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ABSTRACT 

 

This dissertation is focused on the radiolysis of plutonium tetrafluoride under long-

term storage conditions. Amorphous plutonium tetrafluoride samples were subjected to 

thermogravimetric/differential thermal analyses, X-ray diffraction analyses, and muffle 

furnace annealing experiments in argon gas to investigate the totality of this radiolysis, 

and the effect that thermal annealing has on its reordering. There are three main areas of 

focus presented in this work that were used to investigate these phenomena.  

First, thermogravimetric/differential thermal analyses and X-ray diffraction analyses 

were used to uncover the possible mechanisms responsible for the amorphization in 

plutonium tetrafluoride through pre-annealing and post-annealing analyses on milligram 

samples. Second, gram samples of the plutonium tetrafluoride were annealed within 

flowing argon gas for short time durations. These samples were analyzed with X-ray 

diffraction to determine the rapidity of recrystallization in plutonium tetrafluoride. Third, 

gram samples of the plutonium tetrafluoride were annealed within flowing argon gas for 

long time durations. These samples were analyzed with X-ray diffraction to determine the 

effect of time at temperature on the recrystallization in plutonium tetrafluoride. 

The results of these three investigations are that plutonium tetrafluoride that has been 

stored near 50 years is amorphous. Its amorphization appears to be a result of self-

induced alpha radiolysis from the decay of the plutonium isotopes. The alpha particle and 

the recoil nucleus of this decay look to be the primary driver of this radiolysis through 
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Frenkel type defects and F-center formation. Radiolysis in plutonium tetrafluoride does 

not follow the crystal lattice parameter expansion as seen in plutonium dioxide. The 

crystallite size in amorphous plutonium tetrafluoride has been shown to increase under 

annealing conditions, and this recrystallization begins near 400°C under short and long 

time scales (minutes to hours) in argon gas.  

 

   

  



   

 

 

 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
I dedicate this dissertation to Debra DeSandre, the most beautiful person that I have ever 
known. I owe Debbie immensely for my success in this endeavor. She would not allow 

me to feel sorry for myself or give anything less than my best. I am so lucky to have lived 
life alongside her. Through her unwavering loyalty and belief in my ability to accomplish 

remarkable successes, she drove me to prosper in areas of life that I never thought 
possible. She wore a positive will and attitude that could not be bent through any means 

beyond her own and left a grand impression on all those who were lucky enough to know 
her. I miss her more than anything in my life, but I am so pleased to know that this 

dissertation has the life and the passions that we shared together poured into every word. 
I love you and thank you more than I can ever understand. This is for you, Debra. 

  



   

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

“The only thing more expensive than education is ignorance”  - Benjamin Franklin 
  



   

 

TABLE OF CONTENTS 

 

ABSTRACT ....................................................................................................................... iii 

LIST OF TABLES ............................................................................................................. ix 

LIST OF FIGURES .............................................................................................................x 

ACKNOWLEDGEMENTS ............................................................................................. xiii 

Chapters 

1. INTRODUCTION .........................................................................................................1 

1.1 The behavior and value of plutonium ................................................................1 
1.2 Publications ........................................................................................................2 

 
2.   RADIOLYSIS AND CRYSTALLINITY IN PLUTONIUM TETRAFLUORIDE ......4 
   

2.1 Abstract ..............................................................................................................4 
2.2 Introduction ........................................................................................................5 
2.3 Background ........................................................................................................8 
2.4 Study of the annealing effects on the recrystallization of plutonium 

tetrafluoride ......................................................................................................10 
2.4.1 Thermogravimetric/differential thermal analysis ..................................10 
2.4.2 X-ray diffraction analyses .....................................................................13 

2.5 Conclusion .......................................................................................................15 
2.6 Acknowledgements ..........................................................................................16 
2.7 References ........................................................................................................17 

 
3.   SHORT-TERM ANNEALING IN AMORPHOUS PLUTONIUM 

TETRAFLUORIDE  ....................................................................................................27 
   

3.1 Abstract ............................................................................................................27 
3.2 Introduction ......................................................................................................27 
3.3 Background ......................................................................................................28 

3.3.1 Comparison to plutonium dioxide .........................................................28 
3.3.2 Mechanisms of defect formation ...........................................................30 

3.4 Experimental approach ....................................................................................32 



   

 
viii 

3.4.1 Short-term annealing of plutonium tetrafluoride ...................................32 
3.5 X-ray diffraction analyses ................................................................................33 
3.6 Discussion ........................................................................................................36 
3.7 Conclusion .......................................................................................................37 
3.8 Acknowledgements ..........................................................................................38 
3.9 References ........................................................................................................39 

 
4.   LONG-TERM ANNEALING IN AMORPHOUS PLUTONIUM  

TETRAFLUORIDE  ....................................................................................................48 
   

4.1 Abstract ............................................................................................................48 
4.2 Introduction ......................................................................................................49 
4.3 Background ......................................................................................................50 

4.3.1 Thermogravimetric/differential thermal analysis ..................................50 
4.3.2 Mechanisms of annealing ......................................................................51 

4.4 Experimental approach ....................................................................................54 
4.4.1 Short-term annealing of plutonium tetrafluoride ...................................54 
4.4.2 X-ray diffraction analyses .....................................................................55 

4.5 Discussion ........................................................................................................58 
4.6 Conclusion .......................................................................................................60 
4.7 Acknowledgements ..........................................................................................61 
4.8 References ........................................................................................................61 

 
5.   CONCLUSION ............................................................................................................73 
 
6.   FUTURE WORK .........................................................................................................75 
 
 
  



   

 

 
 

LIST OF TABLES 

 

3.1. X-ray diffraction data for the 6-1.0g PuF4 samples, normalized for amorphous and 
PuO2 content with respect to annealing temperature……………………………..47 

 
4.1 X-ray diffraction data for the 4-1.0g PuF4 samples, normalized for amorphous and 

PuO2 content with respect to annealing temperature and time………………….. 70 
 

 

 

 

  



 

 
 
 

LIST OF FIGURES 

 

2.1    2015 thermogravimetric/differential thermal baseline analysis…………………. 18 

2.2    Initial thermogravimetric/differential thermal analysis with 38.4mg plutonium 
tetrafluoride……………………………………………………………………… 19 

 
2.3    2015 cycled differential thermal analysis with 76.0mg plutonium tetrafluoride... 20 
 
2.4    2015 cycled thermogravimetric analysis with 76.0mg of plutonium           

tetrafluoride……………………………………………………………………… 21 
 
2.5.   Plutonium tetrafluoride samples a) aged State, b) 350°C, b) 450°C, and                     

c) 1050°C………………………………………………………………………... 22 
 
2.6     Initial thermogravimetric/differential thermal analysis with 38.4mg plutonium 

tetrafluoride……………………………………………………………………… 23 
 
2.7    Approximately 0.4g of aged (non-annealed) plutonium tetrafluoride in X-ray 

diffraction dome…………………………………………………………………. 24 
 
2.8    Diffractogram of aged (non-annealed) plutonium tetrafluoride………………… 24 
 
2.9.   Comparison of calculated and observed PuO2 lattice constant increase………... 25 
 
2.10  Diffractogram of 500°C annealed plutonium tetrafluoride (black, top), 650°C 

annealed plutonium tetrafluoride (black, middle), plutonium oxide modeled 
pattern (red), and plutonium tetrafluoride modeled pattern (blue)……………… 26 

 
3.1   Plutonium tetrafluoride (PuF4) within magnesium oxide crucibles……………... 41 
 
3.2   Annealing rate curves for 7-1.0g PuF4 samples in MTI KSL-1000X muffle 

furnace purged with argon gas at 5 liters per minute……………………………. 42 
 
3.3   0.5g samples of PuF4 annealed at (from left to right) 350°C, 380°C, 410°C, 

430°C, 460°C, 620°C, and 650°C……………………………………………….. 43
 
3.4     Comparison of PuF4 that has undergone near 50 years of radiolysis (left) with that 

of 460°C annealed PuF4 (right)…………………………………………………. 44 
 



  

 
xi 

3.5    1.0g sample of 350°C annealed PuF4 within a Bruker A100B33 X-ray diffraction 
specimen holder sealed with 3511 Kapton……………………………………… 44 

  
3.6     1.0g sample of 460°C annealed PuF4 within a Bruker A100B33 X-ray diffraction 

specimen holder sealed with 3511 Kapton……………………………………… 45 
 
3.7    Diffraction patterns of 6-1.0g samples of PuF4 annealed at temperatures in the 

380°C-650°C range……………………………………………………………… 46 
 
3.8     X-ray diffraction data for the 6-1gram PuF4 samples that corresponds to            

Table 3.1………………………………………………………………………… 47 
 
4.1     Approximation of the 18 hour annealing trend for plutonium oxide (PuO2) given 

by Weber (7)……………………………………………………………………...63 
 
4.2    Comparison of the trends of short-term (< 1 hour) annealed plutonium 

tetrafluoride (PuF4) and long-term (18 hour) annealed PuO2…………………... 64 
 
4.3    Activation energy estimations in PuF4 calculated with Eq. 1 (7)……………….. 64 
 
4.4     Activation energy estimations in PuF4 calculated with Eq. 1 (7)………………..65 
 
4.5    Pre-annealed (left) and post-annealed 400°C (right) PuF4 within magnesium 

oxide crucibles…………………………………………………………………... 65 
 
4.6    Annealing rate curves for 4-1.0g PuF4 samples in MTI KSL-1000X muffle 

furnace purged with argon gas at 5 liters per minute…………………………… 66 
 
4.7     1.0g sample of 350°C annealed PuF4 within a Bruker A100B33 X-ray diffraction 

specimen holder sealed with 3511 Kapton……………………………………… 67 
 
4.8    Diffraction patterns of 3-1.0g samples of PuF4 annealed for 24 hours at 

temperatures in the 300°C-400°C range………………………………………… 68 
 
4.9    Diffraction pattern of the 400-300°C 12 hour annealed sample (black), modeled 

PuF4 (red), modeled PuO2 (blue), and Kapton® artifact (green)………………. 69 
 
4.10  Mass loss data for each PuF4 sample measure at the 0.5g batch scale………….. 69 
 
4.11  Mass loss comparison of batch average mass loss to estimations for PuO2 

ingrowth and dehydration by weight percent…………………………………… 70 
 
4.12  Figure 4.12 X-ray diffraction data for the 3-24 hour and 1-12 hour annealed 1.0g 

PuF4 samples that correspond to Table 4.1……………………………………... 71 
 



  
 

 

 

xii 

4.13   Crystallite size comparison of 12 hour and 24 hour annealed 1.0g PuF4          
samples…………………………………………………………………………...72 

 
 



 

 

ACKNOWLEDGEMENTS 

 

 I would like to express my deepest appreciation to my committee chair, advisor, 

and role model Dr. Tatjana Jevremovic for her unwavering commitment to my education 

and success in this field. Dr. Jevremovic has been one of the most influential people in 

my life and has shown me the joys of limitless learning. She has dedicated a great portion 

of her life to help me pursue my research and for that, I will always be grateful. I will 

always consider her a lifetime mentor. 

I would also like to thank my committee members, Dr. Mike Kirby, Dr. Luthur 

McDonald, Dr. Terry Ring, and Dr. Karl Pitts. Dr. Kirby has dedicated more time to my 

education than I could have ever hoped for, and for that, I am eternally grateful. Dr. 

Kirby has shown me through his dedication to my success that I should keep striving to 

learn inside and outside of my comfort zone. 

Dr. McDonald has dedicated a great deal of effort to my success, from the start of my 

PhD career, to the end of my classwork, and as part of my committee. He continually 

pushed me to cherish the value of scientific questions and valued research. 

During my academic career at the University of Utah, I was very fortunate to share 

more than one discussion with Dr. Ring about scientific principles and research 

endeavors during which I was outclassed. But Dr. Ring’s humility and ease is a rare 

treasure in this world. So I always felt a deeper passion for contemplation after our 

encounters. I am not alone in my great respect for this great man, and I will always 



 

 
xiv 

appreciate his influence on my life. 

I would like to express my gratitude to another great influence on my life, Dr. Pitts. 

Dr. Pitts has put his influence to work on my behalf at the Pacific Northwest National 

Laboratory and helped me to carve out a place among its staff. I owe a great debt to Dr. 

Pitts for his advice and mentorship. Together, Dr. Pitts and Dr. Amanda Casella, who 

provided me the chance to conduct this research at the Laboratory, have gifted me a great 

chance to work in a field that is exciting and rewarding. For that, I am eternally grateful 

to them both. 

Thanks to my parents, Tim and Gail Cox, who raised me with a moral compass that 

showed me a way to true happiness, to my sister, Terami Marshall, with whom I share a 

piece of the most beautiful person that ever walked this earth; to Dr. Doug Burkes for his 

mentorship and advice on how to tackle an immense challenge with sound logic and a 

methodical approach; and finally, to Dr. Lucas Sweet for his selfless sacrifice in assisting 

me with X-ray diffraction analyses and providing overall sound guidance on my 

interpretation. 

 

 

 

  



 

 

CHAPTER 1 

 

INTRODUCTION 

 

Plutonium is one of the most curious substances on earth. Plutonium is also one of the 

most difficult substances on earth to work with because of its status as a highly 

safeguarded material and as a toxic substance. Part of plutonium’s mysterious nature lies 

in its tendency to self-damage over time. This self-damage is a result of alpha radiolysis 

from the internal radioactive decay of the given isotope to its progeny. The work 

presented here focuses on the effect that that self-induced radiolysis has on plutonium 

tetrafluoride stored for nearly 50 years, and the influence that thermal annealing has on 

the reversal of the crystal lattice structure damage caused by that self-radiolysis. 

 

1.1 The behavior and value of plutonium 

Each isotope of plutonium decays to a progeny isotope, but the plutonium 239 isotope 

is typically the most interesting from a safeguarding and value standpoint. The plutonium 

238 isotope certainly has notoriety among the radioisotope generators, but plutonium 239 

makes the best fissile ceramics and metals due to its high thermal neutron cross section 

and low spontaneous fission rate compared to the other isotopes of plutonium.  

This is an interesting time to work with plutonium, as there has never been a

time in history that plutonium has been stored for such long time periods. Therefore, 
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there are new and interesting phenomena related to its behavior under long-term (>30 

years) storage condition. There is limited information on the behavior of plutonium 

tetrafluoride due to its limited use in the civilian sector. Information on plutonium oxide 

is much more available as mixed-oxide fuel contains uranium and plutonium oxide, 

capable of being used in commercial nuclear power plants. However, with plutonium 

compounds becoming more precious as the years of ceased plutonium production 

increase, plutonium tetrafluoride compounds will need to be investigated for their long-

term storage stability. Therefore, this work is focused on the early investigation of 

plutonium tetrafluoride under long-term storage conditions, the radiolytic damage that is 

inherit with plutonium and its effect on plutonium tetrafluoride, and the effect that 

thermal annealing has on the recrystallization of amorphous plutonium tetrafluoride. 

 

1.2 Publications 

There are three main areas of focus in this work, Chapters 2, 3, and 4. Chapters 2, 3, 

and 4 are comprised of journal articles submitted for publication. These papers 

encompass the bulk of work that was used to investigate the phenomena of radiolysis and 

annealing effects in plutonium tetrafluoride. The layout of this dissertation is as follows: 

 Chapter 1 is the introduction and justification for this work. Chapter 2 is focused on 

thermogravimetric/differential thermal analyses and X-ray diffraction analyses that were 

used to uncover the possible mechanisms responsible for the amorphization in plutonium 

tetrafluoride through pre-annealing and post-annealing analyses on milligram samples. 

Chapter 3 discusses the use of plutonium tetrafluoride on the gram scale to investigate the 

effect of thermal annealing within flowing argon gas for short time durations. Chapter 3 
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samples were analyzed with X-ray diffraction to determine the rapidity of 

recrystallization in plutonium tetrafluoride. Chapter 4 discusses the use of plutonium 

tetrafluoride on the gram scale to investigate the effect of annealing within flowing argon 

gas for long time durations. Chapter 4 samples were analyzed with X-ray diffraction to 

determine the effect of time at temperature on the recrystallization in plutonium 

tetrafluoride. Chapter 5 contains the Conclusion and Future Work. 

 

  



 

 

CHAPTER 2 

 

RADIOLYSIS AND CRYSTALLINITY IN 

PLUTONIUM TETRAFLUORIDE 

 

2.1 Abstract 

A sample of plutonium tetrafluoride that was separated prior to 1966 at the Hanford 

Site in Washington State was analyzed at the Pacific Northwest National Laboratory 

(PNNL) in 2015 and 2016. The plutonium tetrafluoride, as received, was an unusual color 

and considering the age of the plutonium, there were questions about the condition of the 

material. These questions had to be answered in order to determine the suitability of the 

material for future use or long-term storage. Therefore, thermogravimetric/differential 

thermal analysis and X-ray diffraction evaluations were conducted to determine the 

plutonium’s crystal structure, oxide content, and moisture content; these analyses 

reported that the plutonium was predominately amorphous and tetrafluoride, with an 

oxide content near 10%. Freshly fluorinated plutonium tetrafluoride is known to be 

monoclinic. During the initial thermogravimetric/differential thermal analyses, it was 

discovered that an exothermic event occurred within the material near 414°C.  X-ray 

diffraction analyses were conducted on the annealed tetrafluoride. The X-ray diffraction 

analyses indicated that some degree of recrystallization occurred in conjunction with the 

414°C event. The following commentary describes the series of 



 
 

 

5 

thermogravimetric/differential thermal and X-ray diffraction analyses that were 

conducted as part of this investigation at PNNL. 

 

2.2 Introduction 

Radiolysis within plutonium oxide, plutonium metal, and halide salts resident within 

plutonium stores is well documented (1), (2), (3), (4), (5). In fact, radiolytic actions 

within plutonium matrices is one of the more investigated phenomena of radiolysis in the 

actinides series due to an overall, but certainly not a total, global shift from plutonium 

production to plutonium sustainability. This extends into the long-term storage of 

plutonium, whether for future uses or long-term disposal. Tandon conducted a detailed 

review on the effects of radiolysis in plutonium dioxide and its impurities as related to 

long-term storage containers (6). Tandon focuses on gas generation and degradation 

within plutonium salt matrices as a result of radiolysis (6). Through this focus, it was 

shown that there is significant evidence to support the hypothesis that alpha radiation, 

along with the subsequent recoil nucleus, is one of the more important drivers of 

radiolysis within plutonium matrices (6). This is illustrated with a description of localized 

effects due to the high linear energy transfer (LET) associated with alpha radiation, as 

compared with gamma or beta radiation (6). Furthermore, chemical changes are inherent 

within a material that is subjected to significant LET (6); of course, the extent and 

severity of the chemical changes are dependent on the frequency and intensity of the 

radiation in question (6). That being said, chemical changes within a plutonium bearing 

substance can be significant, resulting in localized crystal lattice expansion or melting 

within the substance. These chemical changes are characteristic within weapons grade 
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plutonium because every atom will be displaced within a 10-year period due to the high 

flux of alpha radiation associated with it. The radiolysis is associated with the Frenkel 

and Schottky type defects as described by Johnson (6) (7). Frenkel and Schottky defects 

are the cation and anion vacancies that form from the ejection of crystal lattice ions. 

Frekel defects consist of interstitial cation and cation-vacancy pairs. Schottky defects 

consist of a pair of anion and cation vacancies within a crystal lattice (7). In the 

mechanisms of radiolysis, these crystal lattice defects are the result of radiation 

interactions within the lattice, radiation that imparts a sufficient amount of energy to 

overcome the molecular bond between the ions within the lattice. The ejected ions within 

plutonium, typically cations due to their smaller size and activity, can undergo diffusion 

and become trapped in interstitial sites of the crystal lattice (6).  

Frenkel defects fit the characteristics of radiolytically damaged plutonium matrices 

well (6). This can be attributed to the small ionic radius of the plutonium cation and the 

lack of density loss with radiolysis in plutonium stores. With a high fluence substance 

like that of weapons grade plutonium, the combination of cation displacements from the 

direct actions of nuclear decay and anion displacements from decay interactions can lead 

to an amorphization of the plutonium lattice structures (6), (8). In fact, for every 

plutonium atom that decays, it has been estimated that 2,200 Frenkel pairs are created in 

the matrix (5).   

This amorphization matches the condition as observed in the Hanford plutonium 

tetrafluoride and appears to follow a similar trend as found in the metamictization of 

uranium and thorium containing minerals. Alpha radiation and the recoil nuclei 

associated with it are typically responsible for the metamictization of actinides, but 
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Woodhead et al. identifies that the spontaneous fissions within uranium could be a driver 

as well (9). This is certainly an interesting perspective since the prevalence of alpha-n 

reactions in plutonium tetrafluoride are significant. This phenomenon can also be seen 

with the metamict transition of zircon when associated with actinide bearing minerals and 

provides what appears to be a parallel to the radiolytic degradation seen in plutonium 

matrices (9). 

A macroscopic characteristic of these radiolytically driven microscopic 

diffusions/vacancies within a crystal lattice is color change. This color change is a 

byproduct of F center and V center formations within the lattice (6). F centers occur when 

an unbound electron fills an anion vacancy, and V centers occur when an anion loses an 

electron, converting it to a neutral atom, balancing a cation vacancy (6). At least in 

sodium chloride, the amount of radiolysis, and subsequently the F and V centers created, 

are responsible for color changes in the salt from “blue-black to light blue to purple to 

grayish-white”, as described by Tandon (6). This color change phenomenon explains why 

some crystal structure defects are referred to as color centers. Whether the lattice defect is 

an interstitial impurity, F center, V center, or other mechanism that results in electron 

and/or molecular changes within the crystal, there is a change in the amount and type of 

photons that interact with the materials’ crystals. This changes the specific wavelengths 

of light that are absorbed or reflected by and/or transmitted through the substance thereby 

changing the observed color of the substance.   

Further phenomena are the effects that annealing has on the reversal of radiolysis, and 

if present, the color changes within a substance. Tandon found in his study that:  

Some variables also affect the initial rate of defect production by altering 
the fraction of electron-hole pairs that recombine at impurity sites and lose 



 
 

 

8 

recombination energy with no defect production. Annealing of salt takes place 
by heating or exposing it to light and will lead to bleaching of the colors. By 
heating the irradiated salt to a few hundred degrees centigrade, the radiation-
induced F and V1 centers can be removed. Electrons being released from the 
F centers combine with the electron-deficient V1 centers (6).  

 
The focus of this work is to shed light into the reversibility of these radiolytically 

induced defects by recombination through annealing, and how temperature and time play 

a role in this reversal within Hanford produced plutonium tetrafluoride. The following 

sections will illustrate the initial documentation of these phenomena and confirmation of 

the phenomena through further analysis. This effort relies on the comparison of results 

from multiple thermogravimetric/ differential thermal and X-ray diffraction analyses. 

 

2.3 Background 

As part of a 2-year Laboratory Directed Research and Development (LDRD) Project 

at the Pacific Northwest National Laboratory (PNNL) to investigate the production 

processes that occurred at the Hanford Site in Washington State, U.S.A., a 50-year-old 

sample of plutonium tetrafluoride was used in re-establishing the metallothermic 

reduction of plutonium. Thermogravimetric/differential thermal and X-ray diffraction 

analyses were conducted as part of the LDRD project to understand the material’s 

condition because of its unusual color and age. These analyses showed that the plutonium 

was predominately amorphous and tetrafluoride. However, freshly fluorinated plutonium 

tetrafluoride is known to be crystalline in its arrangement, and its structure is monoclinic 

(10).  

The monoclinic structure of fluorinated plutonium tetrafluoride gives a repeating 

molecular unit consisting of opposing distorted pyramids that consist of a plutonium atom 



 
 

 

9 

apex and a base of four fluoride ions (10). Each plutonium atom shares bonds with the 

four fluoride ions opposing it. The amorphous structure of the 50-year-old Hanford 

plutonium appears more akin to a glass structure, with little repetition in its structure. 

This combined with its unusual color suggested that oxidative, hydrolytic, or radiolytic 

damage had occurred throughout the material. The issue with simply oxidative or 

hydrolytic damage was that both species, PuHx and PuOx, are crystalline upon formation, 

not amorphous, plus, the tetrafluoride was stored in a sealed container.    

A thermogravimetric/differential thermal analysis was conducted to determine if 

molecularly bound waters of hydration and/or hydrolysis were responsible for the 

unusual color of the plutonium tetrafluoride. Through the thermogravimetric/differential 

thermal analysis, it was discovered that heating the plutonium tetrafluoride in a stream of 

argon to approximately 414º Celsius resulted in an exothermic reaction that restored the 

plutonium tetrafluoride to its characteristic salmon pink color, returned a measurable 

portion of its crystal structure, and registered no appreciable mass loss (0.5% or less).  

Much like when white sodium chloride is irradiated and a brown salt is produced, 

plutonium tetrafluoride appears to transition from a salmon pink to brownish-grey salt 

under adequate irradiation conditions. The irradiated/radiolytically damaged state of the 

plutonium tetrafluoride is not its ground state, rather an excited state of the system, 

consisting of locally induced defects like those of F center and V centers. As with all 

molecular systems, the plutonium tetrafluoride will drive towards a ground state of higher 

entropy, given that a sufficient amount of energy is imparted to it globally.  Because 

external heat imparts global energy into a crystal structure, external heat can provide the 

energy needed to increase the vibrational modes of F center electrons and/or interstitial 
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cations within the entire substance, more or less equally. This can drive electrons and 

ions within the crystal lattice to their ground state that is, in the case of plutonium 

tetrafluoride, a monoclinic arrangement. The result is a realignment of its defects, thereby 

reproducing its characteristic crystalline color. The exact form that these defects follow 

and to what extent their realignment is dependent on annealing time and/or temperature 

remains to be determined.  

 

2.4 Study of the annealing effects on recrystallization  

of plutonium tetrafluoride 

Thermogravimetric/differential thermal analyses were conducted in 2015 as part of a 

broad material characterization to determine the initial state of the Hanford plutonium 

tetrafluoride. The 2015 analyses demonstrated that the plutonium was in a previously 

unreported condition. Therefore, in 2016, further analyses were conducted to confirm and 

explore the nature of the 2015 results. The 2015 and 2016 analyses are the focus of this 

effort. The analyses were conducted in the Radiochemical Processing Laboratory (RPL) 

at the PNNL using a Seiko Instruments Incorporated, Exstar 

Thermogravimetric/Differential Thermal Analyzer 6200. The following is a detailed 

analysis of the obtained results. 

 

2.4.1 Thermogravimetric/differential thermal analyses 

The 2015 study began with a baseline thermogravimetric/differential thermal analysis 

that consisted of two empty alumina crucibles, one crucible on the reference probe of the 

instrument and one crucible on the sample probe of the instrument. The baseline curve is 
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shown in Figure 2.1.  The baseline analysis began at 25°C and terminated at 1050°C.  

Over the 1025°C temperature range, the differential thermal signal varied by 

approximately 51.0 µV, and the thermogravimetric signal varied by approximately 75.0 

µg. This equates to a 0.074% deviation in mass of the empty sample crucible.  

A calibration verification was performed on the Seiko Instruments Incorporated, 

Exstar Thermogravimetric/Differential Thermal Analyzer 6200. Indium, zinc, and silver 

metals were melted in the analyzer, and the known melting point of each metal was 

checked against the endothermic reaction captured by the Exstar’s software. The results 

of the indium, zinc, and silver melt point verifications were within 0.47%, 0.47%, and 

0.59% of the literature values, respectively (11), (12), (13). 

Figure 2.2 illustrates the differential thermal analysis results for the first sample 

examined, a 38.4mg sample of plutonium tetrafluoride. Over the first 200°C, there was an 

initial mass loss of 0.38%. The mass remained constant from 200°C to 715°C but began 

to drop significantly as the temperature increased.  Four energy variation events were 

observed on the differential thermal curve in Figure 2.2. There is a prominent exothermic 

peak at approximately 414°C and a prominent endothermic peak at approximately 875°C.  

There is a lesser exothermic peak at approximately 607°C and a lesser endothermic peak 

at approximately 1018°C. 

The 414°C peak is consistent with an exothermic reaction due to recrystallization per 

the subsequent X-ray diffraction analysis and the lack of a significant loss in mass. This 

absence of mass loss during the 414°C exothermic event shows a correlation to the 

reversal of Frenkel defects, because as previously discussed, Frenkel defects are not 

accompanied by a change in density (7).  
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The 875°C endothermic peak is consistent with decomposition of plutonium 

tetrafluoride, as can be seen with the onset of a substantial mass loss reported by the 

thermogravimetric curve. The onset occurred above the stability limit as reported for 

plutonium tetrafluoride in air (600°C) (10) but below the reported melting point of 

plutonium tetrafluoride (1037°C) (14). The tetrafluoride will decompose to an oxide 

provided certain conditions are met. One would expect this transition to display a change 

in mass. Therefore, it can be theorized that the 875°C reaction is a combination of 

oxidation and decomposition.  

The second sample of plutonium tetrafluoride analyzed contained twice the mass at 

76.0 mg of the initial sample. Due to the apparent decomposition of the plutonium 

tetrafluoride and the lack of further recrystallization effects above 800°C, the second 

sample was limited to 700°C in the Thermogravimetric/Differential Thermal Analyzer. 

After the first heat cycle to 700°C, the sample was allowed to cool under argon and a 

second identical cycle was performed. This data is shown in Figures 2.3 and 2.4. The 

exothermic peaks observed in Figure 2.2 were repeated in cycle one but were not present 

in cycle two.  Additionally, the second cycle had a mass gain of 0.21%, as opposed to the 

0.51% mass loss seen with the first cycle. This illustrates that the exothermic event 

produced in cycle one at 414°C, and not repeated in cycle two, is a singular transition 

event. In other words, it is some form of instantaneous phenomenon, like that of 

recrystallization and/or defect realignment.  

Figure 2.3 contains a close up of the 607°C exothermic event. There is some 

correlation between the two cycles at the 607°C exothermic event. This could suggest 

that the annealing effects in plutonium tetrafluoride increase with increased temperature 
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or with increased time. The lack of sharpness in the 607°C exothermic reaction curve for 

the second cycle could indicate that once the initial instantaneous exothermic event 

occurs, further annealing can be accomplished but at a less intense rate.  

Figure 2.5 illustrates the blackened condition of the plutonium tetrafluoride post the 

875°C endothermic event. A comparison of two more thermogravimetric/differential 

thermal analyses is shown in Figure 2.6, a 24.5mg plutonium tetrafluoride sample and a 

43.9mg plutonium tetrafluoride sample. The results are consistent across all of the single 

cycle analyses. 

 

2.4.2 X-ray diffraction analyses 

In order to determine the recrystallization affects from the 414°C and 607°C 

exothermic events, X-ray diffraction analyses were conducted on the 50-year-old 

Hanford plutonium tetrafluoride. Two separate approaches were taken with the X-ray 

diffraction analyses. A sealed plastic dome was used to hold an approximately 0.4g 

powder sample for the first analysis, and a glass microscopy slide with Kapton was used 

to contain a mixture of Krylon and approximately 0.2g of plutonium tetrafluoride for the 

second analysis. The dome is shown in Figure 2.7. 

The diffractograms of two plutonium tetrafluoride samples are shown in Figure 2.8, 

one non-annealed sample and one annealed to 500°C. According to the analysis, the 

pattern for cubic plutonium dioxide is shown as small sharp peaks at roughly 28.6, 33.1, 

47.5, 56.3, 59.1, 69.5, 76.8, 79.1, and 88.4 degrees, 2-theta, rising above the broad 

diffractogram of the plutonium tetrafluoride.  However, the peak positions are displaced 

to lower 2-theta (higher d-spacings) compared with those expected for stoichiometric 
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plutonium dioxide.  At the same time, the multiplets of peaks expected for plutonium 

tetrafluoride, five at 21.3 to 27.2 and six at 43.3 and 50.0 degrees, two-theta, are not 

present except as broad mounds or contributors to the background. 

The lack of plutonium tetrafluoride X-ray diffraction peaks in the untreated sample is 

most likely due to its metamictization. The lower 2-theta (higher d-spacing) of the 

plutonium oxide could be a consequence of a crystal lattice expansion due to radioactive 

decay (15). This phenomenon is well studied (15). The radiolytic lattice expansion is 

opposed by thermal relaxation back to the original atomic spacing (6). However, at room 

temperature, the radiolytic processes in plutonium oxide occur with enough frequency 

that an equilibrium lattice expansion is reached (6). It is also observed that no X-ray 

diffraction line broadening is witnessed and thus no static defect clusters form in the 

lattice (15). The plutonium oxide peaks observed in the diffraction patterns are sharp, as 

shown in Figure 2.8.  

For nominal 94% Pu-239 and 6% Pu-240, the projected rate of lattice expansion is 

given in Figure 2.9 (15). It is seen that the lattice expansion plateaus at 5.4164 Å, after an 

initial value for fresh stoichiometric plutonium oxide of 5.3982 Å.  The terminal value is 

near the lattice constant of 5.4188 Å observed for the plutonium oxide in the legacy 

plutonium tetrafluoride.  The calculation also shows that lattice expansion is essentially 

complete in ≈10 years at room temperature, meaning that the plutonium oxide in the 

legacy plutonium tetrafluoride, dating from 1966, had ample time to reach its plateau 

value at room temperature. This time scale for lattice expansion terminus in plutonium 

oxide agrees with the estimation by Tandon, as well (6). 

Further X-ray diffraction analyses were chosen based on the color restoration seen 
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with the two 500°C and 650°C annealed samples. Figure 2.10 illustrates the increased 

crystallinity of the plutonium tetrafluoride annealed to 650°C.  

The 650°C sample had contained a greater mass than the 500°C sample, 

approximately 35.0 mg as opposed to approximately 25.0 mg. Therefore, it is difficult to 

draw certain conclusions on the differences between the two samples.  The model was in 

better agreement with the 650°C data than with that of the 500°C data.  The weight 

percent from Rietveld refinement reported that both samples contained approximately 94 

percent plutonium tetrafluoride and 6 percent plutonium oxide, but this does not account 

for any amorphous components that are clearly still present in both samples. A series of 

test are currently underway to quantify the amount of amorphous plutonium tetrafluoride 

present with various annealing temperatures.   

.  

2.5 Conclusion 

The plutonium tetrafluoride that was separated over 50 years ago at the Hanford Site 

was analyzed because of its age and unusual color. There were questions about the 

condition of the material that had to be answered in order to determine the suitability of 

the material for future use or long-term storage. The subsequent 

thermogravimetric/differential thermal and X-ray diffraction evaluations illustrated that 

the plutonium’s crystal structure had transitioned from monoclinic (freshly fluorinated) to 

amorphous; its oxide content was near 10 percent; and its moisture content was shown to 

be less than 1 percent according to the lack of mass loss at dehydration temperatures;  

During the initial thermogravimetric/differential thermal analyses, it was discovered 

that an exothermic event occurred within the material near 414°C.  X-ray diffraction 



 
 

 

16 

analyses were conducted on the annealed tetrafluoride and indicated that some degree of 

recrystallization occurred in conjunction with the 414°C event. The 

thermogravimetric/differential thermal analyses also illustrated that a second, lesser 

exothermic event occurred within the material near 607°C.  X-ray diffraction analyses 

indicated that a greater degree of recrystallization occurred in conjunction with the 607°C 

event. A greater degree of freshly fluorinated color was restored in the plutonium 

tetrafluoride at the 607°C event as well. Whether this higher state of recrystallization at 

the 607°C event was the result of greater temperatures or greater annealing time remains 

to be seen in continuations of this work.  

Although further investigations into the annealing phenomena of plutonium 

tetrafluoride remain for a continuation, clearly, the radiolytic metamictization of 

plutonium tetrafluoride is in contradiction to that of plutonium dioxide. However, 

plutonium tetrafluoride may subscribe to the same damage plateau timeline of 

approximately 10 years, with alpha radiation from the plutonium being a primary driver 

of its damage. 

 

2.6 Acknowledgements 

This work was supported by the National Nuclear Security Administration’s (NNSA) 

Next Generation Safeguards Initiative (NGSI), the Laboratory Directed Research and 

Development (LDRD) Program at the Pacific Northwest National Laboratory (PNNL), a 

Nuclear Regulatory Commission (NRC) Fellowship Grant, and The University of Utah, 

Nuclear Engineering Program (UNEP). 

 



 
 

 

17 

2.7 References 

(1) Stakebake, J. L. The storage behavior of plutonium metal, alloys, and oxide: a 
review. Journal of Nuclear Materials 1971, 38 (3), 241-259. 
 

(2) Livingston, R. Matrix effects on radiolytic gas generation in plutonium residues. 
Transactions of the American Nuclear Society 1999, 81, 99. 
 

(3) Tandon, L.; Allen, T. H.; Mason, R. E.; Penneman, R. A. Corrosive gas generation 
potential from chloride salt radiolysis in plutonium environments. Transactions of 
the American Nuclear Society 1999, 81 (12), 102-103. 
 

(4) Veirs, D. K.; Berg, J. M.; Dunn, K. A.; Louthan, Jr., M. R.; Worl, L. A.; Narlesky, J. 
E. Evidence of corrosive gas formed by radiolysis of chloride salts in plutonium-
bearing materials. Journal of Nuclear Materials Management 2010, 38, (3), 25. 
 

(5) Wolfer, W. G. Radiation effects in plutonium: what is known? Where should we go 
from here? Los Alamos Science, 2000, 26 (32), 274-285. 
 

(6) Tandon, L. Radiolysis of Salts and Long-term Storage Issues for Both Pure and 
Impure PuO2 Materials in Plutonium Storage Containers; Government; US DOE: 
Los Alamos , 2000. 
 

(7) Johnson, E. R. The Radiation-Induced Decomposition of Inorganic Molecular Ions, 
1st ed.; Gordon and Breach Science Publishers: New York-London-Paris, 1970. 
 

(8) Exarhos, G. J. Spectroscopic studies of α-induced radiation damage in divalent metal 
fluorides. Radiation Effects. 1982, 86 (20), 4020-4025. 
 

(9) Woodhead, J. A.; Rossman, R.; Silver, L. T. The metamictization of zircon: 
radiation dose-dependent structural characteristic. American Mineralogist 1991, 76, 
74-82. 
 

(10) Clark, D. L.; Hecker, S. S.; Jarvinen, G. D.; Neu, M. P. Plutonium. In The Chemistry 
of the Actinide and Transactinide Elements, 3rd ed.; Morss, L. R., Edelstein, N. M., 
Fuger, J., Joseph, K. J., Eds.; Springer: Dordrecht The Netherlands, 2006; Vol. II, V 
vols., pp 813-1265. 
 

(11) National Institute of Standards and Technology. Certificate of Analysis: Standard 
Reference Material® 2232; Government; U.S. Department of Commerce: 
Gaithersburg, 2005. 
 

(12) National Institute of Standards and Technology. Certificate of Analysis: Standard 
Reference Material® 2221a; Government; U.S. Department of Commerce: 



 
 

 

18 

Gaithersburg, 1989. 
 

(13) National Institute of Standards and Technology. Certificate of Analysis: Standard 
Reference Material® 3151; Government; U.S. Department of Commerce: 
Gaithersburg, 2012. 
 

(14) Woods, J. W. T.; Spinks, R. J. An Introduction to Radiation Chemistry, 3rd ed.; 
Wiley-Interscience: Saskatoon, Saskatchewan, Canada; Vol. 1. 
 

(15) Nellis, W. J. The effect of self-radiation on crystal volume. Inorganic and Nuclear 
Chemistry Letters 1977, 13, 393-398. 

 

 

Figure 2.1 2015 thermogravimetric/differential thermal baseline analysis. This illustrates 
the mass (right y axis) and energy (left y axis) variations from the empty alumina 
crucibles with increased temperature (x axis) in argon gas. This thermogravimetric 
curve is subtracted from the analyses provided in Figures 2.1-2.7 to remove any 
variations that are a result of phenomena associated with the crucibles. The 
differential thermal curve illustrates that there are no instantaneous exothermic or 
endothermic events associated with the empty crucibles, only gradual changes with 
increased temperature as expected. A second baseline analysis was conducted in 
2016. 
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Figure 2.2 Initial thermogravimetric/differential thermal analysis with 38.4mg plutonium 
tetrafluoride. This illustrates the mass (right y axis) and energy (left y axis) changes 
of a 38.4mg sample of plutonium tetrafluoride with increased temperature (x axis) 
in argon gas. The thermogravimetric baseline from Figure 2.1 is subtracted from 
these curves to minimize any contribution from the alumina crucible. An 
exothermic reaction (release of energy) can be seen on the differential thermal 
(black line) curve at 414°C and to a lesser extent 607°C. An endothermic reaction 
(absorption of energy) can be seen on the same curve at 875°C that corresponds to 
the onset of a mass loss on the thermogravimetric (red line) curve. There is a lesser 
endothermic peak at 1018°C that remains unexplained.  
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Figure 2.3 2015 Cycled differential thermal analysis with 76.0mg plutonium 

tetrafluoride. This illustrates the energy (y axis) released by a 76.0mg sample of 
plutonium tetrafluoride with increased temperature (x axis), in argon gas. The 
thermogravimetric baseline from Figure 2.1 is subtracted from this analysis. The 
sample was analyzed twice without removing it from the analyzer. An exothermic 
reaction (release of energy) is shown on the differential thermal curve of the first 
cycle (blue line) at 414°C and 607°C. An exothermic reaction is also evident on the 
differential thermal curve of the second cycle (black curve) at 607°C only and with 
less instantaneousness than that of the first cycle.   
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Figure 2.4 2015 Cycled thermogravimetric analysis with 76.0mg of plutonium 

tetrafluoride. This illustrates the mass (y axis) change of a 76.0mg sample of 
plutonium tetrafluoride with temperature change (x axis) in argon gas. The 
thermogravimetric baseline from Figure 2.1 is subtracted from this analysis. The 
sample was analyzed twice without removing it from the analyzer. A gradual mass 
loss to approximately 0.51 percent can be seen on the thermogravimetric curve of 
the first cycle (black line) up to the 414°C event, with an instantaneous loss of 0.08 
percent. In contrast, a gradual mass gain of 0.21 percent can be seen on the 
thermogravimetric curve of the second cycle (blue line) over the entire temperature 
range (20-700°C). Although these mass differences are not significant, their 
opposition is interesting.  
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Figure 2.5 Plutonium tetrafluoride samples a) aged State, b) 350°C, b) 450°C, and c) 

1050°C. This illustrates the various states of color change within the material. There 
is clearly only a slight color change, if any, between its aged state and 350°C 
annealed state. The plutonium annealed to 450°C shows a significant color change, 
and the 1050°C annealed material demonstrates a post-melt color. 
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Figure 2.6 Thermogravimetric/differential thermal analysis comparison of plutonium 

tetrafluoride from 2015, 24.5mg, and 2016, 43.9mg. This graph illustrates the mass 
(right y axis) and energy (left y axis) changes from these two samples of plutonium 
tetrafluoride with temperature change (x axis) in argon gas. The thermogravimetric 
baseline from Figure 2.1 is subtracted from the 2015 analysis. A thermogravimetric 
baseline for the 2016 is subtracted from the 2016 analysis. The exothermic reactions 
(release of energy) are shown for the 2015 (blue line) and 2016 (black line) 
differential thermal curves at 414°C and illustrate repeatability of the reaction. The 
607°C exothermic event was not compared, as the onset of crystallization was the 
focus. The thermogravimetric curves for the 2015 (red line) and 2016 (brown line) 
analyses show good agreement with a steady mass loss up to the 414°C event, at 
which an instantaneous mass loss (approximately 0.1%) occurs in both samples.  
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Figure 2.7 Approximately 0.4g of aged (non-annealed) plutonium tetrafluoride in X-ray 

diffraction dome.  

 
 
 

 
Figure 2.8 Diffractogram of aged (non-annealed) plutonium tetrafluoride (black, top), 

500°C annealed plutonium tetrafluoride (black, middle), plutonium oxide modeled 
pattern (red), and plutonium tetrafluoride modeled pattern (blue) [patterns are 
shifted vertically for clarity]. 

 
 



 
 

 

25 

 
Figure 2.9 Comparison of calculated and observed PuO2 lattice constant increase, Å, (y 

axis) with time (x axis) in years for plutonium oxide (15). This graph clearly 
illustrates that plutonium oxide sustains a significant amount of radiolytic lattice 
expansion in 10 years or less, indicating that metamict transition in the Hanford 
plutonium tetrafluoride should follow the same trend.   
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Figure 2.10 Diffractogram of 500°C annealed plutonium tetrafluoride (black, top), 650°C 

annealed plutonium tetrafluoride (black, middle), plutonium oxide modeled pattern 
(red), and plutonium tetrafluoride modeled pattern (blue) [patterns are shifted 
vertically for clarity]. Clearly, the sample annealed to 650°C (black, middle) shows 
good agreement with the modeled pattern (blue) of freshly fluorinated plutonium 
tetrafluoride. The question remains if this increased recrystallization at 650°C is 
attributed to the increased temperature or increased time of the annealing process.  

 

  



 

 

CHAPTER 3 

 

SHORT-TERM ANNEALING OF AMORPHOUS 

PLUTONIUM TETRAFLUORIDE 

 

3.1 Abstract 

An approximately 50-year-old sample of plutonium tetrafluoride has been analyzed at 

the Pacific Northwest National Laboratory (PNNL). The sample was produced at the 

Hanford Site’s Plutonium Finishing Plant (PFP) and has been stored within sealed 

containers since the 1970s. Samples of this material have been used to study the 

amorphization of plutonium tetrafluoride due to self-induced alpha-radiolysis under long-

term storage conditions, and the reordering of its original crystal lattice structure under 

annealing conditions. This work investigates the effect that various short-term annealing 

temperatures have on the percentage of that reordering and the ingrowth plutonium oxide.  

 

3.2 Introduction 

An approximately 50-year-old sample of plutonium tetrafluoride that was produced at 

the Hanford Site has been analyzed at the Pacific Northwest National Laboratory (PNNL) 

since 2014 (1). This sample represents one of the last remaining stocks of plutonium 

tetrafluoride that was produced at the Plutonium Finishing Plant (PFP). The sample has 
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provided invaluable insight into the condition of bulk plutonium tetrafluoride 

under long-term storage conditions, instead of the metal and oxide forms as typically seen 

and as stipulated by the Department of Energy’s DOE-STD-3013-2012 (2). 

Freshly fluorinated plutonium tetrafluoride is monoclinic and displays a salmon pink 

color (3). However, as with other plutonium compounds, if given enough time, it can 

undergo amorphization through radiolysis (4).  Once crystalline plutonium has undergone 

amorphization, the compound can be annealed to restore at least some degree of its 

crystalline structure (1), (4), (5). The work presented here is based on this cycle of 

radiolysis and crystal structure reordering in plutonium tetrafluoride through brief 

annealing periods at temperatures between 350°C and 650°C.  

 

3.3 Background  

3.3.1 Comparison to plutonium dioxide 

There have been a number of studies on the radiolytic expansion of the crystal lattice 

spacing in plutonium and uranium oxides, and the effect that annealing has on the 

reversal of the radiolytic damage (4), (5), (6). Turcotte and Chikalla explored the 

phenomena with regards to the 238 isotope of plutonium oxide in depth (5). Weber 

looked at the phenomena in cerium oxide, uranium oxide, and plutonium oxide where the 

alpha radiation from two plutonium isotope 238 sources was used (a high activity 

external alpha source greatly reduces the effect of alpha-recoil progeny nucleus of 

internal alpha decay) (6). Although the study presented here is focused on the radiolysis 

and annealing effects in plutonium tetrafluoride and was not based on Turcotte and 

Chikalla’s or Weber’s works, there are similarities and differences worth addressing. 

Clearly, plutonium oxide and plutonium fluoride do not share the same crystal structure. 
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Plutonium dioxide displays a face-centered cubic structure (3), and plutonium 

tetrafluoride displays a monoclinic cubic structure (3). However, the mechanisms of 

alpha-induced radiolysis have been shown to follow a similar trend in many different 

compounds (4), (7), (8). An earlier work by McCoy et al. noted some of these 

mechanisms (1). 

Interestingly, the significance of alpha radiolysis as a prominent factor responsible for 

lattice defects in actinide oxides is also seen with the Nakae et al. work on fission-

induced crystal lattice parameter expansions in uranium oxides (9). Nakae et al. 

demonstrated that in uranium oxides with a grain size of 2.5 µm and irradiated at a dose 

of 1014 – 1015 fissions/cm3, an initial decrease in the uranium’s crystal lattice parameter is 

probable (9). This decrease has not been reported with regards to alpha radiation-induced 

lattice parameter changes in plutonium or uranium oxides, at any dose level (6), nor has it 

been reported with the self-induced alpha radiolytic lattice parameter changes in 

plutonium tetrafluoride (1). There is the appearance of a crystallite size decrease in 

tetrafluoride due to the loss of order once amorphization is predominant. Whether this 

amorphization is due to a lattice parameter decrease, a defect saturation point, or other 

mechanism, has yet to be determined.   

The metamictization in plutonium tetrafluoride appears to follow the same crystal 

lattice defect formation as alpha-radiolytic lattice parameter expansion that is present in 

plutonium oxides (1). This follows logic, because there is significant evidence that a 

portion of the crystal lattice expansion that occurs in plutonium oxides is due to self-

induced alpha radiolysis (4), (5), (6). The age of, and subsequently the cumulative 

radiation dose to, the oxide has a great bearing on the value of that lattice parameter 
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expansion (4), (5), (6). In plutonium tetrafluoride, the age of, and subsequently the 

cumulative radiation dose to, the material appears to have a great bearing on the value of 

its amorphization and color change. 

Weber demonstrated a lattice parameter expansion comparison of externally alpha 

irradiated plutonium oxide (plutonium 239 irradiated on both sides with plutonium 238 

sources) with that of self-induced alpha irradiated plutonium oxide (plutonium 238 only, 

no external source) (6). The crystal lattice expansion was greater in samples exposed to 

an external alpha radiation source than that of the self-irradiated samples at dose 

equivalents (6). Weber further noted that single crystal samples suffered a greater lattice 

parameter expansion as a result of external alpha radiation than that of polycrystalline 

samples (6). This is seen as relatable to the previously noted Nakae et al. work with 

particle size influence on fission-induced damage in uranium oxides (6) and could be the 

baseline for a single crystal radiolysis experiment with plutonium tetrafluoride. 

 

3.3.2 Mechanisms of defect formation 

The crystal lattice parameter expansion due to alpha-radiolysis in bulk actinide oxides 

is mainly a consequence of Frenkel defects and helium interstitials. The defects in 

plutonium decay are formed primarily by 5-mega electron-volt (MeV) alpha particles and 

87-kilo electron-volt (keV) recoil nuclei of the uranium 235 progeny isotope (6). Frenkel 

defects are cations and/or anions that have been removed from ideal crystal lattice 

positions and are trapped within interstitial sites. Linear energy transfer (LET) from an 

alpha particle and its recoil nucleus to crystal lattice ions is the driver of Frenkel defect 

formation. Alpha particles emitted from plutonium atoms are estimated to penetrate 
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approximately 10-11.5 µm into a compound, with the subsequent uranium recoil nucleus 

penetration lesser at near 20 nm (6), (10).  

Alpha particles transfer most of their energy through the ionization of crystal anions 

and cations (10). This results in the production of free electrons that combine with alpha 

particles for the formation of helium atoms and either cations with higher ionization 

states or neutral atoms from anions (11). These ionization changes also result in an 

increase to the charge vacancies within the crystal (11).  

There are different reports on the number of defects produced by alpha particles and 

recoil nuclei in plutonium. Weber has predicted that near the end of their track, alpha 

particles produce up to 1500 dislocated ions in a plutonium oxide crystal through elastic 

collisions (6). Tandon and Wolfer report that alpha particles produce less than 500 

defects in plutonium oxide and plutonium metal (4), (8). On the other hand, recoil nuclei 

transfer the majority of their energy through elastic collisions with local crystal ions (10). 

Weber et al. first estimated that a displacement cascade of hundreds of isolated ions were 

dislocated per recoil nucleus (10). However, in subsequent work, Weber has 

hypothesized that the defects created by the recoil nuclei could cluster at room 

temperature, as opposed to only clustering at elevated temperatures (6), (12). This is 

significant because a cluster of defects results in a lower value of crystal volume 

expansion per defect (6). In contrast to this, Tandon and Wolfer report that the recoil 

nuclei produce defects that number over 2000 and that clustering is inherent (4), (8). This 

could imply that the effect of defect clustering is responsible for the lower crystal volume 

expansion and therefore the lower estimation of isolated defect formation per decay by 

Weber (6), (12).   
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The 239 isotope of plutonium emits over 2.3 million alpha particles per milligram per 

second (3). Therefore, plutonium-239 has the potential to form more than 3 billion 

Frenkel defects per milligram per second, although a majority of these defects are 

reported to recombine within picoseconds of their formation (7). Furthermore, the 

plutonium cation is subject to a greater probability of displacement by the alpha particle 

or recoil nucleus due to its significantly smaller ionic radius (0.86 Å for Pu4+) than that of 

the oxygen (1.38 Å) or fluorine (1.31 Å) anion (3). 

 

3.4 Experimental approach 

3.4.1 Short-term annealing of plutonium tetrafluoride 

In order to investigate the rapidity of annealing mechanisms in plutonium 

tetrafluoride, 7-1.0g plutonium tetrafluoride samples were annealed within a MTI Model 

KSL-1100X muffle furnace at PNNL. The muffle furnace chamber was 1 liter in volume. 

The furnace is contained within a glovebox at PNNL’s Radiochemical Processing 

Facility (RPL). The furnace was continuously purged with argon gas at a rate of 

approximately 5 liters per minute. For each anneal, approximately 1.0g of plutonium 

tetrafluoride was split into 0.5g samples to increase the surface area available for 

reaction. Each 0.5g sample was placed within an approximately 10.0 milliliter 

magnesium oxide crucible with a loose-fitted magnesium oxide lid. The crucible lids 

were loose-fitted to ensure that an adequate flow of argon reached the plutonium 

tetrafluoride within. Figure 3.1 illustrates the plutonium tetrafluoride within the 

magnesium oxide crucibles. 

Five of the 1.0g sample sets were annealed at the approximate exothermic 
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recrystallization event temperature of 414°C as reported in McCoy et al. (1). These 

annealing temperatures were set at 350°C, 380°C, 410°C, 430°C, and 460°C. Two of the 

sample sets were annealed in excess of the second exothermic event temperature of 

607°C as reported in McCoy et al. (1). These annealing temperatures were set at 620°C 

and 650°C. The annealing curves are shown in Figure 3.2. The temperature data was 

collected from a calibrated Omega Type K thermocouple located within the furnace 

chamber and a J-KEM thermocouple reader/over-temperature controller that was 

connected to a laptop with J-KEM data logging software. The thermocouple reader and 

computer were located outside of the glovebox. As can be seen in Figure 3.2, the furnace 

controller overran the temperature setting for each anneal. This was not seen as 

detrimental to the analysis, as the instantaneousness of reaction at a given temperature 

range was the focus. 

The samples were stored within glass vials under an air atmosphere until the X-ray 

diffraction specimens were prepared. Seven – 0.5g post-annealed samples are shown in 

Figure 3.3 and Figure 3.4 illustrating the comparison of 0.5g samples of plutonium 

tetrafluoride with Munsell color chart tabs.  

 

3.5 X-ray diffraction analyses  

Each set of annealed plutonium tetrafluoride was combined onto one Bruker 

A100B33 X-ray diffraction specimen holder. The plutonium was sealed onto the 

specimen holder with a layer of 3511 Kapton®. Silicon grease was placed within the 

snap ring well of the Bruker specimen holder to trap any plutonium particles not 

contained by the 3511 Kapton®. Figure 3.5 displays 1.0g of 350°C annealed plutonium 
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tetrafluoride within the Bruker sample holder. As can be seen with Figure 3.5, 1.0g of 

plutonium compound was not adequate to fill the entire A100B33 well. Therefore, as is 

illustrated in Figure 3.6, a 0.755-inch inner diameter 1100 series aluminum washer was 

fit into each A100B33 well for the remaining six specimens. This reduced the A100B33’s 

well volume by near 25 percent. The 350°C annealed sample was removed from the 

study due to its inadequacy in terms of crystal structure reordering and specimen 

preparation. 

The samples were analyzed with a Rigaku Ultima IV powder X-ray diffractometer 

equipped with a Cu X-ray tube operating at 40 kilo-volts (kV) and 40 milliamps (mA), a 

vertical θ/ θ goniometer with a 285 millimeter radius, and a D/teX linear position 

sensitive silicon strip detector located within the RPL.  A nickel filter was used to reduce 

the amount of diffracted kβ X-rays observed. An Eulerian cradle with automated sample 

height adjustment and sample rotation was also used.  The instrument was configured to 

perform an automated sample alignment routine that adjusted the sample height to the 

proper position prior to data collection. 

Full pattern Rietveld refinement was performed using the TOPAS v5 Bruker software 

package.  Fundamental parameter type peak shapes were used in the refinement.  The 

instrument contribution to peak broadening was determined by fitting three functions, a 

Lorentzian function with 1/cosine (θ) dependence, a hat function and a circles function 

with 1/tangent (θ) dependence, to a SRM 640d diffraction pattern standard supplied by 

the National Institute of Standards and Technology (NIST). The NIST standard and 

plutonium samples were analyzed with equal slit settings.  The instrument zero error was 

also determined using the NIST SRM 640d.  The crystallite size reported was determined 
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using the Double-Voigt approach as implemented in the TOPAS v5 (Bruker) software 

package (14).  The crystallite size reported was from the peak integral breadth of the 

Lorentzian type convolution to the peak shape.  An assumption of spherical crystallites is 

made in this determination.  A first order Chebychev polynomial with a 1/x function was 

used to model the background.  An external standard method developed by O’Conner et 

al. (15) and Jansen et al (16) was used for quantification.  The standard used for the 

external quantification method was a NIST SRM 676a. The NIST SRM 676a was 

analyzed within a Bruker specimen holder and Kapton® identical to that of the plutonium 

samples.   

The Kapton® polyimide film that was used to contain each plutonium powder sample 

contributed to the diffraction pattern in the form of amorphous (broad) peaks at 14.933° 

and 18.8945° 2θ.  These peaks along with additional broad peaks observed in the 380°C – 

410°C annealed samples (around 23° and 47° 2θ) were modeled with freely refined 

peaks.  An attempt was made to use the refined plutonium tetrafluoride structure, fitted to 

the broad peaks observed in the 380°C – 410°C annealed samples. This attempt did not 

result in a satisfactory fit.  The addition of freely refined peaks allowed for the accurate 

calculation of known phase peak areas in the presence of unknown amorphous 

components.  Since the same Kapton® film was used when collecting the 100% 

crystalline reference standard (SRM 676a), the film was not counted towards the sample 

amorphous content. 

The structure of neptunium tetrafluoride as reported by Zachariasen was used as a 

starting point for the structure of plutonium tetrafluoride (17).  The unit cell parameters 

were set to refine the pattern collected from the 620°C sample.  The resulting unit cell 
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parameters were a = 12.6074(7) Å, b = 10.6408(6) Å, c = 8.2447(5) Å, β = 126.328 (4)°. 

The resulting refined structure was fixed and used for the refinement pattern models of 

the remaining samples.  Structures for plutonium dioxide and plutonium tetrafluoride 

hydrate were also used to model the observed diffraction patterns (18) (19). Figure 3.7 

illustrates the diffraction patterns for the 6-1.0g samples (from 380°C-620°C), vertically 

shifted about the y-axis for comparison. The 350°C annealed sample was eliminated from 

the report due to the lack of crystal structure reordering and sample preparation. 

 

 

3.6 Discussion 

According to the trend illustrated in Figure 3.8, amorphous plutonium tetrafluoride 

appears to begin recrystallization on short time scales (< 1 hour) above 410°C in an inert 

atmosphere. This corresponds well with the 414°C exothermic event of recrystallization 

as suggested in McCoy et al. (1). There is also a clear trend that plutonium dioxide does 

not appear to form below 430°C in short-term annealing. There is clear evidence that the 

crystallite size of plutonium tetrafluoride increased as its defect concentration decreased. 

This was accompanied by a decrease in the crystallite size of plutonium oxide present in 

the sample. One of the most interesting phenomena can be seen in the close matching 

parabolic nature of the amorphous content and plutonium oxide crystallite size, while the 

crystallite size of plutonium fluoride continues in a more linear fashion. 

The data also illustrates that plutonium tetrafluoride begins to calcine near 460°C 

under these conditions. It was expected that some degree of oxidation would occur at 

temperatures near 600°C. Therefore, it is not unreasonable to see a 2 percent by weight 
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conversion at 460°C. The 500°C-600°C region was not studied in this work. But it would 

be worthwhile to investigate the oxide formation in this region under various argon flow 

rates. At this time, the data does imply that annealing temperatures above 430°C are not 

suggested if a measureable amount of oxide formation is undesirable. Longer annealing 

times (>12 hour) at near 400°C appear to be more suited for higher purity re-

crystallizations.  

The data further illustrates that approximately 2 percent of plutonium oxide and 2 

percent plutonium tetrafluoride hydrate was present within the amorphous content as a 

crystalline phase prior to any reported anhydrous tetrafluoride recrystallization. This 

suggests that the plutonium oxide was either resident in the bulk material as a result of 

radiolytic mechanisms or that plutonium oxide is more resilient to the effects of 

radiolysis in the presence of plutonium fluoride, having remained crystalline over the 

approximately 50 years of storage. The latter theory seems contradictory to the 

previously discussed works on the amorphization of plutonium oxide (4), (5), (6). As far 

as the existence of the hydrated tetrafluoride, it appears that it could be present at the 

onset of crystal structure reordering. The tetrafluoride hydrate peak has not been seen in 

the analyses of the non-annealed specimens, although the non-annealed specimen holders 

have been of a different type (1). Plutonium tetrafluoride hydrate is orthorhombic and 

only shown in Table 3.1 as present at 2 percent by weight (3). Therefore, its existence as 

an intermediate phase between room temperature and 350°C is not intuitive based on the 

monoclinic phase of the anhydrate.  

The existence of this crystalline oxide phase could have resulted through 

oxidative/hydrolytic reactions of the tetrafluoride with moist argon gas during sample 
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anneal. Pre-purified bottled argon gas with an inline desiccator was used to purge the 

furnace chamber. Therefore, it is unlikely that this was responsible for the oxidation. If 

the hydrate was present in the bulk sample, just undetected until now, it is possible that 5 

liters per minute of argon gas was insufficient to flush the hydration from the furnace 

chamber as liberated from the plutonium fluoride above 380°C. The removal of these 

hydrates corresponds somewhat to the ingrowth of plutonium dioxide. However, further 

tests need to be performed to determine the source of this oxidation, being that it does not 

match the literature (3), (13).  

 
 

3.7 Conclusion 

The work presented here is based on a cycle of radiolysis and crystal structure 

reordering in plutonium tetrafluoride through brief annealing at temperatures between 

350°C and 650°C. The plutonium tetrafluoride studied was part of the last remaining 

stock of plutonium tetrafluoride made at the Hanford Site’s PFP and has been in storage 

for near 50 years. It has clearly undergone radiolytically induced amorphization similar to 

that seen in plutonium dioxide stored for equal periods of time. However, the crystal 

lattice deformation mechanisms and those mechanisms that occur in plutonium 

tetrafluoride during the annealing process may not line up equally as well to those that 

occur in plutonium oxide. 

There is a clear trend in this study of oxide formation in plutonium tetrafluoride that 

has been annealed at temperatures in excess of 430°C for short time periods of time (<0.5 

hour above 400°C) in an argon atmosphere. This is significantly lower than the stability 

of plutonium tetrafluoride in an inert atmosphere as reported by Clark et al. (3). This 
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result may be related to the stability of the tetrafluoride hydrate as reported by Cleveland 

(13), if the argon flow rate for this work was not great enough to remove the atmosphere 

before oxidation/hydrolysis of the plutonium took place. A study to investigate the lower 

threshold of this oxidation/hydrolytic reaction as a function of inert gas flow rate is 

warranted to quantify this assumption. 

This work has posed some interesting questions about the stability of plutonium 

tetrafluoride in air and what mechanisms effect its recrystallization once amorphization 

has consumed the material. 
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Figure 3.1 Plutonium tetrafluoride (PuF4) within magnesium oxide crucibles; pre-

annealing (left); post-annealing 620°C (right); the color change resident in the post-
anneal sample is characteristic of defect elimination. The salmon pink color is 
typical for freshly fluorinated PuF4. The greyish color is consistent throughout the 
approximately 50-year-old Hanford PuF4 stock.  
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Figure 3.2 Annealing rate curves for 7-1.0g PuF4 samples in MTI KSL-1000X muffle 

furnace purged with argon gas at 5 liters per minute. The furnace ramp rates were 
chosen to match the thermogravimetric/differential thermal analyzer ramp rates as 
reported in (16). The PuF4 samples were left under an argon atmosphere until a 
temperature below 100° was reported by the J-KEM software. The hold time at 
temperature was an artifact of the furnace and not part of the program; this work 
was focused on the annealing effect of a maximum temperature and not necessarily 
soak time at temperature. 
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Figure 3.3 0.5g samples of PuF4 annealed at (from left to right) 350°C, 380°C, 410°C, 

430°C, 460°C, 620°C, and 650°C. There is a clear transition in the material from 
grey at a predominately amorphous state, to pink at a predominately crystalline state 
(from left to right). A third color change, orange, is illustrated in the 650°C (far 
right) sample. 
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Figure 3.4 Comparison of PuF4 that has undergone near 50 years of radiolysis (left) with 

that of 460°C annealed PuF4 (right); Munsell color chart tabs are placed next to the 
samples for further comparison (10YR 8/4 right tab and 2.5YR 8/4 left tab).  

 
 

 
Figure 3.5 1.0g sample of 350°C annealed PuF4 within a Bruker A100B33 X-ray 

diffraction specimen holder sealed with 3511 Kapton®. Clearly, 1.0g of PuF4 was 
not adequate to fill the entire specimen well. Therefore, for all subsequent 
specimens, 0.755-inch inner diameter 1100 series aluminum washers were fit into 
each A100B33 well. This reduced the well’s volume by near 25 percent.  
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Figure 3.6 1.0g sample of 460°C annealed PuF4 within a Bruker A100B33 X-ray 

diffraction specimen holder sealed with 3511 Kapton®. A 0.755-inch inner diameter 
1100 series aluminum washer was fit into the A100B33 well. This reduced the 
well’s volume by near 25 percent. This sample exhibited a more suitable surface 
flatness for X-ray diffraction analysis. 
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Figure 3.7 Diffraction patterns of 6-1.0g samples of PuF4 annealed at temperatures in the 

380°C-650°C range. The diffraction patterns have been vertically shifted about the 
y-axis for comparison. A clear transition in peak broadness at the 23° and 47° 2θ is 
illustrated between the sample annealed at 410°C and the sample annealed at 
430°C. The reordering of plutonium tetrafluoride crystals is evident in the 20°-30° 
and 40°-50° 2θ regions. The ingrowth of plutonium oxide can be seen increasing 
above 430°C at 28°, 47.5, and 56° 2θ. 
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Figure 3.8 X-ray diffraction data for the 6-1gram PuF4 samples that corresponds to Table 

3.1. There is a well-defined pattern of reversal to the amorphization of PuF4 with 
annealing temperatures above 430°C and below 620°C.  

 

 
Table 3.1 X-ray diffraction data for the 6-1gram PuF4 samples, normalized for amorphous 

and PuO2 content with respect to annealing temperature.   

Annealing 
Temperature 

(°C) 

Weight 
% 

PuO2 

Weight 
% 

PuF4 

Weight % 
PuF4•1.6H2O 

Weight % 
Amorphous 

Crystallite 
size PuF4 

(nm) 

Crystallite 
size PuO2 

(nm) 
380 2 - 2 96 - 80 
410 2 - - 98 - 76 
430 2 52 - 46 14 39 
460 4 62 - 34 16 48 
620 9 54 - 37 60 80 
650 21 28 - 51 68 93 



 

 

CHAPTER 4 

 

LONG-TERM ANNEALING OF AMORPHOUS 

PLUTONIUM TETRAFLUORIDE 

 

4.1 Abstract 

One of the last remaining samples of plutonium tetrafluoride that was produced at the 

Hanford Site’s Plutonium Finishing Plant (PFP) has been analyzed at the Pacific 

Northwest National Laboratory (PNNL) since 2014. The plutonium has been stored 

within sealed containers since it was produced in the late 1960s. It has undergone 

metamictization through self-induced alpha radiolysis. This work reports on 

investigations into this metimictization, and the effect that long-term (>12 hour) 

annealing has on its reversal through recrystallization. 

 

4.2 Introduction 

Since 2014, samples of plutonium tetrafluoride from one of the last remaining stocks 

that was produced at the Hanford Site’s Plutonium Finishing Plant (PFP) have been 

analyzed at the Pacific Northwest National Laboratory’s (PNNL) Radiochemical 

Processing Laboratory (RPL). The plutonium tetrafluoride under study was produced 

before 1970 and has been stored in sealed containers since that time. There are two earlier
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studies linked to this work that looked at thermogravimetric/differential thermal analyses 

and X-ray diffraction patterns of the PFP produced plutonium tetrafluoride (1), (2). These 

analyses determined that the material had undergone metamictization during its 

approximately 50 years of storage (1). This metamictization was attributed to the alpha 

radiolysis that is inherent with plutonium and plutonium bearing materials (1), (2). 

Through the thermogravimetric/differential thermal analyses, it was determined that the 

amorphous plutonium tetrafluoride underwent an exothermic reaction upon thermal 

annealing within an argon atmosphere at approximately 414°C (1).  

It was also determined during these analyses that a color change, from a brown-grey 

to salmon pink, accompanied some recrystallization post-reaction in the plutonium 

tetrafluoride (1). The exothermic reaction and color change have been assigned as 

products of the recrystallization (1), (2). The color change has been compared to a similar 

behavior seen in sodium chloride upon irradiation (1). The color change in sodium 

chloride has been credited to F-center formation in its crystal structure vacancies (16). 

The exothermic reaction in the plutonium tetrafluoride has been attributed to a reordering 

of its crystal structure, by liberation of F-center and Frenkel type defects (1), (2). The 

Frenkel defect mechanism is evident based on this behavior in other metamict actinide 

bearing compounds (1), (2), (3). The F-center formation is a postulation based on the 

high ionization rate within plutonium compounds, and this comparable color change 

within some alkali halides (4).    

There is an interesting opportunity to explore the probable F-center formation in 

plutonium tetrafluoride and the annealing of these defects through “bleaching” with a 

certain wavelength or wavelength range of light as described in Tandon (4). However, 

this study is focused on the thermal annealing effects within plutonium tetrafluoride. 
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Based on two earlier works, three long-term (>12 hours) anneals of the amorphous 

plutonium tetrafluoride, one at 300°C for 24 hours, one at 350°C for 24 hours, and one at 

400°C for 12 hours, were chosen for this study (1), (2). These temperatures were selected 

based on the possibility of a 400°C minimum temperature for the effective 

recrystallization of the amorphous tetrafluoride. 

 

4.3 Background  

4.3.1 Radiolysis in plutonium tetrafluoride 

As previously stated, two earlier studies on this topic discussed the possible 

mechanisms of amorphization in plutonium tetrafluoride in comparison to those found in 

uranium and plutonium oxides (1) (2). It has been shown that there are similarities among 

the actinide oxides with regards to alpha radiation-induced crystal lattice parameter 

expansion (5). This lattice parameter expansion is a primary driver of crystal lattice 

damage in these compounds. The saturation point of this lattice parameter expansion has 

been estimated to range from approximately 0.3-0.6 percent for plutonium and uranium 

oxides, which correlates to a crystallite volume increase of near 1.0 percent (5). This 

saturation point is reached in plutonium oxide at roughly 10 years post-production (4).  

Radiolysis in plutonium tetrafluoride is expected to follow a similar time line as that 

in plutonium oxide. Crystal lattice damage is certainly evident in the near 50-year-old 

Hanford produced plutonium tetrafluoride. Samples of this plutonium are amorphous 

according to multiple X-ray diffraction analyses (1) (2). The mechanism of that 

amorphization has been proposed to be self-induced alpha radiolysis (1) (2). In uranium 

and plutonium oxides, Frenkel defects cause crystal lattice parameter expansion 
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according to a model that has been reported by Nellis et al. (6) and expanded upon by 

Weber (7). This type of crystal lattice expansion has not been seen in plutonium 

tetrafluoride (1) (2). However, Frenkel defect formation is the logic primary mechanism 

of amorphization in plutonium tetrafluoride. As previously mentioned, the speculated F-

center-induced color change is seen as a byproduct of these Frenkel defect formations 

and ionization mechanisms (2); however, the exact nature and speed of this radiolysis in 

plutonium tetrafluoride has yet to be determined.  

 

4.3.2 Mechanisms of annealing 

If plutonium tetrafluoride does not follow the radiolytically induced crystal lattice 

expansion model of the actinide oxides, then a question must exist on whether plutonium 

tetrafluoride follows the same annealing behavior of the actinide oxides. It has been 

shown that uranium oxide, plutonium oxide, and even the lanthanide, cerium oxide, 

undergo a crystal structure reordering in multiple phases during the annealing process (7). 

This reordering reduces the crystal lattice parameter expansion induced by radiolysis (7). 

Furthermore, the mechanisms of this recrystallization are shown to be primarily defect 

clustering, interstitial-vacancy recombination, helium liberation, and F-center-molecule 

recombination (2). An approximation of the two-stage recrystallization curve for 

polycrystalline plutonium oxide annealed for 18 hours is shown in Figure 4.1 (7). Single 

crystal plutonium oxide has been demonstrated to follow a three-stage trend (7).  

Figure 4.2 compares the curve from Figure 4.1 with that of short-term (<1 hour) 

annealing data on plutonium tetrafluoride (2) (7). Figure 4.2 displays a noteworthy trend 

between the reduction in total amorphous content within the plutonium fluoride from (2) 
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and the radiolytically damaged plutonium oxide data from (7), as annealing temperatures 

are increased. The slope and temperature range of the curves appear to show a 

relationship in the 400°C-450°C range. This trend is near the 414°C exothermic reaction 

recorded during plutonium tetrafluoride recrystallization experiments in 2015 and 2016 

(1). The trend might relate to the activation energy of Frenkel cation defect reordering 

since plutonium fluoride and dioxide both contain an equal cation, Pu4+ (8).  

The activation energy equation that Weber reported for the plutonium oxide 

reordering data (7) is: 

 

E0=kTln(Ct)                        (1) 

 

where: 

E0 –activation energy of recrystallization (eV) 

k – Boltmann constant (eV/K) 

T – absolute annealing temperature (K) 

C – frequency factor (also called pre-exponential factor) (-s) 

t – annealing time (s) 

The frequency factor, C, is reported to be 1010 (s-1) for annealing studies of 

plutonium, uranium, and cerium oxides along with calcium, barium, and strontium 

fluorides (7). Therefore, 1010 (s-1) is a logical choice for the estimations with plutonium 

fluoride shown in Figures 4.3 and 4.4. Figure 4.3 displays activation energy values in the 

tetrafluoride based on isochronal annealing at 1, 10, and 100 minutes at the absolute 

annealing temperature shown on the x-axis. Weber estimated the activation energy values 
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for plutonium oxide annealed at 30 minutes. The values of his estimations are shown 

along with the plutonium tetrafluoride data in Figure 4.3. Figure 4.4 displays activation 

energy values in plutonium tetrafluoride based on isothermal annealing at 325°C, 380°C, 

410°C, and 430°C degrees for the durations shown on the x-axis.  

The agreement between plutonium tetrafluoride and oxide activation energy 

estimations shown in Figure 4.3 is logical due to the simplicity of Eq. 1 and the shared 

value of the frequency factor. The experimentally estimated activation energy for anion 

vacancy migration in plutonium dioxide has been reported to be 0.5 eV (7). Furthermore, 

Weber postulated that the value of oxygen interstitial migration was 1.9 eV based on 0.5 

hour anneals of plutonium dioxide at 450°C (7). The migration of oxygen interstitials has 

been taken to be the first stage of defect reordering in the oxide (7).  

The second stage of defect reordering in plutonium oxide has been estimated to take 

place at 675°C during a 0.5 hour anneal (7). This is estimated to encompass the migration 

of cation vacancies (7). The activation energy for the second stage has been estimated by 

Weber to be 2.5 eV (7). These values presented by Weber show some agreement with the 

previous short-term annealing studies with plutonium tetrafluoride (1) (2). The activation 

energy for significant defect reordering in plutonium tetrafluoride, and therefore 

recrystallization, appears to be near 1.5eV in the 400°C range (1) (2). This would also be 

in the range of activation energies reported by Weber for reordering in cerium and 

uranium oxides (7). However, this is certainly a gross comparison of the activation 

energies of each compound.  

During the short-term study, there appeared to be temperature limitations on the 

annealing of plutonium tetrafluoride if the ingrowth of plutonium dioxide is a concern 



 
 

 

 

54  

(2). An argon cover gas has been used in previous studies to limit this ingrowth (1) (2). 

However, if the stage-two cation vacancy migration temperature of 675°C reported by 

Weber is required for this same behavior in plutonium tetrafluoride, the gas flow rates 

used in the earlier studies do not appear sufficient to maintain its stability (1) (2). Clark et 

al. reported that plutonium tetrafluoride is stable in oxygen up to 600°C (8). However, 

Cleveland reported that plutonium tetrafluoride is unstable above 300°C in moist air, with 

a complete conversion to dioxide at 600°C (9). Cleveland’s report appears to be more 

inline with current data (1) (2).  

The lack of color change data with the radiolysis and annealing of plutonium oxide is 

an interesting note. As can be seen in Figure 4.5, there is a significant color change in 

plutonium tetrafluoride annealed above 400°C. The initial studies with the compound 

have shown that the color change is present with reductions in the amorphous content (1) 

(2). This is a discrepancy between the two compounds and warrants further investigation.  

 

4.4 Experimental approach  

4.4.1 Long-term annealing 

Four approximately 1.0g plutonium tetrafluoride samples were annealed for 12 hours 

or more within a MTI Model KSL-1100X muffle furnace at PNNL. The furnace is 

contained within a glovebox at PNNL’s Radiochemical Processing Facility (RPL). The 

MTI Model KSL-1100X muffle furnace chamber volume is 1 liter. The atmosphere 

within the furnace was purged with argon gas at a rate of approximately 5 liters per 

minute. Each sample was split into 0.5g batches to increase the surface area available for 

reaction. Each 0.5g batch was contained within a 10.0 ml magnesium oxide crucible with 
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a loose-fitted magnesium oxide lid. The loose-fitted lids were used to ensure that an 

adequate flow of argon reached the plutonium tetrafluoride within each crucible. Figure 

4.5 illustrates a pre-annealed and post-annealed 0.5g batch of plutonium tetrafluoride 

within a magnesium oxide crucible.  

Short-term (<1 hour) annealing of plutonium tetrafluoride has previously been 

performed at 350°C, 380°C, 410°C, 430°C, 460°C, 620°C, and 650°C (2). The data from 

these short-term anneals showed that above 400°C and below 460°C, recrystallization of 

plutonium tetrafluoride proceeded without significant ingrowth of oxides (2). Above 

460°C, there appeared to be a significant ingrowth of oxides (2), and below 400°C, 

recrystallization of the compound does not appear to occur in the short-term (<1 hour) 

(2). These results were the basis for selecting long-term (>12 hours) annealing times for 

this study. 4-1.0g samples were annealed according to Figure 4.6. The temperature data 

was collected from a calibrated Omega Type K thermocouple within the furnace 

chamber. A J-KEM thermocouple reader and over-temperature control was used with J-

KEM data logging software to capture the data on a laptop that was external to the glove 

box.  

Once each anneal was complete, the samples were stored within 20ml glass vials 

under an air atmosphere until the X-ray diffraction specimens were prepared. 

 

4.4.2 X-ray diffraction analyses 

Bruker A100B33 X-ray diffraction specimen holders were used with each set of 

annealed plutonium tetrafluoride. A 0.755-inch inner diameter 1100 series aluminum 

washer was fit into each A100B33 well in order to reduced the A100B33’s well volume 
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by near 25 percent. This reduction in the well’s volume ensured that 1.0g of plutonium 

tetrafluoride provided a suitable specimen surface height and flatness. 3511 Kapton® was 

used to seal the plutonium powder onto the specimen holder. Silicon grease was placed 

within the A100B33 snap ring well to trap loose plutonium particles. Figure 4.7 

illustrates the Bruker specimen holder with Kapton® and 1.0g of plutonium tetrafluoride.  

The samples were analyzed with a Rigaku Ultima IV powder X-ray diffractometer 

located within the RPL. The diffractometer used a 40kV, 40mA Cu X-ray tube, a D/teX 

linear position sensitive silicon strip detector, and a 285mm radius vertical θ/θ 

goniometer. An Eulerian cradle with automated sample height adjustment and sample 

rotation was also used. The instrument ran an automated sample alignment routine that 

adjusted the sample height to the proper position prior to data collection. A nickel filter 

was used to reduce the amount of diffracted kβ X-rays observed.  

Full pattern Rietveld refinement was performed using the TOPAS v5 Bruker software 

package. Fundamental parameter type peak shapes were used in the refinement. The 

instrument contribution to peak broadening was determined by fitting three functions to a 

Lorentzian function with 1/cos(θ) dependence, a hat function and a circles function with 

1/tan(θ) dependence, to a SRM 640d diffraction pattern standard supplied by the National 

Institute of Standards and Technology (NIST). The split settings for both the NIST 

standard and plutonium samples were equal. The instrument zero error was determined 

using the NIST SRM 640d. The crystallite size reported was determined using the 

Double-Voigt approach as implemented in the TOPAS v5 (Bruker) software package 

(10). The crystallite size reported was from the peak integral breadth of the Lorentzian 

type convolution to the peak shape, with an assumption of spherical crystallites. The 
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background was modeled with a first order Chebychev polynomial 1/x function. 

Quantification was performed with a external standard method developed by O’Conner et 

al. (11) and Jansen et al. (12) that used a NIST SRM 676a standard, analyzed within a 

Bruker specimen holder and Kapton® identical to that of the plutonium samples.  

Previous studies refined the unit cell parameters of a 620°C annealed sample of 

plutonium tetrafluoride from Zachariasen’s structure of neptunium tetrafluoride (1) (2) 

(13). The 620°C sample was chosen for its comparative crystallite size to Zachariasen’s 

structure (13). The refined unit cell dimensions chosen for these analyses was a = 

12.6074 (7) Å, b = 10.6408 (6) Å, c = 8.2447 (5) Å, β = 126.328 (4)°. Plutonium dioxide 

was also used to model the observed diffraction patterns (14). Figure 4.8 illustrates the 

diffraction patterns for the 3 of the 1.0g samples (from 300°C-400°C) annealed for 24 

hours, vertically shifted about the y-axis for comparison. Figure 4.9 illustrates the 

diffraction pattern of the 1.0g sample annealed for 12 hours from 400°C-300°C, along 

with the modeled patterns for plutonium tetrafluoride and plutonium dioxide. The 

contribution from the Kapton® is shown in Figure 4.10, as well.  

As shown in Figure 4.10, Kapton® polyimide film that was used to contain each 

plutonium powder sample contributed to the diffraction pattern in the form of amorphous 

(broad) peaks at 14.933° and 18.8945° 2θ. These peaks along with broad peaks observed 

near 23° and 47° 2θ in the 300°C –350°C annealed samples were modeled with freely 

refined peaks. In the short-term annealing study, an attempt was made to use the refined 

plutonium tetrafluoride structure, fitted to the broad peaks observed in samples annealed 

at 380°C – 410°C (2). This was reported to not result in a satisfactory fit (2). Therefore, 

like the previous analyses, the addition of freely refined peaks allowed for an more 
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accurate calculation of known phase peak areas in the presence of unknown amorphous 

components (2).  

Further refinement of the diffraction pattern included a discount for the amorphous 

artifact from the Kapton® film. The Kapton® film was used to analyze the 100% 

crystalline reference standard (SRM 676a) in the same manner as that of the plutonium 

samples. Therefore, it could be accounted for in the results.  

 

4.5 Discussion 

In the thermogravimetric/differential thermal analysis studies, mass loss in the 

Hanford produced amorphous plutonium tetrafluoride has been reported to be less than 1 

percent (1). However, under the long-term annealing conditions, mass loss has been 

measured to reach near 7 percent Figure 4.10 illustrates the mass loss for each sample 

measured at the 0.5g batch scale.  

Liberation of hydrates is a reasonable explanation for the greater mass lost over the 

long-term (>12 hour) annealing conditions. This is arguably confirmed with results from 

the short-term (<1 hour) annealing study (2); it was found that a plutonium tetrafluoride 

hydrate crystalline phase appeared within the diffraction pattern of a sample annealed for 

less than 10 minutes at 380°C (2). The hydrated species within the sample were reported 

to be 2 percent (2). If combined with the oxide ingrowth mass loss estimation from the 

oxide data in Table 4.1, this corresponds well to the measured mass loss data. The 

crystalline hydrated species was not seen in these analyses, however, as suspected in the 

short-term annealing study, the hydrated species could be within the amorphous content 

until its recrystallization (2).  
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Often, this type of mass loss coupled with the color change seen in the amorphous 

plutonium tetrafluoride would be linked solely to hydration. This was an initial 

assumption during the first work with this material (1). However, this assumption was 

abandoned once the thermogravimetric/differential thermal analyses reported an 

insufficient mass loss (< 1 percent) upon bleaching and recrystallization (1). This is 

contradictory to the Clark et al. report that plutonium tetrafluoride hydrate is pink, with 

the anhydrous being pale brown (8). Through experience with the anhydrous plutonium 

tetrafluoride and previous annealing studies, it is known that anhydrous plutonium 

tetrafluoride is pink and not pale brown (1) (2). Furthermore, color change in this 

material appears to accompany recrystallization and not only mass loss. 

A portion of the mass loss can be accounted for by the exchange of fluoride anions 

for oxide anions due to the ingrowth of plutonium oxide within the samples. The molar 

mass of plutonium dioxide is approximately 86 percent of the molar mass of plutonium 

tetrafluoride. Therefore, if the ingrowth of oxide is assumed to be near 25 percent within 

a 0.5g batch, the resulting mass loss would be approximately 0.017g per batch. This 

equates to a 3.4 percent mass loss. Figure 4.11 illustrates the calculated mass loss values 

for oxide ingrowth data from Table 4.1 plus a 2 percent mass loss for dehydration. 

Impurities within the argon gas used to purge the furnace chamber are a logical source of 

oxides for anion exchange.  

Figure 4.12 illustrates the reordering and oxide ingrowth data for the 300°C 12 hour, 

350°C 24 hour, 400°C 24 hour, and 400°C-300°C 12 hour annealed samples. There is a 

clear increase in the oxide formation within the samples annealed for 24 hours, with and 

without significant tetrafluoride reordering. For example, the sample annealed at 400°C 
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decreasing to 300°C over 12 hours resulted in a 12 percent mass loss of plutonium 

tetrafluoride recrystallization, with a 1 percent mass loss in plutonium oxide content, 

whereas the sample annealed at 350°C for 24 hours resulted in 0 percent plutonium 

tetrafluoride recrystallization, with a 12 percent by weight plutonium oxide content. The 

sample annealed at 400°C for 24 hours recorded over twice the recrystallization of 

plutonium tetrafluoride to that of the 12 hour sample but at the cost of 25 percent by 

weight oxide ingrowth.  

Figure 4.13 illustrates the crystallite size changes of plutonium tetrafluoride and oxide 

with time and temperature. The data shows that the crystallite size increase of plutonium 

tetrafluoride is near stagnant at 11 nm and 12 nm for the 400°C-300°C 12 hour and 

400°C 24 hour annealed samples, respectively. This coupled with the plutonium oxide 

ingrowth data from Table 4.1 and Figure 4.12 argues that short-term (<12 hour) 

annealing for the recrystallization of plutonium tetrafluoride is preferential if plutonium 

oxide ingrowth is a concern. Furthermore, based on the results of the short-term and long-

term annealing studies, plutonium tetrafluoride appears to begin recrystallization at the 

400°C range and above (2).  

 

4.6 Conclusion  

This study was focused on the recrystallization of amorphous plutonium tetrafluoride 

under long-term (>12 hour) annealing conditions. It serves as a compliment to prior 

studies focused on the mechanisms of radiolysis in plutonium tetrafluoride as it compares 

to plutonium dioxide, and the effect of short-term annealing on the reversal of the 

amorphization (1) (2). The plutonium used for these studies was part of the last remaining 
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stock of plutonium tetrafluoride made at the Hanford Site’s PFP and has been in storage 

for near 50 years (1) (2).  

The results presented show a clear trend of oxide formation in plutonium tetrafluoride 

that has been annealed at temperatures in excess of 350°C for long periods of time (>12 

hour) in an argon atmosphere. This is significantly lower than the stability of plutonium 

tetrafluoride in an inert atmosphere as reported by Clark et al. (8). More importantly, only 

the 12 hour 400°C- 300°C and 24 hour at 400°C annealed samples showed 

recrystallization of plutonium tetrafluoride. The 300°C and 350°C samples did not shown 

any reordering of the tetrafluoride. This confirms the lack of recrystallization in the 

samples annealed at 350°C and 380°C of the short-term annealing study (2). It appears 

that plutonium tetrafluoride requires an annealing temperature near 400°C in argon to 

effectively recrystallize. The activation energy in this range has been estimated to be 2 

eV for initial defect migration/reordering.  

 

4.7 Acknowledgements  

This work was supported by the National Nuclear Security Administration’s (NNSA) 

Next Generation Safeguards Initiative (NGSI), the Laboratory Directed Research and 

Development (LDRD) Program at the Pacific Northwest National Laboratory (PNNL), 

and a Nuclear Regulatory Commission (NRC) Fellowship under The University of Utah 

Nuclear Engineering Program (UNEP) grant.  

 
 
 
 
 
 



 
 

 

 

62  

4.8 References  

1. McCoy, K.; Sinkov, S.; Sweet, L.; McNamara, B.; Delegard, C.; Casella, A. 
Radiation damage and crystallinity in plutonium tetrafluoride. Journal of Nuclear 
Materials (Submitted) 2017. 
 

2. McCoy, K.; Sweet, L.; Douglas, B.; Casella, A.; Jevremovic, T. Short-term annealing 
in amorphous plutonium tetrafluoride. Journal of Nuclear Materials (Submitted) 
2017. 
 

3. Weber, J.; Ewing, R. C.; Wang, L.-M. The radiation induced crystalline-to-
amorphous transition in zircon. Journal of Materials Research 1993, 9 (3), 688-698. 
 

4. Tandon, L. Radiolysis of Salts and Long-Term Storage Issues for Both Pure and 
Impure PuO2 Materials in Plutonium Storage Containers; Government; US DOE: 
Los Alamos, 2000, 1-86 
 

5. Ewing, R. C.; Weber, W. J. Actinide waste forms and radiation effects. In The 
Chemistry of the Actinide and Transactinide Elements, 4th ed.; Morss, L. R., 
Eldelstein, N. M., Fuger, J., Eds.; Springer: Dordrecht, 2010; Vol. VI, VI vols., pp 
3813-3817 
 

6. Nellis, W. J. The effect of self-radiation on crystal volume. Inorganic and Nuclear 
Chemistry Letters 1977, 13, 393-398. 
 

7. W.J.Weber. Alpha-irradiation damage in CeO2, UO2, and PuO2. Radiation Effects 
1984, 83:1-2, 145-156. 
 

8. Clark, D. L.; Hecker, S. S.; Jarvinen, G. D.; Neu, M. P. Plutonium. In The Chemistry 
of the Actinide and Transactinide Elements, 3rd ed.; Morss, L. R., Edelstein, N. M., 
Fuger, J., Joseph, K. J., Eds.; Springer: Dordrecht The Netherlands, 2006; Vol. II, V 
vols., pp 813-1265. 
 

9. Cleveland, J. M. Compounds of plutonium. In Plutonium Handbook; Wick, O. J., 
Ed.; Gordon and Breach Science Publishers: New York, 1967; Vol. I, II vols., pp 352-
353. 
 

10. Balzar, D. Voigt-function model in diffraction-line broadening analysis. In Defect 
and Microstructure Analysis by Diffraction; Snyder, R. L., Ed.; Oxford University 
Press: Oxford, 1999; pp 94-124. 
 

11. O'Conner, B. H.; Raven, M. D. Application of the Reitveld refinement procedure in 
assaying powdered mixtures. Powder Diffraction 1988, 3 (1), 2-5. 



 
 

 

 

63  

12. Jansen, D.; Goetz-Neunhoeffer, F.; Stabler, C.; Neubauer, J. A remastered external 
standard method applied to the quantification of early OPC hydration. Cement and 
Concrete Research 2011, 41 (6), 602-608. 
 

13. Zachariasen, W. H. Crystal chemical studies of the 5f-series of elements. XII. New 
compounds representing known structure types. Acta Crystallographica 1949, 2 (6), 
388-390. 
 
 
 
 
 
 
 
 

 
Figure 4.1 Approximation of the 18 hour annealing trend for plutonium oxide (PuO2) 

given by Weber (7). The two-stage trend is common among the polycrystalline 
actinide and lanthanide oxides studies (7). 
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Figure 4.2 Comparison of the trends of short-term (< 1 hour) annealed plutonium 

tetrafluoride (PuF4) and long-term (18 hour) annealed PuO2. There is a clear overlap 
of the data in the 400°C-450°C annealing range. This region agrees well with the 
414°C exothermic reaction during PuF4 recrystallization reported by differential 
thermal analyses in an earlier work (1). 

 
 

 
Figure 4.3 Activation energy estimations in PuF4 calculated with Eq. 1 (7). The 

isochronal annealing curves were chosen at 1, 10, and 100 minutes based on 
Weber’s work with PuO2. The values clearly lie within 1.5-2.5 eV and agree well 
with the estimation by Weber (7).  
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Figure 4.4 Activation energy estimations in PuF4 calculated with Eq. 1 (7). The 
isothermal annealing temperatures were chosen based on the short-term annealing 
work in (2). The values are inline with Figure 4.3 and lie within 1.5-2.5 eV. 

 
Figure 4.5 Pre-annealed (left) and post-annealed 400°C (right) PuF4 within magnesium 

oxide crucibles; the PuF4 annealed at <400°C have not displayed the color change 
seen in the >400°C annealed samples. The salmon pink color is typical for freshly 
fluorinated and >400°C annealed PuF4. The approximately 50-year-old amorphous 
Hanford PuF4 stock displays the grey color. 
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Figure 4.6 Annealing rate curves for 4-1.0g PuF4 samples in MTI KSL-1000X muffle 

furnace purged with argon gas at 5 liters per minute. The PuF4 samples were left 
under an argon atmosphere until a temperature below 100° was reported by the J-
KEM software. 

 
 
 
 
 



 
 

 

 

67  

 
Figure 4.7 1.0g sample of 350°C annealed PuF4 within a Bruker A100B33 X-ray 

diffraction specimen holder sealed with 3511 Kapton®. A 25 percent reduction in 
the well volume of the A100B33 was accomplished with the fitment of a 0.755-inch 
inner diameter 1100 series aluminum washer. This ensured that the 1.0g sample 
exhibited a more suitable surface flatness for X-ray diffraction analysis. 
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Figure 4.8 Diffraction patterns of 3-1.0g samples of PuF4 annealed for 24 hours at 

temperatures in the 300°C-400°C range. The diffraction patterns have been 
vertically shifted about the y-axis for comparison. A clear transition in peak 
broadness at the 23° and 47° 2θ is illustrated between the sample annealed at 350°C 
and the sample annealed at 400°C. The reordering of plutonium tetrafluoride 
crystals is evident in the 20°-30° and 40°-50° 2θ regions. The ingrowth of 
plutonium oxide can be seen increasing above 300°C at 28°, 47.5, and 56°- 88° 2θ. 
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Figure 4.9 Diffraction pattern of the 400-300°C 12 hour annealed sample (black), 

modeled PuF4 (red), modeled PuO2 (blue), and Kapton® artifact (green). The 
reordering of plutonium tetrafluoride crystals is evident in the 20°-30° and 40°-50° 
2θ regions. The ingrowth of plutonium oxide can be seen at 28°, 47.5, and 56°- 88° 
2θ regions. 

 

 
Figure 4.10 Mass loss data for each PuF4 sample measure at the 0.5g batch scale. The 

graph clearly illustrates that the mass loss in the Hanford produced amorphous 
material is dependent on time at the maximum annealing temperature. 
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Figure 4.11 Mass loss comparison of batch average mass loss to estimations for PuO2 

ingrowth and dehydration by weight percent. There is a clear correlation between 
the ingrowth of PuO2 and mass loss seen in the batches from Figure 4.9. The 2 
percent additional mass loss on each oxide ingrowth bar does not fit blindly with 
the long-term annealing data.  

 
 
Table 4.1 X-ray diffraction data for the 4-1.0g PuF4 samples, normalized for amorphous 

and PuO2 content with respect to annealing temperature and time.   

Annealing 
Temperature 

(°C) 

Weight 
% 

PuO2 

Weight 
% 

PuF4 

Weight % 
PuF4•1.6H2O 

Weight % 
Amorphous 

Crystallite 
size PuF4 

(nm) 

Crystallite 
size PuO2 

(nm) 
PuF4-300C-

24hr 
3 - - 97 ~1 36 

PuF4-350C-
24hr 

12 - - 88 ~1 18 

PuF4-400C-
24hr 

25 35 - 41 12 29 

PuF4-400C-
300C-12hr 

1 12 - 87 11 18 

 



 
 

 

 

71  

 
Figure 4.12 X-ray diffraction data for the 3-24 hour and 1-12 hour annealed 1.0g PuF4 

samples that correspond to Table 4.1. There is a well-defined pattern of reversal to 
the amorphization of PuF4 with annealing temperatures above 300°C. Clearly, the 
12 hour at 400°C-300°C annealed sample contained significantly less PuO2 
ingrowth while also less PuF4 crystallinity. 
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Figure 4.13 Crystallite size comparison of 12 hour and 24 hour annealed 1.0g PuF4 

samples. The crystallite size of PuO2 appears to follow a parabolic curve during 24 
hour anneals from 300°C-400°C, with a near equal crystallite size for 12 hour 
400°C-300°C and 24 hour 350°C anneals. PuF4 crystallite size appears to grow with 
temperature.  

 
  



 

 

CHAPTER 5 

 

CONCLUSION 

 

There is limited information on the behavior of plutonium tetrafluoride, as it is rarely 

reported on by civilian industry. However, with the resurgence of all-metal nuclear fuels 

and some advanced fast nuclear reactor fuels, there is a need to investigate the nuances of 

working with plutonium tetrafluoride. In contrast, information on plutonium oxide is 

much more available due to its use as a mixed-oxide fuel. However, with all plutonium 

compounds becoming more precious as the years of ceased plutonium production 

increases, plutonium tetrafluoride will need to be investigated for its stability under long-

term storage conditions. 

It has been shown that radiolytic damage effects plutonium tetrafluoride through self-

induced alpha radiolytic amorphization. A color change from pink to grey-brown is 

evident once the plutonium tetrafluoride is amorphous. It has also been shown that 

thermal annealing can initiate the recrystallization of amorphous plutonium tetrafluoride 

at temperatures near 400°C. Furthermore, this recrystallization is accompanied by an 

exothermic reaction and color change back to pink.  

However, there is a significant risk of oxide ingrowth within the plutonium 

tetrafluoride given annealing temperatures are above 430°C in an inert flowing gas. 
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Furthermore, the crystal lattice damage and annealing effects in plutonium tetrafluoride 

do not appear to follow the crystal lattice expansion behavior in plutonium oxide, even 

though the crystal lattice defect formation could be shared among the compounds. The 

crystallite size of plutonium tetrafluoride grows with temperature whereas the crystallite 

size in plutonium oxide follows a more parabolic trend.  

 

  



 
 

 

CHAPTER 6 

 

FUTURE WORK 

 
 

There are a few questions that remain post completion of this study. Two of these 

questions will be the target of future work with amorphous plutonium tetrafluoride and 

they are:  

1) Is the color change in amorphous to recrystallized plutonium tetrafluoride 

possible with certain wavelengths of light?  

2) Is the ingrowth of oxide within plutonium tetrafluoride annealed above 430°C due 

to impurities in the argon gas or within the tetrafluoride? And does annealing 

within a vacuum or a purer/different inert gas still produce this ingrowth of oxide? 

The first question could be investigated by attempting to bleach the amorphous 

tetrafluoride within an X-ray fluorescence device equipped with various wavelength 

filters. The sample preparation method that was used for the X-ray diffraction analyses in 

this study could be used for the bleaching work. This would allow for a non-radioactive 

device to be used. 

The second question could be investigated by heating the amorphous plutonium 

tetrafluoride within a vacuum-annealing furnace. Helium could also be used as another 

inert gas option, and hydrogen fluoride gas could be used to baseline the process/oxide 

ingrowth as it is used in the production of the tetrafluoride with oxygen. 


