patterns throughout the 24-hour day, constantly presents a challenge when 
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developing regression models of expected crash frequency. One of the most promising 

approaches for addressing this issue in the literature is the use of spatial interpolation 

methods, i.e., kriging. Kriging is one of the optimal interpolation methods used to 

estimate unknown values based on regression against observed values of neighboring 

data. This method is frequently used in the field of geostatistics to interpolate the 

unknown values. In the context of this research, kriging uses available data at existing 

traffic recorder stations to estimate traffic volumes at locations where volumes are 

unknown.  In this part of the research, kriging was used to determine whether traffic-

related measures of exposure can be developed at more disaggregate levels than annual 

average daily traffic in rural areas where the traffic volume data are limited, but traffic 

patterns during night and day are expected to have a large impacts on safety performance. 

 The first step in the process of estimating daily traffic patterns was to determine 

how to disaggregate traffic volume data throughout the year. The continuous traffic 

volume data that were used in this research was obtained from all ATR stations in Utah 

(corresponding to all facility types, and area types) for years 2009 through 2013, the 

study period. The ATR data were available through the Utah Department of 

Transportation (UDOT) website.  

 Data were collected at 15-minute intervals and stored at 1-hour intervals for 365 

days of the year. Area type, and other location information, were provided with each 

ATR station. There were some instances of incomplete traffic volume data for a variety 

of reasons (e.g., ATR is turned off, out of service), but the missing data did not impact 

the ability to conduct the spatial analysis outlined in this section. Information provided by 

these counters can be used to study the temporal variations of traffic volume, such as 
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volume by time-of-day, day-of-week, and seasonal traffic patterns. As already noted in 

the previous chapters, differences in safety performance during night and day are widely 

recognized, with fatal crash rates reported as much as four times higher at night than 

during the day. This has been attributed to differences in visibility and other driver-

related factors such as biological clock influences on driver alertness and sleepiness (68).  

 Hence, disaggregating traffic volume data by time of day, with time of day 

characterized as “day” and “night,” was a logical starting point to test the spatial 

interpolation methods in rural settings. The spatial modeling methodology used to 

estimate day and night traffic volumes at locations without ATRs consisted of the 

following three steps: 

1. Data preparation and transformation: categorize and perform exploratory data 

analysis and visual normality tests for traffic volume data collected during day 

and night at locations with ATRs. 

2. Variogram modeling and kriging interpolation: fit and select appropriate 

semivariogram models, perform kriging interpolations, and estimate kriging 

standard error. 

3. Performance assessment of the kriging method: employ K-fold cross-validation 

that involves removing 20 percent of the observed (i.e., ATR-measured) sample 

from the dataset, and then predicting the values at those locations using 

information from the remaining ATR stations.  

The following subsections describe each of these steps in detail. The first step involves 

the preparation of data for spatial interpolation; the second one involves accounting for 

spatial autocorrelation and kriging maps, while the third one involves cross-validation. 
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Data Preparation and Transformation 

For this study, as mentioned earlier, the continuous traffic volume data were 

obtained from ATRs throughout the state for 5 years from 2009 through 2013. Data were 

collected from 100 ATR stations throughout the state, with majority of the ATRs 

concentrated in the urban areas along Interstate 15 and Interstate 80. The hourly traffic 

volume data obtained from ATR stations in Utah were disaggregated into day and night 

traffic volumes based on sunrise and sunset times.  

The time period from 1.5 hours after sunset to 1.5 hours before the sunrise was 

classified as night, with the remaining hours classified as day (178-179). Lengths of day 

and night in Utah vary greatly throughout the year because of the high latitude of the 

United States.  In the middle of June, nights are approximately 6 hours long whereas in 

December, nights are about 11 hours long. To take into account this significant variation 

in day and night durations, the entire dataset was divided into four seasons corresponding 

to selected months of the year. Day and night traffic volumes were then determined 

across the entire study period. Table 1 shows the day and night times for the state of Utah 

as a function of season. 

The method of kriging was first developed by Georges Matheron and relies on the 

notion that unobserved factors are autocorrelated over space, and the levels of 

autocorrelation decline with distance (92). Kriging assumes that data exhibit stationarity, 

indicating that the correlation (covariance or semivariogram) between any two locations 

depends solely on the distance between them, not on their exact locations (180). Kriging 

generally leads to an optimum estimator and yields best results when the data are 

normally distributed. Thus, the inconsistency present in the observed data should be 

identified and fixed prior to model development and analysis. 
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Table 1 Day and Night Times by the Season of the Year 

 

Season/Month of the Year 

 

Day Time 

 

Night Time 

   
Spring: March – May 5 am – 9:59 pm 10 pm – 4:59 am 

Summer: June - August 4 am – 9:59 pm 10 pm – 3:59 am 

Fall: September - November 6 am – 7:59 pm 8 pm – 5:59 am 

Winter: December - February 6 am – 6:59 pm 7 pm – 5:59 am 

   

 

This includes detecting and removing outliers, performing normality tests using 

the observed data, and applying data transformations for non-normally distributed 

datasets. A log-transformation is very common and often used for data that have skewed 

or nonnormal distributions. To meet the assumption of data normality, the distribution in 

the histogram should be bell-shaped and the normal probability plot (normal Q-Q plot) 

should be a straight line at a 45 degree angle between the values and quantiles. In this 

research, a log-transformation was applied to day and night traffic volume data when the 

datasets did not satisfy the normal distribution assumptions. Figure 3 shows the 

frequency distribution plots and normal distribution plots for nontransformed and 

transformed data for day and night traffic volumes obtained from ATR stations in Utah.   

Variogram Modeling and Kriging Interpolation 

In addition to the traffic volume data that were obtained from all ATR stations 

across all facility types and area types in Utah, other measurable characteristics around 

the location of interest were also used in estimation of daily traffic patterns. These 

characteristics include socio-demographic characteristics, and other location 

characteristics of ATR stations that were assumed to have an impact on the traffic volume 

estimates in that area. For each ATR location, information on the number of lanes and 

functional classification was obtained from UDOT in the form of ArcGIS shapefiles. 
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Frequency Distribution and Normal Distribution Plots for Average Daily Traffic during the Day for 

Nontransformed and Transformed Data 

 
Frequency Distribution and Normal Distribution Plots for Average Daily Traffic during the Night for 

Nontransformed and Transformed Data 

 

 

Figure 3 Frequency Distribution and Normal Distribution Plots for Nontransformed 

and Transformed Data for Day and Night Traffic Volumes 
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Socio-economic data for the entire state at a census block level were obtained 

from the United States Census Bureau for the year 2010. This dataset included 

information on population counts, and household unit counts at the census block level. 

Location information available for the ATR stations was used to import the data to 

ArcGIS and to link the ATR stations to the corresponding additional information, i.e., 

number of lanes, functional classification, and socio-economic characteristics using the 

ArcGIS “spatial join” function. Descriptive statistics for the data points corresponding to 

the ATR stations are provided in Table 2. The traffic volumes to be predicted by kriging 

were assumed to depend on several observable factors (or covariates), which are linked to 

the location of interest, creating a trend estimate, 𝜇(𝑠). The spatial variables can be 

defined as shown in the following equation (82): 

𝑍𝑖(𝑠) = 𝜇𝑖(𝑠) + 𝜖𝑖(𝑠)           Equation (3) 

where: 

𝑍𝑖(𝑠) is the variable of interest at site i (in this case, day or night traffic volumes); 

𝑠 is the location of site i, determined by coordinates (x,y); 

𝜇𝑖(𝑠) is the deterministic trend (or drift); and 

𝜖𝑖(𝑠) is the random error component. 

Based on the characteristics of variable of interest, 𝑍𝑖(𝑠), there are three types of 

kriging: 1) if information on explanatory variables is lacking, is ordinary kriging; 2) if 

information on explanatory variables is available, is universal kriging; 3) if trend is 

known, is simple kriging. The universal kriging technique, where trends depend on 

explanatory variables and unknown regression coefficients, was employed in this 

research to model disaggregate traffic volumes at individual sites (𝑍𝑖(𝑠)).  
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Table 2 Descriptive Statistics of Variables Linked to ATR Stations 

Variable Description Mean 

 

Std. 

Dev. 

Min Max 

Total = 100 Observations 

      

ADT_Day 
Average daily traffic during the day 

(veh/day) 
22824 29191 428 146,411 

Ln_Day 
Log average daily traffic during the 

day  
9.27 1.35 6.06 11.89 

ADT_Ngt 
Average daily traffic during the 

night (veh/day) 
3148 4189 31 20358 

Ln_Ngt 
Log average daily traffic during the 

night 
7.19 1.49 3.44 9.92 

Num_Lane Number of Lanes 3.02 1.28 1 6 

Num_Lane3 

Indicator Variable 

1=number of lanes greater than 3 

0=otherwise 

0.61 0.49 0 1 

Func_Clas1 

Indicator Variable 

1=Interstate 

0=otherwise 

0.27 0.47 0 1 

Func_Clas2 

Indicator Variable 

1=Other Freeway/Expressway 

0=otherwise 

0.05 0.22 0 1 

Func_Clas3 

Indicator Variable 

1=Other Principal Arterial 

0=otherwise 

0.42 0.49 0 1 

Func_Clas4 

Indicator Variable 

1=Minor Arterial 

0=otherwise 

0.15 0.36 0 1 

Func_Clas5 

Indicator Variable 

1=Major Collector 

0=otherwise 

0.06 0.24 0 1 

Func_Clas6 

Indicator Variable 

1=Minor Collector 

0=otherwise 

0.01 0.10 0 1 

Func_Clas7 

Indicator Variable 

1=Local 

0=otherwise 

0.03 0.17 0 1 

Pop 
Population in the census block with 

the ATR 
46.74 92.37 0 399 

Hou 
Number of Housing units in census 

block with the ATR 
22.50 44.56 0 204 
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In this approach, 𝜇(𝑠) can be a deterministic function of any form. A simple 

assumption is to use a linear function where 𝜇(𝑠) = 𝑋𝛽, with X containing explanatory 

variables characterizing each traffic recorder station surrounding the road segment of 

interest. In addition to these variables, 𝑍(𝑠) is also influenced by “unmeasured” variables 

that influence traffic volumes at other, nearby locations due to spatial autocorrelation. 

These influences can be defined as 𝑍(𝑠 + ℎ), where h represents the distance between the 

two sites. In other words, this means that the random terms 𝜖𝑖(𝑠) are spatially correlated. 

Such spatial autocorrelation can be quantified by the semivariogram 𝛾(ℎ), defined as:  

𝛾(ℎ) =
1

2
𝑣𝑎𝑟[𝑍(𝑠 + ℎ) − 𝑍(𝑠)]                    Equation (4) 

where: 

𝑣𝑎𝑟[𝑍(𝑠 + ℎ) − 𝑍(𝑠)] is the variance of the differences between corresponding 

traffic volumes at sites s and s+h. 

Semivariogram analysis consists of the experimental semivariogram calculated 

from the data and the theoretical semivariogram model fitted to the data. In other words, 

the formula mentioned above is used to calculate the experimental semivariogram. With 

the experimental semivariogram concept defined, it was then necessary to select an 

appropriate curve, or semivariogram model that best fits the relationship between 𝛾(ℎ) 

and ℎ for a given dataset.  

As mentioned earlier, the semivariogram model in kriging does not depend on the 

actual values, but their distribution. With the construction of a perfect semivariogram 

model, the predictions will represent a better value distribution with minimum estimation 

errors. There are several commonly used theoretical semivariogram models, including 

Exponential, Gaussian, Spherical, and Matern M.Stein’s parameterization. These models 
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rely on three parameters that describe the function shape and quantify the level of spatial 

autocorrelation in the data. 

The nugget (𝑐0) is the intercept of the semivariogram with the vertical axis. The 

nugget effect reflects the discontinuity at the semivariogram’s origin, as caused by factors 

such as sampling error, or inaccuracy in the instruments used for measurement, and short 

scale variability. The range (𝑎)  determines the threshold distance at which 𝛾(ℎ) 

stabilizes, observations separated by a distance larger than the range are considered as 

spatially independent. The sill (𝑐0 + 𝑐1)  is the maximum 𝛾(ℎ) value; the higher the sill 

value, the higher the prediction variances (82).  

Figure 4 illustrates these parameters and concepts. The semivariogram properties: 

the nugget, range, and sill, can provide insights on which model fits the existing data best 

(181-182). The semivariogram model parameters were estimated using iterative 

generalized least squares regression technique and all the available software packages use 

Euclidean distances between sites to define ℎ, which can easily be determined using the 

site locations. In addition to the problem of stationarity, directionality of data is also 

found to be important (182). The spatial correlation of the set of measurements, in this 

case, traffic volume data, is often found to vary with direction, which means the data are 

anisotropic. However, in practice, it is very difficult to establish anisotropy from the data 

alone, particularly when there are fewer observations (or measurements). The open 

source software, R Studio, along with its geostatistical packages, was used to plot, fit, and 

verify the accuracy of alternative semivariogram models. All semivariogram models were 

considered to be isotropic for this analysis, meaning that the spatial autocorrelation 

structure was assumed to be the same moving outward in all directions from a site.   
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Figure 4 Illustration of Semivariogram Model (82). 

 

This means that, in this study, the spatial autocorrelation depended only on the 

distance from the site, not on the direction. Given the isotropic semivariogram model 

assumption, spatial autocorrelation as a function of distance could then be estimated 

while taking into account other selected covariates characterizing each site. The resulting 

model could be used to predict day and night traffic volumes at locations without ATR 

stations.  

Four different covariate specifications were tested when modeling the log-

transformed day and night traffic volumes: 1) a model with no covariates, 2) a model 

with one covariate (number of lanes or number of housing units), 3) a model with two 

covariates (two indicator variables for functional classification), and 4) a model with 

multiple covariates (number of lanes, population or number of housing units, and two 

indicator variables for functional classification). In addition to population and housing 

variables, other economic variables such as average income and employment status were 

also investigated in the covariate specifications. However, these variables did not have as 

strong of a relationship in the semivariogram models as population and housing variables.  
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Four semivariogram models (Exponential, Gaussian, Spherical, Matern M.Stein’s 

parameterization) for each of the four different covariate specifications were estimated 

for both the transformed day and transformed night traffic volumes (i.e., thirty-two 

models). The semivariogram parameter estimates for the “best fitting” models for each of 

the covariate specifications are shown in Table 3. The idea behind developing and 

showing four semivariogram models with different number of covariates was to provide 

the reader with additional information so that the methodology can be easily understood 

and repeated or adapted to future studies. Matern M.Stein’s semivariogram model 

provided the best fit for the first three model specifications for both day and night traffic 

volumes. For the fourth specification, the Spherical model fit the data best for day traffic 

volumes and the Gaussian model fit the data best for night traffic volumes. The fourth 

specification was finally used for further analysis (i.e., kriging prediction) in this 

research. More discussion on the reasons for selecting this model specification is 

provided in the section below.  

From Table 3, results indicate that the nugget values for Model 4 (with multiple 

covariates) for both day and night traffic volumes were less than for the other models. 

This shows that there is less variance in the observed data (due to measurement errors or 

sampling errors) for this particular covariate specification for both day and night traffic 

volumes. Based on the model fit, and semivariogram parameter estimates, Model 4 was 

selected as the final semivariogram model for all further analysis in the research, used to 

predict day and night traffic volumes. In other words, this semivariogram model 

specification with multiple covariates was used to develop kriging interpolation maps and 

estimate the standard error of predictions.  
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Table 3 Semivariogram Parameter Estimates for Models with Different Sets of 

Covariates for Transformed Day and Night Traffic Volume Data 

 

Model type with/without 

covariates 

 

Semivariogram Model 

 

Nugget (c0) 

 

Sill (c0+c1) 

 

Range (a) 

Day Traffic Volumes 

     

Model1 (No covariate) Matern M. Stein 

(kappa=10) 

0.60 2 0.30 

Model 2 (Num_Lane3) Matern M. Stein 

(kappa=10) 

0.72 1.50 0.30 

Model 3 (Func_Clas1, 

Func_Clas2) 

Matern M. Stein 

(kappa=10) 

0.40 1.60 0.30 

Model 4 (Num_lan3, Pop, 

Func_Clas1, Func_Clas2) 
Spherical 0.24 0.84 0.40 

     

Night Traffic Volumes 

     

Model1 (No covariate) Matern M. Stein 

(kappa=10) 

0.70 2.40 0.30 

Model 2 (Hou) Matern M. Stein 

(kappa=10) 

0.75 2.30 0.24 

Model 3 (Func_Clas1, 

Func_Clas2) 

Matern M. Stein 

(kappa=10) 

0.28 1.90 0.25 

Model 4 (Num_lan3, Hou, 

Func_Clas1, Func_Clas2) 
Gaussian 0.40 1.10 0.23 

     

 

The final semivariogram models and kriging interpolation maps for day and night 

traffic volume estimates, developed using Model 4, are presented in Figure 5. From the 

kriging predictions, it can be seen that the predicted values range from 6 to 12 for log-

transformed day traffic volumes and 4 to 10.5 for log-transformed night traffic volumes. 

The higher predictions of traffic volumes are represented in dark blue on the map, and are 

found in the Salt Lake City urban area.  The smaller values are represented in light 

yellow, and fall to the south of Salt Lake City in the rural areas of the State. The standard 

error estimates range from 0.5 to 1.5 for predicted (i.e., expected) log-transformed day 

traffic volumes and 0.6 to 1.5 for predicted log-transformed night traffic volumes. The 

log-transformed values for traffic volumes obtained through kriging interpolation maps 

were then back-transformed to get the actual traffic volume estimates.  
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Kriging Interpolation Maps with Num_Lane3, Pop, Func_Clas1, and Func_Clas2 as Covariates for Transformed Day 

Traffic Volume Data 

 
Kriging Interpolation Maps with Num_Lane3, Hou, Func_Clas1, and Func_Clas2 as Covariates for Transformed Night 

Traffic Volume Data  

 

 

Figure 5 Kriging Interpolation Maps for Transformed Day and Night Traffic 

Volumes Based on Selected Model 4 (Specification with Multiple Covariates) 
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Performance Assessment of Kriging Results 

A final step was implemented to determine how the kriging methods performed in 

predicting disaggregate traffic volumes at locations where the volumes were unknown. 

The performance assessments of the selected semivariogram models and kriging 

interpolation maps (identified in the previous section) were executed using a validation 

procedure known as K-fold cross-validation. In the K-fold cross-validation procedure 

implemented in R Studio, a set of measured points (20 percent of data points in this case) 

in the spatial domain were removed.  

Traffic volumes at these locations were then estimated using the selected 

semivariogram model and kriging interpolation map as though the measurements were 

not available. The process is repeated with multiple “20 percent subsamples” until all of 

the available data points are removed at least once in a subsample. The resulting K-fold 

cross-validation statistics served as diagnostics to demonstrate whether the performance 

of the selected model was acceptable. The statistics were also used to check whether the 

prediction was unbiased and as close as possible to the measured values. The variability 

of the predictions was also assessed.  

In particular, the cross-validation error, defined as the difference between the 

kriging estimate of traffic volume and the measured value, is calculated. This gives the 

‘map of errors’ and scatter plots of estimated data from the corresponding measured 

values. The cross-validation diagnostics for the selected model (i.e., Model 4) for day and 

night traffic volume predictions are provided in Table 4. The cross-validation statistics 

show that the correlation between observed and predicted values is positive and close to 

one for both day and night volumes, which means that the predictions matched observed 

values from a directional and order of magnitude perspective.  
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Table 4 K-fold Cross-Validation Diagnostics for Transformed Day and Night 

Traffic Volumes Based on Selected Model 4 (Specification with Multiple Covariates) 

 
K-fold Cross-Validation Diagnostics for Model 4 Day Night 

    

mean_error The mean of cross-validation residual -0.0271 -0.0366 

me_mean 
Mean error divided by the mean of observed 

values 
-0.0029 -0.0050 

MSE Mean squared error 0.6674 0.8238 

MSNE Mean squared normalized error 1.1230 1.1340 

cor_obspred 
Correlation between observed and predicted 

values 
0.7963 0.7918 

cor_predres 
Correlation between predicted and residual 

values 
-0.0187 -0.0020 

RMSE Root mean squared error of residual 0.8169 0.9076 

RMSE_sd 
RMSE divided by the standard deviation of 

observed values 
0.6023 0.6083 

URMSE Unbiased root mean squared error of residual 0.8165 0.9069 

iqr Interquartile range of residuals 0.8149 0.9214 

    

 

The diagnostics also show that the correlation between predicted and residual 

values is close to zero, and the mean of the cross-validation residuals is very small, and 

close to zero. The bubble plots from the cross-validation procedure applied to Model 4 

for both day and night traffic volume predictions are shown in Figure 6. These bubble 

plots show that most of the higher positive and higher negative values of residuals are 

concentrated in the Salt Lake City urban area. The smaller positive and negative values of 

residuals in the bubble plots fall to the south of Salt Lake City in the rural areas of the 

State of Utah.   

Based on the semivariogram model diagnostics, kriging model predictions, and 

cross-validation statistics, the final models with multiple covariates (i.e., Model 4) 

perform reasonably well in predicting day and night traffic volumes throughout the State. 

As mentioned earlier, the back-transformed values of day and night traffic volume 

predictions (obtained from Model 4) were then used in statistical road safety regression 

models of expected number of crashes at rural, two-lane horizontal curves.  
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Cross-Validation Bubble Plot for Transformed Day 

Traffic Volume Data 
Cross-Validation Bubble Plot for Transformed Night 

Traffic Volume Data 
 

 

 

 Figure 6 Cross-Validation Bubble Plots for Transformed Day and Night Traffic 

Volumes Based on Selected Model 4 (Specification with Multiple Covariates) 

This analysis resulted in more information on the daily traffic patterns in an area, 

which aids in increasing the knowledge on how the expected number of crashes change 

as the traffic patterns change. The major disadvantage to cross-validation error estimation 

is that no error information was available for locations where there are no stations (i.e., 

where no observed traffic volume data are present). Hence, this cross-validation study 

provided estimations of errors for the traffic volumes where the ATR stations were 

present. There is still room for improvement in the predictions of day and night traffic 

volumes, and future directions in improving these kriging model predictions are 

discussed in the last chapter of this dissertation, ‘Conclusions and Recommendations’.  

Measurement Error Correction Approaches 

This section presents a methodology for modeling expected number of crashes 

while accounting for measurement error in the AADT estimates. Acknowledging that 

both functional and structural-type measurement error correction strategies can be used to 

correct for measurement error, the methodology in this research focuses on functional-

type measurement error approaches. Functional type approaches do not require any 
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distributional assumptions for the unobserved (or true) explanatory variable, whereas the 

structural approaches do require a parametric distribution for the unobserved (or true) 

explanatory variable. In other words, if the unobserved variable, i.e., true value of AADT, 

is regarded as an unknown constant, then functional approaches should be applied. Since 

measurement error correction methods are scarcely applied in the field of road safety, 

functional type approaches are a good starting point for exploring and understanding the 

effects of measurement error in regression modeling of expected crash frequency, with 

structural approaches as logical follow-ons for future research work.  

The statistical concepts and theory behind applying these functional-type 

approaches are discussed in this section. The most common practice in statistical 

research, as well as applied research, is to implement only one measurement error 

correction approach and to contrast the results before and after the measurement error 

correction is applied (114). Since these approaches heavily rely on assumptions, this 

study explores and implements two different functional-type approaches and compares 

the results between the two approaches.  

In modeling the expected number of crashes, significant uncertainty (or 

measurement error) in right-hand side variables, specifically AADT estimates, has been a 

long-term concern. The impact of this measurement error on the ability to quantify the 

relationship between all explanatory variables and expected number of crashes is likely 

substantial and could result in significantly biased regression coefficient estimates. The 

fundamental prerequisite to adjust for measurement error is to clearly define the structure 

of the measurement error. The basic type of measurement error, i.e., classical 

measurement error, where the true value is measured with additive error, is assumed to 
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be present in the AADT estimates in this research. In detail, the true value (𝑋𝑖) of the 

AADT estimates (also referred to as latent variable) is unobservable, and let 𝑊𝑖 denote 

the observed values of the AADT estimates, sometimes referred to as a surrogate 

variable. The classical measurement error model can be expressed as given in the 

following equation: 

𝑊𝑖 = 𝑋𝑖 + 𝜀𝑖                       Equation (5) 

where: 

𝑊𝑖 = observed value of the AADT estimates for the roadway segment i; 

𝑋𝑖 = unobserved (or true) value of the AADT estimates at the roadway segment i; and 

𝜀𝑖 = measurement error, an independent variable with mean zero and usually a 

constant variance. 

Regression Calibration and Simulation Extrapolation are two functional-type 

approaches to measurement error analysis that are widely applied in epidemiological 

studies that can likely be applied to road safety research. They were applied in this study 

to determine the impacts of ignoring measurement errors on statistical road safety 

modeling results and to determine the impacts of making measurement error corrections 

on safety effects estimates of selected right-hand side variables. The basis and 

methodology of Regression Calibration and Simulation Extrapolation are described in the 

following sections. 

Regression Calibration 

Regression Calibration (RCAL) is a standard method for correcting bias in 

regression coefficient estimates due to measurement error. It has become popular because 

of its simplicity in application to any type of regression model (122,124,183-184). The 
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basis for the RCAL algorithm in measurement error analysis is the construction of the 

calibration model for generation of estimated covariate values for the unknown true 

covariates (120). This is accomplished using replication, validation, instrumental data, or 

measurement error variance in the place of unknown true covariates. The unobserved 

covariates are represented by their predicted values, and then a standard analysis is 

conducted to obtain the parameter estimates. Finally, the resulting standard errors are 

adjusted to account for the estimation of the unknown covariates, using either bootstrap 

or sandwich methods (41,120). In summary, RCAL method is implemented by 

substituting the unobserved 𝑋𝑖 with its expectation given the surrogate 𝑊𝑖 and then 

performing the standard analysis (107).  

The true covariate (or explanatory variable) subjected to measurement error is 𝑋𝑖, 

observed values for 𝑋𝑖 are represented by 𝑊𝑖, covariates measured exactly are Z (𝑥𝑖𝑗), 

and the response variable is 𝑌𝑖 (𝐸[𝐶𝑟𝑎𝑠ℎ𝑒𝑠𝑖]). The RCAL method replaces 𝑋𝑖 by the 

regression of 𝑋𝑖 given 𝑊𝑖 and Z as an approximation, i.e., E (𝑋𝑖 |Z, 𝑊𝑖), and then 

performs a standard analysis. The regression of 𝑌𝑖 on E (𝑋𝑖 |Z, 𝑊𝑖) and Z then gives 

unbiased estimates (185).  

Modeling and estimating the regression of 𝑋𝑖 on (Z,𝑊𝑖) requires additional data 

in the form of internal/external replicate observations, instrumental variables, or 

validation data. However, in the context of traffic volumes (i.e., AADT estimates), a 

calibration function cannot be constructed using replicated or validation data because the 

short-term counts collected in the field are not representatives of the true annual average 

daily traffic volume throughout the year. Also, collecting traffic volume data for the 

typical safety study duration (3-6 years) in rural areas is likely impractical. Hence, 
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measurement error variance (𝜎𝑢
2) in Log AADT estimates was used for modeling and 

estimating the regression of 𝑋𝑖 on (Z,𝑊𝑖). In summary, regression calibration estimation 

in this study consisted of the following primary steps: 

1. Use the observed values of 𝑋𝑖, i.e., 𝑊𝑖, the measurement error variance (𝜎𝑢
2
), and 

the error-free variables Z , to estimate the regression of  𝑋𝑖;  

2. The estimate of 𝑋𝑖 obtained from the above regression is  𝑋𝑖*; and  

3. Run a standard analysis, i.e., regress 𝑌𝑖 on (Z, 𝑋𝑖*) to obtain regression coefficient 

estimates that account for measurement error. 

Simulation Extrapolation 

SIMEX is another general measurement error correction method that shares the 

simplicity, generality, and approximate-inference characteristics of the RCAL method, 

and is suitable for problems with additive measurement error. This method is a 

simulation-based method of estimating and reducing bias due to measurement error 

(41,125). SIMEX consists of a ‘simulation step’ and an ‘extrapolation step’, and is 

particularly useful for complex models with simple measurement error structures (114). 

The estimates are obtained by adding additional measurement error to the data in a 

resampling-like stage, and establishing a trend (or a simple bivariate plot) of 

measurement error-induced bias versus the added measurement error variance via a 

simulation study. Once the trend is established, the final estimates are obtained by 

extrapolating this trend back to the case of no measurement error (125,186). In summary, 

SIMEX is a self-contained simulation method, and its computational cost is high. SIMEX 

estimation in this study consisted of the following steps (187-188): 

1. In the first step, which is also known as the simulation step, additional 
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measurement errors are generated and added to the error-prone variable, 𝑊𝑖. If the 

existing measurement error variance of 𝑊𝑖 is 𝜎𝑢
2, and the additional measurement 

error variance added is 𝛌𝜎𝑢
2, then the total measurement error variance is 

(1 + 𝛌)𝜎𝑢
2
.  

2. In the second step, regression coefficient estimates for error-prone explanatory 

variable (𝑊𝑖) are obtained for this increased measurement error and the process is 

repeated 1000 times (this is where Monte Carlo simulation comes into place). 

This is done using an algorithm that would have been used if there were no 

measurement error (naïve estimation). 

3. After these two steps are repeated 1000 times, the average value of the estimate 

for each value of𝛌is calculated. The average values of the regression coefficient 

estimates are plotted against the variance of the additional measurement error 

values and the resulting graphical displays containing an extrapolated function 

with error-contaminated regression coefficient estimates is obtained. By default, 

STATA software fits a quadratic model to model the trend. 

4. The fourth and final step involves extrapolation to the ideal case of no 

measurement error, where the value of 𝛌 = -1 (i.e., total measurement error 

variance equals zero). This results in a SIMEX regression coefficient estimate for 

all the explanatory variables, when there is no measurement error. 

As mentioned earlier, an estimate of the measurement error variance was required 

before the two measurement error correction methods were applied. This estimate is 

usually derived by considering deviations from a ‘gold standard’ value, through 

collecting additional data. A gold standard value or the feasibility of collecting additional 
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traffic volume data in rural areas is not likely to be available in road safety studies. 

Hence, a good starting point was to use previous research and findings on the 

measurement error variance in AADT estimates. Ezra Hauer identified one of the studies 

that estimated the percent coefficient of variation, using number of count days, and 

AADT estimates as shown in the following equation (27): 

𝑣 = 1 +
7.7

(𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑜𝑢𝑛𝑡𝑑𝑎𝑦𝑠)
+

1650

𝐴𝐴𝐷𝑇0.82
                                                          Equation (6) 

where: 

𝑣 = coefficient of variation, i.e., ratio of standard deviation and the mean; and 

AADT = annual average daily traffic. 

The general formula for coefficient of variation in lognormal distribution is as 

follows: 

𝑣 = √𝑒𝑆𝐷
2
− 1                                                                                                  Equation (7) 

where: 

𝑣 = coefficient of variation of 𝑊𝑖; and  

𝑆𝐷 = standard deviation of log (𝑊𝑖), where 𝑊𝑖is the value of the observed AADT    

estimates for a roadway segment i.  

Using Equations 6 and 7, the coefficient of variation is determined using the 

number of count days and the observed AADT estimates (i.e., 𝑊𝑖), and the standard 

deviation of Log AADT estimates is back calculated. The squared value of the standard 

deviation was the measurement error variance, 𝜎𝑢
2 that was used to apply measurement 

error correction methods in this research. However, the information on the number of 

count days for AADT estimates of the roadway segments was not available to calculate 

the coefficient of variation objectively (i.e., using the real data). Since the values of the 
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variables for the estimation of measurement error variance were unclear, a sensitivity 

analysis is conducted using the count day values from 2 to 7 days, along with the 

available AADT estimates to calculate the measurement error variance.  

This resulted in several coefficients of variation values, and back calculating those 

values resulted in the measurement error variance values that fell in between the values of 

0.05 and 0.20. Hence, this research evaluated the impacts of making measurement error 

corrections on safety effects estimates of explanatory variables by using the measurement 

error variance values (i.e., in AADT estimates) of 0.05 to 0.20, with increments of 0.05, 

resulting in four different values in this part of the analysis. The hypothesis is that the 

application of these two measurement error correction approaches, RCAL and SIMEX, 

will correct the bias in all the explanatory variables, caused by error-prone AADT 

estimates in regression models of expected crash frequency.  

A convenient feature of the two measurement error approaches is that standard 

software can be used for estimation. The analysis was implemented using the ‘rcal’ 

function and ‘simex’ function in STATA software, respectively, and the known 

measurement error variance was defined as a matrix that was used to generate the 

parameter estimates and standard errors accounting for measurement error in AADT 

estimates. In other words, the measurement error variable (i.e., in AADT estimates) with 

mean zero and constant measurement error variance (four different values) was employed 

in this research along with RCAL and SIMEX methods to correct for the bias due to 

measurement error.   

The inference for standard error estimation for both measurement error correction 

approaches in this research was done using the bootstrap method. Bootstrapping 
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technique refers to any test that relies on random sampling with replacement. The 

standard errors are assigned to the sample parameter estimates and this technique results 

in an estimation of the sampling distribution of the standard error of the parameter 

estimates. In this research, the standard error estimates were obtained from 1000 

bootstrap simulations of the data. It is worth noting that, specifically for SIMEX, the 

bootstrapping was particularly time consuming, particularly given the simulation step 

generating 1000 Monte Carlo simulations for the measurement error variance before 

estimating the standard errors via the bootstrap method.  

The major difference between the two approaches is that the RCAL approach 

attempts to estimate the unknown true covariate and then run a standard analysis using 

the approximant in the place of unknown true covariate. SIMEX simulates data in order 

to see the effect of measurement error on the regression coefficient estimates, and then 

extrapolates the trend back to the results where the covariate has no measurement error. 

The parameter estimates and standard errors obtained from both measurement error 

correction approaches were presented in the ‘Results’ chapter and were useful in 

understanding the strengths and limitations of both the approaches. As mentioned earlier, 

these methods were used to evaluate the impacts of making measurement error 

corrections on the safety effects estimates of selected explanatory variables in regression 

models of expected crash frequency. 

Safety Modeling Framework for Assessing Model Impacts of Traffic               

Pattern Estimates and Measurement Error Corrections 

This section explains the basic safety modeling framework that was used to assess 

the potential modeling impacts of findings from the first two efforts on traffic pattern 

estimates and measurement error corrections. The method for modeling expected crash 
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frequency, given the fact that crashes are count outcomes and the variance of crash 

counts is almost always greater than the mean (or overdispersion), is presented in this 

section. The modeling process was primarily focused on including information related to 

roadway geometrics (i.e., horizontal and vertical curve attributes), operational 

characteristics (i.e., traffic volume information), roadside features, and weather 

conditions, which are assumed to potentially have an impact on road safety. The datasets 

containing the explanatory and response variables required for road safety analysis are 

described in the next chapter, ‘Data Collection’. 

Modeling Crash Data 

The process of modeling crash data started from most frequently used regression 

models of expected crash frequency. This dissertation describes the process of variable 

inclusion or elimination to obtain the ‘best’ model specifications for the dependent 

variables (i.e., crash outcomes). Since crashes are count outcomes, the Poisson regression 

model was a common starting point in the crash frequency modeling process. These 

regression models were used by road safety researchers for crash frequency analysis for 

several decades. The Poisson regression models assume that the mean and variance of the 

crash frequency distribution are equal. In a Poisson regression model, the probability of a 

roadway segment having crashes per some time period is given by the following 

equation:  

𝑃(𝑦𝑖) =
𝐸𝑋𝑃(−𝜇𝑖)𝜇𝑖

𝑦𝑖

𝑦𝑖!
                                                                                          Equation (8) 

where: 

𝑃(𝑦𝑖) = probability of a roadway segment i having 𝑦𝑖 crashes per some time period; 

𝜇𝑖 = Poisson parameter for a roadway segment i, which is equal to roadway 
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segment’s expected number of crashes per some time period (i.e., E[𝑦𝑖]; and 

𝜇𝑖 = 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑗𝑥𝑖𝑗)                                                     Equation (9) 

where: 

𝜇𝑖 = dependent variable, expected number of crashes for a roadway segment i; 

𝑥𝑖𝑗 = independent, explanatory variables specifying traffic, geometric, and other 

characteristics of a roadway segment i; 

𝛽𝑗 = regression parameters to be estimated that quantify the relationships between the 

explanatory variables and expected number of crashes (i.e., 𝜇𝑖); and 

𝛽0 = intercept (or constant term). 

Although road safety researchers have earlier used Poisson model for crash 

frequency analysis, they often found that the characteristics exhibited by crash data make 

the application of Poisson model problematic. Specifically, Poisson regression models do 

not handle overdispersion (variance greater than the mean) and can produce biased 

results, if used otherwise (36). The negative binomial (NB) regression model is an 

extension of the Poisson model to account for the presence of possible overdispersion in 

the data. However, the NB models cannot handle underdispersed data and pose problems 

in the estimation of the dispersion parameter when the data are characterized by low 

sample mean values and small sample sizes (29,36).  

The negative binomial regression model is derived by rewriting the Poisson 

parameter as follows: 

𝜇𝑖 = exp(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑗𝑥𝑖𝑗 + 𝜀𝑖)                                           Equation (10) 

where: 

𝜇𝑖 = dependent variable, expected number of crashes for a roadway segment i; 
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𝑥𝑖𝑗 = independent, explanatory variables specifying traffic, geometric, and other 

characteristics of a roadway segment i; 

𝛽𝑗 = regression parameters to be estimated that quantify the relationships between the 

explanatory variables and expected number of crashes (i.e., 𝜇𝑖); 

𝛽0 = intercept; and 

𝜀𝑖 = random error term, where exp (𝜀𝑖) is a gamma-distributed error term with mean 1 

and variance 𝛼. In the NB-2 model, the variance in the number of crashes is written 

as 𝜇𝑖 + 𝛼𝜇𝑖
2, with 𝛼 referred to as the dispersion parameter.  

The negative binomial regression model was used to help answer the first and 

second research questions in the dissertation on the modeling impacts of findings from 

the first two efforts on traffic pattern estimates and measurement error corrections. The 

analysis for these two studies seeks to compare general findings, parameter estimates, and 

other model properties resulting from estimation of the regression models for expected 

number of crashes. For the study on daily traffic patterns, the negative binomial 

regression model was used to explore the magnitude and direction of parameter estimates 

for variables representing new information (i.e., day and night traffic volumes), to better 

understand the impacts of these estimates on expected number of crashes. The negative 

binomial regression model was also useful to compare the model performance (i.e., 

pseudo R-squared value, dispersion parameter) for models with and without the new 

information, to see if the model benefits from including the new information.  

For measurement error corrections, the intent of using negative binomial model 

was to attempt to characterize the impacts and benefits of using functional type 

measurement error correction approaches in regression models of expected crash 
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frequency. This was done by comparing parameter estimates that quantify the 

relationships between the expected number of crashes and several explanatory variables, 

and the standard errors of the estimates in the regression models. The whole focus of the 

methodologies and interpretation in this dissertation was not only on the specific 

parameter estimates themselves (i.e., the magnitude of the parameter estimates), but was 

also on exploring and demonstrating the effect of application of these alternative 

approaches on the results of observational road safety studies. 

Bayesian Framework with Informative Priors 

This part of the research, as mentioned earlier, was motivated by an issue 

frequently encountered in road safety research. A majority of the road safety studies let 

the statistical diagnostics drive the functional form, estimation results drive the 

interpretations, and ‘start over’ with each study to see which model functional form fits 

the existing data best. In other words, statistical road safety modelers usually rely only on 

the data at hand to estimate model coefficients; they do not explicitly incorporate prior 

knowledge and end up ‘starting over’ the model specification and estimation process with 

each subsequent study. Hence, a choice of appropriate model functional form that 

provides reliable associations between explanatory variables and crash outcomes is less 

clear in road safety research (34).  

Accommodating accumulated knowledge from past research is virtually 

impossible with conventional frequentist approaches unless the past and present data are 

combined to make it one complete dataset (134). This section presents a Bayesian 

approach, in which the current data along with prior information are incorporated into the 

analysis to make stronger statistical inferences on the parameter estimates of the selected 
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right-hand side variables. This is hoped to ultimately help in drawing inferences on 

converging functional forms in regression models of expected crash frequency. Unlike in 

the frequentist approaches, the incorporation of prior information, i.e., expert opinions or 

criteria, and information from previous rigorous and well-defined observational studies is 

possible in the Bayesian framework through assigning prior distributions to the 

parameters.  This portion of the research explored how incorporating prior knowledge of 

the safety effects of explanatory variables (i.e., regression coefficient estimates) into 

Bayesian model formulations yielded different conclusions with respect to model 

prediction results and safety effects estimates of selected right-hand side variables. 

A large portion of previous road safety studies that employed a full Bayes 

approach as an alternative to the maximum likelihood estimation used noninformative 

priors to analyze the crash data. This lets the data ‘speak for itself’ and does not involve 

any subjectivity in the model estimation. However, there are examples of successfully 

incorporating informative priors with respect to the inverse dispersion parameter, and 

countermeasure effectiveness reported in previous studies, involving subjectivity in the 

model estimation (149,189-190).  

These authors found that specifying informative priors from previous studies can 

result in more robust estimates under certain circumstances. However, these estimated 

priors changed from one study (or researcher) to another, because there is some level of 

subjectivity involved in selecting and weighting the studies that produce an informative 

prior (190). Consequently, the statistical inferences drawn from these different 

informative priors will be different. Because of this, some authors have stated that the 

complexity of Bayesian methods, specifically with informative priors, is a serious barrier 
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to their application (36).  

This dissertation further explored the use of prior knowledge along with the 

current data in interpreting the safety effects estimates of selected right-hand side 

variables and model prediction results. Keeping the problem statement in mind, Bayesian 

approach with an informative prior on the model parameters was employed in the current 

study. However, the noninformative and semi-informative priors were also employed in 

this study to draw comparisons between the results obtained from different types of 

priors. The Bayesian logic combines the ‘subjective’ or prior knowledge, typically in the 

form of statistical prior distributions, with ‘objective’ current information or data to 

derive meaningful posterior distributions. Bayesian statistics is built on Bayes’ rule which 

defines the change in the probability of an event A after another event B occurs, and the 

philosophy of regarding the model parameters as random variables.  

Given a model parameter 𝜃, the random variable X follows a distribution with 

density, 𝑓(𝑥|𝜃) (191). In the Bayesian analysis approach, the posterior distribution of 𝜃 

given x is proportional to the product of the prior distribution of parameter 𝜃 and the 

likelihood (or sample information). The relative weights of the likelihood and prior are 

determined by the variances of the prior distributions, with smaller variance resulting in a 

greater weight of the prior towards determining the posterior (192). Furthermore, the 

conditional distribution of 𝜃 given the sample observations (or data) x is given as the 

posterior distribution of 𝜃 given x, denoted by 𝜋(𝜃|𝑥), shown in the following equation:  

𝜋(𝜃|𝑥) =
𝑓(𝑥|𝜃)𝜋(𝜃)

∫𝑓(𝑥|𝜃)𝜋(𝜃)𝑑𝜃
                                                                                    Equation (11) 

where: 

𝜋(𝜃) = prior distribution of parameter 𝜃;  
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𝑓(𝑥|𝜃) = likelihood function; observed data given parameter 𝜃;  

𝜋(𝜃|𝑥) = posterior distribution of parameter 𝜃 given observed data; and 

the denominator represents the marginal likelihood. 

The process of making posterior inferences takes advantage of the Markov Chain Monte 

Carlo (MCMC) methods to overcome the computational complexity and difficulties in 

the Bayesian analysis approach (190). 

The Bayesian analysis approach in this research assumes a Poisson-Gamma 

model for the analysis of crash data. The Poisson-Gamma model can be described 

mathematically as shown in the following equation: 

𝑦𝑖 = Poisson(𝜇𝑖)                                                                                             Equation (12) 

where: 

𝑦𝑖 is the observed number of crashes for a roadway segment i; and 

𝜇𝑖 is the expected crash frequency for a roadway segment i. 

However, the expected crash frequency can be expressed as a function of the contributing 

factors for crash frequency and a multiplicative random effects component, which is 

shown in the following equation (149,190): 

𝜇𝑖 = 𝜃𝑖 ∗ 𝜏𝑖                                                                                                       Equation (13) 

where: 

𝜃𝑖 = a function of the contributing factors for crash frequency; and 

𝜏𝑖 = multiplicative random effect that is assumed to be gamma distributed with mean 

1 and variance of 1/∅; where ∅ is the inverse dispersion parameter (193).  

In addition, the inverse dispersion parameter is also assumed to follow a gamma 

distribution with shape and scale parameters, a and b, respectively (i.e., 
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∅~gamma(𝑎, 𝑏)). The mean and variance for the inverse dispersion parameter are as 

given in the following equations:  

Mean(∅) = 𝑏𝑎                                                                                                Equation (14) 

Variance(∅) = 𝑏2𝑎                                                                                       Equation (15) 

where:  

a, b are the shape and scale parameters, respectively.  

Given that the inverse dispersion parameter follows gamma distribution, the dispersion 

parameter will follow an inverse gamma distribution, i.e., 
1

∅
~Inversegamma(𝑎,

1

𝑏
)). The 

mean and variance for the dispersion parameter are as shown in the following equations:  

Mean (
1

∅
) =

(
1

𝑏
)

(𝑎−1)
                                                                                            Equation (16)                         

Variance (
1

∅
) =

(
1

𝑏
)2

(𝑎−1)2(𝑎−2)
                                                                             Equation (17) 

where: a, 1/b are the shape and scale parameters, respectively.  

These Poisson-Gamma models differ from the traditional Poisson regression in the sense 

that the Poisson-Gamma models can overcome the overdispersion issue that often exists 

in the crash data. 

As mentioned earlier, the Bayesian philosophy asserts that almost always 

something is known or expected about model parameters before estimation (192). A 

substantial amount of published research is available that quantifies the relationship 

between some of the explanatory variables and expected number of crashes. Among all 

the explanatory variables, some of the variables are used more often than others in safety 

models because road safety researchers have access to the data pertaining to these 

variables. The variables include traffic volume, segment length, shoulder width, lane 
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width, and horizontal curvature attributes like radius or degree of curvature among many 

others (164-166,194-195). In this study, the prior distributions for the selected 

explanatory variables were constructed using accumulated knowledge, i.e., regression 

coefficient estimates of the selected explanatory variables from previous rigorous and 

well-defined observational studies. The data and prior distributions corresponding to 

these selected explanatory variables were used to apply Bayesian analysis using the 

MCMC methods, and WinBUGS software.  The methodology of constructing prior 

distributions from the previous studies is described in detail in the next section. 

Incorporating Prior Information 

 Incorporating prior information is one of the most critical issues in Bayesian 

analysis. After having the cumulative body of past research, a decision has to be made as 

to how to include this information (i.e., regression coefficient estimates of explanatory 

variables from previous studies) in the form of a prior in Bayesian analysis. One option 

that is used by (196) in the field of clinical trials and that has been applied in the current 

study was to assume that all the regression coefficient estimates obtained from different 

studies, 𝜌𝑖, for a particular variable are similar to a common value 𝜌𝑐. Under this 

assumption, the 𝜌𝑖 may be regarded as independently drawn from a common random 

distribution. In this case, it was appropriate and convenient to assume that the observed 

regression coefficients for a particular explanatory variable were drawn from a normal 

distribution, which is shown in the following equation:  

𝜌𝑖~𝑁(𝜑,𝜔
2)                                                                                                    Equation (18) 

where: 

𝜌𝑖 are the regression coefficients of a particular explanatory variable obtained from 
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previous studies; 

𝜑 is the mean; and 𝜔2 is the square of the standard error of the sample containing the 

regression coefficients estimates from previous studies. 

Three types of priors were used in this study for employing Bayesian analysis: 

Noninformative priors, semi-informative priors, and informative priors. The detailed 

description on the three types of priors is given in the below section. 

a) Noninformative Priors  

 These priors are also called vague priors, and are the most commonly used priors 

in the field of road safety research. These priors carry virtually no information about 

the likely true value of a parameter. They preserve the objectivity of the analysis, by 

giving maximum weight to the likelihood and minimum weight to the prior in the 

determination of the posterior distribution. In other words, the data itself will lead to 

the estimation of the parameter estimates of right-hand side variables and the 

importance of the prior will be minimized.  

 For the right-hand side variables mentioned above (i.e., traffic volume, segment 

length, shoulder width, lane width, and degree of curvature), noninformative priors 

were generated and used in this research. According to the previous literature, for 

regression parameters representing the explanatory variables and the intercept (or 

constant term), a normal distribution with mean zero and a large variance of 1000 was 

used to signify the noninformative prior. Similarly, the inverse dispersion parameter 

with mean value of one and a large variance 1000 (i.e., shape parameter of 0.001 and 

scale parameter of 1000) were used in these types of priors for Bayesian 

methodological framework (190).  
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b) Semi-informative Priors 

 In this study, a semi-informative (or weakly informative) prior was defined as a 

prior distribution that carried more information than a noninformative prior, but 

deliberately carried a smaller degree of information than was actually available. 

These priors were not considered to be overly objective, like the noninformative 

priors, but were not considered as totally subjective either. These priors give a 

majority of the weight to the likelihood (or data) and minimum weight to the prior in 

the determination of the posterior distribution. The purpose of using semi-informative 

priors rather than noninformative priors was typically to achieve some stabilization in 

the MCMC sampling estimation procedure. In this study, for the explanatory 

variables and intercept term, a normal distribution with the mean calculated from the 

sample of previous studies, and a variance of 100 was used to signify the semi-

informative prior.  

 For the inverse dispersion parameter, a gamma distribution with the mean value 

calculated from the sample of previous studies, and a variance of 100 was used in 

these types of priors. More information on the calculation of mean of the parameter 

estimates for each of the explanatory variables, intercept, and inverse dispersion 

parameter from previous studies is given in the ‘selection and weightage assignment 

for previous studies’ section.   

c) Informative Priors 

 An informative prior was defined as a prior distribution that carries a 

distinguishable and larger degree of information than a semi-informative prior. The 

purpose of using these types of priors was to fully utilize and mix prior (or external) 
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knowledge about the parameters with the data. These priors introduce subjectivity in 

the analysis, by incorporating prior information on parameter estimates of selected 

explanatory variables, intercept term, and inverse dispersion parameter. The 

informative priors usually have a greater impact on the posterior distributions when 

compared to the noninformative or semi-informative priors. The subjective nature and 

the greater impact of these priors on the posterior distributions and results are the 

reason for their underutilization in the field of road safety research. In this study, for 

the explanatory variables and intercept term, a normal distribution with the mean and 

variance calculated from the sample of previous studies was used to signify the 

informative prior. Similarly, for the inverse dispersion parameter, a gamma 

distribution with the mean and variance calculated from the sample of previous 

studies was used to define the informative prior. The selection and weightage 

assignment for the previous studies which were used to calculate the mean and 

standard error for the selected explanatory variables, intercept, and inverse dispersion 

parameter is illustrated in the next section.  

Selection and Weightage Assignment for Previous Studies 

 The studies were first selected based on the condition that the study setting was 

rural, two-lane highways, and the safety models included the selected explanatory 

variables for the analysis of expected total crash frequency. The Bayesian methodology 

incorporating semi-informative and informative priors consisted of the following two 

steps:  

1. Study Selection and Weightage: select previous research involving the selected 

explanatory variables and weight the studies based on the methodology and 
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statistical rigor; and 

2. Weighted Statistic Calculation: calculate the weighted mean and standard error 

(i.e., square root of the variance) for the assumed prior distribution for the sample 

of parameter estimates for selected explanatory variables, intercept term, and 

inverse dispersion parameter.  

  For the first step, this study assumed that all the available regression coefficient 

estimates from the previous studies differ in their quality, confidence in the results, and 

relevance to the study setting. Hence, to account for these differences and give more 

weightage to the most relevant studies and lesser weight to the lesser relevant previous 

work, this dissertation employed a subjective rating approach adapted from the Crash 

Modification Factors (CMF) clearing house star rating system (197). According to this 

system, the star rating was based on a scale (1 to 5), where a 5 indicates a statistically 

rigorous and robust study with highest reliability and a 1 indicates the least reliable study.  

  The rating was based on five different categories, with each category having three 

different options on which the score is based. The five different categories were: 1) study 

design, 2) sample size, 3) standard error, 4) potential bias, and 5) data source, with the 

three options for each category being excellent, fair, and poor (197). For more detailed 

information on the relative rating and categories, please refer to the CMF clearing house 

website. The total subjective score was calculated from the following equation and star 

rating (i.e., 1 to 5) was given as per the scores obtained for each previous study (197).  

Score = (2 ∗ SD) + (2 ∗ SS) + SE + PB + DS                                               Equation (19) 

where: 

 SD = Study Design;  
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 SS = Sample Size; 

 SE = Standard Error; 

 PB = Potential Bias; and 

 DS = Data Source 

  After assigning the star rating (from 1 to 5) for all the previous studies selected, 

the study weights were assigned based on the CMF star rating score. In other words, if 

the star rating for a study was 5, a weightage of 1 was given for the study. The study with 

a star rating of 1 was given a weightage of 0.2, i.e., the weights were assigned with 

decrements of 0.2 from a star rating of 5 to 1. Hence, a study with a star rating of 5 (i.e., a 

weight of 1) indicates a rigorous and reliable study, and the study with a star rating of 1 

(i.e., a weight of 0.2) indicates a weak and less reliable study. This way, the most relevant 

studies were given more weightage when compared to the less reliable studies, while 

calculating the mean and standard error for the sample parameter estimates obtained from 

those studies, which is the second step. The weighted mean and the weighted standard 

error for the parameter estimates were calculated for all the variables, using the following 

equation: 

𝑃𝑤 =
∑ 𝑤𝑖𝑥𝑖
𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

                                                                                                   Equation (20) 

where: 

𝑃𝑤 = weighted mean, or weighted standard error; 

𝑤𝑖 = weight for the study with ith observation;  

𝑥𝑖 = value for the ith observation; and 

N = number of total observations (i.e., regression parameter estimates and standard 

errors, in this case). 
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 In this process of calculating the weighted mean and weighted standard error, the 

regression coefficient estimates along with the standard error (or t-statistic) were obtained 

from the previous relevant studies. For some studies with no standard error information 

for the parameter estimate, t-statistic was used to calculate the standard error (i.e., 

standard error being the ratio of parameter estimate and t-statistic). The studies with the 

parameter estimates, standard errors for selected explanatory variables, intercept term, 

and dispersion parameter, along with the CMF scores, star rating values, and the 

weightage for the previous studies calculated based on the above mentioned approach are 

given in Table 5. The error bar plots containing the mean and the standard errors for the 

selected explanatory variables, intercept, and dispersion parameter are shown in Figure 7 

through Figure 10.   

MCMC Techniques and Model Fit 

In this study, the Bayesian models incorporating three different types of priors 

were estimated using Markov Chain Monte Carlo (MCMC) methods. MCMC is a 

sampling-based approach to estimation that is well suited for Bayesian models (192). 

MCMC techniques provide a way of simulating from complex distributions by simulating 

from Markov chains which have the target distributions as their stationary distributions 

(198). The Gibbs sampler (a widely used MCMC technique), which enables simulation 

from multivariate distributions by simulating only from the conditional distributions, was 

used in this research. In each case of the type of prior, 11000 iterations of the algorithm 

were carried out, of which the first 4000 iterations were regarded as burn-ins and 

discarded from the simulations. These burn-ins were used to check if the chains had 

converged, before the posterior distributions were estimated. 
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Table 5 Summary of Previous Research and Weights Based on CMF Clearing 

House Score and Star Rating 

Authors/Brief Study 

Description 

Coeff. 

Estimate 

Std. 

Error 

CMF Score/ 

Star Rating/ 

Weightage 

Weighted 

Mean 

Weighted 

Standard 

Error 

 

Logarithm of AADT 

Fitzpatrick et. al. (2005) 1.004 0.028 7 / 3 stars / 0.6 0.799 0.052 

0.947 0.070 

Labi (2006) 0.675 0.032 7 / 3 stars / 0.6 

0.683 0.056 

0.301 0.118 

Gates et. al. (2016) 0.664 0.013 9 / 3 stars / 0.6 

Persaud et. al. (2004) 0.933 0.074 12 / 4 stars / 0.8 

0.844 0.105 

0.803 0.029 

0.811 0.026 

Geedipally et. al. (2010) 1.063 0.017 7 / 3 stars / 0.6 

 

Logarithm of Segment Length 

Fitzpatrick et. al. (2005) 0.851 0.024 7 / 3 stars / 0.6 0.874 0.035 

0.814 0.047 

Labi (2006) 0.893 0.041 7 / 3 stars / 0.6 

0.999 0.081 

0.753 0.066 

Gates et. al. (2016) 0.907 0.009 9 / 3 stars / 0.6 

Persaud et. al. (2004) 0.834 0.043 12 / 4 stars / 0.8 

0.887 0.013 

0.913 0.015 

 

Shoulder Width 

Fitzpatrick et. al. (2005) -0.060 0.007 7 / 3 stars / 0.6 -0.057 0.011 

Harwood et. al. (2000) -0.059 0.011 10 / 3 stars / 0.6 

Labi (2006) -0.017 0.009 7 / 3 stars / 0.6 

-0.039 0.013 

-0.073 0.018 

Persaud et. al. (2004) -0.036 0.015 12 / 4 stars / 0.8 

-0.071 0.005 

Geedipally et. al. (2010) -0.103 0.004 7 / 3 stars / 0.6 

 

Degree of Curvature 

Harwood et. al. (2000) 0.045 0.008 10 / 3 stars / 0.6 0.044 0.006 

Gooch et. al. (2016) 0.054 0.002 10 / 3 stars / 0.6 

Momeni (2016) 0.034 0.006 7 / 3 stars / 0.6 

 0.047 0.008  

Lane Width 

Fitzpatrick et. al. (2005) -0.137 0.033 7 / 3 stars / 0.6 -0.157 0.065 

Harwood et. al. (2000) -0.084 0.042 10 / 3 stars / 0.6   

Labi (2006) -0.068 0.018 7 / 3 stars / 0.6 

-0.093 0.032 

-0.108 0.056 

Geedipally et. al. (2010) -0.155 0.029 7 / 3 stars / 0.6 

Tarko et. al. (1999) -0.453 0.251 5 / 2 stars / 0.4 

 

Dispersion Parameter 

Fitzpatrick et. al. (2005) 0.421 0.036 7 / 3 stars / 0.6 0.310 0.029 

0.273 0.058 

Harwood et. al. (2000) 0.305 0.033 10 / 3 stars / 0.6 

Labi (2006) 0.257 0.016 7 / 3 stars / 0.6 
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Table 5 continued 

Authors/Brief Study 

Description 

Coeff. 

Estimate 

Std. 

Error 

CMF Score/ 

Star Rating/ 

Weightage 

Weighted 

Mean 

Weighted 

Standard 

Error 

      

Dispersion Parameter 

Labi (2006) 0.218 0.019    

0.202 0.026 

Geedipally et. al. (2010) 0.496 0.020 7 / 3 stars / 0.6 

 

Inverse Dispersion Parameter Cross-calculation 3.249 0.309 

 

Intercept (Constant Term) 

Fitzpatrick et. al. (2005) -5.098 0.397 7 / 3 stars / 0.6 -5.940 2.355 

-6.780 0.571 

Labi (2006) -4.105 0.239 7 / 3 stars / 0.6 

-3.910 0.557 

Gates et. al. (2016) -5.292 0.106 9 / 3 stars / 0.6 

Persaud et. al. (2004) -7.432 0.685 12 / 4 stars / 0.8 

 -6.541 0.845  

 -6.973 0.236  

 -5.817 0.218  

Cafisco et. al. (2007) -5.861 34.09 5 / 2 stars / 0.4 

Geedipally et. al. (2010) -6.462 0.306 7 / 3 stars / 0.6 
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Figure 7 Error Bar Plots of Parameter Estimates for Log AADT and Log Segment 

Length from Previous Studies 
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Figure 8 Error Bar Plots of Parameter Estimates for Shoulder Width and Lane 

Width from Previous Studies 
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Figure 9 Error Bar Plots of Parameter Estimates for Degree of Curvature and 

Intercept Term from Previous Studies 
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Figure 10 Error Bar Plot of Parameter Estimates for Dispersion Parameter from 

Previous Studies 

The final model selection, from all the Bayesian models incorporating the 

different types of priors was aided by tools that help quantify the goodness-of-fit, which 

eventually helped in making useful comparisons across models. In this research, the 

deviance information criterion (DIC), which is the most popular criterion for Bayesian 

model selection and model comparison, was used to compare and select the “best” fitting 

Bayesian model. In other words, the DIC is a measure of model fit computed from the 

likelihood function with a penalty for complexity. Complexity is measured as the 

‘effective number of parameters in the model’. DIC is measured by the sum of deviance 

and twice the number of effective model parameters in the Bayesian model, which is 

shown in the following equation (192):  

DIC = 𝐷(�̅�) + 2𝑝𝐷                                                                                         Equation (21) 
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where: 

𝐷(�̅�) = the deviance of �̅� as an expectation of 𝜃; and 

𝑝𝐷 = the number of effective parameters in the model. 

 This parameter (i.e., DIC) was used to assess Bayesian model goodness-of-fit. A 

lower value of DIC indicates a better model fit. A difference of 5 between the DIC values 

does not indicate significant difference; however, a difference of a scale of 100 between 

the DIC values indicates that the model with lesser DIC value is the best model. The 

Bayesian analysis results obtained from this study (presented in the ‘Results’ chapter) can 

be further used to obtain more information regarding fully utilizing previous study 

results, instead of starting over with each study.  



 

CHAPTER 4 

 

 

DATA COLLECTION 

The methods described in the previous chapter involved a prescription of needed 

data elements to carry out the statistical analysis. This chapter of the dissertation provides 

a detailed explanation on the site selection, data sources, and the data collection process 

of the variables required to employ the methods discussed in the previous chapter. The 

first part of this chapter presents details on the site selection and the states selected for 

analysis, and the second part of this chapter presents the list of variables that were 

collected for the safety analysis.  

Site Selection 

According to the Federal Highway Administration (FHWA), there are currently 

4.09 million miles of roads in the United States, of which 2.98 million miles (72 percent) 

are located in the rural areas (199). Two-lane highways account for nearly 80 percent of 

rural roads and are critical for providing both mobility and accessibility to rural residents, 

agriculture, and industry (53). Average trends from 2003 to 2013 indicate that traffic 

fatalities on the nation’s rural highway network accounted for about 55 percent of all 

traffic related deaths on the entire road network in the country (200). Specifically, in the 

year 2013, the crashes on the nation’s rural, noninterstate routes resulted in 15,601 

fatalities, which accounted for nearly half (48 percent) of the nation’s 32,719 traffic 

deaths (201).  
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In terms of crash rates (crashes per vehicle-miles traveled), the worst performing 

are the rural two-lane roads with a record of 3.08 fatalities per 100 million miles of travel 

(199,201). This is obviously due to their relatively low traffic volume and consequently 

high severe crash frequency to traffic volume ratio for such roads. Historically, the most 

critical geometric design element that influences driver behavior and poses the most 

potential for crashes has been the horizontal curve (202-203). Crash rates are typically 

1.5 to 4 times higher on horizontal curves than on the tangent segments (203). These 

disturbing numbers have spurred transportation safety professionals to seek more 

efficient and effective strategies to reduce the number and severity of these crashes.  The 

extent of research that is possible with the available data sources made rural two-lane 

highways a case study for this research.  

Data Sources 

In order to carry out the methods outlined in the previous chapters, and to make 

the best use of the available data sources, data from the states of Utah and Washington 

were used in this analysis. Most of the data for Utah were obtained from Utah 

Department of Transportation’s (UDOT) online data portal (including LiDAR data), 

UDOT Safety Team, and United States (U.S.) Census Bureau. The LiDAR data 

collection was executed by UDOT, and the data were openly available to the public 

through UDOT’s online data portal for the years 2012 and 2014 (by the time this data 

collection was done). 

The LiDAR-based dataset of roadway segments (i.e., horizontal curves in this 

case) differed the most from other traditional state databases in the context of location 

information. Usually a linear referencing system (i.e., route and milepost information) is 
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used to locate a feature (i.e., segment or intersection) in state databases. However, with 

the LiDAR data, a spatial referencing system (i.e., geo-coding or latitude and longitude 

information) was available which could be used for employing spatial analysis. For the 

state of Washington, the data were obtained from the Highway Safety Information 

System (HSIS) database and Roadside Features Inventory Program (RFIP). The weather 

data for both the states were obtained from National Oceanic and Atmospheric 

Administration (NOAA). Table 6 includes data sources in detail, which were used to 

collect the data elements required for this research. For the Utah dataset, the geo-spatial 

information (i.e., latitude and longitude) was available for the horizontal curve segments. 

The hourly traffic volume data were also available publicly, for all the permanent traffic 

recorder stations through UDOT’s website. Considering the spatial referencing system, 

data availability, and the applicability of spatial analysis methodology to the dataset, the 

dataset for Utah was used to answer the first research question on predicting the day and 

night traffic volumes for statistical road safety modeling and analysis.  

Most of the safety studies have traditionally used electronically coded datasets 

(i.e., HSIS, state maintained databases) for road safety analysis. The dataset for 

Washington was developed using the HSIS data, and road safety researchers have used 

these kinds of databases on many occasions before. Hence, it was assumed that it was 

relatively easy to implement and answer the second and third research questions using the 

dataset for Washington, and relate to the findings obtained from this research. In 

summary, data availability, applicability of the methods, and variables available in each 

of the datasets for Utah and Washington dictated the selection of datasets to the 

respective research questions.  
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Table 6 Data Sources and Descriptions 

Data Type Description/Comment Data Source 

State of Utah 

Crash data Location, crash type, sequence of events UDOT 

Roadway data Cross-section characteristics, number of lanes, 

functional class, horizontal features, traffic volume 

LiDAR, Algorithms, and 

UDOT data portal 

Hourly traffic volumes Automatic Traffic Recorder (ATR) stations UDOT  

Socio-economic data Population, and number of households U.S Census Bureau, AGRC 

Roadside data Barrier UDOT data portal, ArcGIS 

Weather data Temperature, snow, precipitation NOAA 

   

State of Washington 

Crash data Location, crash type, sequence of events HSIS Database 

Roadway data Lane, shoulder, horizontal and vertical curve 

characteristics, traffic volume, posted speed limit 

HSIS Database 

Roadside data Trees, guardrail, fixed objects RFIP, ArcGIS 

Weather data Temperature, snow, precipitation NOAA 
 

Required Variables for Analysis 

All crash data, roadway and geometric features, cross-section attributes, 

operational characteristics, roadside features, weather conditions, and socio-economic 

characteristics were collected using a number of different sources. The details on key 

parts of the data collection process and the variables used for analysis are outlined in the 

following sections. 

Crash Data 

For Utah, crash data were obtained for crashes occurring in rural, two-lane 

horizontal curves for 5 years, from 2009-2013. The crash data were obtained from UDOT 

separately from the UDOT online data portal. The location information of crashes was 

available through the GPS coordinates. For Washington, crash data were obtained for 

crashes occurring in rural, two-lane horizontal curves for 5 years, from 2008-2012. The 

crash data were obtained from the HSIS database accident and vehicle files. The accident 

and vehicle files identify the crash by case number, and the location information by state 

route number, and milepost. The crashes were merged onto the horizontal curve segments 
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using the location information (i.e., latitude and longitude information for Utah; state 

route number and milepost information for Washington). This research does not include 

crashes involving pedestrians and bicyclists.  

The variables contained in the crash inventory files include crash type, crash 

severity, time of day and day of week when the crash has occurred, weather condition, 

road surface condition, driver age, gender, vehicle make and type, and primary and 

secondary contributing factors for the crash, among many others. The traffic safety- 

related independent variables in this research were identified to differentiate between 

safety outcomes in terms of frequency. These variables were extracted from the above 

mentioned datasets for a period of 5 years. The safety outcomes this research focused on 

included: 

 Total crashes (all types, and all severity levels); and 

 Fatal and Injury (FI) crashes 

Table 7 provides the descriptive statistics for all (total) crashes, fatal, injury, and 

property damage only (PDO) crashes on rural two-lane horizontal curves in the states of 

Utah and Washington.  

Roadway and Traffic Data 

Crash data were collected every year for 5 years in both the states. Similarly, the 

traffic volume data (i.e., AADT) were collected for 5 years, and was averaged for 1 year 

in the datasets. However, for the roadway and geometric features, and cross-section 

attributes, the data were collected for 1 year and were used throughout the duration of the 

study, if nothing changes. For Utah, roadway and geometric features, and cross-section 

attributes were obtained from the LiDAR data, through the UDOT online data portal.  
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Table 7 Descriptive Statistics for Road Crashes 

Variable 

 

Description Obs. Mean Std. Dev Min Max 

Tot_Crash_UT Total Crashes in Utah 1710 0.703 1.520 0 18 

Fatal_Crash_UT Fatal Crashes in Utah 1710 0.016 0.131 0 2 

Injury_Crash_UT Injury Crashes in Utah 1710 0.180 0.576 0 8 

PDO_Crash_UT PDO Crashes in Utah 1710 0.506 1.160 0 13 

Tot_Crash_WA Total Crashes in Washington 6605 1.053 2.089 0 36 

Fatal_Crash_UT Fatal Crashes in Washington 6605 0.028 0.176 0 2 

Injury_Crash_UT Injury Crashes in Washington 6605 0.391 0.948 0 18 

PDO_Crash_UT PDO Crashes in Washington 6605 0.633 1.358 0 22 

 

The data obtained from LiDAR for the horizontal curves in Utah were 

questionable. Hence extra steps were taken to visually check and verify the data 

associated with the horizontal curves in Google Earth. Some algorithms were used to 

verify the point of curve (PC) and point of tangent (PT) locations of the horizontal curve 

in Google Earth. The locations of the curves were identified by the state route number 

and milepost information. The curve data were linked with the roadway data (number of 

through lanes, and passing lanes), shoulder width, and traffic volume data obtained from 

the UDOT online data portal.  

In addition to the AADT, the hourly traffic volume data were also used in the 

analysis. While aggregate measure of AADT was used for safety analysis, hourly volume 

data were utilized for traffic volume estimation during the ‘day’ and ‘night’ using spatial 

interpolation techniques. The hourly traffic volume data are obtained from the automatic 

traffic recorder (ATR) stations throughout the state of Utah for the years 2009-2013. 

UDOT has 100 ATR stations that provide an hourly count for 24 hours throughout the 

day and 365 days throughout the year. These data were available in the UDOT’s website 

in the form of an excel file. The number of lanes and functional classification 

characteristics were linked to the ATR stations in ArcGIS, using spatial join. This hourly 

traffic volume data, number of lanes, functional classification, and some of the socio-
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economic variables (discussed in the later part of this section) were used for the 

estimation of disaggregate volumes of traffic, i.e., day and night traffic volume estimation 

for the horizontal curves in Utah. The descriptive statistics for the roadway and geometric 

features, cross-section attributes, and operational characteristics for Utah are provided in 

Table 8. 

For Washington, roadway and geometry features, and cross-section attributes 

were obtained from the roadway and curve file in the HSIS database. These attributes are 

located by state route number, and milepost information. GPS latitude and longitude 

information were not available for the curve data. The traffic, roadway, and cross-section 

attributes including posted speed, AADT, truck percent, functional classification, lane 

width, and shoulder width were linked to the horizontal curves using the route number 

and milepost information. The detailed vertical curve information, in addition to the 

information available in the curve file, was obtained during the study from Washington 

DOT. Some of the curves with higher segment lengths had multiple AADT’s associated 

with them, and higher values of AADT were assigned to the curves in those cases. The 

descriptive statistics for the roadway and geometric features, cross-section attributes, and 

operational characteristics for Washington are provided in Table 9. 

Roadside Data 

For Utah, data for the only roadside feature available from the UDOT online data 

portal was the barrier data layer, since the UDOT database was actually built for asset 

management purposes. However, in the context of safety research, elements such as 

barrier length, offset, and type were considered to be important for analysis. The barrier 

length was calculated using start and end milepost information given in the barrier file.  
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Table 8 Descriptive Statistics for the Roadway, and Geometric Variables in Utah 

Variable 

 

Description Obs Mean Std. Dev Min Max 

AADT_UT Average Annual Daily Traffic 

(veh/day) 
1710 1169.86 1416.68 21.25 9382.50 

Log_AADT_UT Log Average Annual Daily Traffic 1710 6.56 1.01 3.05 9.14 

Sh_Wth_UT Shoulder Width (ft) 1710 2.97 1.83 0 15.50 

Seg_Ln_UT Segment Length (mi) 1710 0.18 0.11 0.05 1.20 

Cur_Rds_UT Curve Radius (ft) 1710 2089.20 1199.07 278 7350 

Cur_Ang_UT Horizontal Curve Angle (Degrees) 1710 34.30 24.89 3.42 176.57 

Deg_Cur_UT Degree of Curve 1710 3.75 2.25 0.78 20.61 
 

Table 9 Descriptive Statistics for the Roadway, and Geometric Variables in 

Washington 

Variable 

 

Description Obs Mean Std. Dev Min Max 

AADT_WA Average Annual Daily Traffic 

(veh/day) 

6605 
2758.51 2794.11 139 25844 

Log_AADT_WA Log Average Annual Daily Traffic 6605 7.52 0.90 4.93 10.15 

Trk_Pct_WA Truck Percent (%) 6605 17.58 8.93 0 66 

Ln_Wth_WA Lane Width (ft) 6605 11.50 0.84 9 20 

Sh_Wth_WA Shoulder Width (ft) 6605 4.19 2.24 0 15 

Sp_Lm_WA Posted Speed Limit (mph) 6605 53.53 7.29 25 65 

Seg_Len_WA Segment Length (mi) 6605 0.15 0.10 0.05 1.26 

Cur_Rds_WA Curve Radius (ft) 6605 2041.86 1596.30 250 9550 

Cur_Ang_WA Horizontal Curve Angle (Degrees) 6605 29.87 21.33 3.16 171.23 

Deg_Cur_WA Degree of Curve 6605 4.74 3.55 0.60 22.92 

Grade_WA Grade (%) 6605 0.22 2.71 -9.67 9.47 

Grade_neg4 

Indicator Variable 

1=Grade < -4% 

0=otherwise 

6605 0.08 0.27 0 1 

Grade_neg4_0 

Indicator Variable 

1=-4%<=Grade<0 

0=otherwise 

 

6605 0.26 0.43 0 1 

Grade_0to4 

Indicator Variable 

1=0<=Grade<=4% 

0=otherwise 

 

6605 0.55 0.49 0 1 

Grade_pos4 

Indicator Variable 

1=Grade>4% 

0=otherwise 

 

6605 0.11 0.31 0 1 

 

For Washington, the roadside data were obtained from Roadside Features 

Inventory Program (RFIP), a system-wide program of limited scope undertaken by 

Washington DOT. This program was designed to provide information on the number, 

types, and locations of roadside features for the main purpose of safety analysis. Data 

were only available for a portion of road segments in Washington because the program 

was stopped before the roadside data from the entire state was collected. The data on 
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roadside features were available in the form of an excel file and the location information 

of roadside features was available through the GPS coordinates (i.e., latitude and 

longitude).  

 In order to link the roadside data (available through GPS latitude and longitude) 

with roadway and geometric features, cross-section attributes, operational characteristics, 

and crash data (available through state route number, and milepost information), a linear 

referencing system (LRS) route feature class/layer was acquired from Washington DOT, 

which was a roadway network. Then the route field was identified and all the segments of 

a particular route were aggregated to result in one row per route number in a shapefile.  

This layer was now combined with the roadway and geometric features, resulting 

in the projection of the rural, two-lane horizontal curves in the state of Washington in 

ArcGIS. Then the roadway and roadside features were linked using the GPS location 

information in ArcGIS. The roadside features considered for this analysis were the 

presence and locations of concrete barrier, guardrail, tree, and fixed object. The 

descriptive statistics for the roadside features of Utah and Washington are provided in 

Table 10. 

Table 10 Descriptive Statistics for the Roadside Variables 

Variable 

 

Description Obs Mean Std. 

Dev 

Min Max 

Utah 

Rtbr_Len_UT Right Barrier Length (mile) 1710 0.0007 0.01 0 0.51 

Ltbr_Len_UT Left Barrier Length (mile) 1710 0.0005 0.008 0 0.18 

Probr_Cur_UT Proportion of Total Barrier in Curve 

(%) 

1710 
11 28 0 200 

Washington 

Cnbr_Len_WA Concrete Barrier Length (mi) 72 0.12 0.11 0.01 0.60 

Per_Cnbr_WA Percent of Concrete Barrier in Curve 

(%) 

72 
47.44 32.56 3.07 100 

Guar_Len_WA Guardrail Length (mi) 1715 0.14 0.13 0.01 1.68 

Per_Guar_WA Percent of Guardrail in Curve (%) 1715 55.61 36.49 1.02 100 

Tree_Cnt_WA Tree Count 734 2.27 2.04 1 25 

Tree_Dia_WA Tree Average Diameter (ft) 734 5.66 2.69 0.98 12.42 

Fix_Cnt_WA Fixed Object Count 840 2.37 2.86 1 32 
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Weather Data 

For both the states, weather data were obtained from the NOAA National 

Climatic Data Center. The climate data online search tool was used to obtain the past 

weather and climate data for both Utah and Washington for their respective study 

duration of 5 years. Data from the land-based stations included temperature, precipitation, 

wind, snowfall, relative humidity, and atmospheric pressure. The data were available at 

different time frame levels, i.e., daily, monthly, and on a yearly basis. However, 

aggregate yearly data were collected for this research, to be consistent with the time scale 

used for crash, roadway and geometric features, cross-section attributes, and operational 

characteristics data. The data elements regarding precipitation, temperature, and snowfall 

were used in this research. Table 11 provides detailed explanations and descriptive 

statistics for the weather variables used in the analysis. 

Table 11 Descriptive Statistics for the Weather Variables 

Variable 

 

Description Obs Mean Std. 

Dev 

Min Max 

Utah 

 

Mean_Temp_UT Mean Temperature (in degrees F) 1710 48.15 5.19 36.51 61.95 

Ndays_90_UT No. of days with 90 plus 

temperature 

1710 
35.49 31.57 0 120.6 

Ndays_32_UT No. of days with 32 minus 

temperature 

1710 
166.40 39.53 62.80 238.20 

Tot_Snw_UT Total Snowfall (inches) 1710 62.41 58.48 2.58 322.34 

NdayPr_1_UT No. of days 1/10th inch precipitation 1710 38.41 15.06 14.20 87.20 

NdayPr_5_UT No. of days ½ inch precipitation 1710 7.24 4.47 2 32 

NdayPr_10_UT No. of days 1 inch precipitation 1710 1.28 1.18 0 9.80 

 

Wntr_Clo_UT 

Winter Closure Indicator 

1=closure 

0=otherwise 

 

1710 0.10 0.30 0 1 

Washington 

 

Mean_Temp_WA Mean Temperature (in degrees F) 2793 47.02 6.05 13.90 55.24 

Ndays_90_WA No. of days with 90 plus 

temperature 
2793 1.94 0.97 1 5 

Ndays_32_WA No. of days with 32 minus 

temperature 
2793 10.18 4.01 3 17 

Tot_Snw_WA Total Snowfall (inches) 2793 3.43 7.89 0.02 63.38 

NdayPr_1_WA No. of days 1/10th inch precipitation 2793 9.14 3.38 3 14 

NdayPr_5_WA No. of days ½ inch precipitation 2793 3.71 2.26 1 7 

NdayPr_10_WA No. of days 1 inch precipitation 2793 1.90 1.10 0 4 
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The weather data were obtained for all the weather stations in Utah and 

Washington for 5 years duration. The weather station was linked to the roadway segment 

based on the distance or proximity of the station to each curve. However, the terrain 

effects on weather patterns were not taken into account while linking the weather stations 

to the nearest curve segments. Data imputation was done for those weather stations that 

have more than 90 percent of the data available. In total, roughly 10 percent or less of the 

yearly temperature and precipitation data were imputed due to missing data.  

Socio-Economic Data 

Socio-economic data for the state of Utah were obtained from United States 

Census Bureau for the year 2010. The data include population counts, household counts, 

and ethnicity counts organized by different sized geographic areas, where the smallest 

unit of area is a ‘census block’ and the biggest is ‘counties’. Majority of the studies on 

estimating the AADT included some kind of socio-economic variables, especially 

number of people and households in the area, and found them to be significant for the 

AADT estimation (82,86). The socio-economic data were pooled from the 2010 U.S. 

Census Bureau estimates on a census block level, allowing for a convenient extraction 

and linkage of the values of these socio-economic variables to the respective ATR station 

locations. The descriptive statistics for the population and household variables are 

provided in Table 12. 

Table 12 Descriptive Statistics for the Population and Household Variables 

Variable Description Obs Mean Std. Dev Min Max 

Pop_UT 
Population in the census block with 

ATR  
100 46.74 92.37 0 399 

Hou_UT 
Number of Housing units in census 

block with ATR 
100 22.50 44.56 0 204 



 

CHAPTER 5 

 

 

STATISTICAL ROAD SAFETY MODELING RESULTS 

This chapter presents the results of the statistical road safety models of expected 

number of crashes on rural, two-lane horizontal curves, obtained using all the methods 

described in the ‘Methodology’ chapter using the variables collected and described in the 

‘Data Collection’ chapter. These regression models of expected crash frequency help in 

determining how this “new” information, obtained from applying each of the methods 

described in the previous chapters, impacts the model estimation results and 

interpretations.  Preliminary and final model specifications were obtained by using 

different combinations of explanatory variables in the models. The selected final model 

specification for each of the methods applied is also presented at the end of each section. 

The presented models include the approach-specific goodness-of-fit indicators 

and the diagnostics that are required to evaluate the statistical road safety modeling 

results for regression models of expected total crash frequency and fatal plus injury crash 

frequency. The final models for each of the methods described in the previous chapter are 

recommended based on the comparison of the goodness-of-fit measures, variable 

selection, and appropriateness in the model specifications. This chapter also includes the 

interpretation of results extracted to demonstrate the effects of including new information 

specific to each of the methods, on regression coefficient estimates of selected right-hand 

side variables and model prediction results.  
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The choice of selecting possible explanatory variables to be included in the model 

specification was guided by the previous research findings and the substantive rationale 

for the statistical relationship between an explanatory variable and a response variable. 

Different model specifications were tested when sound reason for adding explanatory 

variables, or removing them from an equation, was available. At this time, the regression 

coefficient estimates for each of the explanatory variable included are also checked to see 

if there are no major changes in the coefficient estimates when new variables are added 

or removed from the model. The process of obtaining the best model specification was by 

successively adding or removing variables one at a time, based on its theoretical 

relevance, t-statistic, and the p-value. The p-value that is usually considered for statistical 

significance is 0.05. However, in this research, because of including new explanatory 

variables and the sample size constraints, a p-value of 0.15 is considered for including the 

explanatory variables in the model specification. 

After all the variables are added or removed from the model, the R-squared value 

or the F-statistic is computed for the complete model to check if any of the variables 

previously added to the model can now be deleted or vice-versa. This procedure is 

continued until all of the variables not in the model specification have no significant 

effect on the response variable (i.e., the expected number of crashes). The final model 

specification will include all the significant variables that are very relevant to explaining 

the effects of the response variable. The preliminary model specification has all the 

possible significant explanatory variables in the model, whereas the final model 

specification contains the fundamental explanatory variables that are readily available. 

Hence, the final model specification adequately fits the data, and is interpretable. 
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Safety Effects of Traffic Pattern Estimates 

This part of the research was to incorporate the day and night traffic volume 

estimates, obtained from kriging interpolation methods, along with other explanatory 

variables into statistical road safety models of expected crash frequency. Two dependent 

variables were modeled in this part of the research, total (all) crashes and fatal plus injury 

(FI) crashes. After predicting the day and night traffic volumes in the entire state of Utah 

(including all facility types and area types), these predictions were then exported only for 

a selected number of rural, two-lane horizontal curves that are of interest to this research. 

The hypothesis is that the sites with the same daily volume and geometric characteristics 

will differ in their safety performance if they differ in their distributions of day and night 

traffic volumes. Specific to the context of this research, the horizontal curves with higher 

proportions of traffic at night are expected to experience more crashes than similar curves 

with higher proportions of traffic during the day.  

Preliminary NB Models for Total and FI Crashes  

As mentioned in the previous chapter, a negative binomial (NB) regression model 

was used with the expected number of total and FI crashes as left-hand side variables, and 

selected traffic, geometric, and weather characteristics on the right-hand side including 

the AADT and predicted night-to-day traffic volume ratio from the kriging models. A 

negative binomial regression model for both the dependent variables with and without the 

predicted night-to-day traffic volume ratio were run iteratively using different groups of 

variables provided in the ‘Data’ chapter, as the regression model did not allow the 

inclusion of all the available variables into a single model. Table 13 and Table 14 show 

preliminary model specifications, for both the dependent variables (i.e., Total and FI  
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Table 13 Preliminary NB Regression Models for Total Crashes on Rural Two-Lane 

Horizontal Curves 

Variable List 

Model A Model B 

Coeff. 
Std. 

Err. 
Z Stat 

P-

Value 
Coeff. 

Std. 

Err. 
Z Stat 

P-

Value 

Log AADT 0.921 0.043 21.29 0.000 0.917 0.043 21.19 0.000 

Predicted 

Night/Day Volume 

Ratio 

--- --- --- --- 3.935 2.594 1.52 0.129 

Deg_Curv 0.066 0.016 4.26 0.000 0.066 0.015 4.27 0.000 

Ndays32les 0.002 0.001 1.57 0.116 0.002 0.001 1.66 0.097 

Ndayspre01 0.006 0.003 2.05 0.041 0.005 0.003 1.95 0.052 

Constant -7.873 0.380 -20.72 0.000 -8.285 0.468 -17.68 0.000 

Segment Length  1 (Offset variable) 1 (Offset variable) 

Pseudo R2 0.1372 0.1378 

Log-Likelihood -1633.681 -1632.533 

Dispersion 

Parameter 
0.665 0.086  0.662 0.086  

---: Variable not included in the specification 

 

 

Table 14 Preliminary NB Regression Models for FI Crashes on Rural Two-Lane 

Horizontal Curves 

Variable List 

Model C Model D 

Coeff. 
Std. 

Err. 
Z Stat 

P-

Value 
Coeff. 

Std. 

Err. 
Z Stat 

P-

Value 

Log AADT 0.895 0.068 13.04 0.000 0.890 0.068 13.00 0.000 

Predicted 

Night/Day Volume 

Ratio 

--- --- --- --- 7.508 4.146 1.81 0.070 

Deg_Curv 0.120 0.023 5.14 0.000 0.122 0.023 5.25 0.000 

Ndays32les -0.0002 0.001 -0.14 0.890 0.00009 0..002 0.05 0.963 

Ndayspre01 0.005 0.004 1.12 0.265 0.004 0.005 0.89 0.374 

Constant -8.780 0.608 -14.44 0.000 -9.598 0.762 -12.58 0.000 

Segment Length  1 (Offset variable) 1 (Offset variable) 

Pseudo R2 0.1283 0.1301 

Log-Likelihood -773.251 -771.637 

Dispersion 

Parameter 
0.792 0.208  0.771 0.204  

---: Variable not included in the specification 

 

crashes) with and without the predicted night-to-day traffic volume ratio as a comparison 

between the results obtained from both models. The same explanatory variables were 

used in both the models to see the effects of these variables on both total crashes and FI 

crashes. These preliminary models were further used to obtain final model specifications 

for estimating each response variable, using goodness-of-fit indicators, variable inclusion, 

and appropriateness in the model specification.  
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The modeling process for the preliminary model specification started with 

inclusion of variables that were considered to be the potential candidates for inclusion 

into the final model specifications. Many explanatory variables related to the traffic 

characteristics, horizontal alignment, and weather-related variables were explored to be 

included in the preliminary model specification. The major difference between both 

preliminary and final model specifications is that the explanatory variables used in 

preliminary model specifications includes all the possible combinations of variables that 

were collected as part of this research. However, the final model specifications consist of 

the set of variables that were statistically significant at 85 percent or higher confidence 

interval, widely available in all the databases, and can be obtained for any type of road 

safety research.  

Final NB Regression Model for Total Crashes 

Table 15 presents the final model specification for the regression model of the 

expected number of total crashes, with and without the predicted night-to-day traffic 

volume ratio variable included in the model specification. The final model specification 

for the regression model of expected number of total crashes included natural logarithm 

of AADT, predicted night-to-day traffic volume ratio, and degree of curve as explanatory 

variables, and natural logarithm of segment length as the offset variable in the model. The 

positive coefficients that are slightly less than one for the natural logarithm of AADT in 

both Models E and F in Table 15 suggest that as the traffic volume increases on the 

roadway, the expected number of crashes also increase, but at a nonlinear rate. The 

parameter estimate of less than unity is consistent with the previous work on rural, two-

lane highways (166,204).  



99 

 

 

Table 15 Final NB Regression Models for Total Crashes on Rural Two-Lane 

Horizontal Curves 

Variable List 

Model E Model F 

Coeff. 
Std. 

Err. 
Z Stat 

P-

Value 
Coeff. 

Std. 

Err. 
Z Stat 

P-

Value 

   

Log AADT 0.941 0.041 22.87 0.000 0.935 0.041 22.57 0.000 

Predicted 

Night/Day Volume 

Ratio 

--- --- --- --- 4.060 2.62 1.55 0.122 

Deg_Curv 0.073 0.015 4.78 0.000 0.072 0.015 4.76 0.000 

Constant -7.478 0.305 -24.49 0.000 -7.880 0.402 -19.58 0.000 

Segment Length  1 (Offset variable) 1 (Offset variable) 

Pseudo R2 0.1344 0.1351 

Log-Likelihood -1638.943 -1637.748 

Dispersion 

Parameter 
0.683 0.088  0.680 0.088  

---: Variable not included in the specification 

 

The coefficient for the ratio of predicted night-to-day traffic volume ratio is 

positive, with an estimated value of 4.060 in Model F. This variable is statistically 

significant at 87 percent confidence level in this model. The positive coefficient verifies 

the earlier hypothesis that horizontal curves with higher proportions of traffic at night are 

expected to experience more crashes than similar horizontal curves with higher 

proportions of traffic during the day. The positive coefficient for the degree of curve 

suggests that as the radius increases, the expected number of crashes will decrease. In 

other words, the estimated model shows that if degree of curve increases by 100 percent, 

the crashes increase by more than 7 percent, with all the other variables being constant. 

Final NB Regression Model for FI Crashes 

 Table 16 presents the final model specification for regression model of expected 

number of FI crashes, with and without the predicted night-to-day traffic volume ratio 

variable included in the model specification. Similar to the regression model of total 

crashes, all the coefficient estimates were as expected in both Models G and H as well.  
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Table 16 Final NB Regression Models for FI Crashes on Rural Two-Lane 

Horizontal Curves 

Variable List 

Model G Model H 

Coeff. 
Std. 

Err. 
Z Stat 

P-

Value 
Coeff. 

Std. 

Err. 
Z Stat 

P-

Value 

Log AADT 0.920 0.064 14.33 0.000 0.909 0.064 14.17 0.000 

Predicted 

Night/Day Volume 

Ratio 

--- --- --- --- 7.890 4.12 1.91 0.056 

Deg_Curv 0.125 0.022 5.46 0.000 0.126 0.022 5.55 0.000 

Constant -8.809 0.488 -18.04 0.000 -9.599 0.642 -14.93 0.000 

Segment Length  1 (Offset variable) 1 (Offset variable) 

Pseudo R2 0.1275 0.1290 

Log-Likelihood -773.917 -772.119 

Dispersion 

Parameter 
0.790 0.208  0.770 0.204  

---: Variable not included in the specification 

 

 The final model specification includes the same explanatory variables as the total 

crash model. As expected, the increases in natural logarithm of AADT and degree of 

curve were associated with an increase in the expected number of FI crashes at the 99 

percent confidence level. The coefficient for the ratio of predicted night-to-day traffic 

volume ratio is positive, with an estimated value of 7.890 in Model H. This variable is 

statistically significant at 94 percent confidence level in this model. The positive 

coefficient verifies the earlier hypothesis on the expected number of night crashes being 

more than the day crashes, on similar horizontal curves with same traffic volumes.  

 From the final models, it can be seen that including the predicted night-to-day 

traffic volume variable seems to provide minor benefit in terms of model fit, when 

comparing Model F to Model E and Model H to Model G for regression models of 

expected number of total crashes and FI crashes, respectively. The pseudo R
2
 is 

somewhat improved (larger) and the overdispersion parameter is improved (smaller). As 

mentioned earlier, it can be seen that regression coefficient estimates for predicted night-

to-day traffic volume ratio in Models F and H are positive, which suggests that the 

expected number of crashes increase with an increase in the traffic volumes at night. 
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 As explained above, this variable is statistically significant at 87 percent 

confidence level and 94 percent confidence level in the regression models of expected 

number of total and FI crashes, respectively. The parameter is informative, both in the 

sign and magnitude, and therefore would be a loss of key information if this is excluded 

from the model specifications. The parameter estimate provides useful information, and 

is assumed that statistical significance will be improved as sample size becomes larger.  

 The last part of this section presents the effects of the variables that represent the 

daily traffic pattern estimates on the CMFs of total and fatal plus injury crash models, 

analyzed in this research. Figure 11 and Figure 12 present the relationship between CMF 

for total and FI crashes, respectively, and horizontal curve radius, at a constant traffic 

volume of 8000 vehicles per day, with a varying percentage of traffic volume at night. 

The results presented in these figures were extracted to further interpret the regression 

coefficient estimates obtained from the final NB regression models of expected crash 

frequency.  

 These figures show that, for total crashes, horizontal curves with 10 percent of 

traffic volume at night have 18 percent fewer crashes, and the curves with 20 and 25 

percent of traffic volume at night have 23 and 50 percent more crashes, when compared 

to curves with 15 percent of traffic volume at night. Similarly, for the FI crashes, 

horizontal curves with 10 percent of traffic volume at night have 30 percent fewer 

crashes, and the curves with 20 percent of traffic volume at night have 50 percent more 

crashes, when compared to curves with 15 percent of traffic volume at night. These 

findings show that the severe crashes are much higher at night than during the day, which 

is consistent with the previous literature (39-40).  
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Figure 11 Relationship Between CMF for Total Crashes and Horizontal Curve 

Radius, at an AADT of 8000 veh/day 

 

 

Figure 12 Relationship Between CMF for FI Crashes and Horizontal Curve Radius, 

at an AADT of 8000 veh/day  
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Safety Effects of Measurement Error Corrections 

This part of the research was focused on evaluating the impacts of measurement 

error in AADT estimates on regression coefficient estimates of right-hand side variables 

in regression models of expected crash frequency. The magnitude of measurement error 

in AADT estimates was measured through measurement error variance values, and 

different values of measurement error variance were used to estimate the effects of 

measurement error on study results. These estimations, sometimes referred to as 

sensitivity analysis, were used in this part of the study to assess the robustness of the 

study findings in general, and quantify the plausible impact these specific errors have on 

parameter estimates of right-hand side variables in particular.  

This section presents the study results after accounting for measurement error in 

AADT estimates, and how those results affected the overall regression model inferences. 

As explained in the ‘Methodology’ section, the measurement error (ME) in AADT 

estimates is accounted for in the regression models of expected total crash frequency in 

this research. Hence, the dependent variable that was modeled as part of this study is total 

crashes, as a function of several explanatory variables.  The hypothesis is that the 

regression coefficient estimates in the naïve model (i.e., model without accounting for 

measurement error) bias towards the null value. Specific to the context of this research, 

the regression coefficient estimates of Log AADT bias towards zero, if measurement 

error is not accounted for in the regression models of expected crash frequency.  

NB Models without Accounting for Measurement Error in Traffic Volumes 

Table 17 presents the NB regression model specification for expected number of 

total crashes, as a function of explanatory variables that were statistically significant at 95 
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percent or higher confidence level. This model specification did not account for the 

measurement error in the Log AADT estimates. Hence, this regression model of expected 

total crash frequency is considered to be the naïve model, where the parameter estimates 

for Log AADT without accounting for measurement error are biased towards zero. The 

NB model specification for expected number of total crashes included natural logarithm 

of AADT, natural logarithm of segment length, speed limit, shoulder width, and degree 

of curve as explanatory (or right-hand side) variables in the model.  

The positive coefficient for the natural logarithm of AADT in Table 17 suggests 

that as the traffic volume increases on the roadway, the expected number of crashes also 

increase, at a nonlinear rate. Similar to the natural logarithm of AADT, the regression 

coefficient estimate for natural logarithm of segment length was also positive, which 

captured the increase in expected crash frequency with an increase in segment length, due 

to increased exposure. The positive coefficients for speed limit and degree of curve were 

also associated with an increase in expected number of crashes as speed limit and degree 

of curve increases.  

In other words, the estimated regression model shows that if speed limit is 

doubled, the crashes increase by more than 1 percent, with all the other variables being 

constant. Similarly, an increase in the degree of curve by 100 percent increases the 

crashes by more than 9 percent. The shoulder width variable appeared to be statistically 

significant with the regression coefficient estimate being negative. This indicates the 

beneficial influence of shoulder width; an increase in shoulder width is associated with a 

decrease in the expected crash frequency. This means that as shoulder width is doubled, 

the crashes decrease by more than 2 percent, with all the other variables being constant.  
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Table 17 NB Regression Models for Total Crashes on Rural Two-Lane Horizontal 

Curves with Error-Prone AADT Estimates 

 

Variable List 

 

Coeff. 

 

Std. Err. 

 

Z Stat 

 

P-Value 

 

95% Conf. Interval 

       

Log AADT 1.016 0.023 43.02 0.000 0.969 1.062 

Log Segment Length 0.847 0.032 26.32 0.000 0.784 0.910 

Speed Limit 0.013 0.002 5.00 0.000 0.008 0.018 

Shoulder Width -0.021 0.008 -2.49 0.013 -0.038 -0.004 

Deg_Curv 0.095 0.005 16.95 0.000 0.084 0.106 

Constant -7.354 0.263 -27.94 0.000 -7.870 -6.838 

Pseudo R-squared 0.1422 

Log-Likelihood -7889.895 

Dispersion Parameter 0.659 0.032   0.598 0.727 
 

NB Models Accounting for Measurement Error in Traffic Volumes 

 The results shown in this section reflect the effects of accounting for classical 

measurement error in Log AADT estimates in regression models of expected crash 

frequency. All of the tables in this section show the results of regression calibration and 

simulation extrapolation analyses accounting for the classical measurement error in Log 

AADT estimates, where the measurement error variance values ranged from 0.05 to 0.20, 

with increments of 0.05.  Table 18 shows the regression coefficient estimates of the 

selected explanatory variables, along with the bootstrap standard errors and 95 percent 

confidence intervals while the measurement error variance in Log AADT estimates was 

0.05. Figure 13 shows the naïve parameter estimate and SIMEX parameter estimate for 

Log AADT, obtained by quadratic extrapolation in SIMEX method. The parameter 

estimates for Log AADT obtained from these two approaches were greater than those 

obtained from naïve analysis. In other words, the parameter estimates for Log AADT 

obtained from RCAL and SIMEX methods were biased by 8.75 percent and 9.05 percent, 

respectively, from the naïve regression model parameter estimates (i.e., model without 

accounting for measurement error). 
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Table 18 RCAL and SIMEX Analysis Results for Total Crashes on Rural Two-Lane 

Horizontal Curves with ME Variance of 0.05 in Log AADT Estimates 

Variable Regression Calibration (RCAL)* Simulation Extrapolation (SIMEX)* 

Coeff. Bootstr 

Std. Err. 

95% Conf. Interval Coeff. Bootstr 

Std. Err. 

95% Conf. Interval 

         

Log AADT 1.105 0.029 1.047 1.162 1.108 0.030 1.050 1.166 

Log Seg. Len. 0.853 0.032 0.790 0.916 0.858 0.033 0.794 0.922 

Speed Limit 0.014 0.003 0.008 0.020 0.015 0.003 0.009 0.020 

Shoulder Width -0.035 0.011 -0.056 -0.013 -0.032 0.010 -0.052 -0.011 

Deg_Curv 0.098 0.006 0.086 0.111 0.100 0.006 0.088 0.113 

Constant -8.054 0.297 -8.637 -7.470 -8.155 0.302 -8.748 -7.563 

Wald F-Statistic 562.06 574.71 

P-Value 0.00 0.00 

*All regression coefficient estimates are significant at 95% or more confidence level 

 

 

Figure 13 SIMEX Naïve and Quadratic Extrapolation Estimates Plot for Log AADT 

with ME Variance of 0.05 

 Similar to Log AADT, the parameter estimates for natural logarithm of segment 

length were also greater than the ones obtained from naïve method. The parameter 

estimates for posted speed limit and degree of curve obtained from the two approaches 

were also greater than the ones obtained from naïve method. In other words, the 

regression coefficient estimates for posted speed limit were biased by 8 percent and 15 

percent, respectively, for RCAL and SIMEX methods. The regression coefficient 
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estimates for shoulder width were lower and biased by 60 percent and 50 percent, 

respectively, for RCAL and SIMEX methods. All these regression coefficient estimates 

obtained from RCAL and SIMEX were significant at 99 percent or more confidence 

level, when measurement error variance values of 0.05 in Log AADT estimates were 

accounted for in the regression models of expected number of crashes. 

Table 19 shows the regression coefficient estimates of the selected explanatory 

variables, along with the bootstrap standard errors and 95 percent confidence intervals 

while the measurement error variance in Log AADT estimates was 0.10. Similar to 

Figure 13, Figure 14 also shows the naïve parameter estimate and SIMEX parameter 

estimate for Log AADT, obtained by quadratic extrapolation in SIMEX method, but for 

ME variance of 0.10.  

As expected, the parameter estimates for Log AADT obtained from these two 

approaches were greater than those obtained from naïve analysis. In other words, the 

parameter estimates for Log AADT obtained from RCAL and SIMEX methods were 

biased by 18 percent and 17 percent, respectively, from the naïve regression model 

parameter estimates (i.e., model without accounting for measurement error). 

Similar to the previous results for ME variance of 0.05 in Log AADT estimates, 

the parameter estimates for natural logarithm of segment length from RCAL and SIMEX 

approaches were also greater than the ones obtained from naïve method. The parameter 

estimates for posted speed limit and degree of curve obtained from the two approaches 

were also greater than the ones obtained from naïve regression model. In other words, the 

regression coefficient estimates for posted speed limit were biased by 23 percent and 38 

percent, respectively, for RCAL and SIMEX methods.  
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Table 19 RCAL and SIMEX Analysis Results for Total Crashes on Rural Two-Lane 

Horizontal Curves with ME Variance of 0.10 in Log AADT Estimates 

Variable Regression Calibration (RCAL)* Simulation Extrapolation (SIMEX)* 

Coeff. Bootstr 

Std. Err. 

95% Conf. Interval Coeff. Bootstr 

Std. Err. 

95% Conf. Interval 

Log AADT 1.208 0.030 1.149 1.267 1.192 0.032 1.130 1.255 

Log Seg. Len. 0.856 0.034 0.788 0.924 0.856 0.033 0.790 0.922 

Speed Limit 0.016 0.003 0.010 0.022 0.018 0.003 0.012 0.024 

Shoulder Width -0.054 0.010 -0.074 -0.033 -0.044 0.011 -0.065 -0.023 

Deg_Curv 0.101 0.006 0.089 0.113 0.103 0.006 0.090 0.115 

Constant -8.858 0.302 -9.451 -8.266 -8.948 0.327 -9.591 -8.306 

Wald F-Statistic 582.21 558.56 

P-Value 0.00 0.00 

*All regression coefficient estimates are significant at 95% or more confidence level 

 

 

Figure 14 SIMEX Naïve and Quadratic Extrapolation Estimates Plot for Log AADT 

with ME Variance of 0.10 

Similarly, the regression coefficient estimates for shoulder width were lower and 

biased by 150 percent and 100 percent, respectively, for RCAL and SIMEX methods. All 

these regression coefficient estimates obtained from RCAL and SIMEX were significant 

at 99 percent or more confidence level, when measurement error variance values of 0.10 

in Log AADT estimates were accounted for in the regression models of expected crash 

frequency. 
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Table 20 shows the regression coefficient estimates of the selected explanatory 

variables, along with the bootstrap standard errors and 95 percent confidence intervals 

while the measurement error variance in Log AADT estimates was 0.15. Similar to the 

above figures, Figure 15 also shows the naïve parameter estimate and SIMEX parameter 

estimate for Log AADT, obtained by quadratic extrapolation in SIMEX method, but for 

measurement error variance of 0.15. As expected, the parameter estimates for Log AADT 

obtained from RCAL and SIMEX methods were greater and biased by 31 percent and 25 

percent, respectively, from the naïve regression model parameter estimates (i.e., model 

without accounting for measurement error). 

Similar to the previous results for ME variance of 0.10, the parameter estimates 

for natural logarithm of segment length from RCAL and SIMEX approaches were also 

greater than the ones obtained from naïve method. The parameter estimates for posted 

speed limit and degree of curve obtained from these two approaches were also greater 

than the ones obtained from naïve method, i.e., the regression coefficient estimates for 

posted speed limit were biased by 38 percent and 46 percent, respectively, for RCAL and 

SIMEX methods. The regression coefficient estimates for shoulder width were lower and 

biased by more than 200 percent and 160 percent, respectively, for RCAL and SIMEX 

analysis. All these regression coefficient estimates obtained from both approaches were 

significant at 99 percent or more confidence level, for measurement error variance values 

of 0.15 in Log AADT estimates in regression models of expected number of crashes. It 

was observed that as the magnitude of measurement error variance increases in Log 

AADT estimates, the parameter estimates tend to move away from zero, which agrees 

with the previous literature on measurement error models.  
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Table 20 RCAL and SIMEX Analysis Results for Total Crashes on Rural Two-Lane 

Horizontal Curves with ME Variance of 0.15 in Log AADT Estimates 

Variable Regression Calibration (RCAL)* Simulation Extrapolation (SIMEX)* 

Coeff. Bootstr 

Std. Err. 

95% Conf. Interval Coeff. Bootstr 

Std. Err. 

95% Conf. Interval 

         

Log AADT 1.334 0.037 1.261 1.406 1.276 0.034 1.208 1.344 

Log Seg. Len. 0.859 0.034 0.793 0.926 0.864 0.036 0.793 0.934 

Speed Limit 0.018 0.003 0.012 0.024 0.019 0.003 0.013 0.026 

Shoulder Width -0.077 0.012 -0.100 -0.054 -0.056 0.011 -0.078 -0.033 

Deg_Curv 0.105 0.006 0.093 0.117 0.107 0.006 0.094 0.119 

Constant -9.830 0.337 -10.491 -9.168 -9.649 0.342 -10.321 -8.977 

Wald F-Statistic 520.29 504.72 

P-Value 0.00 0.00 

*All regression coefficient estimates are significant at 95% or more confidence level 

 

 

Figure 15 SIMEX Naïve and Quadratic Extrapolation Estimates Plot for Log AADT 

with ME Variance of 0.15 

Table 21 shows the regression coefficient estimates of the selected explanatory 

variables, along with the bootstrap standard errors and 95 percent confidence intervals 

while the measurement error variance in Log AADT estimates was 0.20. Figure 16 shows 

the naïve parameter estimate and SIMEX parameter estimate for Log AADT, obtained by 

quadratic extrapolation in SIMEX method, but for measurement error variance of 0.20. 

As expected, the parameter estimates for Log AADT obtained from these two approaches  
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Table 21 RCAL and SIMEX Analysis Results for Total Crashes on Rural Two-Lane 

Horizontal Curves with ME Variance of 0.20 in Log AADT Estimates 

Variable Regression Calibration (RCAL)* Simulation Extrapolation (SIMEX)* 

Coeff. Bootstr 

Std. Err. 

95% Conf. Interval Coeff. Bootstr 

Std. Err. 

95% Conf. Interval 

         

Log AADT 1.488 0.041 1.406 1.570 1.356 0.037 1.282 1.429 

Log Seg. Len. 0.864 0.034 0.796 0.931 0.864 0.033 0.798 0.930 

Speed Limit 0.021 0.003 0.015 0.027 0.021 0.003 0.015 0.028 

Shoulder Width -0.106 0.012 -0.131 -0.081 -0.068 0.012 -0.091 -0.045 

Deg_Curv 0.109 0.006 0.097 0.121 0.109 0.006 0.096 0.122 

Constant -11.026 0.379 -11.770 -10.282 -10.322 0.374 -11.056 -9.587 

Wald F-Statistic 512.83 463.56 

P-Value 0.00 0.00 

*All regression coefficient estimates are significant at 95% or more confidence level 

were greater than those obtained from naïve analysis. In other words, the parameter 

estimates for Log AADT obtained from RCAL and SIMEX methods were biased by 46 

percent and 33 percent, respectively, from the naïve regression model parameter 

estimates (i.e., model without accounting for measurement error). 

Similar to the previous results for different values of measurement error variance; 

the parameter estimates for natural logarithm of segment length from RCAL and SIMEX 

approaches were also greater than the ones obtained from naïve method. The parameter 

estimates for posted speed limit and degree of curve obtained from these two approaches 

were also greater than the ones obtained from naïve method. In other words, the 

regression coefficient estimates for posted speed limit were biased by 60 percent for both 

RCAL and SIMEX methods.  

The regression coefficient estimates for shoulder width were lower and biased by 

400 percent and 200 percent, respectively, for RCAL and SIMEX approaches. All these 

regression coefficient estimates obtained from RCAL and SIMEX were significant at 99 

percent or more confidence level, when measurement error variance values of 0.20 in 

Log AADT estimates were accounted for in the safety models.  
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Figure 16 SIMEX Naïve and Quadratic Extrapolation Estimates Plot for Log AADT 

with ME Variance of 0.20 

Overall, it can be said that the regression coefficient estimates obtained by both 

RCAL and SIMEX measurement error correction approaches were consistent in direction 

with the ones obtained from naïve NB regression models of expected crash frequency. It 

was also noted that the parameter estimates with a positive coefficient were larger and a 

negative coefficient were smaller, when measurement error was accounted for in the 

regression models when compared to the ones obtained from naïve regression model. 

This implies that the parameter estimates for the selected explanatory variables with 

measurement error were biased towards zero, when the error was not accounted for in the 

regression modeling of expected number of crashes. This is consistent with the previous 

work on measurement errors, which suggests that measurement error shrinks the 

parameter estimates towards zero (41,117). However, as the measurement error in Log 

AADT estimates was accounted for in the models, the parameter estimates started biasing 

away from zero. 
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The bootstrap standard errors corresponding to the RCAL and SIMEX approaches 

for the selected explanatory variables were larger when compared to the standard error 

estimates in naïve model estimation. This shows that the NB regression model without 

accounting for measurement errors in explanatory variables (i.e., Log AADT estimates in 

this context) underestimates the standard errors for the parameter estimates, falsely 

increasing the parameter significance in the model specification. This finding is 

consistent with the previous work, which states that the standard errors obtained from the 

naïve NB regression models are smaller when compared to the models that account for 

the measurement errors in explanatory variables (133). The parameter estimates were 

found to be biased for the error-free explanatory variables, along with the error-prone 

explanatory variables after the measurement error correction approaches were applied. Of 

all the correctly measured explanatory variables, the effect of measurement error in 

natural logarithm of AADT was greater in shoulder width, followed by posted speed 

limit, degree of curve, and natural logarithm of segment length.  

These differences in the effects were found to be due to the correlation aspects 

between the explanatory variables. The correlation effect between Log AADT and 

shoulder width is higher, explaining the reason for larger effect than the other variables. 

However, the effects for all the explanatory variables increased with an increase in the 

ME variance in Log AADT estimates. Additionally, if the results are compared between 

RCAL and SIMEX approaches, SIMEX tend to preserve the precision of the regression 

coefficient estimates, and RCAL inclined to correct for a larger amount of effect bias in 

regression coefficient estimates, particularly for the error-prone variable, i.e., Log AADT 

estimates in this research. 
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Safety Effects of Including Prior Information  

This part of the research employed a Bayesian methodological framework to 

incorporate accumulated knowledge (i.e., prior information) from the past research along 

with the data in the regression models of expected crash frequency. Three different types 

of priors were used in this part of the analysis: noninformative, semi-informative, and 

informative priors for the selected explanatory variables, intercept, and inverse dispersion 

parameter. These explanatory variables included: natural logarithm of AADT, natural 

logarithm of segment length, shoulder width, lane width, and degree of curvature. The 

reason for employing different types of priors was to compare and contrast between the 

results obtained from different types of priors. After employing the MCMC algorithm, 

the posterior means and standard deviations were calculated for the selected explanatory 

variables, along with the intercept term and the inverse dispersion parameter for all the 

different types of priors in this study.  

 Bayesian Analysis Results with Noninformative Priors 

The results shown in this section reflect the effects of incorporating 

noninformative priors for the selected explanatory variables, intercept, and inverse 

dispersion parameter in the Bayesian analysis framework. The table presented in this 

section shows the posterior means and standard deviations calculated for all the variables, 

when a large variance was incorporated in the prior distributions. Table 22 shows the 

posterior means and other estimates of all the parameters, along with the 2.5 percent and 

97.5 percent value of the parameter estimates in its posterior distribution. A quick 

comparison of the posterior means of the parameter estimates with the corresponding 

maximum likelihood estimates in Table 17 shows that the values are very close. This is to  
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Table 22 Posterior Means and Other Estimates for All Parameters Using 

Noninformative Priors 

 

Variable List 

 

Mean Std. Dev. 

 

MC Err. 

 

2.5% Median 97.5% 

       

Log AADT 0.996 0.015 0.001 0.959 0.997 1.020 

Log Segment Length 0.863 0.030 0.002 0.80 0.863 0.917 

Shoulder Width -0.011 0.007 6.3E-4 -0.026 -0.011 0.004 

Degree of Curvature 0.089 0.005 4.2E-4 0.079 0.089 0.101 

Lane Width 0.005 0.013 0.001 -0.028 0.004 0.028 

Intercept Term -6.545 0.168 0.018 -6.842 -6.567 -6.254 

Inverse Dispersion 

Parameter 
1.493 0.078 0.004 1.345 1.49 1.652 

DIC 14669 

       

 

be expected because when noninformative priors are employed, less weight is given to 

the prior means and distributions, and more weight is given to the data in the estimation 

of the posterior distributions of the parameters.  

 The results from Table 22 show that Bayesian analysis with noninformative priors 

resulted in the posterior mean values as expected in terms of magnitude and direction for 

all the explanatory variables. The analysis resulted in a posterior mean value of 0.996 for 

natural logarithm of AADT and a posterior standard deviation of 0.015. Similarly, the 

posterior mean and standard deviation values for natural logarithm of segment length 

were found to be 0.863 and 0.030, respectively. The posterior estimates for shoulder 

width and degree of curve were very close to the maximum likelihood estimates obtained 

from the frequentist method, with the mean values being -0.011 and 0.089, respectively. 

Similarly, the standard deviation values for shoulder width and degree of curve were 

0.007 and 0.005, respectively. The posterior mean value for lane width was positive and 

close to zero, with the standard deviation being 0.013. The distribution of lane width 

included zero, and the 2.5 percent to 97.5 percent values ranged from -0.028 to 0.028, 

respectively. 
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Bayesian Analysis Results with Semi-Informative Priors 

The results shown in this section reflect the effects of incorporating semi-

informative priors for the selected explanatory variables, intercept term, and inverse 

dispersion parameter in the Bayesian analysis framework. The table presented in this 

section shows the posterior means and standard deviations calculated for all the variables, 

when a relatively smaller variance (compared to that of the noninformative priors) of a 

magnitude of 100 was incorporated in the prior distributions. Table 23 shows the 

posterior means and other estimates of all the parameters, when semi-informative priors 

were employed. 

The results from Table 23 show that Bayesian analysis with semi-informative 

priors resulted in a posterior mean of 0.985 for natural logarithm of AADT and a 

posterior standard deviation of 0.018. Similarly, the posterior mean and standard 

deviation for natural logarithm of segment length was found to be 0.880 and 0.032, 

respectively. The posterior estimates for shoulder width and degree of curve moved 

closer to the weighted average value of the priors, the mean values being -0.010 and 

0.090, and standard deviation values being 0.007 and 0.006, respectively.  

Table 23 Posterior Means and Other Estimates for All Parameters Using Semi-

Informative Priors 

 

Variable List 

 

Mean Std. Dev. 

 

MC Err. 

 

2.5% Median 97.5% 

       

Log AADT 0.985 0.018 0.002 0.951 0.981 1.021 

Log Segment Length 0.880 0.032 0.003 0.810 0.884 0.933 

Shoulder Width -0.010 0.007 7.1E-4 -0.026 -0.009 0.005 

Degree of Curvature 0.090 0.006 4.9E-4 0.079 0.091 0.102 

Lane Width 0.002 0.019 0.002 -0.03 0.002 0.036 

Intercept Term -6.402 0.157 0.017 -6.675 -6.384 -6.106 

Inverse Dispersion 

Parameter 
1.492 0.075 0.003 1.358 1.489 1.653 

DIC 14665 
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 The posterior mean value for lane width moved much closer to zero, with the 

standard deviation being 0.019. The mean value of the intercept term was -6.402, and 

standard deviation was 0.157. Overall, all of the posterior estimates obtained from using 

the semi-informative priors were closer in magnitude to the posterior estimates obtained 

from using noninformative priors. The only difference is that the posterior mean values 

using semi-informative priors moved closer to the weighted mean values of the priors 

(which were used to develop the prior distributions), which is in accordance with the 

definition of the semi-informative priors. The analysis with the semi-informative priors 

gives more weightage to the priors than the noninformative priors.  

Bayesian Analysis Results with Informative Priors 

The results shown in this section reflect the effects of incorporating informative 

priors for the explanatory variables, intercept term, and inverse dispersion parameter in 

the Bayesian analysis framework. The table presented in this section shows the posterior 

means and standard deviations calculated for all the variables, when a weighted variance, 

calculated from the prior knowledge, was incorporated in the prior distributions. Table 24 

shows the posterior means and other estimates of all the parameters, along with the 2.5 

percent and 97.5 percent values of the parameter estimates in their posterior distribution.  

In these types of priors, more weight is given to the prior means and distributions, 

and lesser weight is given to the data in the estimation of the posterior distributions of the 

parameter estimates. These priors were helpful to see if the estimation results from the 

past studies could be incorporated into the current studies, instead of starting over with 

each study, using the Bayesian methodological framework. The overall effect of 

including informative priors on parameter estimates is described in this section. 
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Table 24 Posterior Means and Other Estimates for All Parameters Using 

Informative Priors 

 

Variable List 

 

Mean Std. Dev. 

 

MC Err. 

 

2.5% Median 97.5% 

       

Log AADT 0.966 0.016 0.001 0.938 0.964 0.997 

Log Segment Length 0.848 0.022 0.002 0.801 0.848 0.890 

Shoulder Width -0.028 0.006 5.04E-4 -0.041 -0.027 -0.016 

Degree of Curvature 0.069 0.004 2.71E-4 0.061 0.069 0.076 

Lane Width -0.009 0.014 0.001 -0.03 -0.008 0.017 

Intercept Term -5.983 0.165 0.018 -6.357 -5.972 -5.733 

Inverse Dispersion 

Parameter 
1.721 0.085 0.003 1.562 1.720 1.896 

DIC 14649 

       

 

The results from Table 24 show that Bayesian analysis using informative priors 

resulted in a posterior mean of 0.966 for natural logarithm of AADT and a posterior 

standard deviation of 0.016. This value of the posterior mean is closer to the prior 

weighted mean value of 0.799 when compared among the results from all different types 

of priors incorporated in this analysis. Similarly, the posterior mean and standard 

deviation for natural logarithm of segment length was found to be 0.848 and 0.022, 

respectively. The posterior estimates for shoulder width and degree of curve moved much 

closer to the weighted average value of the priors, the mean values being -0.028 and 

0.069, respectively. The posterior mean for lane width was negative with a value of -

0.009, also closer to zero, and in the same direction as the lane width prior used for the 

analysis. This posterior mean value of lane width parameter estimate was different (in 

direction) from those obtained when noninformative and semi-informative priors were 

used in the analysis. This means that the data resulted in a positive posterior mean value 

close to zero for lane width parameter. However, the analysis using informative prior 

gave more weightage to the prior resulting in a negative posterior mean value for lane 

width estimate.  
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The mean value of the intercept term obtained using informative prior was -5.983, 

and standard deviation was 0.165. Overall, the results obtained from employing different 

types of priors by changing the prior mean and variance values improved the Bayesian 

result estimation marginally. In other words, the posterior estimates found by using the 

informative priors are slightly different from those obtained by employing objective 

priors. This smaller difference in the parameter estimates is because of the fact that the 

data and prior distributions agreed on the parameter estimates. However, the Bayesian 

estimator with the smaller prior variance values (i.e., informative priors) seemed to 

perform better than the others because of the reduced standard errors of the posterior 

estimates and smaller confidence intervals for all the parameters in the model. This 

reflects the reduced uncertainty due to incorporating the information from the previous 

rigorous and well-defined observational studies. Hence, if the informative priors 

employed in the Bayesian analysis are accurate, and informative, many reliable and 

repeatable results can be obtained by employing them using the Bayesian methodological 

framework. 



 

CHAPTER 6 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

This chapter presents the summary of the research findings for each of the three 

research questions addressed in this research, and describes the major research 

contributions and limitations for statistical road safety modelers, including researchers 

and practitioners. This chapter also provides recommendations for the future 

development of the research. The main objective of this research was to explore key 

limitations in both data and regression modeling approaches used in observational road 

safety studies and identify possible solutions. This dissertation develops methods and 

approaches that address these limitations and develop more informed and complete 

model specifications using detailed datasets and empirically-derived theory. Data from 

the states of Utah and Washington for rural, two-lane horizontal curves were used to 

develop a detailed dataset consisting of crash data, roadway, traffic and roadside data, 

weather, and socio-economic data, which influence the prediction and estimation of 

expected number of crashes.   

Conclusions and Contributions 

Observational road safety studies serve as a major source of knowledge for 

researchers and other decision makers on the expected road safety effects of highway and 

traffic engineering decisions. These decisions are further used in the policy development 

to identify the most important road safety problems, and the contributing factors 
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associated with those problems. This is generally done by regression models of expected 

crash frequency, which are used to estimate the expected number of crashes, and in some 

cases, used to estimate the effects of right-hand side variables on expected number of 

crashes. Hence, it is extremely important to address data and modeling challenges that 

exist and have a considerable impact on the accuracy and repeatability of observational 

study results. The idea behind methodological approaches developed in this research was 

to explore some options to address the above-mentioned data and modeling approach 

challenges that will allow researchers and practitioners to accurately evaluate the 

expected road safety effects.  

The study on incorporating new information on traffic pattern estimates in the 

regression models of expected crash frequency introduced the application of geo-spatial 

interpolation methods in road safety research. This supported the use of spatial factors 

such as population density as well as other socio-economic factors that have strong 

influences on the traffic patterns and ultimately crash occurrence in the study area. The 

inclusion of night-to-day traffic volume ratio in regression models of expected crash 

frequency provided additional knowledge on how the expected number of crashes change 

as a function of traffic patterns (shown in the results chapter). The inclusion of this new 

information provided useful insights into the safety performance, even with only a small 

impact on model prediction in this particular research.      

All observational before-after studies use crash and traffic volume data for time 

period before and after the improvement of treated sites. With the new information 

available on the traffic patterns during the entire day, the changes in traffic volume can be 

analyzed throughout the day and useful conclusions can be drawn in these studies. This 
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will be particularly useful for the ‘prediction task’ in before-after studies, where the 

prediction of the safety effect of the treated entities in the after period without the 

treatment being applied is done. So, instead of using the yearly indicators for the 

“unmeasured” independent variables (i.e., traffic volumes during the day and night) that 

change with time, the actual changes in the traffic volumes throughout the day (i.e., day 

and night) can be used in the prediction task to predict the expected number of crashes. 

Hence, including this additional information (as an additional variable in cross-sectional 

studies and instead of the yearly indicators in before-after studies) will help in improving 

the predictions in the expected number of crashes in observational studies. Additionally, 

relating the expected number of crashes to day and night traffic volumes will also assist 

in estimating more reliable crash modification factors (CMFs) in both before-after and 

cross-sectional studies.  

Measurement error in traffic volume estimates is often ignored in road safety 

research. This research presented a study on accounting for measurement error in the 

independent variables (i.e., traffic volume estimates) in regression models of expected 

crash frequency, by introducing functional-type measurement error approaches. 

Currently, the regression models of expected crash frequency use error-prone AADT 

estimates, which introduce substantial bias in the regression coefficient estimates of all 

the independent variables included in the model specification. This bias was eliminated 

when RCAL and SIMEX methods were used in safety models, incorporating the 

measurement error variance corrections associated with the AADT estimates. The 

measurement error correction methods presented in this research assume only one error-

prone explanatory variable (i.e., AADT). 
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The work presented in this part of the research is applicable to both observational 

before-after and cross-sectional studies in the context of road safety research. The AADT 

estimates for the study duration are often reported with error. Inaccurate reporting of 

AADT could lead to bias in the regression coefficient estimates of all the explanatory 

variables included in the safety models. As explained in the literature chapter, error-prone 

AADT estimates lead to the parameter estimates’ being close to zero, i.e., underreporting 

of the safety effect occurs. Accounting for the measurement error in AADT estimates 

provides more accurate estimates of the safety effects for all the independent variables 

included in the model specification. This is particularly useful for the cross-sectional 

studies where regression models are used to estimate the effects of right-hand side 

variables on expected number of crashes, and a slight bias in the regression coefficient 

estimates can alter the results in this case.  

The study on incorporating prior knowledge in the form of informative priors in 

regression models of expected crash frequency introduced the application of the Bayesian 

methodological framework in road safety research. This study supported the use of 

parameter estimates of selected explanatory variables from previous rigorous and well-

defined observational studies that have an effect on the expected crash frequency. The 

inclusion of informative priors in this study provided a logical starting point for utilizing 

the previous study results, and ultimately converging on a similar model form and 

specification. The importance of incorporating an informative prior was demonstrated by 

comparing the results to the cases when more objective priors (i.e., noninformative and 

semi-informative priors) were used. This study provided useful insights on how 

informative priors can be incorporated into safety models, which could ultimately 
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improve the accuracy and repeatability of observational study results, without having to 

start over with each study and rely on the data to obtain the parameter estimates.   

The work presented in this part of the research is applicable to both before-after 

and cross-sectional studies in the context of road safety research. Each study typically 

‘starts over’ and chooses a model functional form that fits the existing data best, without 

utilizing previous study results. This study provides a starting point by incorporating 

previous knowledge, and arriving at repeatable study results that could transition to a 

more formal development of road safety theory. This would be particularly useful in the 

cases of limited research funding for effective utilization of resources, and establishing a 

foundation for future road safety theory development.  

Limitations and Recommendations  

One of the limitations for the study on incorporating new information on traffic 

pattern estimates in regression models of expected number of crashes was estimating a 

combined regression model for both day and night crashes, i.e., as total crashes. In the 

current research, the alternative cases (i.e., separate models for day crashes and night 

crashes) were tested and the parameter estimates were unstable as specifications changed 

and were not statistically significant at high level of confidence. This might be because of 

the nature of the data, and particularly small sample sizes on rural, two-lane horizontal 

curves. As part of the potential future research efforts, the methodology should be tested 

in a state with a more dense set of permanent traffic counters. This is hoped to help 

develop separate and better performing safety models for day and night crashes as a 

function of day and night traffic volumes, respectively. Regression models accounting for 

different crash severity levels should also be developed, for day and night crash models. 
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Other limitations for this study include considering Euclidean distances for 

kriging model development, and not having enough validation data to further evaluate the 

kriging predictions. As part of the future research efforts, network distances should be 

considered and more information on hourly traffic volumes other than at permanent 

traffic counters need to be obtained and incorporated in the research. This will help in 

utilizing additional data collected over shorter period of time (e.g., 2-3 days) at locations 

where the permanent traffic recorder stations are not present for further validation of the 

kriging predictions. This study included covariates that have an effect on the average 

annual daily traffic in the study area. Inclusion and removal of covariates changes the 

traffic volume estimates, as shown earlier by the different model specifications with 

different sets of covariates in the semivariogram models. As part of potential future 

research efforts, more covariates that have an effect on the traffic volume estimation and 

that change with the season and study area should be included in the semivariogram 

model estimation and kriging interpolation analysis.  

Another limitation for this study is the small improvement in the model 

diagnostics, i.e., Pseudo R-squared and dispersion parameter, when the ratio of night-to-

day traffic volume variable was introduced in the model specification. The other 

coefficient estimates did not change much and remained stable when this additional 

explanatory variable was introduced in the model. The CMF figures, which are based on 

the model specification, showing the relationship between the total crashes (or FI 

crashes) and horizontal curve radius at a specific AADT value for different ratios of 

night-to-day traffic volumes showed the actual difference in the estimated safety 

performance. These differences were small in this particular case study application, but 
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the statistical significance of the parameter estimate for this new predictor variable would 

likely continue to increase as the sample size becomes larger. Hence, as part of the future 

research efforts, these day and night traffic volume estimates should be developed for all 

site and area types, which when included in safety models, are hoped to explicitly show 

greater differences in the safety performance during the day and night. 

The major limitation for the study on accounting for measurement error in the 

independent variables in regression models of expected crash frequency was the 

calculation of the measurement error variance in AADT estimates. Typically in 

measurement error problems, external validation data with measurements of both true 

values of explanatory variable and the mismeasured values are used to estimate the 

measurement error variance. However, this study utilized the coefficient of variance 

equation for AADT from an unpublished study in the literature and sensitivity analysis by 

considering a range of values for the percentage of variance for measurement error. This 

was done because a ‘gold standard’ value for AADT was not available.  

Additionally, collecting more data for the accurate AADT estimates for the entire 

study period (i.e., 5 years) in this research was not feasible. Hence, the measurement 

error variance was calculated using the equations that were available along with some 

assumptions. This was done to show the potential application of the measurement error 

correction approaches to regression models of expected crash frequency to correct for 

measurement error. As part of potential future research efforts, to advance the 

understanding of the impacts of measurement error on parameter estimates of explanatory 

variables and enable straightforward implementation of measurement error correction 

methods in the context of road safety, the calculation of the true measurement error 



127 

 

 

variance (applicable area-wise or county-wise) in AADT estimates should be done. This 

will further help in obtaining reliable results and making meaningful interpretations from 

those results. If the calculation of true measurement error variance cannot be done, then 

methods that utilize partial information to arrive at near true value of measurement error 

variance need to be explored. 

Another limitation for this study was not validating the measurement error models 

using any traffic volume data and performing sensitivity analysis using the ME variance 

equation from the literature. The number of permanent traffic recorder stations in 

Washington was not enough to carry out the validation of the ME correction methods. 

Future research efforts should focus on including all sites and area types for analysis, so 

all the available ATR stations, along with other short-term counts available, can be used 

for validating the models. As more traffic volume data become available, it is hoped that 

the future research efforts will be focused on deriving a near ‘gold standard’ value for 

AADT estimates, which will help in the calculation of ME variance, providing exact 

estimates of the safety effects of explanatory variables with respect to the response 

variable when RCAL and SIMEX methods are employed.  

Other limitations for this study include strong assumptions of functional-type 

measurement error correction approaches applied in this research. Future research efforts 

to correct for measurement error should definitely make use of the structural equation 

modeling or other methods that are flexible and involve fewer assumptions. 

Consideration of structural-type measurement error approaches, which consider the error-

prone explanatory variables to be random, can also address the true measurement error 

variance value limitation and be useful for making reliable interpretations.  
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The major limitation for the study on incorporating prior knowledge in Bayesian 

framework was the development of informative priors using the regression coefficient 

estimates from previous studies. This study utilized the CMF clearing house star rating 

system to weight the studies based on the methodology, and statistical rigor. Future 

research efforts should focus on systematically evaluating the various elements or 

categories that contribute to the weightage of rigorous and well-defined studies. These 

studies should explicitly evaluate selected multiple categories using multiple-criteria 

decision analysis and weight them using a structured technique like analytic hierarchy 

process. The resulting weights should be used in calculating the weighted mean and 

variance for prior distributions of explanatory variables, intercept term, and dispersion 

parameter. 

Another limitation for this study includes the prior distribution assumptions of 

explanatory variables, intercept, and the inverse dispersion parameter. These are assumed 

to be normally distributed and gamma distributed, respectively. Since there is a slight 

improvement in the Bayesian estimation as the prior variance changes (or becomes 

smaller), different prior distributions should be looked into to see the sensitivity of the 

results to the type of the prior distributions. In other words, more research is needed to 

determine the behavior of the parameter estimates of explanatory variables and intercept 

term. Potential research efforts should focus on more rigorous processing of prior 

information and computing posterior distributions under a range of uncertainty levels, to 

account for the assumptions on prior distributions.  

Other limitations for this study include the selection of the explanatory variables 

for this research. The link between lane width and safety has not been fully explored in 
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the literature yet. Most researchers indicate that the safety benefit of widening a lane 

bottoms out somewhere between 11ft and 12ft. Future research efforts should focus on 

extending the Bayesian analysis by incorporating lane width as a categorical variable 

(e.g., 10ft, 11ft, and 12ft, and above) instead of a continuous variable. This should be 

done to weigh the empirical evidence substantially and incorporate what has been learned 

from the previous research to the current data to draw meaningful conclusions on safety 

effects of debated explanatory variables, like lane width.  Future research efforts should 

also focus on extending the analysis by adding more stochastic explanatory variables and 

replicating the Bayesian analysis framework at other site types.   

Overall, as new and more complete data become available; these three different 

methodologies to improve the road safety effect estimation and prediction using 

multivariate regression models can be applied without any prior assumptions (lack of 

data). The first method, kriging, can be employed in a larger site/area type, leading to 

significant difference in the model diagnostics with and without including the new 

information on daily traffic patterns. This may be possible due to increases in the sample 

size, and more complete and accurate traffic volume data at many other locations, in 

addition to the ATR stations. The second method on ME corrections can be employed by 

generating the ME variance equation from a near ‘gold standard’ value of AADT 

estimates if new additional data on traffic volumes can be obtained. These changes in 

employing the methodologies without assumptions will be helpful to the road safety 

managers in deriving useful conclusions. Eventually, these findings are hoped to lead to 

determining specific impacts on safety effects estimates and model prediction results, 

specific to each of the methods.       
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