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ABSTRACT

Complex cancer phenotypes are defined by their aggressive nature and 

lack of known or accessible therapeutic targets. My dissertation focuses on the 

use of a personalized medicine approach for the identification of novel therapies 

against two complex cancer phenotypes: Basal-like/Claudin-low breast cancer 

and RAS-active nonsmall cell lung cancer.

RAS-active cancer is characterized by the activation of the complex 

signaling network of RAS, which lacks effective therapeutics capable of inhibiting 

the RAS protein itself or the overall pathway. Further complicating treatment is 

the ability of the RAS pathway to be activated independent of the presence of an 

activating mutation in the RAS protein. To broadly characterize pathway activation 

independent of RAS protein mutation, I used a gene-expression-based biomarker for 

RAS network activity in nonsmall cell lung cancer (NSCLC) cell lines, and identified 

RAS activation in both RAS-mutant and wild-type lines. I then screened for drugs 

whose efficacy significantly correlated to RAS network activity and showed that 

EGFR and MEK co-inhibition is an effective treatment personalized against RAS-

active NSCLC. Finally, I demonstrated that EGFR and MEK co-inhibition induced 

apoptosis and blocked both EGFR-RAS-RAF-MEK-ERK and EGFR-PI3K-AKT-

RPS6 nodes simultaneously in RAS-active, but not RAS-inactive NSCLC.

Secondly, I identified a novel compound effective against Basal-like and 

Claudin-low breast cancer (BL-CL). BL-CL is a molecular subtype of breast cancer 

characterized by an aggressive, recurrent and nonluminal nature, epitomized by 

the lack of known therapeutic targets and poor patient prognosis. Using high-
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throughput screening of a marine invertebrate compound library and sequential 

purification of crude fractions, I identified a previously uncharacterized sulfated 

sterol, Topsentinol L Trisulfate (TLT), purified from a marine sponge, and showed 

that it inhibits AMPK and CHK1 but activates p38. Furthermore, I indentified the 

potential use of known AMPK and CHK1 inhibitors, alone or in combination, as an 

effective therapy against BL-CL. Lastly, sensitivity to TLT was projected against 

various human tumors by generating a gene-expression signature that predicted 

breast and bladder cancer as the cancer types most receptive to TLT therapy.

This work describes the identification of novel treatments personalized 

against BL-CL and RAS-active NSCLC, providing a framework for future pre-

clinical studies.
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“Luck’s the word those with poor hearts use for ka...” - Stephen King
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1.1  Overview

My dissertation work investigates the use of personalized medicine in 

the treatment of complex cancer phenotypes. I identify two separate therapies 

personalized against RAS-active nonsmall cell lung cancer and Basal-like/

Claudin-low breast cancer. As such, my dissertation necessitates an introduction 

to personalized medicine and its application in cancer therapy and research. 

Afterwards, I introduce the first complex phenotype addressed in my dissertation, 

RAS-active NSCLC, by discussing lung cancer epidemiology and subtypes, while 

linking the RAS pathway to the complicated pathology and treatment difficulty. Lastly, 

I provide the necessary background on Basal-like and Claudin-low breast cancer 

(BL-CL), the second complex cancer phenotype addressed in my dissertation work. 

I provide the reader with the necessary information on breast cancer epidemiology, 

the different subtypes of the cancer, and a section focusing on BL-CL, as well as 

the proteins and pathways targeted and discussed in Chapter 3. The following 

introduction provides the reader with a framework in which to discuss the necessity 

of novel therapeutic treatment against these cancer phenotypes. This facilitates a 

transition to the importance of personalized medical approaches in cancer drug 

discovery and the findings in Chapters 2 and 3, highlighting the purpose of my 

dissertation work. 

1.2  Personalized Medicine in Cancer

Personalized medicine is a vague term that has been subjected to an 

evolving definition with the changing landscape of clinical practice and research 

[1]. The United States National Institutes of Health (NIH), as well as the Food and 

Drug Administration (FDA) view it as the capacity to use the genetic or genomic 

profile of an individual to guide medical decisions in regards to the prevention, 

diagnosis, and treatment of diseases [2]. However, it is becoming readily apparent 
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that personalized medicine is not exclusively attributed to patient individuality. 

Instead, personalized medicine refers to the idea that molecular information 

optimizes the accuracy with which patients are categorized and treated [3]. It 

describes the medical method of classifying individuals into subpopulations based 

on patient similarities in susceptibility to a particular disease or response to a 

particular treatment. Therefore, the impact of personalized medicine depends on 

molecular biomarkers that classify patients to such subpopulation [1-4]. Thus, it can 

be argued that personalized medicine is in fact a misnomer. Genome or precision 

medicine, are two terms that encompass the current practice of incorporating 

genomic information to guide precise medical intervention [3,4]. 

The ultimate goal of personalized medicine is to provide the most effective 

treatment to the right person at the right time, based on molecular assessment of 

guidance towards precise treatment strategy [1-4]. This is particularly important in 

the treatment of cancer, due to the highly heterogeneous and genomically diverse 

nature of the disease that leads to cancer-distinct differences in clinical behavior 

and treatment response [5-8]. Central to incorporating personalized medicine in 

oncology is the acceptance of cancer as a collective phenotypic consequence of 

somatically acquired genetic, genomic and epigenetic modifications. Fortunately, 

with the collaborative consortiums like The Cancer Genome Atlas (TCGA) leading 

the cataloguing process of cancer genomic alternations in patient samples, it 

has become a feasible option [9,10]. It is expected that the generation of such 

comprehensive catalogs of somatic alterations and changes in epigenetic and 

transcriptional states in cancer genomes will improve our capacity to tailor and 

guide the development of therapeutics against the proper patient subpopulation. 

The incorporation of personalized medicine in cancer can no longer be considered 

a fantasy. It is now a realistic option for cancer therapy [2,3,8,10]. Work documented 

in this dissertation explores the personalization of novel compounds and clinically-
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available drugs against particular molecular subtypes of breast and lung cancer. 

Such work would not have been possible without the advent of cancer genomics. 

1.2.1  Cancer Genomics: The Guide for Personalized Medicine

The fundamental role of the genome in cancer development and progression 

first became apparent in the studies performed by David von Hansemann and 

Theodor Boveri. In the late nineteenth and early twentieth centuries, they 

discovered that dividing cancer cells showed peculiar chromosomal aberrations. 

This finding culminated in the proposal that cancer is a result of aberrant clones 

of cells, caused by abnormalities of hereditary material. Further studies identified 

DNA as the molecular substrate of inheritance, leading to the seminal discovery of 

the genomic nature of cancer [11]. However, due to the inherent genomic diversity 

of cancer, the changes involved in the molecular landscape of the disease are 

variable and numerous. Therefore, a systematic approach to catalogue such 

changes in the genome of the cancer cell was required to provide a more detailed 

understanding of the molecular nature of cancer [12].

With the availability of the human genome sequence, the field of cancer 

genomics emerged to investigate large-scale molecular differences between 

normal and cancer cells [12]. Cancer genomics involves the systematic analysis 

of the cancer cell genome with the purpose of describing recurrent aberrations in 

specific cancer types on a genetic or pathway level [9,10,12]. Such studies are 

required to address the molecular heterogeneity arising within histology-specified 

cancer types that add further complexity to the observed differences in clinical 

behavior and treatment response.  More importantly, the successful incorporation of 

personalized medicine to cancer therapy predicated the identification of molecular 

biomarkers that classify tumors based on their ability to respond to a particular 

treatment. Therefore, knowledge of the molecular profile of cancer is necessary to 
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understand cancer behavior and guide selection of therapy for the patient [8,10,12]. 

This is possible through the use of cancer genomics.

Cancer genomics describes the molecular landscape of tumors. This 

information can then be incorporated into personalized medical approaches 

to identify molecular changes that can predict patient outcome, and provide 

information on treatment sensitivity. Chapter 2 and 3 describes the utilization of 

cancer genomics to classify breast and nonsmall cell lung cancer (NSCLC) into 

molecular subtypes, with the purpose of identifying personalized treatment options. 

Cancer genomics has been successfully integrated in various personalized medical 

approaches in the context of cancer prevention, treatment optimization, and patient 

prognosis prediction, as described in the next section. 

1.2.2  Personalized Medicine Approaches in Cancer

Genomics permitted access into the molecular profiles of cancer that 

contribute to the heterogeneity inherent in the disease. This laid the foundation for 

the investigation and exploitation of molecular weaknesses in cancer. Moreover, 

since cancer genomics was readily available, personalized investigation was 

possible through molecular biomarkers [8,13]. Personalized medicine in cancer has 

been used to tailor treatment strategies according to individual genetic, genomic 

or proteomic tumor profiles. This is accomplished using a molecular biomarker 

that identifies a particular patient population or a tumor phenotype responsive to 

a specific treatment [2,8]. Indeed, the effectiveness of this approach is apparent 

in the clinical success of trastuzumab, a direct HER2 inhibitor in the form of a 

monoclonal antibody, and erlotinib, a small molecule inhibitor of EGFR. The success 

of trastuzumab and erlotonib was achieved as a result of tailoring the therapeutics 

to patients whose tumors expressed the respective molecular biomarkers of HER2 

overexpression or an EGFR activating mutation. These molecular biomarkers 



6

effectively guided targeted therapy by identifying the subpopulation of cancer 

patients responsive to the treatment [8,14,15]. Furthermore, biomarkers have 

also been used to identify patient populations and tumor phenotypes resistant 

to a particular treatment. For example, colorectal cancer patients suffering from 

a tumor with an activating KRAS mutation exhibit resistance to EGFR inhibition 

therapy [16]. This methodical, molecular-guided personalized cancer therapy is in 

stark contrast to the historical approach of chemotherapy implementation, whereby 

universally toxic agents were used in various combinations to identify the optimal 

treatment [17]. Personalized cancer therapy provides a methodical strategy to 

identify key molecular biomarkers and link them to the optimal treatment regimen. 

Personalized medicine in cancer is also used preventatively, as a method to 

forecast disease risk prior to the appearance of clinical symptoms. This is possible 

through the identification of oncogenes that increase the risk of cancer occurrence 

and applying the proper tests to screen for them in the clinic. The clinical value of 

BRCA1 and BRCA2 tests and their importance as genetic guides towards cancer 

prevention highlight the significance of this aspect of personalized medicine [2,18]. 

Indeed, the greatest risk factor for both breast and ovarian cancer is the inheritance 

of a mutation in either of the breast cancer susceptibility genes BRCA1, BRCA2 or 

both [19]. Women carrying such mutations have a collective lifetime risk of invasive 

breast cancer (up to 70 years of age) of 55-85% and of invasive epithelial ovarian 

cancer of 15-65%. For these women, prophylactic bilateral total mastectomy 

reduces the incidence and risk of breast cancer associated with these mutations 

significantly [20]. However, BRCA1/2 mutations are found in only a small fraction 

(5–10%) of all breast cancers [21].  Therefore, the ability to assess the population 

for these mutations is crucial in order to recommend and tailor such a highly morbid 

procedure as a total mastectomy to the most beneficial group. In this light, the 

ability to personalize cancer prevention interventions is essential. 
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Personalized medicine is also capable of predicting patient prognosis, cancer 

recurrence and treatment outcomes based on molecular tumor profiles [2,22,23]. 

Indeed, one such example is the incorporation of Oncotype DX, a clinically-available 

multigene diagnostic with prognostic and predictive significance. Oncotype DX is a 

multiplex PCR-based assay that analyzes the expression of 21 genes and quantifies 

the probability of cancer recurrence (prognostic significance) and assesses the 

likely benefit of particular chemotherapeutic interventions (predictive significance). 

This diagnostic is tailored to women with hormone receptor positive, lymph node 

negative early stage breast cancer (stages I and II) [23,24]. Through the use of this 

diagnostic test, a personalized assessment of the probability of cancer recurrence 

and potential benefit from chemotherapy is possible. 

Furthermore, another clinically-available test, Mammaprint, assess tumors 

molecularly to provide a personalized prognosis of breast tumor metastasis. 

Mammaprint is a genomic diagnostic test that examines the expression of 70 genes 

using microarray analysis. It has been shown to be a successful prognostic test, 

independent of conventional pathological and clinical markers such as tumor size 

and hormone/HER2 receptor status. It is currently used in the clinic to personalize 

assessment of potential distant metastases in lymph node negative breast cancer 

patients of all ages with tumors small than 5 cm and independent of hormone 

receptor status [6,22,24].

Through the incorporation of cancer genomics, personalized medicine has 

been able to change the landscape of cancer prevention, therapy and research.  

As such, the goal of my dissertation is to incorporate cancer genomics and 

personalized medicine approaches to identify treatments for complex cancer 

phenotypes. A complex cancer phenotype is defined here as an aggressive subtype 

of cancer that is characterized by deregulated signaling in unknown oncogenic 

pathways or known complicated networks that lack available therapeutic targets.  
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In this dissertation, I address two such cancers, RAS-driven nonsmall cell lung 

cancer, with its aberrant signaling in the complex branching RAS pathway, and 

Basal-like/Claudin-low breast cancer, which lacks an identified driver oncogenic 

signaling pathway. The next section will provide background information on the 

former complex cancer phenotype, laying the foundation for the work described in 

Chapter 2 that identifies a novel personalized treatment strategy effective against 

the disease.

1.3  RAS-active Nonsmall Cell Lung Cancer

Lung cancer is the leading neoplasm in incidence and mortality worldwide. 

Every year, more patients die of lung cancer than breast, colorectal and prostate 

cancers combined [25]. Approximately 85% of all lung cancers are caused by 

the carcinogens found in tobacco smoke, with the remainder 15% of lung cancer 

cases occurring in lifetime “never smokers” (those who have smoked less than 100 

cigarettes in their lifetime) [26].  In the US, an estimated 224,210 cases of lung 

cancer are expected in 2014.  Lung cancer is responsible for more deaths than 

any other type of cancer in both men and women. An estimated 159,260 deaths 

that account for roughly 27% of all cancer mortality are expected to occur in 2014. 

The 5-year survival rate of lung cancer has not improved significantly since 1975, 

going up from 12% in 1975 to 18% in 2009 [27], highlighting the desperate need 

for novel therapeutics that can treat lung cancer. 

Lung cancer occurs in two general types, nonsmall-cell lung cancer 

(NSCLC) and small-cell lung cancer (SCLC), making up 85% and 15% of all cases, 

respectively [28]. Three separate subtypes exist within NSCLC: adenocarcinoma, 

squamous cell carcinoma, and large cell carcinoma, comprising 40%, 30% and 

15% of all lung cancer cases, respectively [29]. Smoking is associated with causing 

all major histological types of lung cancer, although the connection is stronger for 
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SCLC and squamous cell carcinoma. In comparison, adenocarcinoma is the most 

common form of lung cancer to occur in never smokers [30,31]. Adenocarcinoma 

tumors have glandular histology and arise in more distal airways, expressing genes 

consistent with their origin in the distal lung. Squamous cell carcinoma tumors 

occur in more proximal airways and are associated with chronic inflammation. This 

subtype is characterized by squamous differentiation, similar to the pseudostratified 

columnar epithelium that lines the trachea and upper airways where these tumors 

form. Lastly, large cell carcinomas are part of a NSCLC subtype that is diagnosed 

by exclusion. This occurs when tumor cells do not display morphological features 

diagnostic of adenocarcinoma, squamous cell carcinoma or SCLC. It is uncertain 

whether large cell carcinomas are genetically distinct from adenocarcinoma or 

squamous cell carcinoma. These tumors tend to be large, partially necrotic and 

composed of undifferentiated cells [32,33]. 

Adding further complexity to NSCLC are the vast molecular differences 

observed among these diverse types and subtypes of lung cancer [32,33]. Genomic 

studies have revealed the molecular landscape of lung cancer and described 

the numerous somatic alterations observed in NSCLC. These modifications 

encompass protein kinases, epigenome modulators, transcription and splicing 

factors, as well as cellular immunity genes. Among the various altered genes 

in NSCLC with relevant preclinical and clinical evidence identified from patient 

tumours is KRAS, a member of the highly oncogenic RAS protein family [32,34]. 

KRAS mutations are found in 17% of all lung cancer cases [35,36]. The survival 

rate for KRAS-positive lung cancer patients is even worse than the other lung 

cancer patients [37]. KRAS mutations occur in 25% of all NSCLC, but are evidently 

rare in SCLC [26]. Furthermore, RAS can be activated without the acquisition of an 

activating mutation [38]. Therefore, it is necessary to accurately classify the lung 

cancers with activated RAS independent of mutation status. In the work described 
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in this dissertation, RAS-active NSCLC is characterized genomically, with the use 

of a RAS gene-expression signature that classifies RAS activation based on global 

pathway activity and transcription. RAS-active NSCLC is defined as a molecular 

subtype of NSCLC characterized by an activated RAS pathway, independent of 

RAS mutation status and NSCLC histological subtypes (adenocarcinoma, large 

cell carcinoma, squamous cell carcinoma). In the following section, I provide an 

elaboration on the RAS pathway, and its role in carcinogenesis and NSCLC to 

present the reader with the required background knowledge on the importance of 

this pathway.  

1.3.1  The RAS Pathway

RAS proteins are key regulators of cell growth and differentiation, with crucial 

roles in the development and maintenance of tumors. In humans, four different 

RAS proteins exist: HRAS, NRAS, KRAS-4A, and KRAS-4B, with the latter two 

being alternative splice variants of the KRAS gene [36,39]. The protein products 

of these genes are widely expressed, with KRAS in particular being expressed 

in almost all cell types. The KRAS gene is found mutated frequently in particular 

forms of cancer, such as pancreatic, colon and lung carcinomas, the latter of which 

is of significance for the body of work described in this dissertation. Mutated NRAS 

on the other hand is often found in melanomas and some leukemias, while mutated 

HRAS is less frequent but observed in bladder, breast, and thyroid carcinomas 

[39,40]. Knockdown studies have indicated that singular or combinatorial inhibition 

of HRAS and NRAS do not severely hinder normal development in mice, whereas 

KRAS is essential [41]. 

While some differences exist in the roles and functions of the proteins, 

HRAS, NRAS and KRAS are highly homologous GTPases, sharing 90% amino 

acid identity and localizing to the cytosolic part of the plasma membrane where they 
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cycle through “on” (GTP-bound) and “off” (GDP-bound) states [42]. The prominent 

structural differences between these RAS proteins occur in the short hypervariable 

region immediately before the C-terminus [39]. However, they share similar RAS 

GTPase characterstics. Purified RAS possesses a low level of intrinsic GTPase 

activity in vitro [42], highlighting the inefficiency of RAS as a GTPase working alone. 

In the cell, RAS is aided by GTPase activating proteins (GAPs) which catalyze the 

GTP to GDP exchange and guanine exchange factors (GEFs), which catalyze  

GDP to GTP exchange [35,36,38,42-45].  The most common mutations that target 

the RAS genes occur in codons 12, 13 and 61; all of which function to impair 

hydrolysis of the GTP bound in the active site of RAS, by either preventing RAS 

association with its GAPs (codons 12 or 13 mutations) or by interfering with the 

water molecule required for nucleophilic attack on the γ-phosphate of GTP (codon 

61 mutations) [36]. This causes RAS to remain in the active GTP-bound state 

for extended periods of time, promoting its oncogenic effects [36]. About 30% of 

human cancers have a mutated RAS protein [39,42]. RAS can also be functionally 

activated through deregulation of upstream signal transduction components such 

as activation of EGFR [46], or by loss of a GAP, such as NF1 [47]. As such, there 

exist at least three distinct ways that lead to continued activation of RAS in cancer: 

1) acquisition of an activating mutation, 2) RAS activation through deregulation 

of upstream signaling leading to increased RAS GEF activity, and 3) loss of RAS 

GAP function necessary to terminate activity of RAS [39]. Once RAS is activated, 

an interaction is possible with more than 20 effectors that leads to the regulation 

of numerous cell responses, such as proliferation, survival and differentiation 

[36,45,48,49]. 

Among these effectors, RAS is capable of activating the three closely 

related RAF proteins (RAF1, BRAF and ARAF), leading to the activation of the 

MAPK pathway and G1-S cell cycle progression. This pathway activation also 



12

promotes the induction of angiogenesis through ERK-mediated transcriptional 

upregulation of angiogenic factors. Furthermore, ERK promote increased tumor 

invasiveness by elevating expression of matrix metalloproteinases. A second 

effector RAS can interact directly with is PI3K. This results in the activation of AKT 

and PDK1 pathways, promoting cell survival. RAS also activates the RALGDS 

pathway to overcome factors inducing cell cycle arrest and apoptosis. The ability 

of activated RAS to interact with numerous downstream effectors enforces its role 

as a promoter of various characteristics of malignant transformation. Therefore, 

targeting the RAS pathway is crucial for tumors expressing aberrant activation of 

this pathway [38]. 

1.3.2  Targeting the RAS Pathway

Among the RAS genes, KRAS mutations encompass 86% of all RAS 

mutations. Indeed, 21.6% of all human cancers harbor KRAS mutations. The need 

for KRAS inhibitors is especially pronounced in pancreatic, colon and lung cancers 

which frequently harbor K-RAS mutations, the predominantly mutated RAS gene in 

three of the top four mortality-associated neoplasms in the United States [35,36,42]. 

Currently, there are no available drugs that can shut down KRAS directly [42,50]. 

Finding KRAS inhibitors has been previously regarded as the Holy Grail of cancer 

research [51]. Unfortunately, targeting KRAS directly has proven to be vexing and 

quite difficult [35,36,45,48,51]. Historically, the most studied RAS gene has been 

HRAS, which ironically is the least frequently mutated [38,42]. This paved the way 

for RAS inhibitor studies on HRAS, leading to the discovery of farnesyltransferase 

inhibitors (FTIs) which successfully inhibit the transportation of HRAS onto the 

plasma membrane [38]. However, these inhibitors failed to function effectively on 

K-RAS due to the protein’s increased affinity towards farnsesyltransferases and its 

ability to receive a geranylgeranyl isoprenoid, which can substitute for the farnesyl 
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group and support membrane association of the protein and transforming activity 

[35,38,42-44,52]. After the failure of FTIs in the clinic, researchers have attempted 

to use farnesylthiosalicylic acid (FTS), which functions to dislodge RAS from the 

plasma membrane and making it susceptible to protein degradation [42]. However, 

a clinical trial conducted on NSCLC has shown FTS fails to elicit tumor regression 

[53]. 

Since RAS is required to be bound to GTP for activation, a possible 

approach to inhibit RAS would be to design a small molecule capable of displacing 

the GTP from the RAS protein [39]. This approach was encouraged in the light of 

the success observed with small molecules competing against ATP for the active 

site of protein kinases [54]. Unfortunately, competing for the nucleotide binding 

site in RAS is not a promising approach for targeting activated RAS. This is due to 

the inherent kinetic properties of Ras:GTP binding, which is marked by a very high 

affinity (picomolar range) in the context of millimolar cytosolic GTP levels [39,55]. 

Conversely, the affinity of protein kinases for ATP is usually in the micromolar 

range in the context of millimolar cytosolic ATP. Therefore, the nanomolar 

affinity that can be accomplished with small molecule inhibitors is sufficient for 

successful competition and kinase inhibition [39,56].  However, there has been 

recent progress in targeting RAS protein-protein interactions necessary for RAS 

to acquire a GTP molecule. Indeed, in vitro experiments using peptides such as 

hydrogen bond surrogate (HBS) helices to block the interaction of wild-type RAS 

with one of its GEFs, SOS, have produced promising results [44]. Furthermore, 

a similar approach was adopted with the small molecules have been shown to 

block mutant KRAS interaction with SOS with equally promising results [43,57]. 

Lastly, efforts to target KRAS directly have witnessed a promising advancement 

with the development of small molecules that are capable of irreversibly binding 

and inhibiting a specific form of mutant KRAS. These compounds bind and inhibit 
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KRAS G12C by relying on the cysteine found in the mutant, thereby not affecting 

the wild-type protein. Indeed, this study has identified a new allosteric regulatory 

site on KRAS that is targetable in a mutant-specific manner [58].

The focus of RAS pharmacology inhibition strategy has shifted towards the 

development and utilization of selective inhibitors of the downstream pathways that 

are driven by RAS. Current strategies to shut down the RAS pathway have focused 

on inhibiting downstream effector pathways influenced by RAS, such as MAPK and 

PI3K and RalGEF [42,50]. Indeed, among these downstream pathways, inhibition 

of the MAPK pathway through MEK targeting has recorded promising results in 

cell lines with mutant RAS [59]. However, since the RAS pathway is complex, with 

various signaling branches driven by activated RAS, it is difficult to obtain effective 

overall inhibition by shutting down one effector pathway [39,42]. Consistent with 

this situation, preclinical studies have indicated increased antitumor effectiveness 

when the RAF-MEK-ERK and PI3K-AKT-mTOR arms of the RAS pathway are 

simultaneously targeted in RAS-active tumors. The formation of lung tumors driven 

by mutant KRAS in mice was inhibited only with concurrent treatment inhibition of 

MEK, PI3K and mTOR [60]. Similar results were observed in human melanoma 

cells when synergistic inhibition was recorded with co-targeting Raf-MEK-ERK and 

PI3K-AKT-mTOR pathways using RAF and AKT/mTOR inhibitors concurrently [61]. 

As a result, this project will aim to investigate potential combinations of clinically 

developed and available singular and combinatorial treatment of small molecules 

that can inhibit upstream or downstream components of the RAS pathway. This 

work is described in Chapter 2 of this dissertation. The next sections in the 

introduction will provide the background necessary for proper comprehension of 

the work described in Chapter 3.
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1.4  Basal-like and Claudin-low Breast Cancer

Breast cancer affects more than 1.3 million women worldwide each year, 

making it the second most frequent type of cancer, immediately behind lung cancer. 

It is by far the most diagnosed cancer in women, making up 23-25% of all new 

cancer cases [25,62]. In the United States, an estimated 232,670 new cases of 

invasive breast cancer are expected to emerge among women and approximately 

2,360 cases are expected in men for the year of 2014. An estimated 40,430 

breast cancer deaths (40,000 women, 430 men) are expected to occur, ranking 

breast cancer second (lung cancer being first again) as a cause of cancer death 

in women. Death rates for breast cancer have steadily decreased in women since 

1989, with larger decreases recorded in younger women. This decrease in breast 

cancer mortality rates can be attributed in part to the technological advancement 

in early detection methods, improved clinical treatment strategies, and possibly 

decreased incidence as a result of declining use of menopausal hormone therapy. 

The 5-year relative survival rate for female breast cancer patients has improved 

from 75% in the mid-1970s to 90% today [27]. 

Breast cancer is a heterogeneous disease, constituting multiple types 

associated with distinctive histological and biological features, as well as clinical 

presentations, behaviors and therapeutic response [63-65]. With the advancement 

of surgical procedures leading to breast-conserving therapy, a necessity emerged 

to accurately stratify patients based on relative risk of recurrence or progression. 

This led to the generation of a classification system that incorporated molecular 

histological markers such as the estrogen receptor (ER), progesterone receptor 

(PR), the human epidermal growth factor receptor 2 (HER2) to assess breast 

cancer subtype and risk [66]. Upon diagnosis, patient tumors are classified 

into one of four pathological subgroups based on whether the tumors express 

the estrogen receptor (ER positive) or the progesterone receptor (PR positive), 
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overexpress one of the members of the human epidermal-growth-factor receptor 

family (HER2 positive), or none of these (triple negative breast cancer) [67]. 

Among these, hormone receptor positive breast cancer has a better 5-year 

survival rate likely due to the effectiveness of endocrine therapy on the specific 

cancer, the decreased likelihood of recurrence and the less aggressive nature of 

the disease [68,69]. Meanwhile, targeted therapy for HER2 positive breast cancer 

exists through Herceptin, a monoclonal antibody capable of downregulating the 

activation of HER2, improving survival chances [15]. Triple-negative breast cancer 

(TNBC) on the other hand represents an important clinical challenge due to the 

lack of response to endocrine therapy or other available targeted agents. TNBCs 

exhibit similar metastatic potential to that of other breast cancer subtypes, but are 

associated with a shorter median time to relapse and death  [70]. It is the subtype 

with the worst overall and disease free survival [69].

However, such a limited pathological classification system that incorporates 

only four receptors has been unable to account for the vast molecular heterogeneity 

inherent in breast cancer. For that purpose, global gene-expression analyses 

of breast cancer has been instrumental in providing additional insights into the 

heterogeneous nature of the disease and expanded on the understanding of breast 

cancer formation, progression, recurrence and treatment [65,71-75]. Landmark 

studies by Perou et al. and Sørlie et al. have identified a gene expression-based 

classification system of breast cancer that more accurately encompasses the 

genomic and prognostic diversity of breast tumors [65,74]. Gene-expression 

classification has characterized five molecular subtypes of breast cancer, identified 

as Luminal A, Luminal B, HER2-enriched, Claudin-low and Basal-like, with subtype 

variations in incidence, survival and treatment response [65,74-77]. Among these 

genomic classes, breast cancer patients diagnosed with Claudin-low and Basal-

like breast tumors exhibit predominantly poor prognosis and suffer from limited 
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treatment options [78]. The next section covers the molecular characteristics and 

the clinical attributes of these Basal-like and Claudin-low breast cancers.

1.4.1  Molecular Characteristic of Basal-like and  

Claudin-low Breast Cancer

The Basal-like subtype is characterized by expressesing genes usually 

found transcribed in the normal breast myoepithelium such as high molecular 

weight cytokeratins (CK) such as CK5, 6, 14 and 17, P-cadherin, vimentin, fascin, 

caveolin 1/2, nestin, CD44 and EGFR [71,72]. In fact, it is primarily the expression 

of the cytokeratins that give rise to their description as Basal-like. These particular 

cytokeratins are also found expressed in the basal epithelial cells of the skin and 

airways [72]. Interestingly, Basal-like breast tumors also express luminal epithelium 

genes such as CK8/18 and Kit, but at levels significantly lower than those of found 

in luminal carcinomas [71]. Moreover, Basal-like subtype tumors cells frequently 

carry deficiencies in RB1, BRCA1 and TP53, promoting accelerated cell division 

[71,78]. Indeed, breast tumors carrying germ-line mutations in the BRCA1 are part 

of the Basal-like subgroup. This is the case since alterations that involve a decrease 

in the function of the BRCA1 gene prime development of basal-like tumors, lack of 

expression of ER and poor prognosis [71]. Moreover, a high rate of aneuploidy is 

observed in these tumors, potentially due to the loss of optimal function of these 

three proteins [78]. 

The Basal-like breast cancer subtype constitutes approximately 10-25% of 

all breast carcinomas and generally appears at an early age, predominantly in 

woman of African origin [71]. Pathologically, the tumors tend to be large in size at 

the time of diagnosis and of high histological grade and an elevated risk of lymph 

node infiltration. These tumors lack the expression of the three key receptors in 

breast cancer ER, PR and HER2, making them part of the triple negative breast 
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cancer phenotype. Thus in the clinic, the terms “Basal-like” and “triple negative” 

are often interchanged. However, it is important to note that these terms are not 

equivalent since a discordance of up to 30% between the two groups has been 

recorded [71,78]. This molecular subtype of breast cancer exhibits an aggressive 

pattern of metastatic relapse with predominant targeting of visceral organs, mainly 

lung, central nervous system and lymph nodes. Basal-like tumors generally exhibit 

a worse prognosis than luminals, as well as a high cancer relapse rate in the first 

3 years, in spite of their high response to chemotherapy [71,74]. Therefore, it is 

crucial to identify new therapeutic targets to improve treatment options. 

Interestingly, the Claudin-low group of breast tumors shares some genomic 

similarities with the Basal-like subtype such as the minimal expression of the 

HER2 and the luminal gene clusters [79]. Claudin-low breast tumors occur in 

approximately 12–14% of all breast cancer cases, clinically corresponding to high 

grade infiltrating ductal carcinomas, with metaplastic or medullary differentiation, 

and treatment resistance. Similar to Basal-like tumors, Claudin-low tumors are 

mostly triple negative (about 20% are hormone-positive) and exhibit a poor long-

term prognosis. Furthermore, although BRCA1 mutations are most common 

in Basal-like tumors, they also tend to occur within the Claudin-low subtype. 

However, Claudin-low breast cancers remain a unique subgroup of breast tumors 

on their own, characterized by lacking cell–cell junction proteins, and having a 

concentrated immune cell infiltrate, stem cell properties, and features of epithelial–

mesenchymal transition (EMT). Indeed, Claudin-low tumors have a low expression 

of tight junctions and cell–cell adhesion genes such as claudin 3, 4, 7, occludin, and 

E-cadherin. These tumors also highly express many mesenchymal genes such as 

vimentin, Snail 1 and 2, and Twist 1. This downregulation of epithelial cell traits 

and upregulation of mesenchymal features is reminiscent of the characteristics 

associated with stem cells [71,72,75,76,80]. Indeed, Creighton et al. observed 
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statistically significant enrichment for tumor-initiating cells or cancer stem cells in 

Claudin-low primary mammary tumors [81].   

Due to the nonluminal nature of these two subtypes, and the lack of known 

protein targets on these cancers, limited treatment options are available. As 

such, there exists an urgent need to identify potential targets, biomarkers and 

therapeutics that can improve patient prognosis. One of the promising therapies 

being investigated are inhibitors of PARP1, a key player in the repair of DNA single-

stand breaks [75]. As described earlier, both Basal-like and Claudin-low tumors 

commonly carry BRCA1 mutations [75,82].  Defects in the proper function of BRCA1 

pathway results in deficient homologous recombination repair of the DNA. This 

leads to the accumulation of genetic aberrations that drive carcinogenesis [75]. 

The inhibition of PARP1 in tumors with dysfunctional BRCA1 leads to the accrual 

of collapsed replication forks, DNA double-strand breaks, and cell death [83]. 

Indeed, the addition of iniparib, a PARP1 inhibitor, to combination chemotherapy 

improved the clinical benefit and survival of patients with metastatic triple-negative 

breast cancer (a breast cancer subtype frequently found with BRCA1/2 mutations) 

without significantly increased toxic effects [84]. Furthermore, other DNA-repair 

pathway-related genes such as CHK1 are usually found highly expressed in Basal-

like breast cancers, suggesting that these tumors may be under a continuous state 

of DNA-repair, which may not be the case in Claudin-low tumors [75]. Interestingly, 

however, this dissertation describes the increased sensitivity of both Basal-like 

and Claudin-low breast cancers to targeted CHK1 inhibition in Chapter 3. Another 

critical pathway in both these breast cancer subgroups identified in Chapter 3 

is AMPK (AMP-activated protein kinase). As such, the next section will provide 

a proper background on both of these pathways, and their documented role in 

cancer.
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1.4.2  The AMPK and CHK1 pathways

AMPK is a heterotrimeric serine/threonine kinase complex (comprising 

α, β, and γ subunits) that is a key regulator of cellular metabolism and energy 

homeostasis in mammalian tissues. AMPK is regulated by AMP/ATP ratios in the 

cell and functions as part of an evolutionarily conserved energy-sensing pathway 

[85,86]. Upon the exposure of a cell to nutrient deprivation or hypoxic stress, the 

catalytic α subunit of AMPK is phosphorylated at threonine 172 by upstream kinases 

such as LKB1, CAMKKβ, and TAK1. This leads to an allosteric activation through 

AMP binding to the regulatory γ subunit [87]. The activation of  AMPK signaling 

restores metabolic homeostasis by 1) reducing energy consumption by decreasing 

the synthesis of protein, lipid, and fatty acids; 2) increasing energy production by 

upregulating glucose and fatty acid uptake, glycolysis, fatty acid oxidation; and 3) 

promotion of angiogenic regulators such as VEGF [88]. AMPK is also capable of 

directing cell fate by promoting apoptosis through the direct phosphorylation of p53 

or by promoting cell survival through activating the ULK1-autophagy axis [89,90]. 

The collective effects of AMPK signaling activation lead to the protection of cellular 

integrity by blocking the advancement of the cell cycle progression when insufficient 

resources are available for the cell [88]. The activation of AMPK results in ATP 

conservation via the activation of catabolic metabolism pathways and inhibition 

of anabolic processes that consume ATP. The end result of AMPK activation is 

escape from bioenergetic catastrophe and cell death through the conservation of 

cellular energy [86]. 

Interestingly, the role of AMPK in cancer is dichotomous; AMPK can exert 

pro- or antitumor effects based on cellular context. AMPK is central to a tumor 

suppressor network, the LKB1-AMPK-TSC-mTOR signaling cascade, known to 

regulate cell growth and proliferation in response to stress [91]. Loss of AMPK 

can cooperate with oncogenes such as BRAF and MYC to reprogram tumor cell 
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metabolism and promote rapid cell growth and proliferation [92,93]. Conversely, the 

activation of AMPK can also provide a growth advantage to cancer cells. Activation 

of AMPK in response to hypoxia and nutrient deprivation stresses provides 

cancers cells with the metabolic flexibility necessary for survival. AMPK promotes 

this metabolic plasticity through several mechanisms such as inducing autophagy, 

fatty acid oxidation, and maintenance of intracellular NADPH [86]. These opposing 

roles of AMPK highlight the complexity of the kinase’s role in the cancer cell. 

Pharmacologically, interest in the tumor suppressive role of AMPK has 

gained ground as evidence has emerged to show the antitumor effects of AMPK 

activation. AMPK agonists, such as the biguanides metformin and phenformin used 

to treat type II diabetes, have been investigated as potential cancer therapies. 

Metformin treatment has been observed to be associated with a significantly lower 

cancer incidence in patients relative to those using other medications to manage 

their diabetes [94]. However, recent work has indicated that the antitumoregenic 

effects of metformin and another known AMPK agonist, AICAR, are due to AMPK-

independent effects [95]. Conversely, other studies have implicated AMPK as 

a mediator of cellular proliferation and survival, showing the promising effect of 

AMPK inhibition as a cancer therapy. Indeed, studies have shown that treating 

prostate cancer and glioblastoma cells with dorsomorphin c, an inhibitor of AMPK, 

leads to a reduction in cell growth [96,97].

The second pathway discussed in Chapter 3 as a potential target of Basal-

like/Claudin-low breast cancer is the CHK1 pathway. CHK1 is a serine/threonine 

kinase activated in response to a diverse array of genotoxic insults. CHK1 assumes 

the role of the major cell-cycle checkpoint kinase mediating S- and G2-arrest 

[98]. CHK1 is also important for the stabilization of stalled replication forks, the 

control of replication origin firing and replication fork progression, and homologous 

recombination [99]. The key role of CHK1 is to relay the checkpoint signals from 
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the proximal checkpoint kinases ATM, ATR and ATX. CHK1 is primarily activated 

by ATR-mediated phosphorylation following the formation of double strand or 

single-strand DNA breaks, the latter being its main activator. This leads to the 

phosphorylation of downstream components such as TP53, CDC25 and TLK1/2 

that promote apoptosis, cell cycle arrest and chromatin remodeling [100,101]. 

The rationale behind targeting CHK1 in cancer hinges upon the goal of 

inducing toxic levels of replication stress (RS) that leads to cell death [101]. RS 

is defined as the delaying or stalling of DNA synthesis and/or replication fork 

progression [102]. A certain degree of RS occurs during regular cell division, where 

it is normally detected and dealt with by the ATR and CHK1. Inhibiting these proteins 

leads to an increase in the occurrence of RS, which can ultimately lead to cell 

death by p53-independent means. As such, targeting CHK1 could be particularly 

toxic in cells carrying high endogenous levels of RS. Importantly, although tumors 

in general might normally carry certain degree of RS, inhibiting CHK1 then would 

only be toxic for those tumors harboring distinctly high levels of RS [101]. Therefore, 

it is important to identify the subpopulation of tumors sensitive to CHK1 inhibition. 

Indeed, studies have identified the effectiveness of single-agent CHK1 inhibition 

against neuroblastomas and MYC-driven lymphomas [103-105]. In breast cancer, 

the rationale of CHK1 targeted therapy use is supported by the well-documented 

evidence of alteration in the DNA damage repair machinery through either the high 

rate of BRCA or P53 mutations in the Basal-like/Claudin-low and triple negative 

subtypes [71,72,78]. Therefore, targeting CHK1, a DNA damage repair component 

may lead to the cell’s inability to properly fix chromosomal damage, leading to 

accumulation of RS and cell death. Indeed, Albiges et al. have shown CHK1 

as a potential target in TNBC using genomic analyses. Furthermore, the group 

described the induction of mitotic cell death upon treatment with CHK1 inhibition, 

and the effectiveness of the treatment on two TNBC cell lines [98]. 
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1.5  Dissertation Overview

Overall, the goal of this dissertation is to incorporate personalized medicine 

approaches for treating cancer subtypes driven by complex or uncharacterized 

signaling pathways. To this extent, two different complex cancer phenotypes 

were targeted: RAS-driven NSCLC and Basal-like and Claudin-low breast cancer 

(BL-CL). Genomic analyses were used to characterize these phenotypes on a 

molecular level, and this information incorporated into high-throughput drug 

screening to identify novel therapeutic leads. Once a candidate treatment was 

identified, it was evaluated biochemically for the identification and description of 

the mechanism of action. Chapter 2 is a published manuscript that discusses the 

work performed to identify a personalized treatment strategy against RAS-driven 

NSCLC.  Chapter 3 is a manuscript submitted to the AACR Journal of Molecular 

Cancer Therapeutics that focuses on the identification of a novel sterol sulfate that 

is personalized against BL-CL. This dissertation is concluded by Chapter 4, which 

provides a summary of the major points presented, and a discussion of how the 

work described here has impacted the field of personalized medicine and targeted 

therapy, with a view on future directions and outlook.
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A B S T R A C T

Better approaches are needed to evaluate a single patient’s drug response at the genomic

level. Targeted therapy for signaling pathways in cancer has met limited success in part

due to the exceedingly interwoven nature of the pathways. In particular, the highly com-

plex RAS network has been challenging to target. Effectively targeting the pathway requires

development of techniques that measure global network activity to account for pathway

complexity. For this purpose, we used a gene-expression-based biomarker for RAS network

activity in non-small cell lung cancer (NSCLC) cells, and screened for drugs whose efficacy

was significantly highly correlated to RAS network activity. Results identified EGFR and

MEK co-inhibition as the most effective treatment for RAS-active NSCLC amongst a panel

of over 360 compounds and fractions. RAS activity was identified in both RAS-mutant and

wild-type lines, indicating broad characterization of RAS signaling inclusive of multiple

mechanisms of RAS activity, and not solely based on mutation status. Mechanistic studies

demonstrated that co-inhibition of EGFR and MEK induced apoptosis and blocked both

EGFR-RAS-RAF-MEK-ERK and EGFR-PI3K-AKT-RPS6 nodes simultaneously in RAS-active,

but not RAS-inactive NSCLC. These results provide a comprehensive strategy to person-

alize treatment of NSCLC based on RAS network dysregulation and provide proof-of-

concept of a genomic approach to classify and target complex signaling networks.
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1. Introduction

Cancer is among the principal causes of disease in the world,

with an approximated 12.7million new cancer cases occurring

in 2008 (International Agency for Research on Cancer and

Cancer Research UK, 2012). The RAS proto-oncogenes are

frequently mutated in human cancers, with constitutively

active mutations observed in approximately one third of hu-

man tumors (Baines et al., 2011; Downward, 2003; Riely

et al., 2009). In humans, three genes encode four different

RAS proteins: HRAS, NRAS, KRAS-4A and KRAS-4B, the latter

two being alternative splice variants of the KRAS gene

(Pylayeva-Gupta et al., 2011). These highly homologous

GTPase proteins, sharing 90% amino acid identity (Baines

et al., 2011), localize to the cytosolic part of the plasma mem-

brane, where they cycle through “on” (GTP-bound) and “off”

(GDP-bound) states (Downward, 2003; Karnoub and

Weinberg, 2008). RAS can be switched on through multiple

mechanisms, such as via receptor tyrosine kinases like EGFR

and other growth factor receptors like PDGFR and IGFR

(Bazenet and Kazlauskas, 1993; Chan et al., 2001; Innocenti

et al., 2002; Ono and Kuwano, 2006; Repasky et al., 2004), or

by obtaining activating mutations in the gene (Downward,

2003). The most common RAS mutations occur in codons 12,

13 and 61 (COSMIC Database; Schubbert et al., 2007), all of

which impair hydrolysis of GTP (Downward, 2003). These var-

iants cause RAS to remain in an active GTP-bound state, pro-

moting its oncogenic effects for extended periods of time

(Pylayeva-Gupta et al., 2011). Activated RAS can interact with

more than 20 effectors to regulate various cellular responses,

including cellular proliferation, survival and differentiation

(Cox and Der, 2010; Der, 2012; Pylayeva-Gupta et al., 2011;

Schubbert et al., 2007). Despite extensive efforts, the RAS pro-

teins have remained undruggable targets (Baines et al., 2011)d

no therapies exist in the clinic to directly treat RAS-active tu-

mors (Baines et al., 2011; Gysin et al., 2011).

Targeting the RAS pathway would be beneficial for lung

cancer, the leading neoplasm in incidence and mortality in

the world (International Agency for Research on Cancer and

Cancer Research UK, 2012). KRAS mutations occur in 20e30%

of non-small cell lung cancers (NSCLC), which make up 87%

of all lung cancer cases; thesemutations occur predominantly

in the adenocarcinoma subtype of NSCLC (Aviel-Ronen et al.,

2006; Graziano et al., 1999; Minna and Larsen, 2011; Roberts

et al., 2010), and they represent the most common molecular

change in NSCLC (Roberts and Stinchcombe, 2013). In the

US, an estimated 228,190 new cases of lung cancer are pre-

dicted to have occured in 2013,with an approximate 70% fatal-

ity rate (American Cancer Society, 2013). The 5-year survival

rate for lung cancer has only modestly improved since 1975,

increasing from 12% in 1975 to 16% in 2007. Lung cancer today

still accounts for more deaths than any other cancer in both

men and women, killing almost three times as many men as

prostate cancer, and almost twice as many women as breast

cancer (American Cancer Society, 2013). The survival rate is

even worse for KRAS positive lung cancer patients (Guan

et al., 2013; Johnson et al., 2012; Meng et al., 2013; Roberts

and Stinchcombe, 2013), highlighting the desperate need for

novel therapeutics that can treat RAS-active tumors.

The RAS pathway is a large and complicated signaling

cascade, comprising a network as opposed to a linear

pathway. It is composed of numerous interacting proteins,

upstream and downstream of RAS, providing feedback and

crosstalk to the different components of the pathway (Stites

et al., 2007). Together, these components establish and pro-

mote tumorigenic effects in the cell (Cox and Der, 2010;

Pylayeva-Gupta et al., 2011). Numerous growth factor recep-

tors, such as EGFR, PDGFR and IGFR are among the upstream

proteins that can activate the RAS pathway (Bazenet and

Kazlauskas, 1993; Chan et al., 2001; Innocenti et al., 2002;

Ono and Kuwano, 2006; Repasky et al., 2004); downstream

effector proteins include ERK, PI3K, and RPS6, which each

have been shown to have primary roles in cell proliferation

and survival (Fan et al., 2009; Schubbert et al., 2007). Thus, tu-

mors cells can have an activated RAS pathway by dysregula-

tion of up or downstream pathway components, even

without harboring a RAS mutation. Relying on biochemical

analysis of RAS through mutation testing and measuring

the active form of RAS (GTP-bound form) as means to record

RAS-pathway activation status is limited; the existence of

mutated RAS does not necessarily predicate an oncogenic

addiction to the RAS pathway, as it has been previously

shown that KRAS dependency is widely variable in KRAS-

mutant cancer cell lines. Therefore, cancer cells may harbor

a mutation in RAS, but not necessarily be addicted and

dependent on the continual signaling of the pathway (Singh

et al., 2009). Furthermore, if RAS is not mutated, it cannot

be assumed that the network is “off”, as additional compo-

nents of the network may still be activated. In addition to

redundancy in the network, the relative importance of

different RAS network components may be context depen-

dent; thus, focusing on a single protein might limit the ability

to accurately reflect activity (Downward, 2006). Therefore, it

is critical to study RAS-pathway activation in a comprehen-

sive manner; we use a genomics framework to accomplish

this goal.

In order to effectively measure activity in the RAS network,

we utilize a RAS gene-expression signature capable of

providing a network-scale measurement of activation by

measuring the acute transcriptional changes that occur after

RAS activation (Bild et al., 2006). As RAS can be activated by

many mechanisms, it is critical to measure the RAS network

more comprehensively than just by analysis of mutation sta-

tus in order to obtain a reliable predictor of pathway activa-

tion. The need for comprehensive pathway measurements is

especially true for complex branching pathways such as RAS

(Downward, 2006). To that extent, our RAS gene-expression

signature has been previously validated to accurately predict

RAS-pathway activity in a variety of diverse settings;

including 1) prediction of activity in primary human NSCLC

adenocarcinoma tumors (Bild et al., 2006), 2) predictions of

RAS activity in a multitude of cancer subtypes represented

in Oncomine (Rhodes et al., 2007), 3) measurement of RAS-

pathway activity in gastric cancer and ER þ breast cancer

bone metastasis (Ooi et al., 2009; Zhang et al., 2009) 4) and

analysis of K-RAS dependency signature genes and “RAS

addiction” in primary lung tumors (Singh et al., 2009).

Together, these studies provide support to the robustness
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and accuracy of the RAS signature to analyze RAS network

activation in multiple settings.

In this study, we develop a network-based genomics

framework for drug discovery. Specifically, we use a RAS

gene-expression signature to discover therapeutic regimens

that target the RAS network in lung cancer. We used this

signature to determine RAS activity in a panel of NSCLC cell

lines e these RAS-pathway activity measurements for each

cancer sample are on a continuous scale, and can be corre-

lated with drug response across the panel of cancer cell lines

activity (West et al., 2001). Therefore, we identify compounds

whose efficacy correlates to the genomics-based measure-

ment of RAS activity in a drug screen that included 366 known

and novel drug compounds. The results from the genomics-

based drug screen identified that combined inhibition of

EGFR and MEK pathway components most effectively

inhibited RAS-active tumor cells. Indeed, there was a highly

significant and reproducible correlation between treatment

response and RAS-pathway activity in a large panel of lung

cancer cell lines, highlighting the ability of this drug combina-

tion to selectively block tumor cells with RAS activation inde-

pendent of the manner in which the RAS pathway is turned

on. Additional novel compounds or drug regimens that target

other components of the RAS network were not as effective at

inhibiting RAS-active tumor cells. We show that in combina-

tion, these treatments block both the EGFR-RAS-RAF-ERK

and EGFR-PI3K-AKT-RPS6 nodes of the RAS-pathway network

and induce apoptosis, while either drug alone did not effec-

tively inhibit both nodes. These results indicate that EGFR-

RAS-RAF-ERK and EGFR-PI3K-AKT-RPS6 are key nodes impor-

tant for RAS-activated lung cancer tumor cell survival. Our

study combines genomic profiling with a high-throughput

drug screen to guide the discovery of treatments that can be

used to target certain cancer phenotypes. This approach can

individualize drug therapies to target signaling pathways

more efficiently through gene-expression profiling of network

activation (Ascierto et al., 2013; Bentley et al., 2013; Favata

et al., 1998; Janne et al., 2013; To et al., 2012).

2. Materials and methods

2.1. Small molecules

Gefitinib, AEW541, erlotinib, trametinib, U0126, sorafenib, and

temsirolimus were purchased from Selleckchem and dissolved

in 100% DMSO to generate 100 mM stock solutions of each,

stored at �80 �C. For erlotinib, the 100 mM stock solution was

further diluted to 30 mM in 100% DMSO for complete solubil-

ity. Novel compounds were provided by Dr. Chris Ireland

and Dr. Sunil Sharma at the University of Utah.

2.2. Genomic data acquisition and normalization

Weused gene-expressionmicroarray data that had previously

been used to profile the transcriptomic effects of RAS-

pathway activation (Barbie et al., 2009; Bild et al., 2006;

Boutros et al., 2009; Chang et al., 2009; Kim et al., 2009;

Watanabe et al., 2011). We downloaded gene-expression

microarray data for lung cancer cell lines from the Cancer

Cell Line Encyclopedia (CCLE) (Barretina et al., 2012). Collabo-

rators at Duke University also provided gene-expression

data for 56 lung cancer cell lines. This dataset was uploaded

to the Gene-Expression Omnibus (GEO) under accession iden-

tifier GSE47206. We MAS5 normalized (Hubbell et al., 2002)

these datasets using the affy Bioconductor package (Gautier

et al., 2004) for our analysis.

2.3. RAS-pathway activation predictions

Using the RAS gene-expression signature (Barbie et al., 2009;

Bild et al., 2006; Boutros et al., 2009; Chang et al., 2009; Kim

et al., 2009; Watanabe et al., 2011), we predicted RAS-pathway

activation for each cell line using the Bayesian binary regres-

sion algorithm version 2.0 (BinReg2.0) used as a MATLAB

plug-in (West et al., 2001). Prior to making the predictions,

the data were log2 transformed and DWD normalized

(Benito et al., 2004) to reduce biases that can result from differ-

ences in batch processing and microarray platforms. In mak-

ing the predictions, we used default parameters, except that

our signature used 350 genes and 1 metagene (as determined

previously to be optimal for the RAS pathway) (Bild et al.,

2006). The CCLE dataset was used for the expanded lung and

breast cancer cell line predictions, while GSE47206 was used

for the 14 lung cancer pilot experiments. For the pilot screen,

the SK-MES-1 RAS-pathway activation value was obtained

from the CCLE dataset run, as that cell line was not available

in the GSE47206 dataset.

2.4. Preliminary genomics-based drug screen assay

Drugs were serially diluted 1:3 in 8 doses of each drug, starting

from 30 mM and ending with 13.7 nM. To make the highest

doses soluble in aqueous 5% FBS RPMI media solution, the

drugs were sonicated twice on ice, and then used for serial

dilution. For combinatorial treatments, doses had equalmolar

concentrations for each compound. All treatment doses were

performed in four replicates. Cell viability and growth was

measured using CellTiter-Glo (Promega, Madison, Wisconsin)

72 h post-treatment. EC50 values were calculated from dose

response data by plotting on GraphPad Prism 4 and using

the equation Y¼ 1/(1þ 10̂((logEC50�X )*HillSlope)) with a var-

iable slope (Ymin ¼ 0 and Ymax ¼ 1). Plots were forced to start

from the x-axis by plotting for an x-intercept point. Predictions

were then correlated against EC50 values of the treatments,

and an unbiased approach was used to identify candidate

therapies by selecting drugs based on Pearson correlation

values of less than or equal to �0.5, significant two-tailed un-

paired t-test p-values ( p < 0.05) and a 95% confidence interval

calculated in GraphPad Prism 6.01.

2.5. Novel compounds and fractions drug screen and
expanded dose response assays

Cell lines were plated at 1500 cells/well. Detailed information

on the cell lines used and their growth conditions is provided

in the Supplementary Information sheet. Cell lines were ob-

tained from ATCC. For the dose response assays, known tar-

geted therapeutics were serially diluted 1:3 from 90 mM to

the lowest dose of 41.15 nM in media containing 5% FBS
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(Gibco/Life technologies, Carlsbad, CA) and 1� AntieAnti

(Gibco/Life technologies, Carlsbad, CA). To make the highest

dose soluble in aqueous media, drugs were sonicated twice

on ice. For combination treatments, doses had equal molar

concentrations for each compound. Cell viability was

measured as described before. Every dose was done at least

in duplicate. Dose response curves were generated using the

same methodology described above. For novel fractions and

compounds used in the screen, two or three doses of each

were used respectively. For the novel compounds, the dose

most negatively correlated to predicted probability of RAS-

pathway activation was represented on the histogram. For

the known targeted therapeutics, drug EC50 correlation to

RAS-pathway activation was plotted.

2.6. Statistical and multivariate analysis

Linear correlation graphs and box plots were created using

Graphpad Prism 6.01, and their corresponding statistical sig-

nificance tests performed using the software. For correlation

plots, a built-in two-tailed significance test calculated by

Graphpad Prism 6.01 was used. Graphpad computes a t ratio

from the Pearson r and the sample size using the Student’s

t-distribution method, and computes p from t values using a

standard algorithm. For box plots, a standard two-tailed Man-

neWhitney U-test was used when two samples were being

compared, with the exception of the box plot diagrams for

erlotinib þ trametinib, where an unpaired t-test with Welch’s

correction was used due to the normality of the data and the

unequal standard deviations. When testing for significance

acrossmore than 2 samples, we adjusted formultiple compar-

isons using GraphPad’s built-in Dunn’s multiple comparisons

test, which compares the mean rank difference among sam-

ples against an a ¼ 0.05. For the Annexin V Apoptosis assay,

Dunn’s multiple comparison significance test was used to

compare the Annexin V positive cell means of the different

drug treatments against the DMSO control, for RAS-active

and RAS-inactive cell lines separately. We sought to model

the multivariate relationship between gefitinib þ U0126 EC50

and the predictor variables: RAS-pathway activity prediction,

tumor subtype (adenocarcinoma, large cell carcinoma, or

squamous cell carcinoma), KRAS mutation, TP53 mutation,

MEK1 mutation, and EGFR mutation. The mutations were

coded as (Y/N) based on observations from the CCLE hybrid

capture sequencing dataset; we used mutations listed as

non-neutral variant SNPs. We then used a two-step approach

to construct a parsimoniousmodel. First, a univariate analysis

was used to determine the set of predictor variables that were

individually associated with gefitinib þ U0126 log10 EC50. t-

tests were used for binary predictors (mutations), and linear

models were used for the continuous predictor (RAS-pathway

activation) and for the ternary predictor (tumor subtype). Only

those variables that were individually significant ( p < 0.05,

unadjusted) were included in the multivariate analysis. The

multivariate analysis was a linear model. The log10 EC50

values were used in the analysis as they were much less

skewed than the mM EC50 values and more closely agreed

with the normality assumptions. The multivariate analysis

was performed using the “R” statistical computing software,

version 2.15.0 (R Development Core Team, 2011).

2.7. Immunostaining and KRAS-GTP pull down

9 NSCLC cell lines with a range of RAS-pathway activation

profiles were used for the protein analysis (H1373, LCLC-

97TMI, SK-MES-1, H441, H1944, H1563, H661, H520, H522).

Cells were treated with 5 mM of gefitinib, U0126,

gefitinib þ U0126 and DMSO control in 5% FBS media and 1�
AntieAnti for 6 h. Cells were washed, lysates extracted and

western blots run (Supplementary Methods). Primary anti-

bodies for GAPDH (#5174S), EGFR (#4267S), pEGFR-Y1068

(#2234S), pRAF1-S289/296/301 (#9431S), pRAF1-S338 (#9427S),

MEK1/2 (#8727S), pMEK1/2-S217/221 (#9154S), pERK1/2-T202/

Y204 (#4370S), pAKT-S473 (#4060S), RPS6 (#2217S), pRPS6-

S240/244 (#5364S) and pRPS6-S235/236 (#4858S) were obtained

from Cell Signaling Technology (Beverly, MA). RAF1 (sc-

373722), AKT1/2/3 (sc-8312), ERK1/2 (sc-292838) and KRAS

(sc-30) antibodies were purchased from Santa Cruz Biotech-

nology (Santa Cruz, CA). The KRAS Activation Assay (Cellbio-

labs, San Diego, CA) was used to pull down RAS GTP,

according to manufacturer’s protocol and run on a western

blot. KRAS-GTP was then blotted for using the described

KRAS antibody.

2.8. Annexin V apoptosis assay

RAS-active cell lines H358, Calu-3, H2122 and RAS-inactive cell

lines H520, H522 and H661 were plated overnight with 400,000

cells per plate in 60mmplates and grown in their correspond-

ing media (Supplementary Methods). The selected cell lines

exhibited high or low probability of RAS-pathway activation,

and the highest or lowest response to the combined therapy

regimen. All cell lines selected were lines that were part of

the drug screens. Cell lines were treated with 1 mM of gefitinib,

U0126, gefitinib þ U0126 or DMSO control, which was prepared

in 5% FBS media and 1� Antieanti, for 72 h, then washed

and collected for Annexin V staining. For the stain, the Dead

Cell Apoptosis Kit with Annexin V Alexa Fluor� 488 & Propi-

dium Iodide for flow cytometry (Life Technologies, Carlsbad,

CA) was utilized according to manufacturer’s protocol. Using

flow cytometry analysis, the percentage of Annexin V positive

cells was recorded, and the means of the positive Annexin V

cells (early-stage apoptosis) calculated for the different treat-

ments, separately for the 3 RAS-active cell lines and the 3

RAS-inactive cell lines.

2.9. Erlotinib and trametinib combination dose
response assay

The highest drug combination dose was serially diluted 1:3 in

8 doses, starting from 90 mM and ending with 41.15 nM. To

make the highest dose soluble in aqueous 5% FBS RPMI media

solution, it was sonicated twice on ice, and then used for serial

dilution. Doses had equal molar concentrations for each com-

pound. All treatment doses were performed in four replicates.

Cell viability was measured and EC50 obtained as described

before in the methods. Predictions were then correlated

against EC50 values of the combination treatment using Pear-

son correlation and the built-in GraphPad p-value test for cor-

relation significance and a 95% confidence interval.
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3. Results

3.1. Genomics-based drug screen identifies an effective
regimen for RAS-pathway inhibition

The goal of this research is to develop a pathway-based geno-

mics framework that can be used to discover drugs to effec-

tively inhibit difficult-to-target oncogenic pathways such as

RAS. Complex signaling pathways underlie many diseases,

and it remains difficult to align individual patients with ther-

apies that target these pathways effectively. To address this

need, we developed a genomic approach to identify inhibitors

that target specific pathways (Figure 1). Briefly, we used our

validated genomic signature to estimate the RAS-pathway’s

activity in NSCLC cells (Bild et al., 2006). This activity is repre-

sented by a continuous scale of probability from low to high

(0e1 respectively), and produces a quantitative estimate of

the pathway’s activity in cells. We correlated these genomic-

based pathway activity measurements with cell line response

to in vitro treatment of a large catalog of compounds. We then

identified the compounds whose efficacy correlated best with

genomics-based pathway activity.

The advantages of our drug screening approach are the

following: 1) knowledge of the direct drug target is not neces-

sary and instead focuses on the drug’s effect on overall

pathway activity rather than on any single pathway compo-

nent’s activity; 2) measurement of network activity is more

comprehensive than just mutation status, thereby capturing

all pathway-active cells, and 3) it is relatively high-

throughput in the sense that an unlimited number of genomic

pathway profiles can be applied to all compounds tested in the

drug screen, facilitating the characterization of drug

mechanism.

We carried out an initial drug screen on a panel of 14

NSCLC cell lines, and validated our findings in a two larger

drug screens that included over 35 NSCLC cell lines each. For

our initial screen, we tested several well-characterized small

molecule inhibitors that target different components of the

growth factor receptor network; these inhibitors include the

EGFR inhibitor gefitinib (Mok et al., 2009; Ono and Kuwano,

2006), IGFR inhibitor AEW541 (Garcia-Echeverria et al., 2004),

MEK1/2 inhibitorU0126 (Favata et al., 1998) and amTOR inhib-

itor temsirolimus (Hudes et al., 2007), which were administered

alone and in paired combinations. The drug response data

were then correlated to predicted probabilities of RAS-
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Figure 1 e The overall design of the Screenome approach to find RAS-driven tumor treatments. The RAS gene-expression signature is used to

predict the probability of pathway activation in a panel of cancer cell lines. These same cell lines undergo dose response assays. The EC50 values

are calculated and correlated against the predicted probability of RAS-pathway activation. The treatments whose effectiveness correlated

negatively to RAS activity (the higher the probability of RAS being on, the more sensitive to the drug) are picked out as potential treatments for
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pathway activation in our panel of NSCLC cell lines, obtained

through the use of our RAS gene-expression signature (Bild

et al., 2006) (Figure 1). Our preliminary screen showed a signif-

icant correlation between predicted RAS-pathway activation

and co-inhibition of EGFR and MEK1/2 through the use of gefi-

tinib and U0126, respectively (R ¼ �0.69, p-value ¼ 0.0066)

(Supplementary Figure 1A). A significant correlation between

RAS activity, as defined by the genomic signature, and drug ef-

ficacy did not exist for either of these inhibitors alone

( gefitinib: p ¼ 0.0866, U0126: p ¼ 0.2676), suggesting that the

drugs must be combined to effectively block RAS activity in

NSCLC cells (Supplementary Figure 1B and C). We also inves-

tigated the effects of directly targeting the mTOR component

of the growth factor receptor and RAS pathway, but mTOR in-

hibition through temsirolimus did not lead to growth inhibition

of RAS-active cells, even with coupled inhibition of EGFR and

MEK inhibition (Supplementary Figure 2AeC), and was there-

fore not pursued further.

3.2. Validation of the genomics-based drug screen
results

Next, to validate and further interrogate the relationship be-

tween RAS-pathway activity and response to single and com-

bined drug treatments, we performed multiple larger

genomics-based screens on an expanded panel of 39 NSCLC

cell lines (Figure 2A and Supplementary Figure 3A). In addition

to a panel of well-characterized inhibitors, this larger screen

also included over 360 novel drug-like compounds. As with

the initial genomics-based screen, these experiments vali-

dated that the efficacy of EGFR and MEK1/2 co-inhibition

through gefitinib and U0126 was most correlated to RAS activ-

ity than any other single or combination drug treatments,

resulting in a Pearson R score of �0.57 and p ¼ 0.0002

(Figure 2A and C). Specifically, NSCLC cells with high

genomics-predicted RAS activity (predicted probability of

RAS-pathway activation > 0.5) had significantly lower EC50

scores (drug dose leading to 50% cell survival relative to un-

treated cells) than cancer cells with low RAS activity (pre-

dicted probability of RAS-pathway activation < 0.5),

indicating higher drug sensitivity ( p < 0.0001, Figure 2B). Cell

lines with high RAS averaged an EC50 ¼ 0.436

(log10) ¼ 2.7 mM, while low RAS cell lines averaged an

EC50¼ 1.07 (log10)¼ 11.76 mM. As shown in Figure 2C, no other

single drug/drug combination showed stronger correlation to

RAS-pathway activity. This finding includes other drugs that

target the growth factor receptor pathway such as single agent

EGFR or MEK inhibitors, as well as single agent or combination

therapies such as the RAF inhibitor sorafenib, and novel drug-

like compounds (Figure 2C) (Liu et al., 2006). We compared this

result against findings from a recently published study that

demonstrated efficacy for IGFR and MEK co-inhibition in

RAS-mutant cancers (Molina-Arcas et al., 2013). In our data,

cell responses for MEK and EGFR co-inhibition correlated

more strongly (R ¼ �0.57) to RAS-pathway activity than MEK

and IGFR co-inhibition (R ¼ �0.35).

We also investigated the efficacy of the EGFR or MEK inhib-

itors in isolation. EGFR and MEK inhibition alone had average

EC50 values of 11.87 mM and 10.02 mM respectively in the top

50% of responsive cell lines (Supplementary Figure 3B). In

comparison, the combined treatment with MEK and EGFR in-

hibitors had an average EC50 of 1.83 mM (Supplementary

Figure 3B). Additionally, as shown in Figure 2C and

Supplementary Figure 3C and D, EGFR but not MEK1/2 inhibi-

tion showed an individual correlation to RAS-pathway activ-

ity, albeit not as strongly as the combined therapy (EGFR

inhibition: R ¼ �0.47, p ¼ 0.0027. MEK inhibition: R ¼ �0.26,

p ¼ 0.1068). This result is consistent with observations that

KRAS dependent NSCLC cells exhibit some sensitivity to

EGFR inhibitors (Singh et al., 2009), yet the combination ther-

apy required one-tenth as much drug as gefitinib monother-

apy. Furthermore, the BRAF/CRAF inhibitor sorafenib did not

show a significant correlation to RAS activity, both alone

( p ¼ 0.1247) or in combination with EGFR ( p ¼ 0.455) and

MEK1/2 ( p ¼ 0.5356) inhibitors (Supplementary Figure 4AeC).

In support of this finding, sorafenib also failed to show efficacy

in patients with KRAS mutated NSCLC in the phase III

MISSION trial (Goodman, 2012).

The effectiveness of the EGFR/MEK inhibition as a treat-

ment for NSCLC in general is further highlighted by the overall

synergy of these agents in NSCLC cancer cell lines

(Supplementary Figures 5A and 6A) and the significantly lower

total EC50 scores for combination therapies in comparison

with monotherapies observed across all the NSCLC cell lines

(Supplementary Figure 5B and C). The EGFR þ MEK combina-

tion exhibited a synergistic response relationship for 29 out

of 39 cell lines (74%), signified by a synergy score greater

than one (Figure 6A). Synergy was not as prevalent for

RAF þ EGFR and RAF þ MEK inhibitor combinations

(Supplementary Figure 6BeD).

Finally, the correlation between EGFR and MEK1/2 inhibi-

tors combined efficacy and RAS-pathway activation was

unskewed by the 8 most correlative cell lines

(Supplementary Figure 7A) and potentially NSCLC specific, as

the relationship between RAS-pathway activity and drug

response was not observed in a panel of 35 breast cancer cell

lines (Supplementary Figure 7B), possibly due to the depen-

dency of breast cancer on alternate pathways such as PI3K,

HER2 and the estrogen receptor pathway (Burstein, 2005;

Campbell et al., 2004; Rosen et al., 2010; Sommer and Fuqua,

2001).

3.3. Genomics-based RAS activity predictions, and not
RAS mutation status, significantly correlates to
EGFR þ MEK1/2 inhibitor therapy response

RAS can be aberrantly activated by different mechanisms,

including via activating mutations or through dysregulation

of other growth factor receptor pathway components

(Downward, 2003; Karnoub and Weinberg, 2008; Pylayeva-

Gupta et al., 2011). We investigated the relative treatment

responsiveness for KRAS mutated cells compared to cells

without KRAS mutations. Our studies show that KRAS muta-

tions alone did not account for the responsiveness to com-

bined EGFR/MEK inhibition ( p ¼ 0.577, Figure 3A); however,

when RAS activity was consideredmore broadly bymeasuring

pathway activity via our genomic profiling approach, there

was a significant correlation between EGFR/MEK drug sensi-

tivity and RAS activity ( p ¼ 0.0004, Figure 3B). No significant

relationship existed between RAS mutation and drug
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response for any other inhibitor we tested (Supplementary

Figures 8 and 9). These results highlight the importance of

comprehensively characterizing pathway activity via gene-

expression profiles to link pathway activation with drug

response.

Next, we performed a single and multivariate analysis to

investigate whether the relationship between RAS-pathway

activity and EGFR andMEK co-inhibitionmight be confounded

by factors unrelated to RAS-pathway activity or by mutations

in EGFR and MEK, the protein targets of gefitinib and U0126

respectively. Potential variables that we evaluatedwere tumor

subtype (adenocarcinoma, large cell carcinoma, or squamous

cell carcinoma), KRAS mutation, TP53 mutation, MEK1 muta-

tion, and EGFR mutation, using the adenocarcinoma subtype

as the reference sample (Supplementary Table 1). This was

especially important since as expected, predicted probability

of RAS-pathway activation was the highest in the adenocarci-

noma subtype, in comparison to squamous and large cell car-

cinoma subtypes (Bild et al., 2006) (Supplementary Figure 10).

Univariate analysis highlighted the large cell carcinoma
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subtype and our RAS-pathway activation predictions as the

primary potential predictors of EGFR and MEK1/2 co-

inhibition response (Table 1). NSCLC subtype was considered

as a single variable with two levels (large cell carcinoma and

squamous cell carcinoma), and since one level was significant

at p ¼ 0.05, all levels were included in the multivariate

analysis.

Based on the multivariate analysis (Table 2), response to

EGFR/MEK inhibition was significantly higher in the NSCLC

cell lines with high genomics-based RAS-pathway activity, af-

ter adjusting for subtype ( p ¼ 0.00139). This analysis provides

further support to the validity and potential use of our RAS-

pathway predictions as a biomarker of response to

EGFR þ MEK inhibition in NSCLC. Moreover, these results

show that the ability of RAS-pathway activity to predict

response to combination therapy is not confounded by EGFR

nor MEK1 mutations.

3.4. Combined inhibition of EGFR and MEK1/2 blocks
key downstream components of the RAS pathway and
induces apoptosis in RAS-active, but not RAS-inactive
NSCLC cells

Since a variability of response to EGFR andMEKdual inhibition

was observed between tumor cells exhibiting an active and

inactive RAS pathway, we investigated the potential differ-

ences in signaling effects of this drug regimen in NSCLC

RAS-active and RAS-inactive tumor cells. We examined the
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effects of EGFR and/or MEK inhibition on components of the

EGFR and RAS pathways in a representative panel of 9 NSCLC

cell lines, ranging from high to low predicted probability of

RAS-pathway activation. In general, combined inhibition of

EGFR þ MEK led to concurrent inhibition of ERK and RPS6

phosphorylation, with variable effects on AKT activation in

cells with higher levels of predicted RAS-pathway activation

(Figure 3C). These cell lines also exhibited a general trend to-

wards RAF1 protein loss, while a decrease in RPS6 protein

was observed regardless of RAS-pathway activation status

(Figure 3C). Conversely, cells with the lowest predicted proba-

bility of RAS-pathway activation (H520, H522) maintained

RAF1 protein expression and activated ERK, AKT and RPS6

regardless of the treatment, with cell line H522 even upregu-

lating the activation of AKT and RPS6, even with significant

RPS6 protein loss (Figure 3C).

While combined inhibition of EGFR and MEK blocked both

ERK and RPS6 activation in cells with higher RAS activation

probability, EGFR monotherapy on the other hand only

inhibited the activation of AKT and RPS6 with little effect on

ERK, while MEK monotherapy only inhibited activation of

ERK with a small effect on RPS6. Furthermore, EGFR mono-

therapy did not inhibit ERK, RPS6 or AKT in cells with the

lowest probability of RAS-pathway activation, while MEK

monotherapy had minimal effects on ERK activation, and

even leading to the activation of AKT in cell line H522, high-

lighting the dual-node effect of the combination therapy.

Interestingly, we observe that the activation pattern of

RPS6 did not correlate to probability of RAS-pathway activa-

tion. In cell lines H1373, 97TMI, H441 and H661, activation of

RPS6 correlated to the phosphorylation of ERK, while in cell

lines SK-MES-1, H1944, H1563, H520 and H522 it correlated to

phosphorylation of AKT (Figure 3C). This is potentially due

to the fact that RPS6 can be phosphorylated by the ERK and

AKT arms of the pathway (Roux et al., 2007). Moreover, MEK

inhibition decreased the ERK-mediated phosphorylation-

dependent feedback inhibition of RAF1 (Ser289/296/301 phos-

phorylation) as expected (Fritsche-Guenther et al., 2011)

(Supplementary Figure 11A). This pattern was more promi-

nent when MEK inhibition was coupled with EGFR inhibition.

Furthermore, a mild decrease in the Ser240/244 phosphoryla-

tion mark of RPS6 was observed, as well as a substantial

decrease in the activating phosphorylation mark of RAF1

(Ser338) (Supplementary Figure 11A). Lastly, we did not

observe the downregulation of ERK activation through MEK

inhibition leading to an activation of EGFR upon MEK inhibi-

tion (Supplementary Figure 11A), as has been observed in co-

lon cancer, marking a difference between the response of

NSCLC and colon cancer to ERK inhibition (Klinger et al.,

2013; Prahallad et al., 2012).

Among the two monotherapies and the dual therapy

tested, gefitinib was the only treatment to produce RAS inhibi-

tion (Supplementary Figure 11B). One explanation for the fail-

ure of the combined therapy to inhibit RAS is that the

combination of EGFR þ MEK inhibition abrogates the effects

of RAS inhibition by shutting down EGFR due to the removal

of the ERK-mediated negative feedback loop on SOS caused

by the complete inhibition of ERK (Shin et al., 2009)

(Figure 5). In conclusion, dual inhibition of EGFR þ MEK with

gefitinib and U0126, respectively, is capable of shutting down

both RPS6 and ERK in RAS-active tumors, while single agent

treatment only suppresses a single component of the

pathway. This is not the case for RAS-inactive tumors, where

neither monotherapy nor dual therapy using an EGFR and a

MEK inhibitor was able to inhibit activation of ERK, AKT and

RPS6.

Next, we studied the ability of combinatorial therapy to

induce apoptosis in RAS-active or RAS-inactive NSCLC tumor

cells. Interestingly, we observed that upon treating 3 RAS-

active and 3 RAS-inactive cell lines with a dose of 1 mM,

apoptosis is only induced at significant levels in RAS-active tu-

mor cells via combined inhibition of EGFR and MEK

(Figure 4AeC). None of our treatments were capable of

inducing apoptosis in RAS-inactive tumor cells (Figure 4B

and D). These results were in line with the above observations

whereby RAS-inactive cell lines recorded a marked resistance

to EGFRþMEK inhibition, and retained activation of ERK, RPS6

and AKT (Figure 3C). These data highlight the importance of

identifying the most beneficial cancer phenotypes prior to

therapy administration.

In summary, combined inhibition of EGFR and MEK blocks

growth of RAS-active NSCLC tumor cells by concurrent inhibi-

tion of ERK and RPS6. Combinatorial therapy performed

significantly better at targeting RAS-active cells and blocking

ERK and RPS6 than single agent therapy, or with therapies

that target other nodes of the RAS-pathway network

(Figure 5). These observations did not hold true for only RAS-

or EGFR-mutant NSCLC tumor cells, providing evidence to

the importance of utilizing characterization of pathway activ-

ity that allows for multiple mechanisms of pathway

activation.

3.5. Determining RAS-pathway activity is crucial to
identify tumors that are most responsive to EGFR þ MEK
dual inhibition

As gefitinib and U0126 are not FDA-approved small molecule

inhibitors of EGFR and MEK1/2 respectively, we sought to

Table 1 e Univariate predictors of Gefitinib D U0126 response
(log10 EC50). Univariate analysis was first used to determine the set
of predictor variables that were individually significantly related to
Gefitinib D U0126 response (log10 EC50). t-tests were used for the
binary predictors (the mutations) and linear models were used for the
continuous predictor (RAS-Pathway activation) and the ternary
predictor (Tumor Subtype). The statistical tests used and the p-
values are described. The large cell carcinoma subtype variable level
and the RAS-pathway activity prediction variable were significant
univariate predictors of response.

Predictor Statistical test p-value

KRAS mutation Two sample t-test 0.56

TP53 mutation Two sample t-test 0.55

MEK1 mutation Two sample t-test 0.36

EGFR mutation Two sample t-test 0.56

Subtype: Large

cell carcinoma

Wald test from

Linear model

0.044

Subtype: Squamous

cell carcinoma

Two sample t-test 0.16

RAS-pathway

Activity Prediction

Two sample t-test 0.00017
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validate the observation of a correlation between RAS-

pathway activation and response to EGFR þ MEK dual inhibi-

tion by using clinically-relevant inhibitors of EGFR and

MEK1/2. We tested a combination of erlotinib and trametinib,

two FDA-approved inhibitors of EGFR andMEK1/2 respectively

(United States Food and Drug Administration, 2013a,b) on a

panel of 16 NSCLC cell lines with a varying range of RAS-

pathway activation. In support of our previous findings, we

recorded a similar strong and significant correlation between

RAS-pathway activation and response to the combination

therapy (Figure 6A). Moreover, we observe that NSCLC cells

with high genomics-predicted RAS activity had significantly

lower EC50 scores than NSCLC cells with low RAS activity,

indicating higher drug sensitivity ( p ¼ 0.025, Figure 6B). Cell

lines with predicted high RAS averaged an EC50 ¼ �0.6934

(log10) ¼ 0.20 mM, while low RAS cell lines averaged an

EC50 ¼ 0.9545 (log10) ¼ 9.01 mM, a 45-fold difference in sensi-

tivity. As previously observed, there was no difference in

response when the cell lines were divided based on KRASmu-

tation status ( p ¼ 0.553, Figure 6C). These results support the

clinical relevancy of our previous observations with gefitinib

and U0126, and highlight the immediate clinical relevance of

this combinatorial regimen to treat RAS-active tumors in the

clinic.

In summary, we show that determining RAS-pathway acti-

vation status is pivotal to tailor EGFR þ MEK dual inhibition

therapy to the most responsive NSCLC tumors. In Figures 2A

and 6A a strong and highly significant correlation between

RAS-pathway activity and response to EGFR þ MEK combina-

tion therapy is evident. Cell lines with higher probability of

RAS-pathway activation responded significantly better to the

combination therapy (Figures 2B and 6B). The predictive po-

wer of RAS-pathway activity is not confounded by other tested

variables, providing further support to the importance of RAS-

pathway activation status as a determiner of response to

EGFR þ MEK inhibition (Tables 1 and 2). This is important to

note as KRAS mutation status fails to predict response to

EGFR þ MEK inhibition (Figures 3A, B and 6C). The strength

of this correlation lies in its reproducibility, which is observed

in either a small or large sample size, using gefitinib and U0126

(Supplementary Figures 1A, 2A and B) or FDA-approved and

clinically used EGFR and MEK inhibitors in the form of erlotinib

and trametinib (Figure 6). The identification of RAS-active

tumor cells as being most vulnerable to a specific type of

combinatorial therapydin this case EGFR þ MEK inhibi-

tiondemphasizes a need to reassess the design of clinical

studies, with a focus on identifying the potential patient pop-

ulations that could benefit the most from treatments prior to

clinical trial design.

4. Discussion

RAS is a critical target for many solid tumors such as NSCLC;

however, targeting the RAS protein directly has proven

elusive. Furthermore, RAS can be activated by many mecha-

nisms, making it challenging to identify RAS-active tumors.

To discover therapeutics that can target RAS-active tumors,

we performed a genomics-based drug screen in which cancer

cells are characterized for RAS-pathway activity using a gene-

expression signature and then screened against a panel of

compounds to identify those drugs whose efficacy correlates

to pathway activity. By measuring RAS-pathway activity by a

genomics-based biomarker, we are able to more broadly

define RAS activity and are not limited to examiningmutation

status alone. Furthermore, as the pathway predictions

generate a continuous scale of RAS activity, we can identify

drugs and/or drug combinations whose efficacy correlates to

RAS-pathway activity. The genomics-based drug screen has

various advantages compared to alternative drug screens

such as conventional or siRNA screens as it provides a

comprehensive characterization of a pathway’s activity in

cells that is not dependent on biochemical testing, and does

not require knowledge of the direct drug target.

By using this approach, we have identified two targeted

therapies that when combined effectively inhibit growth of

RAS-active cancer cells: gefitinib, which inhibits EGFR and

U0126, which inhibits MEK1/2. The use of U0126 has been at

the forefront of MEK inhibitor research with more than 2500

citations of its parent discovery publication. U0126 is highly

selective, with a nanomolar specificity for MEK1/2, and

recorded off-target effects when concentrations greater than

10 mM are used (Favata et al., 1998), which is greater than the

dose used in our biochemical analyses. Moreover, U0126

shares similar inhibitory characteristics and functions as the

recently FDA-approved MEK inhibitor, trametinib (United

States Food and Drug Administration, 2013b; Yoshida et al.,

2012), potentially extending our observation to the clinic.

Indeed, we observe that using the FDA-approved EGFR and

MEK1/2 inhibitors erlotinib and trametinib in combination led

to similar results, lending support to the clinical relevancy

and feasibility of this treatment against RAS-active NSCLC

(Figure 6).

EGFR þ MEK dual inhibition blocks two arms of the growth

factor receptor network in RAS-active NSCLC tumor cells:

EGFR-RAS-RAF-ERK and EGFR-PI3K-AKT-RPS6, whereas either

agent alone failed to achieve this multi-pathway inhibition ef-

fect. Of note, KRAS mutation status alone did not predict

response to this drug regimen; our analysis provides evidence

Table 2 e Multivariate predictors of Gefitinib D U0126 response
(log10 EC50). Given that the dataset consisted of 39 cell lines, the
univariate analysis done previously was used to determine the set of
predictor variables that were individually significantly related to
Gefitinib D U0126 response (log10 EC50). These variables were
included in the multivariate analysis. The multivariate analysis was a
linear model. Multivariate analysis determined the RAS-pathway
activity predictions as the sole predictor of EGFR D MEK
inhibition response.

Predictor Estimate Std
error

t-value Wald p-value
(two-sided)

(Intercept) 1.1743 0.2027 5.793 0.0000014

RAS-Pathway

Activity Prediction

�1.0184 0.2933 �3.472 0.00139

Subtype: Large

cell carcinoma

0.2626 0.2321 1.130 0.27

Subtype: Squamous

cell carcinoma

0.2263 0.2230 1.015 0.32

M O L E C U L A R O N C O L O G Y XXX ( 2 0 1 4 ) 1e1 610

Please cite this article in press as: El-Chaar, N.N., et al., Genomic classification of the RAS network identifies a personalized
treatment strategy for lung cancer, Molecular Oncology (2014), http://dx.doi.org/10.1016/j.molonc.2014.05.005



43

that some lung cancer cell lines with wild-type KRAS exhibit

high RAS-pathway activity. This is in line with observations

published by Molina-Arcas et al. (2013) that highlighted the

IGFR-centric nature of mutant KRASdbut not wild-type

KRASdlung cancer, in activating the PI3K-AKT-RPS6 node of

the pathway, with a strong implication of significant input

from EGFR in the wild-type KRAS cells. We observed that

best responders to EGFR þ MEK inhibition were wild-type

KRAS lung cancer cell lines with an activated RAS pathway.

This result may explain why the response to EGFR þ MEK in-

hibition correlates better to RAS-pathway activity than IGFR

and MEK inhibition (Figure 2C).

By studying RAS network activation through the genomics-

based biomarker, we have observed the requirement of

EGFR þ MEK signaling in maintaining activation of the PI3K-

AKT-RPS6 and EGFR-RAS-RAF-ERK nodes in RAS-active
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Figure 4 e EGFR D MEK combinatorial inhibition induces apoptosis in RAS-active, but not RAS-inactive tumor cells. (A) 3 RAS-active cell

lines, H358, Calu-3 and H2122 were treated with 1 mM of gefitinib, U0126 and gefitinib D U0126 as well as DMSO control for 72 h, and stained

for Annexin V. The percentage of Annexin V positive cells was calculated, averaged, and plotted, with the error bars indicating SEM. Only the

combined treatment of gefitinib D U0126 significantly induces apoptosis. (B) 3 RAS-inactive cell lines, H661, H520 and H522 were treated with

1 mM of gefitinib, U0126 and Gefitinib D U0126 as well as DMSO control for 72 h, and stained for Annexin V. The percentage of Annexin V

positive cells was calculated, averaged, and plotted, with the error bars indicating SEM. Neither treatment induces apoptosis. (C) Contour plots of

Annexin V/Propidium Iodide (PI) staining for RAS-active H358 cell line and (D) RAS-inactive cell line H522. The x-axis indicates Annexin V

staining, while the y-axis indicated PI staining. The lower right part of the graph shows the percentage of cells in early-stage apoptosis (Annexin V

positive cells), the top right the percentage of cells in late-stage apoptosis (Annexin V D PI double positive cells). The top left shows necrotic cells

(PI positive cells), while the bottom right shows live cells. Apoptosis is only induced in the RAS-active cell line.
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NSCLC. Interestingly, combinatorial inhibition of EGFR with

other components of the growth factor receptor network,

such as RAF or mTOR, does not correlate to RAS activity in

lung cancer cells. One reason the RAF inhibitor sorafenib is

not equivalent to MEK inhibition could be due to sorafenib’s

inability to block ERK signaling in KRAS-mutant cells

(Takezawa et al., 2009; Wilhelm et al., 2004). Together, these

studies highlight the complexity of RAS-centric signaling in

cancer, and the need to identify an appropriate target popula-

tion prior to initiation of clinical trials, as data suggests that

the different growth factor receptor network combinatorial

treatments will be effective only in discrete patient

populations.

Although clinical trials, such as the IPASS trial (Mok et al.,

2009) have shown efficacy of anti-EGFR tyrosine kinase inhib-

itors in EGFR-mutant NSCLC, inhibition of growth factor re-

ceptors has also been effective in unselected second-line

patients. For example, inhibition by anti-EGFR antibody cetux-

imab was beneficial in EGFR-positive patients in the FLEX and

IPASS trials (Mok et al., 2009; Pirker et al., 2009). Indeed, in

contrast to colon cancer, KRASmutations do not predict resis-

tance to EGFR inhibition in lung cancer (Guan et al., 2013;

Krejci et al., 2011; Mazzoni et al., 2011; O’Byrne et al., 2011).

While not nearly as effective as the gefitinib/U0126 combina-

tion, we do see some efficacy of gefitinib alone in our panel

of lung cancer cell lines. However, upon investigation of the

mechanisms by which these drugs function, we find that

EGFR antagonism alone does not significantly block down-

stream growth factor receptor network components such as

RAF, ERK and RPS6. Alternatively, MEK1/2 inhibition does

effectively inhibit ERK activity, but often fails to inhibit

alternative upstream EGFR signaling components such as

RAS and AKT. Only by combined treatment of both

EGFR þ MEK1/2 do we see effective inhibition of both up and

downstream growth factor receptor network components.

As ERK inhibition is a key regulator of proliferation and sur-

vival of cancer cells (Wortzel and Seger, 2011), and RPS6 also

plays vital roles important in cell survival as well as transla-

tion initiation (Ruvinsky and Meyuhas, 2006), we expect that

effectively blocking these two pathways in cancer cells con-

tributes to their synergistic function and decreased cancer

cell growth.

Interestingly, although RAS-inactive cell line H520 displays

synergy between gefitinib and U0126 (Supplementary

Figure 6A), the cell line still remains significantly recalcitrant

to the treatment, requiring a combinatorial EC50 dose of

11.27 mM, more than 4-fold less responsive than the average

response in RAS-active cell lines (EC50 ¼ 2.7 mM)

(Supplementary Figure 2B and Table 1). This is also the case

for the RAS-inactive cell line H661. Although it displays similar

overall pharmacodynamic pattern of pathway component in-

hibition as RAS-active cell lineswhen treatedwith gefitinib and

U0126, this cell line is also not comparatively sensitive to the

treatment (EC50 ¼ 10.28 mM). The observed synergy for these

lines is an interesting area for future mechanistic studies.

However, our conclusion that RAS-active cell lines are sensi-

tive to combined EGFR/MEK inhibition remains accurate.

Indeed, the RAS-inactive cell lines H520 and H661 are not sen-

sitive to this combined treatment (Supplementary Table 1), in-

dependent of their synergy profiles (Figure 3C, Supplementary

Figure 6A).

It will be critical in future clinical trials to identify those tu-

mors that are RAS-active independent of the mechanism of

RAS activation in order to best treat those patients with a

drug regimen that effectively blocks these key nodes in the

RAS pathway. By using mutation analysis alone, one over-

looks a large population of tumors that do not carry particular

mutations yet harbor activated oncogenic pathways. There

are currently clinical trials such as recruiting patients for

EGFR þMEK inhibitor combinations based onmutation status

alone. Our results suggest that mutation status alone cannot

always provide optimal selection of responsive patients. By

more comprehensively characterizing patients with dysregu-

lated pathway independent of the mechanism of activation,

it may be possible to better select patients for clinical trial

inclusion.

Gene-expression signatures have recently made their way

to the clinical and commercial sectors, laying the foundation

for the feasibility of bringing any future gene-expression sig-

natures to the clinic (Arpino et al., 2013). One example is the

FDA-approved microarray-based gene-expression profiling

signature Mammaprint� which uses tissue core sampled on

fresh specimens preserved in RNA later or frozen archived tis-

sue as sourcematerial, to output and score low/high risk of tu-

mor metastasis (Arpino et al., 2013; van ’t Veer et al., 2002; van

de Vijver et al., 2002). Therefore, the application of a gene-

expression signature as a genomic biomarker of RAS-pathway

activation is both promising and feasible.

Overall, our data shows the significant correlation between

RAS-pathway activity and response to EGFR þ MEK inhibition

(Figure 2A and B), and the predictive power of our signature

Figure 5 e The EGFR pathway and the model of the effect of EGFR/

MEK/EGFR D MEK inhibition on the pathway in RAS-active

NSCLC cell lines. EGFR monotherapy inhibits activation of EGFR,

KRAS and AKT (blue), while U0126 inhibits the activity of MEK,

preventing the activation of ERK (red). Combined therapy leads to

the inhibition of all the aforementioned proteins (blue and red) plus

RPS6 and RAF1 (purple), which are also degraded.
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which is independent of other factors such as cancer subtype

of mutations in key pathway components (Tables 1 and 2). In

the clinic, the RAS gene-expression signature could be used to

assess RAS-pathway activation status in a patient’s tumor. If

the tumor has high pathway activity, that patient may be a

candidate to receive EGFR þ MEK dual inhibition. Indeed, the

clinical potential of our study is supported by the validation

of our observed correlation of RAS-pathway activation and

EGFR þ MEK dual inhibition using FDA-approved inhibitors

(Figure 6).

Lastly, it is important to note that while tumor heterogene-

ity will ultimately be important in identifying and treating re-

fractory subclones within a tumor, our current approach is to

analyze the overall RAS activity within a tumor. Thus, higher

levels of RAS activity within a tumor will predict greater

overall response. Arguably, our approachmeasures RAS activ-

ity within the bulk tumor, where there may be subclones that

are a minority population but still have varied RAS activity.

Current and future studies are dedicated to addressing this

ongoing issue in tumor characterization and treatment.

In summary, we described a genomic-based screen that

characterizes RAS-pathway activation and identifies drugs

that effectively target the pathway, inducing an apoptotic tu-

mor cell response. By using a genomic approach to charac-

terize oncogenic pathway activity in tumor cells, the ability

to find drugs that target and inhibit a specific pathway is

increased. Given the complexity and crosstalk of signaling

pathways that is unique to individual tumor phenotypes, it

is essential to identify and block the relevant pathway compo-

nents for optimal drug response. By applying a genomic
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Figure 6 e Combinatorial inhibition of EGFR D MEK using FDA-approved inhibitors is correlated to RAS-pathway activity in NSCLC. (A)

Linear correlation of erlotinib D trametinib EC50 values with the predicted probability of RAS-pathway activation across 16 NSCLC cell lines.

Response to erlotinib D trametinib is significantly negatively correlated to RAS. Legend [ Red: KRAS-mutant cell lines, Black: KRAS wild-type

cell lines. (B) Cell lines of the 16 NSCLC panel were divided accordingly and box plot diagrams of erlotinibD trametinib EC50 values were plotted.

Response to erlotinib D trametinib as measured by EC50 values is shown. Cell lines with elevated probability of RAS activation (predicted

probability of RAS-pathway activation > 0.5) were significantly more sensitive to erlotinib D trametinib treatment than cell lines with low

probability of RAS activation (predicted probability of RAS-pathway activation < 0.5). (C) Response to erlotinib D trametinib with respect to the

mutation status of KRAS, as measured by EC50 values. K-RAS mutation does not predict response to erlotinib D trametinib.
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approach to discovery of pathway-specific drug regimens, we

can identify the patients who may best benefit from those

treatment regimens prior to initiation of a clinical trial.
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Cell Line G+U EC50 (Log10) RAS Subtype K-Ras Mut P53 Mut MEK1 Mut EGFR Mut
97TM1 0.6524 0.9136026 L G12V P34fs FRAME SHIFT DEL x x
A549 0.9266 0.6067645 A G12S x x x
CALU3 -0.5487 0.8306487 A x M237I x x
H1155 1.241 0.0945059 L Q61H R273H ND x
H1355 0.7158 0.677792 A G13C E285K x Q1159H
H1373 0.9067 0.9139701 A G12C E339* x Intron
H1395 1.471 0.4569164 A x x ND x
H1437 0.6694 0.6525064 A x R267P Q56P x
H1563 0.6503 0.3695481 A x x x x
H1581 1.124 0.0405064 L x Q144* x x
H1650 0.5016 0.6184945 A x V225_splice x ELREA746del
H1651 1.012 0.3080696 A x C176Y x x
H1693 0.9227 0.3260345 A x Q331_splice x x
H1703 1.011 0.2062118 A x A307_splice x x
H1792 1.049 0.8125829 A G12C E224_splice x x
H1793 1.151 0.4864989 A x R209* x C311F
H1944 0.631 0.7229063 A G13D x 5'UTR INS x
H1975 0.485 0.7404292 A x x x T790M, L858R
H2009 0.8024 0.751463 A G12A R273L x Intron
H2030 0.01976 0.7927377 A G12C G262V x x
H2085 0.5938 0.6550824 A x ND ND ND
H2122 -0.1607 0.9452425 A G12C C176F, Q16L 5'UTR INS x
H2126 -0.1813 0.6254516 A x E62* x x
H2170 0.9238 0.5251964 S x R158G x x
H226 0.5961 0.6553798 S x x x x
H23 0.6753 0.7705322 A G12C M246I x x
H2405 0.5364 0.8837517 A x x x x
H322 0.009897 0.7698003 A x R248L ND x
H358 -0.1012 0.6174521 A G12C x x x
H441 0.3012 0.8120077 A G12V R158L x x
H460 1.257 0.6202589 L Q61H x Y134C x
H520 1.052 0.1024499 S x W146* x x

Supplementary Table 1: Characteristics of the 39 NSCLC cell lines used in the study



62

H522 1.026 0.0699702 A x P191fs FRAME SHIFT DEL x x
H661 1.012 0.1929882 L x R158L, S215I x x
H838 0.6219 0.2447621 A x x x x
HCC4006 -0.9972 0.847452 A x x 5'UTR INS ELR746del INFRAME
SKLU1 0.7909 0.7119265 A G12D H193R x x
SKMES1 0.2849 0.870242 S x E298* x x
SW1573 1.621 0.3261704 S G12C Intron x x
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SUPPLEMENTARY MATERIALS AND METHODS 

Cell Lines and Media 

The lung cancer cell lines used in this study and their characteristics are summarized in 

Supplementary Table 1. Cancer cell lines were grown and maintained in a humidified 

environment at 37°C and 5% CO2 in their respective media (see below). For the preliminary 

genomics-based drug screen, 14 lung cancer cell lines were grown in 5% FBS (Gibco/Life 

technologies, Carlsbad, CA) and 1x Anti-Anti (Gibco/Life technologies, Carlsbad, CA) in their 

corresponding media, and plated 2000 cells/well onto 384-well plates. H838, H1563, A427, 

H1944, H2170, H520, HCC4006, H1650, H1975, H661 were grown in RPMI. H2126 was grown 

in HITES, A549 in F12K, SK-MES-1 in EMEM and H1581 in ACL-4. For the expanded drug 

screen, the following 39 NSCLC cell lines were used for the novel compound drug screen as 

well as to generate dose response curves for gefitinib, sorafenib, U0126 and their dual 

combinations: H1155, H1355, H1581, H2085, H2405 and H1651 were grown in ACL-4; Calu-3, 

LCLC-97TM1,  SK-LU-1 and SK-MES-1 were grown in EMEM; A549 in F12K; H1793, H2009 

and H2126 were grown in HITES; SW1573 was grown in DMEM; H1373, H1437, H1395, 

H2170, H1650, H226, H1563, H1703, H1792, H1944, H1975, H2030, H2122, H23, H322, 

H358. H441, H460, H520, H522, H661, H838, HCC4006 and H1693 were grown in RPMI. The 

replicate screen was performed on 35 cell lines (adding H1648 grown in ACL-4, and excluding 

97TM1, H226, H1395, H2170, H1650 due to an insufficient number of cells). For the 16 lung 

cancer cell line dose response assay for erlotinib+trametinib, the following cell lines were used 

in their media as described above: H1155, H1650, H1792, H2030, H441, SW1573, Calu-3, 

H1355, H1703, H2405, H322, H520, H522, H661, SK-MES-1, and H2170. For the breast cancer 

cell line screen, the following 35 cell lines were used: AU565, BT20, BT474, BT483, BT549, 
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CAMA-1, HCC1143, HCC1395, HCC1419, HCC1500, HCC1569, HCC1599, HCC1806, 

HCC1937, HCC1954, HCC2218, HCC38, HCC70, Hs343T, JMT-1, MCF-7, MDAMB134-VI, 

MDAMB157, MDAMB175-VII, MDAMB231, MDAMB361, MDAMB415, MDAMB436, 

MDAMB453, MDAMB468, SKBR3, T47D, UHCC812, ZR-75-1, ZR-75-30. Breast cancer cell 

lines were grown according to the media recommended by ATCC and in 5% FBS and 1x Anti-

Anti (Gibco).  

Breast Cancer Cell Line Dose Response Assay 

For the breast cancer cell line screen, and the 35 NSCLC screen, cells were plated at 1500 

cells/well. For the dose response assays, known targeted therapeutics were serially diluted 1:3 

from 30µM to the lowest dose of 13.72nM in media containing 5% FBS (Gibco) and 1x Anti-

Anti (Gibco). To make the highest dose soluble in aqueous media, drugs were sonicated twice on 

ice. For combination treatments, doses had equal molar concentrations for each compound. Dose 

response curves were generated using the same methodology described in the body of the paper, 

methods section. 

Cell Lysis and Western Blotting 

Cell lines were washed once in ice-cold PBS then lysed in buffer containing 1% Triton 

X-100, 50mM HEPES, pH 7.4, 150mM NaCl, 1.5mM MgCl2, 1mM EGTA, 100mM NaF, 

10mM Na pyrophosphate, 1mM Na3VO4, 10% glycerol, and protease inhibitors (P8340) added 

fresh from Sigma-Aldrich (St Louis, Missouri). Lysates were incubated on ice for 15 minutes, 

then centrifuged at 14,000 RPMs in 4’C. Protein yield was analyzed using the Bradford reagent 

(Amresco, Solon, OH). Equivalent amounts of protein were resolved on 12% precast SDS-PAGE 

gels (Biorad, Hercules, CA) and transferred to Immobilon-P PVDF membranes (Millipore, 

Billerica, MA). IgG HRP-linked Secondary antibodies were used from GE Lifesciences 
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(Pittsburgh, PA). Western blots were developed using SuperSignal West Dura Substrate 

(Thermoscientific, Rockford, IL). 

 

Synergy Calculation 

The expected effects for each combinatorial therapy dose were calculated using the Bliss 

Independence method utilizing the following formula: Expected effect of dose A = (Drug1 dose 

A + Drug2 dose A) – (Drug1 dose A * Drug2 dose A) (Buck et al, 2006; Fitzgerald et al, 2006). 

Theoretical effect dose response curves were plotted for the 39 cell lines for gefitinib+U0126, 

sorafenib+U0126 and gefitinib+U0126 using these expected dose values, and the theoretical 

EC50 values computed using GraphPad Prism as described before. To determine synergy, the 

theoretical EC50 values were divided by the actual EC50 values; values greater than one 

signified synergy, values equal to one signified additivity, and values less than one indicated 

antagonism (Soldi et al, 2013). 

 

SUPPLEMENTARY FIGURE AND TABLE LEGENDS 

Supplementary Figure 1: Preliminary screen reveals a strong correlation between the 

response to dual suppression of EGFR and MEK and RAS pathway activation. EC50 values 

of Gefitinib, U0126 and Gefitinib+U0126 were calculated for a pilot panel of 14 NSCLC cell 

lines. The predicted probability of RAS pathway activation of these cell lines was also obtained 

using our RAS gene expression signature. These 2 values were plotted on a dot plot, and the 

linear correlation between the two investigated. Every dot represents a cell line, with a y value 

representing the line’s treatment EC50 (log10), and an x value representing the cell lines 

predicted probability of RAS pathway activation score. (A) Linear correlation of 
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Gefitinib+U0126 EC50 values with the predicted probability scores of the 14 cell lines. (B) 

Linear correlation of U0126 with predicted probability of RAS pathway activation (C) Linear 

correlation of Gefitinib with predicted probability of RAS pathway activation. Legend: Red: 

KRAS mutant cell lines, Black: KRAS wild type cell lines 

 

Supplementary Figure 2: Preliminary screen reveals the response to mTOR suppression, 

alone or in combination with EGFR and MEK inhibition does not correlate to RAS 

pathway activation. (A) Linear correlation of Gefitinib+U0126 EC50 values with the predicted 

probability scores of the 14 cell lines. (B) Linear correlation of U0126 with predicted probability 

of RAS pathway activation (C) Linear correlation of Gefitinib with predicted probability of RAS 

pathway activation. Legend: Red: KRAS mutant cell lines, Black: KRAS wild type cell lines 

 

Supplementary Figure 3: The response to combinatorial inhibition of EGFR and MEK, but 

not the monotherapy is correlated to RAS pathway activity in NSCLC. (A) Treatment of 

Gefitinib+U0126 on an expanded panel of NSCLC cell lines was repeated in a second time, with 

nearly identical results. Linear correlation of Gefitinib+U0126 EC50 values with the predicted 

probability of RAS pathway activation across 35 NSCLC cell lines. (B) The EC50 values of the 

top 50% most responsive cell lines for each treatment were averaged out and graphed into box 

plots. Box boundaries denote the 25th-75th percentiles, while the error bars indicate maximum 

and minimum values. The line inside the box indicates the median value, and the “+” indicates 

the mean value. (C) Linear correlation plot of Gefitinib across 39 NSCLC cell lines (D) Linear 

correlation plot of U0126 across 39 NSCLC cell lines. Legend: Red: KRAS mutant cell lines, 

Black: KRAS wild type cell lines 
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Supplementary Figure 4: Response to RAF inhibition is not correlated to RAS pathway 

activation, regardless of combinatorial inhibition of MEK and EGFR. Linear correlation plot 

of Calculated EC50 values of response of the 39 cell lines and their predicted probability of RAS 

activation scores were plotted on for (A) Sorafenib, (B) Sorafenib+U0126, (C) 

Sorafenib+Gefitinib. Legend: Red: KRAS mutant cell lines, Black: KRAS wild type cell lines 

 

Supplementary Figure 5: Combinatorial Inhibition of EGFR and MEK is an efficacious 

and synergistic therapy in NSCLC. (A) Dose response assay curves of 3 of the top 4 

synergistic cell lines in our panel. Green shows the theoretical curve that would result from the 

additivity effect of combining Gefitinib and U0126, the black curve indicates the actual effect 

observed from the combinatorial therapy. (B) EC50 values of the single agent treatment of 

Gefitinib and U0126 and the combinatorial therapy across all the 39 NSCLC cell lines are plotted 

as boxplots. (C) Dose response curves using the dose means of all the 39 cell lines of Gefitinib, 

U0126, and Gefitinib+U0126. 

 

Supplementary Figure 6: Combinatorial Inhibition of RAF with EGFR or MEK is 

minimally synergistic, while EGFR and MEK dual inhibition is largely synergistic in 

NSCLC. (A) Synergy scores of Gefitinib+U0126 Combinatorial treatment across the panel of 39 

NSCLC cell lines. Synergy was investigated by calculating the theoretical EC50 of the combined 

treatment, and dividing it by the experimental EC50. Scores >1 (columns above the red line) 

indicate a synergistic relationship between Gefitinib and U0126 in killing NSCLC tumor cells. 

Scores <1 indicated drug antagonism, and scores = 1 indicates drug additivity. A total of 29/39 
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cell lines (74%) of cell lines showed synergy for the combinatorial treatment. (B) A total of 

13/39 cell lines (33%) of cell lines showed synergy for Sorafenib+Gefitinib combinatorial 

treatment. (C) Synergy scores of Sorafenib+U0126 combinatorial treatment across the panel of 

39 NSCLC cell lines. 26/39 cell lines (67%) showed synergy for the combinatorial treatment, 

although the synergy scores were much smaller than Gefitinib+U0126. (D) EC50 values of 

Sorafenib, Sorafenib+Gefitinib and Sorafenib+U0126 across all the 39 NSCLC cell lines are 

plotted as boxplots 

 

Supplementary Figure 7: EGFR+MEK inhibition is unskewed by the 8 most correlative 

cell lines and is not correlated to RAS pathway activation in Breast Cancer. (A) The graph 

shows the linear correlation of Gefitinib+U0126 with the predicted probability of RAS pathway 

activation across the same panel of NSCLC cell lines in Figure 2A, with the 8 most correlative 

cell lines taken out. (B) The graph shows the linear correlation of Gefitinib+U0126 with the 

predicted probability of RAS pathway activation across the 35 breast cancer cell lines. Red: 

KRAS mutant cell lines, Black: KRAS wild type cell lines. 

 

Supplementary Figure 8: The RAS Gene expression signature and KRAS mutation do not 

predict response to Sorafenib, U0126 or Gefitinib in NSCLC. Cell lines of the 39 NSCLC 

panel were divided accordingly and Boxplot diagrams of Gefitnib+U0126 and 

Gefitinib+Sorafenib and EC50 values plotted. (A) Response to Sorafenib with respect to the 

predicted probability of RAS pathway activation, as measured by EC50 values. (B) Response to 

Sorafenib with respect to the mutation status of KRAS, as measured by EC50 values. (C) 

Response to Sorafenib with respect to mutation status of KRAS, and predicted probability of 
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RAS pathway activation. (D) Response to Gefitinib with respect to the predicted probability of 

RAS pathway activation, as measured by EC50 values. (E) Response to Gefitinib with respect to 

the mutation status of KRAS, as measured by EC50 values. (F) Response to Gefitinib with 

respect to mutation status of KRAS, and predicted probability of RAS pathway activation. (G) 

Response to U0126 with respect to the predicted probability of RAS pathway activation, as 

measured by EC50 values. (H) Response to U0126 with respect to the mutation status of KRAS, 

as measured by EC50 values. (I) Response to U0126 with respect to mutation status of KRAS 

and predicted probability of RAS pathway activation, as measured by EC50 values. 

 

Supplementary Figure 9: The RAS Gene expression signature and KRAS mutation do not 

predict response to sorafenib+U0126 or sorafenib+gefitinib in NSCLC. Cell lines of the 39 

NSCLC panel were divided accordingly and Box plot diagrams of Gefitnib+U0126 and 

Gefitinib+Sorafenib and EC50 values plotted. (A) Response to Sorafenib+U0126 with respect to 

the predicted probability of RAS pathway activation, as measured by EC50 values. (B) Response 

to Sorafenib+U0126 with respect to the mutation status of KRAS, as measured by EC50 values. 

(C) Response to Sorafenib+U0126 with respect to mutation status of KRAS, and predicted 

probability of RAS pathway activation. (D) Response to Gefitinib+Sorafenib with respect to the 

predicted probability of RAS pathway activation, as measured by EC50 values. (E) Response to 

Gefitinib+Sorafenib with respect to the mutation status of KRAS, as measured by EC50 values. 

(F) Response to Gefitinib+Sorafenib with respect to mutation status of KRAS, and predicted 

probability of RAS pathway activation.  
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Supplementary Figure 10: Box plots of the predicted probability of RAS pathway 

activation in the panel of 39 NSCLC cell lines and the overall EC50 response to EGFR and 

MEK inhibition based on subtype. Cell lines were divided according to their specified NSCLC 

subtype, and their (A) probability of RAS pathway activation scores (B) Gefitinib+U0126 EC50 

scores grouped together. Adenocarcinomas had the highest predicted probability of RAS 

pathway activation and sensitivity to Gefitinib+U0126. 

 

Supplementary Figure 11: Further effects of gefitinib, U0126 and gefitinib+U0126 on the 

EGFR pathway and RAS protein activation. (A) The effects of the aforementioned treatments 

were further investigated on more components of the EGFR and RAS pathways through western 

blotting.  (B) Activated KRAS (KRAS GTP) was pulled down and blotted for after cell line 

treatment of gefitinib, U0126, gefitinib+U0126 at 5µM dose for 6hrs. GAPDH was blotted for on 

the same lysates to test for equal loading. Only gefitinib inhibits the activation of KRAS in 2/3 

cell lines 

 

Supplementary Table 1: Characteristics of the 39 NSCLC cell lines used in the study. “G+U 

EC50 (log10)” denotes the calculated EC50 dose of Gefitinib+U0126 in log scale. “RAS” 

column denotes predicted probabilities of RAS pathway activation among the cell lines. “. “A” 

denotes the NSCLC Adenocarcinoma subtype, “S” denotes squamous cell carcinoma, and “L” 

denotes large cell carcinoma. The rest of the columns highlight the specific amino acid mutations 

and frameshift deletions observed in their respective proteins where “*” denotes a stop codon. 
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3.1  Abstract

Patients diagnosed with Basal-like or Claudin-low breast cancer (BL-CL) 

suffer from a poor prognosis and limited treatment options. To identify compounds 

with potential therapeutic efficacy, we used a step-wise screening approach 

personalized for the identification of a compound effective against BL-CL. We 

screened 2778 HP20 fractions from our marine invertebrate compound library 

(MICL) and identified a previously unreported trisulfated sterol, topsentinol L 

trisulfate (TLT) that exhibits increased efficacy against BL-CL relative to Luminal/

HER2+ breast cancer. Biochemical investigation of the effects of TLT on BL-CL 

revealed its ability to inhibit activation of AMPK and CHK1. The importance of 

targeting these two proteins in BL-CL was validated by treating a panel of breast 

cancer cell lines with known small molecule inhibitors of AMPK and CHK1 and 

recording the increased effectiveness against BL-CL compared to Luminal/

HER2+ breast cancer. Finally, we generated a TLT sensitivity gene-expression 

signature and projected it against a human tumor panel of 12 different cancer 

types and identified breast and bladder cancer as the cancers most sensitive to 

TLT. Conversely, glioblastoma multiforme was projected to be least sensitive to 

TLT. These results identify TLT, a previously uncharacterized trisulfated sterol, as 

a potential therapeutic selective against BL-CL. The mechanistic treatment effects 

of TLT are described, proposing the potential of AMPK and/or CHK1 inhibition as 

an effective therapy in BL-CL.

3.2  Introduction

Gene-expression profiling has identified five molecular subtypes of breast 

cancer, known as Luminal A, Luminal B, HER2-enriched, Claudin-low and Basal-

like, with inter-subtype differences in incidence, survival and treatment response 

[1-5]. Among these, breast cancer patients diagnosed with the Claudin-low and 
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Basal-like molecular subtypes exhibit particularly poor prognosis and suffer from 

limited treatment options [6].  Basal-like breast cancers represent 10-25% of all 

breast carcinomas, generally occurring at an early age, with higher frequency in 

women of African origin [7]. Approximately 50%-70% of all basal-like cancers lack 

the expression of ER, PR and HER2 and are therefore clinically described as being 

triple negative. Basal-like breast cancer manifests as a highly aggressive tumor 

that is responsive to chemotherapy [6]. However, patient prognosis remains poor 

with Basal-like cancers exhibiting a high recurrence rate and low patient survival 

[2]. At the molecular level, Basal-like breast cancers exhibit expression patterns 

as also observed in the basal epithelial layer of the skin and airways; this includes 

expression of high molecular weight cytokeratins 5, 6 and 17 and deficiencies in 

RB1, BRCA1 and TP53. Moreover, a high rate of aneuploidy is observed in these 

tumors, reflective of increased genetic instability [6,7].

Interestingly, the Claudin-low group shares some similarities in gene-

expression features with the Basal-like subtype such as low expression of HER2 

and the luminal gene clusters, indicating genomic similarities between the two 

groups [8]. Moreover, like the Basal-like subtype, Claudin-low tumors are also 

triple negative and have a poor prognostic outcome.  However, Claudin-low 

breast cancers remain an individual group on their own, characterized by the 

minimal expression of several claudin genes, such as claudin 3, 4 and 7, which 

are involved in epithelial cell tight-tight junctions. These tumors also lack cell–

cell junction proteins, such as E-cadherin, and almost always are characterized 

by having an intense immune cell infiltrate, stem cell properties, and features 

of epithelial–mesenchymal transition (EMT) [3,4,7,9,10]. Due to the nonluminal 

molecular nature of these two subtypes, and the lack of known protein targets on 

these cancers, few effective treatment options are available. As such, there exists 

an urgent need to identify new therapeutic leads and potential targets that can 
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improve patient prognosis. 

 To identify a novel compound effective against Basal-like and Claudin-

low breast cancer (BL-CL), we screened a subset of our unique library of marine 

invertebrate compounds against a large panel of cancer cell lines. The Marine 

Invertebrate Compound Library (MICL) is a unique resource that serves as a 

platform for discovery of novel small molecule-mediated biological activities in 

a variety of systems. MICL is derived from an extensive collection of over 1200 

unique marine organisms (85% sponges from over 150 genera, 12% tunicates, 

2% other phyla) collected from diverse locations around the world over the past 20 

years [11,12]. Around 75% of all anticancer drugs developed between 1940 and 

2010 were either derived from or inspired by natural products [13]. As of 2010, 

there were 13 marine natural products (MNPs) in clinical trials, ten of which target 

cancers [14]. Natural products tend to be more complementary in shape to their 

targets [15] due to their development in a competitive ecological selection process 

that favors the production of compounds with strong biological activity [16-18]. 

Several marine natural products in particular have been shown to exhibit anti-

cancer properties, such as didemnin B, aplidine and ecteinascidin-743, the latter 

of which succeeded in passing clinical trials in Europe and is now approved by the 

European Commission for the treatment of refractory soft-tissue sarcomas [19]. In 

summary, MNPs have proven their potential for development into clinically-useful 

drugs [14,19]. 

In this study, we screened 2778 fractions from MICL with the goal of 

identifying a candidate fraction with anti-BL-CL activity and isolating the active 

compound responsible for such a property. To accomplish this goal, we first 

identified the fractions that exhibited anticancer activity by screening against a 

panel of cancer cell lines. These anticancer fractions were then used in a second 

screen to identify those with selectivity against BL-CL. The unique compounds in 
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each were isolated and validated for BL-CL activity, leading to the identification of a 

candidate compound. We identified a previously uncharacterized trisulfated sterol, 

topsentinol L trisulfate (TLT), purified from a marine sponge Topsentia sp. (PNG07-

3-073) collected from Papua New Guinea. TLT, as well as its parent fraction and 

subfraction, exhibited increased effectiveness against BL-CL compared to Luminal 

and HER2+ subtypes. We showed that treating BL-CL cell lines with TLT leads 

to the inhibition of AMPK and CHK1 using biochemical and proteomic analyses. 

To validate the importance of inhibiting the activity of AMPK/CHK1 in BL-CL, we 

tested breast cancer cell lines with known small molecule inhibitors of AMPK and 

CHK1, and observed that they are significantly more effective against BL-CL than 

Luminal and HER2+ subtypes. This study was concluded by generating a genomic 

gene-expression signature of TLT sensitivity and projecting it against a panel of 

human patient tumors of 12 different cancer types, identifying breast and bladder 

cancer as the two cancers most sensitive to TLT. Overall, this study incorporates 

the genomic classification of breast cancer to high-throughput drug screening and 

identifies a novel small molecule, TLT, personalized against BL-CL. Furthermore, 

the work described here sheds light on the importance of targeting AMPK and/or 

CHK1 in this molecular subtype, and suggests the potential of these proteins as 

therapeutic targets in BL-CL.

3.3  Materials and Methods

3.3.1  Cell lines and Viability Measurement

Cell lines were obtained from ATCC and plated at 1500-2000 cells/well in 

384-well plates in 5% FBS (Gibco/Life Technologies, Carlsbad, CA) growth media 

and 1x Anti-Anti (Gibco/Life Technologies, Carlsbad, CA). Cancer cell lines were 

cultured and maintained in a humidified environment at 37 °C and 5% CO2 in 

their respective media. Detailed description on the cell lines used for each screen 
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is available in Supplementary Tables 3.1 and 3.2. Cells were treated for 72 hrs, 

after which cell viability and growth were measured using CellTiter-Glo (Promega, 

Madison, WI). Cell viability scores were calculated by dividing the viability scores 

of the treatment by the control DMSO values.

3.3.2  Small Molecules

Dorsomorphin C and Ly2603618 were purchased from Selleckchem and 

dissolved in water and 100% DMSO, respectively. Dorsomorphin C was prepared 

as a stock of 100 mM, while Ly2603618 was prepared as a 28.65 mM stock.

3.3.3  MICL Screens 

For Screen 1, 2778 HP20 fractions of marine organisms from MICL were 

screened at a single dose (~1.5 µM) against a panel of 16 (9 lung and 7 breast) 

cancer cell lines to determine fractions with antitumor properties. One hundred and 

seven HP20 fractions were chosen according to the following selection criteria: 

1) all fractions with a standard deviation in viability of greater than 0.325; 2) Lung 

selective fractions (25% or less viable cells in three or more lung cancer cell lines 

and two or fewer breast cancer cell lines);  3) breast selective fractions (25% or 

less viable cells after treatment in two or more breast cancer cell lines and three 

or fewer lung cancer cell lines); 4) generally active nonuniversally toxic fractions 

(25% or less viability in a minimum of 5 and maximum of 13 cell lines); 5) relatively 

less active fractions (40% or less viability in a minimum of 9 and maximum of 13 

cell lines). An additional 85 HP20 fractions from MICL that were not screened for 

were added to the selected 107 fractions based on chemo-taxonomic judgment 

of potential chemical similarity to the 107 fractions. These 192 HP20 fractions 

were then subjected to a second screening assayed at a single dose (~1.5 µM) 
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against a panel of 35 breast cancer and 37 lung cancer cell lines. This identified 

breast-selective fractions (fractions resulting in 25% or less cellular viability after 

treatment in 13 cell lines or more out of 35 breast cancer cell lines, and 12 cell 

lines or fewer lung cancer cell lines) and fractions effective against BL-CL (BL-

CL vs Luminal/HER2+ breast cancer unpaired two-sample equal variance t-test 

< 0.05 with a positive average difference). Cell lines described as basal-like or 

claudin-low but being HER2+ were considered part of the Luminal/HER2+ group. 

LCMS (liquid crystal-mass spectroscopy) fractionation of the anti-BL-CL fractions 

following the MICL protocol [11,12] resulted in 20 subfractions each that were 

assayed for effectiveness against BL-CL in a panel of 33 breast cancer cell lines. 

Once a candidate subfraction was determined based on the results of all three 

screens, large scale isolation and the purification of the active compound of that 

fraction was pursued

3.3.4  Large-scale Isolation and Purification of  

Active Compound

Frozen PNG07-3-073 Topsentia sp. sponge (215 g, Supplementary Figure 

3.1) was extracted three times with methanol. One half of the pooled methanol 

extract was fractionated on Diaion HP20SS resin, eluting with water/isopropanol 

mixtures in 25% increments, followed by 100% methanol to yield five fractions, FW 

and F1-F4, where F2 was the only fraction that exhibited tumoricidal properties. 

F2 (50/50 IPA/H2O, 98 mg) was subjected to C18 flash chromatography, eluting 

with 40-100% methanol in water in 10% increments, yielding 46 subfractions, of 

which only subfractions 22, 23, 24 and 25 showed tumoricidal activity. Bioactive 

fractions 22-25 were combined (65 mg) and further fractionated by HPLC using 

a Luna 5 µm phenylhexyl column (250 x 4.6 mm) and a gradient of acetonitrile 

(ACN) with 0.2 M NaCl (36% ACN increasing over 4 min to 43% ACN, held for 
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11 min, then decreased to 36% ACN over 2 min) to yield isolate 1 (sharp peak, 

RT=9.57 min, 13.4mg) and isolate 2 (broad peak, RT=10.2 min, 6.3mg). Salt was 

removed by loading samples onto pre-equilibrated Waters Sep-Pak C18 cartridges 

and flushing with three column volumes of 10% methanol, followed by compound 

elution with 100% methanol. 

3.3.5   Dose Response Assays

Cell lines were plated as described above. Dorsomorphin C and Ly2603618 

were serially diluted 1:3 starting from 90 µM to the lowest dose of 41.15 nM in RPMI 

media containing 5% FBS and 1x Anti-Anti and screened against a panel of 20 cell 

lines, along with the combination treatment of dorsomorphin C and Ly2603618. 

For the combination treatment, an equal molar concentration of each compound 

was used. TLT was serially diluted 1:2 starting from 104.4 µM to the lowest dose of 

3.26 µM and screened against a panel of 30 cell lines. Cell viability was measured 

as described before. Doses were repeated in quadruplicates and averaged out for 

a single value. EC50 values were calculated from dose response curve data by 

plotting on GraphPad Prism 6.01 and using the equation Y=1/(1+10^((logEC50-

X)*HillSlope) with a variable slope (Ymin = 0 and Ymax = 1). Plots were forced to 

start from the x-axis by plotting for an x-intercept point. 

3.3.6  Cell Lysis and Western Blotting

Cell lines were washed once with ice-cold PBS (1x) and then lysed in a 

buffer containing 1% Triton X-100, 50mM HEPES, pH 7.4, 150mM NaCl, 1.5mM 

MgCl2, 1mM EGTA, 100mM NaF, 10mM Na pyrophosphate, 1mM Na3VO4, 10% 

glycerol, and protease inhibitors (P8340) added fresh from Sigma-Aldrich (St Louis, 

Missouri).  Lysates were then incubated on ice for 15 min with agitation every 2 
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min, and then centrifuged at 14,000 RPMs in 4°C. Protein yield was quantified 

using the Bradford reagent (Amresco, Solon, OH) and denatured by boiling 

and SDS treatment (with beta-mercaptoethanol). Equivalent amounts of protein 

(approximately 30 µg) were resolved on 12% precast SDS-PAGE gels (Biorad, 

Hercules, CA) and transferred to Immun-blot PVDF membrane (Biorad, Hercules, 

CA). IgG HRP-linked Secondary antibodies were used from GE Lifesciences 

(Pittsburgh, PA). Western blots were developed using SuperSignal West Dura 

Substrate (Thermoscientific, Rockford, IL).

3.3.7   Immunostaining

Four BL-CL cell lines sensitive to topsentinol L trisulfate (HCC70, HCC1143, 

MDAMB468, MDAMB436) were treated with 105µM of TLT in 5% FBS RPMI media 

and 1x Anti-Anti for 6 hrs. Primary antibodies for GAPDH (#5174S), p38-T180/

Y182 (#4511S), pChk1-S317 (#12302) and pAMPKα-T172 (#2535) were obtained 

from Cell Signaling Technology (Beverly, MA).

3.3.8  Reverse Phase Protein Array

Eight TLT-sensitive BL-CL cell lines (MDAMB157, MDAMB436, MDAMB468, 

MDAMB231, HCC38, HCC70, HCC1395, and HCC1143) were treated separately 

with TLT or DMSO at a concentration of 105µM (approximate average EC75 across 

all eight cell lines) for 6 hrs, after which they were lysed according to methodology 

detailed in above. Reverse phase protein array was performed at the University 

of Texas MD Anderson Cancer Center by the functional proteomics RPPA core 

facility according to their described methods and protocol [20,21]. Two hundred 

seventeen different antibodies of phosphorylated and non-phosphorylated proteins 

were stained for and quantified.
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3.3.9  RNA Sequencing Data Acquisition 

The same eight TLT-sensitive BL-CL cell lines were treated separately with 

TLT or DMSO for 6 hrs, after which total RNA was extracted using the RNeasy Mini 

Kit (Qiagen, Venlo, Netherlands) with on-column digestion of the genomic DNA, 

as described in the manufacturer’s protocol. RNA sequencing was performed at 

the Huntsman Cancer Institute High Throughput Genomics Core Facility using 

50-cycle, single-read sequencing (version 3) on an Illumina HiSeq instrument. 

To construct mRNA focused libraries from total RNA, the Illumina TruSeq RNA 

Sample Prep Kit (version 2) with oligo dT selection was used. 

3.3.10  TLT Sensitivity Signature Generation and Analysis

To process the mRNA sequencing data, we used the TCGA mRNA-seq 

Pipeline [22]. RNA sequencing reads for the treated and control samples were aligned 

using MapSplice v12_07 [23], quantified using RSEM [24], and gene counts were 

normalized using upper quantile normalization. This was the same methodology 

used to normalize the PANCAN12 TCGA dataset, which we obtained from TCGA fully 

processed for use in this analysis [22]. To generate a TLT sensitivity signature, we 

used the DESeq2 package (version 1.4.5) in the Bioconductor framework (version 

2.14.0, version 3.1.0 of R) to identify genes that were significantly deregulated 

(adjusted p < 0.05) between the treated and control samples [25,26]. One hundred 

forty-six genes were found to be significantly deregulated, out of which only 131 

were found in the TCGA dataset. To use DEseq2, the reads had to be remapped 

using the Rsubread Bioconductor package. We used this package to map the 

reads to version hg19 of the human genome and to summarize the data to gene-

level values [27]. We predicted TLT sensitivity for the PANCAN12 TCGA dataset 

[22] using the Bayesian binary regression algorithm version 2.0 (BinReg2.0) used 

as a MATLAB plug-in [28]. We used default parameters, except that our signature 
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used 131 genes and 1 metagene. The probability output from the binary regression 

model was subtracted from one, so that probabilities closer to one indicated higher 

probability of sensitivity to the drug as previously described [29]. Prior to making the 

predictions, the data were log2 transformed and DWD normalized [30] to reduce 

biases that can result from differences in batch processing and platforms.

3.3.11   Statistical Analysis

To identify candidate fractions significantly more effective against BL-CL 

than Luminal/HER2+ breast cancer, preliminary statistical analysis was performed 

using the unpaired two-sample equal variance t-test built into the Microsoft Excel 

program. Final statistical assessment was performed for the fractions from the 

sponge PNG07-3-073 by re-analyzing statistical significance test based on the 

normality of the data. Gaussian distribution of the data was checked for using three 

different tests built into the GraphPad Prism 6 software:  the D’Agostino-Pearson 

omnibus test, the Shapiro-Wilk test and The Kolmogorov-Smirnov test (with the 

Dallal-Wilkinson-Lilliefor corrected P value). Dot plots were then created using 

Graphpad Prism 6.01 and a standard two-tailed Mann-Whitney U-test was used 

to test for statistical significance, with the exception of the dot plot diagrams for 

halistanol sulfate, dorsomorphin C, Ly2603618 and dorsomorphin C + Ly2603618 

where an unpaired t-test with was used due to the normality of the data. To compare 

the difference of protein expression between treated cell lines and their DMSO 

controls and to test for the significance of the result, we used a two-tailed paired 

t-test. 



83

3.4  Results

3.4.1  Identification of Topsentinol L Trisulfate as a  

Selective Inhibitor of BL-CL

The goal of this study is to find a novel inhibitor of BL-CL, describing the 

pathways effectively blocked by the compound, and projecting treatment efficacy 

across other cancer types. We aimed to achieve this through a stepwise approach 

by 1) screening MICL for fractions that exhibited tumoricidal properties, 2) selecting 

candidate fractions that displayed effectiveness against BL-CL, 3) separating the 

active compounds in the fractions, 4) identifying the active compound with anti-BL-

CL properties, 5) describing the cell signaling effects of the compound on BL-CL, 

6) projecting TLT sensitivity across human tumors of various cancer types using a 

gene-expression signature  (Figure 3.1A). 

To identify fractions with tumoricidal activity, we began by screening 2778 

fractions from MICL against a panel of 16 cell lines (Figure 3.1B “Screen 1”). These 

fractions represent complex mixtures, and served as a starting point to identify 

promising hits [11,12]. From this screen, we selected 107 HP20 fractions based 

on differential tumoricidal activity among the 16 cell lines, eliminating all fractions 

that were universally toxic or that showed minimal anticancer activity. We then 

added an additional 85 previously-unscreened HP20 fractions from MICL based 

on chemical similarity to the 107 selected fractions, directed by chemo-taxonomic 

judgment of source organism [11,12]. Next, we screened these 192 HP20 fractions 

against a panel of 35 breast cancer and 37 lung cell lines to identify fractions 

effective against breast cancer in general, and BL-CL in particular (Screen 2). 

We selected 34 HP20 fractions based on their selectivity against breast cancer 

compared to lung cancer, with only seven of those fractions displaying significant 

subtype selectivity against BL-CL (Figure 3.1B “Screen 2”). These seven fractions 

were then fractionated further into 20 subfractions each (labeled M1-M20) using 
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LCMS for the purposes of additional active compound separation, and screened 

in two doses against a panel of 33 breast cancer cell lines (Figure 3.1B “Screen 

3”). This screen identified five subfractions with significant selectivity against BL-

CL, out of which three subfractions originated from the marine sponge PNG07-3-

073 F2 fraction. We analyzed the results of all three screens retrospectively, and 

observed that the PNG07-3-073–F2 was initially identified as a candidate with 

increased tumoricidal activity against BL-CL (Figure 3.2A, Figure 3.1B). The HP20 

fractionation of the sponge also resulted in four other fractions, FW, F1, F3 and 

F4; however, none exhibited sufficient tumoricidal activity and therefore did not 

proceed past the first screen. The F2 was the only fraction from the Topsentia 

sponge PNG07-3-073 to exhibit anti-BL-CL activity (Figure 3.1B). This activity was 

maintained after further fractionation of F2 via LC/MS into 20 subfractions. The M6 

subfraction in particular displayed significant effectiveness against BL-CL (Figure 

3.2B, Figure 3.1B). 

Our next step was to proceed with the identification of the active compounds 

in the M6 subfraction with the aim of isolating the single compounds inducing this 

response (Figure 3.1A). For this purpose, a large amount of product was needed, 

and a scaled-up extraction of bulk PNG07-3-073 sponge ensued. This culminated 

in the purification of two isolates: isolate 1 and 2. 1D NMR analysis (Supplementary 

Table 3.3) identified isolate 1 as the previously reported metabolite halistanol 

sulfate [31] (Figure 3.2C, Supplementary Figure 3.2-3.3) and was validated 

using high-resolution electrospray ionization mass spectrometry (HRESIMS, low-

resolution spectrum shown in Supplementary Figure 3.4). Isolate 2 was identified 

via 1D (Supplementary Figure 3.5-3.6) and 2D (Supplementary Figure 3.7-3.11) 

NMR analysis (Supplementary Table 3.3) as a previously uncharacterized sulfated 

sterol similar to the known compound topsentinol L but with three sulfate groups 

[32] (Figure 3.2D). The structure of the compound was corroborated by the data 



85

obtained through HRESIMS (Low-resolution spectrum shown in Supplementary 

Figure 3.12). We named this compound topsentinol L trisulfate, or TLT (Figure 

3.2D). Halistanol sulfate and TLT were then screened against a panel of 30 breast 

cancer cell lines, and tested for effectiveness against BL-CL. TLT showed significant 

tumoricidal activity against BL-CL breast cancer compared to other subtypes (p = 

0.0076, Figure 3.2C, Figure 3.1B). Halistanol sulfate did not exhibit such activity 

(p = 0.247, Supplementary Figure  3.13). Through a multistep screening and 

fractionation process, we identified a novel sulfated sterol, TLT, which exhibits 

significant subtype selectivity against BL-CL.

3.4.2  Topsentinol L Trisulfate Treatment Inhibits AMPKα  

and CHK1 but Activates p38

Our next goal was to analyze and describe the signaling effects that are 

induced by TLT in cancer cells. For this purpose, we treated eight TLT-sensitive 

BL-CL cell lines with TLT or DMSO control and screened for 217 phosphorylated 

and nonphosphorylated protein changes using reverse phase protein array (RPPA) 

[20]. From this screen, we identified 21 proteins that exhibited a 15% or more 

upregulation or downregulation in protein level, with only eight of these proteins 

exhibiting statistically significant changes (Supplementary Table 3.4). To focus our 

research and narrow down our investigation, we studied the deregulation of three 

proteins, AMPK, CHK1 and p38, for the reasons outlined. AMPK phosphorylation 

recorded the biggest statistically significant change compared to DMSO control of 

all proteins, with 35% reduction in Thr172 phosphorylation, which is required for 

AMPK activation [33] (p = 0.031, Figure 3.3C). Interestingly, phosphorylation of 

ACC, a direct downstream effector of AMPK [34], was also significantly inhibited, 

recording a 26.5% reduction in Ser79, supporting the observation of AMPK 

inhibition (Supplementary Table 3.3, p = 0.03). We also observed significant 
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changes in phosphorylation of CHK1, recording a 16% downregulation in the 

nuclear localization mark Ser345 [35] (p = 0.012, Figure 3.3C). CHK1 has recently 

been suggested to represent a therapeutic target in triple negative breast cancer 

(TNBC) [36], therefore making its inhibition following TLT treatment a potential 

cause of treatment effectiveness. Upregulation of p38 phosphorylation was the 

most significant change observed upon treatment with TLT, with 23% increase in 

Thr180-Tyr182 phosphorylation (p = 0.003, Figure 3.3C). The activation of p38 

has been shown to lead to the direct phosphorylation of BimEL and the induction 

of apoptosis [37].

In order to validate the observations of AMPK, p38, and CHK1 protein 

phosphorylation deregulation following TLT treatment in the RPPA screen, we 

analyzed phosphorylation levels by western blotting. The most consistent down-

regulation observed was an inhibition of AMPK activation across all four cell lines 

(Figure 3.3D). CHK1 activity measured by the phosphorylation of the activation 

site of the protein, Ser317, was inhibited by TLT [38] (Figure 3.3D). In addition, 

the phosphorylation of p38 was also upregulated in three out of four cell lines, 

confirming previous results (Figure 3.3C-3D). These data describe the landscape 

of proteomic changes induced following TLT treatment in BL-CL cells.

3.4.3  Inhibition of AMPK and CHK1, Alone or in Combination 

 is Effective Against BL-CL

Due to the consistent nature of the observation of AMPK inhibition (either 

the protein itself or its downstream effector ACC) and CHK1 (the inhibition of two 

separate activation marks Ser345 and Ser317), as well as the recent discovery of 

CHK1 treatment efficacy against TNBC [36], we decided to test the importance of 

the inhibiting AMPK and CHK1 in BL-CL. As such, we investigated the effects of 

AMPK, CHK1 and AMPK1+CHK1 small molecule targeted inhibition on a panel 
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of 20 breast cancer cell lines. We screened the panel with dorsomorphin C, an 

AMPK inhibitor [39], Ly2603618, a CHK1 inhibitor in phase two clinical trials [40], 

and the combination of both. Our results showed that either treatment strategy is 

significantly more effective against the BL-CL subtype than Luminal/HER2+ breast 

cancer (Figure 3.4). Dorsomorphin C was more than four times more effective 

against BL-CL (average EC50 = 9.33 µM) compared to Luminal/HER2+ breast 

cancer (average EC50 = 37.87 µM), which was a significant difference (p = 0.011, 

Figure 3.4A). Ly2603618 on the other hand was almost eight times more toxic 

against BL-CL (average EC50 = 0.72 µM) in comparison to Luminal/HER2 breast 

cancer (average EC50 = 5.73 µM), which was also a significant difference (p = 

0.001, Figure 3.4B). Interestingly, the combination therapy was also significantly 

more effective against BL-CL (p= 0.005) (Figure 3.4C). These results validate the 

importance of the inhibitory effects of TLT on AMPK and CHK1 in BL-CL, and 

suggest the potential use of AMPK or CHK1 inhibition as a treatment. 

3.4.4  TLT Sensitivity Signature Predicts Breast and Bladder  

Cancer Response in Human Tumors

Next, we sought to identify classes of solid tumors that are most sensitive 

to TLT using an unbiased computational approach. The gene-expression profiles 

of cancer cells are a valuable tool in the comprehension of transcriptional 

changes indicative of treatment. These profiles enable the identification of drug 

sensitivity across various cancer types. Such expression profiles may be used 

to characterize the genes whose expression is indicative of drug response [29]. 

Accordingly, we generated a TLT sensitivity signature that reflected the genomic 

changes in eight TLT-sensitive BL-CL cell lines (Figure 3.5A). We treated the cell 

lines with either TLT or DMSO control and used RNA-sequencing to profile the 

samples. We identified 131 genes that significantly upregulated or downregulated 
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and incorporated the expression values for these genes into a predictive signature 

(Figure 3.5A). We then used this signature to predict drug sensitivity for the tumors 

from the PANCAN12 gene-expression dataset, which contains expression profiles 

for 12 cancer types [22,41]. The outcome of this process is a probability for each 

tumor sample, indicating how likely each tumor would respond to TLT treatment. 

Breast (mean = 0.71) and bladder cancer (mean = 0.69) were predicted to be 

most sensitive to TLT (1.00 is highest possible sensitivity, and 0.00 is lowest), 

while glioblastoma was predicted to be least sensitive (mean = 0.16, Figure 3.5B). 

Low TLT sensitivity was also predicted for uterine corpus endometrial carcinoma 

(UCEC mean = 0.29) and kidney renal clear cell (KIRC mean = 0.35). Medium 

TLT sensitivity was recorded for the rest of the profiled cancer types, including 

colon adenocarcinoma (COAD mean = 0.42), lung adenocarcinoma (LUAD mean 

= 0.43) and ovarian serous cystadenocarcinoma (OV mean = 0.56) (Figure 3.5B). 

These results are in line with the in vitro observations of TLT effectiveness against 

breast cancer (BL-CL in particular) and suggest future investigation of TLT as an 

effective therapeutic lead against bladder cancer. 

3.5  Discussion

We have identified and described a previously uncharacterized trisulfated 

sterol that we have named topsentinol L trisulfate and which exhibits increased 

tumoricidal activity against BL-CL. Interestingly, halistanol sulfate, another 

trisulfated sterol isolated from the same marine organism as TLT, did not exhibit 

similar activity against BL-CL (Supplementary Figure 3.13). This could potentially 

be attributed to the differences in the side chains of these two compounds, which 

are otherwise structurally similar (Figure 3.2C-D). 

Furthermore, we describe the treatment effect of TLT on BL-CL, highlighting 

the particular changes in the activation of AMPK, CHK1 and p38. AMPK is a 
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heterotrimeric serine/threonine kinase complex that is regulated by adenylate 

levels in the cell and functions as part of an evolutionarily conserved energy-

sensing pathway [42,43]. The effective result of AMPK activation is the avoidance 

of bioenergetic catastrophe and cell death through the conservation of cellular 

energy [43]. Interestingly, the role of AMPK in cancer is complex, as AMPK can 

exert pro- or antitumor effects based on cell context. AMPK is central to a tumor 

suppressor network, the LKB1-AMPK-TSC-mTOR signaling cascade, known 

to regulate cell growth and proliferation in response to stress [44]. Conversely, 

retaining continuous activation of AMPK leading to an enhanced ability to adapt to 

metabolic stress may function to promote tumor survival and growth. For example, 

the activation of AMPK in response to stresses such as hypoxia and nutrient 

deprivation provides cancers cells with the metabolic flexibility needed for survival 

[43]. These dueling roles of AMPK highlight the complexity and dichotomy of the 

kinase’s role in cancer cells. AMPK agonists acting as anticancer agents have 

been suggested through the use of the therapeutic biguanides: metformin and 

phenformin. Metformin is currently used to treat type II diabetes and has been 

associated with a significantly lower cancer incidence in patients relative to those 

using other medications to manage their diabetes [39,45]. However, recent work 

has indicated that the antitumorigenic effects of metformin and another known 

AMPK agonist, AICAR, are due to AMPK-independent effects [46]. Interestingly, 

other studies have implicated AMPK as a mediator of cellular proliferation and 

survival, showing the promising effect of AMPK inhibition as a cancer therapy 

[47,48]. We observe similar effects against breast cancer, and particularly the BL-

CL subtype which exhibits higher sensitivity against dorsomorphin C than Luminal/

HER2+ breast cancer (Figure 3.4A). This observation is in line with the AMPK 

inhibitory effects induced in BL-CL breast cancer when treated with TLT (Figure 

3.3C-D). 
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Another aspect of the inhibitory effects promoted by TLT treatment was the 

downregulation of CHK1 activation.  Upon cellular exposure to various genotoxic 

stresses, CHK1 is activated by ATR-mediated phosphorylation following DNA-

damage leading to the phosphorylation of cdc25. CHK1 assumes the role of the 

major cell-cycle checkpoint kinase mediating S- and G2-arrest [36]. In BL-CL, the 

rationale of CHK1 targeted therapy is supported by the documented evidence of 

alterations in the DNA damage repair machinery through either the high rate of 

BRCA or p53 mutations [6,7,9]. Therefore, another loss of a DNA damage repair 

component may lead to the cell’s inability to properly fix chromosomal damage 

and enter apoptosis. Indeed, Albiges, et al. have shown that CHK1 is potential 

therapeutic target in TNBC, with CHK1 inhibition observed to induce mitotic cell 

death in TNBC cell lines [36]. In our work, we complement this finding by recording 

the selectivity of CHK1 inhibition against BL-CL, which is concordant with the 

TNBC subtype (Figure 3.4B). The inhibitory effects of TLT on AMPK and CHK1 

shed light on the potential therapeutic benefit of AMPK and/or CHK1 inhibition 

on BL-CL. However, further work is required to validate these findings. Although 

dorsomorphin C is a potent AMPK inhibitor, studies have shown this compound to 

exhibit high affinity towards other proteins such as BMP and ALK [49]. 

Finally, our work describes the projected efficacy of TLT against a variety of 

human tumors, highlighting the optimal effect of the compound against breast and 

bladder cancer. In a recent TCGA study characterizing the molecular landscape 

of urothelial bladder carcinoma, a p53 mutation rate of 49% was recorded in 

the samples tested [50], drawing a similarity to the common observation of p53 

mutation in BL-CL. More interestingly, among the key pathway nodes deregulated 

in bladder cancer, the LKB1/STK11-TSC-mTOR node was among the most 

commonly deregulated. LKB1, the deactivator of AMPK, was recorded to contain 

copy number alternations (CNAs) in 11% of all cases. TSC1 and TSC2 recorded 
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CNAs in 16% and 9% of all cases, as well as inactivating mutations in 8% and 2%, 

respectively [50]. Thus, one hypothesis is that the inhibitory effect of TLT on CHK1 

and AMPK (and subsequently the LKB1-AMPK-TSC-mTOR node) could lead to 

an equally effective response against bladder cancer. Further work is needed to 

elucidate the exact mechanism of action of TLT and its projected effectiveness 

against bladder cancer. 

In this study, we have described the discovery and identification of a 

previously unreported sulfated sterol, as well as its signaling effect on BL-CL. We 

have described two potential therapeutic targets of BL-CL that can be exploited 

for the benefit of treatment efficacy. This lays the groundwork necessary for the 

exploration of AMPK and CHK1 as potential targets of BL-CL treatment, with a 

need to further characterize and delineate TLT’s role as an investigational anti-BL-

CL compound. 
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Figure 3.1: The overall design of the step-wise drug screen. (A) 2778 HP20 
fractions were first screened. 
One hundred ninety-two HP20 fractions were selected based on tumoricidal 
properties and chemo-taxonomic judgment of source organism. These fractions 
were then screened to identify BL-CL selective inhibitors. Seven candidate 
fractions were identified and further subfractionated. The subfractions were in 
turn screened for anti-BL-CL properties. After a candidate anti-BL-CL subfraction 
was identified, the active compound of the fraction was isolated, and its effect on 
BL-CL analyzed through proteomic and biochemical methods. A gene-expression 
signature of sensitivity to the active compound was then generated and used to 
project compound sensitivity across various cancer types. (B) The path towards 
identifying TLT. Marine sponge PNG07-3-073 was diced and soaked in methanol 
to obtain a crude extract, which was fractionated on HP20SS resin. Among the 
five fractions obtained, only the F2 fraction exhibited tumoricidal activity (Screen 
1). This activity was amplified against BL-CL (screen 2). PNG07-3-073-F2 was 
then further fractionated, and the subfractions investigated for anti-BL-CL activity, 
where the M6 fraction was identified as being BL-CL selective (Screen 3). Large-
scale isolation of PNG07-3-073 ensued, culminating in the purification of TLT and 
its identification as the active compound in PNG07-3-073 responsible for anti-BL-
CL effects (Screen 4).
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Figure 3.2: Topsentinol L trisulfate, isolated from the marine sponge Topsentia sp. 
(PNG07-3-073), is selective against BL-CL. 
Cell lines were divided accordingly and scatter dot diagrams plotted. Every 
dot represents a cell line, with the y value representing the cell line’s viability 
or compound EC50 posttreatment. The horizontal line indicates the mean for 
every group. BL-CL cell lines exhibit significantly lower cell viability when treated 
with (A) PNG07-3-073-F2 and (B) PNG07-3-073-F2-M6 than Luminal/HER2+ 
cell lines. (C) Chemical structure of halistanol sulfate. (D) Chemical structure 
of topsentinol L trisulfate. (E) Response to topsentinol L trisulfate treatment as 
measured by compound EC50. BL-CL cell lines are significantly more sensitive to 
TLT than Luminal/HER2+ cell lines. 
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Figure 3.3: TLT inhibits AMPK and CHK1 but activates p38. 
(A) A panel of eight BL-CL cell lines were treated with TLT at a 105µM dose 
(approximate average EC75 dose across all eight lines) for 6 hrs, and compared 
to DMSO control via RPPA that investigated 217 proteins. Eight proteins 
displayed 15% or more significant deregulation in protein levels, among which, 
AMPK, CHK1 and p38 are displayed here in bar graphs. Error bars represent 
SEM. (B) Observations made for p38, AMPK and CHK1 in the RPPA experiment 
were validated by western blotting. A panel of four BL-CL cell lines were treated 
similarly with TLT at a 105µM dose for 6 hrs, and compared to DMSO control. 
TLT treatment inhibits AMPK and CHK1, and activates p38.  
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Figure 3.4: Singular or dual inhibition of AMPK and CHK1 is selective against BL-
CL. 
(A) Cell lines were divided accordingly and scatter dot diagrams of treatment 
EC50 values plotted. Every dot represents a cell line, with the y value 
representing the cell line’s treatment EC50 and the horizontal line indicating 
the mean for each group. BL-CL cell lines are significantly more sensitive to (A) 
AMPK inhibition through dorsomorphin C, (B) CHK1 inhibition through Ly2603618 
and (C) the combined inhibition of both AMPK and CHK1 through concurrent 
treatment of dorsomorphin C and Ly2603618.
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Figure 3.5: TLT sensitivity is predicted in breast and bladder cancer using gene-
expression signature analysis. 
(A) The gene-expression signature for TLT sensitivity was generated by treating 
eight BL-CL cell lines with either TLT or DMSO. The heatmap columns are the 
eight cell lines making up eight controls on the left (treated with DMSO) and eight 
treated samples on the right (treated with TLT). Each row represents a gene that 
is part of the signature. There are a total of 131 genes making up the signature. 
Red indicates upregulation while blue indicates downregulation of the gene. (B) 
The TLT sensitivity signature was used to project the sensitivity of 12 different 
cancers. Results are shown in a bar graph where the x axis represents the 12 
cancer types assayed and the y axis represents the predicted score of TLT 
sensitivity (minimum = 0, maximum = 1). Each column portrays the mean of the 
TLT sensitivity scores across the samples in a particular cancer type. The error 
bars indicate SEM. Breast and bladder cancer were predicted to be the most 
sensitive to TLT treatment, with glioblastoma being the least sensitive. Legend = 
BLCA: bladder urothelial carcinoma. BRCA: breast invasive carcinoma. COAD: 
colon adenocarcinoma. GBM: glioblastoma multiforme. HNSC: head and neck 
squamous cell carcinoma. KIRC: kidney renal clear cell carcinoma. LUAD: lung 
adenocarcinoma. LUSC: lung squamous cell carcinoma. OV: ovarian serous 
cystadenocarcinoma. READ: rectum adenocarcinoma. UCEC: uterine corpus 
endometrial carcinoma.
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Supplementary Figure 3.1: Image of the marine invertebrate Topsentia sp. 
sponge labeled PNG07-3-073. 
The sponge specimen PNG07-3-073 was identified as Topsentia sp. (OTU 
UU1273), order Halichondrida, family Halichondriidae. The creamy white sponge 
is massive with thick fistular processes, a firm texture and slightly hispid surface. 
The ectosome is not detachable, consisting of a thin paratangential layer of 
spicules with protruding choanosomal spicules. The interior of the sponge is 
densely spiculous and completely disorganized with plumose bundles of spicules 
just below the surface, spongin not visibly present. The spicules are fusiform 
oxea in a range of sizes and widths, generally in categories: ~1125-1325 × 
42-48µm, 715-1050 × 25µm, 525-825 × 15µm. Topsentia sp. (OTU UU1273) 
does not compare entirely to previously described species of Topsentia and 
likely represents an undescribed species. The sponge was collected by SCUBA 
November 21, 2007 from New Britain, Papua New Guinea (S 05° 19.680’, 
E 150° 17.674’) and immediately frozen. The specimen has been described 
in SpongeMaps, available at the following link: http://www.spongemaps.
org/#!Topsentia-sp-OTU-UU1273-demosponge/zoom/c21kz/imagel3v
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Supplementary Figure 3.2: 1D NMR spectra for halistanol sulfate in CD3OD 1H 
spectrum. 
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Supplementary Figure 3.3: 1D NMR spectra for halistanol sulfate in CD3OD 13C 
spectrum.
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Supplementary Figure 3.4: Low-resolution mass spectra for (A) halistanol sulfate.
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Supplementary Figure 3.5: 1D NMR spectra for topsentinol L trisulfate in CD3OD 
1H spectrum. 
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Supplementary Figure 3.6: 1D NMR spectra for topsentinol L trisulfate in CD3OD 
13C spectrum.

!

ppm102030405060708090100110120130140

H

HO3SO

HO3SO
OSO3H

H

HH

H
16

1

5
10 8

1119

18

14

20
21

23

28

25

D



103

Supplementary Figure 3.7: 2D NMR spectra for topsentinol L trisulfate in CD3OD 
gCOSY spectrum.
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Supplementary Figure 3.8: 2D NMR spectra for topsentinol L trisulfate in CD3OD 
zTOCSY spectrum.
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Supplementary Figure 3.9: 2D NMR spectra for topsentinol L trisulfate in CD3OD 
ROESY spectrum.

C 
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Supplementary Figure 3.10: 2D NMR spectra for topsentinol L trisulfate in 
CD3OD gHSQC spectrum.

D 



107

Supplementary Figure 3.11: 2D NMR spectra for topsentinol L trisulfate in 
CD3OD gHMBC spectrum.

E 
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Supplementary Figure 3.12: Low-resolution mass spectra for (B) topsentinol L 
trisulfate.

B

HRESIMS: m/z 619.2971
[M–SO3–H]– (calculated for
C30H51O9S2, 619.2980,
Δ = -1.5 ppm
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Supplementary Figure 3.13: Halistanol sulfate is not selective against BL-CL in 
comparison to Luminal/HER2+ breast cancer. 
The cell lines of the investigated breast cancer panel were divided accordingly 
and scatter dot plot diagrams of halistanol sulfate EC50 values plotted. Every 
dot represents a cell line, with the y value representing the cell line’s halistanol 
sulfate compound EC50 and the horizontal line indicating the mean value for 
every group. There is no significant difference between the response of BL-CL 
and Luminal/HER2+ cell lines to halistanol sulfate.
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Supplementary Table 3.1

Characteristics of the breast cancer cell lines used in the study for all screens 
and drug response assays. 

 
 

Breast Cancer Cell Line ER PR HER2 Gene-expression Subtype Media Screen 1 Screen 2 Screen 3 Screen 4 AMPKi/CHKi Screen
AU565 - - + luminal/HER2 positive RPMI x x x x
BT20 - - - basal DMEM x x x
BT474 + + + luminal/HER2 positive DMEM x x x x x
BT483 + + - luminal RPMI x x x x
BT549 - - - claudin low RPMI x x x
Cama-1 + - - luminal DMEM x x x
HCC1143 - - - basal RPMI x x x x
HCC1395 - - - Basal RPMI x x x
HCC1419 - - + luminal/HER2 positive RPMI x x x x
HCC1500 + + - Basal RPMI x
HCC1569 - - + basal/HER2 positive RPMI x x x
HCC1599 - - - basal RPMI x x
HCC1806 - - - basal RPMI x x x x
HCC1937 - - - basal RPMI x x x x
HCC1954 - - + basal/HER2 positive RPMI x x x
HCC2218 - - + luminal RPMI x x x
HCC38 - - - claudin low RPMI x x x x
HCC70 - - - basal RPMI x x x x
Hs578T - - - claudin low DMEM x x x x x
JIMT-1 - - + basal/HER2 positive DMEM x x x
MCF7 + + - luminal DMEM x x x x x
MD134VI + - - luminal RPMI x x x
MD157 - - - claudin low DMEM x x x x
MD175VII + - - luminal RPMI x x x x
MD231 - - - claudin low RPMI x x x x x
MD415 + - - luminal RPMI x x x x
MD436 - - - claudin low RPMI x x x x
MD453 - - - luminal RPMI x x x
MD468 - - - basal RPMI x x x x
MDAMB361 + - + luminal/HER2 positive DMEM x x x
SKBR3 - - + luminal/HER2 positive RPMI x x x x
T47D + + - luminal RPMI x x x x
UACC812  - - + luminal/HER2 positive DMEM x x x x
ZR75-1 + - - luminal RPMI x x x x
ZR75-30 + - + luminal/HER2 positive RPMI x
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Supplementary Table 3.2

Characteristics of the lung cancer cell lines used in the study for all screens and 
drug response assays. 

 
 

Lung Cancer Cell Line Subtype K-Ras Mut P53 Mut EGFR Mut Media Screen 1 Screen 2
A549 Adenocarcinoma G12S x x F12K x
CALU3 Adenocarcinoma x M237I x EMEM x
H1155 Large cell Q61H R273H x ACL-4 x
H1355 Adenocarcinoma G13C E285K Q1159H ACL-4 x
H1373 Adenocarcinoma G12C E339* Intron RPMI x
H1395 Adenocarcinoma x x x RPMI x
H1437 Adenocarcinoma x R267P x RPMI x
H1563 Adenocarcinoma x x x RPMI x x
H1581 Large cell x Q144* x ACL-4 x x
H1650 Adenocarcinoma x V225_splic ELREA746del RPMI x x
H1651 Adenocarcinoma x C176Y x ACL-4 x
H1693 Adenocarcinoma x Q331_splic x RPMI x
H1703 Adenocarcinoma x A307_splic x RPMI x
H1792 Adenocarcinoma G12C E224_splicex RPMI x
H1793 Adenocarcinoma x R209* C311F HITES x
H1944 Adenocarcinoma G13D x x RPMI x x
H1975 Adenocarcinoma x x T790M, L858R RPMI x x
H2009 Adenocarcinoma G12A R273L Intron HITES x
H2030 Adenocarcinoma G12C G262V x RPMI x
H2085 Adenocarcinoma x ND ND ACL-4 x
H2122 Adenocarcinoma G12C C176F, Q16x RPMI x
H2126 Adenocarcinoma x E62* x ACL-4 x
H23 Adenocarcinoma G12C M246I x RPMI x x
H2405 Adenocarcinoma x x x ACL-4 x
H322 Adenocarcinoma x R248L x RPMI x
H358 Adenocarcinoma G12C x x RPMI x
H441 Adenocarcinoma G12V R158L x RPMI x
H460 Large cell Q61H x x RPMI x
H520 Squamous x W146* x RPMI x x
H522 Adenocarcinoma x P191fs FRA   x RPMI x
H661 Large cell x R158L, S21 x RPMI x x
H838 Adenocarcinoma x x x RPMI x
HCC4006 Adenocarcinoma x x ELR746del INFRAME RPMI x x
SKLU1 Adenocarcinoma G12D H193R x EMEM x
SKMES1 Squamous x E298* x EMEM x
SW1573 Squamous G12C Intron x RPMI x
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Supplementary Table 3.3

13C and 1H chemical shifts of halistanol sulfate and topsentinol L trisulfate in 
CD3OD. 

 
 

 Halistanol sulfate (mkh2-141-2) Topsentinol L trisulfate (mkh2-141-4) 
Position C (mult.) H (mult., J in Hz) C (mult.) H (mult., J in Hz) 

1 39.4 2.07 (br d, 14.3) 39.4 2.07 (m) 
  1.48 (dd, 15.4, 2.9)  1.48 (dd, 14.9, 3.7) 

2 75.7 4.80 (s) 75.7 4.80 (s) 
3 75.6 4.75 (s) 75.6 4.75 (br d, 22.3) 
4 25.2 2.28 (br d, 14.6) 25.2 2.28 (br d, 14.5) 
  1.79 (br t, 13.4)  1.78 (m) 

5 45.5 1.63 (m) 45.5 1.62 (m) 
6 78.9 4.19 (td, 11.1, 4.4) 78.9 4.19 (td, 11.1, 4.4) 
7 40.2 2.37 (dt, 12.2, 4.3) 40.2 2.36 (dt, 12.1, 4.3) 
  1.05 (m)  1.04 (m) 

8 35.3 1.53 (m) 35.3 1.53 (m) 
9 56.0 0.76 (m) 56.0 0.75 (m) 
10 37.8  37.8  
11 22.0 1.54 (m) 22.0 1.55 (m) 
  1.31 (m)  1.31 (m) 

12 41.3 2.00 (br d, 12.4) 41.2 2.00 (dt, 12.4, 2.9) 
  1.15 (m)  1.17 (m) 

13 43.9  43.8  
14 57.8 1.11 (m) 57.8 1.11 (m) 
15 25.3 1.63 (m) 25.3 1.59 (m) 
  1.11 (m)  1.11 (m) 

16 29.3 1.86 (m) 30.3 1.73 (m) 
  1.29 (m)  1.29 (m) 

17 57.5 1.16 (m) 57.5 1.19 (m) 
18 15.4 1.05 (s) 15.4 1.05 (s) 
19 12.6 0.69 (s) 12.8 0.71 (s) 
20 37.8 1.38 (m) 42.2 2.06 (m) 
21 19.7 0.94 (d) 21.9 1.05 (d, 7.2) 
22 36.8 1.56 (m) 140.8 5.14 (dd, 15.2, 8.5) 
  0.90 (m)  NA 

23 29.4 1.63 (m) 128.5 5.05 (dd, 15.6, 9.5) 
  0.71 (m)  NA 

24 45.5 0.99 (m) 57.8 1.34 (m) 
25 34.2  29.9 a 1.70 (m) a 

26 27.9 0.86 (s) 22.3 a 0.86 (dd, 6.6, 1.6) a 

27 27.9 0.86 (s) 19.8 a 0.80 (dd, 6.7, 4.7) a 

28 15.1 0.83 (d) 29.9 b 1.70 (m) b 

29 27.9 0.86 (s) 22.2 b 0.86 (dd, 6.6, 1.6) b 

30 NA NA 19.6 b 0.80 (dd, 6.7, 4.7) b 

 

a Chemical shifts cannot be distinguished from those denoted by b. 
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Supplementary Table 3.4

RPPA results of the eight BL-CL cell lines treated with DMSO or TLT. 
 
 

Protein Paired TTEST DMSO Av TLT Av Mean diff DMSO-M4 % Change
AMPK-alpha_pT172 0.030926158 0.2468539 0.18237 0.06448569 -35.360163

14-3-3-epsilon 0.127055041 0.0924194 0.08764 0.004775493 -5.448744719
14-3-3-zeta 0.611359948 0.6997833 0.69274 0.007044538 -1.016911279

4E-BP1 0.88102686 0.2872652 0.286 0.001265921 -0.442630957
4E-BP1_pS65 0.688000793 0.6132918 0.60668 0.006608546 -1.089290952

4E-BP1_pT37_T46 0.052849589 0.7249001 0.83875 -0.11385355 13.57413446
53BP1 0.129295665 0.4471605 0.50738 -0.060216947 11.86827429
A-Raf 0.021802658 0.3242939 0.30103 0.023259764 -7.726620108

MAPK_pT202_Y204 0.063897497 0.3657461 0.27199 0.09375541 -34.47007848
ACC1 0.057831968 0.7090081 0.66169 0.047320333 -7.151459425

ACVRL1 0.204285214 0.0932188 0.09812 -0.004902111 4.995992268
ADAR1 0.722298854 0.1220255 0.12328 -0.001252066 1.015647984

Akt 0.019548209 0.572984 0.52345 0.04953045 -9.462243974
Akt_pS473 0.956418547 0.3849057 0.38686 -0.001955655 0.505518217
Akt_pT308 0.848831423 1.0898163 1.07076 0.019051852 -1.779275781

AMPK-alpha 0.494529968 0.8115008 0.82971 -0.01821201 2.194977551
FAK_pY397 0.080659613 0.0997996 0.08071 0.019094485 -23.65957935
ACC_pS79 0.023981823 0.6414503 0.51904 0.122410764 -23.5840916
Annexin-VII 0.479745507 0.1808896 0.19652 -0.015631946 7.954316733

AR 0.086105524 0.1613788 0.15309 0.008291424 -5.416139865
ARHI 0.374227021 0.0561487 0.0545 0.001644846 -3.017852599
ATM 0.310104666 0.1761461 0.17153 0.004614255 -2.690027967

ATM_pS1981 0.937022455 0.0777696 0.07816 -0.000390239 0.499282649
ATP5H 0.186610373 0.0743909 0.07776 -0.003372651 4.337059112

ATR 0.92837797 0.2607643 0.26007 0.000696483 -0.26780838
b-Catenin 0.584632507 0.6792402 0.71601 -0.036766439 5.134930087

b-Catenin_pT41_S45 0.070481607 0.1303322 0.13996 -0.009625835 6.877656406
B-Raf 0.032395628 1.009608 0.94963 0.059981572 -6.316333569

B-Raf_pS445 0.778696211 0.1716865 0.17297 -0.001285076 0.742940326
Bad_pS112 0.010420165 0.4945067 0.55515 -0.060640319 10.9232895

Bak 0.008721632 0.1909752 0.2054 -0.0144239 7.022377178
BAP1 0.259977565 0.2223549 0.21511 0.007244081 -3.367604315
Bax 0.343854359 0.3507281 0.36731 -0.016583733 4.514891461

Bcl-xL 0.13933645 0.5464368 0.57938 -0.032944392 5.68613386
Bcl2 0.422689711 0.0737728 0.07546 -0.001686947 2.235559768

Beclin 0.302512426 0.1887283 0.22117 -0.032440994 14.66794427
Bid 0.654051893 0.2214305 0.22455 -0.003117031 1.388138801
Bim 0.601368016 0.5163407 0.53035 -0.014011711 2.641962346

BRCA2 0.634796435 0.1778776 0.18588 -0.008002506 4.305198123
GAPDH 0.076587901 0.511228 0.41902 0.092207104 -22.00536928

c-Kit 0.137841447 0.1486842 0.15822 -0.009531557 6.024403154
c-Met 0.100343269 0.149599 0.14234 0.007259813 -5.100362748

c-Met_pY1234_Y1235 0.607157419 0.1791378 0.1818 -0.002660777 1.463584969

c-Myc 0.823539509 0.3123089 0.3083 0.00400808 -1.300054814
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Supplementary Table 3.4 (continued)
 

Protein Paired TTEST DMSO Av TLT Av Mean diff DMSO-M4 % Change
C-Raf 0.00569841 0.2922268 0.26106 0.031170474 -11.94013341

C-Raf_pS338 0.181233222 0.4905809 0.45703 0.033551782 -7.341279215
Caspase-7-cleaved 0.199719195 0.0678278 0.07255 -0.004718936 6.504683391

Caspase-8 0.111844814 0.3088891 0.29177 0.017117839 -5.866869961
Caveolin-1 0.330102248 0.454963 0.44035 0.014615083 -3.31898519

CD29 0.347436034 0.031597 0.03009 0.001504719 -5.00034688
CD31 0.027495297 0.0240145 0.02141 0.002608377 -12.18521243
CD49b 0.000681184 0.090206 0.08321 0.006999799 -8.412591597
CDK1 0.527951409 0.2966172 0.30303 -0.006412135 2.116011117
Chk1 0.517023385 0.4436631 0.43806 0.005598172 -1.277931995

Stat3_pY705 0.061361639 0.288247 0.23968 0.048567263 -20.26340212
Chk2 0.900777361 0.3054057 0.30321 0.002196345 -0.724366013

Chk2_pT68 0.234845145 0.1516815 0.15712 -0.005434188 3.458717341
Claudin-7 0.838258667 0.5496062 0.53524 0.014368512 -2.684510622

Collagen-VI 0.581827632 0.1085949 0.09859 0.010000297 -10.14284249

Complex-II-Subunit 0.019357592 0.4883395 0.5321 -0.043759206 8.223889209
Cox-IV 0.21180139 0.0470478 0.04401 0.003040435 -6.908917587

p70-S6K_pT389 0.031044202 0.1669332 0.14084 0.026097196 -18.53020434
Cyclin-B1 0.047649153 1.5024802 1.70111 -0.19862495 11.67622972
Cyclin-D1 0.255149632 0.3947857 0.37585 0.018939256 -5.039094233
Cyclin-E1 0.471229306 0.3046325 0.2948 0.009828166 -3.333793248

Cyclophilin-F 0.588089846 1.2412809 1.12366 0.117620772 -10.4676463
DJ1 0.057596359 0.3065183 0.31909 -0.012574353 3.940658557
Dvl3 0.305796393 0.3631395 0.35437 0.008770662 -2.475009209

E-Cadherin 0.414543231 0.2309039 0.26116 -0.030252555 11.58407426
E2F1 0.465992121 0.0490497 0.05045 -0.001399862 2.774776277
eEF2 0.024329272 0.4482607 0.42437 0.023888806 -5.629214761

eEF2K 0.019692069 0.5732332 0.5177 0.055530627 -10.72635653
EGFR 0.694306782 0.6800515 0.66891 0.011142733 -1.665807521
Smac 0.20574698 0.4343177 0.36964 0.064677673 -17.4974742

EGFR_pY1173 0.30499704 0.1638452 0.17395 -0.010102281 5.80766297
eIF4E 0.125804471 0.8195001 0.79346 0.026037641 -3.28152156
eIF4G 0.878724419 1.035565 1.03183 0.003731644 -0.361651783

ER-alpha 0.504178772 0.0388962 0.0377 0.001192711 -3.163397879
ER-alpha_pS118 0.634911633 0.3953871 0.39946 -0.004070958 1.019120408

ERCC1 0.007891293 0.1646311 0.19196 -0.02732517 14.23510243
Ets-1 0.436109849 0.2073012 0.20972 -0.002419888 1.153860178
FAK 0.00596371 0.3746999 0.35153 0.023166155 -6.590023246

Chk1_pS345 0.012431443 0.2876721 0.24789 0.039780631 -16.0476008
FASN 0.010279931 0.7383777 0.68099 0.057383377 -8.426410979

Fibronectin 0.287511878 0.0348751 0.03279 0.002080442 -6.34384711
FoxM1 0.021099513 0.466201 0.42671 0.039490719 -9.254691723
FoxO3a 0.551797236 0.1353121 0.1374 -0.002085824 1.518089719

FoxO3a_pS318_S321 0.943894769 0.5589604 0.56027 -0.001312249 0.234216082

G6PD 0.228099421 0.0796185 0.07617 0.003448534 -4.52742041
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Supplementary Table 3.4 (continued)
 

Protein Paired TTEST DMSO Av TLT Av Mean diff DMSO-M4 % Change
Gab2 0.129420955 0.2553089 0.24282 0.012488801 -5.143232028

EGFR_pY1068 0.28897535 0.0780788 0.09203 -0.013946575 15.15514849
GATA3 0.444543139 0.2890905 0.27977 0.009317527 -3.330389022

GCN5L2 0.581933997 0.4024414 0.41069 -0.008251661 2.009204067
GPBB 0.693848285 0.2242394 0.23134 -0.00710235 3.070067796

GSK-3ab 0.107780308 0.8094326 0.82645 -0.017016942 2.059041866
GSK-3ab_pS21_S9 0.550735827 0.6241206 0.64794 -0.023816819 3.675790205

GSK-3b_pS9 0.177310106 0.4761323 0.5083 -0.03216499 6.327988207
Gys 0.995834943 0.518761 0.51881 -5.10903E-05 0.009847553

Gys_pS641 0.541992189 0.3732588 0.36622 0.007043452 -1.923308627
HER2 0.263192338 0.0281805 0.02605 0.002128034 -8.16827614

NDRG1_pT346 0.168014205 0.3168807 0.37585 -0.05897111 15.68998963
HER3 0.192076665 0.2256087 0.20685 0.018756371 -9.06751822

HER3_pY1289 0.334961404 0.3471657 0.33777 0.009395071 -2.781494189
Heregulin 0.356306262 0.158463 0.16414 -0.005672826 3.456177062

HIAP 0.418473854 0.4569881 0.44928 0.00770568 -1.715108173
Histone-H3 0.859920263 0.1358833 0.13816 -0.002276057 1.647415041
IGF1R-beta 0.633604069 0.2032754 0.20619 -0.002917845 1.415102345

HER2_pY1248 0.104377998 0.0403153 0.04791 -0.0075911 15.8456832
INPP4b 0.224786181 0.1661943 0.16219 0.004006157 -2.470067174

IRS1 0.149211343 0.6053276 0.58946 0.015868518 -2.692047293
JAB1 0.551441944 0.0690752 0.06787 0.001201038 -1.769508052

JNK_pT183_Y185 0.622517253 0.1801214 0.18676 -0.006641022 3.555867298
JNK2 0.620583516 0.4413883 0.43619 0.005199641 -1.192062542
Lck 0.404041823 0.1615087 0.15269 0.008820444 -5.776766198

Annexin-I 0.202592026 0.2944506 0.35136 -0.056913782 16.19793713
Mcl-1 0.869330062 0.3021391 0.30475 -0.002608929 0.856093758

MDM2_pS166 0.184798884 0.4228332 0.43978 -0.016949566 3.854077221
MEK1 0.749093243 0.4931058 0.48759 0.005517333 -1.131555193

MEK1_pS217_S221 0.330871457 0.4264982 0.40648 0.020019075 -4.924994372
MEK2 0.046725637 0.262228 0.24935 0.012881695 -5.166185233
Merlin 0.110425164 0.6224777 0.57406 0.048420054 -8.434701674
MIG6 0.65818707 0.2714421 0.26646 0.004981295 -1.869428612
MSH2 0.232864132 0.7096262 0.69032 0.019305584 -2.796611216
MSH6 0.353124034 0.8008488 0.8208 -0.019953461 2.43097042
mTOR 0.10247673 1.0000496 0.97459 0.025457724 -2.612141883

mTOR_pS2448 0.535634771 0.5736505 0.58052 -0.006872585 1.183860668
Myosin-11 0.130662479 0.2516351 0.24104 0.010593952 -4.3950794

Myosin-IIa_pS1943 0.136330833 0.5590272 0.52052 0.038505586 -7.397499919

N-Cadherin 0.115979527 0.108239 0.0995 0.008736554 -8.780236006
N-Ras 0.424040717 0.0373128 0.03559 0.001720188 -4.83299624

NAPSIN-A 0.000244622 0.1888714 0.1789 0.009967334 -5.571328945
c-Jun_pS73 0.039255625 0.2882244 0.34707 -0.058847805 16.95549391

NF-kB-p65_pS536 0.700093069 0.5674735 0.54107 0.026404604 -4.880082075
Notch1 0.661226615 0.6396916 0.65434 -0.01464397 2.237990814



116

Supplementary Table 3.4 (continued)
 

Protein Paired TTEST DMSO Av TLT Av Mean diff DMSO-M4 % Change
p16INK4a 0.089057378 0.2589195 0.24097 0.017949144 -7.448692453

p21 0.072152138 0.589791 0.68726 -0.09746523 14.18179013
p27-Kip-1 0.101448071 0.1353413 0.12438 0.010959469 -8.811151583

p27_pT157 0.628732156 0.4132618 0.42135 -0.008085064 1.918861914
p27_pT198 0.015523921 0.380493 0.4207 -0.040209916 9.557793229
p38-alpha 0.00774209 0.3541716 0.32024 0.033932183 -10.59587949

p38 0.03267437 0.8570567 0.8278 0.029257917 -3.534423672
p38_pT180_Y182 0.002755169 0.4029123 0.52386 -0.120951629 23.08836548

p53 0.314234566 0.0975719 0.09485 0.002724253 -2.872240696
Snail 0.021853524 0.2435867 0.32022 -0.076637945 23.93255874

p70-S6K1 0.172006967 0.2027094 0.1965 0.006210831 -3.160751165
PAI-1 0.360871698 0.7728393 0.79675 -0.02391276 3.001280111

PARP-cleaved 0.118830095 0.0705842 0.06733 0.00325635 -4.836555963
PARP1 0.967407249 2.6880892 2.69449 -0.006399885 0.237517567
Paxillin 0.906536745 0.5151816 0.51694 -0.001762799 0.341003507
PCNA 0.06253059 0.2458135 0.23039 0.015419488 -6.692659587

Pdcd-1L1 0.112960284 0.1537748 0.21549 -0.061714605 28.63927851
Pdcd4 0.2306148 0.4398906 0.47403 -0.034134929 7.201073805

PDGFR-beta 0.638238272 0.7599954 0.79413 -0.034136002 4.298533004
PDK1 0.004328426 0.1989206 0.17397 0.024949699 -14.34130609

PDK1_pS241 0.010023724 0.4803055 0.44315 0.037151425 -8.38341026
PEA-15 0.575925151 0.4603699 0.4734 -0.013030284 2.752488295

PEA-15_pS116 0.07112505 0.4775941 0.51308 -0.035485327 6.91614747
PI3K-p110-alpha 0.045315699 0.3424673 0.32277 0.019699858 -6.103421879

PI3K-p85 0.209222646 0.2749676 0.27946 -0.004493387 1.607876193
PKC-alpha 0.896269303 0.7304674 0.7277 0.002768541 -0.380451526

PKC-alpha_pS657 0.795719345 0.4284552 0.43106 -0.002602363 0.603716011
PKC-beta-II_pS660 0.425784911 0.7686049 0.80879 -0.040182907 4.968287878
PKC-delta_pS664 0.045976568 0.3448394 0.36918 -0.024340036 6.593008843

PMS2 0.025956644 0.801951 0.74703 0.054920915 -7.351901528
Porin 0.243883965 0.0857229 0.08904 -0.003322 3.730702144
PR 0.663238212 0.1169763 0.11619 0.000789801 -0.679769967

PRAS40_pT246 0.365275156 0.8290985 0.86475 -0.035650351 4.122624665
PREX1 0.101304994 0.1049792 0.09812 0.006861336 -6.992955773
PTEN 0.782392774 0.1851321 0.18314 0.001988066 -1.085520762
Rab11 0.858096277 0.0879305 0.08734 0.000591986 -0.677806514
Rab25 0.332786784 0.1389058 0.13712 0.001783779 -1.300869619
Rad50 0.960424116 0.4113952 0.41097 0.000428285 -0.104213934
Rad51 0.024369829 0.1550382 0.13781 0.017233102 -12.50541433
Raptor 0.79377184 0.762859 0.75543 0.007433942 -0.984074094

Rb 0.533730146 0.2241153 0.2198 0.004313551 -1.962473631
Rb_pS807_S811 0.457540895 1.1841248 1.11809 0.066029881 -5.90557026

RBM15 0.957138438 0.4360402 0.43545 0.000592611 -0.13609247
Rictor 0.689051732 0.6479663 0.6408 0.007167023 -1.11845059

Rictor_pT1135 0.017269911 0.6853876 0.62371 0.061679537 -9.889167527
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Supplementary Table 3.4 (continued)
 

Protein Paired TTEST DMSO Av TLT Av Mean diff DMSO-M4 % Change
RSK 0.147394136 0.4682432 0.45481 0.013431948 -2.953301246

S6_pS235_S236 0.09647995 1.2531184 1.40306 -0.149946424 10.68706343
S6_pS240_S244 0.118730496 0.8496313 0.94022 -0.090591207 9.635081836

SCD 0.759737499 0.0673423 0.06663 0.000707615 -1.061931555
SETD2 0.041455038 0.1748269 0.16728 0.007542015 -4.508486479

SF2 0.082190928 0.0562108 0.05337 0.002836706 -5.314761793
Shc_pY317 0.413441153 0.3421638 0.33226 0.009902927 -2.980467043

TAZ 0.293525898 0.4116032 0.58673 -0.175121832 29.8473411
Smad1 0.109784621 0.2190075 0.20699 0.012015241 -5.804681259
Smad3 0.042150885 0.5352521 0.5145 0.020756397 -4.034318757
Smad4 0.109781972 0.1975331 0.18686 0.01066866 -5.709304748

14-3-3-beta 0.297467434 0.1205898 0.17484 -0.054254273 31.03008862
Src 0.921787018 0.2637837 0.26281 0.000976124 -0.371421462

Src_pY416 0.208694232 0.1672131 0.15217 0.015041977 -9.884909758
Src_pY527 0.10778136 0.700054 0.642 0.05805016 -9.042026273

IGFBP2 0.004643877 0.1284908 0.19396 -0.065470005 33.7542394
Stat5a 0.004748425 0.5811547 0.52104 0.060117804 -11.53810864

Stathmin-1 0.452980835 0.1374042 0.14212 -0.004714313 3.317171496
Syk 0.804047646 0.2295709 0.22859 0.000979491 -0.428489726

Cox2 0.267016058 0.1049197 0.17838 -0.073460635 41.18203035
TFRC 0.45006093 0.5982809 0.62051 -0.022225227 3.581790061
TIGAR 0.203513955 0.4447832 0.43667 0.008111844 -1.857654354

Transglutaminase 0.347628428 0.3099899 0.31823 -0.008237679 2.588612494
TSC1 0.724792685 0.6995556 0.70621 -0.006652592 0.942015755
TTF1 0.072765875 0.4216622 0.40529 0.016367572 -4.038438288

Tuberin 0.007348867 1.2912628 1.17141 0.119849468 -10.23118546
Tuberin_pT1462 0.472275507 0.3208728 0.30659 0.014281069 -4.658009245

TWIST 0.026724298 0.0787599 0.07013 0.00863235 -12.30950185
Tyro3 0.148506776 0.2903453 0.26374 0.026606514 -10.08820479

UBAC1 0.084205337 0.4482809 0.42428 0.023999931 -5.656613047
UGT1A 0.129590932 0.0798728 0.07732 0.002550457 -3.298473152

UQCRC2 0.968988613 0.097701 0.09758 0.000124445 -0.127535891
VEGFR-2 0.399973553 0.4634747 0.45786 0.005619443 -1.227340541
XRCC1 0.599402963 0.4539372 0.45771 -0.003775075 0.824770285

YAP 0.389819715 0.3792817 0.38599 -0.006706443 1.737473896
YAP_pS127 0.786380304 0.7320844 0.73928 -0.007192785 0.972948256

YB1 0.055196453 0.6676773 0.7363 -0.068626495 9.320405293
YB1_pS102 0.019015082 0.6649866 0.78032 -0.11532871 14.77975748
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4CHAPTER 4

DISCUSSION
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4.1  Summary of Findings

This dissertation work identifies two novel therapeutic strategies personalized 

against two different complex cancer phenotypes using genomic classification 

and high-throughput drug screening. In Chapter 2, we showed the importance of 

incorporating global assessment of RAS pathway activity as means to classify the 

RAS-active NSCLC subtype. This allowed the grouping of NSCLC according to 

global activation status of the RAS pathway (independent of histological subtyping 

and RAS mutation) and permitting the identification of EGFR and MEK co-inhibition 

as a personalized treatment against this molecular subpopulation. Furthermore, this 

study provided strong evidence on the limitations of tailoring targeted therapeutics 

to tumors expressing particular mutations, as KRAS mutation status, 1) failed to 

predict EGFR+MEK co-inhibition treatment response, 2) did not account for RAS-

active NSCLC without a KRAS mutation, 3) left out a large population of NSCLC 

tumor cells with wild-type KRAS sensitive to the treatment. Through the use of 

a RAS gene-expression signature as a predictor of RAS pathway activation, we 

were able to classify NSCLC cells based on their RAS pathway activity profile. 

This allowed the identification of a therapy particularly effective against NSCLC 

cells with an active RAS pathway, independent of KRAS mutation status. Indeed, 

the signature succeeded as a biomarker of response to co-inhibition of EGFR and 

MEK where KRAS mutation status failed.

In Chapter 3, we addressed the need for therapeutic options in the BL-

CL complex cancer phenotype by identifying a novel natural product personalized 

against this molecular subtype. To identify BL-CL tumor cells, we classified breast 

cancer cell lines genomically by utilizing the intrinsic molecular subtyping of breast 

cancer, based on gene-expression profiles [1]. This chapter describes a step-wise 

process of drug screening crude fractions and isolating the active compounds to 

identify a novel therapeutic leads personalized against BL-CL. This study identified 
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a previously uncharacterized sulfated sterol, TLT, capable of inhibiting both AMPK 

and CHK, a targeting strategy that was also identified to be particularly effective 

against BL-CL. Furthermore, following the generation of a TLT sensitivity gene-

expression signature and the projection across a dataset of diverse human 

tumors, bladder cancer predicted to be as equally sensitive to TLT as breast 

cancer. Indeed, bladder cancer harbors frequent deregulation in the AMPK and 

CHK1 pathways. In summary, the results described in these chapters highlight the 

importance of the incorporation of cancer genomics and personalized medicine in 

cancer drug discovery as means to identify effective treatments against complex 

cancer phenotypes.

4.2  Personalized Medicine in Cancer Should Not  

Exclusively Depend on Mutations

The landscape of small molecule therapy in cancer has been revolutionized 

dramatically over the last decade. This coincided with a move from a one-size-

fits-all strategy that emphasized cytotoxic chemotherapy to a more personalized 

medicine approach that focuses on the identifying molecularly targeted drugs that 

exploit the particular genetic vulnerabilities of cancer cells [2]. Currently, the field of 

personalized medicine in cancer is strongly dependent on the identification of single 

gene modifications as predictive biomarkers of therapy response. This approach 

involves tailoring targeted therapeutics to particular aberrant modifications of 

single genes that include translocation, copy number increase and mutations [3].  

The ABL inhibitor imatinib is widely regarded as the pioneer drug that validated 

the concept of designing a small molecule to treat a specified patient population 

[2]. Indeed, when imatinib was given to chronic myeloid leukaemia patients (in 

which the malignancy is driven by the BCR-ABL translocation), the recorded 

improvement in survival was dramatic [4,5]. Further success was observed with 
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the initial pioneering study linking the HER2 monoclonal antibody trastuzumab to 

breast tumors overexpressing HER2 [6,7]. Mutations haven taken center stage 

since then, with the observations that EGFR and ALK-MET inhibitors in NSCLC, 

and the BRAF inhibitor vemurafenib were particularly effective against tumors 

harboring mutations in those proteins [8-10]. Indeed, today we recognize that the 

successful use of targeted therapy in cancer is reliant on predictive biomarkers of 

response for the purposes of patient selection. As such, in the era of personalized 

cancer medicine, companion diagnostics have become crucial in tailoring the 

ideal therapeutic to a particular patient [3]. This is particularly the case for cancers 

that are driven by complex signaling pathways that are difficult to target, such 

as RAS-active NSCLC. Problems arise when trying to characterize RAS pathway 

activation based solely on the mutation status of the RAS protein. This is due to the 

fact that the presence of mutated RAS does not necessarily indicate an oncogenic 

addiction to the RAS pathway. Indeed, previous observations have shown that 

KRAS dependency is widely variable in KRAS mutant cancer cell lines. Therefore, 

cancer cells may harbor an activating mutation in RAS, but not necessarily be 

addicted and dependent on the continual signaling of the pathway [11]. This has 

been observed in cancer cells carrying an activating mutation in KRAS but still 

exhibiting low overall RAS pathway activation, an observation recorded in Chapter 

2 of this dissertation and by the work of others [12]. Furthermore, the lack of an 

activation mutation on RAS does not imply that the network is off as additional 

components of the network such as EGFR, PDGFR and IGFR that are upstream of 

RAS can be activated, leading to the initiation of RAS pathway signal transduction 

[13-17]. Thus, focusing on a single protein of a large network composed of many 

components might limit the ability to accurately reflect activity [18]. Indeed, this is 

observed in Chapter 2 where we identify a panel of KRAS wild-type cancer lines 

characterized by an activated RAS pathway through gene-expression profiling of 
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pathway activation. It will be critical in future clinical trials to identify those tumors 

that are RAS-active, independent of the mechanism of RAS activation. By using 

mutation analysis alone, one overlooks a large population of tumors that do not 

carry particular mutations yet harbor activated oncogenic pathways. Therefore, 

the benefit of a particular treatment is lost on a large population of patients. As 

an example, there are currently clinical trials recruiting patients for EGFR + MEK 

inhibitor combinations based solely on RAS mutation status. The results presented 

in Chapter 2 suggest that using mutation status as a biomarker for that treatment 

1) fails as a biomarker of response in NSCLC and 2) does not provide optimal 

selection of responsive patients by leaving out patients diagnosed with KRAS wild 

type NSCLC tumors with an active RAS pathway. Through a more comprehensive 

genomic characterization of patients with deregulated pathway independent of the 

mechanism of activation, it may be possible to optimize selection of patients for 

clinical trial inclusion. 

4.3  Identifying Compounds Effective Against Tumor  

Subpopulations

The ultimate goal of drug discovery in cancer is to eradicate malignant cells 

while minimizing adverse effects on normal cells. The main strategy to achieve this 

goal involves exploiting differences in the activity or expression of the molecular 

targets driving cancer-specific cellular phenotypes in cancer cells as compared to 

normal cells. However, this is complicated by the inherent genomic heterogeneity 

of cancer. This creates diversity in the molecular drivers among tumors and makes 

the treatment of cancer require a much larger repertoire of drugs than the majority 

of other diseases [19].   

Various drug discovery approaches have been used to build the 

armamentarium necessary to treat cancer, ranging from hypothesis-driven 
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screening (targeting identified oncogenic drivers such as EGFR or HER2), to 

phenotype screening (identifying drugs effective against cellular phenotypes 

without regard for mechanism). Given our growing understanding of the molecular 

characteristics and weaknesses of cancer, pursuing hypothesis-driven targeted 

therapies has been a scientifically and logically appealing method [19]. This is 

reflected by the current predominant use of that approach in the field of cancer drug 

discovery. However, this target-based discovery in oncology has witnessed many 

challenges and limitations. Despite the large number of targeted agents approved 

and in clinical development, there have been very few instances of “magic bullets,” 

where a single target drives the cancer phenotype, as exemplified by imatinib’s 

exquisite effectiveness against BCR–ABL-driven chronic myeloid leukaemia [20]. 

Often, the signaling mediators targeted are nodes in complex signaling networks in 

which redundancy, compensatory crosstalk and feedback loops tend to reduce the 

predicted impact of a single targeted inhibitor. This contributes to the high failure 

rate of targeted therapeutics owing to insufficient efficacy in clinical trials [21]. On 

the other hand, phenotypic screening in general avoids oversimplified reductionist 

assumptions regarding molecular targets and instead focuses on functional effects; 

compounds that are discovered in phenotypic assays may be more likely to show 

clinical efficacy [19,22] . Indeed, the goal of this dissertation is to identify therapeutic 

leads effective against particular complex cancer phenotypes first and foremost, 

and then identify their mechanism of action. Through this top-down approach, we 

are able to identify therapeutic leads, and the tumor subpopulation they are most 

effective against. This is particularly possible with the use of genomic classification 

of tumors, which allows the segregation of the heterogeneous cancers into groups 

with similar molecular characteristics. Indeed, we show this in Chapters 2 and 3 

where we classify a RAS-active phenotype from NSCLC, and the BL-CL phenotype 

in breast cancer. For both these molecular subpopulations, we identified effective 



128

therapeutic leads tailored specifically against them. Clinically, the ideal patient 

population has theoretically been identified, and effective therapeutics described. 

Further work is necessary to validate the findings, as discussed in the next section 

of this chapter.

4.4  Future Directions

The incorporation of gene expression molecular classification of cancer 

makes up the cornerstone of the work described in this dissertation. The ultimate 

goal of such classification is the identification of treatments personalized against 

particular molecular subtypes. Chapter 2 describes the use of a RAS gene 

expression signature as a biomarker of pathway activity and classifier of RAS-

active NSCLC. Chapter 3 utilizes the gene expression signature classification 

system pioneered by Perou et al. to subtype breast cancer tumors based on 

molecular attributes [1,23]. This dissertation shows the successful implementation 

of such an approach in cancer drug discovery in a research setting; however, 

this method was not investigated as a possible clinic tool. One way to address 

this would be to obtain a panel of patient NSCLC samples and analyze them for 

RAS pathway activation using the same methodology described in Chapter 2. This 

would then be followed by concurrent treatment with EGFR and MEK inhibitors, 

for the purpose of correlating treatment effectiveness to RAS pathway activation in 

the context of patient tumors. A similar approach could be used for the observation 

recorded in Chapter 3 regarding BL-CL breast cancer sensitivity to TLT and AMPK/

CHK1 inhibitors. Patient breast cancer samples can be classified according to 

the intrinsic molecular subtypes patient breast cancer samples, and the BL-CL 

samples examined for TLT and AMPK/CHK1 inhibitor sensitivity. However, future 

work will still need to validate the in vitro cell culture findings in preclinical in vivo 

models of NSCLC and breast cancer. To validate the findings of Chapter 2 in a 
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mouse model, it would be necessary to use a model of lung cancer development 

that generates KRAS mutant and wild-type tumors. One such model would be 

the 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) lung carcinogenesis 

murine model. NNK reproducibly induces pulmonary adenocarcinomas in 

laboratory rodents through KRAS mutation or the activation of EGFR, AKT and 

MAPK pathways [24,25]. To validate the Chapter 3 findings, the EF1α-PyMT10C 

breast carcinogenesis mouse model could be used since it is able to generate both 

luminal and basal-like tumors in nearly equal ratios [26]. For both these models, 

tumors could be biopsied and analyzed for molecular classification. Treatment 

would follow, and the results analyzed for the observation of the same correlation 

between BL-CL and RAS-active NSCLC sensitivity to EGFR+MEK and TLT or 

AMPK/CHK1 inhibition, respectively. 

The challenges of incorporating gene expression profiling in the clinic have 

been mitigated by the recent advances and successes of incorporating microarray 

diagnostics. Indeed, gene-expression signatures have recently made their way 

into the clinical and commercial sectors, laying the ground for the introduction of 

future gene expression signatures into the clinic [27]. One example is the FDA-

approved microarray-based gene expression profiling signature Mammaprint®, 

which uses frozen archived tissue as source material or tissue core sampled 

on fresh specimens preserved in RNA later to score the low/high risk of tumor 

metastasis [27-29]. Therefore, the application of a gene-expression signature 

as a genomic biomarker of RAS pathway activation as described in Chapter 2 is 

both promising and feasible in the clinic. Overall, our results show the significant 

correlation between RAS pathway activity and response to EGFR+MEK inhibition, 

and the predictive power of our signature which is independent of other factors 

such as cancer subtype of mutations in key pathway components.  In the clinic, the 

RAS-gene expression signature could be used to assess RAS pathway activation 
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status in a patient’s tumor. If the tumor has high pathway activity, that patient may 

be a candidate to receive EGFR+MEK dual inhibition. Indeed, the clinical potential 

of our study is supported by the validation of our observed correlation of RAS 

pathway activation and EGFR+MEK dual inhibition using FDA-approved inhibitors 

trametinib and erlotinib [30,31].

 Furthermore, a practical application of classifying breast tumors based on 

their molecular subtypes has recently made its way into the clinic in the form of the 

FDA-approved PAM50 gene signature. This signature measures the expression 

levels of 50 genes in surgically resected breast tumors with the purpose of classifying 

them according to one of the four intrinsic subtypes (Luminal A, Luminal B, HER2-

enriched, and Basal-like) [32,33]. In addition to identifying a tumor’s intrinsic 

subtype, the PAM50 signature generates a personalized score estimating patient 

probability of cancer recurrence by weighting the molecular subtype correlations, 

a subset of proliferation genes, and tumor size. This signature uses multiplexed 

fluorescently-labeled probe pairs to measure gene expression in frozen or formalin-

fixed paraffin-embedded (FFPE) tissues [33]. The availability of this signature in 

the clinic makes it feasible to subtype breast cancer tumors molecularly, in order to 

identify Basal-like tumors and tailor effective treatments. 

The discovery and identification of TLT in Chapter 3 is an exciting finding. 

This sulfated sterol, isolated from the marine topsentia species sponge, exhibits 

preferential tumoricidal effectiveness against BL-CL breast cancer, in comparison 

to Luminal and HER2+ tumors.  Mechanistically, TLT was observed to inhibit both 

AMPK and CHK1 effectively. The importance of inhibiting AMPK and CHK1 in 

BL-CL breast cancer was validated by investigating the effects of AMPK, CHK1 

and AMPK1+CHK1 small molecule targeted inhibition on a panel of breast cancer 

cell lines. Twenty breast cancer cell lines were treated with dorsomorphin C, an 

AMPK inhibitor [34], Ly2603618, a CHK1 inhibitor in phase 2 clinical trials [35], 
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and the combination of both together. Results showed that treating BL-CL breast 

cancer with either treatment strategy is significantly more effective against the 

subtype than Luminal/HER2+ breast cancer. This validates the importance of the 

inhibitory effects of TLT on AMPK and CHK1 in BL-CL breast cancer, and suggests 

the potential use of AMPK or CHK1 inhibition as a treatment for BL-CL breast 

cancer. However, further work is required to strengthen these findings. Although 

dorsomorphin c is a potent AMPK inhibitor, this compound has been shown to 

have high affinity towards other proteins such as BMP and ALK [36]. Unfortunately, 

no exclusive inhibitor of AMPK exists currently. As such, future work will have to 

investigate the importance of AMPK signaling in BL-CL by knocking down AMPK 

using siRNA or shRNA. 

Clinically, there are no available AMPK inhibitors. However, the CHK1 

inhibitor used in the work described in Chapter 3, Ly2603618, is in phase 2 clinical 

trials and could be a treatment option in the near future. PAM50 molecular subtyping 

of patient tumors could be used to tailor CHK1 inhibitor therapy to those diagnosed 

with Basal breast cancers. Alternatively, CHK1 targeted therapy could be tailored 

to patients diagnosed with triple negative breast cancers, which frequently overlap 

with BL-CL breast cancers [37,38]. 

In conclusion, the work presented in this dissertation discusses the feasibility 

of incorporating cancer genomics in cancer drug discovery for the purpose of 

identifying personalized medicine treatment strategies. Particularly, this approach 

has been successful in identifying novel treatment options for two complex cancer 

phenotypes that have been difficult to treat and identify therapeutic leads for. The 

findings lay the foundation for future studies regarding the potential of EGFR+MEK 

co-inhibition as a treatment for RAS-active NSCLC, and TLT or AMPK/CHK1 

inhibition as a candidate therapy against BL-CL. 
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