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ABSTRACT 

 

Clear cell sarcoma (CCS) is a rare but devastating malignancy with a proclivity 

for young adults, disturbingly low survivability, and recalcitrance to therapies. Due to the 

low incidence, it remains difficult to investigate the mechanism behind CCS.  By 

generating an accurate model system that recapitulates human tumor dynamics, there is 

hope that the molecular mechanisms required for tumor initiation and maintenance can be 

identified and lead to more directed, successful therapeutic options.  

CCS achieves its clinically aggressive phenotype from the expression of a single 

oncogene, EWS-ATF1. This aberrant transcription factor drives clear cell tumorigenesis 

seemingly from deregulation of ATF1 signaling alone. The impact of CCS on the general 

population far exceeds its somewhat low prevalence due to its similarities to another 

aggressive tumor, malignant melanoma. CCS and melanoma resemble one another in 

morphology, immunohistochemistry, and overall clinical behavior.  

A targeted mouse model was developed that conditionally expresses human EWS-

ATF1 cDNA under control of a ubiquitous promoter. Expression of EWS-ATF1 leads to 

100% tumor formation with extraordinary speed, when induced in a permissive cell type. 

These tumors resembled human CCS in morphology, immunohistochemistry, and gene 

expression.   

Mesenchymal stem cells (MSC) were identified as the main source of traditional 
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CCS. The EWS-ATF1 transcript proved capable of driving expression of melanocytic 

markers within MSCs, inducing the melanoma expression profile. When tumorigenesis 

was initiated in more differentiated cell types, the tumors did not resemble the traditional 

CCS phenotype. Therefore, differentiation state of the cell of origin proved critical in 

shaping tumor phenotype.  

It is thought that melanoma and CCS share a cell of origin. To test this, EWS-

ATF1 was expressed within the melanocytic lineage, and gave rise to tumors 1 year post 

induction, with a low prevalence. These tumors mimic a rare dermal variant of CCS. Due 

to the long latency between EWS-ATF1 initiation and tumor formation, it is probable that 

EWS-ATF1 alone is not sufficient to drive dermal CCS. 

This work has identified EWS-ATF1 as the driving oncogene behind both clear 

cell tumor formation and the melanocytic phenotype. This model can be used to 

investigate novel therapeutics for a more targeted treatment of CCS. 

. 
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CHAPTER 1 

 

INTRODUCTION 

 

Translocation-Based Sarcomas 

Sarcomas are a relatively rare group of tumors that arise in mesenchymal tissues 

such as bone, muscle, and fat. Sarcomas comprise less than 5% of adult cancers but more 

than 10% of pediatric tumors (Osuna and de Alava, 2009).  The etiology of translocation-

associated sarcomas in particular is unknown and their high incidence in the pediatric 

population suggests that relatively few genetic mutations are necessary to complete 

transformation. Roughly a third of sarcomas fit into this category. The translocations are 

most often a reciprocal exchange between two heterologous chromosomes. The 

translocation breakpoint typically occurs within an intron on both chromosomes, which 

fuses the 5’ coding region of one gene to the 3’ coding region of another gene on the 

second translocated chromosome. Each resulting fusion protein associates with a distinct 

tumor type, leading to the general conclusion that it must contribute both to the 

oncogenesis and tumor phenotype.  

Translocation-based sarcomas generally lack any other signs of genomic 

instability.  Generally, translocation-based tumors arise in young adult populations, but 

their occurrence can range from pediatric to geriatric populations as well. The presence of 

a fusion protein is rapidly becoming pivotal to diagnosing specific sarcomas, leading
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pathologists to reconsider whether diagnosis should be based primarily on a tumor’s

genetic makeup or on its morphology. One translocation-based tumor is clear cell 

sarcoma. Investigation of clear cell sarcoma suggests that a single fusion protein can be 

sufficient to induce tumor formation and shape tumor phenotype. Clear cell sarcoma 

provides a strong example of how understanding the genetic anomaly underlying a tumor 

can reshape the classification criteria of a malignancy.  

 

Discovery and Characterization of Clear Cell Sarcoma 

 Clear cell is a rare but aggressive translocation-based sarcoma, initially 

characterized by Franz M. Enzinger in 1965. He described clear cell as a malignant tumor 

with relatively benign features that often arose near tendons and aponeuroses. The most 

striking observations made by Enzinger were the relatively young patients and the 

aggressive nature of the tumor. The average age of patients in the initial cohort of 21 

cases was just 24 (Enzinger, 1965).  In more recent, larger, studies of clear cell sarcoma, 

the average age at diagnosis was 24-30 years of age (Chung and Enzinger, 1983).  

Enzinger noted that despite the relatively small size of the tumors (average being 4 cm) 

and apparently benign features, including low mitotic index, these tumors had high rates 

of local recurrence and, eventually, distant metastasis. Histologically, they varied in 

morphology but all contained compact nests of cells with cytoplasm that stained lightly 

eosinophilic and had large, basophilic, prominent nucleoli (Figure 1.1A).  It is surprising 

that this first description of clear cell sarcoma has endured, and the prognosis remains 

consistent, even with modern fluctuations in the diagnostic criteria (Enzinger, 1965).    

 Ten years after Enzinger first coined the term clear cell sarcoma, Bearman and 

colleagues employed electron microscopy to obtain an enhanced view of the cellular 
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Figure 1.1 Pathology of clear cell sarcoma. A murine clear cell sarcoma A) with fibrous 
tissue dividing the tumor into defined nests and groups of pale staining tumor cells; B) 
prominent nucleoli and cytoplasmic melanin pigment (arrowhead). 
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ultrastructure of the tumors. They were the first to observe that the tumors, though not 

always visually pigmented, contained cytoplasmic melanin and structures resembling 

melanosomes (Bearman et al., 1975). This was surprising considering the deep location 

of the tumors, far from the location of melanocytes. Over the next few years, many case 

reports noted similar features within the tumors, and the term “malignant melanoma of 

the soft parts” became synonymous with clear cell sarcoma. The presence of melanin 

pigment (Figure 1.1B), melanosomes, and various levels of melanocyte differentiation, 

combined with the counterintuitive location in the deep mesenchyme, have caused 

dission within the field about the potential cell of origin for these tumors. 

With an increase of researchers studying melanoma, a pigmented malignancy 

arising from melanocytes, immunohistochemical tools were developed to identify 

melanocyte-specific antigens. Similar to melanoma, clear cell sarcoma was found to 

express markers of pigmentation as well as other melanocyte-specific antigens. The 

expression of one marker, melanocytic microphthalmia transcription factor (mMITF), 

was identified in both melanoma and clear cell sarcoma. Since mMITF is not typically 

seen in previously described sarcomas, this marker provided a clear diagnostic tool for 

distinguishing clear cell from other sarcomas. mMITF is a master transcription factor in 

induction and maintenance of the pigmentation pathway. Clear cell sarcoma and 

melanoma have also been shown to share expression of other factors in common that are 

downstream of mMITF, including tyrosinase (TYR) and the tyrosinase-related family of 

proteins (TRYP1, TRYP2, and DCT1), depending on the degree of melanocyte 

differentiation found within the tumor (Segal et al., 2003).                                              

  Still more parallels between clear cell sarcoma and melanoma have been found as 
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research progressed.  In addition to a common histology and immunohistochemistry, 

melanoma and clear cell sarcoma share nearly identical gene expression profiles. 

Using microarray data to compare clear cell sarcoma to melanoma and various 

other soft-tissue sarcomas, Segal et al. (2003) demonstrated that clear cell sarcoma not 

only looks and behaves like melanoma, but Segal et al. demonstrated a hierarchical 

cluster analysis of 12500 genes classified clear cell as a melanoma subtype. Clear cell 

sarcoma classifying as Melanoma corroborated the hypothesis that the tumors have a 

common cell of origin, and further illustrated the challenges in differentiating between 

the two. As targeted therapeutics advance, failing to accurately diagnose the tumors will 

become increasingly detrimental to patient outcomes.  

 In 1990, a recurrent chromosomal aberration in three separate clear cell sarcomas 

was identified (Bridge et al., 1990). During the same period of time, fluorescence in situ 

hybridization (FISH) techniques became feasible for routine genomic analysis, and 

identification of possible chromosomal aberrations (Figure 1.2). Using FISH probes to 

detect translocations within the Ewing’s gene (EWSR1), the abnormality was identified as 

a translocation occurring between the EWSR1 gene on chromosome 22 and an unknown 

partner on chromosome 12. Further research demonstrated that this translocation 

occurred in the vast majority of clear cell sarcomas, but was not present in malignant 

melanoma samples. It was later determined that the translocation resulted in a unique 

fusion of the 5’ coding region of the EWSR1 and the 3’ coding region of the activating 

transcription factor 1 (ATF1) gene. This translocation is such a recurrent feature of clear 

cell sarcoma that it immediately became used as the major diagnostic criterion 

distinguishing clear cell sarcoma from melanoma.  
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Figure 1.2. EWSR1 fluorescent in situ hybridization diagnostic. A) Wildtype 
chromosomes 12 and 22. Fluorescent probes bind on either side of the EWSR1 gene. 
When in close proximity, they emit a yellow light. B) In an EWS translocation, the 
probes are separated onto two nonhomologous chromosomes and each chromosome 
emits a flourophor red and green, respectively.  
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For many years, the technology to screen for evidence of the EWS-ATF1 

translocation was not readily available to pathology labs.  Although it was known that 

presence of the fusion could differentiate between the two neoplasms, it was still simpler 

and more cost effective to differentiate between the two largely based on the location of 

the tumor. Melanoma was considered to be strictly a cutaneous lesion, while primary 

tumors found in the deeper extremities attached to the soft-tissue were diagnosed as clear 

cell sarcoma.  

As reverse transcriptase polymerase chain reaction (RT-PCR) protocols provided 

efficient identification of the fusion gene transcript from a tumor sample, it enabled the 

reanalysis of old tissue samples embedded in paraffin. Of course, deep, metastatic 

melanomas from spontaneously regressed primary tumors were a frequent confounder. 

Many tumors previously diagnosed as metastatic melanoma without a primary lesion 

were reanalyzed using FISH and/or RT-PCR for evidence of the characteristic 

translocation and fusion transcript of clear cell sarcoma, respectively. Further, cohorts of 

malignant melanoma of the gastrointestinal system were found to carry the EWS-ATF1 

translocation characteristic of clear cell sarcoma (Covinsky et al., 2005). A cohort of 

dermal melanomas gave a similar result (Falconieri et al., 2012; Hantschke et al., 2010). 

It became obvious that a distinction between clear cell sarcoma and melanoma made on 

location alone was inadequate. Using the translocation as a diagnostic tool, it is evident 

that clear cell sarcomas are not relegated to the deep mesenchymal tissues, but can be 

found in anatomical regions previously thought to be reserved for melanomas.   Despite 

this recognition in the literature, historical practice is difficult to change and location 

remains the initial step in diagnosing clear cell sarcoma. It remains widely accepted that 
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clear cell sarcoma is primarily found in the deep mesenchymal tissue; unfortunately, 

cutaneous lesions are rarely screened for the characteristic translocation.    

With the benefit of modern instrumentation and research techniques, more is now 

known about clear cell sarcoma than when Enzinger first identified these rare tumors.  

Nonetheless, his 50-year-old description of clear cell sarcoma as a highly aggressive 

tumor with a predilection for young adults and a generally poor prognosis in spite of its 

relatively benign appearance, remains accurate.   

 

Translocations Found in Clear Cell Sarcoma 

EWS-ATF1 

The translocation between chromosomes 12 and 22 is one key defining 

characteristic of clear cell sarcoma. Approximately 90% of clear cell sarcoma tumors 

harbor the t(12;22)(q13;q12) translocation, resulting in the expression of the EWS-ATF1 

fusion protein; the remaining 10% has another translocation partner (t(2;22)(q36;q12)), 

resulting in the EWS-CREB1 fusion protein (Weiss and Goldblum, 2008). The EWSR1 

gene involved in both translocations was first discovered based on its role in another 

translocation-based tumor, Ewing sarcoma, where it forms an EWS-FLI1 fusion protein 

resulting from a t(11;22)(q24;q12) (Delattre et al., 1992). EWSR1 is a common fusion 

partner in translocation driven tumors, including Ewing sarcoma, desmoplastic small 

round cell tumor (Gerald and Haber, 2005), extraskeletal myxoid chondrosarcoma (Brody 

et al., 1997), and mesothelioma (Panagopoulos et al., 2013). In clear cell sarcoma, EWS-

ATF1 is believed to function as an aberrant transcription factor that promotes tumor 

development through misregulation of ATF1 target genes.  
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EWSR1 Native Function 

The EWSR1 protein is a member of the TET family of RNA binding proteins. 

The native EWSR1 is known to associate with RNA polymerase transcription factor IID 

(TFIID) and CREB-binding protein (CBP) in transcription activation (Araya et al., 2003, 

Bertolotti et al., 1998). The amino terminal domain of the protein contains several serine-

tyrosine glycine glutamine-rich repeat sequences that are hypothesized to function as an 

activation domain (Rossow and Janknecht, 2001, Sankar and Lessnick, 2011). It is this 

portion of the protein that is conserved in both EWS-ATF1 and EWS-CREB1 clear cell 

sarcoma fusion proteins, and the other tumors mentioned.  

 

ATF1 Native Function 

The most common fusion partner for EWSR1 in clear cell sarcoma is ATF1. ATF1 

is a member of the cyclic AMP response element binding protein (CREB) family of 

transcription factors. ATF1, unlike EWSR1, is more exclusive to clear cell sarcoma and 

thought to provide the specificity of the tumor phenotype. The CREB family was one of 

the first proteins shown to respond to both stress and mitogen signals through 

phosphorylation-mediated regulation (Mayr and Montminy, 2001). ATF1 contains a 

DNA binding domain that recognizes cyclic AMP response element (CRE) binding sites 

in the genome. ATF1 transcriptional stimulation by cAMP occurs through these CRE-

containing promoters. ATF1 can also mediate gene expression due to Ca2+ in flux. 

Activation of ATF1 is mediated through phosphorylation on the Ser63 by phospho kinase 

A (PKA) and CaM kinases I and II (Liu et al., 1993). Disruption of such a wide range of 

pathways can explain the large transcriptional misregulation seen in clear cell sarcomas.   



 

!

10!

ATF1 may also have a more specific role in tumorigenesis through regulation of 

transcription of the known oncogenes c-jun and c-fos (Gupta and Prywes, 2002; Wang 

and Prywes, 2000). ATF1 is overexpressed in lymphomas (Hsueh and Lai, 1995), breast 

cancer (Jones et al., 2012), and metastatic melanoma (Jean et al., 2000). Its role in 

melanoma is remarkable given the similar characteristics between clear cell sarcoma and 

melanoma. Overexpression of ATF1 has been shown to increase the survival of 

melanoma cell lines (Jean et al., 1998), and ATF1 is found to be overexpressed 

exclusively in metastatic melanoma but not primary melanoma lesions. Expression of an 

anti-ATF1 antibody within these cell lines as well as in melanoma models has shown to 

decrease the tumorigenic and metastatic potential of the cells, leading to higher rates of 

apoptosis (Jean et al., 2000). All fusion protein subtypes of EWS-ATF1 lack the PKA-

regulated domain of ATF1, and no longer respond to external signaling (Li and Lee, 

1998). A constitutively active EWS-ATF1 transgenic protein strongly misregulates ATF1 

target genes (Brown et al., 1995), including mMITF (Davis et al., 2006), when the 

endogenous PKA domain is swapped for the activation domain of EWS.  

EWS-ATF1 translocations can occur as a result of several different genomic 

breakpoints in the EWSR1 and ATF1 coding regions. Oncogenic translocations typically 

have breakpoints within intronic regions, and result in transcribed and translated fusion 

proteins. The EWSR1 portion of the fusion always includes a minimum of the first seven 

exons, while only the last exon of ATF1 is required to generate clear cell sarcoma. 

Despite these minimal requirements, there are several subtypes of the EWS-ATF1 fusion 

gene that include different combinations of exons. The most common subtype is fusion 

type 1, where the first eight exons of EWSR1 are fused to the last three exons of the ATF1 
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gene (Figure 1.3).  The second most common, subtype 2, includes EWSR1 exons (1-8) 

and ATF1 exons (3-6). To date, four in-frame translocations have been found within 

tumors confirmed to be clear cell sarcoma (Wang et al., 2009).  

 

EWS-CREB1 

A second translocation that gives rise to clear cell sarcoma consists of the same 

EWSR1 gene fused to CREB1, an ATF1 family member. CREB1 and ATF1 share 

homology within highly conserved domains, especially the KID, bZIP, and DNA binding 

domains (Figure 1.4). When comparing the two different fusions, the EWSR1 gene is 

fused to at least the final exon of either CREB1 or ATF1, the exon that encodes the DNA 

binding domain. EWS-CREB1 is enriched in clear cell sarcoma arising in the 

gastrointestinal tract (Antonescu et al., 2006).  

 

Other EWS-ATF1 and EWS-CREB1 Tumors 

Notably, due to the ease of FISH screening in tumors containing rearrangements 

in the EWSR1 gene, it has become evident that morphologically defined clear cell 

sarcoma is not the only lesion that contains the EWS-ATF1 fusion gene. This 

demonstrates that, although clear cell sarcoma can be diagnosed using EWS-ATF1, it 

remains important to include the standard histological and immunohistochemical analysis 

to correctly identify clear cell sarcoma.  Other EWS-ATF1 and EWS-CREB1 expressing 

tumors are briefly described below.   Angiomatoid fibrous histiocytoma (AFH) is a 

relatively benign mesenchymal neoplasm most commonly occurring in the deep dermis 

and subcutaneous layers of the extremities, but it can also be found in the trunk, head,  
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Figure 1.3. EWS-ATF1 and EWS-CREB1 genomic variants. EWSR1 exons (red), ATF1 
exons (blue), and CREB1 exons (purple). EWS-ATF1 fusion transcript variants type (1-4) 
and EWS-CREB1 all include the activation domain of EWS (black) fused to the DNA 
binding domain (green) of the ATF/CREB family. 
 
 

 
Figure 1.4 EWS, ATF1, CREB protein domains. A) Creb genomic region with all protein 
domains with significant CREB splice variants CREBα, CREBβ, and CREBΔ with 
shared domains in the same color. Native CREB/ATF1  family members and their shared 
protein domains in the same color.  B) Native EWSR1 protein domains.  
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and neck regions among other areas (Thway and Fisher, 2012). Similar to clear cell 

sarcoma, AFH is prevalent in children and young adults but is not restricted to these age 

groups. AFH is characterized histologically by its distinct nodules of histiocytoid spindle 

cells surrounded by fibrous psuedocapsules and psuedoangiomatoid spaces (Kao et al., 

2014). Originally, AFH was thought to be a more benign variant of malignant fibrous 

histiocytoma, a formerly popular name for pleomorphic soft-tissue sarcomas that arise 

primarily in older populations. Recent studies have narrowed the diagnosis and consider 

AFH a distinct entity. This more benign tumor associates with three different 

translocations.  Both EWS-ATF1 and EWS-CREB1 transcripts can be found in AFH 

samples using RT-PCR, though EWS-CREB1 is the dominant fusion product.  A third 

translocation t(12;16)(q13;q11) resulting in a FUS-ATF1 transcript (Chen et al., 2011) 

has been identified in others.  A new entity called primary pulmonary AFH has also 

recently been identified. Several cases of the endobronchial pulmonary AFH showed 

rearrangements of EWS-ATF1 and EWS-CREB1 (Thway et al., 2012).  

Hyalinizing clear cell carcinoma (HCCC) is one of many salivary gland tumors 

that have recently been identified as translocation-based. Similar to atypical clear cell 

sarcoma and AFH, HCCCs were identified as harboring an EWS translocation by use of 

the EWS FISH probe. Large groups of tumors were screened for EWS-ATF1 by RT-PCR, 

and it was found in 100% of typical HCCC tumors. The majority of HCCC tumors have 

clear glycogen-rich cells surrounded by significant hyalinization. The tumors, which 

show a slightly higher prevalence in females, arise in the salivary gland and are known to 

recur and have local metastases and invasions surrounding bone and perineural regions 

(Weinreb, 2013). HCCC is not a deadly tumor; distant metastasis is extremely rare. So, 
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although it mimics clear cell sarcoma in its histology and slow growth phenotype, HCCC 

tumors arise in a distinct cell type and are not as aggressive, leading to a better overall 

outcome for patients (Thway and Fisher, 2012).  

 While AFH and HCCC both express the fusion proteins that characterize clear 

cell sarcoma, the prognosis of patients with AFH and HCCC is not as dire.  Furthermore, 

unlike  clear cell sarcoma, AFH and HCCC seem to be benign or restricted to specific 

tissue types.  If indeed transformation requires EWS-ATF1 expression in all three tumor 

types, then it is reasonable to hypothesize that the difference between these three 

neoplasms lies in the cell of origin.  If translocations between EWSR1 and ATF family 

members are this strongly transformative, it will be interesting to discover how many 

more tumor types carry similar translocation subtypes.  In the end, it appears that 

pathology is not solely determined by fusion protein expression and may ultimately be 

limited by the inherent capabilities of the cell of origin.   

 

Cell of Origin of Clear Cell Sarcoma 

Sarcomas are notorious for having histopathology that does not reflect the cell of 

origin. Liposarcomas can arise in regions of the body that do not have adipose tissue 

while chondrosarcomas can arise in the absence of chondrocytes (Weiss and Goldblum, 

2008).  Identifying a tumor cell of origin facilitates diagnosis at an early stage and 

improves patient outcomes.  In the clinic, patient treatment plans are prepared based on 

assumptions made regarding the hypothetical cell of origin. If the cell types responsible 

for the tumor are identified, targeted and effective treatments can be devised.    

The debate over clear cell sarcoma’s cell of origin is especially contentious 
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because of the tumors’ deep mesenchymal location despite its melanocytic appearance. 

The discovery of melanosomes within the tumors led to the initial hypothesis that clear 

cell sarcoma had a neural crest origin. Tumors expression of s100b, a marker of the 

neural crest, strength the argument for their neural crest origin (Chung and Enzinger, 

1983). Other proposed origins for clear cell sarcoma are; 1) migrating melanocytes that 

have grown malignant, or 2) mesenchymal stem cells that have differentiated into a 

melanocyte-mimicking tumor. While these alternatives have two very different cell types, 

at their foundation, both share potentially overlapping origins in the neural crest.   

 

Neural Crest  

Neural crest forms at the dorsal tip of the neural epithelium and gives rise to many 

different cell types. The neural crest cells of the trunk migrate dorsally and give rise to 

melanocytes. Others migrate ventrally to give rise to neurons, glial cells, adrenal medulla 

schwann cells, and melanocytes (Cichorek et al., 2013). In the head and neck, neural crest 

cells give rise to mesenchymal cells forming cartilage, bone, dermis, adipose, smooth 

muscle, and also melanocytes. Neural crest-derived cells are widely distributed through 

the entire adult body and have been shown to contribute to  multipotent progenitor 

populations in adults (Dupin and Sommer, 2012).  Both proposed potential cells of origin, 

melanocytes and mesenchymal progenitors, can be traced back to the neural crest lineage 

and may even have a common origin in adult tissue. 
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Melanocyte Biology 

Melanocytes are derived from the neural crest and have the ability to produce 

melanin. The epidermal melanocytes’ main purpose is to protect against UV radiation.  

They do this by producing melanosomes, melanin-producing organelles, and transporting 

them to the keratinocytes at the surface of the skin. Melanocytes are easily recognized by 

their distinct morphology, resembling dendritic cells (Cichorek et al., 2013). Melanocytes 

express TYR, TRYP1, TRYP2, and DCT proteins involved in melanin synthesis, along 

with mMITF. These are all proteins that are involved in the pigmentation pathway  and 

are important for melanocyte function and survival (Lang et al., 2013).  Expression of 

these melanocyte specific markers within clear cell sarcomas provides a strong case for 

melanocytes as a cell of origin for clear cell sarcoma.  

Currently, there are thought to be two different waves of melanocyte migration 

and maturation. Traditionally, melanoblasts are believed to migrate from the neural crest 

to take up residence in the epidermis, hair follicles, and iris along with small populations 

in the inner ear, nervous system, and heart where they mature into melanocytes. The 

second hypothesized migration occurs in conjunction with the peripheral nerves. The 

second wave of melanoblasts is not lineage-restricted but maintains the multipotent 

ability to differentiate into many neural crest cells in vitro. Similar to the earlier wave, 

their migration is complete before birth. However, it has been shown that these cells 

maintain their ability to differentiate and repopulate epidermal melanocytes postnatally 

(Dupin and Sommer, 2012).  It has even been hypothesized that this multipotent 

progenitor cell, which lies along nerve projections within the dermis, may be the true 

adult melanoblast (Cichorek et al., 2013).  This population of cells also represents a 
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potential cell of origin for dermal clear cell sarcoma. Their location within the deeper 

tissues makes them a strong candidate as the cells of origin for typical clear cell sarcoma.   

Although there is suggestive evidence for a melanocyte cell of origin, there are 

clear cell sarcomas that express EWSR1 translocation fusion genes, maintain the standard 

clear cell sarcoma histology, but do not express melanocyte markers. These clear cell 

sarcoma subtypes most often arise in the gastrointestinal system (Antonescu et al., 2006) 

and predominantly express the EWS-CREB1 fusion gene. Furthermore, evidence has 

shown that inducing expression of EWS-ATF1 may in fact induce expression of mMITF. 

EWS-ATF1 binds to the CRE element in the MITF promoter and  promotes transcription 

of the MITF gene (Davis et al., 2006). This indicates that the fusion protein may be 

sufficient to induce mMITF expression and may induce differentiation into the 

melanocyte lineage.  

 

Mesenchymal Stem Cell Biology 

An alternative cell of origin for clear cell sarcoma is the mesenchymal stem cell. 

The role of mesenchymal stem cells (MSC) in adult tissue is to respond to damage, and 

disease states through regeneration and repair.  The MSCs can be found in almost all 

adult tissues, they retain the capacity of self-renewal, and the potential to give rise to 

osteoblasts, chondroblasts, and adipocytes. MSCs have long been hypothesized to be a 

potential cell of origin for multiple sarcomas and have given rise to sarcomas through 

spontaneous and induced transformation (Lin et al., 2011; Matushansky et al., 2007; 

Rodriguez et al., 2012; Xiao et al., 2013).  

The location of the MSC niche has been under debate for many years. These cells 
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were originally identified within bone marrow in the early 1960s. Friedtein and 

colleagues demonstrated a subset of bone marrow derived cells were capable of 

differentiating into bone in vitro (Friedtein et al., 1966). MSCs have since been isolated 

from adipose tissue (Festy et al., 2005), dermis (Haniffa et al., 2007), and periosteum 

(Chang and Knothe Tate, 2012), among other tissues. The major population of MSCs is 

now thought to reside in a perivascular niche mixed with, but distinct from, the pericytes 

(Crisan et al., 2008). This perivascular niche would account for the multiple tissue types 

from which MSCs can be isolated. The inability to fully characterize the MSC niche is 

due to the lack of specific markers for this cell type. Currently, the identification of the 

MSC relies on a combination of markers. Interestingly, MSCs express Nestin, a neuronal 

marker that is also present in some cases of clear cell sarcoma, but not in melanocytes 

(Dimas et al., 2008, Mendez-Ferrer et al., 2010). This potential marker for cell of origin, 

the MSC residing in the deep niche, and the past participation in sarcomagenesis strongly 

supports the hypothesis that these cells are the starting point for clear cell transformation. 

There is contradicting evidence for both potential cells of origin and this has only added 

to the interest in determining which is the true cell from which clear cell arises.  

 

Model System 

The cell of origin for most tumors has remained elusive. Even when examining 

precancerous lesions, it is difficult to pinpoint the cell type from which the tumors arise. 

With advances in genetic manipulation of mouse cancer models, it has become possible 

to induce cancer-causing mutations within a limited lineage of cells, and to determine 

which cell types are capable of transformation. This is even more important for sarcomas, 
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which rarely show a precancerous lesion and arise from cells that appear to be displaced. 

There are several ways to design a model to test the cell of origin of fusion protein driven 

sarcomas. There are advantages and disadvantages assigned to each model.   

 The first and most commonly used method for designing mouse models of 

translocation-based sarcomas is to drive the fusion protein using a ubiquitous promoter. 

This is accomplished by extracting the fusion gene transcript from human tumors and 

using RT-PCR to convert the RNA into its complementary DNA (cDNA). The cDNA is 

placed under the control of an endogenous ubiquitous promoter in the mouse, such as   

the Rosa26 promoter. A transcriptional stop sequence, often 3-4 polyA sequences, is 

inserted between the promoter and the cDNA and flanked by LoxP sites. Cre 

recombinase is used to remove the stop sequence by recombination and allow cDNA 

expression.  This allows for activation of fusion gene expression in multiple cell types 

while controlling the timing of expression in order to bypass any unfavorable embryonic 

lethality. One caveat of this method lies with the overexpression of a fusion gene with a 

strong promoter. If dosage is important, this may adversely influence the results.  

A second method uses an endogenous fusion protein promoter to drive expression 

of the cDNA. This method allows the endogenous promoter to recapitulate tissue specific 

expression patterns analogous to the endogenous human pattern. The caveat with this 

method is that it restricts cells that can express the fusion, and thus limits our ability to 

test all cells. It also limits spatio-temporal control of cDNA expression, and thus we may 

miss a critical time for fusion expression.  

The third method is to recreate the translocation using mouse orthologs. This is 

accomplished by adding a LoxP site to the intron of each gene at the site where the 
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breakpoint occurs most of the human orthologs. LoxP sites are arranged so that when Cre 

recombinase is added to the system, it induces the most common translocation described 

in human clear cell sarcoma. Much like the first strategy, this method also permits spatio-

temporal control through tamoxifen-inducible tissue-specific Cre expression. The pitfalls 

of this model are the time and cost of making two separate transgenic mouse lines and the 

increased breeding time needed to combine three separate alleles in the same mouse. 

Furthermore, use of endogenous mouse genes may not be sufficient to induce clear cell 

sarcoma. For those reasons, this is the least used strategy, even though it most accurately 

recapitulates the human dynamic.  

All three model building strategies have advantages and disadvantages, but the 

first is the most commonly used. Expressing the human fusion gene cDNA under the 

control of a ubiquitous promoter has been shown to efficiently produce tumors that 

recapitulate human tumor morphology, genetic expression profile, and metastatic 

potential, making it a powerful model for the study of sarcomagenesis and cell of origin 

analysis. We will use the first method in this thesis to model clear cell sarcoma. 

 

Summary 

This thesis describes our use of genetic analysis of the role EWS-ATF1 plays in 

clear cell sarcomagenesis and, more generally, in tumorigenesis.  First, a conditional 

model was developed that controlled both the temporal and spatial expression of the 

EWS-ATF1 human cDNA.  Data revealed EWS-ATF1 to be a potent oncogene that is 

sufficient to induce tumorigenesis in a shockingly short duration after induction. Second, 

experiments were performed using specific Cre-drivers to express the EWS-ATF1 in both 
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melanocytic and mesenchymal tissue lineages to determine which cells are permissible to 

clear cell sarcoma formation. From these studies, results demonstrate that melanocytes 

are not an efficient cell of origin for producing clear cell sarcoma of the tendons and 

aponeuroses. Instead, findings from this work suggested that mouse mesenchymal stem 

cells are the cell of origin for classic clear cell sarcoma.  Therefore, mesenchymal stem 

cells can be reprogrammed after expression of the fusion protein to take on a more 

melanocyte-like state.      
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CHAPTER 2 

 

MODELING CLEAR CELL SARCOMAGENESIS IN THE  

MOUSE: CELL OF ORIGIN DIFFERENTIATION  

STATE IMPACTS TUMOR  

CHARACTERISTICS 

 

 Abstract 

Clear cell sarcoma (CCS) of tendons and aponeuroses is a deadly soft-tissue 

malignancy resembling melanoma. EWS-ATF1, the fusion product of a balanced 

chromosomal translocation between chromosomes 22 and 12, is considered the 

definitional feature of the tumor. Tumors, developed with 100 percent penetrance through 

varied means of initiating expression of the fusion oncogene, model human CCS 

morphologically, immunohistochemically, and by genome-wide expression profiling. We 

also demonstrate that while fusion oncogene expression in later stages of differentiation 

can transform mesenchymal progenitor cells and generate tumors resembling CCS 

generally, expression in cells retaining stem cell markers permits the full melanoma-

related phenotype. 
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Significance 

 CCS, a rare soft-tissue malignancy typically arising in the extremities of young 

adults, closely resembles melanoma. EWS-ATF1, a fusion oncogene resulting from a 

t(12;22) chromosomal translocation, defines the neoplasm.  Conditional expression of the 

human EWS-ATF1 cDNA in the mouse demonstrates its profound transformational 

impact.  While a number of cell types can be rendered tumorigenic via expression of the 

fusion oncogene, the undifferentiated cells appear to enable the full melanoma-related 

phenotype. This model deciphers part of the enigma of the melanoma expression profile 

of CCS and explains the range of human tumors derived from this powerful translocation 

product. The mouse model should provide a robust platform for interrogating molecular 

mechanisms and developing more effective therapies for CCS. 

 

Introduction 

Clear cell sarcoma (CCS) is a soft-tissue neoplasm classically arising in the 

extremities of young adults near tendons and aponeuroses. Despite their often small size, 

these tumors have high rates of recurrence and metastasis following standard local 

therapy, portending a poor general prognosis. CCS was first identified in 1965, then 

termed “Malignant Melanoma of the Soft Parts” due to its histologic appearance fitting 

with metastatic melanoma (Enzinger, 1965).  In addition, CCS was later found to 

demonstrate melanocytic differentiation markers, including immunohistochemical 

positivity for M-MITF, S100B, MelanA, and HMB45 (Granter et al., 2001; Hocar et al., 

2012). Until recently, the only means of differentiating CCS from the soft-tissue 

metastasis of a distant melanoma was its clinical history (i.e., confirmed absence of any 
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cutaneous melanomas).  

In the last decade, recognition of the characteristic t(12;22) (q13;q12) 

chromosomal translocation and its resultant fusion oncogene EWSR1-ATF1 (EWS-ATF1) 

has provided a means of defining CCS and distinguishing it from melanoma (Antonescu 

et al., 2002).  Traditional cytogenetics, fluorescent in situ hybridization (FISH), and 

reverse-transcriptase polymerase chain reaction (RT-PCR) have all proven to be 

diagnostic tools capable of identifying this defining molecular feature of CCS (Wang et 

al., 2009). The type 1 fusion of EWS-ATF1, which includes exons one through eight of 

EWSR1 and exons four through seven of ATF1, is the most common variant of the 

described translocation products (Wang et al., 2009). 

The EWS-ATF1 fusion protein contains the amino-terminal transcriptional 

activation domain of the EWSR1 protein joined to the bZIP DNA binding/dimerization 

domain of activating transcription factor 1 (ATF1). In the fusion protein, the EWSR1 

activation domain replaces a protein kinase A phosphoacceptor site that renders 

endogenous ATF1 activity dependent on the presence of cyclic adenosine 

monophosphate (Fujimura et al., 2001).  As a consequence, EWS-ATF1 is thought to be a 

constitutive activator of ATF1-regulated genes.  A small minority of CCS cases harbor a 

t(2;22) (q32;q12) translocation and the alternate CREB1 fusion partner replacing ATF1, 

with which CREB1 shares binding of an identical consus sequence (Wang et al., 2009). 

  The cell, or cells, of origin for CCS are not known. Traditionally, CCS tumors 

were characteristically identified near the tendons and aponeuroses of young adults, but 

have also recently been identified in the gastrointestinal tract (Covinsky et al., 2005; 

D'Amico et al., 2011; Lyle et al., 2008) and dermis (Falconieri et al., 2012; Hantschke et 



   

!

29 

al., 2010).  The expression of melanocyte-specific markers in CCS tumors has been 

variably attributed to the effects of the cell of origin or the effects of aberrant M-Mitf 

expression, shown to be driven by EWS-ATF1 in CCS cell lines  (Davis et al., 2006).  

Using EWS-ATF1 as a diagnostic marker led to the identification of CCSs that do not 

express melanocytic markers. Further, some histologically distinct neoplasms have also 

been associated with this fusion oncogene, including angiomatoid fibrous histiocytoma 

(Somers et al., 2005) and hyalinizing clear cell carcinoma of the salivary gland 

(Antonescu et al., 2011). The latter tumors do not express M-Mitf or other melanocytic 

markers.  

To investigate the role that EWS-ATF1 plays in clear cell sarcomagenesis and in 

tumorigenesis more broadly, we developed a mouse model that expresses the human 

EWS-ATF1 fusion oncogene complementary DNA (cDNA) in a conditional fashion.  

 

Results 

Generation of a Targeted Mouse Line Conditionally Expressing 

the EWS-ATF1 Oncogene 

To generate the EWS-ATF1 cDNA, total RNA was isolated from human CCS tumors, 

reverse transcribed, and screened by PCR to identify a type 1 EWS-ATF1 fusion product. 

The integrity of the EWS-ATF1 cDNA was confirmed by DNA sequencing.  The EWS-

ATF1 cDNA was targeted to the ubiquitously expressed Rosa26 locus (Mao et al., 1999). 

Linked to the EWS-ATF1 cDNA via an internal ribosomal entry site (IRES) was the 

sequence encoding an enhanced green fluorescent protein (eGFP).  To prevent 

transcription of the fusion gene and eGFP from the Rosa26 promoter, a neomycin 
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resistance cassette and poly-adenylation stop signal flanked by loxP sites was inserted 

between the promoter and  the EWS-ATF1-IRES-eGFP sequence   (Figure 2.1A).    In the 

absence of Cre, neither the fusion gene product nor eGFP should be expressed.  

Temporal, spatial, and tissue-specific control of Cre presence is possible through a 

variety of techniques for its genetic or protein delivery.  Mouse embryonic stem cells 

confirmed to bear the targeted allele were injected into blastocysts to generate chimeras 

which were then bred to generate progeny with a germline-transmissible conditional 

allele of EWS-ATF1 (designated Rosa26EA1). 

To confirm inducibility of the EWS-ATF1 fusion gene and eGFP by Cre, 

embryonic fibroblasts were isolated from E14.5 mouse embryos heterozygous for the 

Rosa26EA1 allele and exposed in culture to purified TAT-Cre protein or vehicle buffer 

control.  TAT-Cre is an engineered Cre protein containing a short peptide sequence  

derived from the human immunodeficiency virus that mediates efficient endocytic 

uptake and nuclear localization of the protein (Joshi et al., 2002). Recombination 

efficiency in vitro exceeds 95 percent as reported previously (Haldar et al., 2009).  

Without exposure to TAT-Cre, mouse embryonic fibroblasts heterozygous for Rosa26EA1 

demonstrated no green fluorescence.  24 hr after exposure to TAT-Cre (5 µM), cells 

began to express eGFP (Figure 2.1B), the percentage of fluorescing cells increased 

thereafter. The expression of other sarcoma fusion oncogenes from the Rosa26 locus has 

proven lethal for mouse embryonic fibroblasts (Haldar et al., 2007).  Surprisingly, EWS-

ATF1-expressing fibroblasts survived beyond the expected crisis and senescence of 

control fibroblasts that carried the Rosa26EA1 allele but were exposed to vehicle rather 

than TAT-Cre.  Expression of EWS-ATF1 remained strong in the embryonic fibroblasts  
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Figure 2.1. Conditional expression of the human clear cell sarcoma fusion oncogene in 
the mouse (A) Schematic showing the cDNA of the type I variant of EWS-ATF1 isolated 
from a human tumor and cloned into a vector designed for targeting into the mouse 
Rosa26 locus. neo-R, neomycin resistance cassette; polyA, polyadenylation stop 
sequence; IRES, internal ribosome entry site; eGFP, enhanced green fluorescent protein. 
Cre-mediated recombination excises the stop sequence and initiates expression of the 
fusion oncogene and eGFP. (B) Embryonic day 14.5 fibroblasts isolated from 
Rosa26EA1 heterozygous mice were exposed to TAT-Cre protein or vehicle control, and 
images were collected 24 hr later. The left two panels show light images of fibroblasts, 
whereas the right two panels show the GFP fluorescence. All scale bars are 50 µm in 
length. 
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 activated by TAT-Cre, even following long-term passage (data not shown). 

 

Generation of Tumors by In Vivo Exposure to TAT-Cre 

Because expression of EWS-ATF1 was so well tolerated in vitro, we investigated 

whether the Rosa26EA1 allele might be activated in vivo  first by injecting TAT-Cre into 

mice heterozygous for the Rosa26YFP  allele.  Mice receiving TAT-Cre show YFP 

expression within 24 hr of injection (Figure 2.S1A). To look at this on a cellular level, 

mice heterozygous for Rosa26mTmG reporter allele (Muzumdar et al., 2007) were also 

injected with TAT-Cre. All cells in mice bearing the Rosa26mTmG allele express 

membrane-bound Tomato fluorescent protein prior to recombination with Cre but express 

a membrane-bound GFP after Cre-mediated excision of the mTomato coding sequence.  

A single subdermal injection of TAT-Cre resulted in de GFP expression in the 

surrounding tissue (Figure 2.S1B).  

 To determine the sufficiency of the EWS-AFT1 fusion gene to drive clear cell 

sarcomagenesis in vivo, we injected TAT-Cre protein into the anterolateral soft-tissues 

abutting the tibia and in the distal forelimbs of mice heterozygous for the Rosa26EA1 

allele. EWS-ATF1 transcripts were detectable by RT-PCR from tissues harvested within 

24 hr of the TAT-Cre injection (Figure 2.S1C). Every injection of TAT-Cre yielded a 

tumor (Figure 2.2A), tightly localized to the injection site.   Control mice, including both 

uninjected littermates and littermates injected with saline and followed for 15 months, 

never formed tumors.  All mouse tumors derived from the TAT-Cre-activated Rosa26EA1 

allele demonstrated eGFP fluorescence (Figure 2.2A). 

 Noting an extremely brief latency to tumorigenesis, the ability to form tumors in a  
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Figure 2.S1. Efficient in vivo recombination of LoxP sites after injection of TAT-Cre. (A) 
Light necroscopy (left) and GFP fluorescence (right) of a Rosa-YFP mouse paw injected 
with TAT-CRE and imaged 24 hr post injection. (B) Expression of membrane-bound 
Tomato fluorescent protein (red) and GFP (green) in Rosa-mTmG mice at baseline 
(uninjected, left) or 24 hr following subdermal injection of TAT-Cre (injected, right).  (C) 
RT-PCR for the designated transcripts in a TAT-Cre (100 µM) injected and uninjected 
Rosa26EA1 mouse limb 24 hr post injection. 
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Figure 2.2. TAT-Cre-initiated expression of EWS-ATF1 in vivo leads to tumorigenesis. 
(A) Radiographs of limbs of Rosa26EA1 heterozygous mice without (top) or with (bottom) 
injection of TAT-Cre (left two columns). Necroscopy light and GFP fluorescence photo 
of Rosa26EA1 limb without injection (top) or of tumor extracted from the TAT-Cre 
injected Rosa26EA1 (bottom) (right two columns). Arrows point to individual tumors. (B) 
Latency to visible tumor formation for Rosa26EA1 mice injected with 100 µM, 10 µM, and 
2 µM solutions of TAT-Cre. (C) RT-PCR analysis of the indicated mRNAs from 
uninjected control tissues and TAT-Cre-induced tumors.  (D) Representative histology of 
TAT-Cre-induced tumors with H&E stain showing a multinodular tumor at low power 
(left), figure cells marked by round shape, clear cytoplasm and an open chromatin pattern 
at higher power (middle), and a tumor having a more spindled cell morphology (right). 
(E) Immunohistochemical stains for M-MITF (left), S100B (middle), and cytokeratin 5 
(right). All black scale bars are 100 µm in length and the white bar is 500 µm. 
 
 



   

!

35 

broad array of tissue locations, and the histological appearance of poly clonality among 

the first rounds of TAT-Cre-induced tumors, we investigated whether the  rapid growth to 

large tumors might result primarily from a large initial population of induced EWS-ATF1- 

expressing cells. To address this question, we injected limbs of mice heterozygous for the 

Rosa26EA1 allele with different concentrations of TAT-Cre and found that the latency to 

tumor formation correlated with the concentration of TAT-Cre administered (Figure 

2.2B).   

 Injecting 100 µM of TAT-Cre resulted in visible tumors as quickly as 3 weeks 

post injection, with 100 percent penetrance per injection site by 6 weeks. TAT-Cre at 2 

mM still produced tumors with full penetrance, but required a longer latency with visible 

tumors observed after a period of 6 to 9 months.  While TAT-Cre concentration impacted 

latency to development of a visible tumor, it did not impact the observed rate of tumor 

growth following visible detection of any specific tumor. Tumors appearing early from 

concentrated TAT-Cre or after a longer latency from diluted TAT-Cre still grew at a 

similarly rapid rate after detection.  

The tumors that formed following TAT-Cre injection into mice heterozygous for 

the Rosa26EA1 allele recapitulated human CCS molecularly, with expression of the fusion 

oncogene and melanocytic markers M-Mitf and Tyrosinase (Figure 2.2C). Mouse tumors 

also matched human tumor histomorphology and immunohistochemical profile.  In 

hematoxylin and eosin (H&E) stained sections, the majority of murine tumors 

demonstrated nuclear features typical of primitive cell types, with prominent open 

chromatin patterns as well as abundant clear cytoplasm (the feature for which the tumor 

is named) (Figure 2.2D). While some tumors had a pseudo-encapsulated, pushing border 
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with surrounding tissues, others demonstrated clear infiltration into adjacent tissue 

planes.  A minority subset of tumors (20%) demonstrated spindle cell morphology, also 

observed in some human CCS cases (Figure 2.2D).  Consistent with human CCS, the 

tumors demonstrated immunohistochemical positivity for melanocytic markers (M-MITF 

and S100B) and lacked staining for cytokeratins (Figure 2.2E).   

 

Unbiased Expression of EWS-ATF1 Also Results in  

Tumorigenesis, Preferentially in Mesenchyme 

 Because tumors rapidly invaded surrounding tissues, dissections of the limbs did 

not clearly indicate from which tissues they arose.  In a search for tissues incompatible 

with transformation, TAT-Cre was injected into subcutaneous adipose, dorsal paw 

peritendinous, periosteal, intramuscular, and mammary fat pad tissue compartments in 

mice between 3 weeks and 6 months of age.  The latency to tumor appearance varied 

with age and injection site, but every injection in each of these tissue locations yielded 

completely penetrant tumorigenesis (Table 2.1).  Each of these locations bears some cells 

of mesenchymal character, but whether these or neighboring cells actually gave rise to 

tumors remained unclear. 

  In order to broaden exposure to EWS-ATF1 fusion protein across multiple cell 

types and developmental periods, we next utilized Rosa26CreER to express Cre 

sporadically, in random cell types.  While efficient CreER-mediated recombination 

requires the presence of tamoxifen, a very low level of CreER-mediated recombination is 

observed even in the absence of tamoxifen (Haldar, et al 2009). Breeding mice bearing 

the Rosa26CreER allele to mice bearing the Rosa26EA1 allele resulted in smaller litters than 
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Table 2.1 

 Location and number of tumors resulting from localized TAT-Cre injections 

 

 
 

 

Injection Location # of Injections  # of Tumors Tissue Compartment of Tumor Formation 
Limb 27 28 Periosteal region, within muscle, near tendons on wrist and 

ankle  
Subcutaneous  6 7 dermis at site of injection 
Mammary fat pad 19 19 mammary fat pad 
Intraperitoneal  7 7 peritoneal wall at site of injection, dermis at sight of injection, 

salivary gland, mammary fat pad near site of injection 
Head 2 2 scalp 
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breeding! Rosa26EA1! mice! alone,! fitting! with! the! previously! described! early!

embryonic! leakiness! of! this! CreER! and! suggesting! some!developmental! toxicity! of!

early expression of EWS-ATF1 (Figure 2.3A).  

 Among the Rosa26CreER/EA1 mice that survive embryogenesis, administration of 

tamoxifen prior to 3 weeks of age results in stunted growth (Figure 2.3B) and death by 12 

weeks of age without detectible tumor formation. Rosa26CreER/EA1 mice receiving 

tamoxifen after 3 weeks of age form more tumors than those receiving no tamoxifen, but 

both of these groups demonstrate complete penetrance of tumor formation by 12 weeks 

of age (Figure 2.3C). The tumors arising in Rosa26CreER/EA1 mice were histologically 

similar to the murine TAT-Cre-induced tumors and human clear cell sarcoma (Figure 

2.3D).  Whether enhanced by later tamoxifen administration or not, tumors arose most 

often in the extremities, rib cage, and facial tissues of the Rosa26CreER/EA1 mice, but were 

also less frequently found in the dermis, liver, and bone (Table 2.2).  As following TAT-

Cre induction, the preponderance of tumors arose in mesenchymal tissue compartments.  

A variety of mouse cells are permissive to EWS-ATF1-driven transformation, replicating 

the range of tumor tissue locations observed in molecularly defined human cases of CCS, 

but preferentially arising in mesenchyme.   

 

EWS-ATF1 Drives an Expression Signature of Transformation 

Because the brief latency to tumorigenesis in both models suggested a powerful 

role for EWS-ATF1 in driving transformation, we sought to define the expression 

signature shared by tumors from both means of inducing EWS-ATF1 expression. To this 

end, we harvested tumors from each cohort as well as from control mesenchymal tissue,  
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Figure 2.3.  Early expression of EWS-ATF1 in the broad Rosa26CreER-lineage renders 
stunted growth, but later expression drives tumorigenesis. (A) The number of pups per 
litter of mice heterozygous for the Rosa26CreER allele crossed with mice homozygous for 
the Rosa26EA1 allele compared to that of Rosa26EA1/EA1 back-crossed controls. (B) 
Photograph of a 7-weeks-old male Rosa26EA1/CreER mouse injected with tamoxifen at 10 
days (white arrow) and two uninjected female littermates of the same genotype. (C) Chart 
of the number of tumors per mouse at 12 weeks age among Rosa26EA1/CreER mice injected 
with tamoxifen after 3 weeks (late, n = 4), before 3 weeks (early, n=3), or not at all (n = 
5). Error bars denote standard deviation, t-test p < 0.05. (D) H&E stained histopathology 
demonstrating the classic clear cell morphology apparent in a Rosa26CreER -initiated 
tumor after late injection of tamoxifen. Scale bar is 20 µm in length. 
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Table 2.2 

Location and number of tumors formed in Rosa26CreER/EA1 mice. 

 

 

 

 

 

 

Location # Tumors 
Ribcage 7 
Limb  (muscle) 11 
Limb (near bone) 10 
Face (muscle) 2 
Scapula 1 
ear 2 
Spine 2 
Peritoneal Wall 3 
Liver 1 
dermis 3 
salivary gland 2 
Head (near bone) 2 
Mammary 2 
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consisting of a portion of the thoracic cage including cartilage, bone, skeletal muscle, and 

connective tissue, isolated total RNA from each, and performed Illumina sequencing. The 

samples generated an average of 24.4 ± 3.1 million reads, which aligned to 16,840 ± 778 

genes at greater than or equal to 0.1 reads per kilobase per million (RPKM). Clustering 

analysis demonstrated highly similar expression profiles among tumors induced by either 

TAT-Cre or Rosa26CreER, both distinct from control tissues. An unsupervised hierarchical 

clustering of the samples according to the 200 most differentially expressed genes is 

shown in Figure 2.4A (Gene lists in Supplemental Table 3). DAVID analysis of the most 

significantly upregulated genes in the mouse tumors compared to control tissues 

highlighted several informative KEGG pathways, including cell cycle control, cancer, 

p53, and extra-cellular matrix pathways (Huang da et al., 2009a; Huang da et al., 2009b) 

(Figure 2.4B). These data provide insight into the transforming power of EWS-ATF1, 

with consistent alterations in gene expression profiling among different methods of 

activation. 

 

Embryonic Expression of EWS-ATF1 in Mesenchymal Tissues and  

Predecessors Causes Lethality  

 While experiments with TAT-Cre injections and Rosa26CreER-initiated EWS-ATF1 

expression suggested that a variety of cell types appear to support a program of 

transformation, they also suggested that the preferred clear cell sarcomagenesis tissue of 

origin is mesenchyme. As postnatal mesenchymal tissues derive from both neural crest 

and mesodermal origins, we investigated the identity of potential cells of origin by 

breeding mice bearing the Rosa26EA1 allele to mice bearing Cre expressed from  
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Figure 2.4. The expression signature of EWS-ATF1-driven tumors. (A) Heat map 
depicting the 200-most significantly (p-value < 0.001) differentially expressed genes 
between TAT-Cre or Rosa26CreER-initiated tumor and control tissue, as assessed by 
transcriptome sequencing. (B) DAVID analysis of the most upregulated genes in tumors 
highlights Kegg pathways known to be involved in transformation. 
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promoters specific to these lineages.  With regard to neural crest, mice bearing the 

Rosa26EA1 allele and Wnt1-Cre   (Danielian et al., 1998) did not complete embryogenesis. 

Conditional EWS-ATF1 activated by Pax3-Cre (Engleka et al., 2005), Pax7-Cre (Keller  

et al., 2004b), Tie2-Cre (Kisanuki et al., 2001), or Prx1-Cre (Durland et al., 2008; Logan 

et al., 2002), all expressed in mesoderm, also resulted in embryonic lethality.  

At E13.5, the Prx1-Cre-lineage demonstrated GFP fluorescence in Prx1-

Cre;Rosa26EA1 mouse embryos, indicating expression of eGFP from the IRES on the 

EWS-ATF1 transcript (Figure 2.5A).  As late as E14.5, Prx1-Cre;Rosa26EA1 mouse 

embryos remained viable, but demonstrated severe limb deformities (Figure 2.5A).  It 

suggests that EWS-ATF1 was toxic to these cells. 

Pax7-Cre; Rosa26EA1 did not produce live progeny but embyros were retrieved as 

late as E18.5. These embryos showed severe craniofacial deformation with no visible 

eGFP which suggests that the lineage cannot survive expression of EWS-ATF1 (Figure 

2.S2A).  

Mice bearing the Rosa26EA1 allele and Myf5-Cre, which activated the fusion gene 

expression in myoblasts (Haldar et al., 2007), did not form tumors but demonstrated 

another phenotype in which EWS-ATF1 was also apparently toxic to cells.  These mice 

survived to birth and lived to approximately 3 months of age, but were very small in size 

and severely myopathic, with eGFP expression detectable in the remaining muscle fibers 

(Figure 2.S2B and 2.S2C). 

These data demonstrate that even though the expression of EWS-ATF1 is tolerated 

better than the expression of other sarcoma-related fusion oncogenes in mouse embryonic  

fibroblasts in vitro and many tissues in vivo when induced after weaning, it is of 
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Figure 2.5.  EWS-ATF1 drives apoptosis in the embryonic Prx1-lineage and 
tumorigenesis in the postweaning Prx1-lineage. (A) GFP fluorescence image of Prx1-
Cre;Rosa26EA1  embryos at embryonic day 13.5 (far left).  Prx1-Cre;Rosa26EA1 at E14.5 
(top middle), compared to littermate controls lacking Prx1-Cre (bottom middle), the 
limbs of mutant and control are enlarged to show difference in size (outlined in right 
panels) (B) Radiograph of a Prx1-CreERT2;Rosa26EA1 mouse 8 weeks after a single 
tamoxifen injection at 4 weeks of age (left), gross necropsy photos with halogen light 
(middle) or GFP fluorescence (right)  of Prx1-CreERT2;Rosa26EA1 limb 8 weeks post 
tamoxifen injection (arrows point to tumors). (C) H&E stained histolopathology of Prx1-
CreERT2;Rosa26EA1 tumor immediately adjacent to bone (upper) and tumor exhibiting 
classic clear cell sarcoma morphology (lower). (D) Immunohistochemistry for M-MITF 
on Prx1-CreERT2;Rosa26EA1 derived tumors. Scale bars are 100 µm in length.  
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Figure 2.S2. Pax7 and Myf5-lineage is not permissive to transformation during 
embryonic or postnatal stages. (A) At embryonic day 18.5, Pax7-Cre;Rosa26EA1 embryos 
show severe craniofacial defects (middle and right) when compared to littermate controls 
lacking Pax7-Cre (left). (B) Myf5-Cre;Rosa26EA1 mice (middle and far right) and their 
Rosa26EA1 littermates who do not express Cre (far left) (C) EGFP (green) expression in 
Myf5-Cre;Rosa26EA1 myopathic muscle fibers. Blue: DAPI staining. Scale bar is 100 µM. 
(D) Full body (left) and forelimb (right) radiograph of  Pax7CreERT2 ; Rosa26EA1  mouse 6 
months post tamoxifen injection. (E) Gross necroscopy (left) and GFP fluorescence 
(right) show no  evidence of tumors formation (GFP) 1 year post tamoxifen injection in 
Pax7CreERT2 ; Rosa26EA1 .  
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significant toxicity in specific tissue settings during development.  

 

EWS-ATF1 Expression in Postnatal Mesenchymal Progenitors  

Generates Two CCS Tumor Types  

Noting that early tamoxifen administration in Rosa26CreER/EA1 mice did not result 

in tumorigenesis but later administration did (Figure 2.3), we hypothesized that the 

toxicity prompted in the mesenchymal tissues embryonically might be avoided at later 

stages of development.  In order to test this hypothesis, we bred mice bearing the 

Rosa26EA1 allele to mice bearing either Pax7CreERT2 (Murphy et al., 2011) or Prx1-

CreERT2 (Hasson et al., 2007), then administered tamoxifen after 3 weeks of age.  By 12 

months post tamoxifen, myopathy consistently developed in the Pax7CreERT2;;Rosa26EA1 

mice but no tumors were observed (Figures 2.S2D, 2.S2E).  The absence of tumor 

formation argues against muscle satellite cells being a potential cell of origin for EWS-

ATF1-induced tumors. In the embryo, Prx1-Cre is widely expressed in the mesenchyme 

of the developing mammalian limb and head (Durland et al., 2008), whereas Prx1-

CreERT2 expression is reported to be restricted postnatally to a smaller progenitor cell 

population in the same anatomic regions, still capable of osteochondrogenic 

differentiation (Kawanami et al., 2009). Prx1-CreERT2;Rosa26EA1 mice developed 

tumors (Figure 2.5B) by 8 weeks post tamoxifen injection with 100% penetrance.  Most 

of these tumors developed in the extremities and head, consistent with the expected 

anatomic distribution of Prx1 postnatal expression.  The tumors showed GFP 

fluorescence marking expression of the EWS-ATF1-IRES-eGFP transcript (Figure 2.5B).  

The Prx1-CreERT2-induced tumors appeared to arise from the periosteal/perichondrial 
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layer as well as from within the musculature as judged by gross microscopy and histology 

(Figure 2.5B and C).  The tumors induced in the Prx1-lineage demonstrated either the 

clear cell morphology with lightly stained eosinophilic cytoplasm or spindle cell 

morphology, both closely resembling tumors induced by TAT-Cre. 

Notably, some tumors induced by Prx1-CreERT2 expressed M-MITF but others 

did not (Figure 2.5D). CCS in humans often but not always expresses M-MITF (Granter 

et al., 2001).  Thus, it appears that induction of EWS-ATF1 expression with Prx1-

CreERT2 generated both subtypes of CCS. 

 

EWS-ATF1 Expression in Postnatal Mesenchymal Stem Cells  

Generates CCSs with a More Consistent Phenotype 

In order to interrogate possible cells of origin in the undifferentiated progenitor 

cell population that precedes Prx1 expression postnatally, we bred mice bearing the 

Rosa26EA1 allele to mice bearing Bmi1CreERT2 (Sangiorgi and Capecchi, 2008). Bmi1 is a 

general marker for stem cells and has been demonstrated to label intestinal, neural, 

epidermal, and hematopoietic stem cells (Claudinot et al., 2005; Leung et al., 2004; Park 

et al., 2003; Sangiorgi and Capecchi, 2008). A single peritoneal injection of tamoxifen 

into Bmi1CreERT2;Rosa26EA1 mice after 3 weeks of age resulted in fully-penetrant 

tumorigenesis.  Every mouse developed tumors in the deeper mesenchymal tissues of the 

limb and trunk (Figure 2.6A). Some tumors formed completely within and surrounded by 

muscle (Figure 2.6B), similar to a subset of the Prx1-lineage tumors.  A larger portion 

formed adjacent to bone, arising from the periosteum/perichondrium, also similar to 

several of the Prx1-lineage tumors (Figure 2.6B). The Bmi1-lineage tumors consistently  
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Figure 2.6. The Bmi1-lineage, including mesenchymal stem cells, enables more 
consistent development of clear cell sarcomas with melanocytic features. (A) Living 
image of Bmi1CreERT2;Rosa26EA1 mouse with black arrows indicating tumor formation (far 
left), radiograph (left), necropsy photo (right), and GFP fluorescence (far right) image of 
tumor formed in the chest wall (yellow arrow showing location of the tumor). (B) H&E 
stained histopathology of Bmi1CreERT2-initiated tumors, including both intramuscular (left) 
and periosteal/perichondrial (right) tumors. (C) Immunohistochemistry of Bmi1CreERT2-
initiated tumors stained for M-MITF (left) and S100B (right). (D) Immunofluorescence 
for Nestin (green) and Bmi1CreERT2-induced expression of tdTomato (red) in Bmi1CreERT2; 
Rosa26tdTomato mice 30 days after injection of tamoxifen shown in the bone marrow 
BM (left) and periosteum P (right). (E) Bmi1-lineage tracing from 
Bmi1CreERT2;Rosa26tdTomato mouse at 60 days post tamoxifen demonstrates tdTomato 
fluorescence (red) in osteoblasts and chondrocytes. (F) Immunofluorescence against Prx1 
(green) and Bmi1-lineage defined by tdTomato (red) in Bmi1CreERT2;Rosa26tdTomato mice 
30 days post tamoxifen injection. (G) Immunofluorescence against CD31 (green) and 
tdTomato Bmi1-lineage cells (red) at 60 days post tamoxifen. All Scale bars are 100 µm 
in length. 
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matched the clear cell morphology and immunohistochemical profile of human CCS 

tumors, uniformly demonstrating M-MITF and S100B (Figure 2.6B and C).  Prior reports 

have suggested a role for Bmi1 in mesenchymal stem cells based on depletion of the pool 

of osteochondroprogenitors in mice bearing homozygous disruption of Bmi1 (Zhang et 

al., 2010).  To follow up these studies and more fully characterize the Bmi1-lineage in 

mesenchyme, mice bearing Bmi1CreERT2 were crossed to a robust reporter mouse 

expressing tdTomato conditionally from the Rosa26 locus.  Bmi1CreER;Rosa26tdTomato mice 

were injected with a single dose of tamoxifen at 6 weeks of age and their limb tissues 

were harvested 1, 2, and 9 months post injection for analysis.  

 We analyzed the early Bmi1-lineage focused on the mesenchymal progenitor 

population within the bone marrow and endosteum. Nestin has recently been shown to be 

an accurate marker of the multipotent mesenchymal stem cell subpopulation in this 

location, whereas no specific markers are agreed upon in the periosteum (Mendez-Ferrer 

et al., 2010). Co-labeling experiments on tissue sections revealed the co-localization of 

the early Bmi1-lineage marker to the Nestin-expressing cells both at the endosteal surface 

in the bone marrow and in periosteum (Figure 2.6D), indicating that Bmi1 is indeed 

expressed in this mesenchymal stem cell population. Lineage tracing experiments from 

tissues harvested 60 days and 9 months following tamoxifen administration revealed that 

Bmi1-expressing cells contribute to both osteoblast and chondrocyte lineages (Figure 

2.6E), further affirming Bmi1 as a marker of very early, stem-like cells in mesenchyme.  

The previously described Prx1-CreERT2-defined lineage marks a similar, but smaller 

population of these differentiated mesenchymal cells (Kawanami et al., 2009).  Using an 

antibody against Prx1 to locate cells actively expressing the marker, we found a portion 
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but not all of the cells in the Bmi1CreER;Rosa26tdTomato-lineage expressed Prx1, suggesting 

that differentiating cells from the Bmi1-lineage express Prx1 (Figure 2.6F). Lineage 

tracing with Prx1-CreERT2 mice and immunofluorescence against Nestin confirmed that 

a subset of Prx1-lineage cells still express Nestin as well (Figure 2.S3A). While 

mesenchymal stem cell and progenitor populations within and adjacent to the bone 

explain the location of some tumors arising in both the Bmi1 and Prx1-lineages, other 

tumors in both groups arose within the muscle compartments. Since it has previously 

been demonstrated that Bmi1 is expressed in Pax7-positive satellite cells within muscle 

(Robson et al., 2011), it is possible that the intramuscular Bmi1-lineage tumors could 

arise from this cell population. However, we already discussed that Pax7CreERT2; 

Rosa26EA1 do not form tumors, arguing against the possibility that satellite cells provide a 

potential cell of origin for CCS (Figure 2.S2D and E).  

Further analysis of the Bmi1-lineage within the muscle compartments identified 

not only satellite cells, but also CD31-expressing endothelial cells (Figure 2.6G).  

Lineage tracing with Prx1-CreERT2 mice identified CD31+ endothelial cells within its 

lineage as well (Figure 2.S3B). A perivascular population of cells that has expressed both 

Bmi1 and Prx1, perhaps at different stages of differentiation, may serve as the originating 

cells of the CCS tumors that appear within the muscle compartments in these two groups. 

 

Murine CCS Tumors Fit the Human CCS Expression Profile; Variations  

Appear to Reflect Different Cells of Origin 

In order to determine the impact of these varied potential cells of origin on the 

resultant tumors, we performed RNA sequencing on a panel of mouse CCS tumors,  
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Figure 2.S3, related to Figure 2.6.  Prx1CreERT2-lineage contributes to the mesenchymal 
stem cell population followed by the endotheal cell lineage. (A) Expression of β-gal 
expression (red) and Nestin (Green) in the bone marrow of mice of the β-gal reporter 
mouse Rosa26lacZ crossed to the Prx1-CreERT2 line . Arrows point to yellow cells and 
arrowheads point to green cells. (B) Immunoflourescence staining for β-gal (red) and the 
CD31+ endothelial cells (green) present 60 days post tamoxifen injection. Scale bars are 
100 µm in length.  
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induced by TAT-Cre, Rosa26CreER, Bmi1CreERT2, and Prx1-CreERT2.  We  simultaneously 

sequenced RNA from mouse synovial sarcomas and osteosarcomas, as well as control 

mesenchymal tissue. Using Spearman correlation as the distance metric and an average 

linkage, CCS from all induction methods clustered closely and separately from control 

tissue and the other two sarcoma types (Figure 2.7A).  

To test the extent of molecular similarity between human CCS and the tumors 

induced by expression of EWS-ATF1 in mice across the range of tissues of origin, we 

compared mRNA sequencing expression analysis of mouse CCS tumors to microarray-

derived expression data from a panel of related human tumors. A support vector machine 

(SVM), or supervised machine learning, technique was created to predict the identity of a 

tumor using a training platform built by human HEEBO microarray data from samples of 

CCS, melanoma (MEL), solitary fibrous tumor (SFT), leiomyosarcoma (LMS), myxoid 

liposarcoma (MLS), and synovial sarcoma (SS), all of which except CCS were previously 

reported (Nielsen et al., 2002). We first filtered the human data by mapping the HEEBO 

probes to the mm9 mouse reference genome, retaining only the 12,246 probes whose 

alignments demonstrated at least 80 percent homology across the probe length. The 

human expression data across this subset of probes were used to train the linear SVM 

model by creating CCS and non-CCS classes (n = 4 and 25, respectively). The 

normalized RPKM mouse data were input into the SVM as read depths per probe and 

classified into one of the two classes. Twelve of 13 murine CCS tumors were predicted to 

be human CCS, rather than one of the other tumor types (Figure 2.7B). As a control, 0 of 

5 RNA sequencing data sets from wildtype mouse mesenchymal tissue controls were 

identified as human CCS when input into the same SVM. These data confirm that mouse  
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Figure 2.7. Tumors derived from EWS-ATF1 expression in different cells of origin cluster 
together according to expression profile and fit human clear cell sarcoma profiles. (A) 
Unsupervised hierarchical clustering of mouse samples by sequencing-defined 
transcriptional profiling, osteosarcomas (triangle), synovial sarcomas (diamond), EWS-
ATF1-driven tumors by TAT-Cre (red circles), Rosa26CreER (pink circles), Bmi1CreERT2 

(dark blue circles), and Prx1-CreERT2 (light blue circles) and control samples from 
chest-wall mesenchymal tissues (cross). (B) Unsupervised hierarchical clustering of 
human tumors profiled by microarray and used to train the supervised machine-learning 
module, solitary fibrous tumor (triangle), myxoid liposarcoma (square), melanoma 
(pentagon), leiomyosarcoma (triangle), synovial sarcoma (diamond), and clear cell 
sarcoma (circle). The mouse EWS-ATF1-driven tumors are placed under the category of 
human tumors they most identified with on the supervised machine-learning module, 
TAT-Cre (red circles), Rosa26CreER (pink circles), Bmi1CreERT2 (dark blue circles), and 
Prx1-CreERT2 (light blue circles).  
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tumors  derived  from   conditional  expression   of  EWS-ATF1  resemble  the  expression 

profile of human CCS more closely than the other soft-tissue tumors or melanoma. 

Notably, the one mouse CCS that did not cluster closely to the human CCS SVM 

prediction was a Prx1-CreERT2-initiated tumor that did not express M-Mitf. In contrast, 

another Prx1-CreERT2-initiated tumor that expressed M-Mitf did cluster with human 

clear cell sarcoma. 

Further comparative analysis of the RNA sequencing expression profiles of the 

two Prx1-lineage and the two Bmi1-lineage tumors, both sets from the same anatomic 

locations, identified a number of consistently differentially expressed genes. Three of the 

top ten genes more highly expressed in Prx1-CreERT2;Rosa26EA1 were Crlf1, which is 

present in osteoblasts and chondrocytes, along with Saa1 and Saa2, which are 

upregulated in differentiated compared to undifferentiated mesenchymal stem cells 

(Clancy et al., 2003; Kovacevic et al., 2008). 

To better evaluate the difference between the Bmi1CreERT2;Rosa26EA1 and Prx1-

CreERT2;Rosa26EA1 tumors, we performed RT-PCR on a panel of additional samples.  

This revealed that some Prx1-lineage tumors indeed expressed M-Mitf and Tyrosinase, 

but not all (Figure 2.8A).  All Bmi1-lineage tumors expressed these melanocytic markers.  

Interestingly, the Prx1-lineage tumor that did not express Nestin also did not express M-

Mitf or Tyrosinase.  An additional Prx1-lineage tumor failed to express Tyrosinase only. 

This may indicate that between the stem-like state of Bmi1 expression and the progenitor 

state of Prx1 expression Nestin, M-Mitf, and Tyrosinase are epigentically silenced (Figure 

2.8B).  
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Figure 2.8. Tumors arising from EWS-ATF1 expression initiated in the Prx1- or Bmi1-
lineage differ by expression profile. (A) RT-PCR analysis of the indicated transcripts on 
total RNA isolated from Bmi1- and Prx1-lineage tumors  (arrow points to the correct 
band) (B) Working model of the impact of early differentiation within multipotent 
mesenchymal progenitors on the possibility of transdifferentiation to express melanocytic 
markers upon clear cell sarcomagenesis driven by EWS-ATF1. 
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 Discussion 

 A few mouse genetic models of translocation-associated sarcomas have been 

expressing PAX3-FKHR (Keller et al., 2004a; Keller and Capecchi, 2005; Keller et al., 

2004b), myxoid liposarcoma expressing FUS-CHOP (Perez-Losada et al., 2000), and 

synovial sarcoma expressing SS18-SSX2 (Haldar et al., 2007; Haldar et al., 2009; Haldar 

et al., 2008). The last of these used means of transcriptional control of the fusion 

oncogene similar to those used in the current study, with expression in Cre/loxP 

conditional fashion from the Rosa26 locus. The model of synovial sarcoma also 

demonstrated fully penetrant tumorigenesis when initiated by Rosa26CreER or Myf5Cre 

(Haldar et al., 2009).  Comparison of the two models highlights the brief latency to 

tumorigenesis following expression of EWS-ATF1 initiated by Rosa26CreER. The synovial 

sarcoma model develops tumors after a year, rather than within 3 months. Further, 

expression of SS18-SSX2 in most cells, in vitro or in vivo, was toxic.  The very rapid 

onset of visible tumors in the mouse CCS model relative to synovial sarcoma suggests 

that fewer additional hits may be required to foster progression of the tumor.  This may 

represent a fundamental difference between the biology of the two fusion oncogenes, as 

all other aspects of the models are the same.   

It has not escaped our notice that the extreme oncogenicity of EWS-ATF1 in mice 

contrasts with the rare incidence of formally diagnosed CCS in humans. A potential 

explanations for this discrepancy is the possibility that EWS-ATF1 involvement in 

human tumorigenesis remains underappreciated.  t(12;22) (q13;q12) chromosomal 

translocation and resultant fusion oncogenes are identified only when pursued in clinical 

tumors. The widening range of tumors recently found to bear EWS-ATF1, such as 
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angiomatoid fibrous histiocytoma and clear cell carcinoma of the salivary gland 

(Antonescu et al., 2011; Chen et al., 2011; Mangham et al., 2010; Ren et al., 2009), 

suggests that more may yet be identified in the near future.  Second, the observed toxicity 

to embryonic development in the mouse by the early expression of the EWS-ATF1 fusion 

gene may greatly limit the acceptable timeframe for the formation of the required 

t(12;22) chromosomal translocation in humans. Finally, not all balanced chromosomal 

translocations arise with equal frequency and the formation of the t(12;22) translocation 

responsible for CCS may be the rate limiting step for this malignancy.   

Different cells of origin impacted features of the tumors resulting from EWS-

ATF1 expression. Tumors from both the Bmi1- and the Prx1- postnatal lineages 

developed in nearly identical anatomic locations (in the muscle and from the periosteal 

surface of bones) and fit the histologic appearance of human CCS, but the Prx1-lineage 

tumors did not consistently express the melanocytic markers M-Mitf, and Tyrosinase.  

The M-Mitf-expressing Prx1-lineage tumors fit the general expression signature of human 

CCS. Those not expressing M-Mitf did not. This observation may explain the fact that not 

all human CCSs clearly express melanoma markers. All four human tumors used for 

expression profiling were typical, M-Mitf-expressing, melanoma-like CCSs.  Perhaps the 

Prx1-induced mouse tumor that did not express M-Mitf might have fit better with a 

broader group of human CCSs.  

Expression of Nestin has previously been reported in human CCS cell lines 

(Dimas et al., 2008). All Bmi1-lineage tumors expressed Nestin and the melanocytic 

markers while variable Nestin expression in Prx1-lineage tumors predicted expression of 

the melanocytic markers. Nestin has previously been proven to be a marker of stemness 
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in mesenchyme (Mendez-Ferrer et al., 2010), and overlapped with the Bmi1-lineage and 

partly with the Prx1-lineage. This evidence along with the co-labeling experiments 

showing Prx1 expression within the Bmi1-lineage suggests that the differentiation steps 

between Bmi1-expressing cells and Prx1-expressing cells include a gradual loss of 

stemness. The epigenetic state may render the melanocytic markers unavailable for 

upregulation by ATF constitutive activation alone (Figure 2.8B).   

Many have argued in the past about the origin of the melanocytic features of 

human CCS, variably attributing them to either cell of origin or transformation by EWS-

ATF1, which also upregulates M-Mitf.  Although we have not ruled out the possibility 

that melanocytes or their precursors might also offer sufficient cells of origin, the tumors 

we have induced in mesenchyme actually bolster both prior arguments.  CCS 

transformation can enable transdifferentiation that includes melanocytic markers, but 

only from certain cells of origin. Perhaps a cell's reprogrammability, even during 

aggressive transformation from expression of a powerful fusion oncogene, remains at 

least partly checked by its antecedent differentiation state. 

This mouse model will enable additional dissection of the ATF pathway's impact 

on oncogenesis in vivo. Further, the model is ideally suited to preclinical testing of 

targeted therapies for this and other CCS pathways. Administration of TAT-Cre produces 

visible tumors within a few weeks and avoids any pleiotropic developmental effects from 

toxicity of the fusion oncogene expressed across an entire tissue.  These tumors are well-

localized, offering a reasonable model for the study of metastasis.  Unlike delivery of Cre 

with a virus, a single molecule of TAT-Cre cannot readily diffuse to a great distance or 

travel through the blood stream to a distant site and induce recombination, as at least two 
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molecules of the TAT-Cre protein must enter any given cell to catalyze the 

recombination event (Joshi et al., 2002). 

Due to the low frequency of sarcomas, the most critically scarce resource for 

developing more effective therapeutic strategies for these malignancies is patients 

themselves.  It is not easy to assemble sufficient numbers of patients for carrying out 

subtype-specific sarcoma clinical trials.  Therapeutic strategies must be optimized and 

prioritized in the preclinical arena before advancing to clinical trial.  Authenticated 

mouse models could serve this purpose.  Genomic sequencing and profiling has vastly 

increased the ability to test the authenticity of a mouse model's recapitulation of human 

malignancy.  Once established as an excellent facsimile to the human cancer, a mouse 

model can be used not only to interrogate cancer mechanisms and identify pertinent 

therapeutic targets, but also as a platform for assessment of drug efficacy.  Successful 

candidate therapeutic strategies could be then moved to human trials with greater 

assurance of success.   

In summary, we have shown that the oncogenic fusion protein that characterizes 

CCS is sufficient to initiate CCS-like tumors in mice that recapitulate human CCS in 

terms of cell morphology, immunohistochemistry, and genome-wide expression.  This 

fusion gene generates two distinguishable tumor types in mice that also reflect similar 

variance in morphology and tissue distribution seen in humans (i.e., principally falling in 

two classes, those that resemble melanomas because of the expression of M-Mitf and its 

target genes, and those that do not).  The apparent difference in cells of origin of these 

two potential subclasses described herein with mice may provide an explanation of why 

human CCS commonly, but inconsistently, displays the classical melanocytic features. 
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Experimental Procedures 

Targeted Mouse Line Production 

 Human EWS-ATF1 cDNA was obtained by RT-PCR of total RNA from 8 

histologically and immunohistochemically confirmed clear cell sarcoma tumors. The total 

RNA was obtained as deidentified patient sample through an approved University of 

Utah Institutional Review Board Protocol.  PCR was used to identify tumors that 

contained the type 1 EWS-ATF1 fusion gene. After screening, the cDNA sample was 

used to amplify the entire fusion oncogene. The cDNA clone was subcloned into the 

Rosa26UA plasmid using AscI and Fse1 Sites. This plasmid contained the Loxp-pgk-

Neo-tPA-Loxp-AscI-FheI-IRES-EGFP within the Rosa26 homology arms and the final 

targeting construct contained Loxp-pgk-Neo-tPA-Loxp-EWS-ATF1-IRES-EGFP.  

Genotyping protocol and further details on gene targeting used can be found in 

Supplemental Experimental Procedures. 

 

Animals, Radiograph, Tissue Preparation, and  

Immunohistochemistry 

All mouse experiments were performed in accordance with humane practices, 

national and international regulations, and with the approval of the University of Utah 

Institutional Animal Care and Use committee. Radiographs were obtained post 

asphyxiation using a Carestream 4000 Pro-Fx instrument (Carestream Molecular 

Imaging, Woodbridge, Connecticut). 

 Mouse tumors were extracted after asphyxiation and were fixed overnight in 4% 

paraformaldehyde prior to embedding in paraffin. Immunostaining and tissue preparation 
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along with antibodies used are described in the Supplemental Experimental Procedures.  

 

Transcriptome Analysis 

 A portion of each tumor was snap frozen for delayed total RNA extraction using 

the Qiagen RNeasy Mini kit (Qiagen, Inc., Valencia, California). RT-PCR was performed 

with random hexamer primers to generate cDNAs, followed by PCR for specific 

transcripts (Supplemental Experimental Procedures).  

For RNA sequencing, total RNA was prepared using an Illumina TruSeq RNA 

sample prep kit (Illumina, Inc., San Diego, California) and quality checked with an 

Agilent Bioanalyzer RNA 6000 chip (Agilent Technologies, Santa Clara, California).   

mRNAs were captured by oligodT magnetic beads and fragmented. Library quality was 

then checked by Nanodrop analysis (Thermo Scientific, Wilmington, Delaware), qPCR 

quantitation using Illumina primers, and another bioanalyzer run. Sequencing was 

performed on an Illumina HiSeq 2000 machine (Illumina, Inc., San Diego, California) 

using a 50 cycle single end read.  PhiX control library reads were added to each lane for 

quality assurance. Reads were then aligned with the mm9 mouse genome.  Basic 

clusterings were performed using GeneSifter software (Geospiza, Inc. Seattle, 

Washington). Method used to classify tumor type using RNA-seq data can be found in 

the Supplemental Experimental Procedures. 

Accession Numbers 

The RNA-seq data have been deposited in NCBI’s Gene Expression Omnibus 

(http://www.ncbi.nlm.nih.gov/geo/) and are accessible through the GEO series accession 

number GSE41293. 
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Human microarray data have been deposited in NCBI’s Gene Expression 

Omnibus and are accessible through the GEO series accession number GSE43045. 

 

Supplemental Data 

 The Supplemental Data include Supplemental Experimental Procedures, three 

supplemental figures, and five supplemental tables.  
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Supplemental Material 

 

Supplemental Table 1 

Dysregulated genes from RosaCreER tumors to control mesenchyme 

     #DisplayName Name Chr BH_FDR_VarOutFilt Log2Ratio 
MUSG00000048636 A730049H  chr6 487.5802 8.508934 
MUSG00000020000 Moxd1 chr10 480.18414 8.048805 
MUSG00000026247 Ecel1 chr1 380.29922 7.308377 
MUSG00000044951 Mylk4 chr13 370.76764 -6.3523226 
MUSG00000033717 Adra2a chr19 358.08832 6.593305 
MUSG00000033350 Chst2 chr9 351.956 6.4737024 
MUSG00000022296 Baalc chr15 336.02307 6.6612577 
MUSG00000054934 Kcnmb4 chr10 325.54507 6.8758116 
MUSG00000041737 Tmem45b chr9 323.50125 -7.281594 
MUSG00000015981 Stk32c chr7 320.8254 6.0321503 
MUSG00000024011 Pi16 chr17 320.15665 5.3523307 
MUSG00000028072 Ntrk1 chr3 320.15665 6.1623497 
MUSG00000073375 Lrrc30 chr17 320.15665 -5.0029926 
MUSG00000030546 Plin1 chr7 319.28293 -6.5906067 
MUSG00000021700 Rab3c chr13 311.0993 8.106302 
MUSG00000003279 Dlgap1 chr17 304.06097 5.8167896 
MUSG00000031489 Adrb3 chr8 301.8349 -5.755275 
MUSG00000031538 Plat chr8 298.72815 6.020567 
MUSG00000074264 Amy1 chr3 293.43936 -5.1407065 
MUSG00000001510 Dlx3 chr11 288.179 6.729669 
MUSG00000019539 Rcn3 chr7 286.569 5.237727 
MUSG00000027470 Mylk2 chr2 286.40793 -5.069202 
MUSG00000021508 Cxcl14 chr13 284.1306 5.5428596 
MUSG00000021898 Asb14 chr14 282.11258 -5.181327 
MUSG00000030730 Atp2a1 chr7 277.18924 -3.869698 
MUSG00000031382 Asb11 chrX 275.66095 -4.224964 
MUSG00000049134 Nrap chr19 275.43213 3.7277577 
MUSG00000029544 Cabp1 chr5 274.6313 4.9407372 
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Supplemental Table 1 Continued 

 

     #DisplayName Name Chr BH_FDR_VarOutFil
t Log2Ratio 

 

MUSG00000047746 Fbxo40 chr16 271.91275 -4.0054646 
MUSG00000034981 Parm1 chr5 268.62863 4.9151974 
MUSG00000056632 Dsg3 chr18 268.5755 6.257076 
MUSG00000081683 Fzd10 chr5 267.09747 5.270862 
MUSG00000028396 2310002L09Rik chr4 266.60492 -4.3342896 
MUSG00000020067 Mypn chr10 264.77475 -4.107181 
MUSG00000006457 Actn3 chr19 264.77475 -4.239534 
MUSG00000070561 Kcnj11 chr7 262.76276 -5.192804 
MUSG00000025089 Gfra1 chr19 260.2715 4.7128496 
MUSG00000073530 Pappa2 chr1 256.12085 6.1933675 
MUSG00000033595 Lgi3 chr14 256.12085 5.1362867 
MUSG00000053279 Aldh1a1 chr19 256.12085 -3.799156 
MUSG00000031519 Asb5 chr8 255.83704 -3.4651434 
MUSG00000027513 Pck1 chr2 255.41393 -7.378881 
MUSG00000062077 Trim54 chr5 254.98772 -3.8898075 
MUSG00000026418 Tnni1 chr1 253.77046 -4.4820924 
MUSG00000032495 Lrrc2 chr9 253.3548 -3.8658276 
MUSG00000044918 AC122466.1 chr5 252.4963 -3.8131616 
MUSG00000005237 Dnahc2 chr11 252.17702 5.0860724 
MUSG00000024471 Myot chr18 251.83801 -3.637672 
MUSG00000042638 Gucy2c chr6 251.61998 6.048879 
MUSG00000032717 Mdfi chr17 250.79628 4.907887 
MUSG00000022490 Ppp1r1a chr15 249.76688 -3.1289558 
MUSG00000032648 Pygm chr19 249.26892 -3.7824817 
MUSG00000030399 Ckm chr7 247.59552 -3.5535975 
MUSG00000034472 Rasd2 chr8 247.47748 -5.5839987 
MUSG00000072720 Myo18b chr5 246.99503 -6.4021235 
MUSG00000007097 Atp1a2 chr1 246.64458 -3.4054813 
MUSG00000034164 Emid1 chr11 245.89084 5.1213684 
MUSG00000059741 Myl3 chr9 245.89084 -3.577375 
MUSG00000025279 Dnase1l3 chr14 242.90636 6.589141 
MUSG00000023484 Prph chr15 240.10432 4.615322 
MUSG00000063434 Sorcs3 chr19 239.5735 7.672165 
MUSG00000020007 Il20ra chr10 237.1167 6.1824985 
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Supplemental Table 1 Continued 
 

     #DisplayName Name Chr BH_FDR_VarOut
Filt Log2Ratio 

 

MUSG00000022440 C1qtnf6 chr15 236.69069 4.137205 
MUSG00000016349 Eef1a2 chr2 235.40964 -3.4299123 
MUSG00000020871 Dlx4 chr11 235.23553 5.0911536 
MUSG00000008658 A2bp1 chr16 235.23553 -4.17637 
MUSG00000027932 Slc27a3 chr3 234.68805 4.7569885 
MUSG00000011148 Adssl1 chr12 233.4765 -3.8315296 
MUSG00000029683 Lmod2 chr6 233.38545 -3.1519678 
MUSG00000043122 A530016L24Rik chr12 232.52924 -4.6765566 
MUSG00000078815 Cacng6 chr7 230.2141 -3.6743655 
MUSG00000066687 Zbtb16 chr9 229.9002 -4.9372206 
MUSG00000013936 Myl2 chr5 228.52686 -3.3076627 
MUSG00000029658 4930434E21Rik chr5 226.77449 4.8859544 
MUSG00000001508 Sgca chr11 226.6507 -3.6371195 
MUSG00000021909 Tnnc1 chr14 226.54567 -4.385018 
MUSG00000045731 Pnoc chr14 225.96626 7.9276757 
MUSG00000067653 Ankrd23 chr1 225.62358 -3.5831268 
MUSG00000033182 Klhdc6 chr6 225.0529 -4.489414 
MUSG00000031465 Angpt2 chr8 224.64398 5.1902056 
MUSG00000039883 Lrrc17 chr5 224.24094 4.1970134 
MUSG00000040740 Slc25a34 chr4 224.05902 -3.9280937 
MUSG00000075307 Kbtbd10 chr2 223.45564 -3.2167172 
MUSG00000028773 Fabp3 chr4 223.23387 -3.7450953 
MUSG00000000938 Hoxa10 chr6 223.23387 4.2750225 
MUSG00000056366 AC152453.2 chr10 223.05965 -3.907881 
MUSG00000002588 Pon1 chr6 218.91219 -5.7318826 
MUSG00000053675 Tgm5 chr2 218.56955 6.6077943 
MUSG00000070577 RP23-331P21.1 chr4 217.84714 -4.160675 
MUSG00000001555 Fkbp10 chr11 217.75108 4.3323402 
MUSG00000033998 Kcnk1 chr8 217.43677 6.337978 
MUSG00000024972 Lgals12 chr19 216.70924 -4.6357517 
MUSG00000056900 Usp13 chr3 216.4425 -3.6007102 
MUSG00000021573 Tppp chr13 215.90805 -4.384508 
MUSG00000018796 Acsl1 chr8 215.42184 -3.6346068 
MUSG00000028348 Murc chr4 187.42012 -3.5817485 
MUSG00000024049 Myom1 chr17 179.63863 -3.8796365 
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Supplemental Table 1 Continued 
 

     #DisplayName Name Chr BH_FDR_VarOut
Filt Log2Ratio 

 

MUSG00000036298 Slc2a13 chr15 213.87697 4.625506 
MUSG00000022510 Trp63 chr16 213.8185 -4.1744146 
MUSG00000079662 Ntn3 chr17 213.8122 4.435866 
MUSG00000030087 Klf15 chr6 213.57721 -3.9553843 
MUSG00000085888 AL596127.1 chr11 213.57721 -3.9765482 
MUSG00000024424 Ttc39c chr18 213.57721 4.509438 
MUSG00000035963 Odf3l2 chr10 212.5474 -3.3703911 
MUSG00000031791 Tmem38a chr8 212.5052 -3.6412983 
MUSG00000040705 A930016O22 chr7 209.94919 -3.0145135 
MUSG00000035923 Myf6 chr10 209.69392 -2.986141 
MUSG00000061723 Tnnt3 chr7 209.51656 -3.008223 
MUSG00000015568 Lpl chr8 209.29007 -4.4366355 
MUSG00000029552 Tes chr6 208.41597 4.0548263 
MUSG00000025592 Dach2 chrX 208.38301 -5.1109314 
MUSG00000034310 Tmem132d chr5 207.74046 5.243197 
MUSG00000022844 Pdia5 chr16 207.61292 4.7393265 
MUSG00000028427 Aqp7 chr4 207.30656 -3.879792 
MUSG00000022237 Ankrd33b chr15 207.24948 -3.6740572 
MUSG00000024909 Efemp2 chr19 207.2182 3.8995125 
MUSG00000022357 Klhl38 chr15 207.0389 -4.933534 
MUSG00000032431 Crtap chr9 206.87576 4.4756474 
MUSG00000053194 Cib4 chr5 205.4891 4.94893 
MUSG00000006800 Sulf2 chr2 205.4891 4.217456 
MUSG00000025911 Adhfe1 chr1 204.19116 -4.492567 
MUSG00000024747 Aldh1a7 chr19 204.19116 -4.481659 
MUSG00000031204 Asb12 chrX 203.92229 -3.503943 
MUSG00000046585 Ccdc147 chr19 203.46303 4.9554834 
MUSG00000001281 Itgb7 chr15 203.12039 4.7575765 
MUSG00000085493 AC109608.1 chr5 201.82484 -3.073761 
MUSG00000034591 Slc41a2 chr10 201.79552 4.814822 
MUSG00000001131 Timp1 chrX 201.4039 3.7572412 
MUSG00000036040 Adamtsl2 chr2 201.05252 4.029011 
MUSG00000021579 Lrrc14b chr13 200.99107 -4.881723 
MUSG00000022790 Igsf11 chr16 200.94711 4.724098 
MUSG00000086298 AL645687.1 chr11 200.81288 -3.215664 
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Supplemental Table 1 Continued 
 

     #DisplayName Name Chr BH_FDR_VarOut
Filt Log2Ratio 

 

MUSG00000010492 AL844529.1 chr2 200.60922 -4.1871786 
MUSG00000031097 Tnni2 chr7 200.5983 -2.902014 
MUSG00000004885 Crabp2 chr3 199.9851 6.0561423 
MUSG00000032262 Elovl4 chr9 199.39642 4.4088526 
MUSG00000061780 Cfd chr10 198.03387 -6.721265 
MUSG00000007107 Atp1a4 chr1 197.93828 -3.5941033 
MUSG00000044499 Hs3st5 chr10 197.14946 -4.0188565 
MUSG00000053199 Arhgap20 chr9 196.36145 -3.8054554 
MUSG00000001333 Sync chr4 195.88353 -4.2720866 
MUSG00000028116 Myoz2 chr3 195.88353 -2.504497 
MUSG00000034127 Tspan8 chr10 195.64609 -3.7243423 
MUSG00000042895 Abra chr15 195.4459 -2.5107687 
MUSG00000041476 Smpx chrX 195.36908 -2.8672905 
MUSG00000021238 Aldh6a1 chr12 194.95695 -2.9864573 
MUSG00000039323 Igfbp2 chr1 194.49142 6.337668 
MUSG00000006221 Hspb7 chr4 194.29236 -2.7313786 
MUSG00000030672 Mylpf chr7 194.12343 -2.5271173 
MUSG00000033576 Apol6 chr15 194.12343 -3.4293156 
MUSG00000026208 Des chr1 194.06015 -2.789014 
MUSG00000020593 Lpin1 chr12 193.75479 -3.404712 
MUSG00000085779 AC155932.2 chr10 193.5945 -3.4852865 
MUSG00000043639 Rbm20 chr19 193.3198 -4.1965566 
MUSG00000026489 Cabc1 chr1 193.20584 -3.7354646 
MUSG00000031952 Chst5 chr8 193.14217 4.8222823 
MUSG00000026564 Dusp27 chr1 191.1846 -3.0644398 
MUSG00000039891 Txlnb chr10 190.79266 -4.5875497 
MUSG00000075707 Dio3 chr12 190.5655 5.216036 
MUSG00000038670 Mybpc2 chr7 190.42168 -3.726841 
MUSG00000019852 D10Bwg1379 chr10 190.13094 5.5388694 
MUSG00000066113 Adamtsl1 chr4 189.67055 3.846046 
MUSG00000056973 Ces3 chr8 189.54007 -6.525118 
MUSG00000070436 Serpinh1 chr7 189.26395 3.622658 
MUSG00000038763 Alpk3 chr7 188.64099 -4.4072165 
MUSG00000004558 Ndrg2 chr14 188.6355 -3.2423582 
MUSG00000079434 Neu2 chr1 188.32147 -2.9948566 
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Supplemental Table 1 Continued 
 

     #DisplayName Name Chr BH_FDR_VarOut
Filt Log2Ratio 

 

MUSG00000022098 Bmp1 chr14 185.8586 3.6008914 
MUSG00000073600 Gm1614 chr18 185.57263 -3.5751438 
MUSG00000061877 BC048679 chr7 185.23454 -4.8752084 
MUSG00000020695 Mrc2 chr11 185.23454 3.448641 
MUSG00000071540 CT009541.1 chr14 185.19316 -4.2355247 
MUSG00000032719 Gm106 chr1 184.7214 4.3092384 
MUSG00000030317 Timp4 chr6 184.66367 -1.85609 
MUSG00000027895 Kcnc4 chr3 184.51306 -3.279609 
MUSG00000059974 Ntm chr9 184.51306 4.387507 
MUSG00000022747 St3gal6 chr16 184.10413 -3.295076 
MUSG00000030495 Slc7a10 chr7 183.44142 -3.9611976 
MUSG00000054162 Spock3 chr8 183.34132 4.145957 
MUSG00000023191 Leprel2 chr6 183.16028 3.6686528 
MUSG00000039579 Grin3a chr4 182.8071 5.1591344 
MUSG00000054314 AC135017.1 chr1 182.73393 -4.170439 
MUSG00000085837 AC139376.3 chr10 182.45853 4.2495193 
MUSG00000038552 Fndc4 chr5 182.11572 3.8219244 
MUSG00000025932 Eya1 chr1 181.89449 -4.001165 
MUSG00000071547 Nt5dc2 chr14 180.6342 3.6890478 
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Supplemental Table 2 

Top 200 dysregulated genes from TAT-Cre to control mesenchyme 

     #DisplayName Name Chr BH_FDR_VarOutFilt Log2Ratio 
MUSG00000039728 Slc6a5 chr7 695.32056 9.748271 
MUSG00000033717 Adra2a chr19 501.55576 7.923036 
MUSG00000029544 Cabp1 chr5 487.98743 7.388971 
MUSG00000031489 Adrb3 chr8 463.02866 -5.952426 
MUSG00000041737 Tmem45b chr9 419.05856 -5.7590013 
MUSG00000054934 Kcnmb4 chr10 418.05173 6.8791113 
MUSG00000046321 Hs3st2 chr7 398.83743 8.735553 
MUSG00000035963 Odf3l2 chr10 374.50806 -5.636129 
MUSG00000020264 Slc36a2 chr11 345.07883 -3.982498 
MUSG00000042717 Ppp1r3a chr6 339.90778 -3.2681649 
MUSG00000074264 Amy1 chr3 335.79572 -3.474454 
MUSG00000024972 Lgals12 chr19 335.25778 -3.9306924 
MUSG00000068697 Myoz1 chr14 335.0342 -3.1408453 
MUSG00000028396 2310002L09Rik chr4 331.21973 -3.2354274 
MUSG00000031382 Asb11 chrX 329.85007 -2.7583697 
MUSG00000044951 Mylk4 chr13 327.7272 -2.5913801 
MUSG00000030546 Plin1 chr7 325.90692 -4.323547 
MUSG00000021456 Fbp2 chr13 325.90692 -3.057298 
MUSG00000031097 Tnni2 chr7 319.28357 -2.8845527 
MUSG00000041046 Ramp3 chr11 313.1104 6.740988 
MUSG00000022296 Baalc chr15 308.18652 5.8349915 
MUSG00000027513 Pck1 chr2 306.77353 -6.080129 
MUSG00000061723 Tnnt3 chr7 305.761 -2.733902 
MUSG00000027792 Bche chr3 303.31223 -3.874257 
MUSG00000020000 Moxd1 chr10 298.25275 8.371794 
MUSG00000041592 Sdk2 chr11 298.25275 6.731137 
MUSG00000078234 Klhdc7a chr4 298.25275 -4.297958 
MUSG00000022490 Ppp1r1a chr15 294.59436 -1.9532316 
MUSG00000073375 Lrrc30 chr17 291.04276 -2.137593 
MUSG00000035095 Fam167a chr14 289.75995 5.426114 
MUSG00000031284 Pak3 chrX 289.22336 4.618136 
MUSG00000053279 Aldh1a1 chr19 287.717 -2.4878745 
MUSG00000021448 Shc3 chr13 287.38525 5.8656516 
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Supplemental Table 2 Continued 

#DisplayName Name Chr BH_FDR_VarOutFilt Log2Ratio 
MUSG00000034127 Tspan8 chr10 276.24612 -2.7089212 
MUSG00000022747 St3gal6 chr16 273.5672 -2.733389 
MUSG00000025089 Gfra1 chr19 270.04758 4.5787997 
MUSG00000018796 Acsl1 chr8 265.40552 -2.3866332 
MUSG00000009097 Tbx1 chr16 265.37695 -3.7160244 
MUSG00000043122 A530016L24Rik chr12 265.37695 -3.7926533 
MUSG00000028464 Tpm2 chr4 264.9648 -2.1793914 
MUSG00000006800 Sulf2 chr2 264.24286 4.75812 
MUSG00000020164 1700058G18Rik chr10 262.26566 5.176994 
MUSG00000002588 Pon1 chr6 262.13806 -5.70244 
MUSG00000023191 Leprel2 chr6 258.44067 4.3983436 
MUSG00000000567 Sox9 chr11 258.2816 4.6242256 
MUSG00000022235 Cmbl chr15 257.44235 -3.4317958 
MUSG00000040181 Fmo1 chr1 255.56738 -1.9216794 
MUSG00000030399 Ckm chr7 252.44913 -2.3285868 
MUSG00000031204 Asb12 chrX 252.40158 -2.7090862 
MUSG00000032648 Pygm chr19 251.49156 -2.6745157 
MUSG00000055125 C2cd4b chr9 251.14946 5.6696815 
MUSG00000032640 Chsy1 chr7 250.93301 5.142914 
MUSG00000033350 Chst2 chr9 250.49149 6.249664 
MUSG00000062329 Cytl1 chr5 247.75082 -3.2811992 
MUSG00000028427 Aqp7 chr4 247.54716 -2.7005918 
MUSG00000033900 Mtap9 chr3 246.99413 5.091521 
MUSG00000086429 AC155722.2 chr6 246.8797 -3.6064801 
MUSG00000033576 Apol6 chr15 246.49896 -2.517058 
MUSG00000024471 Myot chr18 244.4173 -2.5417118 
MUSG00000024747 Aldh1a7 chr19 243.12596 -3.303781 
MUSG00000021573 Tppp chr13 241.50938 -3.7290323 
MUSG00000054863 AC123925.1 chr15 241.08868 4.91942 
MUSG00000026688 Mgst3 chr1 240.5575 -2.1721818 
MUSG00000055421 Pcdh9 chr14 238.92775 5.6450276 
MUSG00000020774 Aspa chr11 237.70683 -3.417474 
MUSG00000002997 Prkar2b chr12 235.99165 -3.0752368 
MUSG00000028572 Hook1 chr4 235.91614 -1.5910404 
MUSG00000022237 Ankrd33b chr15 162.66501 -1.4590746 
MUSG00000011148 Adssl1 chr12 234.64519 -2.3008068 

!
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Supplemental Table 2 Continued  

     #DisplayName Name Chr BH_FDR_VarOutFil Log2Ratio 
 

MUSG00000040740 Slc25a34 chr4 233.72208 -2.8050847 
MUSG00000032845 Alpk2 chr18 232.1026 -3.027931 
MUSG00000086373 AL603787.4 chr11 231.42502 7.3561726 
MUSG00000028773 Fabp3 chr4 231.42502 -2.693085 
MUSG00000030730 Atp2a1 chr7 230.86472 -1.5225446 
MUSG00000078815 Cacng6 chr7 230.45076 -1.9623677 
MUSG00000056366 AC152453.2 chr10 230.2809 -2.7704766 
MUSG00000007097 Atp1a2 chr1 229.03056 -1.4771129 
MUSG00000086552 AL645850.2 chr11 228.26184 5.573143 
MUSG00000044499 Hs3st5 chr10 225.4451 -3.1350167 
MUSG00000021898 Asb14 chr14 224.94147 -2.2751503 
MUSG00000056973 Ces3 chr8 224.68773 -5.56713 
MUSG00000086298 AL645687.1 chr11 224.60306 -1.8817327 
MUSG00000041476 Smpx chrX 224.54385 -2.5846179 
MUSG00000046186 Cd109 chr9 224.32643 4.649976 
MUSG00000047250 Ptgs1 chr2 223.09773 4.2215476 
MUSG00000015568 Lpl chr8 222.59981 -2.8926902 
MUSG00000024085 Man2a1 chr17 221.98627 4.1042943 
MUSG00000030317 Timp4 chr6 221.97661 -1.6823303 
MUSG00000030672 Mylpf chr7 221.61629 -2.1738992 
MUSG00000011305 Plin5 chr17 219.9586 -3.1480775 
MUSG00000025271 Pfkfb1 chrX 219.32445 -4.1595488 
MUSG00000016349 Eef1a2 chr2 218.61314 -1.5615479 
MUSG00000025592 Dach2 chrX 217.89972 -3.2607534 
MUSG00000061780 Cfd chr10 217.87999 -4.640636 
MUSG00000032431 Crtap chr9 215.98528 3.917808 
MUSG00000040147 Maob chrX 215.94095 -2.4914267 
MUSG00000042821 Snai1 chr2 215.259 3.7567198 
MUSG00000079434 Neu2 chr1 213.71864 -2.960282 
MUSG00000085888 AL596127.1 chr11 213.20375 -2.2937524 
MUSG00000031791 Tmem38a chr8 212.8889 -2.1893082 
MUSG00000030996 Art1 chr7 211.89856 -1.4201736 
MUSG00000062077 Trim54 chr5 210.84435 -1.4394009 
MUSG00000027932 Slc27a3 chr3 210.5749 4.2861753 
MUSG00000032717 Mdfi chr17 210.22195 4.3752823 
MUSG00000027470 Mylk2 chr2 209.63853 -2.053392 
MUSG00000020592 Sdc1 chr12 207.80847 4.6079664 
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Supplemental Table 2 Continued  

     #DisplayName Name Chr BH_FDR_VarOutFil Log2Ratio 
 

MUSG00000021622 Ckmt2 chr13 206.79471 -4.0985365 
MUSG00000028518 Prkaa2 chr4 206.66533 -1.773984 
MUSG00000085837 AC139376.3 chr10 206.66533 3.8732312 
MUSG00000020067 Mypn chr10 206.40132 -1.4293271 
MUSG00000067786 Nnat chr2 205.45538 -2.7891822 
MUSG00000033722 BC034090 chr1 204.53076 3.2816439 
MUSG00000019852 D10Bwg1379e chr10 204.13742 6.109788 
MUSG00000038028 9630033F20Rik chr6 204.13742 -2.3092434 
MUSG00000056900 Usp13 chr3 203.67804 -1.7349612 
MUSG00000070577 RP23-331P21.1 chr4 203.03082 -2.0056293 
MUSG00000001508 Sgca chr11 202.74736 -1.5935688 
MUSG00000029683 Lmod2 chr6 202.25873 -1.2874486 
MUSG00000020007 Il20ra chr10 202.25873 4.647301 
MUSG00000026051 1500015O10Rik chr1 201.98192 6.4777293 
MUSG00000010830 Kdelr3 chr15 201.17287 3.4136984 
MUSG00000029499 Pxmp2 chr5 200.23778 -2.2399957 
MUSG00000045954 Sdpr chr1 198.63828 -2.713705 
MUSG00000040705 A930016O22Rik chr7 198.49203 -2.0283363 
MUSG00000056313 1810011O10Rik chr8 198.42921 3.9972613 
MUSG00000034842 Art3 chr5 198.1167 -1.6239358 
MUSG00000008658 A2bp1 chr16 197.09831 -1.6316038 
MUSG00000021792 5730469M10Rik chr14 194.49963 -2.469864 
MUSG00000075307 Kbtbd10 chr2 194.4392 -1.2455858 
MUSG00000033065 Pfkm chr15 194.37672 -1.7576139 
MUSG00000032017 Grik4 chr9 194.37498 5.298998 
MUSG00000030785 Cox6a2 chr7 193.09462 -2.1431155 
MUSG00000036298 Slc2a13 chr15 192.08948 4.665283 
MUSG00000007107 Atp1a4 chr1 191.58116 -1.2880176 
MUSG00000061877 BC048679 chr7 190.78339 -3.032414 
MUSG00000042109 Csdc2 chr15 190.33357 3.5787375 
MUSG00000020620 Abca8b chr11 189.55467 -2.120869 
MUSG00000030701 Plekhb1 chr7 187.73755 -1.8986708 
MUSG00000039747 Orai2 chr5 187.70735 3.094277 
MUSG00000053199 Arhgap20 chr9 186.74031 -1.5194192 
MUSG00000032643 Fhl3 chr4 186.74031 -2.9612942 
MUSG00000021579 Lrrc14b chr13 185.87445 -2.3634498 
MUSG00000066113 Adamtsl1 chr4 185.77455 4.8028965 
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Supplemental Table 2 Continued  

     #DisplayName Name Chr BH_FDR_VarOutFil Log2Ratio 
 

MUSG00000032495 Lrrc2 chr9 185.76541 -1.449477 
MUSG00000048636 A730049H05Rik chr6 185.39844 6.6403923 
MUSG00000061013 Mkx chr18 184.13673 4.376296 
MUSG00000022861 Dgkg chr16 183.88383 5.486276 
MUSG00000020871 Dlx4 chr11 183.74213 5.112527 
MUSG00000007877 Tcap chr11 181.43417 -1.3892876 
MUSG00000036611 Eepd1 chr9 181.33263 -1.9433873 
MUSG00000037375 Hhat chr1 181.33263 3.9299035 
MUSG00000030401 Rtn2 chr7 181.23526 -1.8412994 
MUSG00000040732 Erg chr16 180.68834 3.991934 
MUSG00000030972 Acsm5 chr7 180.42287 -3.8022199 
MUSG00000047746 Fbxo40 chr16 180.16908 -1.4047076 
MUSG00000037035 Inhbb chr1 178.48047 3.5832784 
MUSG00000041540 Sox5 chr6 178.44637 3.2899435 
MUSG00000001555 Fkbp10 chr11 178.08107 3.7104278 
MUSG00000031562 Dctd chr8 177.29805 4.580376 
MUSG00000027386 Fbln7 chr2 177.27371 4.3263416 
MUSG00000025203 Scd2 chr19 176.82832 3.6767373 
MUSG00000029086 Prom1 chr5 176.2153 6.091686 
MUSG00000085596 AL589870.1 chr2 176.02875 4.573597 
MUSG00000017300 Tnnc2 chr2 174.23633 -2.6310127 
MUSG00000048416 Mlf1 chr3 174.1692 -4.109269 
MUSG00000003123 Lipe chr7 173.90735 -2.4999354 
MUSG00000026473 Glul chr1 173.037 -2.1305416 
MUSG00000028116 Myoz2 chr3 173.00778 -0.9958694 
MUSG00000023828 Slc22a3 chr17 172.10063 -2.6783168 
MUSG00000026826 Nr4a2 chr2 172.07404 4.534403 
MUSG00000025007 Aldh18a1 chr19 171.54446 3.5386472 
MUSG00000006457 Actn3 chr19 170.7221 -1.3629844 
MUSG00000002944 Cd36 chr5 170.70049 -1.8729578 
MUSG00000025268 Maged2 chrX 170.52975 3.179602 
MUSG00000027661 Slc2a10 chr2 170.52975 3.738658 
MUSG00000079588 Tmem182 chr1 170.18378 -1.8083715 
MUSG00000082100 AL646043.3 chr11 169.38046 -2.5842943 
MUSG00000010803 Gabra1 chr11 168.54994 5.9549494 
MUSG00000023959 Clic5 chr17 168.22551 -1.86824 
MUSG00000035923 Myf6 chr10 167.95686 -0.8380006 
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Supplemental Table 2 Continued  

     #DisplayName Name Chr BH_FDR_VarOutFil Log2Ratio 
 

MUSG00000020098 Pcbd1 chr10 167.86977 4.1033087 
MUSG00000085779 AC155932.2 chr10 166.81633 -1.7934469 
MUSG00000033256 Shf chr2 166.1581 3.2989743 
MUSG00000025488 Cox8b chr7 166.14236 -2.6872952 
MUSG00000030087 Klf15 chr6 165.59212 -2.1438282 
MUSG00000026335 Pam chr1 165.30537 3.285277 
MUSG00000024210 Ip6k3 chr17 165.30537 -1.514169 
MUSG00000005628 Tmod4 chr3 164.60292 -1.7199639 
MUSG00000071347 C1qtnf9 chr14 163.56107 -1.3000892 
MUSG00000024526 Cidea chr18 163.39284 -1.5838745 
MUSG00000080115 AC134329.1 chr10 163.36519 4.061877 
MUSG00000045875 Adra1a chr14 163.15768 -3.0558121 
MUSG00000035279 A430110N23Rik chr7 162.78282 3.786073 
 
MUSG00000027239 Mdk chr2 162.66501 3.2920961 

MUSG00000057606 Colq chr14 162.66501 -1.3473989 
MUSG00000030727 Rabep2 chr7 162.51932 -1.5217919 
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                               Supplemental Table 3 

Top 160 shared genes between TAT-Cre and Rosa26CreER 

               tumors compared to control mesenchyme 

  
Gene Name 

Pcdh9 
Hs3st2 
Rab3c 
Sdk2 

Lgals12 
Zbtb16 
Myot 
Ckm 

Tspan8 
Chst2 
Asb14 
Fbxo40 

AL645850.2 
Adssl1 

Lpl 
Timp4 
Sgca 
Neu2 
Plin1 

Prkar2b 
Aspa 

Mtap9 
Smpx 

Ppp1r3a 
1700058G18Rik 

Plin5 
Stk32c 

Aldh1a7 
Cmbl 
Bche 
Lrrc2 
Mylpf 
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                     Supplemental Table 3 Continued 

Gene Name 
Ptgs1 
Prph 
Ecel1 
Baalc 
Fabp3 
Atp1a2 
Myl2 
Mgst3 

Man2a1 
Amy1 
Pak3 
Dlx4 

C1qtnf6 
Mylk2 
Ntrk1 

Kbtbd10 
Ankrd23 

Actn3 
Rcn3 
Tbx1 

4930434E21Rik 
Myo18b 

Maob 
Parm1 

Kcnmb4 
Dlx3 

Aldh1a1 
Dsg3 

Tmem45b 
Emid1 

AC152453.2 
Snai1 
Ces3 

Myoz1 
Pi16 
Pygm 

Dnase1l3 
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                      Supplemental Table 3 Continued 

Gene Name 
Odf3l2 
Slc6a5 
Hs3st5 
Lrrc17 
Alpk2 
Rasd2 
Myl3 

Slc25a34 
AC122466.1 

Chsy1 
Dlgap1 
Nrap 
Mdfi 
Tnnt3 
Tnni1 

Fkbp10 
Slc27a3 
Adra2a 
C2cd4b 

A730049H05Rik 
Usp13 
Tnni2 
Plat 

Fmo1 
Il20ra 
Pfkfb1 
Ramp3 
Adrb3 
Asb11 

Hoxa10 
Apol6 
Gfra1 
Eef1a2 
Fbp2 
Pck1 

Dnahc2 
Fam167a 
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                       Supplemental Table 3 Continued 

Gene Name 
Kcnk1 
Tppp 
Mypn 
Asb12 
Sox9 
Cytl1 

Klhdc6 
Cacng6 

2310002L09Rik 
Fzd10 

Ppp1r1a 
Asb5 

Lmod2 
Angpt2 
Tnnc1 

AL603787.4 
St3gal6 
Mylk4 
Shc3 
Acsl1 

AC123925.1 
Crtap 
Tgm5 
Art1 

AL645687.1 
Cxcl14 
Prkcq 
Dach2 
Gucy2c 
Kcnj11 
Sorcs3 

RP23-331P21.1 
AC155722.2 

Atp2a1 
Trim54 
Pnoc 

Klhdc7a 
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                      Supplemental Table 3 Continued 

Gene Name 
Cabp1 
Abca8a 
Pappa2 
Sulf2 
Cd109 
Lgi3 
Cfd 

Aqp7 
Lrrc30 
Hook1 

A530016L24Rik 
Leprel2 
Tpm2 

Slc36a2 
Moxd1 
A2bp1 
Pon1 
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Supplemental Experimental Procedures 

Targeted Mouse Line Production and Genotyping 

 Primers used to identify the type 1 fusion were CGCCTAGAGGGAAAGCGAG 

AGG for forward and AAATGACCTCAAGGAAGCTACGGGC for reverse. This final 

targeting construct contained Loxp-pgk-Neo-tPA-Loxp-EWS-ATF1-IRES-EGFP was 

electroporated into mouse embryonic stem cells and the clones were screened by long-

range PCR for the correct 5’ and 3’ insertion. The correct clones were then subjected to 

Southern blot analysis to identify insertion number and size. Cells from one clone with a 

confirmed target were microinjected into C57BL/6 blastocysts to generate chimeric mice. 

The chimeric mice were mated to C57BL/6 females and their agouti offspring were tested 

by PCR to confirm germ-line transmission of the conditional allele. 

The Rosa26EA1 mice were genotyped with the following primers using tail-tip-

derived DNA:   

Forward-WT: GTTATCAGTAAGGGAGCTGCAGTGG,  

Reverse-targeted: AAGACCGCGAAGAGTTTGTCCTC  

Reverse – WT: GGCGGATCACAAGCAATAATAACC.  

These primers yield a 300 base pair band for the targeted locus and a 415 base pair band 

for wildtype locus. The PCR conditions were set to 95°C for 30 seconds, 59°C for 45 

seconds, and 72°C for 30 seconds, for 30 cycles. 

The generation of each of the other mouse lines used has been previously 

described, including the Rosa26CreER (Badea et al., 2003), Wnt1-Cre (Danielian et al., 

1998), Pax3-Cre (Engleka et al., 2005), Pax7-Cre (Keller et al., 2004b), Pax7-CreERT2 

(Murphy et al., 2011), Prx1-Cre (Logan et al., 2002), Prx1-CreERT2 (Hasson et al., 
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2007), Bmi1CreERT2 (Sangiorgi and Capecchi, 2008), Myf5-Cre (Haldar et al., 2007), and 

Rosa26mTmG (Muzumdar et al., 2007). 

 

PCR primers for specific transcripts: 

Target Gene   Primer Sequence 

Nestin forward CCAAGAGAAGCCTGGGAACT 

 reverse AGATCGCTCAGATCCTGGAA 

M-Mitf forward TACAGAAAGTAGAGGGAGGACTAAG 

 reverse CCTGGTGCCTCTGAGCTTGCTGTATGTGGTAC 

Tyrosinase forward GAGCGGTATGAAAGGAACCA 

 reverse CCAACGATCCCATTTTTCTT 

Gapdh forward ACCACAGTCCATGCCATCAC 

 reverse TCCACCACCCTGTTGCTGTA 

EWS-ATF1 forward ATCGTGGAGGCATGAGCA 

 reverse ACTCCATCTGTGCCTGGACT 

 

 

Tamoxifen Administration 

 Tamoxifen (Sigma) was dissolved directly in corn oil (Sigma) at a final 

concentration of 20 mg/ml, and was injected intraperitoneally in adult mice at a 

concentration of 4 mg per 40 g body weight. RosaCreER/EA1, BmiCreERT2;RosaEA1 and Prx1-

CreERT2 mice were injected at approximately 6 weeks postnatal with a single 

intraperitoneal injection of tamoxifen.  RosaCreER/EA1 mice were also injected at postnatal 
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day 4.  

 

Histology and Immunohistochemistry 

 Specimen containing bone were decalcified in 14 percent EDTA prior to 

embedding. Six to eight micron sections were cut and mounted on slides for standard 

H&E staining or immunohistochemistry. For fluorescence-based detection, 

immunohistochemistry was performed on 8 µm frozen sections of samples fixed in 4% 

paraformaldehyde at 4°C for 5 hr and dehydrated in a sucrose gradient before embedding 

in optimum cutting temperature media. 

Antibodies used for immunohistochemistry included anti-Nestin (Aves 

Labs,Tigard, Oregon), anti-CD31 (BD-Biosciences, San Jose, California), anti-Prx1 

(Lifespan Biosciences, Seattle, Washington), anti-Keratin5 (Covance, Princeton, New 

Jersey), anti-M-Mitf (Millipore, Billerica, Massachusetts), and anti-s100B (Sigma-

Aldrich, St. Louis, Missouri). 

 

Tumor Type Classifications Using RNA-seq Data and Supervised  

Machine Learning Model 

 In order to validate that at transcription level, the tumor tissues of the mouse 

mutants indeed resembles human clear cell sarcoma tissues, we used Support Vector 

Machine (SVM), a supervised machine learning technique, to classify mouse tumors and 

normal chest tissues. In order to reduce the impact of the platform differences between 

microarray human data and RNA-sequencing mouse data, we filtered the original probe 

set of the HEEBO microarray used  to generate a high-confidence (HC) probe set that is 
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highly homologous between human and mouse.  We first mapped all HEEBO probes to 

the mouse reference genome (mm9) using the BLAST algorithm (Altschul et al., 1990) 

and parameter set <M=1 N=-1 Q=3 R=2 W=9 wordmask=seg lcmask E=1e-5>.  We then 

retained alignments with at least 80% identity over the probe length. This procedure 

removed 73% of the total probes from the original HEEBO microarray; 12,246 probes 

remained.  The transcription level of these HC probes in human and the corresponding 

mouse genomic regions was used for the following analysis. 

For each HC probe sequence, we calculated the coverage from RNA-sequencing 

reads in each mouse library, normalized by the average coverage depth of control 

libraries. Similarly, for each human tumor type genotyped by HEEBO microarray 

(Nielsen et al., 2002), we calculated the expression level ratio between tumor samples 

and normal-tissue controls over each HC probe. The SVM analysis was performed using 

the svm module in the e1071 R package (www.CRAN.R-project.org/package=e1071). 

 

Differential Expression Analysis 

 For each library, the RNA-seq reads were aligned to the reference mouse genome 

and splice junction library, as previously described. We then used the 

OverdispersedRegionScanSeqs script in the USeq package (Nix et al., 2008) to calculate 

the expression levels of annotated EMBL gene in RPKM values (Reads Per Kilobase of 

transcript per Million mapped reads). USeq also discovers differentially expressed genes 

between two RNA-seq libraries by calling the DESeq R package (Anders and Huber, 

2010). Internally, the DESeq algorithm uses a negative binomial distribution to model the 

read coverage, which is robust to the between-libraries variations of RNA-seq data by 
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using biological replicate data.  
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CHAPTER 3 

 

MELANOBLASTS A POTENTIAL SOURCE FOR 

 DERMAL CLEAR CELL SARCOMA 

 

Abstract 

Clear cell sarcoma or “malignant melanoma of the soft parts” is a rare 

mesenchymal tumor that shares a close clinical and histological similarity to melanoma. 

Clear cell sarcoma and melanoma exhibit nearly identical gene expression profiles and 

consequently shares a poor general prognosis. Although highly similar, they are two 

distinct entities and where clear cell sarcoma has a predilection for the extremities of 

young adults, melanoma prefers cutaneous layers of an elderly population. The two 

lesions can also be distinguished genetically by a translocation occurring between 

chromosomes 12 and 22 that resides in clear cell sarcoma and is absent in melanoma. 

This translocation produces a fusion oncogene EWS-ATF1 that has been shown 

previously to drive clear cell tumorigenesis. EWS-ATF1 expression in the dermis of a 

mouse model was sufficient to induce dermal clear cell sarcoma in this model but the 

cells of origin for these tumors were not identified. This is in conjunction with new 

clinical data showing clear cell sarcoma is not   limited to the deep extremities but can be 

found within dermal layers (Hantschke et al., 2010) begs the question if melanoma and 

clear cell sarcoma share a common cell of origin. To test the ability for melanocytes, the 
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cell from which melanoma arises, to form clear cell sarcoma in the dermis or epidermis, 

the EWS-ATF1 human fusion gene was expressed in mouse melanocytes. Tumors did 

form 1 year after expression of EWS-ATF1 concluding that while melanocytes are 

capable of transformation with EWS-ATF1 expression, they are not efficient cells of 

origin compared to the mesenchymal stem cells in more common deep mesenchymal 

clear cell sarcoma. 

Introduction 

Clear cell sarcoma is a mesenchymal tumor that has often been compared to 

malignant melanoma (Segal et al., 2003). Clear cell sarcoma demonstrates a high 

frequency of lymphnode metastasis, presence of melanin, ultrastructural evidence of 

melanosomes, and immunohistochemical staining for S-100, HMB-45, mMITF, and 

TYR, all characteristics of melanoma (Antonescu et al., 2002).  They also share a poor 

prognosis stemming from a high resistance to standard chemotherapies. The one clear 

difference between the two is the presence of a t(12;22) producing the chimeric EWS-

ATF1 oncogene (Coindre et al., 2006). Previous reports have shown that EWS-ATF1 is 

sufficient to drive clear cell tumorigenesis (Straessler et al., 2013; Yamada et al., 2013). 

Our lab has also shown that when expressed within a progenitor or mesenchymal stem 

cell, EWS-ATF1 can reprogram the cell to express melanocytic markers and resemble a 

melanoma expression profile. This can explain the majority of clear cells that arise in the 

deep mesenchymal tissues but resemble melanoctyes, but it cannot fully explain the 

variants of clear cell found within the dermis and other locations (Hantschke et al., 2010). 

These tumors may still share a common cell of origin with melanoma.  

Melanocytes are a group of cells principally residing in the epidermis that produce 
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melanin. Melanocytes can also be found sparsely in the inner ear, eye, and heart 

(Cichorek et al., 2013). Melanocytes contain melanosomes, melanin producing 

organelles, and express genes important for pigment production such as the melanocytic 

master transcription factor (MITF) and its downstream pigment proteins tyrosinase 

(TYR) and Tyrosinase like proteins (DCT, TRYP1, and TRYP2) .  Melanocytes have a 

long life span but recently, a progenitor population has been proven to repopulate the 

melanocyte niche (Davids et al., 2009). These melanoblasts reside in the dermis although 

the exact location remains controversial (Gleason et al., 2008). Melanoblasts express 

MITF but lack some of the downstream pigmentation factors such as TYR, DCT, and 

TRYP (Cichorek et al., 2013).  Melanocytes are the cell of origin for melanoma and have 

often been hypothesized to be a cell of origin for clear cells sarcoma. 

Tissue-specific Cre drivers allow us to test whether melanocytes are indeed a cell 

of origin for clear cell sarcoma. EWS-ATF1 cDNA expression was initiated postnatally in 

the cells expressing tyrosinase to test whether melanocytes were a cell of origin for clear 

cell sarcoma.  

Results 

TAT-CRE Injections into the Dermal Layer of RosaEA1 Mice Lead  

to Clear Cell Sarcoma Tumorigenesis 

RosaEA1 mice containing a LoxP stop LoxP followed by the EWS-ATF1 human 

cDNA were previously described (Straessler et al., 2013). With the expression of Cre 

recombinase in a cell, the LoxP sites recombine to excise the stop and lead to expression 

of the EWS-ATF1.  To test the ability for the RosaEA1 mice to form dermal tumors, an 

engineered Cre protein containing the TAT peptide sequence derived from the human 
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immunodeficiency virus was used. The TAT sequence allows the protein to be released 

from endocytic uptake and localized to the nuclease. The TAT-Cre protein was delivered 

to the dermis through cutaneous injections.  

  When TAT-Cre recombinase is injected into the dermal layer of the mouse, 

tumors arise in the dermis and subcutaneous layers within several weeks post injection. 

These tumors grow quickly and mimic tumors seen in the dermis of human patients. 

When sections of the tumors are stained using haematoxlin and eosin (H&E), they show 

the standard large bloated cytoplasm with a slightly eosinophilic stain (Figure 3.1). These 

tumors expressed the EWS-ATF1 gene along with other melanocytic markers. While it 

became clear that the RosaEA1 mouse was capable of recapitulating the dermal clear cell 

sarcoma, it remained unclear from what cell type these tumors arose. It became necessary 

to use tissue specific Cre drivers to narrow down the potential cell of origin for the 

dermal subtype of clear cell sarcoma. 

 

Expression of EWS-ATF1 Within the Cutaneous Melanocyte  

Lineage Does Not Lead to Tumor Formation 

To target expression of EWS-ATF1 within the melanocyte specific lineage, the 

RosaEA1 mice were crossed to the transgenic Tyr-CreERT2 mice (Bosenberg et al., 2006).  

Tyr-CreERT2 mice express an inactive form of the Cre recombinase under the tyrosinase 

promoter. It is not until tamoxifen is added that a conformational change within the Cre 

protein converts the enzyme into its active form. At this time, the Cre will recombine the 

LoxP sites removing the polyA STOP sequence and allow expression of EWS-ATF1 in  

any cell that currently expresses Tyrosinase.  To efficiently express EWS-ATF1 within 
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Figure 3.1 TAT-Cre-induced dermal tumors. A) Gross necroscopy of TAT-Cre-induced 
dermal tumors. B) H&E stained section of A with large, bloated, clear cytoplasm. 
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the cutaneous melanocyte population, 4’OH tamoxifen was administered to the ears of  

RosaEA1;Tyr-CreERT2 1 mice. Administration of 4’OH tamoxifen has proven the most 

efficient way of inducing the highest rates of recombination within the cutaneous layers 

of the mouse (Bosenberg et al., 2006). This did not lead to tumor formation or 

hyperpigmentation of the melanocyte population at 8 months post administration. These 

mice will be followed out to greater time spans, but it is already apparent that the 

epidermal melanocytes are not as efficient at transformation as the mesenchymal lineage. 

 

Global Expression of EWS-ATF1 Under the Control of the  

Tyrosinase Promoter in Adult Mice Leads to Aberrant  

Growth of Adipose Tissue but Lack Tumorigenesis 

Although the cutaneous expression of EWS-ATF1 did not lead to tumor formation, 

we wanted to rule out the possibility of a “misplaced” melanocyte as the cell of origin for 

dermal clear cell sarcoma. To achieve expression of EWS-ATF1 in melanocytes outside 

of the epidermal niche, we induced global recombination using several different schemes 

of tamoxifen administration. We first administered tamoxifen to RosaEA1;TYR-CreERT2 

mice at 6 months postnatally through intraperitoneal injections (IP).  Tamoxifen was 

administered through IP injections to induce global recombination under the tyrosinase 

promoter. Traditionally, this technique is not used when trying to reach the epidermal 

melanocytes but as the goal was to initiate recombination in any subdermal melanocyte 

cells, this was ideal.  

 Expression of EWS-ATF1 through the tyrosinase promoter after 6 months of age 

led to rapid onset of obesity. These mice exhibited aberrant growth of adipose tissue 
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within the fat pads and extending into areas normally devoid of adipocytes. Recent 

evidence has shown that adipose tissue may produce pigment transiently. This would 

indicate that there may be a low expression of tyrosinase in adipose tissue (Randhawa et 

al., 2009). This may explain the phenotype seen in RosaEA1;Tyr-CreERT2.  Necroscopy 

done on this subset of mice showed fat pads containing otherwise normal adipose tissue. 

Abnormal looking adipose growths protruded from the sternum and within the rib cage.  

H&E histology showed aggressive invasion of the adipose into the musculature. Other 

than its invasive nature, the adipose appeared benign (Figure 3.2). Twelve to 14 months 

after recombination was induced, there was no sign of tumor formation in the dermis or 

elsewhere.  

 

Global Expression of EWS-ATF1 in Adolescent Mice Leads  

to Occasional Tumor Formation  

Mice were also administered tamoxifen at 3 months of age through IP injections. 

The second subset of mice where EWS-ATF1 was expressed prior to 3 months of age, the 

mice began to overgroom themselves and show irritation with their skin at approximately 

1 year after the injections. On closer examination, the mice showed tumor formation. 

Most mice exhibited only one tumor each. The dermal tumors extracted from the 

RosaEA1;TyrCreERT2- mice expressed the EWS-ATF1 fusion as seen through the GFP 

reporter (Figure 3.3). 
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Figure 3.2 Aberrant adipose growth in TyrCreER;RosaEA1 mice injected after 6 months 
of age. A) necroscopy photo of mouse ribcage with excessive adipose tissue. B) HE 
section of rib with excessive adipose tissue. C) Magnification of adipose within muscle. 
D) Section of mouse ear from obese mice showing a slight but insignificant proliferation 
of the melanocytes.  
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Figure 3.3 Tumors arise in the cutaneous layers of TyrCreER;RosaEA1 mice 1 year post 
injection. A) tumor arising near eye of mouse expresses GFP reporter. B) H&E stain of 
tumor arising near the eye. 
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Melanoblasts Are a Potential Cell of Origin for Dermal  

Clear Cell Sarcoma 

 Due to the striking contrast in latency tumor formation between the 

RosaEA1;TyrCreERT2 mice and the TAT-Cre-induced mice, we hypothesized there may  

be an alternative more efficient source of dermal clear cell sarcoma. We reviewed the 

tissue-specific Cre lines that formed dermal tumors and investigated the potential cells in 

which these tumors arose. While Prx1CreER; RosaEA1 mice formed dermal tumors, they 

did not resemble clear cell sarcoma (Figure 3.4). Bmi1IresCreER; RosaEA1 mice formed 

dermal tumors that did resemble clear cell sarcoma in morphology and 

immunohistochemistry. Reports have surfaced that claimed Bmi1 expression within 

human dermal melanoblasts (Yu et al., 2010) and we decided to explore this link in mice.  

When a Cre antibody is used to identify cells expressing Bmi1 in the 

Bmi1IresCreER mouse line, we see expression clearly in the basement membrane of the 

epidermis. These cells co-label with melanoblast markers MITF and KIT. Therefore, this 

indicates that the Bmi1 dermal tumors arise from the melanoblast lineage.  Combining 

this with the data from the tyrosinase experiments, it suggests the tumors are arising in 

the melanoblast lineage versus the more differentiated melanocytes.  

Experimental Procedures 

Animals, Radiograph, Tissue Preparation, and  

Immunohistochemistry 

All mouse experiments were performed in accordance with humane practices, 

national and international regulations, and with the approval of the University of Utah 

Institutional Animal Care and Use committee. Radiographs were obtained post  
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Figure 3.4 Tumors form in the dermis of Bmi1IresCreER;RosaEA1 mice. 
A)Bmi1IresCreER; RosaEA1 mice showing mole formation on epidermis. B) Mole 
formation in Bmi1IresCreER;RosaEA1 in the dermis. C) Dermal tumor formation 
(arrow) 
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asphyxiation using a Carestream 4000 Pro-Fx instrument (Carestream Molecular 

Imaging, Woodbridge, Connecticut). Tissues were prepared in 10% formaldehyde 

overnight in 4 degrees Celsius. They were then sectioned at 5-8 uM and prepared as 

explained previously. 

 

Discussion 

Our previous model showed multiple potential cells of origin for clear cell 

sarcoma. Each cell of origin impacted the tumor phenotype in a different way. In this 

study, we showed that although melanocytes may represent a cell of origin for dermal 

clear cell sarcoma, the efficiency of transformation is dramatically lower than the less 

differentiated stem-like cells. The extended latency of tumorigenesis after expression of 

EWS-ATF1 implies there are other mutations necessary to initiate transformation. We 

also showed that global expression of EWS-ATF1 under the tyrosinase reporter did not 

lead to tumors in deeper mesenchymal locations. This indicates melanocytes are not the 

cell of origin for traditional clear cell sarcoma of the tendons and aponeuroses.   

While tumors from both the Bmi1- and the Prx1- postnatal lineages developed 

within the dermis, the Prx1-derived tumors did not fit the histologic appearance of human 

clear cell sarcoma. The Bmi1-derived tumors arising in the dermis did fit the histologic 

appearance of dermal clear cell sarcoma and arose quicker than tumors arising within 

tyrosinase expressing cells.  Bmi1 marks a melanoblast population of cells that is slightly 

less differentiated than melanocytes. Even though the Bmi1-derived tumors arose quicker 

than Tyrosinase-derived tumors, they were lower in frequency than the deeper Bmi1-

driven mesenchymal clear cells. This reflects the incidence of dermal clear cell sarcoma 
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portrayed in the literature. Although Bmi1 dermal tumors arise 1 for every 10 deep 

tumors, this may reflect the pathology of these tumors that are infrequent subtypes of   

clear cell sarcoma. While the origin of the melanocytic features of human clear cell 

sarcoma has been attributed to both cell of origin and transformation by EWS-ATF1, this 

study further supports that the majority of clear cell sarcoma tumors are not arising from 

deep melanocytic cells.         

In summary, we have shown that melanocytes are not a cell of origin for the deep 

mesenchymal clear cell sarcoma-like tumors and are not efficient cells of origin for the 

dermal clear cell sarcoma. The long latency between EWS-ATF1 expression and 

tumorigenesis leads to the hypothesis that there are additional mutations that are 

necessary for tumorigenesis and again demonstrates the impact cell of origin has on 

tumor characteristics.     
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CHAPTER 4 

 

DISCUSSION 

 

Modeling Clear Cell Sarcoma 

The significance of deciphering clear cell sarcomagenesis far exceeds its rare 

prevalence in the human population. Clear cell sarcoma’s manifestation in a relatively 

young population coupled with its disturbingly low rates of survival make it an important 

clinical challenge to explore. Because of its lack of genomic instability and relatively 

young age of onset, clear cell apparently achieves its clinically aggressive phenotype 

from the formation of single chimeric transcription factor. This presumed dominance of a 

single genetic perturbation against an otherwise clean genetic background was readily 

testable using mouse genetics. This inspired our initial pursuit of a genetic model of clear 

cell sarcoma in the mouse. 

Our initial goal of this project was to determine whether the human EWS-ATF1 

was sufficient to induce sarcomagenesis. Previously, others had hypothesized that EWS-

ATF1 was the initiating mutation driving tumor formation in clear cell sarcoma, but 

strictly speaking, all that could be shown was a consistent association between the two. In 

mice, it was possible to test the sufficiency of this oncogene. We anticipate three possible 

responses a cell might have to EWS-ATF1 expression: apoptosis, transformation, or 

tolerance. Cell death upon expression of the fusion was seen in both embryonic stages 
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and specific postnatal lineages (Straessler et al., 2013). Turning on EWS-ATF1 

in a permissive cell type led to tumors forming with 100% efficiency. Other models, such 

as alveolar rhabdomyosarcoma expressing PAX3-FKHR (Keller et al., 2004a), and 

liposarcoma expressing FUS-DDT3 (Perez-Mancera et al., 2007), have required 

secondary mutations in tumor suppressors to form the sarcomas. The speed and 

efficiency with which sarcomas formed following expression of EWS-ATF1 without any 

additional genetic manipulations suggest that it is sufficient for inducing sarcomagenesis.   

Clear cell sarcoma provided an ideal opportunity to test our secondary hypothesis 

as well. Driving tumorigenesis or even sarcomagenesis is distinct in some way from 

driving the ultimate phenotype of a particular cancer type. We hypothesized that EWS-

ATF1 would also do this. Visvader et al. proposed the generalizable theorem that specific 

oncogenes when expressed within a progenitor cell will drive the tumor phenotype 

(Visvader, 2011).  This model implies that the diversity between tumor subtypes lies in 

the oncogenes driving the tumors as opposed to the cell from which the tumor arises. 

Previous mouse models of Ewing sarcoma have demonstrated that simply driving 

expression of a pathognomonic fusion protein is not always sufficient to shape tumor 

phenotype (Lin et al., 2008). Expression of the EWS-FLI in a progenitor population led to 

undifferentiated sarcomas rather than driving a Ewing sarcoma phenotype. This was not 

the case with the EWS-ATF1 clear cell model.   EWS-ATF1 proved capable of 

reprograming a cell to resemble melanocytes of a separate lineage. It was previously 

shown that EWS-ATF1 can bind the mMITF promoter and induce expression in the 

tumor cell lines (Davis et al., 2006); however, this is the first time that it is shown in vivo 

that expression of EWS-ATF1 can take an undifferentiated cell and direct the cell to 

express melanocyte specific markers (Straessler et al., 2013). Therefore, EWS-ATF1 can 
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in fact reprogram a cell to influence the tumor phenotype. Although this fits well with the 

oncogene model, there remains a strong role for cell of origin with EWS-ATF1-driven 

tumors.  

  We next demonstrated that differentiation state of the cell of origin influences 

permissibility to tumor formation. Mesenchymal stem cells were permissive to forming 

clear cell sarcoma with the full melanocytic profile. Slightly more differentiated cells 

from the Prx1-lineage also formed tumors, but they did not always express the 

melanocyte markers. Committed cells such as the myoblast myf5cre-lineage, or the 

satellite Pax7CreER-lineage did not form tumors and toxicity from the fusion was seen. 

This implies that there are intrinsic characteristics of the cell of origin that directly affect 

the tumor phenotype even with an oncogene such as EWS-ATF1 that strongly drives a 

distinct differentiation pathway. Similar results are achieved when EWS-ATF1 is 

expressed in the melanocytic lineage.  Experiments revealed that the melanoblast 

progenitor pool was more permissive to tumor formation than its committed daughter 

cells.  Not only does the oncogene drive a specific set of genes molding the tumors final 

outcome, but the tumors must arise in a cell type that is permissive, most likely cells that 

have not epigenetically silenced the genes that shape the tumor phenotype. Clear cell 

sarcoma is one of the models that have shown there is a place for both the oncogene and 

cell of origin in shaping tumor.  

The work within this thesis has demonstrated that EWS-ATF1 in clear cell 

sarcoma is a causal genetic perturbation that shapes the distinct phenotype. The next 

obvious goal would be to determine the role of EWS-ATF1 in more benign tumors such 

as HCCC and AFH. These tumors express EWS-ATF1 but do not mimic the gene 
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expression profile of clear cell sarcoma. It is reasonable to hypothesize that while EWS-

ATF1 may drive tumorigenesis, the cell of origin distinguishes the phenotypic differences 

between these tumor types.  As seen within Appendix A, there are abnormal growths and 

tumors that arise within Prx1CreER;RosaEA1 mice that are not classic-histology clear 

cell sarcomas. This preliminary research indicates that there are differentiated cells that 

are capable of forming different sarcomas in the presence of EWS-ATF1 in the mouse 

model. We know that Prx1 in the adult is not restricted to the progenitor cells and can in 

fact be expressed in several committed cells throughout the body. More research needs to 

be done to identify the cells of origin for AFH and HCCC along with other EWS-ATF1-

driven tumors. It will be interesting ultimately to determine the role each cell of origin 

has on the tumor behavior and patient outcome. 

 

Morphology versus Genetics 

Screening for the EWS-ATF1 transcript has assisted in the diagnosis of clear cell 

sarcoma in anatomical locations in which clear cell has a low frequency such as the 

dermis and gastrointestinal tract (Hantschke et al., 2010; Lyle et al., 2008). Because 

specificity of the EWS-ATF1 transcript has expanded to include AFH and HCCC, it 

becomes more difficult to diagnose these specific tumors that express the fusion gene and 

show conflicting morphological characteristics.   The question is how to handle both the 

diagnostic process and the treatment of tumors when their morphology and genetics do 

not match previously described entities. A great example of how this can become a 

diagnostic conundrum can be seen repeatedly when reviewing the EWS-ATF1 or clear 

cell sarcoma literature. A recent example would be of an angiosarcoma of the paratoid 
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gland found to harbor a t(12;22). This tumor was initially diagnosed as metastatic 

melanoma. It was reclassified as clear cell sarcoma when the EWS-ATF1 fusion gene was 

detected. However, when taking a closer look, they noticed vascular differentiation (Gru 

et al., 2013). The question arose of whether this was a clear cell sarcoma or an 

angiosarcoma. While the tumor’s histopathology and location suggested angiosarcoma, 

its genetics indicated clear cell sarcoma. The important question lies in which is more 

important in diagnosing tumors, genetics or pathology. This becomes very important 

when deciding on therapy and prognosis of the patient.  The same question has been 

asked of EWS-ATF1-expressing tumors that resemble psammomatous melanotic 

schwannoma (Sengoz et al., 2006), polyphenotypic round cell sarcoma (Folpe, 2006), 

clear cell ondontogenic carcinoma (Bilodeau et al., 2013) and myoepithelial tumors 

(Flucke et al., 2012). Ultimately, this mouse model may be used to differentiate the 

importance both the oncogenes and cell of origin has on tumor behavior and biology. 

Targeted Therapeutics Using Mouse Sarcoma Models 

Several mouse genetic models of translocation-associated sarcomas have been 

described over the last decade, including models of myxoid liposarcoma (Perez-Losada et 

al., 2000), alveolar rhabdomyosarcoma (Keller et al., 2004b), synovial sarcoma (Haldar 

et al., 2007; Haldar et al., 2009; Haldar et al., 2008), and clear cell sarcoma (Straessler et 

al., 2013; Yamada et al., 2013). These mice form tumors that resemble the human tumors 

with striking fidelity. A great deal has been learned about cell of origin and tumor 

formation from these models. The ultimate goal of each mouse model, however, is to 

improve upon the treatment options available to patients. All of these tumors are rare but 

aggressive. The ability to gather enough patients to study and perform drug trials is not 
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likely. These sarcoma mouse models provide a method of studying the disease and drug 

efficacy in controlled preclinical trials.  

Targeting Fusion Proteins 

 Clear cell sarcoma is a difficult entity to treat, as it is resistant both to standard 

chemotherapies and radiotherapy, leaving wide surgical excision as the main course of 

action. This is a common theme seen in many sarcoma types leaving high rates of relapse 

and metastasis. A common goal in cancer research is to develop targeted therapies that 

will enhance efficacy and have fewer side effects than the current cytotoxic regiments.  

 The translocation-based tumors provide a perfect molecular target for future 

therapeutics. Not only have these fusions proven to be instrumental in the initiation of 

sarcomas, there is evidence that they are also involved in tumor maintenance as well. 

This is termed “oncogene addiction” and cell culture experiments have demonstrated that 

knockdown of these chimeric proteins leads to cell death. This was demonstrated clearly 

with Ewing sarcoma that is dependent on its EWS-FLI1 fusion for survival (Smith et al., 

2006). Recently, mouse models have supported these data, showing that removal of the 

chimeric gene from tumors leads to cytoreduction in synovial sarcoma (unpublished) and 

clear cell sarcoma (Yamada et al., 2013). This has strengthened the hypothesis that 

targeting the fusion protein would provide an efficient and effective therapy.  

 There are several ways of designing targeted molecular therapies. The first is to 

find inhibitors of the fusion protein. This approach was taken recently with the EWS-

FLI1 fusion protein present in Ewing Sarcoma. Sankar et al. showed a novel LSD1 

inhibitor was capable of blocking the function of EWS-FLI1 and reversing the 

transcriptional changes induced by expression of the fusion protein (Sankar et al., 2013). 
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This particular inhibitor targets the EWS portion of the fusion showing extreme promise 

in treatment of other sarcomas due to the redundancy of EWSR1 as a fusion partner in 

several tumors, including clear cell sarcoma.   

 The second promising approach is immune-based therapies. In this method, the 

immune system is used to target different antigens present in the tumor that are absent in 

normal tissue. The fusion protein provides a perfect target that is not present in healthy 

tissue. Exposing the immune system to the fusion peptide so it recognizes it as an antigen 

can prime the immune system to attack tumorigenic cells. This has been done with the 

SS18-SSX fusion (Sato et al., 2002) with moderate success.   

 Lastly, it has already been shown that decreasing expression of the fusion protein 

will lead to tumor cell death. Many labs have shown that by decreasing the expression of 

the fusion in vitro, using antise DNA oligonucleotides and siRNA, they have induced cell 

death, but delivery of these agents in vivo has proven difficult. As gene targeting 

develops, it will become more and more practical to target these fusion genes and inhibit 

synthesis of the mRNA all together. Though we have seen these approaches used in vitro 

to extend the technology in vivo, based therapies will require development of greatly 

improved delivery techniques. 

 Although none of these techniques are clinic-ready, what is obvious is that the 

fusion proteins hold great potential as molecular targets and merit additional therapeutic 

development. 

Concluding Remarks 

Not only did expression of EWS-ATF1 transform cells without other genetic 

manipulations, but also it achieved this transformation so efficiently and aggressively that 
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neoplasms were visible in only a few weeks. This speed of tumorigenesis has not been 

observed in other mouse sarcoma models.  Few tumor suppressor knockouts or oncogene 

inductions yield nearly the oncogenic power of EWS-ATF1 as a single genetic factor.  It 

was also extremely surprising to see the strength in regard to fashioning the final tumor 

phenotype. The tumors that developed faithfully recapitulated their human counterparts 

histologically and molecularly, when the expression was induced in appropriate cells of 

origin. This mouse model has been validated and can now be used to investigate novel 

therapeutics. 
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APPENDIX A 

 

MULTIPLE TUMOR SUBTYPES IN PRX1-LINEAGE  

WHEN DRIVEN BY EWS-ATF1 EXPRESSION  

 

Introduction 

The past 5 years have seen a rapid expansion of tumor types driven by EWS-

ATF1. Not all of these tumors mirror the clear cell sarcoma in histology or 

immunohistochemistry and EWS-ATF1 may in fact be a more promiscuous driver of 

tumorigenesis than previously hypothesized. Tumors expressing EWS-ATF1 range from 

relatively benign Angiomatoid fibrous histiocytoma found in multiple unusual anatomic 

locations (Chen et al., 2011; Mangham et al., 2010; Thway et al., 2012) to the hyalinizing 

clear cell carcinoma of the salivary gland (Weinreb, 2013), which has a distinct tissue 

compartment and potential cell of origin.  

While searching for the cell of origin for clear cell sarcoma, it became clear that 

EWS-ATF1 could drive multiple tumor subtypes in the mouse as seen in the human 

literature. These results were seen with the mouse model expressing EWS-ATF1 under a 

ubiquitous promoter. When the fusion gene was expressed globally using the 

RosaCreER/EA1 mice tumors, appeared in multiple tissue compartments and had a range 

of morphologies (Figure 5.1). Specifically, when driving EWS-ATF1 in the Prx1-lineage, 

there were multiple tumor types that did not resemble clear cell sarcoma. One such tum
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Figure 5.1 Prx1-derived tumors A) arising in the limb from a nerve. B) arising in the liver 
C&D) tumor arising in the hindlimb. ‘ and ‘’ represent magnified images of the original.
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identified itself as a synovial sarcoma on a genome-wide gene expression profile

 (Straessler et al. 2013). Prx1, although shown to be expressed in the mesenchymal 

progenitor cell population, can also be seen in several more differentiated cell types 

throughout the body.  Specifically, we find tumors arising within the dermis that do not 

resemble CCS (Figure 5.2). Below is a representation of the tumor subtypes found in the 

Prx1CreER;RosaEA1 mice.  

Materials and Methods 

Mice 

 Prx1CreER mouse has been previously described along with the RosaEA1 line. All 

mouse experiments were performed in accordance with humane practices, national and 

international regulations, and with the approval of the University of Utah Institutional  

board.  Tamoxifen was prepared at 20mg/ml stock and administered at 9 mg per 40 grams 

body weight. 

Tissue Preparation 

 Tissues were prepared in 10% formaldehyde overnight in 4 degrees Celsius. They 

were then sectioned at 3-8 uM and prepared as explained previously. 

Results 

 Prx1CreER;RosaEA1 mice were given tamoxifen at 4 weeks postnatal and their 

littermates were left untreated. The mice that were administered tamoxifen developed on 

average 10 tumors per mouse and the majority of these tumors resembled clear cell 

sarcoma by 10 weeks postnatal. A small subset of these tumors did not resemble the 
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Figure 5.2 Prx1-driven tumors arising in the dermis. ‘ and ‘ ‘ represent amplified images 
of the original tumor. A) Tumor A was taken from the abdomen of a female 
PRX1CreER;EA1 mouse. B) was a tumor located adjacent to A. C) Tumor C was excised 
from the abdomen of a female mouse.  
 
 

 

 

 

 

 

 

 

 

 

 



 

!

118!

histology typical of clear cell.  Littermate controls   that did not receive tamoxifen formed 

tumors closer to 6 months of age. The uninjected mice formed fewer tumors but the 

majority of these tumors, contrary to the injected mice, did not resemble the clear cell 

morphology. This situation mirrors what is seen when tamoxifen is given and withheld 

from the notoriously leaky RosaCreER line (Straessler et al., 2013). Although previous 

lineage studies have failed to reveal leakiness in the Prx1CreER mice, this tumor model 

proves otherwise. This again highlights the potency of EWS-ATF1 when presented to  

permissive cells types. 
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