
HYBRID SCHEDULING FOR GRAPH-BASED

ALGORITHM DECOMPOSITION IN HIGH-

PERFORMANCE COMPUTING

ENVIRONMENTS

by

Braden Devin Robison

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computational Engineering and Science

School of Computing

The University of Utah

May 2014

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1553595

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 1553595

Copyright c© Braden Devin Robison 2014

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF THESIS APPROVAL

The thesis of Braden Devin Robison

has been approved by the following supervisory committee members:

James Sutherland , Chair 4/2/2013
Date Approved

Mary Hall , Member 3/25/2013
Date Approved

Adam Bargteil , Member 3/20/2013
Date Approved

and by Martin Berzins , Chair/Dean of

the Department/College/School of Computer Science

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

At the beginning of the 21st century, it became apparent that the performance gains

associated with continual die shrinks and the resulting increases in core central processing

unit (CPU) speeds were beginning to flatten. This realization has gradually shifted the

focus of CPU design away from single core speed increases and toward the idea of obtaining

performance through increased concurrency. The resulting design paradigm has given us

multi- and many-core CPUs, vector processing units, and more recently, programmable,

massively parallel hardware coprocessors, such as graphics processing units from nVidia and

Advanced Micro Devices, along with more recent general purpose devices such as Intel’s

“Knights Corner.” One of the most significant resulting challenges in high-performance

computing is to provide a framework in which the software development process is platform

agnostic to its end users, while at the same time being capable of scaling efficiently on diverse

hardware configurations. This thesis will present an improved approach for the analysis and

scheduling of computational tasks within a heterogeneous hardware environment, while

removing implementation details from end users. This will be presented within the context

of the “Expression” framework, a component within a computational fluid dynamics solver,

known as “Wasatch,” developed at the University of Utah.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vi

ACKNOWLEDGMENTS . viii

CHAPTERS

1. INTRODUCTION . 1

1.1 Overview . 1
1.1.1 Advantages . 1
1.1.2 Challenges . 2

1.2 Distributed and Heterogeneous Hardware . 3
1.2.1 Grid-Based Computing . 3
1.2.2 Transition from Single to Multicore Architectures 4
1.2.3 Coprocessors and Massively Parallel Hardware 4

1.3 Approaches to Computational Software . 5
1.3.1 Mastery of Everything . 5
1.3.2 Our Goal - Separating Form and Functionality 6

1.4 The Wasatch Framework . 6

2. GRAPH THEORY AND APPLICATIONS . 7

2.1 Overview . 7
2.1.1 Terminology . 7
2.1.2 Algorithms . 8

2.2 DAGs as Computational Models . 9
2.2.1 Motivation . 9
2.2.2 Related Work . 9
2.2.3 The Expressions Context . 11
2.2.4 The Dependency Graph . 12
2.2.5 The Task Graph . 12

2.3 Extracting Information . 12
2.3.1 Task Granularity . 12
2.3.2 Graph Introspection . 12
2.3.3 Bounds on Execution Time . 13
2.3.4 Parallelization . 13

3. FRAMEWORK EXTENSIONS . 15

3.1 The Expressions Library . 15
3.1.1 Overview . 15
3.1.2 Concepts and Terminology . 15

3.1.3 Implementing an Expression . 17
3.1.4 Constructing the Task Graph . 19
3.1.5 Design Goals . 20
3.1.6 A Flexible Scheduling Model . 21
3.1.7 The Priority Task Scheduler . 22
3.1.8 Graph-Based Execution . 22
3.1.9 Task Dispatch Model . 23
3.1.10 Improving Resource Utilization . 25
3.1.11 Memory Resources . 25
3.1.12 Threading Resources . 29
3.1.13 The “Hybrid” Task Scheduler . 31
3.1.14 Device Assignment . 33
3.1.15 Path Coalescing “Clustering” . 35
3.1.16 Reducing Edge Latency . 35

3.2 The Spatial Fields Library . 37
3.2.1 Overview . 37
3.2.2 Concepts and Terminology . 37
3.2.3 Operator Selection . 38
3.2.4 External Consumers . 38

4. RESULTS AND EVALUATION . 40

4.1 Test Cases . 40
4.1.1 Scheduler Performance - Task Threaded Operator

Interaction . 40
4.1.2 Scheduler Performance - Task Threaded MPI-Process

Interaction . 43
4.1.3 Scheduler Performance - Task Threaded MPI-Scaling:

Multinode . 49
4.1.4 Hybrid Scheduler Feasibility - Stencil 2 Performance 49

4.2 Conclusion . 54
4.2.1 Work Summary . 54
4.2.2 Future Work . 55
4.2.3 Final Thoughts . 56

APPENDIX: SCHEDULER CODE . 57

REFERENCES . 71

v

LIST OF FIGURES

3.1 Framework component diagram. 16

3.2 Example of a basic expression. 16

3.3 Constructing the task graph from individual expressions. 18

3.4 Advertise dependents implementation. 19

3.5 Bind operators implementation . 19

3.6 Bind fields implementation. 19

3.7 Evaluate method implementation. 19

3.8 Visualization of a potential task graph for the heat equation. 21

3.9 Simplified communication memory model, multicore CPU. 23

3.10 Priority Task Dispatch Model. 24

3.11 Dependency graph illustrating the deallocation of a fully consumed expression. 26

3.12 Initial field manager implementation. 27

3.13 Updated field manager implementation. 28

3.14 Idealized multilevel parallelism. 30

3.15 Example task graph analysis to determine thread allocation. Note: execution
times are all normalized to 1. 31

3.16 Expanded communication memory model. 32

3.17 Scheduling with mixed hardware and edge transfer cost. 34

3.18 Multiconsumer field problem. 35

3.19 Illustration of consumer prefetching. 36

3.20 Illustration of consumer prefetching. 37

4.1 Example scalability graph, eight equation, no source coupling 42

4.2 Example scalability graph, eight equation, source coupling 44

4.3 Scalability test, ember 2012, plotted as a function of operator threads - 256x128x128,
16 variables . 45

4.4 Scalability test, ember 2012, plotted as a function of expression threads -
256x128x128, 16 variables . 46

4.5 Single node isolated scaling for process, task, and operator parallelism, aurora
2012 - 1203, 24 variables . 47

4.6 Single node MPI scaling with 12 task and 12 operator threads, aurora 2012 -
1203, 24 variables . 48

4.7 Scalability test 2012 - 2563, 16 variables . 50

4.8 Example stencil-2 computation, 2012 . 51

4.9 CPU vs GPU scaling for gradient spatial operator - total graph time, 2012 . . . 52

4.10 CPU vs GPU scaling for gradient spatial operator - single operator time, 2012 53

4.11 Highly parallel task graph structure with punctuated serialization. 56

vii

ACKNOWLEDGMENTS

I would like to acknowledge my graduate advisor, Professor James Sutherland, for all his

enthusiasm, patience, and excellent advice. I learned a great deal from him and was exposed

to a world of ideas that I might never have had an opportunity to experience anywhere else.

I would also like to thank Dr. Tony Saad for being a wonderful friend and collegue over

the last few years. He is an amazing person and will someday change the field of mass

transport!

CHAPTER 1

INTRODUCTION

1.1 Overview

While the idea of predetermining the outcome or behavior of some physical system is

much older than the computer itself, the ability to perform detailed simulation of large,

complex problems was out of reach until the latter half of the 20th century. Even then,

the tools and expertise required for such simulation were not available to anyone outside

of government or large research institutions for much of that time. However, as the avail-

ability and cost associated with high-performance computing hardware has dropped, the

capabilities of off-the-shelf and commodity hardware has reached a point where conducting

accurate simulations has become feasible to a broad audience. Today, the average consumer

smart phone is able to provide thousands of times more computing power than warehouse

sized machines of the 1960s at a small fraction of the cost.

Along with the rapid improvements in hardware and its availability, there have also been

significant improvements in the general accessibility of software tools for utilizing computa-

tional resources. With the standardization of large-scale message passing standards, such as

the message passing interface (MPI), along with the rise in availability of time-shared super

computers and clouds, the idea of using simulation to drive research and development has

become more ubiquitous. This can be observed across a diverse range of applications, from

the pharmaceutical industry, which attempts to model drug interactions [3], to hardware

manufacturers who put new architectures through rigorous, transistor level simulations

before ever taping out a physical product [15].

1.1.1 Advantages

A major component of any development process is testing and verification, to ensure

that a product or process functions in the desired fashion, and poses no overt danger to

an end user when used properly. These testing processes can present significant hazards;

complex chemical reactions with toxic or flammable components, explosives testing, or other

2

high-energy interactions all have inherent risks associated with them. Utilizing the proper

simulation tools, many of these systems can be examined in a safe environment, before ever

being tested in the lab.

As an example, vehicle manufacturers can model thousands of arbitrary impact scenarios,

while obtaining detailed information with respect to forces experienced by a passenger

and vehicle components, without being forced to sacrifice valuable materials and testing

equipment. This increase safety, reduces material costs, and in the event that a problem is

detected during the testing process, a fix can be implemented and retested with significantly

less effort than would have been possible in a more conventional testing lab.

Another issue which is important to consider is information completeness. In any real

system, we are limited in the amount of data we can collect due to constraints on sensor

density, and physical characteristics of the experiment itself. If we wish to examine some

type of large-scale explosion or high-energy behavior, then it is entirely infeasible to exper-

imentally capture the complete behavior of the explosive material and the resulting forces

through the entire life cycle of the process. However, in simulating such a scenario, we can

theoretically capture a complete data profile at all resolved scales of the simulation (so long

as we have sufficient data storage capacity).

1.1.2 Challenges

The advantages listed above are not without cost; there are numerous challenges which

must be overcome in terms of the science, software, and processing capability required to

generate accurate and verifiable results. The process of simulating interesting “real-world”

problems consists of a number of nontrivial components. The physical processes governing

the problem or system must be identified and, ideally, be well understood. These processes

must then be properly stated in a mathematical form, often as a series of governing

equations, which can then be solved, either directly or via discretization methods, to yield

the desired piece of information. Finally, the described process must be implemented

in software, which is then executed on a set of test bed machinery. Once the system

is properly described and implemented, then the resulting information can be validated

through analysis and visualization.

The final step is of particular interest from a computational science perspective. Trans-

lating a series of mathematical expressions into a form which can be accurately solved by

a computer is a complex and challenging task. For a given type of problem, there are a

variety of numerical methods which can be applied, each of which has trade offs in terms

of performance and accuracy. This is important, as in almost any “real-world” situation,

3

we will require a simulation to not only run and produce accurate results, but to do so

in a “reasonable” amount of time. The problem of balancing these constraints, while still

producing an effective solution, is quite challenging and will often require the collaborative

efforts of engineers, physical and computer scientists, and mathematicians.

1.2 Distributed and Heterogeneous Hardware

To illustrate some of the additional challenges which have become more prominent

during the 21st century, it is worthwhile to examine some of the significant changes in

the philosophy of hardware and communication architectures over the last few decades,

leading to grid-based computing.

1.2.1 Grid-Based Computing

As previously mentioned, the idea of high-performance computing was, for much of the

last century, unavailable to the vast majority of scientists, researchers, and businesses. One

of the major driving factors of this problem was that almost all initial super computers

were monolithic analog processing systems, which would take up entire warehouses, vast

amounts of power, and require a full technical staff to operate [10]. This began to change,

to some extent, with the introduction of the digital transistor, an amazing device which

allowed for electronics to shrink drastically in size and power consumption; however, the

notion of a single monolithic machine persisted until the early 1990s.

Initial attempts to develop faster commodity computing infrastructures began to take

advantage of the increasing availability of x86-based personal computers (PCs) and the fact

that they could be networked together. The idea was fairly straightforward, a single task

would be broken into smaller pieces which could each be solved independently, and then

each of those task would be “pushed,” or assigned, to a networked device. Each device

would work on its portion of the larger problem, and then notify the grid’s controlling

software when it had finished. In this fashion, it became possible to construct extensible

computing infrastructures, using consumer-grade PCs, with only a modest initial invest-

ment. As networking capabilities and throughput capacity began to improve, this concept

of “grid-computing” began to emerge as a popular and accessible method for researchers to

benefit from large-scale simulation and modeling.

Grid computing ushered in a new design paradigm, in which discrete distributed resources

were connected through a generic medium, such as Ethernet or fiber optics, rather than

being hard wired to a central bus of a single large piece of hardware. While making large-

scale computing more accessible, this change in design significantly increased the cost of

4

communication and synchronization between nodes, often by an order of magnitude or more.

During the 1980s, numerous message passing environ/ments were designed to deal these

problems, and around 1992, the best pieces of each were coalesced into the MPI standard,

which has become the primary standard for modern, grid-based, high-performance and

scientific computing [3].

1.2.2 Transition from Single to Multicore Architectures

Core clock rates for central processing units (CPUs) grew drastically from 1990-2000,

starting in the tens of MegaHertz and ending in the giga hertz range by the end of the

century. However, as design processes continued to shrink and CPU clock rates pushed

higher, it became apparent that manufacturers were rapidly approaching a performance

limit with traditional designs. Problems related to current leakage and heat generation

began to scale more rapidly than any associated performance gains, and CPU manufacturers

such as Intel and Advanced Micro Devices began to look elsewhere for ways to improve

performance.

As the speed of individual chips essentially plateaued, Moore’s Law, an idea stating that

the overall number of transistors on chip would double every 18 to 24 months, continued

to hold [18]. Faced with ever-increasing on-chip real estate, CPU manufacturers began to

fabricate chips with multiple processors or “cores” on a single die. The idea was that if it

was not possible to improve the speed of serial computations, it was certainly still possible

to increase the amount of concurrent work which could be performed on a single device.

1.2.3 Coprocessors and Massively Parallel Hardware

Unlike CPU cores, which have been traditionally designed to maximize serial perfor-

mance, utilizing complicated circuitry for out of order execution, and doing everything

possible to avoid pipeline delays, there has long been the notion of “vector-based” processors.

Vector processing is the idea of having hardware which is capable of operating on many

pieces of data simultaneously, often executing a single instruction in parallel across each data

element, a process known as single instruction multiple data (SIMD). However, with the

exception of some multimedia extensions, such as streaming SIMD extensions (SSE), found

within x86 processors, general purpose vector-based processors have not traditionally been

readily available to consumers. This has changed with the advent of discrete programmable

graphics hardware, known as graphics processing units (GPUs). Originally designed to

accelerate tasks relating to computer graphics, such as geometry translation and coloring,

which are often “embarrassingly” parallel, it was shown by various researchers [24] that

5

GPUs had the potential for much more general computation.

Realizing the potential of generic, programmable, vector hardware, which was capable of

operating on massive amounts of data concurrently, GPU vendors such as nVidia began to

develop and expose application programming interfaces (APIs) allowing software developers

to more easily exploit the functionality of their hardware [7]. This has, in turn, created a

significant need to reexamine software design practices related to high-performance comput-

ing, as in certain cases, specific computations may run one or even two orders of magnitude

faster on GPU than would be possible on CPU. With this understanding, the ability of

software to properly distribute workloads across a variety of hardware, keeping task on the

device which offers the best performance, has become extremely important.

1.3 Approaches to Computational Software

This trend, requiring added concurrency from software algorithms, has introduced sig-

nificant complications into the process of architecting quality, high-performance, simulation

software. There are now (multi/many)-core CPUs, massively parallel coprocessor like

devices such as general purpose GPUs (GPGPUs), and more exotic coprocessors coming, all

of which have their own memory, communication costs, and programing paradigms. Each

of these devices offer additional benefits and trade-offs such as running multiple distinct

processes vs multiple threads per process in the case of multicore CPUs, and in the case

of GPGPUs, extremely fast vector processing in cases where data reuse is high and access

patterns are regular. As a result, the choice of when and how to use available computing

resources is often not straightforward.

1.3.1 Mastery of Everything

For an end user or domain scientist wishing to take advantage of the numerous computing

options available today, the situation can seem quite daunting. It is no longer enough to

know a general purpose programming language and then express ones computational model

as a self-contained program. Care must be taken with respect to taking advantage of

the features available from underlying systems hardware, and designing a program to not

only run, but scale effectively on a large computing grid (often consisting of thousands if

not hundreds of thousands of nodes). Additionally, as is the case with various GPGPU

computing elements, more care must be taken with respect to algorithm correctness, as

numeric rounding and floating point representations may not be entirely consistent between

devices.

6

In practice, we would very much like this not to be the case. Scientists and model

developers should, ideally, be insulated from what would traditionally be considered engi-

neering or computer science problems, and instead be allowed to focus upon their domain

of specialization. Of course, this cannot always be the case, particularly given the pace

of modern hardware development; however, there exists significant room for improving the

state of existing simulation frameworks and design philosophies.

1.3.2 Our Goal - Separating Form and Functionality

While these rapid increases in the power, data throughput, and flexibility of modern

hardware are undoubtedly a step forward, they have come at a significant cost. These

costs can be measured both in terms of the learning curve associated with being able

to designed software effectively and the increased volume of code required to support

a set of heterogeneous devices. As a result, many end users, often including engineers

and domain scientists, are unnecessarily burdened by banal and pedantic implementation

details, effectively wasting time on concerns which are orthogonal to their needs and goals.

This significant problem provides a strong motivator for the development of computational

frameworks which are able to abstract the design process of an end user, allowing them

to focus on the accuracy and correctness of their work, while the framework itself is able

optimize the underlying operations based on specific hardware details.

1.4 The Wasatch Framework

As stated previously, the goal of this thesis will be to extend a component, know as

the “Expressions framework,” of a computational fluid dynamics solver “Wasatch,” to take

advantage of a more diverse set of hardware targets, while obfuscating the implementation

details and related considerations from end users. The Wasatch framework itself can be

thought of as consisting of a variety of components, each of which exists at a different

level. For the purposes of this discussion, the upper level component of this framework

is responsible for providing MPI-based domain decomposition of a particular space we are

simulating, an intermediate, “Expressions” layer, which is responsible for problem setup

and solution within each MPI process, and a lower level “Spatial Operations” layer, which

implements details related to specific mathematical operators.

CHAPTER 2

GRAPH THEORY AND APPLICATIONS

2.1 Overview

This chapter will be primarily concerned with introducing the required background

material for discussion of the approach taken to algorithm decomposition and task schedul-

ing in Chapter 3. This will begin by describing the ideas and machinery related to graph

construction, and provide a generic description of the relevant algorithms used. Next, a more

specific graph structure will be discussed, which will provide a basis for mapping between

generic computational models and our graph construct. From there, we will discuss how the

application of this structure to a problem set can provide valuable information, to include

general model characteristics, such as identifying serialization points in our algorithm, and

improving run-time scheduling behavior and resource management.

2.1.1 Terminology

• Graph - A graph is a set of elements, often written as G(V,E), where V is a set of

vertices or nodes, and E is a set of edges, each of which connects two nodes. Edges

themselves can be either directed, meaning that they are defined as having specific

source and destination vertices, or undirected, in which case the edge indicates only

that two nodes are connected. We say that an edge, e is ’incident’ on a vertex pair, v1

and v2 if v1 and v2 are connected by e. For the purpose of this discussion, all graphs

will be assumed to be directed; as such, we will write a given edge as ev1,v2 , where e

is said to be an “out edge” of v1 and an “in edge”j of v2.

• Path - A path through the graph is defined to be an ordered set of vertices and edges,

which connect a specified source and sink, and written as p(source, sink).

• Cycle - A cycle is a path within the graph such that the starting and ending vertices

are equal. More specifically, if a cycle exists, then it indicates that for a given graph,

G(V,E), there exists a path, pi(source, sink), where source = sink.

8

• Directed Acyclic Graph (DAG) - A DAG is a graph utilizing directed edges and

containing no cycles.

2.1.2 Algorithms

• Topological Sort - Given a graph, G(V,E), the vertices are said to be topologically

sorted if for every edge evi,vj , vi comes before vj in the final ordering; the result is that

we have a set of objects which can be processed without breaking any dependency

relationships. The algorithm is run as follows:

– Let Ts be a first in first out (FIFO) queue representing our sorted list of objects,

and Tu be a list of vertices with no incoming edges.

– Push all nodes with no incoming edges onto Tu.

– Pop a vertex, vi, from Tu and push it onto Ts

– For each out edge, evi,vj , color the edge as being processed. If vj has no incoming

edges which are unprocessed, push it to Tu.

– Repeat until there are no more vertices in Tu.

– TS will now contain a topologically sorted list of vertices.

• Breadth First Search (BFS) - Given a set of root, or starting nodes, which are each

colored to indicate that they have been seen, and placed into a FIFO queue, the

algorithm is run as follows:

– Pop a vertex, vi, from the top of the queue.

– Perform any necessary work on vi

– For each out edge, evi,vj , check to see if vj has been colored; if not, color it and

push it to the queue.

– Repeat until the queue is empty.

• Depth First Search (DFS) - Given a set of root, or starting nodes, which are each

colored to indicate that they have been seen, and placed into a queue, the algorithm

is run as follows:

– Pop a vertex, vi, from the top of the queue.

– Perform any necessary work on vi

9

– For each out edge, evi,vj , check to see if vj has been colored; if not, color it and

call DFS on vj .

– Repeat until the queue is empty.

2.2 DAGs as Computational Models

2.2.1 Motivation

DAGs have been studied extensively in their application to parallel computing problems,

including: hardware task scheduling [11], [2], distributed computation [22], parallel compil-

ers [23], [12], [20], numerical linear algebra [16], and even graphical programming tools [4].

As a result, the benefits of being able to represent a problem as a series of tasks and their

dependencies within a DAG are significant. Such a representation can often provide a more

intuitive understanding of the underlying structure of a computation or algorithm and is

entirely open to automated inspection.

2.2.2 Related Work

The process of utilizing software to decompose a computation’s form into a representative

DAG, and in turn generate an ordering of the problem’s component tasks, is an idea that has

been utilized in a number of different environments. One approach that shares similarities

with the goals and application of work described in this paper, in that it is intended to

facilitate development within the context of high-performance computing (HPC), is that

of the Parallel Linear Algebra for Scalable Multicore Architectures (PLASMA) project.

A collaborative effort between the University of Tennessee, the University of California

Berkeley, and the University of Denver Colorado. It is targeted, specifically, at producing a

framework that allows programmers to efficiently generate high-performance and portable

code for computational linear algebra applications.

The PLASMA library was created in response to perceived limitations within existing

linear algebra solvers, such as the linear algebra package (LAPACK) and its set of base

linear algebra subprograms (BLAS) [9] on multicore architectures [1]. These libraries

exhibit a number of undesirable implementation characteristics on modern systems, such

as overuse of “fork” and “large stride” memory access patterns [14], which lead to poor

scaling performance on current hardware. As one approach to overcoming these problems,

PLASMA makes use of a tiling algorithms concept [5] for QR decomposition operations.

This approach provides guidelines for a variety of algorithm requirements, but of particular

interest to us is its notion of utilizing a DAG to order and execute tasks.

10

In work done by Chan et al. [6], it was shown that one of the bottlenecks within the

QR decomposition process can be reformulated to exhibit additional parallelism; this is

achieved by reducing one of the intermediate matrix computations into a number of smaller

block computations. The structure of the resulting computation can be well represented as

a DAG and exposes a number of tasks which can be executed asynchronously and out of

order. In [5], it is stated that this idea of dynamic scheduling with out-of-order execution

was then applied as the basis for obtaining a fine-grained algorithm for QR factorization.

In the tiled algorithm approach developed for PLASMA, a multicore blocking algorithm is

decomposed into a DAG describing the dependency structure between each block operation.

Using this graph representation, it is possible to directly determine execution/scheduling

dependencies of all component tasks, and identify elements forming the critical path of

the computation. The result is a framework in which component tasks can be scheduled

asynchronously using a simple priority scheduling policy, based on the type of task and

its location along the critical path. This, in turn, results in an algorithm where idle time

is almost completely eliminated and which adapts, in a basic way, to available computing

resources [5].

The process of setting up a program to be able to utilize this tasking framework requires

some programmer assistance. First, functions must be converted such that all arguments

are removed from the function signature and redeclared as local variables; these variables

are then accessed later through an unpacking macro. Next, function calls are replaced

by calls to “insert task(),” which must provide a pointer to the function being called, the

parameters being passed, their size, and a type identifier the specifies a usage context; usage

contexts are specifically defined as “VALUE,” “INPUT,” “OUTPUT,” and “INOUT.” At

run time, tasks are inserted into the scheduler in preparation for execution, and individual

tasks are removed from the queue and executed by worker threads based on their priority

and declared INPUT values; for a more detailed treatment, see [16].

Unlike more traditional uses for task scheduling involving DAGs, such as hardware task

scheduling [11], the tile-based QR algorithm only stores a windowed subset of the original

DAG at any given time. The authors assert that this is due to the extremely fine granularity

of individual tasks, which results in graph structures that grow rapidly with problem size.

In contrast to this extremely fine-grained behavior, other frameworks, such as “Uintah,”

a multiphysics HPC framework written at the University of Utah [8], utilize DAG-based

scheduling to facilitate execution of asynchronous MPI-based tasks. In this context, it is

possible that each task may be an entire subroutine which must be run on a “physical”

11

piece of a decomposed domain; in such a framework, MPI tasks themselves may consist of

finer grained DAG-based computations.

The expressions framework targets a space that is not focused on either the highly targeted

use cases of a library like PLASMA, or the multinode monolithic task scheduling of a library

like Uintah. Rather, the expressions library is focused more on creating a development

environment in which individual tasks are run on a single node, may differ substantially in

terms of computational requirements and resource usage, and which utilize graph structures

that can be self-assembling, rather than explicitly directed. In this case, while graph

structures can become quite large within the expressions context, they do not exhibit the

exponential node growth corresponding to extremely fine task scheduling problems faced

by PLASMA. The complete structure of the task graph may be kept in memory during

the course of an execution; as a result, there is a great deal more flexibility with respect to

analysis of the DAG and more care can be taken with respect to the scheduling of tasks.

2.2.3 The Expressions Context

While significant work exists discussing the variations of this type of process scheduling

model and its application to known task sets, [13], little work has been done with respect to

the creation of such task sets from an underlying algorithm or model description. In [19],

the authors introduce a novel method for the application of the graph-based methodology,

described above, to the decomposition of problems found in multiphysics HPC, and in turn

building consistent solution algorithms. In the outlined framework, the physical models are

reduced to a set of individual tasks, each of which declares its data dependencies to sister

tasks; from these task declarations, a DAG is built representing the overall structure of

the computation. By processing the resulting graph, it is possible to develop a variety of

consistent algorithms for a given model.

To illustrate the general principal, suppose that we have a model describing some physical

process. At a basic level, this abstraction will consist of some number of variables or objects,

and a series of operations which will act on these objects to produce some type of result.

In the simplest case, we can imagine a function which computes the sum of two objects,

F (A,B) = A + B. This system will consist of three data objects: A, B, and their sum

S = A+B, as well as a function F, which requires A and B and produces S. If we generalize

this notion to include any number of functions and objects, then we can, for a consistent

model, generate an ordering to any valid set of operations such that their data requirements

are satisfied and we obtain the desired solution(s).

12

2.2.4 The Dependency Graph

In general, there are two distinct methods which are commonly used to represent a task

set as a graph.The first, is to construct what is known as a dependency graph, which as

its name suggests, describes the dependencies of each task using edges. What this means,

is that the root nodes at the “top” of the dependency graph will be the last set of tasks

which will be able to run. This is due to the fact that each edge, evi,vj in the dependency

graph will indicate that vi is a consumer of vj , and therefore, the only root nodes in the

graph will be those who have no consumers. The dependency graph represents our intuitive

understanding of how a series of operations forming an algorithm are connected and will

serve as an initial step in the process of translating a real model description into its graph

representation.

2.2.5 The Task Graph

The second method, which is often better suited to the idea of the graph as the basis

for implementing the model, is know as the “task graph.” The task graph differs from the

dependency graph in that each edge, evi,vj , of the task graph has been reversed from its

equivalent edge, evj ,vi , in the dependency graph. In this representation, the root nodes

of the graph will be those which have no incoming edges, and in turn have no initial

prerequisites for execution. The task graph represents the effective “flow” of an algorithm

and its direction of execution; it will be used extensively when we discuss ideas related to

the scheduling of individual tasks in Section 3.

2.3 Extracting Information

2.3.1 Task Granularity

Here, it is worth pointing out that the notion of what constitutes a task has purposefully

been left fairly generic. Within the context of a software implementation, a task itself may

range from a single assembly instruction, all the way to the execution scope of an entire

model, although, in almost all cases, either extreme would not be very useful. In general,

we can package as many tasks as required into a single super task, adjusting the size of the

resulting graph and the amount of work done for a given vertex.

2.3.2 Graph Introspection

In addition to the direct benefit of using a graph-based approach for generating algo-

rithms to solve a specific model, the structure of the graph itself can provide us insight

into a number of the theoretic structural properties of a model. Specifically, after a bit

13

of relatively straightforward analysis, it will allow us to estimate properties such as the

percentage of the model which can be parallelized and the minimum total execution time.

These will be given without proof; for a more detailed treatment, see Sinnen [22].

2.3.3 Bounds on Execution Time

The minimum execution time for a graph, given a fixed set of hardware, can be obtained

through examination of all sequential computations within a graph and then isolating the

longest. To see why this is correct, we define the following:

• Schedule - A schedule is a set vertex execution ordering. We will call a schedule

“consistent” if it obeys all dependency relationships of a graph

• Path Cost - For a given DAG, G(V,E), and a path p(source, sink), the total cost of

executing p is given as: ∑
ei∈p

te(ei) +
∑
vi∈p

te(vi) (2.1)

where ei and vi are the edge and vertex components of the path.

• Critical Path - For all paths within the graph, the node(s) which have the maximum

path cost is known as the critical path.

From our definition of a critical path, we can make two valuable observations. First,

any critical path within a graph will begin at a root node and terminate at a leaf node.

Intuitively, this property seems reasonable; however, it is not entirely obvious. The truth

of this statement can be obtained by supposing that you have a critical path whose source

node is not a root and from there proceeding to a contradiction. The second observation is

that the critical path provides a lower bound on the time required to execute any feasible

graph schedule. This property follows from the principal that in a task graph, edges signify

a dependency relationship, and therefore, computation along a path must be sequential. If

this is the case, then a critical path will represent the greatest set of sequential, or serialized

tasks.

2.3.4 Parallelization

While the above discussion yields insight regarding absolute execution times of our

graph, it does not tell us anything about the requirements for approaching this minimum

bound. In an extreme case, we could potentially have an entirely serial graph, such as a

14

single chain of of n tasks, where the task 1 < k ≤ n depends on task k − 1. In such a case,

it would be detrimental to allocate any additional resources for task execution, or attempt

to perform any detailed introspection of the graph’s properties. In less extreme situations,

it may be the case that we could expect to see no benefit from scheduling on more than

two or three processors. It turns out that we can again utilize the structure of the graph to

produce a theoretic bound on potential gains, given additional processing resources. Under

the assumption of minimal communication costs, we define the following properties:

• Single Processor Time τ1 - This is the total time required to execute a graph, given a

single processor. τ1 =
∑N

i=1 τe(ni)

• Infinite Processor Time τ∞ - This is the total time required to execute a graph, given

unlimited processing resources. This value is equal to the maximum finishing time of

all nodes.

• Speedup Sn - This is the reduction in the time taken to execute a graph when utilizing

n processors, given as τ1
τn

. Of particular interest is the speedup value for n = ∞, or

S∞ = τ1
τ∞

.

The value S∞ represents the maximum theoretic speedup we can obtain by allocating

an infinite number of resources toward the execution of our graph. Using this value, we

can compute an “Amdhal score,” P (G) =
1− 1

S∞
1− 1

N

, which represents the percentage of the

graph which is parallelizable. This score provides a theoretical limit to the performance

improvements we can expect from a given graph and provides us with a hard limit as to

the number of resources which can be legitimately allocated toward a specific problem.

CHAPTER 3

FRAMEWORK EXTENSIONS

3.1 The Expressions Library

3.1.1 Overview

The expressions library is a framework designed to elevate the development level of an

end user to the point where they are able to write their code with a structure similar to that a

high-level interpreted language, such as Matlab, while at the same time being able to obtain

scaling performance required by traditional high-performance computing applications. This

is accomplished through a high-level Domain Specific Language called NEBO (not covered

in this work), and a design paradigm which allows an end user to describe processes in

terms of generic operators and their data dependencies. Once an end user has used this

system to described their computation, the expressions framework takes the abstraction

and automatically constructs an appropriate algorithm based on available resources.

In the usage context for this work, the expressions library serves as an intermediate layer

between the Uintah/Wasatch component described in (1.4), responsible for domain decom-

position and MPI message passing, and the spatial operator component, responsible for the

abstraction of data fields and the implementation of mathematical operators (Figure 3.1).

3.1.2 Concepts and Terminology

• Expression - An expression is a abstract representation of a mathematical operation.

Expressions expose their purpose and requirements through a set of interface methods

given below. The basic concept of an expression is illustrated in Figure 3.2.

– advertise dependents() - Returns a list of all other expressions which are required

for this expression to be successfully computed; this allows us to determine

ordering requirements of the model before execution.

– bind fields() - Retrieves objects representing base fields which are consumed

and computed within the evaluate(); this connects the logical operation with

16

Figure 3.1. Framework component diagram.

Figure 3.2. Example of a basic expression.

the physical resources it requires and allows resources for each expression to be

allocated and bound independently.

– bind operators() - Obtains objects representing various mathematical operations

(ex. Div, Grad, etc.) used by the expression.

– evaluate() - Executes user-defined operations forming the core work of the ex-

17

pression; note that the internal contents can be as fine or coarse as desired.

• Expression Tree - A class object responsible for analyzing collections of individual

expressions, exposing the overall structure of the computation, and ensuring that the

structure is logically consistent. The expression tree is used to construct a dependency

graph, described in Section 3.2; in this representation, graph nodes represent the

expressions themselves, and directed edges express the data dependencies between

expressions (Figure 3.3).

• Field Manager - A class object responsible for managing field memory for the Expres-

sion Tree. This class provides interface methods to register, allocate, migrate, and

deallocate all memory resources associated with a specific field.

• Task Scheduler - A class object responsible for determining execution behavior based

on a dependency graph; in general, this includes creation of either a static or dynamic

schedule for each task, which preserves dependency requirements, and developing a

variety of performance metrics for the overall computation.

3.1.3 Implementing an Expression

The process of defining a task, or “expression,” simply requires an end user to inherit

and implement the interface contract described above. As an example, suppose we are

computing the Heat Equation, (Equation 3.1).

∂δTδt = − 1

ρcp
∂ · q +

1

ρcp
ST (3.1)

q = −λ∇T (3.2)

One of the operations required is to compute the gradient of the temperature, an operation

which requires a scalar field representing the temperature, “T,” and a gradient operator.

To implement the required interface methods, we can first create an expression that will

compute the gradient of “T,” in this case, called “GradTExpr,” and set it to require another

expression which represents a temperature field (Figure 3.4). This will allow the expression

tree to build a list of dependencies for this operator and ensure that all required fields, in

this case “tempT ,” are available before attempting to evaluate this expression.

Note here that our expression for temperature, “tempT ,” will not possess any depen-

dencies or perform any computation. The element is an explicitly defined source term,

which must be supplied by the caller, and will in turn have an initial condition and be

18

D
at

a
So

ur
ce

D
at

a
So

ur
ce

O
pe

ra
to

r

D
at

a
D

es
tin

at
io

n

O
pe
ra
to
r

O
pe
ra
to
r

O
pe
ra
to
r

O
pe
ra
to
r

O
pe
ra
to
r

D
at
a

D
at
a

D
at
a

D
at
a

D
at
a

D
at
a

D
at
a

D
at
a

D
at
a

D
at
a

Ex
pr

es
si

on

F
ig
u
re

3
.3

.
C

o
n

st
ru

ct
in

g
th

e
ta

sk
g
ra

p
h

fr
om

in
d

iv
id

u
al

ex
p

re
ss

io
n

s.

19

1 template < typename GradOp >

2 void GradTExpr <GradOp >::

3 advertise_dependents(Expr:: ExprDeps& exprDeps){

4 exprDeps.requires_expression(tempT_);

5 }

Figure 3.4. Advertise dependents implementation.

updated during successive problem iterations; these terms will become the root nodes of

our execution graph

Next, we implement the bind operator method (Figure 3.5) and bind fields (Figure 3.6)

functions, which will fetch the required gradient operator and obtain a reference to the

source field, “tempT ,” for this expression. Finally, we can implement the evaluate method,

which will apply the gradient operator to our temperature field and place the result into the

value field of our expression (Figure 3.7). In this fashion, we are able to completely describe

the desired operations and their data dependencies, without any specialized knowledge of

available hardware resources, threading model, or implementation details.

3.1.4 Constructing the Task Graph

After specifying the behavior of each expression for a given model, the expressions are

passed as a collection to an expression tree. The expression tree will then parse the expres-

sion set and construct a task graph, as a “Boost Graph” structure [21], where individual

1 template < typename GradOp >

2 void GradTExpr <GradOp >::

3 bind_operators(const SpatialOps :: OperatorDatabase& opDB){

4 gradOp_ = opDB.retreive_operator <GradOp >());

5 }

Figure 3.5. Bind operators implementation

1 template < typename GradOp >

2 void GradTExpr <GradOp >::

3 bind_fields(const Expr:: FieldManagerList& fml){

4 temp_ = &fml.template field_manager <ScalarField >().field_ref(tempT_);

5 }

Figure 3.6. Bind fields implementation.

1 template < typename GradOp >

2 void GradTExpr <GradOp >::

3 evaluate (){

4 . gradOp_ ->apply_to_field (*temp_ , this ->value());

5 }

Figure 3.7. Evaluate method implementation.

20

vertex objects hold a reference to the base expression and related meta information, and

edges represent the data dependencies between expressions. This can be done through

explicit dependency specification, or by having the expressions themselves advertise their

dependents and have them dynamically inserted into the expression tree. The second case,

with dynamic insertion, yields a very useful method for automatic algorithm construction,

in that the compute ordering is not need to be specified explicitly, but rather can be deduced

by the expression tree at run time [19].

Once all expressions have been accounted for, the expression tree will perform error

checking to ensure that the model does not contain circular dependencies, and register all

required fields with an appropriate field manager; as a useful side-effect of this construction

process, we are able to determine the problem’s memory requirements before execution. At

this point, the solution algorithm and computational resources required for the problem

specification will have been determined, and the graph is ready for execution.

Using the example of the heat equation, one possible implementation will yield the

directed graph seen in (Figure 3.8). Once assembled, the dependency graph contains all

information required to represent the structure of the desired computation. After being

handed to the task scheduler, this structure will form the basis for constructing an algorithm

whose output is the solution to the heat equation.

3.1.5 Design Goals

The primary focus of the work described by this thesis has been to extend the function-

ality of the Expressions Library to utilize both existing and future acceleration technologies,

without requiring an end user to have hardware specific knowledge. To support this larger

aim has required significant modification to a variety of framework systems, which can be

summarized a follows:

• Implementation of a flexible task scheduling system, capable of utilizing a variety of

scheduling algorithms, ranging form simple to complex, depending on available hard-

ware and software resources. To facilitate the necessary flexibility, a task scheduler

should be able to exert a high-level of control over the execution process and associated

resources, to include:

– To reallocate threading resources between task and operator level execution.

– To determine scheduling priorities for individual expressions based on available

hardware and graph meta information.

– To assign tasks to arbitrary hardware targets dynamically.

21

Figure 3.8. Visualization of a potential task graph for the heat equation.

– To ensure data availability between expressions which are computed on different

hardware devices.

• Modification of existing field managers to allow for delayed memory allocation, ad-

ditional allocation targets based on available hardware, and support for migration of

fields between devices.

• Extension of the Spatial Field library to support field consumption from a variety of

devices, and transparent operator selection based on the device on which the operation

will be computed (Section 4.2).

3.1.6 A Flexible Scheduling Model

To support an execution model where we may wish to utilize a variety of scheduling

algorithms, each with potentially widely varying behavior, the scheduler itself is treated as

a component of the execution framework, rather than a static implementation. Using a

standard contract model [17], where base functionality is defined and inherited by specific

scheduler implementations, we are able to test and change schedulers easily without refac-

toring core components. During the construction phase of an expression tree, the scheduler

is built and then handed the dependency graph for the simulation model; later, when the

“execute tree” method of the expression tree is called, it will notify the scheduler to perform

any requiring preprocessing, and finally to run the algorithm.

The scheduler itself is now left with all available information about the operations and

constraints required to reproduce the desired model. From the most basic perspective, it

could simply sort the task set topologically and execute them in order. However, in most

cases of interest, this will be insufficient, and we will want to develop an implementation

22

that optimizes for speed, resource utilization, or some combination of both. By providing

a simple interface contract to the scheduler used by the expression tree, while at the same

time exposing as much control and information as possible to the scheduler’s internals,

we allow for new scheduling models to be rapidly prototyped as new components become

available. Using this approach, we can integrate existing hardware accelerators, such as

GPUs, seamlessly into the framework, while at the same time providing a foundation capable

of supporting new devices as needed.

3.1.7 The Priority Task Scheduler

One of the most straightforward scheduler implementations is used when executing on

a target system in which we assume a uniform, shared memory architecture with full

communication interconnects. More specifically, this means that all processing devices

are homogeneous, the cost of assigning a specific task to a hardware device is equal for

all devices, and that communication between devices is negligible (Figure 3.9). These

assumptions are reasonable in the context of our expression level process, running on a

single computing node, where we leave the task of binding threads to processor cores to the

operating system, and neglect latency relate to contention of the memory bus. Under this

restricted model, we are left with the responsibility of ensuring that individual expressions

are scheduled for execution in a near optimal fashion, based on execution times and graph

layout.

3.1.8 Graph-Based Execution

As one of our requirements for the priority task scheduler, we have said that it should be

able to generate task priorities based on both executing timings and the general structure

of the graph. This implies that the scheduler needs to be able to examine and reason

about the task graph and be able to maintain/update information stored on its vertices.

To support this behavior, the scheduler assigns priorities to each node in the graph and

during its setup phase, based on its depth in the graph and the total number of other tasks

which consume it (Figure 3.9). Later, during execution, each task will be timed and have

the result added to a moving average, providing an estimate for its likely execution time on

successive iterations.

After successive iterations of the task graph, the scheduler is able to improve on its

initial priority estimate, by using the measured execution times to increase priority values

for heavier weight tasks. For simulations where the graph may be executed thousands,

or hundreds of thousands of times, this design has the effect of heavily prioritizing tasks

23

Communication Layer

Shared Memory

Core1 Core2 Core3 Core4 ... CoreN

Figure 3.9. Simplified communication memory model, multicore CPU.

located near root nodes, and those which form serialization points within the graph.

3.1.9 Task Dispatch Model

Execution of a task graph is initiated in a fairly direct manner. We first push all root

node vertices, defined to be those with no “out” edges (dependencies), to the task queue

for execution. The perthread process of acquiring and dispatching additional tasks occurs

using the following execution callback model (Figure 3.10):

• A worker thread will select a vertex from the task queue and call through the task

scheduler to prepare for the vertex’s expression execution.

• The expression is executed.

• The worker thread will call back to the scheduler and inform it that the expression is

done.

• The scheduler will notify all consumers of the finished expression that one of their

dependencies has become available.

• If any of the dependency counters on the notified vertices reaches zero, they will

indicate to the scheduler that they are in a ready state and will be added to the task

queue.

24

Figure 3.10. Priority Task Dispatch Model.

• The process repeats until all vertices have been exhausted.

Ignoring function call overhead, the total time required for a worker thread to execute an

expression is bounded by (Equation 3.3).

tVi + (tl + te) · |VVi | (3.3)

tVi � (tl + te) · |VVi | (3.4)

where VVi is the set of all dependent vertices of the ith vertex, and tVi , tl, and te are the times

required to execute the expression, look up a dependency target, and update the target,

respectively. For situations where task granularity is not too fine, meaning that work done

by each expression is much greater than the time required to examine its incident edges

(Equation 3.4), this method of scheduling has been shown to produce negligible overhead

(Chapter 4).

In situations where expression granularity is extremely fine and exhibits a high degree of

dependency coupling, this scheduling method may not be suitable. In such situations, where

executing “on top” of the graph itself produces unacceptable overhead, a better solution

may be to preallocate all necessary fields, build a topologically sorted list from the task

graph, and execute from a FIFO type queue structure.

25

3.1.10 Improving Resource Utilization

Assuming the basic homogeneous scheduling model described above, we can begin to

examine how to better exploit available information to improve performance, and look to

extending the scheduler’s functionality to support additional hardware targets. Within

the context of the larger framework, this may include reallocation of available threading

resources based on the task graph’s structure, improved memory utilization, or other

intelligent decision making related to consumer availability and hardware assignment.

3.1.11 Memory Resources

One immediate advantage of having execution take place on the task graph is that we

are presented with a direct method for determining when the resources associated with an

expression will no longer be used. As the edges of our graph represent data dependencies,

then we know that for any given vertex, its resources may be released when each vertex on

one of its out edges has been executed. As a result, we can refer to any vertex node Vc,

for which another vertex Vd is a dependency, as a consumer of Vd; by keeping track of how

many consumers a given vertex has, and decrementing that counter each time one of those

consumers finishes execution, we are able to free a dependency’s resources as soon as they

have been fully consumed. This is very useful property, as we are only required to keep an

exact working set in memory at any given time (Figure 3.11).

While the graph-based approach itself provides a direct method for determining which

vertices no longer require resources, early field manager implementations did not provide a

method for deallocating a field without removing its registry entry (Figure 3.12). As a core

component involved in registering, allocating, and retrieving memory resources related to

all fields, this inflexibility would prove to be too restrictive, not only in the context of field

persistence, but also with respect to field allocations on external devices. As a result, the

existing field managers were modified to store a structural interface to an underlying field,

allowing for a variety of logical states, and an extensible list of allocation targets.

The rearchitected field manager system assigns a field structure to each registered field,

which will exist throughout the lifetime of the field manager. The field structure itself

maintains a variety of meta information related to the field, and methods for interacting

with it. Meta information includes the logical state of the field, including whether or not it

is currently allocated, if it contains coherent information, the type of memory management

scheme associated with the field, and the type of device it resides on. Additionally, the field

structures support methods for referencing, freeing, and modifying the behavior of their

underlying fields. This modified behavior is exhibited in Figure 3.13.

26

Figure 3.11. Dependency graph illustrating the deallocation of a fully consumed expres-
sion.

In the modified system, the specifics of field allocation are changed significantly. Unless a

field is specifically tagged to be “static,” meaning that it is required to exist and be available

at all times during the life of the field manager, fields themselves are not allocated until their

first access. Additionally, nonstatic fields are allocated from a central memory pool, and

new memory is allocated only when the pool itself cannot provide the requested field type.

Later, when a dynamic field is released back to the system, rather than being freed, it is

simply returned as a resource to the memory pool. In this manner, not only is it possible to

reduce memory consumption through “just in time allocation” and maintaining a minimal

working set, but system call overhead associated with memory allocation is entirely removed

in at most one execution of the graph.

In conjunction with the much improved usage behavior described above, the modified

field manager architecture also offers the flexibility to modify management behavior auto-

matically. This includes basic modification of the persistence flags associated with a field

to full reassignment of the field to an alternate manager policy. This can be useful in cases

where an end user may wish to “lock” some intermediate field after a number of iterations to

sample, or spot check the model’s behavior; in such a case, the user would set a persistence

flag through the expression tree which would then be propagated to the task scheduler and

down to the field managers. On the next model iteration the field of interest could be

sampled, verified, and unlocked.

27

F
ig
u
re

3
.1
2

.
In

it
ia

l
fi

el
d

m
a
n

ag
er

im
p

le
m

en
ta

ti
on

.

28

F
ig
u
re

3
.1
3

.
U

p
d

at
ed

fi
el

d
m

an
ag

er
im

p
le

m
en

ta
ti

on
.

29

Similarly, the scheduler itself may decide that an expression would be better suited

to execute on some type of coprocessing device, such as a GPU, and in turn notify the

field manager to update the memory policy associated with fields computed by the given

expression. The field manager would then automatically ensure that any data associated

with the field was automatically propagated to the proper GPU device, and the previously

allocated fields would be returned to the memory controller. On the following call to execute

the expression, the expression’s operators will be remapped based on the updated hardware

and execution will continue.

The complexity associated with introducing the described memory saving operations into

our priority scheduler is equivalent in both time and space requirements as to what is

required to support “on graph” execution. Each graph vertex is required to maintain a list

of consumer vertices, when the vertex itself finishes, each consumer vertex will be notified,

and when their consumer counts reach zero, they will have their field resources released.

3.1.12 Threading Resources

Just as the expression library is capable of exploiting task level parallelism, by decom-

posing a model specification and examining the related execution dependencies, it is also

possible to expose inherent parallelism within mathematical operators or over their given

domain. As a simple example, we can imagine an operator performing some number of

direct pointwise computations on an NxN field; such an operator could, in many cases,

compute many of these pointwise values for each computation simultaneously or perhaps

compute the different operations in parallel.

Although not fully described here, this type of memory-based operator decomposition is a

significant part of the spatial ops/NEBO framework, which has complete discretion in how

an operator is implemented and as a result exploits various types of parallelism inherent to

it. Given this notion, the spatial operators have their own threading resources in the form

of a FIFO thread pool. As the internals of the operator thread pool are fully accessible by

the task scheduler, this provides us with an additional degree of freedom in our ability to

address potential computation bottlenecks.

Of course, regardless of logical differences, both libraries share the same underlying

resources; therefore, at the thread level, if the total threads allocated between the operator

and expression thread pools exceed the available hardware resources, workers from each

thread pool will be competing for processor time. To avoid such situations, we would like

the task scheduler to, at a minimum, allocate a number of total worker threads such that

we force as few context switches as possible.

30

Accomplishing this is simple, as we can supply information regarding the total number of

available processing resources to the scheduler, and it can determine a static ratio for how

they should be allocated to each thread pool. If we imagine an idealized a situation, in which

we have three total threads and three available tasks, each completely parallel at either the

task or operator level, this trade off can be observed in Figure 3.14. However, this is rarely

the case, and instead we see direct benefits to allocating threads in less extreme ratios.

Once we have this notion of the task scheduler acting as a managing entity for multiple

levels of parallelism, it affords us additional possibilities for performance improvement.

Suppose we wish to do better than static pool sizing, but rather, we would like the task

scheduler to adjust the total number of workers assigned to each pool based on analysis of the

task graph and real-time feedback during execution. In this case, our graph-based algorithm

formulation will again prove to be extremely useful. Recalling the notion of parallelization

scoring related to Ahmdal’s Law, from (Section 3.2.2), we know that given a reasonable

estimation of execution times for each vertex within our task graph, we can provide a good

approximation for the maximum potential speedup and task level parallelism. This implies

that as we progress through successive graph iterations, we can reasonably estimate the

benefit of migrating threading resources between thread pools.

Figure 3.14. Idealized multilevel parallelism.

31

As an example, suppose that we are executing the task graph shown in Figure 3.15, and

that each node of our system contains 8 processor cores. From section 3.2.2, we can compute

the single and infinite processor case timings as τone = 5, τinf = 4, which yields a maximum

theoretic speedup of 1.25. Therefore, in this case, it would not be worthwhile to allocate

more than 2 threads toward the execution of our task graph; however, if we imagine that

the underlying tasks each to be large matrix matrix multiplies, then we could potentially

obtain a 6 or 7 times speedup by pushing all our threading resources into the operator

thread pool.

3.1.13 The “Hybrid” Task Scheduler

Given the general priority scheduler, along with the selection of framework tools de-

scribed above, our next task is to develop a scheduler that its capable of reasoning not

only about task ordering, but also with respect to the assignment of tasks to devices other

than the CPU. This process introduces a good deal of complexity into both the process

of graph analysis and the execution time responsibilities of the task scheduler. Not only

does it break our simplified memory model (Figure 3.16), used to construct the priority

task scheduler, but it injects ambiguity into the process of assigning execution timings,

generating parallelization scores, and the notion of a field residing in a single location. The

following is a basic outline of the major complications involved in allowing for individual

Figure 3.15. Example task graph analysis to determine thread allocation. Note: execution
times are all normalized to 1.

32

F
ig
u
re

3
.1
6

.
E

x
p

a
n

d
ed

co
m

m
u

n
ic

at
io

n
m

em
or

y
m

o
d

el
.

33

tasks to be allocated across heterogeneous hardware.

Scheduling of a task to a hardware device can no longer be considered to have a uniform

cost. This is because there are tangible differences between the data transfer costs associated

with differing communication layers. This issue is further compounded by the fact that

in many cases of interest, the cost associated with a data allocation is not necessarily

unidirectional; in a general sense, an expression will consume N data fields and produce M

data fields, resulting in a total data transfer to and from a nonlocal computation equal to

(N +M) ∗ field size/transfer rate. This additional timing parameter can be thought of

as applying an “edge scheduling” cost, meaning that we are, in effect, faced with a problem

of scheduling paths in the graph, rather than simply tasks (Figure 3.17).

Acquiring representative timings for the execution of individual tasks requires us to make

a determination as to which device a given task will execute on, including the transfer times

described above. This implies that given a variety of coprocessor devices, we will need to

maintain device specific timings for each individual task, along with a generic transfer timing

parameter. Furthermore, without prior knowledge or hints as to task execution timings,

we will need to execute each task at least once on every device in order to build its timing

profile.

The notion of “consuming” a field is significantly complicated; it is entirely possible to

construct a situation in which a field which is computed on an external device, such as a

GPU, is required as an input to a collection of other expressions, each of whom may not

reside on the same device or devices. The result of a matrix multiply performed on GPU 1

could be used by GPUs 2, 3, and 4, and a variety of CPU tasks. In this case, the abstraction

requiring a field to be owned by a single expression could potentially break down, if care is

not taken to ensure coherency and enforce the distinction between source and destination

fields (Figure 3.18).

3.1.14 Device Assignment

Device assignment occurs in two distinct stages. The first occurs during the scheduler’s

setup phase, where we determine which devices each expression is eligible for execution on.

The reasoning behind this is that while the operator framework is quite robust, there may

be situations where certain functionality is not available to a user and they wish to write

their own implementation within an expression’s evaluate method. In these cases, the task

will only be eligible for execution on devices indicated by the end user.

Following this, several iterations of the graph must be executed in order to obtain

execution timings for each unique device type. Once all necessary timings are collected,

34

F
ig
u
re

3
.1
7

.
S

ch
ed

u
li

n
g

w
it

h
m

ix
ed

h
ar

d
w

ar
e

an
d

ed
ge

tr
an

sf
er

co
st

.

35

Figure 3.18. Multiconsumer field problem.

then the graph must be run through another introspection phase in which we determine the

best resource to compute each expression, fix their device targets, and begin the process of

“path coalescing” described below.

3.1.15 Path Coalescing “Clustering”

Path coalescing is a process designed to reduce the total number of memory copies

between various devices. Currently, this process is only applied in the case of GPU-assigned

expressions, because individual CPU cores are general considered to have uniform access

times to shared memory. However, as each GPU maintains its own private physical memory,

it is not enough to simply assign GPU nodes to devices in a random, or even evenly

distributed fashion.

If we define a path through our graph as a series of vertices connect by a single in/out

edge to another vertex, then, by construction, each path has a dependency ordering which

extends from leaf to root. From this definition, it can be observed that for a given path, no

parallelism exists; this must be true due to the fact that each path vertex has only a single

in and out edge and our graph is acyclic. Therefore, for any individual path consisting

entirely of GPU tasks, it is always optimal to schedule the entire path to a single GPU

device.

3.1.16 Reducing Edge Latency

As we have noted, the problem of scheduling tasks has grown into a process more closely

related to the scheduling of paths. This is the direct result of introducing nonuniform

36

communication layers into our model; as it takes longer to pass information from a CPU to

an external GPU than it does to pass it from one CPU to another, we are now required to

assign edges a cost based on the source and destination hardware targets. However, using

the information available to us from the task graph, we can potentially reduce or eliminate

edge overhead, in situations where an external task has multiple field dependencies.

In our construction of the generic priority scheduler, we iterate through a list of all vertex

consumers, notifying each consumer that one of its resources has become available. If, in

addition to notifying a vertex that its dependency has finished executing, we also compare

its device target with the dependencies device target, we can identify those fields which

are not ready to be consumed and begin prefetching them as necessary. In the case of

Figure 3.19, this would mean that we could prefetch data from node’s D and E to GPU,

while F and C are computed, potentially reducing the start time of B.

Under the assumption that the target device of each node has been fixed across a given

iteration, this solution is essentially without cost. In the case of Figure 3.19, where task B

will execute on GPU, then we know that at some point D, E, and C must be transferred to

GPU. However, since we have the flexibility to determine which of these copies will occur, we

require worker threads to attempt to push resources as soon as their data become available.

Figure 3.19. Illustration of consumer prefetching.

37

3.2 The Spatial Fields Library

3.2.1 Overview

The spatial fields library provides a basis for two major abstractions: the creation and

storage of objects which represent data fields, and the creation of a generic interface to a

set of mathematical operators. The overall goal is to provide a set of objects and operators,

which can be used with the c++-based DSL described in section 4.1.1, giving an end user

the ability to express operations in a manner which more closely resembles how they would

write them on paper.

3.2.2 Concepts and Terminology

• Spatial Field - For our purposes, when attempting to simulate or describe any physical

space, we will want to be able to discretize that space and represent each point in the

region as some type of variable value; the abstract object representing such a space

is called a spatial field. For most of the discussion involving spatial fields, we will

assume that this value is a double; however, logically the underlying meaning of these

values is not equivalent across all fields.

For example, to represent temperature in a area, we may describe it as a scalar

field of cell centered values; in other cases, where we wish to describe a quantity that

is directly associated with our cell geometry, such as heat flux through a boundary,

we may wish to use a “face centered” field. These differences can be observed in two

dimensions in Figure 3.20.

• Spatial Operator - A method defined to perform some action on one or more spatial

fields. This operation may depend not only on the type of operation being performed,

but also on the device for which a given field is allocated.

Figure 3.20. Illustration of consumer prefetching.

38

• Spatial Field Store - A memory pooling structure, which can be used to construct

counted pointers to spatial fields. The store will allocate new memory if required, but

will give preference to reusing memory which has been previously returned to it.

• Consumer Field - A read only copy of a given spatial field, which is maintained by

the base field, and can be used as input to an operator.

3.2.3 Operator Selection

When an operator is selected in a user’s model description, that operator will remain

generic throughout the process of constructing the expression tree, and in many cases,

the explicit implementation may not be known until the expression itself is run by the

scheduler. How exactly a given operation is implemented will depend on the execution

behavior of and problem and consequentially, on the device types available. This is due to

the fact that operator implementation will vary between different devices, and the efficiency

of that implementation will often depend on the size of the problem and associated costs

of making its dependencies available. In this fashion, we are able to preserve flexibility in

choosing the best method, for a given operation, on a specific system.

3.2.4 External Consumers

In addition to the improved functionality of the expression library field managers de-

scribed in section 4.1.4, a number of extensions were required to the spatial fields themselves

in order to provide the flexibility necessary to support allocation on external fields. Outside

of the various structural changes involving allocation requirements for external memory and

overloads for field assignment, copies, and construction, the most significant addition to the

spatial fields library is related to the problem of allowing for multiple consumer fields across

devices. It is not desirable to retain spatial field objects for each device on which the field

may be consumed; this would introduce unnecessary complexity, create potential coherency

problems, and require additional structure to determine which field was the “real” one.

Because of these considerations, we introduced the notion of “consumer fields,” or perde-

vice copies of the primary spatial field, which are maintained by the base spatial field.

Consumer fields can be added for any Spatial Field as necessary, for a specific target device,

and from that point forward will be available to any computation that takes place on the

device. As these fields are meant only for consumption, they are accessible to operators as

read-only objects, avoiding coherency issues and more complicated bookkeeping schemes.

Whether or not a specific consumer field is created for a given spatial field is primarily

controlled at the scheduler level. During the processing phase of an expressions completion

39

callback, the scheduler must inform all of that expression’s consumers that one of their

dependencies is ready for consumption. This poses a potential coherency problem, as any

given expression ec which is a consumer of the recently completed expression ed, may not

be scheduled to execute on the same device on which ed resides. Therefore, as part of the

qualification process to determine if ec is ready to execute, the scheduler must ensure that

ed exists on ec’s computation target, and if not, allocate a consumer field.

As a simple example, we could imagine ed being computed as a CPU target and stored

in local RAM, but the computation of ec being set to take place on GPU1. In this case, the

scheduler would note this discrepancy, and inform ed’s spatial field to construct a consumer

field on GPU1, and for the rest of ed’s lifetime, it would have a copies of itself in local RAM

and on GPU1.

CHAPTER 4

RESULTS AND EVALUATION

4.1 Test Cases

Test cases were chosen to demonstrate the core goals of this work: extension of the

solver framework to support multiple hardware targets, and to provide a basis for improved

flexibility in the scheduling model that is capable of interacting properly with lower level

parallel components; specifically, the Spatial Operators librar . Unless otherwise specified,

testing was performed on either the Ember, Updraft, or Aurora systems (Table 4.1), with

the first two being part of the University of Utah’s Center for High-Performance Computing

(CHPC), and the third being a GPU research machine.

4.1.1 Scheduler Performance - Task Threaded Operator
Interaction

Our first goal is to ensure that the updated scheduler is capable of interacting nicely with

parallel components found in the Spatial Operations library. To this end, we can construct

an expression set which is well suited to stressing various aspects of the computation

framework and ensure that we observe desirable and consistent behavior as we vary the

number of available task and operator threads. For this purpose, we will use a scalability

test simulating an artificial type of scalar transport. This model allows us to increase task

complexity by controlling the number of equations being solved, their interdependence, and

associated convective terms. Additionally, the per-operator workload can be arbitrarily

increased by enlarging the physical domain on which the problem is being solved.

∂Φi

δt
= f(Φi) (4.1)

∂Φi

δt
=

n∏
j=1

exp(Φj) (4.2)

An example uncoupled expression with eight equations is defined by Equation 4.1, and

can be visualized as Figure 4.1. The uncoupled variant is entirely parallel and should

41

T
a
b
le

4
.1

.
T

es
t

S
y
st

em
S

p
ec

ifi
ca

ti
o
n

s,
“
U

p
d

ra
ft

,”
“E

m
b

er
,”

an
d

“A
u

ro
ra

”
U
pd
ra
ft

E
m
be
r

A
u
ro
ra

P
ro

ce
ss

or
s

25
6

D
u
al

-Q
u
ad

C
or

e
N

o
d
es

(2
04

8
to

ta
l

co
re

s)
26

2
D

u
a
l

S
o
ck

et
-S

ix
C

o
re

N
o
d
es

(3
14

4
to

ta
l

co
re

s)
D

u
a
l

S
o
ck

et
-S

ix
C

o
re

2.
8

G
H

z
In

te
l

X
eo

n
(H

ar
p

er
to

w
n
)

p
ro

ce
ss

or
s

2.
8

G
H

z
In

te
l

X
eo

n
(W

es
tm

er
e

X
56

6
0)

p
ro

ce
ss

o
rs

In
te

l
X

eo
n

E
5
-2

6
2
0

2
.0

G
H

z
p
ro

ce
ss

o
rs

M
em

or
y

16
G

b
y
te

s
m

em
or

y
p

er
n
o
d
e

(2
G

b
y
te

s
p

er
p
ro

ce
ss

or
co

re
)

24
G

b
y
te

s
m

em
o
ry

p
er

n
o
d
e

(2
G

b
y
te

s
p

er
p
ro

ce
ss

or
co

re
)

1
5

G
b
y
te

s

In
te

rc
on

n
ec

ts
Q

lo
gi

c
In

fi
n
ib

an
d

D
D

R
(I

n
fi
n
iP

at
h

Q
L

E
72

40
)

in
te

rc
on

n
ec

t
M

el
la

n
ox

Q
D

R
In

fi
n
ib

an
d

in
te

rc
on

n
ec

t
G

ig
ab

it
E

th
er

n
et

in
te

rc
on

n
ec

t
G

ig
ab

it
E

th
er

n
et

in
te

rc
on

n
ec

t
N

/A

42

F
ig
u
re

4
.1

.
E

x
a
m

p
le

sc
a
la

b
il

it
y

g
ra

p
h

,
ei

gh
t

eq
u

at
io

n
,

n
o

so
u

rc
e

co
u

p
li

n
g

43

exhibit maximum potential performance gains at the task level. Conversely, equation 4.2

and Figure 4.2 illustrate a fully coupled expression graph, with reduced opportunity for

task parallelism.

Solving Equation 4.1 with n=16 on a single ember node, we obtain the following:

Examining the results in Figure 4.3, with each curve illustrating scaling performance for

an increasing operator thread count and a fixed number of task parallel threads, we can

see that after reaching a certain level of operator parallelism, it becomes beneficial to go

task parallel. While these results are inherently desirable, as they prove out the scheduler’s

ability to introduce task parallelism without significant overhead, they are also intuitively

satisfactory, in that we would not expect task parallelism to improve performance without

a sufficiently sized operator thread pool. Figure 4.4 provides an alternate view of view of

the same data, but with each curve representing a increasing task parallel thread count and

a fixed operator thread count.

4.1.2 Scheduler Performance - Task Threaded MPI-Process
Interaction

In addition to operator level parallelism, we also have another dimension of “process”

parallelism, which can be explored via MPI. As previously noted, the Expressions framework

is often utilized in conjunction with Wasatch, which is capable of performing domain

decomposition, and assigning work to multiple processes which communicate via MPI

message passing. While the utility of multiprocess coordination is obvious when utilizing

multiple compute nodes, it is also worth noting that it can provide worthwhile performance

benefit when running on a single node.

Figure 4.5 shows individual scaling for process (MPI), task, and operator components

taken in isolation, and we see that a maximum speedup of 8.4 is attained with twelve MPI

processes. At first glance, this would seem to indicate that it is better to simply go process

parallel and leave it at that; however, as we have already seen in Figure 4.3, task and

operator parallelism are complementary, with task parallelism improving performance only

after a specific level of operator parallelism has been reached; the same is true of process

level parallelism.

If we allocate twelve threads to both task and operator parallelism and run our test again,

we are able to see improved behavior over any individual method (Figure 4.6). Not only

do we see a performance increase over any individual scaling component, but we achieve

a maximum speedup of 1̃2, which is our effective maximum potential speedup on the 12

core (2x6) Aurora system. One explanation for this improvement over the single process

44

F
ig
u
re

4
.2

.
E

x
a
m

p
le

sc
a
la

b
il

it
y

g
ra

p
h

,
ei

gh
t

eq
u

at
io

n
,

so
u

rc
e

co
u
p

li
n

g

45

0

1.
29

2.
57

3.
86

5.
14

6.
43

7.
71

9.
00

0
3

6
9

12
15

S
p

ee
d

up
 f

o
r

a
g

iv
en

 E
xp

re
ss

io
n

p
o

o
l s

iz
e

as
 a

 F
un

ct
io

n
o

f
O

p
er

at
o

r
p

o
o

l s
iz

e
Speedup

O
p

er
at

or
 T

hr
ea

d
s

E
xp

re
ss

io
n

Th
re

ad
s:

 1
E

xp
re

ss
io

n
Th

re
ad

s:
 2

E
xp

re
ss

io
n

Th
re

ad
s:

 4
E

xp
re

ss
io

n
Th

re
ad

s:
 1

2

F
ig
u
re

4
.3

.
S

ca
la

b
il

it
y

te
st

,
em

b
er

20
12

,
p

lo
tt

ed
as

a
fu

n
ct

io
n

of
op

er
at

or
th

re
ad

s
-

25
6x

12
8x

12
8,

16
va

ri
ab

le
s

46

0

1.
29

2.
57

3.
86

5.
14

6.
43

7.
71

9.
00

0
3

6
9

12
15

S
p

ee
d

up
 f

o
r

a
g

iv
en

 O
p

er
at

o
r

p
o

o
l s

iz
e

as
 a

 f
un

ct
io

n
o

f
E

xp
re

ss
io

n
p

o
o

l s
iz

e
Speedup

E
xp

re
ss

io
n

th
re

ad
s

S
p

at
ia

l T
hr

ea
d

s:
 1

S
p

at
ia

l T
hr

ea
d

s:
 2

S
p

at
ia

l T
hr

ea
d

s:
 4

S
p

at
ia

l T
hr

ea
d

s:
 6

S
p

at
ia

l T
hr

ea
d

s:
 8

S
p

at
ia

l T
hr

ea
d

s:
 1

0
S

p
at

ia
l T

hr
ea

d
s:

 1
2

F
ig
u
re

4
.4

.
S

ca
la

b
il

it
y

te
st

,
em

b
er

20
12

,
p

lo
tt

ed
as

a
fu

n
ct

io
n

of
ex

p
re

ss
io

n
th

re
ad

s
-

25
6x

12
8x

12
8,

16
va

ri
ab

le
s

47

0

2.
3

4.
5

6.
8

9.
0

0
3.

75
7.

50
11

.2
5

15
.0

0

Is
o

la
te

d
 s

ca
lin

g
 p

er
fo

rm
an

ce
Speedup

P
ar

al
le

l T
as

ks
 o

r
P

ro
ce

ss
es

M
P

I p
ar

al
le

l o
nl

y
O

p
er

at
or

 p
ar

al
le

l o
nl

y
Ta

sk
 p

ar
al

le
l o

nl
y

F
ig
u
re

4
.5

.
S

in
gl

e
n

o
d

e
is

ol
at

ed
sc

al
in

g
fo

r
p

ro
ce

ss
,

ta
sk

,
an

d
op

er
at

or
p

ar
al

le
li

sm
,

au
ro

ra
20

12
-

12
03

,
24

va
ri

ab
le

s

48

6.
0

8.
3

10
.5

12
.8

15
.0

0.
6

1.
2

1.
8

2.
4

3.
0

S
p

ee
d

up
 u

ti
liz

in
g

 M
P

I w
it

h
ta

sk
 a

nd
 o

p
er

at
o

r
p

ar
al

le
lis

m
Speedup

P
ro

ce
ss

es

M
ix

ed
 S

ca
lin

g

F
ig
u
re

4
.6

.
S

in
gl

e
n

o
d

e
M

P
I

sc
a
li

n
g

w
it

h
12

ta
sk

an
d

12
op

er
at

or
th

re
ad

s,
au

ro
ra

20
12

-
12

0
3
,

24
va

ri
ab

le
s

49

case is the way the MPI configuration is set up to pin process threads to a specific socket,

whereas in the single process case, we may experience undesirable caching behavior with

collaborative threads executing on different physical processors or potentially very different

sections of the physical domain.

4.1.3 Scheduler Performance - Task Threaded MPI-Scaling:
Multinode

After examining scheduler performance in the single node case with varied process,

task, and operator level parallelism and finding them to conform to our expectation, it

seems reasonable to look at the multinode, task parallel case. For this, we will run a scaling

study on the Ember system in which each 12 core node is running a single process with 12

threads allocated at the operator level. We will then examine scaling performance from 12

to 384 cores while varying each process task scheduler to utilize 1, 2, 4, 8, and 12 threads.

In doing so, we expect to see a trend similar to that observed in Figure 4.4, with efficiency

increase uniformly irrespective of process count.

Running our simulation problem again, using the constraints described above, we observe

the results in Figure 4.7, exactly as expected. This further supports the assertion that our

modified scheduler implementation has produced a measurable gain in efficiency, without

introducing performance regressions.

4.1.4 Hybrid Scheduler Feasibility - Stencil 2 Performance

At the time of this writing, only the stencil-2 operation had a GPU implementation

within the Spatial Ops library, so this discussion will be restricted to direct comparison of

the CPU vs GPU operator implementations and graphs utilizing them. In general, a stencil

operator can be thought of as an operation that computes some value on each point of some

n-dimensional space based on the value(s) of neighboring points. In the case of the stencil-2

operation we will examine and the simple heat equation using it, each new point-wise value

is computed using two local points. Examples for two-point X, Y, and Z stencils can be

observed in Figure 4.8.

Running a modified version of the simple heat equation, on one of ember’s GPU nodes,

which computes X, Y, and Z flux elements using our stencil-2 operator, we can obtain

the results seen in Figure 4.9. On first inspection, it appears that there is little to be

gained from scheduling tasks to GPU; however, much like our previously discussion of the

complementary nature of parallel performance components, there are a number of additional

pieces of information which must be taken into account.

50

0

0.
25

0.
50

0.
75

1.
00

10
10

0
10

00

25
6^

3
D

o
m

ai
n,

 N
o

 S
o

ur
ce

, 1
2:

38
4

P
ro

ce
ss

es
Efficiency

P
ro

ce
ss

 C
ou

nt

E
xp

re
ss

io
n

1,
 S

p
at

ia
l 1

2
E

xp
re

ss
io

n
2,

 S
p

at
ia

l 1
2

E
xp

re
ss

io
n

4,
 S

p
at

ia
l 1

2
E

xp
re

ss
io

n
8,

 S
p

at
ia

l 1
2

E
xp

re
ss

io
n

12
, S

p
at

ia
l 1

2

F
ig
u
re

4
.7

.
S

ca
la

b
il

it
y

te
st

20
12

-
2
56

3
,

16
va

ri
ab

le
s

51

X1 X2

X2 = F(X1, X2)

Y
1

Y
2

Y2 = F(Y1, Y2)

Z1

Z2

Z2 = F(Z1, Z2)

Figure 4.8. Example stencil-2 computation, 2012

Our first point of interest is that, while GPU does not drastically improve our compute

time over the CPU, it does in fact solve it in an equivalent amount of time. This is important,

because in any situation where we are actually attempting to compute a problem’s solution,

we would not restrict ourselves to a single hardware component when multiple are available.

Rather, even in the simplest case, we could envision splitting a problem in half, and running

one piece on the GPU and one on the CPU. Thus, we are now able to utilize an additional

piece of computing hardware on an individual node; which, in the case of the stencil-2

operator, has the potential to effectively double our computing power on that node.

The next important consideration presents itself when we examine the node level per-

formance differences between CPU and GPU components. If, instead of examining total

compute time for the entire graph, we look at the time required to actually perform the

stencil-2 computation, seen in Figure 4.10, the situation appears to improve greatly and it

becomes apparent that we still have significant potential for performance gains. For each

test case, ranging from 32,000, to over 16 million grid points, the time taken to perform

the stencil-2 computation is often an order of magnitude faster on the GPU than the CPU.

Looking back to Chapter 3, it is easier to see how this behavior can provide significant

52

10
5

10
6

10
7

10
1

10
2

P
ro

bl
em

 s
iz

e

Compute Time

C
P

U
G

P
U

F
ig
u
re

4
.9

.
C

P
U

v
s

G
P

U
sc

a
li

n
g

fo
r

gr
ad

ie
n
t

sp
at

ia
l

op
er

at
or

-
to

ta
l

gr
ap

h
ti

m
e,

20
12

53

1.
00

E
-0

5

1.
00

E
-0

4

1.
00

E
-0

3

1.
00

E
-0

2

1.
00

E
-0

1 10
,0

00
10

0,
00

0
1,

00
0,

00
0

10
,0

00
,0

00
10

0,
00

0,
00

0

C
P

U
 v

s.
 G

P
U

 T
im

e
E

xe
cu

te
 G

ra
d

ie
nt

 O
p

er
at

o
r

as
 a

 F
un

ct
io

n
o

f
D

o
m

ai
n

S
iz

e

Time in seconds

D
om

ai
n

S
iz

e

C
P

U
 -

 X
 D

ire
ct

io
n

G
P

U
 -

 X
 D

ire
ct

io
n

F
ig
u
re

4
.1
0

.
C

P
U

v
s

G
P

U
sc

a
li
n

g
fo

r
g
ra

d
ie

n
t

sp
at

ia
l

op
er

at
or

-
si

n
gl

e
op

er
at

or
ti

m
e,

20
12

54

motivation for path coalescing and data prefetching.

4.2 Conclusion

4.2.1 Work Summary

This paper has presented a body of work supporting the extension of the Expressions

framework to utilize existing and future acceleration technologies, without requiring under-

lying hardware knowledge from its users. This, in turn, consisted of four primary component

requirements:

• Flexible task scheduling and algorithm selection

• Delayed memory allocation

• Support for coherent Spatial Field consumption on multiple target devices.

• Transparent operator selection based on field allocation source.

The contributed work required to realize these design goals can be summarized as follows:

• Spatial Operators Library

– Modified field managers to support dynamic memory allocation/deallocation.

– Modified spatial fields to be device aware.

– Modified spatial fields to support read-only consumer fields for simultaneous and

coherent consumption on multiple devices.

– Modified stencil-2 operator to support GPU targets and transparent implemen-

tation selection based on field allocation source.

– Modified of spatial field pools to support GPU pools.

– Introduced CUDA device interface layer as a sublibrary for interacting with and

managing CUDA devices.

• Expressions Library

– Thread pool improvements.

– Implemented new interface-based scheduling framework.

– Implementation of a priority task scheduler, supporting:

∗ Task graph introspection.

55

∗ Thread resource management.

∗ Dynamic memory resource allocation.

∗ Thread safe task scheduling across multiple schedulers.

∗ Dynamic node prioritization.

– Implementation of a hybrid task scheduler, supporting:

∗ Dynamic device assignment.

∗ Device aware prioritization.

∗ Data prefetching via consumer field assignment.

∗ Multinode path coalescing for GPU targets.

4.2.2 Future Work

A number of major avenues for continued and future work exist within the context of

this development effort.

• Spatial operator implementation – As noted in the discussion of the hybrid-scheduler,

many of the existing operator components within the Spatial Operator library are not

GPU aware and do not have existing implementations. Given the many design chal-

lenges and opportunities for performance gains when converting from a serial/CPU-

parallel operator implementation to a massively parallel CUDA style implementation,

there is significant room here for experimentation. Additionally, while not explored

here, there are a number of potential research opportunities for intelligent GPU

operator coalescing.

• Determination of device targets in a more natural way – Under the assumption that

operator implementation is ubiquitous, determining how to best assign a given graph

node to a hardware target is not explicitly obvious. This is because the most natural

methods for deciding on a hardware target would directly compare execution timings

for each operator against both CPU and GPU implementations; as we have neither

at the start of a simulation run and these timings are device and system dependent,

we likely must either perform an initial gathering phase to obtain timings for each

expression node, or heuristically tune our device assignment as a simulation progresses.

There are many potential approaches to collect these assignment metrics and in turn

use them to produce more intelligent scheduling agents.

• Finer grained introspection of structural elements within the task graph – In addition

to the scheduling concepts described above, it may be the case that for certain graphs

56

there is a high degree of task parallelism, punctuated by serializing computations

that should be handled dynamically; for example, see Figure 4.11. These situations

are unlikely to be reflected in any type of generalized parallelism score for the entire

graph, and instead will require us to define a type of finer grained parallelism, which

essentially reduces to a problem of identifying bottlenecks within a graph.

Under the assumption that we are able to identify nodes acting as bottlenecks within

the graph, then it would be reasonable to assume that the task scheduler could take

note when pushing such a node to the task queue. Given knowledge of a serializing

task, we could then increase threading resources available to the operator pool for

some duration, before returning to a more even distribution. However, this process

would not be without pitfalls, and could potentially decrease performance in situations

where serialization nodes did not require significant computation.

4.2.3 Final Thoughts

This paper has served to demonstrate the successful realization of our specified design

goals and to provide an accurate description of the development processes required. The

expressions framework is now explicitly able to support multiple hardware targets, in a

manner that should serve as an extensible template capable of accomodating compute

devices of the future. It is also able to actively take advantage of the graph structure

assembled from a user’s expression implementations and dependency specifications, while

dynamically allocating and deallocating task resources. The hope is that this work will

serve to facilitate improved performance an flexibility in the future, while preserving the

existing transparent software development process of the expressions library.

Figure 4.11. Highly parallel task graph structure with punctuated serialization.

APPENDIX

SCHEDULER CODE

A.1 Scheduler Base Class
1 //DEBUG FLAGS: DEBUG_NO_FIELD_RELEASE (default undefined)

2 /*

3 * Contract implementation for a task scheduler

4 *

5 */

6 #ifndef Expr_TaskSchedulerBase_h

7 #define Expr_TaskSchedulerBase_h

8
9 // Standard libraries

10 #include <map >

11
12 // Shared pointers

13 #include <boost/shared_ptr.hpp >

14
15 // Expressions

16 #include <expression/FieldDeps.h>

17 #include <expression/ExpressionID.h>

18 #include <expression/FieldManagerList.h>

19 #include <expression/VertexProperty.h>

20
21 #include <spatialops/structured/MemoryTypes.h>

22
23 #include <spatialops/SpatialOpsConfigure.h> // defines thread stuff.

24 #ifdef ENABLE_THREADS

25 namespace BIP = boost :: interprocess;

26 # include <boost/interprocess/sync/interprocess_semaphore.hpp >

27 # include <spatialops/ThreadPool.h>

28 #endif

29
30 namespace Expr {

31 /**

32 * \class Scheduler

33 */

34 namespace SchedulerGraphTypes {

35 typedef boost:: adjacency_list <boost ::listS , boost::listS , boost::directedS ,

36 VertexProperty , boost :: no_property > DefaultType;

37 }

38
39 class Scheduler {

40 public:

41 Scheduler () :

42 invalid_(true)

43 # ifdef ENABLE_THREADS

44 , pool_ (SpatialOps :: ThreadPool ::self())

45 , poolx_(SpatialOps :: ThreadPoolFIFO ::self())

46 , schedBarrier_ (0)

47 # endif

48 {}

49
50 virtual ~Scheduler () {}

51
52 // ------------------ Interface requirements ------------------

53
54 virtual Scheduler* get_base_pointer () = 0;

55
56 /** \brief Perform any required setup action and pre -processing */

57 virtual void setup(bool hasRegisteredFields) = 0;

58
59 /** Invalidate the current schedule **/

60 virtual void invalidate (){ invalid_ = true; }

61
62 /** \brief Execute the supplied task graph */

63 virtual void run() = 0;

64
65 /** \brief Perform any cleanup or post processing */

66 virtual void finish () = 0;

67

58

68 /** \brief Process ’finished ’ method from a vertex element */

69 virtual void exec_callback_handler(void*) = 0;

70
71 /** \brief Return a string identifying the scheduler in use */

72
73 virtual const std:: string get_identity () = 0;

74
75 /**

76 * \brief Assign a field manager list to the scheduler

77 */

78 virtual void set_fml(FieldManagerList* fml) {

79 this ->fml_ = fml;

80 }

81
82 /**

83 * \brief Store a copy of the field dependencies for this grpah

84 **/

85 virtual void set_fdm(

86 std::map <ExpressionID , boost:: shared_ptr <FieldDeps > >* fdm) {

87 this ->fdm_ = fdm;

88 }

89
90 protected:

91 FieldManagerList* fml_;

92 std::map <ExpressionID , boost::shared_ptr <FieldDeps > >* fdm_;

93
94 bool invalid_;

95
96 # ifdef ENABLE_THREADS

97 SpatialOps :: ThreadPool& pool_;

98 SpatialOps :: ThreadPoolFIFO& poolx_;

99 BIP:: interprocess_semaphore schedBarrier_;

100 # endif

101 };

102
103 } // namespace Expr

104
105 #endif // Expr_TaskScheduler_h

A.2 Priority Scheduler
1 template <class T = SchedulerGraphTypes :: DefaultType >

2 class PriorityScheduler: public Scheduler {

3
4 public:

5
6 PriorityScheduler(T* graph) :

7 execGraph_(graph), taskGraph_(NULL), Scheduler () {

8 }

9
10 ~PriorityScheduler () {

11 if (taskGraph_ != NULL) {

12 delete taskGraph_;

13 }

14 }

15
16 /**

17 * \brief Return this scheduler as its base type

18 */

19 Scheduler* get_base_pointer () {

20 return dynamic_cast <Scheduler*>(this);

21 }

22
23 /**

24 * \brief after this function runs , our scheduler should be in a runnable state

25 */

26 void setup(bool hasRegisteredFields = false);

27
28 /**

29 * \brief begin executing graph nodes

30 */

31 void run();

32
33 /**

34 * \brief perform any cleanup activities

35 */

36 void finish ();

37
38 /**

39 * \brief this function is called by an expression when it has finished executing

40 * we do introspection and determine which nodes are ready to run from here.

41 */

42 void exec_callback_handler(void*);

43
44 /**

45 * \brief return a string identifying which scheduler we are.

46 */

47 const std:: string get_identity () {

59

48 return std:: string("Default Priority Scheduler");

49 }

50
51 /**

52 * \brief intermediary for executing a node when it is ready , used so that we can control

53 * when we bind memory to each field

54 */

55 void call(VertexProperty& target);

56
57 /**

58 * \brief change our task graph , note this invalidates the graph and will force a full run through

59 * setup the next time it is called.

60 */

61 void set_task_graph(T* graph);

62
63 protected:

64
65 typedef typename boost:: graph_traits <T>:: vertex_descriptor Vertex;

66 typedef std::vector <Vertex > VertList;

67 typedef typename VertList :: iterator RootIter;

68 typedef typename std::map <ExpressionID , Vertex > ID2VP;

69
70 typedef typename boost:: graph_traits <T>:: edge_descriptor Edge; ///< Edge in a graph

71 typedef typename boost:: graph_traits <T>:: edge_iterator EdgeIter; ///< Edge iterator

72 typedef typename boost:: graph_traits <T>:: vertex_iterator VertIter;

73 typedef typename boost:: graph_traits <T>:: out_edge_iterator OutEdgeIter;

74
75 T* execGraph_;

76 T* taskGraph_;

77 int nelements_;

78 int nremaining_;

79
80 VertList rootList_;

81
82 // Producer and Consumer vertex maps

83 ID2VP execVertexMap_;

84 ID2VP taskVertexMap_;

85
86 /**

87 * \brief Boost visitor structure for setting node priorities

88 */

89 struct ExecPriorityVisitor: public boost:: default_bfs_visitor {

90 ExecPriorityVisitor () {

91 }

92 inline void examine_edge(Edge e, const T& g) {

93 Vertex src = boost :: source(e, g);

94 Vertex dest = boost :: target(e, g);

95 const int srcPriority = g[src]. priority;

96 T& g2 = const_cast <T&>(g);

97 int& priority = g2[dest]. priority;

98 priority = std::max(priority , srcPriority + 1);

99 }

100 };

101
102 /**

103 * \class ExecMutex

104 * \brief Scoped lock. An instance should be constructed within any function that touches Scheduler

105 * member variables.

106 */

107 class ExecMutex {

108 # ifdef ENABLE_THREADS

109 const boost::mutex:: scoped_lock lock;

110 inline boost :: mutex& get_mutex () const {static boost::mutex m; return m;}

111
112 public:

113 ExecMutex () : lock(get_mutex ()) {}

114 ~ExecMutex () {}

115 # else

116 public:

117 ExecMutex () {

118 }

119 ~ExecMutex () {

120 }

121 # endif

122 };

123
124 void dec_remaining ();

125 };

126
127 /* **************** Begin PriorityScheduler Implementation **************** */

128 template <class T>

129 void PriorityScheduler <T>:: set_task_graph(T* graph) {

130 invalid_ = true;

131 this ->execGraph_ = graph;

132 }

133
134 template <class T>

135 void PriorityScheduler <T>:: call(VertexProperty& target) {

136 (target.expr)->base_bind_fields (*this ->fml_);

137 target.execute_expression ();

138 }

139

60

140 template <class T>

141 void PriorityScheduler <T>:: exec_callback_handler(void* expr_vertex) {

142 T& gptr = *this ->execGraph_;

143
144 Vertex v = (Vertex) expr_vertex;

145 VertexProperty& vpJustFinished = gptr[v];

146
147 // Notify the vertex that a consumer has finished , it returns true , it can be freed.

148 for(std::vector <VertexProperty *>:: iterator vpit = vpJustFinished.ancestorList.begin();

149 vpit != vpJustFinished.ancestorList.end();

150 ++vpit)

151 {

152 if ((* vpit)->consumer_finished ()) {

153 if (this ->fdm_ != NULL && this ->fml_ != NULL) {

154 FieldDeps& fd = *((*this ->fdm_)[(* vpit)->id]);

155
156 #ifndef DEBUG_NO_FIELD_RELEASE

157 bool result = fd.release_fields (*this ->fml_);

158 #endif

159 }

160 }

161 }

162
163 // Notify the vertex that an ancestor has finished , it returns true if it is ready.

164 // If it is , we either toss it to the thread pool or run it.

165 for(std::vector <VertexProperty *>:: iterator vpit = vpJustFinished.consumerList.begin();

166 vpit != vpJustFinished.consumerList.end();

167 ++vpit)

168 {

169 if ((* vpit)->ancestor_finished ()) {

170 #ifdef ENABLE_THREADS

171 this ->pool_.schedule(

172 boost:: threadpool :: prio_task_func((*vpit)->priority ,

173 boost::bind(&PriorityScheduler <T>::call , this , **vpit)));

174 #else

175 this ->call (** vpit);

176 #endif

177 }

178 }

179 dec_remaining ();

180 }

181
182 template <class T>

183 void PriorityScheduler <T>:: dec_remaining () {

184 # ifdef ENABLE_THREADS

185 typename PriorityScheduler <T>:: ExecMutex lock;

186 # endif

187 --nremaining_;

188
189 # ifdef ENABLE_THREADS

190 if(nremaining_ == 0) {

191 this ->schedBarrier_.post();

192 }

193 # endif

194 }

195
196 /**

197 * \brief Initialize any data structures and information required for ’run()’ to complete

198 */

199 template <class T>

200 void PriorityScheduler <T>:: setup(bool hasRegisteredFields) {

201 //If we have been invalidated

202 // - reset all callback handles in the graph

203 // - recalculate all nparent_ counts for each vertex

204
205 //Notes on whats going on here

206 // - gptr is the execution graph

207 // - tgptr is the consumer (dependency graph)

208 //

209 // Both are used to build up information required for determining node priority ,

210 // node consumers , and node execution requirements.

211 //

212 // Step 1: reset and reconnect all variables to place the graph into state which is execute ready.

213 //

214 // Step 2: inspect the dependency graph in order to determine each nodes execution priority and

215 // determine its consumer count. (The number of nodes that consume an expression and its fields).

216 //

217 // Step 3: inspect the execution graph to determine the number of parent nodes for each expression;

218 // during execution this will allow us to know when an expression is ready to run.

219 //

220 // Step 4: determine each node’s memory constraints , currently this is limited to deciding if the

221 // expression can use dynamic memory.

222
223 // fprintf(stderr , "Scheduler ->setup called\n");

224 //Quick return if we’re already valid

225 if (! invalid_)

226 return;

227
228 // Variable init/clearing and setup **/

229 T& gptr = *this ->execGraph_;

230
231 if (this ->taskGraph_ == NULL) {

61

232 delete this ->taskGraph_;

233 }

234 this ->taskGraph_ = new T();

235 T& tgptr = *this ->taskGraph_;

236
237 rootList_.clear();

238 execVertexMap_.clear();

239 taskVertexMap_.clear();

240
241 // Update element counts

242 nelements_ = boost :: num_vertices (*this ->execGraph_);

243 nremaining_ = nelements_;

244
245 const std::pair <VertIter , VertIter > execGraphVertices = boost :: vertices(gptr);

246
247 // ------------------------------ **/

248
249 // Step 1

250 // Reconnect all signals and reset execution counts

251 VertIter iter;

252 for (iter = execGraphVertices.first; iter != execGraphVertices.second; ++iter) {

253 VertexProperty& vp = gptr[*iter];

254
255 execVertexMap_.insert(std:: make_pair(gptr[*iter].id, *iter));

256
257 vp.self_ = (void*) (*iter);

258 vp.nparents = 0;

259 vp.nconsumers = 0;

260 vp.priority = 0;

261 vp.execSignalCallback.reset(new VertexProperty :: Signal ());

262 vp.execSignalCallback ->connect(

263 boost::bind(& PriorityScheduler :: exec_callback_handler , this , vp.self_));

264
265 vp.ancestorList.clear();

266 vp.consumerList.clear();

267
268 vp.set_is_edge(false);

269 }

270
271 //set node information

272 for (VertIter vit = execGraphVertices.first; vit != execGraphVertices.second; ++vit) {

273 VertexProperty& evp = (gptr)[*vit];

274 execVertexMap_.insert(std:: make_pair(gptr[*vit].id , *vit));

275
276 std::pair <OutEdgeIter , OutEdgeIter > edges = boost :: out_edges (*vit , gptr);

277 for (OutEdgeIter eit = edges.first; eit != edges.second; ++eit) {

278 VertexProperty& tvp = (gptr)[boost :: target (*eit , gptr)];

279
280 evp.consumerList.push_back (&tvp);

281 tvp.ancestorList.push_back (&evp);

282 (evp.nconsumers)++;

283 (tvp.nparents)++;

284 }

285 }

286
287 //Step 2

288 //*** top down priority scheduling ***//

289 boost:: transpose_graph(gptr , tgptr ,

290 boost:: vertex_index_map(boost ::get(& VertexProperty ::index , gptr)));

291
292 //bfs from each top down ’root’

293 //Since this is the dependence graph , root nodes are at the ’top’ and will have no consumers

294 //Since no edge nodes can be ’scratch ’ we find root nodes in the consumer graph and use exprIDs

295 //to flag them as persistent in the execution graph.

296 const std::pair <VertIter , VertIter > taskGraphVertices = boost :: vertices(tgptr);

297
298 for (VertIter vit = taskGraphVertices.first; vit != taskGraphVertices.second; ++vit) {

299 VertexProperty& vp = (tgptr)[*vit];

300
301 taskVertexMap_.insert(std:: make_pair(gptr[*vit].id , *vit));

302 if (vp.nconsumers == 0) {

303 boost:: breadth_first_search(

304 tgptr ,

305 *vit ,

306 boost:: color_map(boost::get(& VertexProperty ::color , tgptr)).visitor(

307 ExecPriorityVisitor ()));

308
309 }

310 }

311 //Copy priorities back to the execution graph

312
313 for (VertIter vit = taskGraphVertices.first; vit != taskGraphVertices.second; ++vit) {

314 Vertex v = execVertexMap_[tgptr[*vit].id];

315 gptr[v]. priority = (tgptr)[*vit]. priority;

316 }

317
318 //*** end of top down scheduling ***///

319
320 //Step 3

321 //grab the root list , default remaining count to parent count

322 // assign scratch values

323 for (VertIter iter = execGraphVertices.first; iter != execGraphVertices.second; ++iter) {

62

324 VertexProperty& vp = gptr[*iter];

325
326 //For the execution graph nodes at the bottom of the tree are roots and have no parents.

327 //Since edge nodes cannot be ’dynamic ’ we flag these nodes as persistent

328 if (vp.nparents == 0) {

329 vp.set_is_edge(true);

330 rootList_.push_back (*iter);

331 }

332
333 if (vp.nconsumers == 0) {

334 vp.set_is_edge(true);

335 }

336
337 if (vp.get_is_edge ()) {

338 vp.set_is_persistent(true);

339 } else { // jcs will this over -ride someone locking a field?

340 vp.set_is_persistent(false);

341 }

342
343 if(vp.get_is_persistent ()){

344 vp.mm = MEM_EXTERNAL;

345 } else {

346 vp.mm = MEM_DYNAMIC;

347 }

348
349 vp.nremaining = vp.nparents;

350 vp.ncremaining = vp.nconsumers;

351 }

352
353 invalid_ = false;

354 }

355
356 /**

357 * \brief Begin executing on the graph by loading root expressions onto the queue

358 */

359 template <class T>

360 void PriorityScheduler <T>:: run() {

361 T& gptr = *this ->execGraph_;

362
363 // Execute everything in the root list

364 for (RootIter rit = rootList_.begin (); rit != rootList_.end(); rit++) {

365 VertexProperty& vp = gptr[*rit];

366 # ifdef ENABLE_THREADS

367 this ->pool_.schedule(boost:: threadpool :: prio_task_func(vp.priority ,

368 boost::bind(&PriorityScheduler <T>::call , this , vp)));

369 # else

370 this ->call(vp);

371 # endif

372 }

373
374 # ifdef ENABLE_THREADS

375 this ->schedBarrier_.wait();

376 # endif

377 finish ();

378 }

379
380 /**

381 * \brief Called when the graph is done executing , resets state variables.

382 */

383 template <class T>

384 void PriorityScheduler <T>:: finish () {

385 T& gptr = *this ->execGraph_;

386
387 this ->nelements_ = boost :: num_vertices (*this ->execGraph_);

388 this ->nremaining_ = this ->nelements_;

389
390 const std::pair <VertIter , VertIter > execGraphVertices = boost :: vertices(gptr);

391
392 //grab the root list , default remaining count to parent count

393 for (VertIter iter = execGraphVertices.first; iter != execGraphVertices.second; ++iter) {

394 VertexProperty& vp = gptr[*iter];

395 vp.nremaining = vp.nparents;

396 vp.ncremaining = vp.nconsumers;

397 }

398 }

399
400 // ------------------- End Priority Scheduler -----------------------//

A.3 Hybrid Scheduler
1 /**

2 * Available debugging flags:

3 * DEBUG_SCHED_ALL - Enable all scheduler debugging flags

4 *

5 * DEBUG_NO_FIELD_RELEASE - Disable releasing field memory during execution

6 *

7 *

8 */

63

9 #ifdef DEBUG_SCHED_ALL

10 #define DEBUG_NO_FIELD_RELEASE

11 #endif

12
13 #ifndef Expr_TaskSchedulers_hxx

14 #define Expr_TaskSchedulers_hxx

15
16 // Standard libraries

17 #include <stdio.h>

18 #include <iostream >

19 #include <string >

20 #include <stdexcept >

21 #include <map >

22
23 // SpatialOps

24 #include <spatialops/structured/MemoryTypes.h>

25 #include <spatialops/structured/ExternalAllocators.h>

26
27 // Expressions

28 #include <expression/SchedulerBase.h>

29
30 //Boost includes

31 #include <boost/graph/adjacency_list.hpp >

32 #include <boost/graph/graph_traits.hpp >

33 #include <boost/graph/visitors.hpp >

34 #include <boost/graph/breadth_first_search.hpp >

35 #include <boost/graph/transpose_graph.hpp >

36 #include <boost/shared_ptr.hpp >

37 #include <boost/signal.hpp >

38 #include <boost/bind.hpp >

39
40 namespace Expr {

41
42 template <class T>

43 class HybridScheduler;

44
45 template <class T = SchedulerGraphTypes :: DefaultType >

46 class HybridScheduler: public Scheduler {

47 /**

48 * \class ExecMutex

49 * \brief Scoped lock. An instance should be constructed within any function that touches Scheduler

50 * member variables.

51 */

52 class ExecMutex {

53 # ifdef ENABLE_THREADS

54 const boost::mutex:: scoped_lock lock;

55 inline boost :: mutex& get_mutex () const {static boost:: mutex m; return m;}

56
57 public:

58 ExecMutex () : lock(get_mutex ()) {}

59 ~ExecMutex () {}

60 # else

61 public:

62 ExecMutex (){}

63 ~ExecMutex (){}

64 # endif

65 };

66
67 /**

68 * @class GPULoadBalancer

69 *

70 * @brief Used to maintain loading and assignment information with respect to

71 * available hardware resources and tasks assigned to them.

72 */

73 class GPULoadBalancer {

74 typedef typename boost:: graph_traits <T>:: vertex_descriptor Vertex;

75
76 public:

77 enum Method { RoundRobin , MinimumLoading };

78
79 GPULoadBalancer () : gpuDeviceCount_ (0), nextRR_ (0), nextCID_ (0), method(RoundRobin) {}

80
81 Method get_assignment_strategy () const {

82 return method;

83 }

84
85 void set_assignment_strategy(Method m) {

86 method = m;

87 }

88
89 unsigned int get_next_cid () {

90 return nextCID_ ++;

91 }

92
93 unsigned int get_next_device () {

94 switch(method){

95 case RoundRobin: {

96 return ((++ nextRR_) % gpuDeviceCount_);

97 }

98
99 case MinimumLoading: {

100 unsigned int index = 0;

64

101 for(unsigned int i = 0; i < deviceLoading_.size(); ++i){

102 index = (deviceLoading_[index] < deviceLoading_[i]) ? index : i;

103 }

104
105 return index;

106 }

107
108 default:

109 throw("Unknown device loading type\n");

110 }

111 }

112 private:

113 Method method;

114
115 int gpuDeviceCount_;

116 int nextRR_;

117 int nextCID_;

118
119 std::vector <unsigned int > deviceMemorySize_;

120 std::vector <unsigned int > deviceLoading_;

121 std::map < unsigned int , std::list <Vertex > > CoalescingChains_;

122 };

123
124 public:

125
126 HybridScheduler(T* graph) :

127 execGraph_(graph), taskGraph_(NULL), __run_gpu(false), Scheduler () {

128
129 #ifdef ENABLE_CUDA

130 //Grab GPU information

131 ema::cuda:: CUDADeviceInterface& CDI = ema::cuda:: CUDADeviceInterface ::self();

132
133 /** Determine how many GPUs we have **/

134 gpuLoadBalancer_.gpuDeviceCount_ = CDI.get_device_count ();

135
136 /** Update memory information **/

137 CDI.update_memory_statistics ();

138
139 ema::cuda:: CUDAMemStats CMS;

140 for(int device = 0; device < gpuLoadBalancer_.gpuDeviceCount_; device ++){

141 CDI.get_memory_statistics(CMS , device);

142 gpuLoadBalancer_.deviceMemorySize_.push_back(CMS.t);

143 gpuLoadBalancer_.deviceLoading_.push_back (0);

144 }

145 #endif

146 }

147
148 ~HybridScheduler () {

149 if (taskGraph_ != NULL) {

150 delete taskGraph_;

151 }

152 }

153
154 /**

155 * \brief after this function runs , our scheduler should be in a runnable state

156 */

157 void setup(bool hasRegisteredFields = false);

158
159 /**

160 * \brief begin executing graph nodes

161 */

162 void run();

163
164 /**

165 * \brief perform any cleanup activities

166 */

167 void finish ();

168
169 /**

170 * \brief this function is called by an expression when it has finished executing

171 * we do introspection and determine which nodes are ready to run from here.

172 */

173 void exec_callback_handler(void*);

174
175 /**

176 * \brief return a string identifying which scheduler we are.

177 */

178 const std:: string get_identity () {

179 return std:: string("GPU Scheduler -- Testing");

180 }

181
182 /**

183 * \brief intermediary for executing a node when it is ready , used so that we can control

184 * when we bind memory to each field

185 */

186 void call(VertexProperty& target);

187
188 /**

189 * \brief change our task graph , note this invalidates the graph and will force a full run through

190 * setup the next time it is called.

191 */

192 void set_task_graph(T* graph);

65

193
194 /**

195 * Decrement the number of expression resources remaining to be computed

196 */

197 void dec_remaining ();

198
199 protected:

200
201 typedef typename boost:: graph_traits <T>:: vertex_descriptor Vertex;

202 typedef std::vector <Vertex > VertList;

203 typedef typename VertList :: iterator RootIter;

204 typedef typename std::map <ExpressionID , Vertex > ID2VP;

205
206 typedef typename boost:: graph_traits <T>:: edge_descriptor Edge; ///< Edge in a graph

207 typedef typename boost:: graph_traits <T>:: edge_iterator EdgeIter; ///< Edge iterator

208 typedef typename boost:: graph_traits <T>:: vertex_iterator VertIter;

209 typedef typename boost:: graph_traits <T>:: out_edge_iterator OutEdgeIter;

210
211 T* execGraph_;

212 T* taskGraph_;

213 int nelements_;

214 int nremaining_;

215 /** Testing **/

216 bool __run_gpu;

217
218 VertList rootList_;

219
220 /** Producer and Consumer vertex maps **/

221 ID2VP execVertexMap_;

222 ID2VP taskVertexMap_;

223
224 GPULoadBalancer gpuLoadBalancer_;

225
226 /**

227 * \brief Boost visitor structure for coalescing paths

228 *

229 * Greedy chaining algorithm. Attempts to create the longest single -path chains possible

230 */

231 struct LoadBalanceVisitor: public boost:: default_bfs_visitor {

232 LoadBalanceVisitor(GPULoadBalancer* gpuLB) {

233 gpuLB_ = gpuLB;

234 }

235
236 inline void examine_edge(Edge e, const T& g) {

237 const Vertex src = boost :: source(e, g);

238 const Vertex dest = boost :: target(e, g);

239 T& g2 = const_cast <T&>(g);

240
241 VertexProperty& svp = g2[src];

242 VertexProperty& dvp = g2[dest];

243
244 if(svp.execTarget == GPU){

245 //std::cout << "Source execution target is GPU\n";

246 if(svp.chainID_ == -1){ // Source vertex is not part of a coalescing chain. Make a new one

247 svp.chainID_ = gpuLB_ ->get_next_cid ();

248 std::list <Vertex > temp;

249 gpuLB_ ->CoalescingChains_.insert(std::pair <unsigned int , std::list <Vertex > >(svp.chainID_ , temp))

;

250 std::list <Vertex >& chain = gpuLB_ ->CoalescingChains_[svp.chainID_];

251 chain.push_back(src);

252 }

253
254 //If the destination node is already taken , look at absorbing it

255 if(dvp.execTarget == GPU){

256 //std::cout << "Destination execution target is GPU\n";

257 if(dvp.chainID_ == -1 && svp.chainTail_) {

258 // Add destvp to the chain if it isn’t already taken

259 svp.chainTail_ = false;

260 dvp.chainID_ = svp.chainID_;

261 //std::cout << "Destination is not part of an existing chain pushing to source chain , ID: " << dvp.

chainID_ << std::endl;

262 std::list <Vertex >& chain = gpuLB_ ->CoalescingChains_[dvp.chainID_];

263 chain.push_back(dest);

264 } else {

265 std::list <Vertex >& dchain = gpuLB_ ->CoalescingChains_[dvp.chainID_];

266
267 if(dest == dchain.front() && svp.chainTail_) {

268 svp.chainTail_ = false;

269 unsigned int t = dvp.chainID_;

270 //Dest is the head of another chain , attach it to our current chain

271 std::list <Vertex >& schain = gpuLB_ ->CoalescingChains_[svp.chainID_];

272 while(!dchain.empty()){

273 Vertex& v = dchain.front ();

274 VertexProperty& vp = g2[v];

275 vp.chainID_ = svp.chainID_;

276 schain.push_back(v);

277 dchain.pop_front ();

278 }

279 gpuLB_ ->CoalescingChains_.erase(t);

280 }

281 }

282 }

66

283 } else {

284 //If the destination node is already taken , look at absorbing it

285 if(dvp.execTarget == GPU && dvp.chainID_ == -1){

286 dvp.chainID_ = gpuLB_ ->get_next_cid ();

287
288 std::list <Vertex > temp;

289 gpuLB_ ->CoalescingChains_.insert(std::pair <unsigned int , std::list <Vertex > >(dvp.chainID_ , temp));

290 std::list <Vertex >& chain = gpuLB_ ->CoalescingChains_[dvp.chainID_];

291 chain.push_back(dest);

292 }

293 }

294 }

295
296 GPULoadBalancer* gpuLB_;

297 };

298 };

299
300 /* **************** Begin HybridScheduler Implementation **************** */

301 /**

302 * \brief Reassign a specific task graph.

303 */

304 template <class T>

305 void HybridScheduler <T>:: set_task_graph(T* graph) {

306 invalid_ = true;

307 this ->execGraph_ = graph;

308 }

309
310 /**

311 * \brief Setup and run a specific task.

312 */

313 template <class T>

314 void HybridScheduler <T>:: call(VertexProperty& target) {

315 //Bind the fields for this expression

316 (target.expr)->base_bind_fields (*this ->fml_);

317
318 // Execute the expression

319 target.execute_expression ();

320 }

321
322 /**

323 * \brief Process tasks as they finish.

324 */

325 template <class T>

326 void HybridScheduler <T>:: exec_callback_handler(void* expr_vertex) {

327 T& gptr = *this ->execGraph_;

328
329 Vertex v = (Vertex) expr_vertex;

330 VertexProperty& vpJustFinished = gptr[v];

331
332 // Notify the vertex that a consumer has finished , it returns true , it can be freed.

333 for (std::vector <VertexProperty *>:: iterator vpit = vpJustFinished.ancestorList.begin();

334 vpit != vpJustFinished.ancestorList.end();

335 ++vpit)

336 {

337 if ((* vpit)->consumer_finished ()) {

338 if (this ->fdm_ != NULL && this ->fml_ != NULL) {

339 FieldDeps& fd = *((*this ->fdm_)[(* vpit)->id]);

340
341 #ifndef DEBUG_NO_FIELD_RELEASE

342 bool result = fd.release_fields (*this ->fml_);

343 #endif

344 }

345 }

346 }

347
348 // Notify the vertex that an ancestor has finished , it returns true if it is ready.

349 // If it is , we either toss it to the thread pool or run it.

350 FieldDeps& fd = *((*this ->fdm_)[vpJustFinished.id]);

351
352 for (std::vector <VertexProperty *>:: iterator vpit = vpJustFinished.consumerList.begin();

353 vpit != vpJustFinished.consumerList.end();

354 ++vpit)

355 {

356
357 VertexProperty& destvp = (** vpit);

358
359 //Here , destvp will be a consumer of vpJustFinished , so vpJustFinished must be prepared to be consumed on

whichever

360 // device destvp is set to execute on.

361
362 SpatialOps :: MemoryType smtype , dmtype;

363
364 switch(vpJustFinished.mm){

365 case MEM_DYNAMIC_GPU:

366 smtype = SpatialOps :: EXTERNAL_CUDA_GPU;

367 break;

368 default:

369 smtype = SpatialOps :: LOCAL_RAM;

370 break;

371 }

372
373 switch(destvp.mm){

67

374 case MEM_DYNAMIC_GPU:

375 dmtype = SpatialOps :: EXTERNAL_CUDA_GPU;

376 break;

377 default:

378 dmtype = SpatialOps :: LOCAL_RAM;

379 break;

380 }

381
382 //Check to see if this field needs to be prepared

383 //Note: adding consumer fields is a thread safe operation

384 if((smtype != dmtype) || (vpJustFinished.deviceIndex_ != destvp.deviceIndex_)){

385 #ifdef DEBUG_SCHED_ALL

386 std::cout << "Field requires preparation for consumption: " << srcvp.expr ->name() << std::endl;

387 std::cout << "Allocating on " << ((destvp.mm != MEM_DYNAMIC_GPU) ? "LOCAL MEMORY" : "GPU MEMORY")

388 << " device index: " << destvp.deviceIndex_ << std::endl;

389 #endif

390
391 fd.prep_field_for_consuption (*this ->fml_ , dmtype , destvp.deviceIndex_);

392 }

393
394 if (destvp.ancestor_finished ()) {

395 #ifdef ENABLE_THREADS

396 this ->pool_.schedule(

397 boost:: threadpool :: prio_task_func(destvp.priority ,

398 boost::bind(&HybridScheduler <T>::call , this , destvp)));

399
400 #else

401 this ->call(destvp);

402 #endif

403 }

404 }

405 dec_remaining ();

406 }

407
408 /**

409 * \brief decrement remaining tasks.

410 */

411 template <class T>

412 void HybridScheduler <T>:: dec_remaining () {

413 # ifdef ENABLE_THREADS

414 typename HybridScheduler <T>:: ExecMutex lock;

415 # endif

416 --nremaining_;

417
418 # ifdef ENABLE_THREADS

419 if(nremaining_ == 0) {

420 this ->schedBarrier_.post();

421 }

422 # endif

423 }

424
425 /**

426 * \brief Initialize any data structures and information required for ’run()’ to complete.

427 */

428 //TODO: To make scheduling smarter , we may want to enumerate all available devices

429 // and memory in order to come up with a kind of ’banker ’s algorithm ’ to

430 // avoid over scheduling.

431 template <class T>

432 void HybridScheduler <T>:: setup(bool hasRegisteredFields) {

433 /**Notes on whats going on here

434 * - gptr is the execution graph

435 * - tgptr is the consumer (dependency graph)

436 *

437 * Step 1: Reset and reconnect all variables to place the graph into state which is execute ready.

438 *

439 * Step 2: Inspect the execution graph , flag edge nodes and set compute device.

440 *

441 * Step 3: Inspect the execution graph w/ hardware targets -- coalesce paths where possible

442 *

443 * Step 4: If our graph nodes are allocated , we update their field managers

444 *

445 * Step 5: rebuild our task graph indices.

446 **/

447
448 // Quick return if we’re already valid or if we’re not fully setup yet.

449 if (!invalid_)

450 return;

451
452 // Variable init/clearing and setup **/

453 T& gptr = *this ->execGraph_;

454
455 // Destroy our local task graph

456 if (this ->taskGraph_ != NULL) {

457 delete this ->taskGraph_;

458 }

459 this ->taskGraph_ = new T();

460 T& tgptr = *this ->taskGraph_;

461
462 // Clear are scheduling lists

463 rootList_.clear();

464 execVertexMap_.clear();

465 taskVertexMap_.clear();

68

466
467 // Reset load balancer variables

468 gpuLoadBalancer_.CoalescingChains_.clear();

469 for(std::vector <unsigned int >:: iterator vit = gpuLoadBalancer_.deviceLoading_.begin ();

470 vit != gpuLoadBalancer_.deviceLoading_.end(); ++vit){

471 (*vit) = 0;

472 }

473
474 // Update execution counters.

475 nelements_ = boost :: num_vertices (*this ->execGraph_);

476 nremaining_ = nelements_;

477
478 const std::pair <VertIter , VertIter > execGraphVertices = boost :: vertices(gptr);

479
480 // ------------------------------ **/

481
482 /**Step - 1 Reconnect all signals and reset execution counts

483 * Determine consumer and parent counts for all nodes in the graph

484 *

485 **/

486 VertIter iter;

487 for (iter = execGraphVertices.first; iter != execGraphVertices.second; ++iter) {

488 VertexProperty& vp = gptr[*iter];

489
490 vp.self_ = (void*) (*iter);

491 vp.nparents = 0;

492 vp.nconsumers = 0;

493 vp.chainID_ = -1;

494 vp.chainTail_ = true;

495 vp.vtp.eTimeCPU_ = 0.0;

496 vp.vtp.eTimeGPU_ = 0.0;

497
498 execVertexMap_.insert(std:: make_pair(gptr[*iter].id, *iter));

499
500 vp.execSignalCallback.reset(new VertexProperty :: Signal ());

501 vp.execSignalCallback ->connect(

502 boost::bind(& HybridScheduler :: exec_callback_handler , this , vp.self_));

503
504 vp.ancestorList.clear();

505 vp.consumerList.clear();

506
507 vp.set_is_edge(false);

508 }

509
510 for (iter = execGraphVertices.first; iter != execGraphVertices.second; ++iter) {

511 VertexProperty& vp = gptr[*iter];

512
513 std::pair <OutEdgeIter , OutEdgeIter > edges = boost :: out_edges (*iter , gptr);

514 for(OutEdgeIter eit = edges.first; eit != edges.second; ++eit){

515 /**

516 // /‘‘‘‘> cp1 (Add 1 to parent count)

517 // Idea: (Add 1 to consumer count) vp -----> cp2 (Add 1 to parent count)

518 // ____ > cp3 (Add 1 to parent count)

519 //

520 // Doing it like this we compute all consumer and parent counts at the same time.

521 **/

522 VertexProperty& cp = gptr[boost:: target (*eit , gptr)];

523
524 vp.consumerList.push_back (&cp);

525 cp.ancestorList.push_back (&vp);

526 (vp.nconsumers)++;

527 (cp.nparents)++;

528 }

529 }

530
531 /**Step 2 - Build our root list , classify persistence

532 * - The root list is composed of nodes that do not have any parents

533 * (topologic edge nodes)

534 *

535 * - At present all edge nodes , including leaf nodes are defined to be

536 * persistent. This may change in the future.

537 *

538 * (Not yet implemented -- requires changes to field registration guarantees)

539 * - Do a local sanity check on memory to make sure the device we’re assigning

540 * can support any single field + its dependencies

541 *

542 * - This initial pass will try and set node hardware targets based on

543 * execution + data transfer times.

544 *

545 **/

546 for (VertIter iter = execGraphVertices.first; iter != execGraphVertices.second; ++iter) {

547 VertexProperty& vp = gptr[*iter];

548
549 //For the execution graph nodes at the bottom of the tree are roots and have no parents.

550 //Since edge nodes cannot be ’dynamic ’ we flag these nodes as persistent

551
552 //Part of memory sanity check -- unimplemented

553 //vp.nodeMemoryBound_ = vp.nparents * fd.get_field_size (*this ->fml_);

554
555 if (vp.nparents == 0) {

556 vp.set_is_edge(true);

557 rootList_.push_back (*iter);

69

558 }

559
560 if (vp.nconsumers == 0) {

561 vp.set_is_edge(true);

562 }

563
564 if (vp.get_is_edge ()) {

565 vp.set_is_persistent(true);

566 } else {

567 // jcs will this over -ride someone locking a field?

568 // dvn: no, this will just inform the scheduler that there is nothing

569 // at the graph level that forces a field to be locked.

570 vp.set_is_persistent(false);

571 vp.set_gpu_runnable(true);

572 }

573 // --------------//

574
575 // If this node can be run on a GPU , decide which is better

576 if (vp.get_gpu_runnable ()) {

577 // Debugging stuff

578 if(__run_gpu){

579 vp.execTarget = GPU;

580 } else {

581 vp.execTarget = CPU; //(vp.vtp.eTimeCPU_ < vp.vtp.eTimeGPU_) ? CPU : GPU;

582 }

583 }

584
585 switch (vp.execTarget) {

586 case CPU: {

587 if(vp.get_is_persistent ()){

588 vp.mm = MEM_EXTERNAL;

589 } else {

590 vp.mm = MEM_DYNAMIC;

591 }

592 }

593 break;

594
595 case GPU:{

596 vp.mm = MEM_DYNAMIC_GPU;

597 }

598 break;

599
600 default:

601 throw(std:: runtime_error("Invalid execution target specified"));

602 }

603
604 vp.nremaining = vp.nparents;

605 vp.ncremaining = vp.nconsumers;

606 }

607
608 /**Step 3 - BFS from each root node , calling our load balancer as necessary.

609 *

610 * Example:

611 *

612 * (A) If we suppose that each node in this graph will be run on GPU ,

613 * / \ then our search will construct the following chains:

614 * (B) (C)

615 * / \ / { A->B->D, C->E }

616 * (D) (E)

617 *

618 **/

619 for (typename std::vector <Vertex >:: iterator iter = rootList_.begin (); iter != rootList_.end(); ++iter) {

620 boost:: breadth_first_search(tgptr , *iter , boost:: color_map(

621 boost::get(& VertexProperty ::color , tgptr)).visitor(LoadBalanceVisitor (& gpuLoadBalancer_)));

622 }

623
624 for(typename std::map <unsigned int , std::list <Vertex > >::iterator mit = gpuLoadBalancer_.CoalescingChains_.

begin();

625 mit != gpuLoadBalancer_.CoalescingChains_.end(); ++mit){

626 typename std::list <Vertex >& chain = mit ->second;

627
628 unsigned int dIndex = gpuLoadBalancer_.get_next_device ();

629 gpuLoadBalancer_.deviceLoading_[dIndex] += chain.size();

630 for(typename std::list <Vertex >:: iterator lit = chain.begin(); lit != chain.end(); ++lit){

631 VertexProperty& vp = gptr[*lit];

632 vp.deviceIndex_ = dIndex;

633 //std::cout << "Setting device index to " << dIndex << " for GPU device in chain " << mit ->first << std::

endl;

634 }

635 }

636
637 /**Step 4 - If fields are already registered , then we push any field changes to the Field managers

638 *

639 * If we know the fields associated with this expression have already been registered

640 * then we need to updated the field memory manager to reflect changes which may have

641 * occurred during this setup.

642 *

643 **/

644 if(hasRegisteredFields) {

645 for (VertIter iter = execGraphVertices.first; iter != execGraphVertices.second; ++iter) {

646 VertexProperty& vp = gptr[*iter];

647

70

648 FieldDeps& fd = *((*this ->fdm_)[vp.id]);

649 fd.set_memory_manager(*this ->fml_ , vp.mm , vp.deviceIndex_);

650 }

651 }

652
653 /**Step 5 - Build the transpose and generate vertex mappings

654 // - We store the transpose (task graph), because it lets us

655 // backtrack to find execution parent nodes during execution

656 // and inform them consumers have finished (remember this is a directed graph)

657 // /\

658 // /||\

659 // || (consumer)------>\ (task graph directionality , stored in ’taskVertexMap_ ’)

660 // || ^ \

661 // || (execution graph directionality)| \

662 // || <-------(node)<--------\

663 // || \ ^ (execution graph directionality , stored in

’execVertexMap_ ’)

664 // || \ |

665 // || (task graph directionality)\------> (parent)

666 // ||

667 // ^^

668 // Direction of Execution

669 //==*

*/

670 boost:: transpose_graph(gptr , tgptr ,

671 boost:: vertex_index_map(boost::get(& VertexProperty ::index , gptr)));

672 const std::pair <VertIter , VertIter > taskGraphVertices = boost :: vertices(tgptr);

673
674 for (VertIter vit = taskGraphVertices.first; vit != taskGraphVertices.second; ++vit) {

675 taskVertexMap_.insert(std:: make_pair(tgptr [*vit].id, *vit));

676 }

677
678 invalid_ = false;

679 }

680
681 /**

682 * \brief Begin executing on the graph by loading root expressions onto the queue.

683 */

684 template <class T>

685 void HybridScheduler <T>::run() {

686 //this ->setup ();

687
688 T& gptr = *this ->execGraph_;

689
690 // Execute everything in the root list

691 for (RootIter rit = rootList_.begin (); rit != rootList_.end(); rit++) {

692 const VertexProperty& vp = gptr[*rit];

693 # ifdef ENABLE_THREADS

694 this ->pool_.schedule(boost:: threadpool :: prio_task_func(vp.priority ,

695 boost::bind(&HybridScheduler <T>::call , this , vp)));

696 # else

697 this ->call(vp);

698 # endif

699 }

700
701 # ifdef ENABLE_THREADS

702 this ->schedBarrier_.wait();

703 # endif

704 finish ();

705 }

706
707 /**

708 * \brief Called when the graph is done executing , resets state variables.

709 */

710 template <class T>

711 void HybridScheduler <T>:: finish () {

712 T& gptr = *this ->execGraph_;

713
714 this ->nelements_ = boost :: num_vertices (*this ->execGraph_);

715 this ->nremaining_ = this ->nelements_;

716
717 const std::pair <VertIter , VertIter > execGraphVertices = boost :: vertices(gptr);

718
719 //grab the root list , default remaining count to parent count

720 for (VertIter iter = execGraphVertices.first; iter != execGraphVertices.second; ++iter) {

721 VertexProperty& vp = gptr[*iter];

722 vp.nremaining = vp.nparents;

723 vp.ncremaining = vp.nconsumers;

724 }

725 }

726
727 // ------------------- End Hybrid Scheduler -----------------------//

728 }

REFERENCES

[1] Agullo, E., Hadri, B., Ltaief, H., and Dongarrra, J. Comparative study of
one-sided factorizations with multiple software packages on multi-core hardware. In
Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis (2009), ACM, p. 20.

[2] Al-Mouhamed, M. A. Lower bound on the number of processors and time for
scheduling precedence graphs with communication costs. IEEE Trans. Softw. Eng. 16,
12 (Dec. 1990), 1390–1401.

[3] Amor, D. Internet Future Strategies: How Pervasive Computing Services Will Change
the World. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

[4] Andrade, H. A., and Kovner, S. Software synthesis from dataflow models for g
and labview/sup tm. In Signals, Systems & Computers, 1998. Conference Record of
the Thirty-Second Asilomar Conference on (1998), vol. 2, IEEE, pp. 1705–1709.

[5] Buttari, A., Langou, J., Kurzak, J., and Dongarra, J. Parallel tiled qr
factorization for multicore architectures. Concurrency and Computation: Practice and
Experience 20, 13 (2008), 1573–1590.

[6] Chan, E., Quintana-Orti, E. S., Quintana-Orti, G., and Van De Geijn,
R. Supermatrix out-of-order scheduling of matrix operations for smp and multi-core
architectures. In Proceedings of the nineteenth annual ACM symposium on Parallel
algorithms and architectures (2007), ACM, pp. 116–125.

[7] Corporation, N. NVIDIA CUDA programming guide., 2011.

[8] Davison de St Germain, J., McCorquodale, J., Parker, S. G., and John-
son, C. R. Uintah: A massively parallel problem solving environment. In High-
Performance Distributed Computing, 2000. Proceedings. The Ninth International Sym-
posium on (2000), IEEE, pp. 33–41.

[9] Dongarra, J. J., Du Croz, J., Hammarling, S., and Duff, I. S. A set of level
3 basic linear algebra subprograms. ACM Transactions on Mathematical Software
(TOMS) 16, 1 (1990), 1–17.

[10] Eckert, J. P. Oral history interview with j. presper eckert, 1978.

[11] Fernandez, E. B., and Bussell, B. Bounds on the number of processors and
time for multiprocessor optimal schedules. IEEE Trans. Comput. 22, 8 (Aug. 1973),
745–751.

[12] Frigo, M., Leiserson, C. E., and Randall, K. H. The implementation of the
cilk-5 multithreaded language. ACM Sigplan Notices 33, 5 (1998), 212–223.

72

[13] Germain, D. S., J. D., M., J., P., S. G., J., and R., C. Uintah: A massively
parallel problem solving environment. ninth ieee international symposium on high
performance and distributed computing. In Uintah: A Massively Parallel Problem
Solving Environment. Ninth IEEE International Symposium on High Performance and
Distributed Computing (2000), pp. 33–41.

[14] Haidar, A., Ltaief, H., YarKhan, A., and Dongarra, J. Analysis of dynam-
ically scheduled tile algorithms for dense linear algebra on multicore architectures.
Concurrency and Computation: Practice and Experience 24, 3 (2011), 305–321.

[15] Hruska, J. Nvidia offers peek into advanced design evaluation. HotHardware (2011).

[16] Kurzak, J., and Dongarra, J. Fully dynamic scheduler for numerical computing
on multicore processors. Univ. of Tennessee LAPACK Working Note 220 (2009).

[17] Martin, B. The separation of interface and implementation in C++. Hewlett-
Packard Laboratories., 1990.

[18] Miller, F. P., Vandome, A. F., and McBrewster, J. Moore’s law: History of
computing hardware, Integrated circuit, Accelerating change, Amdahl’s law, Metcalfe’s
law, Mark Kryder, Jakob Nielsen (usability consultant), Wirth’s law. Alpha Press,
2009.

[19] Notz, P., Pawlowski, R., and Sutherland, J. Graph-based software design for
managing complexity and enabling concurrency in multiphysics pde software. ACM
Transactions on Mathematical Software (submitted) (2011).

[20] Randall, K. H. Cilk: E cient Multithreaded Computing. PhD thesis, Massachusetts
Institute of Technology, 1998.

[21] Siek, J., Lee, L., and Lumsdaine, A. Boost Graph Library: User Guide and
Reference Manual, The. Addison-Wesley Professional, 2001.

[22] Sinnen, O. Task Scheduling for Parallel Systems (Wiley Series on Parallel and
Distributed Computing). Wiley-Interscience, 2007.

[23] Supercomputing Technologies Group, M. L. f. C. S. Cilk reference manual.,
1998.

[24] Trendall, C. ”ray tracing refraction in hardware”. Master’s thesis, ”University of
Toronto”, ”2000”.

