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ABSTRACT

Cloud infrastructures have massively increased access to latent compute resources al-

lowing for computations that were previously out of reach to be performed efficiently

and cheaply. Due to the multi-user nature of clouds, this wealth of resources has been

”siloed” into discrete isolated segments to ensure privacy and control over the resources

by their current owner. Modern clouds have evolved beyond basic resource sharing, and

have become platforms of modern development. Clouds are now home to rich ecosystems

of services provided by third parties, or the cloud itself. However, clouds employ a rigid

access control model that limits how cloud users can access these third-party services. With

XNet, we aim to make cloud access control systems more flexible and dynamic by model-

ing cloud access control as an object-based capability system. In this model, cloud users

create and exchange ”capabilities” to resources that permit them to use those resources

as long as they continue to possess a capability to them. This model has collaborative

policy definition at its core, allowing cloud users to more safely provide services to other

users, and use services provided to them. We have implemented our model, and have

integrated it into the popular OpenStack cloud system. Further, we have modified the

existing Galaxy scientific workflow system to support our model, greatly enhancing the

security guaranteed to users of the Galaxy system.
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CHAPTER 1

INTRODUCTION

While cloud infrastructure has massively increased access to large-scale compute re-

sources, by allowing dynamic provisioning by multiple users, it has introduced new se-

curity challenges not faced in traditional “enterprise-like” deployments. In a standard

enterprise datacenter environment, it can usually be assumed that all resources contained

within have some level of mutual trust, or at least have common incentives, specifically,

to achieve the goals of the datacenter owner. If an enterprise datacenter is secured from

external threats, it can be assumed that there will be no purposeful internal threats. As

such, enterprise networks make little effort to isolate their resources internally. Public-

facing servers with large attack surfaces may be isolated from, say, all internal devices

on the enterprise’s network, but the internal devices may not be isolated from each other.

This is due to the fact that, by default, networks implement an Ambient Authority security

policy. Connectivity is “on” by default, and must be restricted using Internet protocol (IP)

routes, firewalls, or other means. Due to this, administrators typically don’t take the extra

effort to isolate internal devices from each other, instead opting to isolate internal resources

from external ones. This creates a catastrophic failure mode for the compromise of a single

internal device. Once an attacker is able to gain leverage in the internal domain, they have

free reign to attack all other subsystems.

Unfortunately, the transition to cloud infrastructure has not changed this aspect of

enterprise access control. Clouds provide their tenants with “user” and “project” abstrac-

tions that model, in the cloud, a typical enterprise domain: a set of resources connected

by an Ambient Authority network with strong isolation from the “outside world” through

firewalls. We argue that replicating the enterprise access control model in a cloud is wrong

on two fronts. First, it retains the property of ambient network authority that is present

in enterprise networks. Instead, we advocate the Principle of Least Authority (PoLA),
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where resources begin with no network connectivity and must be granted the right to

communicate from an administrator. This helps mitigate the catastrophic failure mode

described above, by requiring the administrator to explicitly model the authority of each

resource over another. Second, it limits the ability of cloud tenants to interact with each

other, by placing them in walled gardens. By collocating many different workloads in

a single datacenter, it becomes feasible for appliance providers to directly provide their

services to other cloud tenants. This is common on clouds today [14, 24, 29], with some

clouds even providing explicit support for it. However, the types of services are limited

by the abstractions cloud providers supply for inter-tenant interactions. Most such ser-

vices are supplied as either Virtual Appliances as a Service (VAaaS) where an appliance

provider gives a customer access to a prepackaged Virtual Machine (VM) that the customer

can then deploy in their cloud, or what we call “remote services” where the customer

is expected to use an Application Programming Interface (API) provided by the service

provider. In the first (VAaaS) case, the service provider must be able to package their

services as a VM (which cannot easily be done), and trust the user with the software

contained within, which may be proprietary. In the second case, the customer must trust

the remote provider not to steal the data supplied to their API. We argue that by carefully

relaxing the isolation between tenants, many new forms of tenant-tenant interaction, such

as mutually-distrusting services, can be realized.

To this end, we propose XNet. XNet is a cloud extension that adds an object capability

system to an existing cloud. Capabilities are an access control mechanism that allow for

flexible control over the access control policy. Resources in the system are modeled as

“objects” and the right to manipulate the resource associated with an object is represented

as a pointer or capability to one of these resource objects. The access control policy is

described by the current distribution of capabilities to users in the system. The capabilities

can be exchanged between users, allowing for flexible control over not only what the access

control policy is, but who controls the policy. In XNet, we use capabilities to construct an

additive security policy framework. There is, by default, no connectivity between cloud

resources; all connectivity must be constructed by manipulating the policy graph, thereby

enforcing the Principal of Least Authority. Since these policy control capabilities can be

exchanged, we can leverage them to accomplish the type of cross-tennant collaboration



3

described earlier.

1.1 Thesis Statement
Augmenting current cloud access control systems with capabilities enhances function-

ality and security of real-world applications, with low run-time costs.

We have developed an implementation of XNet based on the OpenStack cloud system.

We have constructed a Software Defined Networking (SDN) controller that integrates with

the OpenStack networking driver interface, allowing us to create “capability enabled” net-

works in OpenStack. We have also created some basic example applications that illustrate

the types of collaboration possible with the XNet framework. For example, we have a

working example of a secure collaborative hadoop instance. Finally, to show that XNet can

be used to add security to existing real-world systems, we have extended the Galaxy [2]

scientific workflow system to use XNet. This adds significant security over the existing

system, while maintaining most of the remaining functionality.

Specifically, our contributions are as follows:

• The application of an object capability model to cloud access control, where cloud

resources (such as VMs, and network connectivity) are represented by objects, and

capabilities are used to control them.

• The construction of a “mutual isolation” protocol based on our cloud capability

model, as well as a “Membrane” object inspired by existing research on capabil-

ity systems. This protocol enables novel tenant-to-tenant services on XNet-enabled

clouds.

• A prototype implementation of our cloud-specific object-capability that is capable of

enforcing policies defined in the model on SDN-enabled networks.

• A XNet-enabled cloud that integrates our prototype controller with the OpenStack

cloud orchestration system.

• A set of XNet-aware extensions to the Galaxy scientific workflow system that mean-

ingfully extend the security of the Galaxy system, specifically, allowing scientists to

keep their data private while using the system.
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• Several microbenchmarks of the XNet controller’s overhead, showing it adds sub-

millisecond overhead to most operations.



CHAPTER 2

BACKGROUND

XNet’s core security model is based around an object capability system. Such systems

have existed for many years, and have been used extensively in the Operating Systems [10,

12], and programming languages [13, 15] literature to implement access control policies.

The XNet system builds on these previous systems, using concepts they describe to model

a cloud-specific access control policy. Since concepts from this previous research are used

extensively by XNet, we’ll begin by reviewing the basic model they propose.

An object capability system is composed of an object-capability graph. 0bjects are

pieces of code and data that have methods that can be executed by other objects who

possess capabilities, which act as references to other objects. These capabilities model the

privileges of the owner (or principal, in the capability literature) over the object they point

to. Capabilities are unforgeable. To obtain a capability for an object, a principal must

have it granted to them by the system itself (for example when new objects are created)

or by another principal in the system. By modeling cloud resources as objects in the

capability system, we can model concepts like VM ownership and network connectivity

as capabilities. Owning a capability to a special “Flow” object, for example, entitles the

owner to send network traffic to another, specific, VM. The capabilities a principal owns

can therefore describe the flexible access “policy” of that principal.

In XNet, capabilities are exchanged between principals using channels called “ren-

dezvous points“. By representing the mechanism of capability exchange itself as an object,

XNet also describes a “policy policy” or “meta-policy” that details how principals are

able to manipulate the policy directly. Further, since these capabilities convey extremely

fine-grained privileges over the access policy and meta-policy, XNet can allow users to

construct novel, highly dynamic, policy management systems.



CHAPTER 3

ARCHITECTURE

XNet can primarily be understood as a network control architecture. XNet integrates

with the cloud system, but it is largely independent from it.

The architecture of the XNet system is depicted in Figure 3.1. The figure shows two

“views” of the XNet system, an abstract-network representation, and a high-level archi-

tectural diagram. The arhitectural diagram on the right-hand side of the image, represents

the architecture of the XNet system itself, while the left-hand side of the figure shows the

types of network policies that can be implemented using the XNet system.

The XNet architecture consists of three major components: the cloud controller, the

XNet capability-enabled network controller, and the set of capability-aware nodes that

make up the network controlled by the XNet controller. The cloud controller is responsible

for most cloud-related tasks: managing cloud users, receiving requests to create virtual

resources, communicating with the physical nodes to spin-up new VMs and tear down

VMs that are no longer desired or needed. However, instead of managing the cloud

infrastructure network directly, the cloud controller communicates with the XNet network

controller. As new virtual compute resources (nodes) are created, the cloud controller

informs the network controller of their network location (switch,port) and pertinent meta-

data, like IP and MAC address. The network controller uses this information to manage

the capability system. As new nodes are added, the network controller adds them as

objects to its internal representation of the system. These nodes can perform operations

“on behalf” of their equivalent virtual objects by using a capability protocol that is exposed

by the network controller to the nodes. As the state of the internal objects changes (due to

operations executed by the actual nodes) the controller maps those changes into physical

network changes that are propagated onto the managed networks. For example, if the

capability system’s state changes to allow one of the internal nodes to receive traffic on
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TCP port 80, then the controller would configure the actual cloud network to allow TCP

port 80 traffic to the actual node associated with the internal node object.

Network View Capability View

Tenant
Domain

Administrative
Domains

Object Domain

Capability Domain

SDN Controller

Capability Protocol

Opers Results
Network
Updates

Figure 3.1. High-level XNet architecture showing the network vs. capability system-level
views.
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THREAT MODEL

XNet is primarily an access-control framework. XNet aims to preserve the isolation ca-

pabilities of current clouds, while allowing tenants to weaken that isolation if they choose,

to allow collaboration between cloud tenants. The current configuration of the XNet sys-

tem is a definition of the current access-control policy for the network. This policy begins

in a maximally isolated state, where are nodes are biconnected, and cloud tenants only

have the rights to define the policy for their own resources. XNet is primarily concerned

about three potential types of attacks:

1. Attacks that allow communication that violates the policy to occur.

2. Attacks that prevent communication authorized by the policy to occur.

3. Attacks that allow the policy to be changed in a way that violates the XNet model.

We assume that the XNet-enabled cloud provider, and the cloud provider’s infras-

tructure (switches, physical machines, etc.) are trustworthy. We also assume that the

cloud infrastructure is not vulnerable to attacks based on the physical constraints of the

system. For example, XNet does not mitigate Denial of Service or side-channel attacks. We

additionally assume that the cloud provider’s implementation of XNet is correct. That is

to say it correctly implements the model as described in Chapter 5.

Therefore, we assume our attacker is attached to the network infrastructure controlled

by the XNet-enabled cloud. For example, an attacker may be in control of a virtual machine

attached to the XNet-managed infrastructure. The attacker may send and receive traffic,

including XNet-protocol messages to the XNet controller; it may even try and forge XNet-

protocol messages.

The model described in Chapter 5 describes the set of valid policy change operations.

Given the assumptions in this threat model, we can trust that these changes will operate



9

as described. Any policy-change-protocols built on the operations described in the model

will therefore be correct, as long as they correctly utilize the operations described in the

model. Therefore, the threat model does not address attacks against the protocols, other

than by assuming that the model, as described, is implemented correctly.



CHAPTER 5

MODEL

The XNet capability model consists of a set of objects (Table 5.1) that are used to model

the cloud and the distribution of capabilities, as well as a set of operations (Table 5.2)

that enable basic interaction with capabilities and the object system. The operations are

executed by principals; any capability operations are performed “in their context” so to

speak. A principal cannot execute a capability operation using a capability they do not

own.

5.1 Basic Capability Distribution
A principal in XNet begins its life with no capabilities, and therefore, cannot access any

objects. Instead, it only has access to a set of basic “operations” (detailed in Table 5.2).

Two of these operations, create and rp0, connect the new principal with the rest of the

capability system. The first of these operations, the create interface, is used to create

new objects. When a principal creates an object, they receive a capability to the newly

created object as a result of the operation. The caller selects the type of the created object,

by passing it as an argument to the create operation. The second of these operations,

rp0, is invoked with no arguments, and returns a capability to a special rendezvous point

object. Rendezvous point objects are the main mechanism of capability exchange. They

act as channels through which capabilities can be “passed”. They implement a send and

recv interface. The former, when given a capability, will add it to the rendezvous point’s

internal queue; the latter will then pop the least recently added capability off of this queue

and return it to the caller. Together they implement a first-in-first-out capability channel.

Principals invoke these methods, like all methods, by using a third operation: invoke.

Invoke takes a capability to an object and the method on that object to invoke, as well as

any arguments (such as the capability to send for the send method of rendezvous points).

In XNet, all capabilities are only owned by a single principal. As part of this exchange,
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a new capability is created that references the same object as the original capability. We

say that this capability is “derived from” the original capability. If the derived capability

is then sent and received itself, the resulting capability will be derived from the derived

capability itself. Further, the original capability could be sent and received again using a

rendezvous point, resulting in two derived capabilities. As such, these capabilities form a

tree of derivation. In the literature, these are called Capability Derivation Trees (CDTs). By

modeling capability exchange as a series of derived capabilities, XNet is able to implement

additional capability management operations.

The most basic of these capability management operations is delete. When a capability

is deleted, it is removed from the set of capabilities the principal controls, and it is deleted

from the CDT. Derived capabilities are not removed. This allows a single principal to

de-escalate their privileges without affecting the privileges of others. As an extension of

this, XNet also provides the revoke operation. This operation executes delete on every

decendent of capability passed to it. This operation allows the caller to “reclaim” their

authority over a capability from any other principal to whom they have given it. Since it

only applies to the descendants of a given capability, sub-trees of the CDT can be revoked

independently.

A final operation is provided, mint, which implements a basic capability-duplication

operation. mint takes a capability as an argument, and returns a capability to the same

object that is a child of the originally capability in the CDT. It has the same effect as if the

principal was to create a new RP, and then send and recv a capability using it.

5.2 Modeling the Cloud
In order to allow users to manipulate cloud resources in the capability domain, XNet

models cloud resources as capability objects: NodeOwner, NodeLease, and Flow. The in-

terfaces for these objects, along with all other objects, are listed in Section 5.3. To achieve

strong isolation and collaboration between mistrusting parties, XNet implements a two-

tiered model of node ownership and control (see Figure 5.1). For every node, XNet models

a single NodeLease object. A capability to this object gives the owner effective control over

the node. This object implements methods for every operation that can be performed in

XNet including the ability to invoke methods on object. These methods are executed “in
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the context” of the modeled node. That is to say, they are executed as if they were executed

by the modeled node. When a NodeLease is destroyed, the associated node is wiped clean.

All capabilities owned by the node are delete’d and all flows that allow sending packets

to the node are destroyed, re-isolating the network access policy of the node. Finally, the

node itself is re-booted, so any state stored in the memory of the node is destroyed as well.

Despite the fact that a node is only ever controlled by a single party at a time, the

node may still have multiple owners. We say a principal has ownership if they possess a

capability to the NodeOwner object associated with the node. In the XNet model, ownership

gives the owner the privilege to, at any time, acquire a new NodeLease to the associated

node. They do this using the reset method of the NodeOwner object. This method destroys

the old NodeLease, creates a new one, and returns a capability to the newly created lease to

the caller. This reset mechanism is very useful for protocols between mutually distrusting

parties. One party can grant a capability for a NodeOwner to the other untrusted party. This

capability can only be used to reset the underlying node, the first party doesn’t have to

worry about capabilities owned by the node leaking from the NodeOwner. Additionally,

once the untrusted party has received the NodeOwner capability, it can use it to reset the

underlying node. This guarantees to the second party that the original owner no longer

has access to any capabilities owned by the original node. The node has been completely

separated from its original owner.

5.2.1 Interfacing with Cloud Authority

XNet is only concerned with the definition and enforcement of access control policy at

the level of cloud resources. Importantly, it does not model the cloud interfaces that are

used to create and destroy cloud resources. XNet relies on the cloud’s standard resource

creation system to correctly manage who can create what resources, and who can destroy

what resources. To allow a newly created node to enter the capability-enabled world, it

must know to whom the node belongs. Due to this, XNet must map the cloud’s under-

standing of a resource’s “owner” to a principal in the capability domain. To this end,

XNet introduces the concept of a “master workflow agent”. The master workflow agent is

modeled as a node that is associated with some cloud-level domain, like a project. When a

new node is created in a project, the master workflow agent for that project is delivered a
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NodeOwner capability for the newly created node object. From this capability, all ownership

and control over a node is derived. This workflow agent acts as the “root” of authority for

all nodes created in that project. It must act to begin any capability exchange between

nodes in the same project.

5.3 Modeling Collaboration
A primary goal of the XNet system was to allow the tenants on the cloud to create

inter-tenant policies that facilitated workflows that are insecure using current cloud sys-

tems. The objects and operations above hint at some form of inter-tenant collaboration.

For example, one tenant could give another a capability, then revoke it after some period

of time, or a tenant could reset a node to isolate it from its original owner. However,

capabilities can only be exchanged by nodes in the same tenant. There is no capability

channel that “crosses” multiple tenants.

5.3.1 Broker

To facilitate the communication of capabilities across tenants, XNet gives every master

workflow agent a capability to a Broker object. This object exposes a simple two-method

interface: register and lookup. Using the register method, a tenant can pass a name and

a capability to be associated with that name. By communicating the name with another

tenant using an out-of-bound channel, the other tenant can use the lookup interface to

obtain a capability to the object that was registered using the same name. We envision

service-providers using brokers to register “service“ rendezvous points that will allow

multiple clients to initiate service protocols and exchange capabilities, thereby “breaking”

the full isolation between tenants. Therefore, the broker acts as a sort of “super-root”

capability, a capability that is shared by every tenant, and can act as a communication

channel between them.

5.3.2 Annotated Capabilities

In XNet, capabilities can be tagged with annotations. These annotations are added to

describe the capability’s lifetime and privileges. We represent them as a set of triples of the

form 〈L, A, P〉where L is the object this capability’s life is attached to, A is the object that is

capable of removing this annotation, and P is itself a set of allowed methods. Typically A =
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L, meaning that the object associated with the lifetime of the capability is often the same

capability that is responsible for removing the annotation. Restrictions on the methods

that can be invoked are done using P. These annotations are associative and commutative;

the order they are added and removed does not matter. The full set of enabled operations

is defined by the intersection of all Ps in every annotation. When a capability is returned

from a method that was invoked using an annotated capability, the result is the original

returned capability with its original annotations unioned with the set of annotations that

were on the object used to invoke the operation.

5.3.2.1 Membranes

Membranes are an object that is used to model the “domains of control” of different

tenants. Consider the case where two tenants A and B want to cooperate on a data analysis

problem. A has some secret data it doesn’t want to give to B, but A doesn’t know how

to set up the data-analytics cluster required to efficiently perform the analysis. Using the

operations and objects described above, A has a few options. First, A could reset the nodes

before giving them to B (preventing B from accessing any data stored on them) and reset

them after getting them back, but that would erase any configurations that B did to the

nodes . Second, A could grant B access to the nodes, and then use the revoke operation

later to remove B’s access. However, this doesn’t work either, as all of the capabilities B

creates will “descend” from the original set of capabilities A gave to B, again, undoing any

configurations B has made to the policy.

Instead, we need a middle ground: a mechanism that will allow B to manipulate the

policy, but allow A to verify, at some point, that B no longer has the ability to manipulate

the policy, without destroying the parts of B’s policy that A wants to keep. Membranes

provide this abstraction. Each membrane portions capabilities into two halves: the “inner”

half, and the “outer” half. By default, all capabilities are on the “inner” side. Capabilities

can be sent to the “outer” side by passing them to membrane.wrap. This function returns

a new capability with the annotation 〈M, M, FULL〉, where M is the membrane object we

executed the wrap method on, and FULL is the full set of capability privileges (no restric-

tions). Due to the annotation rules, this annotation will be added to any new capabilities

that are created from these “outside” capabilities. However, when a capability with such
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an annotation is passed back to the membrane.wrap method of the same membrane, the

annotation is removed.

Membranes can also be used to wrap rendezvous points, which will implicitly in-

voke “m.wrap” on send and recv. These wrapped rendezvous points act like “chan-

nels” between the inner and outer worlds. Anything that passes from inner to outer gets

“wrapped” and anything that passes from outer to inner gets untagged. Then, at any point,

the party that possesses a capability to the membrane object can execute membrane.clear.

This method destroys the membrane, and therefore any capabilities that are annotated

with the membrane’s annotation (since those capabilities have the same lifetime as the

membrane). Anything that has passed back through the membrane before the membrane

is cleared will be spared. This operation can be though of as a “selective revoke”. In fact, if

capabilities never get passed back through the membrane (never call “membrane.wrap” on

a capability annotated with the membrane’s wrap annotation), membrane.clear functions

identically to the revoke operation.

A critical feature of membranes is that they provide a two-way guarantee. They destroy

all capabilities that have only passed one direction, regardless of whether that is from the

inside to the outside, or the outside to the inside. This means the membranes can be used to

detect whether or not a capability c is a child of some other capability p. All we need to do

is invoke membrane.wrap on p, then later when we want to verify that c is a child of p, we

call membrane.wrap on c, and then invoke membrane.clear. If the capability was a child of

p, it will still be annotated with the membrane annotation. Invoking membrane.wrap will

remove the annotation, sparing it from deletion when the membrane is cleared. If c is not a

child of p, a wrap will be added to the resulting capability. Therefore, when the membrane

is cleared, the capability will be destroyed. This feature is critical to the construction of

mutually-distrusting collaboration protocols, as we cannot trust the other party not to lie

about the lineage of a capability.

5.3.2.2 Sealers and Unsealers

Using membranes coupled with reset, we can create nodes that are completely isolated

from all other nodes. By introducing sealer/unsealers, we can re-establish connectivity

with such isolated clusters through mutual agreement. Sealer/Unsealer objects imple-
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ment two methods: su.seal and su.unseal. When a capability is passed to su.seal, a

new capability to the same object is returned, with the annotation 〈S, S, {}〉 where S is

the Sealer/Unsealer object. This annotation prevents any methods from being executed

using this capability. A capability with such an annotation can later be passed to the

Sealer/Unsealer’s unseal method, which will return a new capability without the anno-

tation, effectively “unlocking” the capability, making it usable. By constructing a protocol

where sealed capabilities have to pass through multiple principals, each principal can seal

the capability with their own sealer/unsealer. Since the privileges only ever restrict, the

capability will be unusable until all the seals are removed, and they can be removed in any

order.

To enable these protocols, our model explicitly prohibits membrane wraps from be-

ing added to capabilities to Sealer/Unsealer objects themselves, since these objects do

not themselves allow the passage of capabilities (and sealed capabilities keep all of their

additional wraps, so sealing a capability will not prevent it from being deleted after the

membrane.clear method is invoked on a sealed and wrapped capability).

5.3.3 Building Blocks of Collaboration

When used together, the operations and object described above can form powerful

isolation primitives or “blocks”. These blocks can be composed into even more powerful

“protocols” as described in Chapter 6. In this section, we describe these basic building

blocks.

5.3.3.1 Permanent Shared Administration

This building block is the simplest. There are two nodes A and B that are owned by

different tenants, who want to share administration of a third node C that is owned by A.

A just grants B a capability to the NodeLease object for C, and that’s it. Both A and B can

define the policy, forever, or at least until A revokes B’s capability to the NodeLease.

5.3.3.2 Flexible Shared Administration

This building block builds on the permanent shared administration block, by adding

time-based or “flexible” shared administration. By granting a capability, and then later

revoking it, two nodes can share administration for a short-period of time.
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5.3.3.3 Single-Way Isolation

Using node capabilities and the reset method, a tenant can “lend” a node to another

untrusted tenant. Consider two tenants A and B. If A wants B to perform some compu-

tation on behalf of A, A can send B the node capabilities for some set of nodes that B can

use by first calling the reset method on them, which will ensure that A can no longer

communicate with them in a networking sense and in a capability sense. B can safely give

these newly reset nodes capabilities to resources that are essential to the computation, but

that are not sharable with A. This allows B to isolate its data and computation from A, but

it doesn’t allow A to do the same to B. A still must trust B with its data, since B has an

unlimited ability to manipulate the nodes A gave it. Further, since this isolation is created

through the capability system, it can be “chained” like any other capability. B can pass the

node capability to another provider C who can in-turn reset the node to isolate it from both

B and A.

5.3.3.4 Two-Way Isolation

To achieve two-way isolation, we use the same steps as in the single-way isolation

case, with the addition of a Membrane object. By sending the node capabilities to B through

a membrane, A can ensure that after the membrane is cleared B can no longer connect

to any of the nodes. Also, since B reset the nodes after receiving them from A, it can be

sure that A doesn’t have any access to the nodes that B has not granted to A. Now, A

still possesses node capabilities to the nodes, so it has the ability to reset them, but this

does not grant A access to any capabilities or information that B has given those nodes. It

may break the system that B has set up, but won’t cause any information or privileges to

“leak out”. Similarly to the previous case, this can be chained. Inside of an isolated cluster,

the nodes can perform two-way isolation again to form even finer granularity isolation

bubbles. Using this building block, we can construct any tree-like isolation control policy,

but this does not suffice for some workloads.

5.3.3.5 Controlled De-Isolation of Two-Way Isolated Nodes

To enable the construction of full graphs of isolated bubbles, we can use SealerUnsealer

objects. The rules about membrane annotations do not apply to SealerUnsealers, so they

can persist after the membrane is cleared. When we’re setting up a two-way isolated
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cluster, instead of directly giving the other party access at the end of the setup, we can give

them sealed access, by first applying the su.seal method to the capability. By doing this, we

ensure that connectivity to the isolated cluster can only be established with the cooperation

of the owner of the SealerUnsealer. The owner can then create a second two-way isolated

cluster, and the ”outer” party of the isolation can pass the sealed capability between the

clusters. This can only be accomplished through mutual agreement of the parties. Then,

using the key that exists in both clusters, the access can be “unlocked” and the sealed

clusters can be joined by exchanging capabilities.
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Table 5.1. A full listing of capability objects and their methods.

NodeOwner
NodeLease node.reset()

NodeLease
node lease.create(...)

node lease.rp0(...)

node lease.delete(...)

node lease.revoke(...)

node lease.mint(...)

node lease.invoke(...)

Flow
RendezvousPoint
void rp.send(cap c, string msg )

(cap, string) rp.recv(int timeout )

Membrane
cap m.wrap(cap c )

SealerUnsealer
cap su.seal(cap c )

cap su.unseal(cap c )

Broker
void b.register(string name, cap c )

b.lookup(string name, int timeout )

Table 5.2. XNet operations.

object create(object type type )

void delete(cap c )

invoke(cap c, method name m, args... )

cap rp0()

cap mint(cap c, [specification spec ])

void revoke(cap c )

NodeOwner

NodeLeases

Figure 5.1. NodeLease objects modeling the lifetimes of a NodeOwner object



CHAPTER 6

EXAMPLE PROTOCOLS

In this chapter, we detail an example isolation protocol that can be constructed using

the XNet model: Application as a Service. The Application as a Service protocol is de-

signed to address a common collaboration problem in modern clouds. Today, there is

no way for a service provider and customer who are mutually distrusting to cooperate.

Either the customer must trust the service provider with its data, or the service provider

must trust the customer with its application or data. Sometimes this is not even feasible.

XNet addresses this problem by using the Two-Way Isolation building block as described

in Section 5.3.3.4.

6.1 Application as a Service
Application as a Service is a protocol between two parties, a customer and a provider.

We’ll denote them as C and P. The goal of the protocol is to allow C to use a service

provided by P without C and P trusting each other. Specifically, we will create a cluster of

nodes P′. Intuitively, this will be an isolated cluster of provider (P) controlled nodes that

can communicate with C but cannot communicate with P. Additionally, since we don’t

want C to be able to connect arbitraily to P′, the connectivity between P′ and C will be

created by P. So, assuming that each party is rational, self-interested, and distrusting, they

will develop the minimal amount of connectivity required to realize the service provider

P is trying to provide.

For simplicity of explanation, we will assume that a few capabilities exist. We assume

that both C and P own a capability to some rendezvous point. We call this the service

rendezvous point. It is the communication channel over which the protocol is performed.

Further, we assume that C has capabilities to a set of Node objects. We’ll call this set of

capabilities Cnodes.

The pseudocode for this protocol can be found in Figures 6.1 and 6.2. It consists of
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two major pieces, one for the customer to execute, and one for the provider to execute.

The customer code can be found in Figures 6.1, and the provider code can be found in

Figures 6.2. The customer initiates the protocol by invoking request service with the service

rp as an argument, and another rp, the node rp, on which the customer has already sent

capabilities for the nodes that will become the P′ cluster. Before sending the capabili-

ties to these nodes, C creates a membrane, and wraps them with the membrane. As

described in Section 5.3.2.1, this allows C to later remove all capabilities P has to these

objects. Since rendezvous points gracefully block until there are capabilities available,

the provider has already called receive service request earlier with the shared service rp. It

additionally takes a rendezvous point on which the nodes for the request will be stored.

Once receive service request begins receiving node capabilities, it resets them and then sends

them on the supplied node rp. The reset is important. It guarantees to P that the nodes

also no longer have connectivity to any node in C. Therefore, P now knows that it can

safely transfer its proprietary service logic and data onto the nodes without fear that C

will be able to exfiltrate it. After the nodes have been received and reset, P configures the

cluster with the service it will be providing to C. As part of this configuration, P creates a

rendezvous point on the node that will serve as a frontend for the service. This rendezvous

point will be how all connectivity between C and P′ is created. To finalize the service setup,

the created rp is sent back to C over the service rp.

Finally, the customer receives this resulting rp, and then clears the membrane. At this

point, the protocol is finished, and the security guarantees are established. Due to the

membrane, no node in P can communicate with P′. Only C holds a capability to the

rendezvous point in P′. However, since the nodes were reset, C holds no capabilities to

any objects (for example nodes) in P′ except for the rendezvous point it just received. It

can only obtain capabilities to the nodes in P′ according to the logic in P′, which was

defined by P, who has established a secure frontend for the service it is providing in P′.

It is also important to note that P′ is in fact composed of the nodes that C sent to P, as P

could potentially try to de-isolate C’s data by creating a cluster from nodes that did not

pass through the membrane (and therefore are still connected to P after the membrane

is cleared). However, this is not possible. Since P sent the result rp back through the

membrane, if it was not already wrapped by the membrane, it would have been destroyed
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when the membrane was cleared and the protocol would have failed (C would not have

been able to use the rp). This dual-sided nature of membranes is critical to the operation of

this protocol. It guarantees not only that the original nodes are isolated, but that they are

in fact the same nodes C originally gave to P. At this point, C can be sure that P′ is in fact

isolated from P, and there is no way that P can exfiltrate C’s data. C can proceed using the

service as it desires.
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cap request service(cap service rp, cap node rp):
membrane = create(Membrane)
wrapped rp = membrane.wrap(service rp)
while not node rp.empty():

wrapped rp.send(node rp.recv())
result rp = wrapped rp.recv()
membrane.clear()
return result rp

Figure 6.1. Application as a Service customer’s code

cap receive service request(cap service rp, cap node rp):
while not service rp.empty():

node = service rp.recv()
lease = node.reset()
node rp.send(node)
node rp.send(lease)

void finalize service(cap service rp, cap result rp):
service rp.send(result rp)

void full service(cap service rp):
node rp = create(RendezvousPoint)
receive service request(service rp, node rp)
# Use the values in the node rp to set up our service and configure the
# system...
result rp = ...
finalize service(service rp, result rp)

Figure 6.2. Application as a Service provider’s code



CHAPTER 7

IMPLEMENTATION

We have implemented a proof-of-concept of the XNet capability-enabled cloud based

on the OpenStack cloud controller. The implementation consists of three parts: A set of

OpenStack extensions that allow the XNet network controller to operate as the network

controller in OpenStack, a capability-enabled network controller that implements the ca-

pability model, and a client library and wire protocol that allow the capability-enabled

clients to interact with the XNet network controller.

7.1 OpenStack Integration
The OpenStack integration is mainly composed of an XNet OpenStack network driver

implemented using the ML2 network interface. It is largely based on the OpenVSwitch

driver [3] that is commonly used in OpenStack. This is the XNet controller’s primary

method of interaction with the OpenStack cloud controller.

As new VMs are created, the OpenStack compute controller informs our XNet driver

that a new virtual port has been added, along with the network location of this new

virtual port. The XNet driver then plumbs the virtual interface into the local OpenVSwitch

instance (that is shared by all virtual machines on a single physical node) and tells the XNet

controller about this newly created virtual interface. This not only includes the physical

(switch, port) location of the new node, but its identifying network information as assigned

by OpenStack (its MAC and IP in our implementation) as mentioned in Chapter 5. The

XNet controller then acts as the OpenFlow controller for this local OpenVSwitch, pushing

flows onto and popping flows off of the switch as appropriate.

In addition to this network driver, we extend the OpenStack project API to include a

flag that toggles whether or not a project will be managed by the XNet controller or the

standard OpenStack management scheme. If a project includes the “capability-enabled”

flag, it is also expected to pass a python program that will act as the “Master Workflow-
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Agent” for that project. The master workflow agent is modeled similarly to a Node. It

is run in a network namespace on the OpenStack that has a single interface connected

to a local OpenVSwitch that is controlled by the XNet controller. It communicates with

the XNet controller using the same API that is used by nodes on the system. When it is

created, the XNet OpenStack network driver informs the XNet controller using the same

mechanism it uses for new nodes. However, it also passes a special “master” flag. This

flag signifies to the XNet controller that this “node” should receive capabilities for any

new nodes created in the same project, as well as a capability to the special “broker” object

that is described in Chapter 5, which is the basis of inter-tenant collaboration. This master

workflow-agent is the bridge that connects the concepts of “project” and “user” into the

capability world. Additionally, in very simple setups, it can be used to manage all network

access policy without having to orchestrate a complex policy setup on multiple nodes, or

add capability-aware code to legacy applications.

7.2 Controller
As mentioned, the XNet controller is a standard OpenFlow controller that implements

the XNet capability model. The controller written in C and based on the OpenMUL Open-

Flow application framework. It consists of three main parts: libcap, libobj, and the wire

protocol implementation. libcap is a capability library that implements the most basic

features of an object capability system. It implements the concept of “capability point-

ers” contained in “capability spaces” and provides mechanisms to map system pointers

to capability pointers, retrieve the system pointers from capability pointers, as well as

perform primitive operations like grant, delete, and revoke on capabilities. libcap is re-

sponsible for implementing the important Capability Derivation Tree (CDT) data structure

that tracks the lineage of a capability, and enables objects like Membranes and the revoke

primitive to work. On top of this framework, the XNet controller adds libobj. libobj

implements the objects described in Chapter 5. These object’s implementations directly call

the libcap API to realize their specifications. Additionally, libobj object-specific callbacks

to implement special functionality when certain libcap methods are invoked like “grant”.

These callbacks are used to add meta-information to capabilities (like their wrap state), or,

in the case of flows, realize the operations in the actual system.
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A primary job of the XNet controller is to implement the policy described by the current

distribution of flow capabilities in the network. To achieve this, when a flow capability is

first granted to a node, the (unidirectional) connectivity is reified into an OpenFlow rule

and pushed onto the first-hop switch of the receiving node. By default, the XNet controller

implements a “deny all” policy, keeping with the “principal of least authority”; traffic

is only permitted to flow after the node receives the appropriate flow capability. Since

a single node may hold multiple capabilities to a single flow object, the XNet controller

uses reference counting to ensure that a flow is pushed onto the network for only the first

capability to a given flow a node receives. When a node loses a flow capability (via delete,

revoke, etc.) the reference count for the flow object is decreased. When the count reaches

zero, the flow is deleted from the first-hop switch and the node loses its access. We would

like to restate that all capability-related operations happen purely in the control plane.

The enforcement of the policy is done in the dataplane, and does not involve the XNet

controller being “in the loop”.

Finally, the controller implements an interface that allows for capability-enabled nodes

in the network to execute capability operations on the controller. As described in Sec-

tion 7.1, OpenStack informs the controller of the (switch, port) a node is located on. On

startup, the XNet controller installs a rule that matches packets with a special capability-

protocol ethertype, sending such capabilities to the controller. When a node sends a packet

with the correct ethertype, the packet is sent to the controller who parses the message,

looks up the node object associated with the (switch, port) the packet was received on,

and then attempts to execute the operation. The capability operation is performed as if

it was being performed by the actual node object, so only capabilities that are valid for

that object are valid in the request. Since the (switch, port) to node binding is unforgeable,

this ensures that nodes are only allowed to execute legal capability operations using this

mechanism. That is to say, they are only allowed to execute the methods of the objects they

have capabilities for. If the operation the node executes returns any results (for example,

a capability to a newly created object), the controller constructs a new response packet

and directly injects it onto the sender first-hop switch. This ensures that such responses

are only sent to the correct sender. However, since capabilities are bound to the sending

(switch, port), there is little an attacker could do with such information.
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7.3 Wire Protocol
The wire-level protocol implemented by the XNet OpenFlow controller is based on

Google protocol buffers [4]. It is a request/response-based protocol. Each capability

request packet has an “operation” flag that corresponds to one of the primitive operations

described in Chapter 5, such as create or invoke. Capabilities are exchanged as 64-bit

numbers. The protocol utilizes the ethernet frame directly and therefore does not benefit

from any of the additional features of protocols like TCP. To support certain asynchronous

messages, the protocol supports retransmission, but does not support fragmentation and

assumes that all messages can be contained in an ethernet MTU. In practice, this is not an

issue, as all of our messages are significantly smaller than an MTU.

7.4 Client Library
To allow cloud tenants to easily interact with the capability system, we have also im-

plemented an API that abstracts the wire protocol into a simple object-oriented interface

that matches the model. The client library utilizes dummy objects that store the capability

for the “real” object internally. When the client invokes a method on such a dummy object,

the library creates a capability protocol request and sends it to the controller, marshalling

the response into the appropriate return object.

In addition to these basic operations, the client library implements some helper utilities

for commonly performed routines (like receiving and then resetting a collection of nodes),

and the “Application as a Service” protocol described earlier in Chapter 6.
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CHAPTER 8

SECURING GALAXY

Modern bioscience, especially in the area of genetics, heavily relies on the ability to

execute a series of statistical and transformational analyses over large (tens to hundreds

of gigabytes) datasets. These datasets contain many different types of information such as

genetic data, and patient medical records. To aid researchers in performing their analyses,

several “scientific workflow” systems have been developed (Taverna [5], Galaxy [2]). Us-

ing these scientific workflow systems, researchers can construct “workflows” that consist

of a series of “tools” that are piped together in an operation graph. Each tool performs one

phase of the analyses the researcher wishes to perform.

These scientific workflows systems are important to researchers for two reasons. First,

they allow them to automate complex processes (which may take hours or days to execute)

in a user-friendly graphical way. This allows them to more easily construct complex

workflows, understand why or how they work (or don’t work), and share workflows to

allow for easy fully reproducible experiments. Secondly, these workflow systems provide

an infrastructure that makes it unnecessary for researchers to become system administrators

and maintain their own data analysis clusters. These workflow systems are usually pro-

vided to researchers as a platform, where a researcher can make an account in a publicly

provided system, and then perform their analyses using the infrastructure provided by

the service operator. Researchers upload their datasets to this infrastructure, and then use

these datasets as inputs to the analysis workflows. The results of these workflows can then

be downloaded from the workflow system, or used as the input to further workflows.

Though using these systems drastically lowers the data management and administra-

tion workload for researches, little emphasis is put on data security or privacy. Datasets

uploaded by the researcher are stored on a global filesystem that is accessible by any tool

used by any researcher. Not to mention that all data are visible to the Galaxy system itself.
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If a researcher wishes to use confidential information in a scientific workflow system, their

only current option is to host it themselves, again becoming system administrators for their

own infrastructure.

To address the issues of privacy and security in scientific workflow applications, we

apply XNet to an existing scientific workflow system, Galaxy. We leverage the “Applica-

tion as a Service” protocol to ensure that researcher data stays private, even while being

accessed by arbitrary “tool” scripts. We do this with minimal modifications to Galaxy, and

no modifications to the “tool” scripts themselves.

A simple overview of the Galaxy architecture is depicted in Figure 8.1. Users interact

with the Galaxy system through a web-based frontend. Through this portal, they can

create new workflows, or inspect the results of previous workflow executions. At a high

level, in Galaxy, a workflow is a graph of “tools” that are arbitrary scripts. Each tool has an

XML description that describes the script to execute, as well as any inputs, how they are

to be supplied (via standard-in, as arguments, etc.), and any outputs (files, etc.). It’s worth

noting that there are three types of nodes in this graph: sources, sinks, and transform

nodes. Sources are scripts that take no inputs. These nodes are responsible for fetching

the data that will be used in the workflow. Sinks are the output of the workflow; they are

nodes with no outputs connected to other tools. What we will call the “transformation”

nodes are nodes that take input, and produce output. These tools are typically responsible

for the actual analysis. Once a user has described a workflow in the Galaxy frontend, they

tell the Galaxy frontend to “execute” it. At this point, the Galaxy frontend forwards the

workflow to the Galaxy control node. The control node is responsible for orchestrating

the execution of a workflow. It has access to a tool database that contains all of the scripts

that can be used in workflows. For each node in the workflow graph, the Galaxy control

node selects the appropriate tool script from the tool database, and sends it to a free worker

node. Additionally, it sends any required input data to the worker node. This worker node

executes the script and then sends the resulting data back to the Galaxy control node, who

stores it in the workflow data database. Once every node has been executed, the Galaxy

control node gives the frontend the results, so they can be displayed to the user.

In order to make this workflow secure, we assume that the tenant is on the same

cloud as the Galaxy instance (control node, and worker nodes). We leverage the XNet
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Application as a Service protocol to execute the tools in isolation, storing the data on a

node provided by the user, instead of a database managed by the Galaxy control node.

In the isolated case, the process is very similar to the above. However, when requesting

a workflow execution, the user supplies a token (that can be looked up via the broker)

to an RP for a data node controlled by the user. Instead of directly executing the tool on

the worker node, Galaxy sends a capability to the worker node to the user’s data node.

The user can then use this node capability to execute the Application as a Service protocol

against the service provider that will be providing the tool. To show that our system can

implement the same abstraction that Galaxy does, we’ll consider the Galaxy control node

itself to be the tool provider. However, the Application as a Service protocol does not

require this, meaning our system actually supports independent and proprietary 3rd-party

tools, which Galaxy does not. Once the user’s data node has execute the Application

as a Service protocol against the Galaxy control node, the control node can install the

appropriate tool script that will be executed against the researcher’s data. We call the

configured node a “tool node” as it is responsible for executing a single tool. After the

protocol is complete, the data node can be sure that the tool node is isolated from Galaxy.

The tool node will request the input data it needs from the data node it is now connected

too. Once the tool is done executing, it can send the result data back to the user’s data

node. Once the result data has been received, the user’s data node signals the control

node, which can disable the user’s access to the node by revoking the node capability it

sent at the beginning of the process. Since the control node does not posses a NodeLease

to the Node, it must be reset before it is used in another execution, and therefore will be

wiped. Once this process has been done for every node in the workflow, the results will be

on the data node, available for the user to access.

8.1 Implementation
To implement this extension, we first wrote a XNet-aware job running system. The

workflow required by XNet is not a standard job-control workflow, due to the fact that the

operator who “installs” the job and the operator who executes the job are separate, phys-

ically partitioned entities. The XNet-aware job running system consists of three pieces:

The data-node manager, the cluster manager, and a runner. Jobs are sent to the cluster
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manager who coordinates the setup and execution of the job. The data-node is controlled

by the owner of the data the job is executing on, i.e., the researcher in the case of Galaxy.

When a job needs to be executed, a description of the job is sent to the cluster manager. It

specifies: an identifier that can be used to lookup a rendezvous point for the data-node, a

specification of the job to run, and a list of the input and output files. The identifier is used

to bootstrap communication between the data-node and the cluster manager. The cluster

manager sends a node to the data-node that the data-node uses to directly perform the

Application as a Service protocol against the cluster manager. Once during the phase of the

Application as a Service protocol, where the service provider has access to the resources,

the cluster manager installs the runner script, and gives it a specification of the job to run.

This specification consists of the job that was originally enqueued at the cluster manager,

and the input/output mapping that was provided simultaneously. The runner stores this

specification until it is given access to the actual data-node at the end of the Application

as a Service protocol. At that point, the runner fetches all input data, executes the job,

and uploads any output data. The actual credentials or information required to access the

data-store are supplied to the runner after the Application as a Service protocol has been

completed. The job is considered to be finished once the runner notifies the data-node

manager of job completion. At that point, the data-node manager tells the cluster manager

that that node is no longer needed. The data-node’s rights can be revoked, and the node

can be re-added to a set of available worker nodes. In the case that the data-node is

malicious and doesn’t want to return the worker node, the cluster-manager can employ

a timeout and forcibly reclaim the node once the timer expires.

Secondly, we wrote a Galaxy job runner plugin that utilized this XNet-aware job runner

to execute the required jobs. Due to the variety of grid computing systems with which

Galaxy interoperates, it has a clean separation between the job runner system and Galaxy

as a whole. Galaxy exposes a basic queue job interface that provides the plugin with a

specification of the tool that will be run, including the set of input and output files the

tool will consume or produce. The XNet Galaxy plugin generates the input and output

mapping required by bootstraping off of Galaxy’s existing data management system. In-

stead of storing the actual file contents, the plugin stores pointers to the files. It stores

the RendezvousPoint identifier for the data-node that holds the files, and the identifier for
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the file itself. For the output files, it infers the RendezvousPoint identifier from the input

files, and generates random identifiers for the output files. By pregenerating the output

file identifiers, the plugin doesn’t have to try and recover the location of the output files;

it already knows. To start the workflow, the researcher can use a simple “XNet Import

Tool” to ensure that the plugin is aware of the input file location. This tool is configured

to just write the identifier to the data file, so it can be used as an input for a job run by the

actual job runner plugin. To recover the output of a workflow, the researcher can look at

the output data file in Galaxy to see the key of the final output. Using that key, they can

look up the result in their data-node’s data store.

8.2 Limitations and Future Directions
While the XNet-aware Galaxy system provides significant improvements in terms of

usability, it does have some limitations. The principal among them is that Galaxy’s interac-

tive features can no longer be used with the XNet-aware system. By default, Galaxy’s tools

can supply postprocessing scripts that add metadata to their outputs. The Galaxy control

node can then read this metadata, and present a more interactive frontend interface to the

user. For example, using this metadata, the Galaxy system can prepopulate fields for the

user to select, or perform automatic conversions when a datatype does not match the input

datatype for the tool. This is not possible in the XNet-aware Galaxy because XNet enforces

a strict separation of the data node and the Galaxy control node. Any generated metadata

files are only accessible to the data node, not the Galaxy control node. This is fundamental

to the data isolation. If data from the tool-node were allowed to pass back to the data-node,

it would be a vector for data leaks. This problem can be solved in two ways. First, the

Galaxy system itself could stop providing interactive features that would be broken by

XNet to its users. This is preferable to users who would rather have additional security

than additional functionality. Finally, a data-node tool for accessing and displaying the

metadata could be created. Such a tool would have access to the metadata, and could

allow the user access to its meatadata.
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Figure 8.1. Architecture of the Galaxy scientific workflow system.
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EVALUATION

Our evaluation focuses on the performance and scalability of XNet’s capability oper-

ations in the context of a simple cloud-based, multiparty Application as a Service case

study.

We first examine performance of XNet’s core capability operations, and show that they

are low-cost, and that even the most expensive operations are fast. Second, we discuss

performance of the master workflow agents executing capability operations and building

communication paths, relative to execution time of a simple Hadoop job, to show that the

total time to create a XNet network configuration is reasonable. Third, we evaluate the

scalability of the XNet SDN controller by running multiple concurrent AaaS tenant pair

experiments, to show that our controller can scale within a multitenant cloud. Finally, we

evaluate the XNet-extended Galaxy system described in Chapter 8, showing that it adds

additional security and functionality compared to the state of the art.

9.1 Application as a Service Software Case Study
We built two master workflow agents, a realization of the “Application as a Service”

collaborative XNet protocol described in Chapter 6, each of which is owned and run by

a different OpenStack tenant. The first master workflow agent (the “user WFA”) receives

a list of node capabilities to VMs that were allocated by a user tenant and attached to

the XNet network. The second master workflow agent (the “service WFA”), running in a

different tenant, registers with the XNet broker object to provide the “Hadoop” configu-

ration service. The user WFA looks up the Hadoop service using the broker object, and

using the rendezvous point object capability it receives, sends capabilities to its VMs to the

service WFA. Once received by the service WFA, the WFA resets these nodes to clear their

capabilities, creates an all-pairs set of flow capabilities, giving each VM the ability to talk

to every other (Hadoop requires that all nodes communicate), and installs and configures
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Hadoop. Finally, the service WFA sends the grant capability associated with the Hadoop

master node back across the membrane to the user WFA. The user WFA then “clears” the

membrane, revoking the service WFA’s capabilities to the VMs it just configured. Finally,

the user WFA runs the Hadoop wordcount job on an input dictionary file that is sized

according to the number of slave nodes (so that each slave could process a 128 MB file).

9.1.1 Experiment Infrastructure

We conducted our experiments on an OpenStack cluster configured with XNet. The

cluster contains 26 machines: one node functions as the OpenStack “controller” (authen-

tication and API services); another node as the “network manager” (runs network-wide

services such as DHCP, DNS, the OpenStack metadata proxy—and XNet services such

as master workflow agents); and compute nodes that host VMs. Each machine is a Dell

PowerEdge R430 with two 2.4 GHz 8-core E5-2630 processors, 64 GB RAM, and one 200 GB

SSD, running Ubuntu 15.10, Linux kernel 4.2.0-27, OpenStack “Liberty”, and Open vSwitch

2.4.0. Each node is connected to a 10 Gb Ethernet LAN (the XNet physical data plane). The

network manager and compute nodes each have a single Open vSwitch bridge (containing

the physical Ethernet device) controlled by the XNet controller.

9.1.2 Test Setup

We ran the master workflow agents on new VMs a total of 60 times: 15 trials each

with 50, 100, 150, and 200 slaves. Each set of 15 trials operated on an identical input file

(approximately 6.4, 12.8, 19.2, and 25.6 GB, respectively).

9.2 Capability Operation Benchmarks
In this section, we examine the overhead of various capability protocol messages. These

operations fall into two categories: “Soft” operations that only affect the state of objects on

the controller, and “Hard” operations that can affect the network itself (i.e., that cause

flow add or removal). Table 9.1 shows the range of observed execution times for Soft

operations (as a group) and select Hard operations that are important to the function of

the Application as a Service protocol. Most hard operations take only a few hundred

microseconds. In the worst case, clearing a membrane involves deleting hundreds of flow

capabilities that all manipulate the state of the network, yet it still takes only hundreds of
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milliseconds.

The operations create(Flow), Grant.grant are the primary vectors for flow capabil-

ities. Since network state is updated when a new flow capability is received, the timings

for these two operations represent the expected cost of altering the network connectivity

of XNet nodes. Extrapolating from these operation timings, we can see that our network

manipulations take only 100-200µs on average.

The complex Node.reset and Membrane.clear operations re-isolate a node and destroy

a membrane, respectively. Membrane.clear is XNet’s most costly operation. They are

expensive because they may make many changes to the underlying network state. For

example, when a membrane is destroyed, flow capabilities on the wrong “side” of the

membrane will be deleted; this is the primary motivation for membranes. Figure 9.1

shows a CDF of the time to execute a membrane clear in each experiment. The cost of

Membrane.clear increases proportional to the large numbers of wrapped capabilities in

the larger experiments. In our largest experiment, Membrane.clear took no longer than

≈ 600ms. Since Membrane.clear is only invoked a few times in a protocol to re-isolate

exposed nodes, it is unlikely to be a major bottleneck.

When Node.reset is invoked to re-isolate a node, all flow capabilities pointing “to” the

node must be revoked. Depending on the number of principals that own a given flow to

a node that is being reset, this operation can become expensive. A CDF of the execution

time of Node.reset for each experiment is shown in Figure 9.2. The cost of Node.reset

is mostly invariant on the number of nodes, since most nodes have the same number of

incoming flows when reset. Only the data up to the 99th percentile is show in the graph

for clarity of description. The maximum time taken by a Node.reset operation was 1.3ms.

9.3 Workflow Agent and Hadoop Performance
Here we analyze the “macro” performance of the master workflow agents executing

the AaaS protocol. We show the overhead of groups of the costly capability operations,

compared to the time spent configuring and running Hadoop. (We do not show the “soft”

capability operations in these tables, since they are low-cost and not major contributors to

total WFA times.)

Table 9.2 lists time spent in key phases in the user WFA, while Table 9.3 lists time spent



38

in the service WFA.

The user WFA receives capabilities to nodes in its tenant from the controller (“recv-

nodes”); it uses a 30 s timeout to detect when the controller has finished sending. We create

the service WFA prior to VMs; thus, the “membrane-recv” operation in the service WFA is

lengthy (the time includes VM creation). During“membr-wait-recv”, the user WFA waits

for the service WFA to send the capability back through the membrane, signaling that it

has completed Hadoop setup (“hadoop-setup”); and then clears the membrane to revoke

capabilities from the service WFA. The user WFA loads data into HDFS and runs a Hadoop

job (“hadoop-job-run”).

9.4 Multiple Simultaneous AaaS Workflow Agents
In this section, we evaluate the scalability of both capability operations and master

workflow agent performance by running multiple, concurrent AaaS master workflow agent

pairs. In this example, we do not configure or run Hadoop, so the execution of the master

workflow agents consists only of capability operations, as well as the time required to

boot the VMs. We do this by design to force each master workflow agent pairs’ capability

operations to operate nearly simultaneously, to encourage parallelism and lock contention

at XNet’s controller—to allow us to analyze XNet’s scalability.

9.4.1 Test Setup

We ran an AaaS WFA pair for each tenant, and we increased the number of concurrent

tenants. For each of 2, 3, and 4 concurrent tenants, we ran 5 trials, each with 50 and 100

slave nodes. This test does not run Hadoop so we set per-slave RAM to 2 GB and 1 VCPU

to achieve greater packing. We do not use 150- and 200-slave tests in this experiment for

several reasons. For instance, our tuned Neutron configuration produced errors on large

parallel VM creates; this prohibitively increased the test runtime. However, the number of

slaves is much less important than the number of competing tenants, which is our focus in

this test.

9.4.2 Capability Operation Benchmarks

Table 9.4 shows the timings of two capability operations, Grant.grant and Membrane.clear,

depending on the numbers of nodes and parallel AaaS executions (i.e., 2 instances means
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4 master workflow applications running). As shown in the table, the execution time for a

given capability operation scales similarly to the single instance case (Table 9.1); there is

no significant slowdown from running multiple tenants in parallel.

9.5 Evaluating Galaxy Extensions
The extensions to the Galaxy scientific workflow system (described in Chapter 8) through

the addition of a XNet-aware job running system provides a functional example of how

XNet can be used to augment the security of existing systems with relatively minimal

overhead. To evaluate these extensions, we will provide a security analysis, showing that

the system adds significant security over the state of the art, and a functional analysis to

show that a system like Galaxy can incorporate XNet with minimal effort.

9.5.1 Security Analysis

To describe how the XNet system augments the security of Galaxy, we must first de-

scribe Galaxy’s current threat model. Galaxy’s threat model is a classic full-trust model.

The users must trust the Galaxy workflow system with its data. Both the Galaxy ap-

plication and the tools it exposes have full read/write access to all data on the system.

The Galaxy administrator controls the set of tools, so it can be assumed that these tools

are at least as trustworthy as the Galaxy administrator. Instead of isolating users of the

system directly, users are expected to run isolated galaxy instances that they themselves

administer.

In the XNet augmented Galaxy workflow system, the trust between the user and the

Galaxy system is broken. We assume that Galaxy may be directly malicious, or that the

tools installed in the Galaxy instance are malicious. We also utilize the Application as

a Service protocol, and therefore rely on its security assumptions. Namely, we assume

that The XNet model is implemented correctly as described. For our analysis, we will be

concerned with three possible actors: the user, a tool, or the Galaxy system itself. The

primary goal of the malicious tools or Galaxy systems are to compromise user data. The

user’s primary goal is to unfairly use Galaxy resources. For simplicity of description, the

XNet job runner will be considered a component of the Galaxy system.

First, note that the Galaxy system never has access to the data itself, or even a connec-
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tion to the data that is not mediated by the user. The data node only exposes the data to

the runner node once the membrane has been revoked and all access to the Galaxy system

has been destroyed. Since the Galaxy system must reset the node before establishing a

network connection to it, all state will be wiped, ensuring that results from previous job

executions are not leaked. Since the Galaxy system never has access to the data, it is clearly

not possible for it to compromise the user’s data.

The currently executing tool does have temporary access to the data, but it isolated

using the Application as a Service protocol. The protocol guarantees that the tool cannot

access the data until all of its external access (to the Galaxy system, or to the outside

world) is cut off. Even if the tool and the Galaxy system collude, they cannot re-establish

a connection after the membrane is cleared. As long as the system for retrieving and

uploading data only allows nondestructive writes, the tool cannot tamper with data that

already exists on the data node. Additionally, the node may attempt to store data in such

a way that it can be retrieved on a later invocation. Since the node is reset with each

invocation, no state persists between invocations, and data leaking cannot occur through

this mechanism. The tool may attempt to execute a Denial of Service attack against the

node, but that is outside of the scope of this threat model.

Clearly, as long as the XNet system functions properly, we can defend against malicious

tools and malicious Galaxy system operators. Additionally, since all resources can always

be reclaimed by their owners (using a revoke and reset), it is impossible for the user to

unfairly hold Galaxy resources.

9.5.2 Functional Analysis

Converting Galaxy to use a XNet job runner involved limited modification of the actual

Galaxy system itself, though it did disable a number of Galaxy features that could not exist

given that the data are not present. The Galaxy system exposed a standard job-queuing

interface that meshed well with a XNet enabled job runner. Storing XNet aware pointers

to user data, instead of the data itself, disabled interactive features of Galaxy. For example,

for certain tools, Galaxy will present a list of options based on the input dataset. Since the

XNet datasets were not valid, it was not able to infer that any options were valid. This is

fundamental to the data isolation. A system where the data must be separated from the
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user interface cannot expose data-dependent behaviour to the user without breaking the

isolation of the system. Galaxy is still able to execute most of its operations, and can still

use these tools in a noninteractive “workflow-based” mode.
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Table 9.1. Capability operation timings (min. to 99th perc. in µs).

Operation Number Slave Nodes
50 100 150 200

Soft 0-1120 0-1160 0-1270 0-1090
create(Flow) 20-650 50-290 30-290 40-300
Grant.grant 120-460 100-450 100-440 70-460
Node.reset 170-720 160-680 150-674 130-720
Membrane.clear 52880- 158340- 319140- 505650-

72050 202030 364730 594150
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Figure 9.2. Node reset (up to 99th percentile)

Table 9.2. User WFA time (sec.) in selected functional blocks, and full execution time
(columns do not sum total).

Operation Number Slave Nodes
50 100 150 200

recv-nodes 36.5012 42.8794 49.5650 56.0228
send-nodes 1.1590 2.1302 3.0669 4.2292
membr-wait-recv 71.8752 122.3947 265.3045 260.5325
membrane-clear 0.1005 0.2109 0.3806 0.5902
hadoop-job-run 151.2563 246.9126 325.0591 432.6685
full WFA time 261.7379 419.2941 654.1214 766.4997
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Table 9.3. Service WFA time (sec.) in selected functional blocks, and full execution time
(not sum total).

Operation Number Slave Nodes
50 100 150 200

membrane-recv 95.0663 143.7468 192.3154 254.1871
recv-nodes 8.3839 16.2502 24.0745 32.1975
allpairs 8.7366 33.1489 74.0023 128.9374
hadoop-setup 56.0935 75.4767 170.7995 104.2655
full WFA time 168.6481 268.8255 461.6599 519.5675

Table 9.4. Capability operation timings with parallel Application as a Service (minimum
to 99th percentile in µs).

Operation 2 instances 3 instances 4 instances
50 100 50 100 50 100

Grant.grant 100-430 110-440 90-450 70-450 60-430 50-460
Membrane 38890- 162880- 52090- 141380- 40040- 144600-

.clear 67920 206510 69480 201110 69020 209840



CHAPTER 10

RELATED WORK

XNet builds on a large body of related work from a wide variety of areas. XNet is

primarily a network access control system for clouds, and therefore must be contrasted

against existing cloud access control systems. Traditional cloud access control systems use

RBAC or RBAC-like [6, 19] models for cloud API-access, and traditional network control

systems like Security Groups and VLANs [1, 20, 21] for actual network control. The sys-

tems only allow for limited inter-tenant cooperation, and policies are difficult to compose

directly from the VLAN and Security Group rules. Additional semantic information is

required.

Beyond the cloud domain, there is a significant body of work on network access control

where there exists a single global administrator [7,8]. While these works motivate the need

for a more dynamic access control policy, they are not directly applicable. Such systems

tend to assume the existence of a single, omnipotent administrator that sets the policy for

the entire network. While this approach may address the concerns of a single enterprise,

it does not generalize to cloud networks.

There is additional previous work that focuses on allowing multiple parties to collab-

oratively manage an SDN fabric [11, 27]; later extensions [22, 23, 28] show that this work

is vulnerable to malicious users that install conflicting rules into the network. Because

XNet constructs the network access control definitions such that there cannot be conflicting

policy, it is not affected by this issue.

Most directly, XNet builds upon the large body of work related to capability systems.

Capabilities themselves were originally formulated by Dennis van Horn [9], and have

been used as the primary access control system in operating systems [10, 12, 18, 25, 26]

and programming languages [13, 15]. Miller et al. [16] and Watson et al. [30] argue that

capability models can be used to construct practical security systems.
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XNet is heavily influenced by these prior works, principally in how they affected the

design of the system. XNet primarily builds on the design principles used in operating

systems. For example, XNet’s RendezvousPoints are very similar to seL4 [17], and XNet

provides a limited set of objects with defined implementations. The “membrane” objects

described in [15] are the basis for XNet’s. However, our model is significantly different as

our system has a fixed number of objects, so dynamic facets/caretakers are not possible.

Therefore, we provide a different model that attempts to achieve the same isolation goals

with a single object implementation.



CHAPTER 11

CONCLUSION AND FUTURE WORK

Modern cloud access control systems are not capable of handling the requirements of

modern cloud workflows. These access control systems require rigid isolation between

tenants that doesn’t allow for the flexible and contextual trust models of modern infras-

tructure services. By augmenting a cloud system with a capability model, tenants can

more dynamically express their polices. The dynamic and contextual policies even al-

low for tenant-to-tenant services that are impossible on existing infrastructure, while still

maintaining by-default the strict isolation model of the cloud. Through our prototype

implementation of the XNet system on OpenStack, we show that this functionality can

be provided with little overhead. Further, by augmenting the Galaxy scientific workflow

system with a XNet enabled job-runner, we showed that meaningful security could be

added to existing systems with little implementation cost. Therefore, we can conclude that

augmenting current cloud access control systems with capabilities enhances functionality

and security of real-world applications, with low run-time costs.

While XNet is a significant improvement over the state of the art in cloud access control

systems, it still has room for improvement. The security systems described in this docu-

ment are bound to a single cloud. To collaborate, all parties have to be resident on the

same cloud. This can be an overly limiting restriction. For example, many modern clouds

have multiple sites that allow services providers to provide their services in a globally

distributed manner. Further, different cloud architectures present different features, like

faster hardware, or different pricing structures. Currently, the XNet architecture assumes

centralized control over the cloud system. To support multiregion clouds, or clouds with

different operators, XNet could be extended with multidomain support. By allowing

capabilities to operate across cloud domains, XNet protocols could allow cloud tenants

to collaborate beyond the boundaries of their own cloud. Each tenant would be free to
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choose their own cloud operator and associated set of features, without losing the ability

to use services provided by remote tenants. If the XNet system can scale beyond the

environment described in this thesis, it could serve as a platform for security in future

cloud architectures, thereby bringing the advanced collaboration features of XNet to all

cloud users.
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