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ABSTRACT 

The concept of relative biological effectiveness (RBE) in radiation therapy and 

diagnostic imaging for a particular radiation type is defined by the ratio of absorbed dose 

of a reference radiation, typically a low linear energy transfer (LET) radiation to the 

absorbed dose of a test radiation of typically higher LET that achieves the same 

biological effect.  It is used to quantify and compare expected outcomes (therapy) and 

deterministic and stochastic risk (imaging, radiation protection) from different types of 

ionizing radiation.  Numerical modeling of RBE and other metrics related to the 

biological response to ionizing radiation in radiation therapy, diagnostic X-ray imaging, 

and other related fields is becoming increasingly important as hadron therapy becomes 

more prevalent and as the concerns associated with diagnostic X-ray dose increase.  This 

dissertation develops and tests a multiscale biophysical model to aid in both estimating 

clinically relevant biological metrics and to further understand the underlying 

mechanisms in the special cases examined.  The investigation of these special, asymptotic 

cases in clinical applications of ionizing radiation are used to further refine and improve 

the multiscale model.   

On the therapy side, the high-LET binary radiation therapy of boron neutron 

capture therapy (BNCT) is used to test the multiscale model.  In this therapy modality, 

there is both dependence on the primary neutron source and biodistribution of the boron 

with respect to the targeted cells.  The radiobiology of these densely ionizing, short range 
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particles are much different than that of sparsely ionizing photons.  On the diagnostic 

imaging side, the RBE and dosimetric characteristics of computed tomography (CT) are 

examined with the multiscale model, looking specifically at effects of iodine 

enhancement.  Recent experimental data showing that kV X-rays and electrons have an 

RBE greater than unity are in line with predictions from the multiscale model.  

Furthermore, the reported studies also provide strong support for the hypothesis that the 

RBE for DSB induction is within a few percent of the RBE for cell survival over a wide 

range of photon and electron energies.  The final part of this research focuses on the 

further integration and expansion of the multiscale model.
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CHAPTER 1 

INTRODUCTION 

1.1 Contributions 

This dissertation develops a novel multiscale model to estimate pertinent biological 

effects in the clinical applications of ionizing radiation.  The special cases examined 

were chosen to 1) represent the effects of adding compounds that enhance absorbed dose, 

relative biological effectiveness (RBE), or both 2) highlight the different mechanism at 

work for high linear energy transfer (LET), high-dose versus those at low-LET and low-

dose over a wide range of radiation qualities, 3) determine any weaknesses the system of 

models that needed to be improved and 4) examine the sensitivity of the model to 

selected biophysical parameters with an eye towards minimizing the number of 

adjustable parameters.  The multiscale model is tested against measured data from in 

vitro and in vivo experiments for the endpoints of double-strand break (DSB) induction 

and cell survival. 

1.2 Motivation 

The optimization of proton and heavy ion beam therapy relies on modeling to 

simulate the transport of the primary particles and secondary ions into patients, and, to 

predict the relative effectiveness of high-LET ions relative to the MV X-rays more 



2 

widely used in radiation oncology.  Considering the complexity of biological systems, 

multiscale approaches are necessary for relating the primary physical and chemical 

events induced by the radiation field to the clinical outcomes for patients both in healthy 

tissues and tumors.  Compared to conventional photon-based therapies, proton and heavy 

ion beam therapy typically have a RBE greater than unity, which is known to vary as a 

function of dose, depth in tissue and the molecular, cellular, or clinical endpoint of 

interest.  Assuming a constant RBE for proton and heavy ion treatment misses an 

opportunity to fully exploit the potential of hadron therapy in cancer treatments and may, 

in some instances, cause harmful treatment side effects.  In the context of therapeutic 

applications of radiation, the most relevant endpoint of interest is considered cell survival 

(or, conversely, cell killing) as it is directly related to the tumor control probability (TCP).  

Therefore, accurate a priori estimates of tumor cell survival are desirable from a 

therapeutic radiation treatment planning perspective. 

In diagnostic X-ray imaging, the primary goal is to optimize the balance of image 

quality, diagnostic precision and radiation dose.  As the prevalence of diagnostic X-ray 

imaging and X-ray imaging guided procedures and therapies increases, the importance of 

modeling the impacts of lower energy X-rays, secondary electrons, dose, dose rate, and 

contrast agents’ effects is an increasingly important consideration.  In the context of 

diagnostic X-ray imaging, the biological endpoint of interest is the increased stochastic 

risk of cancer.  Although this is difficult to model and quantify, initial DSB induction, as 

well as other types of DNA damage formed by ionizing radiation, contribute to radiation 

mutagenesis and, ultimately, carcinogenesis.  The multiscale model developed and tested 

in this work provide potentially useful information to help quantify the cancer risks 
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associated with CT scans. 

To illustrate the utility and efficiency of a coupled, multiscale model that estimates 

macroscale dosimetry, particle energy distribution and subsequent biological impact for 

the endpoints of initial DSB and cell survival, two “extreme” cases are examined.  First, 

the model is applied to the binary treatment of boron neutron capture therapy (BNCT), a 

high-dose, high RBE treatment.  The efficacy of this treatment relies on the localization 

of 10B in the malignant cells and the capture reaction, n(10B, )7Li, releases two densely 

ionizing, high linear-energy-transfer (LET), high relative biological effectiveness (RBE) 

particles that deposit their energy within 10 m.  The compound biological effectiveness 

(CBE) is heavily influenced by the proximity and spatial distribution of 10B with respect 

to target cells.  The heterogeneous nature of boron distribution in vivo for the currently 

used boron carriers is examined.  Second, the model is used to assess the impact of X-ray 

contrast agents on absorbed dose and RBE in diagnostic CT.  Like BNCT, increases in 

absorbed dose and RBE due to added contrast agents are correlated with the compound’s 

proximity to the cell.  Here, the secondary particles are electrons, with short range but 

lower LET than the alpha particles produced in BNCT.  Beyond the special cases 

examined in this work, the multiscale dosimetric and RBE model can be applied to a 

myriad of other cases, for example, space and cosmic ray radiation RBE, radiation 

protection, etc.   

The foundation of the multiscale model presented here is based on a few key pieces 

of research.1-6  While other multiscale or coupled solutions for RBE modeling have been 

proposed, one of the goals of this work is to show that the model proposed here has 

several advantages over the other approaches, which are addressed throughout Chapters 
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2-4.  Figure 1.1 illustrates the system of models used in this work, which aspects they 

address and how they relate to each other.  MCNP (Monte Carlo N-Particle) is a general 

purpose three-dimensional simulation tool that transports 37 different particle types and 

has been used for many applications, including nuclear criticality, radiation shielding, 

dosimetry, and detector response.  In this work, version 6.1.1b7,8 is primarily used, but 

MCNPX9, its predecessor, was also used in some early stages of the project.  The 

MCDS4,5 (Monte Carlo Damage Simulation) Version 3.10A is software that generates 

nucleotide-level maps of DNA damage for electrons and ions with atomic numbers up to 

Z = 26 with kinetic energies a few GeV down to kinetic energies corresponding to a 

continuous slowing down approximation (CSDA) range on the order of a few 

nanometers.  

Estimates of DSB, single strand break (SSB) and base damage (BD) are integrated 

into MCNP by modifying standard dosimetric tallies by an ion-specific dose-response 

(i.e., RBE) function.  Finally, the RMF (Repair-Misrepair-Fixation) model3,4,6 is used to 

relate initial DSB induction to reproductive cell death.  The system of models (MCNP, 

MCDS and RMF model) effectively constitutes a biophysical framework that key events 

and biological effects on a spatial scale that ranges from the macroscopic (> 1 mm) down 

to the subcellular (~ 5 to 10 m) and molecular (tens of nanometers) scales. 

1.3 References 

1. Stewart, R. D.; Streitmatter, S. W.; Argento, D. C.; Kirkby, C.; Goorley, J. T.;

Moffitt, G.; Jevremovic, T.; Sandison, G. A. Rapid MCNP Simulation of DNA

Double Strand Break (DSB) Relative Biological Effectiveness (RBE) for Photons,

Neutrons, and Light Ions. Phys. Med. Biol. 2015, 60 (21), 8249–8274 DOI:

10.1088/0031-9155/60/21/8249.
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2. Frese M. C.; Yu V. K.; Stewart R. D.; and Carlson D. J. A Mechanism-Based 
Approach to Predict the Relative Biological Effectiveness of Protons and Carbon Ions 
in Radiation Therapy. Radiat. Oncol. Biol. 2012, 83 (1), 442–450 DOI:

10.1016/j.ijrobp.2011.06.1983.

3. Carlson, D. J.; Stewart, R. D.; Semenenko, V.; Sandison, G. A. Combined Use of 
Monte Carlo DNA damage Simulations and Deterministic Repair Models to Examine 
Putative Mechanisms of Cell Killing. Radiat. Res. 2008, 169 (4), 447–459.

4. Semenenko, V.; Stewart, R. D. Fast Monte Carlo Simulation of DNA Damage 
Formed by Electrons and Light Ions. Phys. Med. Biol. 2006, 51, 1693.

5. Stewart, R. D.; Yu, V. K.; Georgakilas, A. G.; Koumenis, C.; Park, J. H.; Carlson, D.

J. Effects of Radiation Quality and Oxygen on Clustered DNA Lesions and Cell 
Death. Radiat. Res. 2011, 176 (5), 587–602 DOI: 10.1667/RR2663.1.

6. Carlson, D. J. Mechanisms of Intrinsic Radiation Sensitivity:  The Effects of DNA 
Damage Repair, Oxygen, and Radiation Quality.  Ph.D. Dissertation, Purdue 
University, West Lafayette, IN, 2006.

7. Goorley, T.; James, M.; Booth, T.; Brown, F.; Bull, J.; Cox, L. J.; Durkee, J.; Elson, 
J.; Fensin, M.; Forster, R. A.; et al. Initial Mcnp6 Release Overview. Nucl. Technol. 
2012, 180 (3), 298–315.

8. Mckinney, G. W.; Brown, F. B.; Hughes, H. G. I.; James, M. R.; Martz, R. L.; 
McMath, G. E.; Wilcox, T. MCNP 6.1.1 - New Features Demonstrated. LA-

UR-14-28473. Los Alamos, NM: Los Alamos National Laboratory (LANL). 2014.

9. Pelowitz, B D (ed), MCNPX User’s Manual, v2.7.0 LA-CP-11-00438.  Los Alamos, 
NM: Los Alamos National Laboratory (LANL). 2011
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CHAPTER 2 

MECHANISTIC MODELING OF THE RELATIVE BIOLOGICAL 

EFFECTIVENESS (RBE) OF BORON NEUTRON  

CAPTURE THERAPY1 

2.1 Introduction 

A published coupled (multiscale) framework for estimating the initial DNA 

damage arising from interactions with photons, neutrons, and light ions (Stewart et al. 

2015) is applied to the complex, mixed radiation field encountered in boron neutron 

capture therapy (BNCT).  Further, the mechanistic repair-misrepair-fixation (RMF) 

model (Carlson et al. 2008, Frese et al. 2012) is used to explicitly link  and  

parameters in the linear quadratic (LQ) cell survival model to the initial numbers and 

spatial distribution of DSB obtained from the multiscale simulations.  A MCNP model 

(Moffitt et al. 2016) of the University of Washington Clinical Neutron Therapy System 

(UW CNTS) and a few other neutron source models are used in combination with the 

system of biophysical models to validate it with existing experimental data based on the 

use of BPA (boronophenylalanine) as well as examine the potential efficacy of BNCT 

using other boron carriers in development.  The impact of the microdistribution of 10B 

1 This chapter is adapted from an article in preparation for submission to Physics in Medicine and Biology. 



8 

within and near representative cells on the relative biological effectiveness (RBE), 

compound sources.  The results of these studies suggest that BNCT with fast, conformal 

neutron therapy beams may provide superior local tumor control compared to three-

dimensional conformal neutron therapy alone or BNCT with nonconformal neutron 

sources. 

BNCT has been investigated as a potential treatment for glioblastoma multiforme 

(GBM), head and neck cancers, melanoma, and tumor sites for many decades.  Although 

efforts to develop neutron sources and new boron delivery agents for BNCT are ongoing 

(Barth 2009), BPA and BSH (sodium borocaptate) are currently the only boron 

compounds approved for use in clinical trials (Hopewell et al. 2012).  Although doses of 

BPA are non-toxic for doses as high as 250 mg BPA/kg of body weight and tumor to 

blood ratios up to 3.5:1 (Coderre et al. 1997), the use of non-conformal thermal and 

epithermal neutron beams are limited by normal brain tolerances and some clinical trials 

have confirmed radiation necrosis in non-tumor brain tissue (Laramore et al. 1996).  

Additionally, BSH is much more toxic than BPA and doesn’t possess the specificity of 

BPA and is thus characterized as a global (nonspecific) boron delivery agent (Hawthorne 

et al. 2003).  For GBM, BSH was first used with thermal neutron beams in clinical trials 

started in Japan during the mid-1960s and then in the United States. Clinical trials of 

BNCT for the treatment of GBM ended in the United States in the early 1990's (Coderre 

et al.1999), although in other countries clinical trials of BNCT continued.  Early studies 

of BNCT with nonconformal neutron beams ultimately concluded that BNCT using BSH 

is not superior to 3D conformal photon therapy in terms of patient survival (Laramore et 

al. 1996).  Although BNCT with nonconformal neutron beams for the treatment of GBM 



9 

has not proven advantageous when compared to current photon therapy, it has shown 

promise for the treatment of superficial melanoma lesions (Laramore 1996a, Menéndez et 

al. 2009).  The potential efficacy of BNCT using well-collimated, higher energy neutron 

beams (Nigg et al. 2000, Laramore et al. 2001) is at an early stage of development, in 

part because very few facilities have the ability to deliver neutron beams shaped to the 

beams-eye view of an irregularly shaped tumor target.  The University of Washington 

(UW) Clinical Neutron Therapy System (CNTS) is the only remaining operational 

facility in the U.S. with the ability to deliver 3D conformal fast neutron beams for the 

treatment of cancer (Kalet et al. 1997, 2013, Moffitt et al. 2016).

The production and modeling of optimal neutron spectrum that maximize the dose 

from boron capture reactions has been extensively studied (Riley et al. 2003, 2004).  

However, additional research on 10B pharmaceutical development is needed to further 

advance the overall use of BNCT for the treatment of cancer.  Advances in tumor-

specific boron delivery agents have the potential to greatly improve BNCT using 

nonconformal and conformal neutron beams.  Some mAbs (monoclonal antibodies) are 

especially promising due to their high tumor selectivity. For example, Trastuzumab, an 

anti-HER2 mAb, may prove to be an especially useful delivery agent for some cancers 

with over-expression of HER2, specifically breast cancer (Mundy et al. 2006, Sztejnberg 

Gonçalves-Carralves and Jevremovic 2007).  This over-expression is present in 20 - 30% 

of breast cancer cases (Mitri et al. 2012).  Current PET (Positron Emission Tomography) 

imaging studies show very good specificity of Trastuzumab, up to 18:1 tumor to healthy 

tissue ratio (Dijkers et al. 2010).  Although, due to the size of mAbs diffusion is slow and 

optimal uptake of Trastuzumab, for example, occurs 3-5 days after injection (Dijkers et 
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al. 2010).  In addition to having a highly specific neutron capture therapy (NCT) 

targeting compound, the use of highly conformal neutron beams, such as the UW CNTS 

may overcome limits of early studies of BNCT with nonconformal neutron beams.  

Exploiting the benefits of a fractionated regime may also show promise. 

2.2 Methods 

2.2.1 Conceptual aspects of a multiscale radiobiological model 

Consider a small region of tissue or culture medium that receives a uniform 

absorbed dose D of ionizing radiation, as conceptually illustrated in Figure 2.1b.  In 

ICRU Report 36 on Microdosimetry (1983), the absorbed dose in a region of interest 

(ROI) is the product of the average event frequency  times the frequency-mean specific 

energy, i.e., ( ) .F FD vz A z     Here,  is the particle fluence and A denotes the cross-

sectional area of a subcellular, cellular or multicellular target of interest within the ROI.  

By definition, the absorbed dose distribution in a ROI may be considered uniform when, 

for any target within the ROI, the product Fvz  or ( ) FA z  is the same at all locations 

within the ROI.  However, because of the stochastic nature of particle interactions within 

cellular and subcellular targets, the specific energy (stochastic analog to absorbed dose) 

imparted to different targets within a uniformly irradiated ROI may be quite different.  

That is, the absorbed dose in the ROI is the average (expected value) of the specific 

energy distribution of the cellular or subcellular targets within the ROI. 

As a first approximation, the mean specific energy for a spherical target of 

diameter d irradiated by a charged particle of defined linear energy transfer (LET) 

randomly passing through a spherical target with mass density ρ is 2/Fz LET d
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(ICRU 1983).  When a ROI is irradiated by a low LET radiation, such as the energetic 

electrons arising from the interactions of 60Co γ-rays or MV X-rays, the mean specific 

energy per event is small (~ 1.6 mGy for a 0.2 keV/µm electron passing through a 5 µm 

in diameter target) and the number of events per unit absorbed dose is two or three orders 

of magnitude larger ( ~ 600 for a 5 m target and 0.2 keV/m electrons).  For higher 

LET radiations, such as the particles produced in BNCT (n,) reactions, the mean 

specific energy increases in approximately linear fashion with particle LET, and the 

number of events per unit absorbed dose therefore decreases in linear fashion with 

increasing particle LET.  Numerous published studies provide compelling evidence that, 

for the same absorbed dose, the severity and frequency of biological damage (e.g., initial 

DNA damage to cell killing) is larger for a small number of large energy deposition 

events (high-LET, large 
Fz ) than for a large number of small energy deposition events

(low LET, small 
Fz ).  The effects of low and high-LET radiations arising from

stochastic differences in dose on the small scale even when the average absorbed dose on 

the larger (multicellular, macroscopic) scale is uniform motivates the definition of a 

radiation’s relative biological effectiveness (RBE).  For two different types of radiations 

that result in the same biological effect E, the RBE of a radiation relative to another is 

defined as the absorbed dose of the (usually low LET) reference radiation Dγto the 

absorbed D of the other (usually higher LET) radiation, i.e., RBE  Dγ/D. 

Although often used in the literature to define the characteristics of one type of 

radiation relative to another, the RBE concept is easily generalized to the irradiation of a 

ROI by a mixture of particles of varying type, energy and charge.  From the definition 

RBE, one can also define the RBE weighted dose (RWD) as the product of (RBE×D).  
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Conceptually, the RWD is the dose of the (usually higher LET) test radiation that 

produces the same biological effect as the reference radiation.  For a ROI that receives a 

uniform absorbed dose of radiation, the overall RWD is the sum of (RBEi×Di) integrated 

over all i particle types (charge and mass) and kinetic energies, i.e., 

𝑅𝑊𝐷 = ∑ ∫ 𝑑𝐸𝐷𝑖(𝐸)𝑅𝐵𝐸𝑖(𝐸) 
∞

0𝑖 (2.1) 

The corresponding RBE, averaged over all particle types and energies is 

𝑅𝐵𝐸 =
1

𝐷
∑ ∫ 𝑑𝐸𝐷𝑖(𝐸)𝑅𝐵𝐸𝑖(𝐸), 𝑤ℎ𝑒𝑟𝑒 𝐷 ≡  ∫ 𝑑𝐸𝐷𝑖(𝐸)

∞

0

∞

0𝑖 (2.2) 

Eq. (2.1) and (2.2) provide a rigorous quantitative and conceptual framework to 

define a relevant RBE and RWD for one or more cells in a (macroscopic) ROI receiving 

a uniform absorbed dose of radiation. Conceptually, RBEi(E) is a biological dose-

response function that primarily corrects for the small-scale, cellular, and multicellular 

ionization density (track structure) of the ith type of particle with kinetic energy E. On a 

larger multicellular level, there is good evidence in the literature that cell-to-cell signaling 

(e.g., bystander effects) and the interactions of cells with their environment (e.g., in vitro 

vs. in vivo environment) has a substantial impact on the dose-response characteristics of 

biological endpoints ranging from initial DNA damage to neoplastic transformation and 

cell death. On an even larger scale, at the tissue and organ level, immune response and 

inflammation can also influence the effects of radiation (Georakilas 2015 and references 

therein), but mechanistic models have not yet been proposed for these complex pathways 

and reactions to ionizing radiation.     

For a nonuniform dose distribution, subdivide the ROI into a series of j smaller 

ROI that receive a uniform absorbed dose.  Then, compute the overall dose-averaged 

RBE by summing the RWD over all j ROI and then dividing by the sum of the doses to 
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all j regions, i.e., 

𝑅𝐵𝐸 =
1

𝐷
∑ 𝑅𝑊𝐷𝑗 , 𝑤ℎ𝑒𝑟𝑒 𝐷 ≡ ∑ 𝐷𝑗𝑗  𝑗 (2.3) 

Experimental determinations of a radiation’s RBE are attributed to the small-scale 

(cellular and subcellular) ionization density (track structure) of one type of radiation 

relative to another.  However, almost all experimental determinations of RBE quantify 

the molecular and cellular damage arising from a macroscopic absorbed dose of one type 

of radiation to a collection of cells (in vitro or in vivo) relative to a macroscopic absorbed 

dose of another type of radiation to a collection of cells (in vitro or in vivo), regardless of 

the underlying mechanisms of action.  For the same conceptual reasons, mathematical 

models that accurately reproduce the results of in vitro or in vivo experiments implicitly 

or explicitly include all mechanisms of action for the experimental conditions in which 

the RBE models fit the measured data. 

In experimental determinations of radiation RBE, uncertainties in the dosimetry 

(e.g., nonuniform dose across a collection of cells in vitro or in vivo) as well as 

uncertainties in the measurement of a biological endpoint using a specific assay (e.g., γ-

H2AX foci or PFGE for the measurement of DSB induction) contribute to uncertainties 

in RBE estimates.  It is not uncommon to have experimental uncertainty of 10% or 

greater.  Uncertainties arise from random or systematic errors in the biological assay as 

well as random and systematic errors in the dosimetry.  The dosimetry of low energy, 

very short range (high-LET and RBE) particles is especially challenging. 
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2.2.2 MCDS+MCNP model for a mixed radiation field 

The MCDS algorithm has been extensively tested and benchmarked against track 

structure simulations (Nikjoo et al. 1997, 1999, 2001, Friedland et al. 2003, Campa et al. 

2009, Alloni et al. 2010) and experimental data in previous work (Hsiao and Stewart 

2008, Stewart et al. 2011).  Details of the computationally efficient method used to 

integrate information from the MCDS into larger-scale MCNP simulations are described 

in Stewart et al. 2015.  To apply the MCDS+MCNP system of models to a mixed 

radiation field, consisting of ions of varying charge, mass and kinetic energy, a standard 

MCNP F6 heating tally is modified by an ion-specific RBEDSB dose–response function 

(DE DF card in MCNP).  The modified F6 heating tally records the RWD averaged over 

a target region of interest.  The dose-averaged value of the RBEDSB is then computed by 

summing (RBE × dose)i over all i ions and dividing by the total absorbed dose, as 

described in Eq. 2.2.  The dose-averaged values of �̅�𝐹 is obtained in the same manner for 

subsequent use in the model of cell survival.       

2.2.3 RMF model for a mixed radiation field 

Within the RMF model (Carlson et al. 2008, Frese et al. 2012), the effects of 

particle type and kinetic energy (and hence LET) on  and  in the linear quadratic (LQ) 

cell survival model are explicitly linked to the initial numbers and spatial distribution of 

DSB.  In the RMF model, the biological processing of initial DSB into lethal 

chromosome aberrations or point mutations is modeled by a coupled system of nonlinear 

differential equations.  From combined MCDS+MCNP simulations, dose-weighted 

RBEDSB and �̅�𝐹 are computed for each ion contribution and within the RMF, low and 
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high-dose RBE (asymptotic limits) for the endpoint of reproductive cell death are 

computed (Streitmatter et al. 2017) as 

 

2
1 ,

/

p pF DSB
LD DSB HD DSB

a z RBE
RBE RBE RBE RBE

 



   

 
     
 
 

(2.4) 

These formulas are derived under the assumption that intra-track binary misrepair is 

negligible ( 1%) for the low-LET reference radiation, e.g., the cell-specific adjustable 

biological parameter  = 2/ and  = / within the RMF (Figure 3A in Carlson et al. 

2008).  Here,  is the DSB Gy-1 Gbp-1 for the reference radiation and p is the DSB Gy-1 

Gbp-1 for the test radiation, and hence, the ratio p/ = RBEDSB.

𝑅𝐵𝐸𝐿𝐷 =
𝛼𝑝

𝛼𝛾
=

𝜃Σ𝑝 + 𝜅Σ𝑝
2�̅�𝐹

𝛼𝛾
=

𝛼𝛾

Σ𝛾
Σ𝑝 +

2𝛽𝛾

Σ𝛾
2 Σ𝑝

2�̅�𝐹

𝛼𝛾
= 𝑅𝐵𝐸𝐷𝑆𝐵 (1 +

2�̅�𝐹𝑅𝐵𝐸𝐷𝑆𝐵

(𝛼 𝛽⁄ )𝛾
) 

𝑅𝐵𝐸𝐻𝐷 = √
𝛽𝑝

𝛽𝛾
= √

𝜅
2 Σ𝑝

2

𝛽𝛾
=

√

2𝛽𝛾

2Σ𝛾
2 Σ𝑝

2

𝛽𝛾
= 𝑅𝐵𝐸𝐷𝑆𝐵

 For direct comparison to experimental cell survival, the two terms in Eq. 2.4 are simply 

solved for the linear (αp) and quadratic (βp) variable of the test radiation.  Here  and  

are the LQ parameters for the low-LET radiation (e.g. - 60Co -rays, 200-250 kVp X-rays, 

etc.) and p and p are the LQ parameters for the test radiation, in this case, the dose-
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weighted LQ parameters are for the combined ion contributions of the neutron or BNCT 

field.  Because biophysically meaningful values of the RBEDSB as well as Fz  and ()

must be nonnegative, Eq. (2.4) implies that the RBE for reproductive cell death must fall 

within the range of values defined by RBEDSB (minimum RBE) and RBELD (maximum 

RBE) for a given cell line or tissue.  For a single large absorbed dose of radiation, as is 

typical with conventional BNCT [D > () RBEDSB is the more relevant metric, while 

a fractionated regime of smaller absorbed doses, as is seen in fast neutron therapy [D < 

()RBELD, is the more relevant metric.  The RMF formulas in combination with first 

principle estimates of RBEDSB have been shown to reproduce trends in cell survival for 

electrons, protons and other charged particles with an LET up to at least 100 to 200 

keV/μm.  This framework has been used to predict cell survival for the mixed radiation 

field encountered in helium ion therapy (Mairani et al. 2016) and heavy ion therapy 

(Kamp et al. 2015), proton and carbon ion therapy (Frese et al. 2012) and for X-rays 

(Streitmatter et al. 2017), monoenergetic deuterons and alpha particles (Carlson et al. 

2008).   

For the lithium recoil ions encountered in BNCT, with LET ~370-390 keV/μm 

and ranges ~4-5 μm, which is comparable to the size of the nucleus (see Table 2.1), the 

RMF may overestimate the level of cell killing compared to experimental data for 

particles with LET > ~100 keV/μm (Figure 4 in Carlson et al. 2008, Figure 1 in Frese et 

al. 2012).  Currently within the RMF, all DSBs have equal chances of contributing to cell 

killing, regardless of their proximity to one another and cell killing is predicted continue 

to increase past ~100-200 keV/ μm.  The MCDS corrects for CSDA range and changes in 

stopping power as particles pass through a cell nucleus 5 μm (default) in diameter for 
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estimates of �̅�𝐹, where the equation �̅�𝐹 ≅ 𝐿𝐸𝑇 𝜌⁄ 𝑑2 will overestimate �̅�𝐹 in this special

case.  Here, LET is the LET in water (keV/m),  is the density of the nucleus (1.0 

g/cm2) and d is the diameter of the nucleus (~ 5 μm).  Figure 2.2 shows the trends in 

relative DSBs per track and m per DSB vs. (zeff/)2 for alpha particles and 7Li ions;  𝑧�̅�   

values used are calculated via MCDS.  As (zeff/)2 increases each particle reaches a 

specific peak in DSB per track and minimum DSB spacing.  For the alpha particles, this 

corresponds to a (zeff/)2 ~ 4,500, with a corresponding LET ~ 200 keV/m, which is 

comparable to what has been seen in experimental studies of RBE vs. LET.  This may 

play an important role in the RBE predictions for the high-LET capture products in 

BNCT and is discussed further in Section 2.4.3.  The range of alpha particle energies seen 

in BNCT, as denoted in Figure 2.2, precede the particle-specific peak, while the lithium 

ion energies occur at the peak and a bit past, where the effectiveness starts to decline.  

However, this peak occurs at higher LET then seen in experimental data, suggesting that 

the minimum DSB spacing is smaller than the threshold the cell “sees” for processing.  

The increase in spacing after the minimum in Figure 2.2 is an artifact of using the mean 

chord length in the calculation, rather than the CSDA range.      

2.2.4 Simulation of the secondary charged-particle spectrum 

Neutrons undergo a number of interactions in soft tissue important to 

radiobiology.  The dominant interaction for fast neutrons is (n, p) with hydrogen, while 

slow and thermal neutrons have a high probability of being captured via 1H(n, )2H and 

14N(n, p)14C reactions.  These are nonspecific dose components that affect all irradiated 

tissue.  In addition, there is the localized dose arising from 10B capture reactions that 
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create short-range, high-LET alphas, and recoil 7Li nuclei.  MCNPX was used to track all 

the secondary ions within the water/tissue phantom and cellular model, including 1H, 2H, 

3H, 3He, 4He2+, 7Li3+, and ions with Z > 2.  To separate the 7Li3+ contribution from the 

rest of the heavy ions such as 14C, the special tally treatment card FT RES 3007 in 

MCNP6 was used.   

The neutron capture ion algorithm (NCIA) model was enabled by setting the 7th 

entry on the PHYS:N card to 4 in MCNPX; this allowed for the production of ions from 

the n(10B, )7Li reaction as well as enabling light ion recoil physics.  This setting 

accounts for the ionization potential and uses the proper two-body kinematics to bank 

recoil particles with the proper energy and angle.  Simulations were performed with a 

proton, alpha and heavy ion cutoff energy of 1 keV (lowest allowed by the code) and the 

Vavilov energy straggling model with the finest-allowed energy resolution in stopping 

power (efac=0.99).  CEM03 and LAQGSM models were selected over the default 

physics in the LCA card, as recommended in the User’s Manual (Pelowitz 2011) and the 

neutron cross-section data used are primarily from ENDF/B-VII.0. Absorbed dose tallies 

(F6) were setup for all charged particles of interest (all possible secondary ions from 

neutrons and photons) to determine the physical and biological dose.  Additionally, 

modified F6 tallies were setup with dose response functions that relate particle energy to 

DNA and cellular damage, as discussed in Sections 2.3.1 and 2.3.2. 

2.2.5 Model for cellular dosimetry 

In order to assess microdosimetry of BNCT treatment and the impact of 

subcellular 10B distributions, a simple cell model was developed and parameters were 
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evaluated using MCNPX.  The cell model is shown in Figure 2.2 and consists of 

concentric spheres representing the cell cytoplasm and nucleus, which is a common 

approach in microdosimetry studies.  Others (Elbast et al. 2012) have shown that Monte 

Carlo simulation is a suitable method to assess the stochastic and heterogeneous nature of 

alpha particle and other heavy ion energy depositions.  They show that MCNPX 

simulations of specific energy (z) deposited in the cell nucleus, the single-hit density of 

specific energy f1(z) and the mean-specific energy ‹z1› were in good agreement when 

compared with the literature using simple geometry as small as 1 µm.   

Uniform 10B distributions, as well as heterogeneous distributions, which more 

realistically mimics clinically used BNCT pharmaceuticals, are assessed.  Using data 

collected from experimental studies related to subcellular localization of BPA (Nguyen et 

al. 1993), 10B was incorporated into the representative cell compartments.  Brain tissue 

composition (ICRU 1992) was selected as representative of the composition of 9L rat 

gliosarcoma surrounding the cells in vivo.  The extracellular matrix was modeled as a 

cube of tissue, with the cell model embedded in the center of the cube at a depth of 2 mm.  

The 2-mm size of the cube was selected to be larger than the continuous slowing-down 

approximation (CSDA) of the charged particles of interest (Table 2.1) but small 

compared to the range of the incident neutron mean free path.  The neutron source was 

modeled as a uniform, monodirectional disk source. For the sake of computational 

efficiency, Monte Carlo simulations were performed in two steps.  First, neutrons from a 

disk source incident on a tissue phantom are scored along the central axis of the beam 

(Figure 2.1a).  The tally of neutron energy-dependent fluence at the depth of interest (1.5-

1.7 cm) was used as the source in a second, microdosimetric simulation mimicking an in 
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vitro experiment (as shown in Figure 2.2b).  The secondary charged particle energy 

distribution and the DNA damage are based on tallies within the cell nucleus as the 

critical (sensitive) volume.  The MCDS contains a subcellular dosimetry model for 

charged particles passing through water (Stewart et al. 2011), while MCNP handles 

larger scale dosimetry and accounts for any charged particle equilibrium (CPE) effects.  

Notice the divergence of the MCDS and analytic ICRU formula for  𝑧�̅�    when the CSDA 

range approaches 5 μm or less as shown in Table 2.1.  

2.2.6 Neutron source models for BNCT 

To assess normal tissue RBEs and overall cell survival, the four neutron sources we 

considered are:  

(a) Massachusetts Institute of Technology Fission Convertor Beam (MIT-FCB)

(Riley et al. 2004).  The MIT-FCB is a commonly used source for analyzing

BNCT because of the purity and intensity of epithermal neutrons (Riley et al.

2003).  It has a very similar neutron spectrum and microdosimetric properties to

the Brookhaven Medical Research Reactor (BMRR) (Burmeister et al. 2003,

Binns et al. 2005).

(b) A compact neutron source or “neutron multiplier” source (NM source).  This

source uses a D-T reaction to generate neutrons (Rasouli and Masoudi 2012).  All

of the reported results are for this source are based on a published MCNPX model

(Pelowitz 2011)

(c) A new CN source derived from the NM by removing the uranium sphere from the

NM source.
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(d) The UW CNTS (Bichsel et al.1974, Stelzer et al.1994, Kalet et al. 1997, Douglas

et al. 2003, Kalet et al. 2013 and Moffitt et al. 2016), which uses 50.5 MeV

protons incident on a Be target to produce a fast neutron energy spectrum.

The neutron fluence in the MIT-FCB source corresponds to a reactor power at 5 MW, 

which produces ~3 × 109 n cm-2 s-1 epithermal (0.5 eV – 10 keV) fluence (Riley et al. 

2003).  Spectral data for this fission source were acquired from literature (Auterinen et al. 

2004) without the need for additional modeling of the MIT-FCB beam.  D-T sources 

were a major focus of interest due to their compactness, lower cost, and greater feasibility 

in a hospital setting than a reactor-based neutron source.  Rasouli and Masoudi (2012) 

proposed using a fissionable material as a neutron multiplier, effectively increasing the 

number of neutrons emitted from the D-T neutron generation.   Their work built on the 

initial work of Verbeke et al. (2000) on D-T and D-D neutron sources. The proposed 

beam shaping assembly (BSA) uses a combination of TiF3, Al2O3 as moderators, Pb as a 

reflector, Ni as a shield and Li-Poly (Lithiated Polyethylene) as collimation.  This BSA 

combination was reproduced in MCNPX with two tally planes past the aperture to record 

the neutron spectrum and flux, as seen in Figure 2.3.  Neutrons produced by D-T reaction 

of this source vary around 14.1 MeV by only ±7% (Rasouli and Masoudi 2012), thus, it is 

assumed that neutrons are emitted isotropically and monoenergetically from the target in 

this model.   

2.2.6.1 MCNP6 model of the Clinical Neutron Therapy System (CNTS) 

While not a traditional neutron source for BNCT, the UW CNTS is the only 

remaining fast neutron therapy facility in clinical operational within the U.S. Currently, 
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the CNTS is mainly used for palliative treatments of tumors refractory to photons and for 

selected head and neck cancers, including salivary gland tumors (Stelzer et al. 1994, 

Douglas et al. 2003).  However, it may be feasible to further enhance the usefulness of 

fast neutron therapy by combining 3D conformal neutron therapy with BNCT (Maughan 

et al.1993, Laramore et al.1994, Buchholz et al.1997, Nigg et al. 2000) or by using fast, 

conformal BNCT in combination with 3D conformal and intensity modulated photon or 

proton therapy. 

In the UW CNTS, fast neutrons are produced by 50.5 MeV protons incident on a 

10.5 mm thick beryllium target, primarily through (p, n) and (p, n + p) reaction, but a 

small portion are created through (p, 2n), (p, 3n), and (p, n + α) reactions (Moffitt et al. 

2016).  The incident proton beam was modeled in MCNP6 as a monoenergetic, 

monodirectional disk source of 0.5 cm radius, uniformly sampled.  The beam originates 

in the vacuum above the beryllium target.  Neutrons and photons are transported through 

the geometry as illustrated in Figure 2.4 and tallied in a volume of air below the target 

housing.  The neutron spectrum and fluence at this point is recorded in a phase space file, 

using a SSW card in MCNP6, and then transported as a secondary source through the 

multileaf collimator (MLC) (Figure 2.4b) and then into a water or tissue phantom.  All of 

the simulations reported in this work are for an open 10.4×10.3 cm2 field at a depth of 1.7 

cm in water, no wedge, small flattening filter, 148.5 cm source to surface distance or 

SSD.        
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2.3 Results 

2.3.1 Energy fluence of the MIT-FCB, NM, CN and UW CNTS 

neutron sources 

Figure 2.5 shows a comparison of the neutron energy fluence for the MIT-FCB, 

NM, CN and UW CNTS sources.  The NM source (configuration d with a Ni shield and 

Li-Poly collimator) can produce fluence as high as 5 × 1012 n/s at the target, with a 

resulting epithermal fluence rate of ~ 4 × 108 n cm-2 s-1 at the beam port (tally planes).  

This configuration was chosen due to its maximum epithermal flux compared to other 

material combinations (Rasouli and Masoudi 2012).  With the removal of the uranium 

sphere (i.e., CN source), the neutron fluence rate decreases to ~ 2 × 108 n cm-2 s-1.  In the 

UW CNTS, an open 10.4×10.3 cm2 field (small filter, 148.5 cm SSD) produces a neutron 

fluence rate along the central axis of the beam at a depth of 1.5 cm in water of 1.91 × 108 

n cm-2 s-1, which corresponds to an absorbed dose rate in water of 60 cGy min-1 at the 

depth of maximum dose (1.7 cm).  The fluence-averaged neutron energy for the MIT-

FCB, NM, CN and UW CNTS sources are 11.0 keV, 0.46 MeV, 0.36 MeV, and 21.0 

MeV, respectively.  The average energy of the CNTS neutron energy spectrum varies 

with depth and lateral position within the field because of beam hardening as well as in-

field and out-of-field nuclear interactions.  As illustrated in Figure 2.5, all of the sources 

produce large numbers of thermal and epithermal neutrons.  The NM and CM sources 

produce nearly identical neutron energy spectra over the entire energy range.  Below 

about 20-30 keV, the MIT-FCB source also produces a neutron energy spectrum very 

similar to the NM and CN sources; however, the MIT-FCB source has been optimized to 

reduce the number of higher-energy neutrons.  Unlike the MIT-FCB, NM, and CN 

sources, the UW CNTS beam also produces substantial numbers of very energetic 
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neutrons (> 10 MeV), which is advantageous for the delivery of a conformal neutron 

dose to tumor targets (i.e., MLC are used to shape the field to the beam’s eye tumor 

contour) but does little to enhance 10B(n,α)7Li reactions.

2.3.2 Proton and alpha particle cell survival benchmarks 

To test the accuracy of the proposed system of models, it is applied to 

experimental cell survival data for monoenergetic protons and alpha particles.  The work 

of Goodhead et al. (1992) compared cell survival of alpha particles and protons of equal 

LET, finding that protons had a statistically significant increase in biological 

effectiveness in the V79 cell line.  They concluded that this must be due to differences in 

track structure.  Table 2.2 shows the experimental results against model estimates, 

confirming that the track structure level effects are reflected in our system of models and 

not based on LET alone.  At 1.4 MeV, the experimentally-derived value of α is larger

than expected compared to the other experimental data and MCDS+RMF estimates.  At 

0.42 Gy-1, it is significantly larger than the α estimate for a 1.2 MeV alpha particle.  This

is likely due to the experimentally uncertainty inherent in the dosimetry and cell counting 

statistical variations for these short-range, high-LET particles.  It is expected that the α

values for the 1.2 and 1.4 MeV alpha particle will only differ by a small amount since 

their (zeff/β)2 values are similar.

Additional tests of the model were performed for a range of alpha particle kinetic 

energies.  In the work of Tracy et al. (2015) cell survival in the V79 cell line was assessed 

for alpha energies from 1.1 to 4 MeV, which covers the energy range seen in 10B capture 

reactions.  Figure 2.6 shows the comparison of experimental cell survival results and 

model estimates for the alpha particle energies examined and Table 2.3 shows 
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comparisons of variables derived from the work their work and our system of models’ 

estimates.  For high-LET particles, such as alpha particles in this range, note that 

MCDS+MCNP estimates of LET are very good for higher energy, longer range but start 

to diverge a bit for the lower energies, where path length straggling and LET variations in 

the ion track come into play.  In experimental irradiation conditions, truly monoenergetic 

beams are rarely achieved; there is at least some spread in the particle energy.  

Monoenergetic simulations were compared to simulations of the reported energy 

distributions, finding that the impact on RBEDSB was > 0.5%, while the impact on �̅�𝐹 was 

relatively large (4 – 14%) for the 1.1 – 1.8 MeV alpha particles, but < 2% for the 2.4 – 4 

MeV alpha particle energy distributions.  Since Tracy et al. reports a distribution of cell 

sizes in their cell survival experiments, nucleus diameters of 3-6 µm were assessed in 

MCDS+MCNP simulation.  This variable (ndia) has a quite large impact on estimates of 

�̅�𝐹, but a small impact on RBEDSB  within the current version of MCDS.  Table 2.3 shows 

that there is good agreement between MCDS+MCNP estimates of �̅�𝐹 and the computed

values �̅�𝐹 from RMF-fits to the experimental data (using Eq. 2.4, RBELD) for 1.1 and 1.5 

MeV alpha particles, but exhibiting opposite trends at higher energy, opposite of the LET 

comparisons.  This finding indicates that the accuracy of the RBEDSB estimates or some 

other aspect of the RMF model may need to be refined in order to improve the accuracy 

of the model for very low energy (short-range, high-LET) alpha particles.  Other work 

(Mairani et al. 2016) supports the hypothesis that the RBE for cell survival of alpha 

particles can be reliably estimated within the RMF for clinically relevant scenarios in 

helium ion radiotherapy, although they were looking at much higher kinetic energies. 



26 

2.3.3 RBE of selected ions produced in BNCT reactions 

Table 2.4 lists estimates of the dose-averaged RBEDSB and RBELD for selected ions 

in BNCT reactions.  All of the results in this table are based on a representative 10B 

subcellular distribution of 40 g/g in the cell cytoplasm.  It can be seen that the recoil 

protons from 14N capture and the fast recoil protons from hydrogen elastic interactions 

with fast neutrons are lumped together in the single RBE value, but weighted 

appropriately by absorbed dose.  The 14N content of the tissue can have a significant 

effect on the dose-weighted proton RBE because the capture reactions release higher 

RBE protons than the protons from hydrogen scattering.  One of the more striking aspects 

of the results shown in Table 2.4 is that the proton low dose RBE with = 3 Gy is not 

much higher than RBEHD  RBEDSB whereas RBELD is much larger than RBEHD for 

particles with Z > 2.  These effects arise in the RMF model because intra-track DSB 

interactions (also referred to as “proximity effects” in the literature) are much more 

significant for ions with Z > 2 than for protons.  In terms of equation (2.4), the product of 

2 / ( / )F DSBz RBE    is  1 for protons (with kinetic energies above 1 keV) and large

(compared to unity) for heavier ions for α/β = 3.  The results from Table 2.4 also suggest 

that the effects of  on the overall RBELD arise in the RMF model from intra-track 

(proximity) effects associated with heavier ions from BNCT reactions rather than protons.  

2.3.4 In vitro and in vivo testing of the dosimetry and CBE Models 

To calibrate the RMF model for BNCT, we first obtained the LQ parameters α 

and βfor the 9L rat gliosarcoma cell line irradiated by 200-250 kVp X-rays, which was 

published in Coderre et al. (1993).  It follows from Eq. 2.4 that the only further 
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parameters needed to estimate αp and βp for the BNCT experiment are �̅�𝐹 and RBEDSB, 

which are calculated with the MCDS and integrated into MCNP to produce dose-

averaged values.  The 10B concentrations of 40 g/g and 27 g/g for in vivo/in vitro and 

in vitro experiments, respectively, were modeled according to the Coderre et al. data 

(1993).  For the in vivo/in vitro experiments, 10B was distributed outside the nucleus and 

for the in vitro experiment, it was homogenously distributed, according to the findings of 

Nguyen et al. (1993) and Bennett et al. (1994).  As illustrated in Figure 2.7, estimates of 

the surviving fraction for the BNCT experiments of Coderre (1993) with BPA in vivo/in 

vitro agree within 5% (solid red line) and neutron-only cell survival estimates for both the 

in vivo/in vitro, as well as in vitro experiments (solid blue lines) are also in good 

agreement.  This provides some measure of confidence that the model may also be useful 

for predicting the photon isoeffective doses for other neutron sources and known boron 

distrubutions.  For comparison to the neutron source used by Coderre, estimates of cell 

survival for the CN, NM and CNTS sources with the same concentration of 10B are also 

shown in Figure 2.7.  Estimates of cell survival are slightly higher for the CN, NM, and 

CNTS sources than for the source used by Coderre et al (1993). 

For simplicity and uniformity, the dose-weighted RBE values in Table 2.5 use the 

RBELD formulation (Eq. 2.4) with 60Co as the reference radiation.  However, if a different 

low-LET reference radiation is desired, a correction factor can be applied (e.g., 1.1 for 

250 kVp X-rays, 1.3 mm Cu filtration) (Stewart et al. 2015).  For fraction sizes that are 

small compared to  which encompasses the most clinically relevant range of doses 

used in fast neutron therapy (~ 1 Gy per day to a total as high as 16 or 18 Gy), RBELD is 

the relevant metric and is always  RBEHD (RBEDSB).  In past clinical trials of BNCT 
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treatment, a photon-equivalent dose of about 50 Gy is typically delivered in a single 

fraction (Coderre et al.1997).  Estimates of the photon-isoeffective dose based on the 

RBELD are a more relevant metric of the potential effectiveness of a fractionated BNCT 

treatment with fast neutrons.  For a single acute dose or hypofractionated BNCT, 

estimates of the photon isoeffective dose based on RBEHD  RBEDSB is the more relevant 

metric of potential treatment effectiveness. 

The cumulative RBE estimates are based on a cytoplasmic 10B concentration of 

40 g/g for BPA and 100 g/g for mAb.  The (α/β) values of 87 Gy, 3 Gy, and 10 Gy 

are for the 9L rat gliosarcoma cell line ( in vivo/in vitro), mammary carcinoma and a 

typical early responding tissue or tumor, respectively.  The high-dose RBE (RBEDSB) is 

effectively the same for the NM, CN, and UW CNTS neutrons and slightly larger for the 

MIT-FCB neutrons, which supports the idea that the MIT-FCB source produces a 

secondary charged particle energy distribution with a closer to optimal LET distribution.  

The same general trends hold for the reproductive cell death in the limit when the dose 

per fraction is small compared to (RBELD).  However, the models predict that the 

low-dose RBE will always be greater than or equal to the high-dose RBE.  Also, the 

RBELD is predicted to increase with decreasing .  For the lower energy, MIT-FCB, 

NM, and CN neutron sources, RBELD is predicted to be the same as RBEHD (~ 3) for all 

tumor or tissue types with  above 10 Gy; RBELD is also approximately equal to 3 for 

the UW CNTS with  = 87 Gy.  For tumors or tissue with  = 3 Gy, RBELD may be 

as large as 4.3 for the NM beam or 7.4 for the UW CNTS beam.  These observations 

suggest that BNCT may be most effective for the treatment of tumors with a low  

ratio, such as tumors of the breast and prostate.  However, with the UW CNTS beam, 
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RBELD is ~ 4 even when  = 10 Gy.  Fractionated BNCT treatments using the UW 

CNTS may be a very effective treatment even for tumors with larger , especially since 

beams can be directed towards the patient and tumor targets from any direction (i.e., any 

couch position and gantry angles) and shaped to the beams eye view of the tumor using 

40 individually movable leaves.  The CNTS offers a degree of dose conformity not 

possible with thermal and epithermal neutron sources traditionally used for BNCT and 

the combination of dose escalation and conformity should prove advantageous.  Figures 

2.8 – 2.11 illustrate the potential advantage the CNTS has for deep seated tumors, using 

fractionation (RBELD) over epithermal beams.  The use of a mAb as the boron carrier 

instead of BPA could also offer some modest increases in the potential effectiveness of 

BNCT (Mundy et al. 2006, Sztejnberg Goncalves-Carralves and Jevremovic 2007) and 

better quantification of uptake, and hence, tumor to healthy tissue ratios using immuno-

PET (van Dongen et al. 2007).  However, additional experimental work is still needed to 

confirm that mAbs can be an effective and targeted boron carrier.   

Currently, RBE and CBE weighting factors and isoeffective dose calculations 

derived from cell survival experiments have been universally applied to calculate 

biologically equivalent dose for BNCT clinical trials and treatment on human subjects.  

This involves many assumptions that have mainly been derived from nonhuman 

experiments (Jung et al. 2009 and references therein).  Although we assume boron 

concentration and biodistribution based on experimental data, the method put forth here 

offers a mechanistic prediction of biological weighting factors, LQ parameters and hence, 

isoeffective doses, based on the specific tissue and endpoint of interest. 
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2.4 Discussion and Conclusions 

A system of dosimetry and radiobiological models is presented to predict RBE, 

CBE, and other important biological metrics for selected neutron sources, tissue types, 

and boron distributions.  With only the (/) from the reference radiation, RBEDSB and 

�̅�𝐹 (which are estimation from first principles), as ad hoc biological (input) parameters, 

the presented BNCT model accurately predicts the cell survival for in vitro and in vivo/in 

vitro experiments with the neutron beam alone and with BPA to within a few percent 

(Figure 2.7).  Applying the model to a hypothetical mAb boron carrier that targets 

HER2+ cells, even conservatively assuming no localization in the cell nucleus, shows a 

significant increase in CBE.  Compounded with the macroscopic advantage of having a 

higher tumor to healthy tissue ratio of 10B, this methodology shows promising 

applications for other, theoretical, or in development, boron carrier pharmaceuticals.  

However, the strength of the estimates from the system of models is ultimately limited by 

the accuracy of the experimental determination of the 10B subcellular distribution and   

and .  Although the predicted cumulative RBE values for the compact, D-T produced 

neutron sources and the fast neutron source are less than that for the MIT-FCB neutron 

source, evidence shows the high tumor uptake and high tumor to healthy tissue ratios 

achievable with the proposed pharmaceutical (Dijkers et al. 2010), which has the 

potential to overcome the fluence and CBE restraints seen with compact neutron sources.  

The results suggest that BNCT with fast, conformal neutron therapy beams should 

provide superior local tumor control compared to 3D conformal neutron therapy alone or 

BNCT with nonconformal neutron sources.  In addition to the increased dose conformity 

and uniformity the CNTS can achieve, the differences in RBELD and RBEHD can be 
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exploited to increase the therapeutic ratio of BNCT treatments.  The primary limitation is 

patient tolerance to repeated administration of BPA or another pharmaceutical.      

The most compelling argument for applying our system of models to BNCT is the 

ease of implementation and the minimal number of adjustable parameters.  In the RMF 

model, the cell, tumor and tissue-specific kinetics and fidelity of DSB repair are 

contained solely in   and , the low-LET experimentally-derived LQ parameters, and 

dose-weighted values of RBEDSB and �̅�𝐹, which are obtained from the MCDS+MCNP 

simulations, are needed to estimate the p  and p of all the ion components in the mixed 

field and the subsequent values of RBELD and RBEHD.  As described above, this approach 

has been successfully applied for other mixed fields of light and heavy ions.  Mairina et 

al. (2016) concluded that the RMF framework was a good candidate for predicting cell 

survival with He ion beams, especially considering that its implementation only required 

γ/γ as input, without requiring tuning and adjustment with other light ion cell survival 

data (Mairina et al. 2013, 2016).  However, from our investigation of the low-energy, 

high-LET alpha particles and previous work (Carlson et al. 2008, Frese et al. 2012), there 

is evidence that refinements are needed for this subset of particles.  Proximity effects, 

discussed earlier, which aren’t explicitly considered in the RMF, likely have an 

increasing importance as charged particles reach very high-LET.  In the case of fast 

neutron therapy or boron neutron capture enhanced fast neutron therapy, this 

overestimation will likely not have a significant impact on RBE estimates, considering 

the other uncertainties in biological parameters.     

 Horiguchi et al. (2014) used the particle transport simulation code (PHITS) 

coupled with the microdosimetric kinetic model (MKM) to estimate the relative 
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biological effectiveness factors for BNCT.  Within the MKM, cell survival is estimated 

from the probability densities of specific energies in a subcellular structure contained in 

the cell nucleus (domain).  This adds at least one additional adjustable parameter as 

compared to the RMF, where the entire nucleus is considered.  Additionally, as compared 

to our method, the PHITS+MKM model simulated the four BNCT dose components 

separately, where we obtained the biophysical variables for all components in one 

simulation.  Subsequent fitting and optimization was also needed to update the domain 

radius.  This framework has also been used to estimate biological dose and cell survival 

fraction in charged particle therapy (Sato et al. 2009, 2012). 

 Gonzalez and Santa Cruz (2012) proposed a method to calculate the photon-

isoeffective dose in BNCT to replace the old paradigm of using “RBE-weighted” doses 

for calculating the photon-equivalent dose.  They show that using the fixed-RBE 

approach is not suitable to understand the observed clinical results in terms of the photon 

radiotherapy data and always predicted much higher equivalent doses that the isoeffective 

approach.  They use a modified linear quadratic (MLQ) model to account for synergistic 

effects between low and high-LET components (i.e. – sublesions produced by one 

radiation can combine with the sublesions produced by any other radiation to form lethal 

lesions).  While not explicitly shown in the RMF equations, synergistic (inter-track and 

intra-track) DSB interactions are embedded in the RBEDSB and RBEDSB × �̅�𝐹 terms, with 

the RBEDSB (relative DSB Gy-1 Gbp-1) and RBEDSB × �̅�𝐹 (relative DSB track-1  Gbp-1) 

representing the intra-track and inter-track (proximity) effects, respectively.  Within the 

RMF, the RBEHD is only dependent on the dose-averaged RBEDSB, making it 

straightforward to implement as compared to Eq. (15) in Gonzalez and Santa Cruz (2012).  
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Also note that the LQ parameters in MLQ were obtained from fitting of experimental 

data, requiring at least four variables.  The range of survival fractions, S(D), and 

isoeffective doses, DR(D), can be obtained with some simple rearrangement of the RMF 

formulas.  

Additionally, optimized target (Nigg et al. 2000) and filtration of the UW CNTS 

and the advantage of the more conformal neutron beam have not been taken into 

consideration here, but may very well show promise for BNCT applications.  Current 

applications using BPA for tumor treatments other than GBM (e.g., melanoma) may also 

benefit from more accurate RBE models.   
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Figure 2.1.  MCNPX models for: (left) water and tissue phantom, and (right) 

cellular microdosimetry. 

Table 2.1.  LET, CSDA ranges and �̅�𝐹 calculations for selected ions computed using 

Monte Carlo Damage Simulation (Stewart et al. 2011) 

particle E (MeV) LET (keV/m) CSDA range (m) �̅�𝐹 (Gy)a

�̅�𝐹 (Gy) a 

(ICRU 

def.)b 

1H1+ 0.59 38.03 11.09 0.34 0.31 

4He2+ 1.47 186.5 8.28 1.69 1.52 

4He2+ 1.78 170.4 10.02 1.54 1.39 

7Li3+ 0.84 369.1 4.18 1.79 3.01 

7Li3+ 1.01 386.1 4.63 2.07 3.15 

adtarget = 5 m 
b�̅�𝐹 = 0.204LET/d2,  = 1 g/cc, d = dnucleus

5 cm !

1 mm !

5 cm !

Neutron source!

5 mm !

1 cm !

Tissue phantom!
Tally spectrum!

2.5 μm " 2.5 μm "

Secondary neutron source"

4 mm "

4 mm "

14 μm "
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Figure 2.2.  Plot of  �̅�𝐹 RBEDSB (relative DSBs per track), solid lines, and m per DSB, 

dashed lines, vs. (zeff/)2 for alpha particles and 7Li ions, illustrating the particle-specific 

maximum DSB per track and minimum distance between DSBs, formulas used are 

described in Stewart et al. (2015).   

Figure 2.3.  MCNPX model of the neutron multiplier and beam shaping assembly 

as proposed by Rasouli and Masoudi (2012). 
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Figure 2.4.  UW CNTS treatment head, (a) primary neutron production and collimation, 

and (b) the MLC downstream from (a).  Additional details and benchmarks of the 

MCNP6 model of the CNTS are described in Moffitt et al. (2016) .

Figure 2.5.  Comparison of the MIT-FCB, NM, CN and UW CNTS relative 

neutron fluence at a depth of 1.5 cm in a water phantom (geometry in Figure 2.1) 

obtained using MCNPX. 
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Table 2.2.  Comparison of experimental results and model estimates for alpha particles 

and protons with approximately the same LET 

particle 

LET (keV/m) α (Gy-1) RBEDSB 

Goodhead     

et al. 
MCDS 

Goodhead          

et al. 
MCDS+RMF MCDS 

1.2 MeV +H 22.02 23.65 0.30 0.29 1.80 

1.4 MeV +H 19.67 21.13 0.42 0.27 1.71 

30 MeV α 23.00 22.72 0.21 0.25 1.56 

35 MeV α 20.45 20.07 0.25 0.23 1.50 

Figure 2.6.  Comparison of cell survival in V79 cells irradiated by low-energy alpha 

particles (Tracy et al. 2015).  Dashed lines are LQ fits to the experimental data and solid 

lines are RMF estimates.  For 1.1 and 1.5 MeV (blue and red lines), z̅F is obtained from 

MCDS+MCNP simulations, for 1.8 and 2.4 MeV (red and magenta lines), z̅F is obtained 

from an RMF-fit. 
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Table 2.3.  Comparison of experimentally-derived parameters, MCDS+MCNP estimates 

and RMF fits 

Dose-weighted LET 

(keV/m) 
�̅�𝐹 (Gy) RBEDSB 

α 

energy 

(MeV) 

Tracy et 

al. 
MCDS+MCNP 

MCDS+MCNP 
RMF-fit 

MCDS+

MCNP 5 µm 3-6 µm

1.1 181 203 1.09 
3.76-

0.67 
1.03 3.30 

1.5 201 213 1.60 
5.33-

1.16 
1.66 3.24 

1.8 190 195 1.69 
4.67-

1.16 
2.68 3.19 

2.4 161 161 1.44 
3.84-

1.02 
3.32 3.09 

3.2 131 130 1.13 
3.06-

0.79 
4.21 2.96 

4.0 112 110 0.94 
2.56-

0.66 
4.90 2.84 

Table 2.4.  Predicted RBE values for BNCT secondary charged particles (using Eq. 2.4) 

protons alphas lithium heavy ions 

neutron 

source 

RBEHD 

= 

RBEDSB

RBELD      

(α/β = 3) 

RBEHD 

= 

RBEDSB

RBELD          

(α/β = 3) 

RBEHD = 

RBEDSB

RBELD

(α/β = 3) 

RBEHD =  

RBEDSB 

RBELD =         

(α/β = 3) 

MIT-

FCB 
2.85 3.42 3.06 8.79 3.39 7.05 3.15 6.39 

NM 2.57 3.47 3.02 8.74 3.39 7.08 3.15 6.55 

CN 2.54 3.38 3.04 9.06 3.39 6.82 3.15 5.59 

UW 

CNTS 
2.22 3.01 2.79 7.86 3.39 7.05 3.15 11.2 
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Figure 2.7.  Cell survival predictions for the 9L rat gliosarcoma cell line with BPA and 

varying neutron source (parameter details in Section 2.3.2), in vivo/in vitro (left) and in 

vitro (right).  Dotted lines are LQ-fits, solid lines are RMF predictions. 

Table 2.5.  Dose-weighted RBE estimates for selected neutron sources and 10B carriers.  

Estimates are reported using asymptotic low and high-dose RBE models 

RBEHD = 

RBEDSB

RBELD (α/β = 

87) 
RBELD (α/β = 3) 

RBELD  (α/β = 

10)

Neutron 

source 
no 

10B
BPA 

mA

b 

no 
10Ba

BP

A 
mAb 

no 
10Ba BPA mAb no 10B 

MIT-

FCB 
2.87 2.97 

3.0

4 
2.89 3.06 3.17 3.46 5.78 6.99 3.09 

NM 2.63 2.66 
2.6

9 
2.68 2.71 2.75 3.99 4.08 4.34 3.02 

CN 2.62 2.63 
2.6

9 
2.66 2.68 2.75 3.71 3.94 4.47 2.94 

UW 

CNTS 
2.66 2.66 

2.7

2 
2.80 2.81 2.88 6.86 6.88 7.40 4.03 
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Figure 2.8. Soft tissue phantom, mass at 5 cm depth, 2 cm wide, 10:1 tumor to tissue 

ratio, 100 g/g 10B in tumor, solid lines RBEDSB, dotted lines RBELD (/=3).  PDD, 

RWD, and RBE for the MIT-FCB neutron source (A, left and right panel, respectively) 

NM neutron source (B, left and right panel, respectively). 
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Figure 2.9. Soft tissue phantom, mass at 5 cm depth, 2 cm wide, 10:1 tumor to tissue 

ratio, 100 g/g 10B in tumor, solid lines RBEDSB dotted lines RBELD (/=3).  PDD, 

RWD, and RBE for the CN neutron source (C, left and right panel, respectively) and 

CNTS neutron source (D, left and right panel, respectively). 
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Figure 2.10.  Soft tissue phantom, mass at 10 cm depth, 2 cm wide, 10:1 tumor to 

tissue ratio, 100 g/g 10B in tumor, solid lines RBEDSB, dotted lines RBELD (/=3).  

PDD, RWD, and RBE for the MIT-FCB neutron source (A, left and right panel, 

respectively) NM neutron source (B, left and right panel, respectively). 
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Figure 2.11.  Soft tissue phantom, mass at 10 cm depth, 2 cm wide, 10:1 tumor to 

tissue ratio, 100 g/g 10B in tumor, solid lines RBEDSB dotted lines RBELD (/=3).  

PDD, RWD, and RBE for the CN neutron source (C, left and right panel, respectively) 

and CNTS neutron source (D, left and right panel, respectively).



CHAPTER 3 

DNA DOUBLE STRAND BREAK (DSB) INDUCTION AND 

CELL SURVIVAL IN IODINE-ENHANCED  

COMPUTED TOMOGRAPHY (CT)2 

3.1 Abstract 

A multiscale Monte Carlo model is proposed to assess the dosimetric and 

biological impact of iodine-based contrast agents commonly used in computed 

tomography (CT).  As presented, the model integrates the general purpose MCNP6 code 

system for larger-scale radiation transport and dose assessment with the Monte Carlo 

Damage Simulation (MCDS) to determine the subcellular characteristics and spatial 

distribution of initial DNA damage. The repair-misrepair-fixation model is then used to 

relate DNA double strand break (DSB) induction to reproductive cell death.  

Comparisons of measured and modeled changes in reproductive cell survival for ultrasoft 

characteristic k-shell X-rays (0.25 – 4.55 keV) up to orthovoltage (200 – 500 kVp) X-

rays indicate that the relative biological effectiveness (RBE) for DSB induction is within 

a few percent of the RBE for cell survival.  Because of the very short range of secondary 

2 Streitmatter SW, Stewart R D, Jenkins PA, Jevremovic T, DNA Double Strand Break (DSB) Induction 

and Cell Survival in Iodine-Enhanced Computed Tomography (CT).  Submitted to Physics in Medicine and 

Biology December 19, 2016 (PMB-105153), formally accepted June 5, 2017 (PMB-105153.R1).

© Institute of Physics and Engineering in Medicine.  Reproduced by permission of IOP Publishing.  All 

rights reserved. 
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electrons produced by low energy X-ray interactions with contrast agents, the 

concentration and subcellular distribution of iodine within and near cellular targets have a 

significant impact on the estimated absorbed dose and number of DSB produced in the 

cell nucleus.  For some plausible models of the cell-level distribution of contrast agent, 

the model predicts an increase in RBE-weighted dose (RWD) for the endpoint of DSB 

induction of 1.22 – 1.40 for a 5 - 10 mg/mL iodine concentration in blood compared to an 

RWD increase of 1.07  0.19 from a recent clinical trial.  The modeled RWD of 2.58 is 

also in good agreement with the measured RWD of 2.3  0.5 for an iodine concentration 

of 50 mg/mL relative to no iodine.  The good agreement between modeled and measured 

DSB and cell survival estimates provides some confidence that the presented model can 

be used to accurately assess biological dose for other concentrations of the same or 

different contrast agents. 

 

3.2 Introduction 

 
 At present, the effects of image contrast media on the absorbed dose and RBE are 

not considered in clinically reported estimates of patient absorbed or effective dose in 

computed tomography (CT) (ICRU 2012), although there is likely some impact on the 

absorbed dose and DNA damage a patient receives, at least to the blood (Amato et al. 

2010, Pathe et al. 2011 and references therein).  We will demonstrate a useful multiscale 

system of models for the assessment of the absorbed dose enhancement and relative 

biological effectiveness for double strand break induction (RBEDSB) arising from the use 

of an iodine-based contrast agent commonly used in CT scans.  We will also provide 

further insight into the mechanisms at work for different biological endpoints for photons 
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and electrons.  Because the biological processing of DSBs into chromosome aberrations 

is widely considered an important mechanism underlying both cell reproductive death 

(Cornforth and Bedford 1987, Bedford 1991, Hlatky et al 2002, Carlson et al 2008, 

Stewart et al 2011), mutagenesis (Frankenberg 1994), genome instability (Jeggo and 

Löbrich 2015, Terasawae et al. 2014), oncogenic transformation (Byrne et al. 2014), and 

radiation carcinogenesis (Byrne et al. 2014, Rothkamm and Löbrich 2002), RBEDSB may 

be useful as a reasonable surrogate for the radiation weighting factors recommended in 

the ICRP 92 report (ICRP 2003) for diagnostic X-rays.  The approach proposed could 

potentially improve the accuracy of patient-specific absorbed dose arising from CT scans, 

specifically contrast-enhanced CT scans.        

 The average linear energy transfer (LET) of secondary electrons produced from 

photon interactions tends to increase as the energy of the primary photons decreases, with 

a resultant increase in the RBE of at least 10-20% (Nikjoo et al. 2010).  In vitro and in 

vivo experiments support the hypothesis that lower energy X-rays and secondary 

electrons have higher a RBE when compared to 60Co or 137Cs (Prise et al. 1989, Cornforth 

et al. 1989, Spadinger and Palcic 1992, Botchway et al. 1997, Fayard et al. 2002, Nikjoo 

et al. 2010, Kirkby et al. 2013, Hsaio and Stewart 2008). Monte Carlo simulations of 

DNA DSB induction indicate that X-ray voltage (> 20 keV) and anode composition have 

a small impact, whereas the type and thickness of filtration have a significant impact on 

RBEDSB (Stewart et al. 2015).  The former has a small impact because higher-energy (> 

30-50 keV) photo- and Compton electrons have an RBE close to unity, and filtration 

substantially reduces the number of low-energy (high-RBE) electrons.  The intra- and 

extracellular media in which the X-rays interact are also a very important consideration 
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due to the strong dependence of the photoelectric effect on atomic number. 

 Contrast agents designed to maximize photoelectric absorption, such as the k-edge 

of iodine-based (Z=53) agents, are widely used in CT and angiography to improve image 

quality, contrast and diagnostic precision.  Theoretical and experimental evidence 

suggests that the presence of iodine will locally enhance absorbed dose due to its large 

absorption coefficient for kilovoltage photons compared to the low-Z components of soft 

tissue (e.g. – C, H, O and N) (Callisen et al. 1979).  Figure 3.1 illustrates the magnitude 

of differences between the total and individual photon cross sections for water and iodine 

using the latest low energy electron-photon-relaxation data available in MCNP6 (Hughes 

2013). 

 Recent studies have examined the impact of contrast agents on absorbed dose 

(Amato et al. 2010, 2013, Jost et al. 2009) and DNA damage/repair and chromosomal 

aberrations (Grudzenski et al. 2009, Jost et al. 2009, Pathe et al. 2011, Piechowiak et al. 

2015, Matsubara et al. 1997), with most of them confirming that there are indeed 

statistically significant increases in γ-H2AX foci and chromosomal abberations, and its 

impact should not be overlooked.  However, Jost et al. (2009) concluded that, at the level 

of absorbed dose typically encountered in diagnostic CT, no significant differences in the 

yields of dicentrics and γ-H2AX foci were observed in the absence or presence of 5 

mg/mL iodine in blood, an outlier among all the other studies.  Although it is likely that 

higher iodine concentrations are present for clinical administration.  For diagnostic X-ray 

imaging, the benefit of medical diagnosis and treatment is weighed against the stochastic 

risks of patient harm.  For CT exams that utilize image contrast media, there are further 

local dose enhancements and radiobiological effects that are of potential concern, but are 
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not yet considered.  A phosphorylated form of H2AX histone variant (i.e., H2AX foci) 

has been used to retrospectively estimate radiation dose in patients who received CT 

exams by analyzing the foci produced in blood lymphocytes (Golfier et al. 2009, 

Rothkamm et al. 2007). The numbers of H2AX foci produced by ionizing radiation are 

approximately equal to the number of DNA DSBs (Rothkamm et al. 2003) because 

phosphorylation of H2AX is one of the earliest steps in the cellular response to DSB 

induction. DSBs are any cluster of two or more individual DNA lesions (strand breaks, 

abasic sites, base damage) containing (at least) a pair of opposed strand breaks within 

~10 base pairs (bp) of each other.  Although H2AX foci can tend to underestimate 

DSBs for high-LET radiation when several foci are counted as one (e.g., several DSB 

occur in such close proximity that they are counted as a single foci), the effect for low-

LET photons and electrons are negligible (Antonelli et al. 2015).  

For diagnostic X-ray imaging, the benefit of medical diagnosis and treatment is 

weighed against the stochastic risks of patient harm.  For CT exams that utilize image 

contrast media, there are further local dose enhancements and RBE effects that are of 

potential concern (Amato et al. 2010, 2013, Grudzenski et al. 2009, Piechowiak et al. 

2015).  One experimental metric currently used is termed the dose enhancement factor 

(DEF)†. While the DEF-based method is analytic and easy to implement, it assumes a 

homogenous distribution of iodine within critical cellular targets.  The DEF method also 

neglects the RBE of the secondary electrons produced by the interactions of low energy 

† 𝐷𝐸𝐹  ∫ (
𝑓(

𝜇𝑒𝑛
𝜌

)
𝐸

𝑖𝑜𝑑𝑖𝑛𝑒
+(1−𝑓)(

𝜇𝑒𝑛
𝜌

)
𝐸

𝑏𝑙𝑜𝑜𝑑

(
𝜇𝑒𝑛

𝜌
)

𝐸

𝑏𝑙𝑜𝑜𝑑 ∙ 𝑁(𝐸))
∞

𝐸=0 𝑘𝑒𝑉
𝑑𝐸, where: (en/) - mass energy absorption coefficient (cm2/g) for iodine or 

blood at a given energy E, obtained from the NIST reference database (http://www.nist.gov/pml/data/xraycoef/), f - mass fraction of 

iodine in blood and N(E) - relative quantity of photons at each energy E for a given X-ray source spectrum.  

http://www.nist.gov/pml/data/xraycoef/)
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X-rays with the contrast agent, hence the need for a better metric to assess the biological 

dose for relevant clinical endpoints, such as H2AX foci formation.   

As illustrated in Figure 3.2, we have developed a system of models to better assess 

the absorbed dose and biological effects of iodine-enhanced CT.  Our system of models 

uses MCNP6.1.1b (Goorley et al. 2013, 2014), a general-purpose Monte Carlo radiation 

transport code with the ability to simulate the interactions of photons and electrons with 

energies as low as 1 eV and 10 eV, respectively, to model the larger scale (> 1 mm) 

interactions of photons in laboratory experiments and diagnostic scans.  Larger scale 

MCNP simulations of electron and photon transport are needed to more accurately 

account for charged particle disequilibrium and related effects that arise from the macro-

scale cellular and in vivo distribution of an iodine within the irradiated blood and tissue 

during a CT scan.  The MCDS (Monte Carlo Damage Simulation) is a cell-level model for 

the induction of clusters of DNA lesions, including DSB, by electrons, protons and other 

charged particles (Z  26) with kinetic energies up to a few GeV (Semenenko and Stewart 

2004, 2006 and Stewart et al. 2011).  Finally, the repair-misrepair-fixation (RMF) model 

(Carlson et al. 2008) is utilized to relate the biological processing of initial DSB into 

lethal damage that impacts on reproductive cell survival.    

 Here, we report for the first time some additional low-energy X-ray benchmarks of 

the MCDS+RMF system of models for the endpoint of in vitro cell survival.  Additional 

benchmarks of the MCDS+MCNP system of models for DSB induction by ultrasoft X-

rays are also reported.  The model benchmarks, as well as theoretical considerations 

arising from the RMF model, collectively indicate that, for ionizing electrons and photons 

with kinetic energies up to at least a few hundred keV, RBEDSB is an effective surrogate 
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endpoint for the RBE for cell survival.  The reported comparisons of measurements and 

results from the multiscale system of models reported here provide new information and 

insights into fundamental molecular mechanisms underlying particle RBE, as well as 

absorbed dose and radiobiological effects of iodine-enhanced CT scans in particular.  

These findings have the potential to aid in more precise clinical estimates and reporting 

of the increased absorbed dose to patients for such exams. 

3.3 Methods 

3.3.1 General framework of the system of models 

We used the MCDS to generate lookup tables (dose-response functions) for the 

induction of DSB by monoenergetic electrons with kinetic energies from 10 eV to 1 GeV.  

As described in detail elsewhere (Stewart et al. 2015), a standard MCNP6 dose (F6:e 

tally) modified by the dose-response function for DSB induction was used to compute the 

dose, (dose × RBEDSB) and RBEDSB in the nucleus of a human cell (d = 5 m).  After 

simulating the initial numbers and spatial distribution of DSB through a combined 

MCDS+MCNP simulation, analytic formulas arising from the RMF model (Carlson et al. 

2008) are used to determine how linear-quadratic (LQ) cell survival model parameters 

vary with electron kinetic energy and linear energy transfer (LET).  The RMF model was 

developed to better link DSB induction to cell survival through an intra- and inter-track 

binary misrepair process.  The RMF formulas in combination with first principle 

estimates of RBEDSB have been shown to reproduce trends in cell survival for electrons, 

protons and other charged particles with an LET up to at least 100 to 200 keV/m 

(Carlson et al. 2008, Frese et al. 2012, Mairani et al. 2016).  Figure 3.2 illustrates the 
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components of the system of models and the respective input and ouput parameters. 

3.3.2 MCDS+MCNP model for DSB induction by ultrasoft 

X-rays and 60Co -rays

Figure 3.3 shows an idealized schematic of the MCDS+MCNP model developed 

to simulate DNA damage induction in a monolayer cell culture irradiated by ultrasoft 

characteristic X-rays.  Similar Monte Carlo models have been used by others (Hsaio and 

Stewart 2008, Kirkby et al. 2013, Stewart et al. 2015) to simulate the induction of DNA 

damage by X-rays, -rays, neutrons and many other types of charged particles.  In the 

MCNP simulations, the cutoff energies for photon and electrons transport are set to 1 eV 

and 15 eV, respectively. Tabulations of electron stopping power in MCNP are on the 

finest allowed energy grid (EFAC = 0.99).  At electron energies < 1 keV, MCNP 

switches from a condensed-history transport method to single-event transport.  This is 

due to the failure of condensed-history electron transport physics in MCNP associated 

with limitations in the data and semi-analytic methods used in the transport of higher 

energy electrons. The single-event method provides a successful and potentially much 

more accurate approach to low-energy electron transport and dosimetry (Hughes 2014).  

Fluence, absorbed dose, RBEDSB, LET and related dose-response functions (e.g., mean-

frequency specific energy) are recorded in the sensitive volumes shown in Figure 3.3.   

The results of the MCDS+MCNP model for DSB induction are compared to 

measurements (de Lara et al. 2001) of the numbers of DSB Gy-1 Gbp-1 produced in V79-

4 cells irradiated by 60Co -rays, 0.28 keV (carbon K-shell), 0.96 keV (copper L-shell), 

1.49 keV (aluminum K-shell) and 4.55 keV (titanium K-shell) X-rays.  In the de Lara 
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experiments, the medium between the photon source and cell monolayer is adjusted 

based on the X-ray energy to minimize beam attenuation, using helium or hydrogen 

instead of air, which is also reflected in our MCNP model of the cell culture model 

(Figure 3.3). 

                          

 

3.3.3 MCDS+MCNP model to evaluate DSB induction in lymphocytes 

irradiated by 120 kVp X-rays with and without contrast 

 
As an idealized in vivo model for lymphocyte irradiation, we developed a two-stage 

Monte Carlo modeling approach to determine the dosimetric and RBE characteristics of a 

120 kVp X-rays with varying amounts of contrast media.  Figure 3.4 (stage 1 of the 

model) shows an idealized MCNP model of a CT tube with a lead collimator and 

aluminum filtration to approximate the X-ray energy spectrum produced by a general CT 

tube with a 7 anode angle.  In a second Monte Carlo simulation, X-rays from the stage 1 

(CT scanner) model are transported through the idealized model of lymphocytes 

surrounded by a thin layer of medium with or without contrast, as illustrated in Figure 3.5.  

In the model for blood lymphocytes, the sensitive cell volume is surrounded by blood 

(ICRU 1992) or by a mixture of blood and the iodine contrast agent Ultravist® 

(Iompromide, C18H24I3N3O8).  

To efficiently model bremsstrahlung photon production in the tungsten anode of the 

CT tube, a variance reduction technique called the bremsstrahlung biasing is applied (Ay 

et al. 2004, Zoubair et al. 2013), which increases the number of photon tracks per 

electron, but reduces the particle weight in a way that to preserves the correct average 

number of tracks per electron. A “surface-source-write” file is recorded at 10 cm 
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downstream from the focal spot, capturing the energies and vectors of the photons 

produced.  The second stage simulation, downstream of the phase space plane, is used to 

insert varying types and thicknesses of filtration without re-running the bremsstrahlung 

production, which is computationally expensive.  Filtration is experimentally measured 

on a CT scanner using the Radcal™AGMS-DM+ solid-state multisensor at the isocenter, 

which is capable of determining half value layer (HVL) and filtration in a single 

measurement.  The resulting filtered photon energy spectrum is scored with an energy 

fluence tally (F4) at 75 cm from the focal spot, with an energy bin width of 0.5 keV.  

Most modern nonionic iodine compounds used as intravenous contrast are 

described as highly hydrophilic, biologically inert, extracellular and renally excreted; 

their pharmacokinetics in normal subjects conform to an open two-compartment model 

with first order elimination (Lusic et al. 2013, Ultravist® 2015, Isovue® 2012).  While 

there is a statistically significant increase in -H2AX foci, and hence DSBs, in the 

presence of iodine contrast agents post irradiation, it is independent of the contrast agent 

used and the increase is solely attributed to the amount of iodine applied (Deinzer et al. 

2012).  Pharmokinetic studies also show that negligible amounts of iodine will cross into 

the cellular compartments of blood lymphocytes (Bourin et al. 1997), hence iodine is 

excluded from the representative nucleus and cytoplasm (sensitive volumes) in our 

lymphocyte model (Figure 3.5). 

 

 

 



 
 

 

 

61 

3.3.4 Relationship between the RBE for DSB induction and the RBE for  

cell survival – the repair-misrepair-fixation (RMF) model 

 
In the RMF model (Carlson et al. 2008), the effects of particle type and kinetic 

energy (and hence LET) on and in the linear quadratic (LQ) cell survival model are 

explicitly linked to the initial numbers and spatial distribution of DSBs.  In the RMF 

model, the biological processing of initial DSB into lethal chromosome aberrations or 

point mutations is model by a coupled system of nonlinear differential equations.  In the 

work of Carlson et al. (2008), they were unable to find any category of complex DSB that 

was intrinsically less capable of initiating reproductive cell death than any other category 

of DSB.  They concluded that the numbers of DSB per cell is the most significant 

determinant of cell killing efficiency.  The number of DSB per electron (or other particle) 

track plays a significant role in determining particle RBE.  There is compelling evidence 

in the literature that the number of DSB/Gy/Gbp of DNA tends to increase in a 

monotonic fashion with increasing particle LET up to an ion-specific peak before 

beginning to plateau or (possibly) decrease (Stewart et al. 2011 and references therein, 

Campa et al. 2005, Stenerlow et al. 2002).  Some earlier studies seemed to suggest that 

the number of RBE for DSB induction was a weak or independent function of the 

radiation quality (e.g., Prise et al. 1998).  However, there are known artifacts in the use of 

neutral filter elution for the measurement of DSB induction (Prise et al. 1998), and the 

measurement of DSB with pulsed-field gel electrophoresis (PFGE) can also be 

challenging because of issues related to cell lysis at elevated temperatures and the use of 

data analysis methods that convert fragment size distributions into estimates of the 

number of DSB (Alloni et al. 2013, Cedervall et al. 1995, Cedervall et al. 2002, 
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Ratnayake et al. 2005 and references therein), especially at low absorbed doses.  As a 

first approximation, the RMF system of differential equations predicts that RBEDSB is 

related to the RBE for cell survival for doses that are small compared to  (low-dose 

RBE or RBELD) by 

𝑅𝐵𝐸𝐿𝐷 =
𝛼

𝛼𝛾
= 𝑅𝐵𝐸𝐷𝑆𝐵 (1 +

2�̅�𝐹𝑅𝐵𝐸𝐷𝑆𝐵

(𝛼 𝛽⁄ )𝛾
)                                           (3.1) 

where  �̅�𝐹 ≅ 𝐿𝐸𝑇 𝜌𝑑2⁄   (ICRU Report 36, 1983); d is the diameter of the cell nucleus (~ 

4-6 µm).  The subscript γ denotes a parameter for the reference radiation (e.g., γ-rays 

from 60Co).  In the alternate limit of doses that are very large compared to  (high-dose 

RBE or RBEHD), the RMF model predicts that   

                                    𝑅𝐵𝐸𝐻𝐷 = √
𝛽

𝛽𝛾
= 𝑅𝐵𝐸𝐷𝑆𝐵                                                   (3.2) 

For high and low energy electrons, the product of  2�̅�𝐹𝑅𝐵𝐸𝐷𝑆𝐵 (𝛼 𝛽⁄ )𝛾⁄  in Eq. (1) is 

small or negligible (~0.01 or less) for most mammalian cells because (1) �̅�𝐹 is on the 

order of a mGy or less, (2) electron RBEDSB > 1 regardless of kinetic energy, and (3) 

() is often greater than 1 Gy for most mammalian cells. Therefore, Eqs. (1) and (2) 

indicate that, for electrons, RBELD  RBEHD = RBEDSB.  If this approximation is 

sufficiently accurate, then the radiosensitivity parameters for ultrasoft and orthovoltage 

X-rays are related to the radiosensitivity parameters for 60Co γ-rays by 

                                           𝛼 = 𝛼𝛾 ∙ 𝑅𝐵𝐸𝐷𝑆𝐵 ,   𝛽 = 𝛽𝛾 ∙ 𝑅𝐵𝐸𝐷𝑆𝐵
2                           (3.3) 
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3.4 Results 

3.4.1 Comparison of measured and MCDS+MCNP estimates of 

DSB induction by ultrasoft X-rays, orthovoltage 

X-rays and 60Co -rays

Table 3.1 shows the comparison of RBE predictions using the MCDS+MCNP 

model and de Lara’s (2001) experimental results.  The MCDS+MCNP model estimates 

are 10-20% larger than the measured numbers of DSB Gy-1 Gbp-1 whereas the RBEDSB is 

≤ 10%.  The simulated absolute DSB yields may be larger than the measured ones 

because of limitations and uncertainties of the experimental assays (Löbrich et al. 1996, 

Pinto et al. 2002, Stenerlöw et al. 2003, Ratnayake et al. 2006 and references therein) and 

because some second-order effects are neglected in the MCDS+MCNP simulations, such 

as chromatin structure effects (Ljungman 1991, Oleinick et al. 1994, Venkatesh et al. 

2016).  Regardless, as indicated by Eqs. (3.1), (3.2) and (3.3), it is the relative numbers of 

DSB that are important in the cell survival model rather than the absolute numbers of 

DSB Gy-1 Gbp-1, and the observed differences in RBEDSB estimates of 10% or less are 

well within the uncertainties in the measured data.  Prior to the release of MCNP6, which 

extends photon and electron transport down to 1 eV and 10 eV from 1 keV, respectively 

(Hughes 2014), it was not possible to explicitly model DNA damage from lower energy 

photons and electrons, such as the 0.28 keV (carbon K-shell X-rays) and 0.96 keV 

(copper L-shell X-rays) used by the De Lara study, within the framework of a combined 

MCDS+MCNP simulation.  However, earlier studies (Hsaio and Stewart 2008, Stewart et 

al. 2011, Kirkby et al. 2013) comparing MCDS estimates of the absolute or relative 

numbers of DSB to measurements are also in reasonable agreement for low and higher 

energy photons and electrons. 
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3.4.2 Tests of the RMF model prediction that RBELD = RBEHD = 

RBEDSB for electrons and photons 

 
Figure 3.6 compares estimates of the cell surviving fraction computed using the 

RMF model formula (i.e., Eq. 3.3) to relate and  for the reference radiation to the 

and for lower-energy kilovoltage, orthovoltage and ultrasoft X-rays.  Experimental 

data is analyzed using a nonlinear regression analysis of the measured data for each type 

of radiation (Figure 3.6 dashed and dotted lines).  For comparison, the measured data 

were also analyzed using the RMF-motivated analysis [i.e., Eq. (3.3)] in which  and 

for the reference radiation (60Co -rays) and the RBEDSB for each type of radiation is 

treated as an adjustable parameter (Figure 3.6 solid lines).  The key advantage of the 

RMF-motivated analysis of the cell survival data is that the number of adjustable 

parameters is reduced from 40 parameters (2 parameters for each type of radiation) to 26 

parameters (2 parameters for the reference radiation plus 1 additional RBEDSB parameter 

for each additional type of radiation) with only a small impact on the quality of the fits 

(compare dotted/dashed lines to solid lines in Figure 3.6).  As an additional test of the 

multiscale system of models, we then compared the estimates of the RBEDSB from the 

analysis of the cell survival data to a first principle MCDS+MCNP simulation of DSB 

induction as a way to independently examine the relationship between RBEDSB and the 

RBE for cell survival.  

Table 3.2 compares the RBEDSB values computed from RMF-fits of the cell 

survival data in Figure 3.6 and MCDS+MCNP simulations.  For the Spadinger and Palcic 

(1992) dataset, the first-principle Monte Carlo simulations of RBEDSB are within 3% of 

the values derived from the nonlinear regression analysis of the measured cell survival 
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data.  For the de Lara et al. (2002) dataset, where both DSBs and cell survival were 

investigated, measured and calculated RBEDSB are in excellent (~ 5%) agreement.  

Comparison of the Frankenberg et al. (2002) data shows excellent agreement for 29 kVp, 

mammography quality X-rays as well as 200 kVp X-rays.  For the lowest photon energies 

examined here, from the work of Fayard et al. (2002), there is excellent agreement at 340 

eV.  However, there is a puzzlingly large difference in the RBE estimates for the very 

low energy (250 eV) photons derived from the Fayard et al. dataset, especially in view of 

the observation that the RBE estimates derived from the de Lara et al. dataset are in 

excellent agree for 280 eV photons.  The differences in the fitted and model-predicted 

estimates for the 250 eV photons in the Fayard et al. may relate to uncertainties in the 

dosimetry, particularly in the mean Mylar window thickness and mass absorption 

coefficients used.  With the exception of the Hoshi et al. (1988) study, the estimates of 

RBEDSB from the first principle Monte Carlo simulations are in excellent (~5-10% or less) 

agreement with the estimates derived from the nonlinear regression analysis of the cell 

survival data.  The systematically low predictions of RBEDSB for the Hoshi et al. data may 

be due to a systematic bias in the dosimetry associated with the absolute calibration of the 

X-ray source and/or to uncertainties in the MCNP modeling of the filtration and other 

components of the X-ray source.  Collectively, the analysis of the cell survival data and 

first principle Monte Carlo simulations of RBEDSB provide strong evidence supporting the 

RMF-motivated hypothesis that RBELD = RBEHD = RBEDSB for photons and electrons 

across a wide range of energies. 
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3.4.3 Iodine effects on the spectra and interactions of secondary electrons 

 

Table 3.3 shows the photon/electron interactions dependence on iodine 

concentration and distributions based on the MCNP6 model. The generation of Auger 

electrons is linearly dependent on the quantity of photons absorbed, and thus directly 

proportional to the increase in iodine concentration.  Due to the very low energies (~20-

500 eV) and short ranges (~1-10 nm) of Auger electrons (Howell 2009), for iodine 

contrast outside of the cell, a trivial amount of dose will be deposited in the cell by these 

high-LET electrons (Regulla et al. 2002) and that is also shown in the data in Table 3.3.  

The photoelectrons around the k-edge of iodine are also short range (~20m) (Callisen et 

al. 1979).  

Figure 3.7 illustrates the difference in energy spectrum in the sensitive 5 m layer 

with the modeled iodine concentration (refer to Figure 3.5).  From Figure 3.7, a clear 

dose enhancement as the iodine concentration increases is observed, but it is much more 

pronounced for a homogenous distribution compared to an extracellular distribution.  For 

instance, to achieve the same dose increase for a homogenous distribution of 0.48% 

iodine by weight, an extracellular concentration of 2.48% is required.  Differences in 

RWD are even more pronounced: an extracellular iodine concentration of 4.81% is 

needed to equal the same RWD as 0.48% of homogenously distributed.  Using the DEF 

doesn’t take into account the finer details of the subcellular iodine distribution and range 

of the secondary electrons that are considered in MCDS+MCNP system of models.  In 

the work of Jost et al. (2009), the calculated DEF exceeded the relative increase in 

H2AX foci nearly 3-fold. 
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3.4.4 Comparison of measured and Monte Carlo simulated estimates  

of absorbed dose and RBEDSB for the in vivo irradiation  

of lymphocytes by 120 kVp X-rays 

 
Simulations of RWD in a 5 μm sensitive volume exposed to 120 kVp X-rays with 

an extracellular iodine/blood concentration of 5 mg/mL (0.48% iodine by weight) results 

in 122% increase in the number of DSBs from a combination of absorbed dose and RBE 

changes compared to blood without iodine. For 50 mg/mL (4.81% iodine by weight), the 

Monte Carlo model predicts an increase of 258%. Experimental values of H2AX foci 

induction in Jost et al. (2009) are used for comparison. For 0.48% and 4.81% iodine 

concentrations, an enhancement factor of 1.35 ± 0.08 and 2.3 ± 0.5 is observed, 

respectively. These values are much lower than expected from the analytical estimates of 

physical dose enhancement of 1.56 and 6.3, but are within 10% of the Monte Carlo 

predictions.  Additionally, Pathe et al. (2011) found that the number of H2AX foci 

increased by a factor of 1.58 in vivo for 120 kVp CT scans with Ultravist administered 

compared to unenhanced scans, consistent with our findings of 1.22 – 1.94 that bracket 

the likely clinical concentration (Table 3.4).  The work of Piechowiak et al. (2015) 

concluded that iodine-enhanced CT scans increases the number of H2AX foci by 107 ± 

19% compared to unenhanced studies. This is also consistent with our predicted factor of 

1.22 – 1.40.  The large standard deviation of his study is likely due to uncertainties of 

iodine concentration in blood at the time of scan among the patients.  Therefore, we 

examined a range of possible iodine concentrations: ~5-25 mg/mL (0.48 - 2.41% by 

weight) iodine in blood signifying the clinical range for diagnostic imaging applications.  

Table 3.4 shows the MCDS+MCNP estimated RWD and related quantities for varying 

concentrations of iodine in blood for 120 kVp X-rays, 10.5 mm Al filtration in a 5 m 
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layer of medium (refer to Figure 3.3).  Assuming a homogenous distribution of iodine 

results in much higher estimates of the absorbed dose, especially for the low-energy 

region. When modeling the more realistic scenario of extracellular iodine, estimates of 

RWD are in good agreement with the in vitro and in vivo experiments reporting a ~20-

30% increase in RWD determined by -H2AX foci measurements (Grudzenski et al. 2009, 

Piechowiak et al. 2015).  For extracellular iodine, the RBE remains essentially constant 

regardless of the iodine concentrations, while homogenous iodine concentrations show a 

substantial increase of 45% in RBE as the iodine concentration by weight increases from 

0.48 to 4.81%.  The same trends are seen for dose-averaged LET. 

3.5 Discussion 

Enumerating -H2AX foci formation in blood lymphocytes is a sensitive method for 

quantifying absorbed dose due to CT scan with or without iodine contrast present and is a 

good measure of initial DSB formation.  As noted in Golfier et al. (2009), both assays of 

scoring -H2AX foci and chromosomal aberrations are appropriate methods for assessing 

impact of dose-modifying effects such as in the use of iodine-based contrast.  Of the two, 

chromosome aberrations are the more clinically relevant endpoint because they represent 

the persistence of a biologically significant form of unrepaired or misrepaired DNA 

damage whereas the vast majority of the -H2AX foci, a marker for initial DSB induction, 

are ultimately repaired and are much less biologically significant.  However, -H2AX foci 

assay can detect DSB after lower doses of ionizing radiation (~ 1-6 mGy) than the assays 

used for the measurement of chromosome aberrations (Rothkamm et al. 2007, Rothkamm 

and Löbrich 2003).  Comparatively, the low-dose detectability limit of chromosomal 
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aberration analysis is about 50-100 mGy (IAEA 1986).  For this reason, H2AX foci are 

particularly well suited for biological dosimetry in CT and other diagnostic X-ray scans.  

In vitro and in vivo studies of -H2AX foci formation in blood lymphocytes were 

compared and benchmarked against results from a multiscale (MCDS+MCNP) model 

simulations of relative increases in DSBs using a more realistic distribution of iodine 

around the cells.  Good agreement was found for both the in vitro and in vivo experiments, 

which provides evidence to support the use of this system of models as a predictive tool 

to explore and help quantify the effects of iodine contrast agenda in diagnostic X-ray 

scans.  Others (Joubert et al 2005) have shown that repair of DSB can be inhibited from 

the radiolysis products of iodine compounds, and this may be a factor to consider when 

applying the RMF model to account for the repair and misrepair of initial DSB.  The 

significance of any iodine-related decreased DSB repair in the context of low doses of 

diagnostic X-rays is an open question in need of additional study.       

 In the RMF model for the conversion of initial DSB into lethal forms of damage, 

RBE effects primarily arise from (1) the tendency for DSB induction to increase with 

increasing LET up to a particle-specific peak before reaching a plateau or beginning to 

decrease (Stewart et al 2011, Stewart et al 2015) and (2) the numbers of DSB per 

electron (or other particle) track tends to increase with increasing LET.  The former effect 

determines the rate of inter-track DSB interactions (pairs of DSB formed by different 

electrons interact to form lethal damage) whereas the latter mechanism of action 

determines the rate of intra-track DSB interactions (pairs of DSB formed by a single 

electron interact to form lethal damage).  Because electrons are very unlikely to create, on 

average, more than one DSB per track per cell (right panel of Figure 2 in Stewart et al 
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2015), the RMF model predicts that the RBE for cell survival should be approximately 

equal to the RBE for DSB induction (i.e., RBEDSB).  The results reported in Table 3.2 

provide strong support for the RMF-motivated hypothesis that the RBE for cell survival 

and DSB induction are about the same for electrons (all kinetic energies) as well as 

diagnostic and MV X-rays.  A practical consequence of this observation is that 

exploratory modeling as well as patient-specific determinations of RWD for contrast-

enhanced diagnostic scans can potentially be determined from first principle Monte Carlo 

simulations with (effectively) no ad hoc adjustable biological parameters.  That is, 

estimates of RBEDSB can be determined through combined MCDS+MCNP simulations 

without the need to define any additional cell-or tissue specific parameters.  The 

extensively benchmarked MCDS handles the cellular and subcellular physiochemical 

interaction that create DSB, and MCNP simulations handle the larger-scale (> cellular) 

interactions of photons and secondary particles.  In contrast to our approach, other RBE 

models, such as the local-effect-model (LEM) (Friedrich et al. 2012, Tommasino et al. 

2013, 2015) and the microdosimetric kinetic (MK) model (Hawkins 1998, 2003, 2009) 

require the specification of two or more cell- or tissue specific parameters and rely on 

extensive databases of cell biophysical parameters that may or may not be fully 

representative of cell, tissue and patient specific biology.     

For patient-specific dosimetry, one of the largest sources of uncertainty in the 

RWD estimates is likely to be the iodine concentration in blood at the time of scan.  As 

seen in Table 3.4, small variations in the estimated iodine content in blood can have a 

significant impact on estimates of absorbed dose, RBEDSB and hence RWD.  Since the 

induction of -H2AX foci, and hence DSB, are dependent on both the absorbed dose and 
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RBE effects, uncertainty in the absorbed dose between the pre-contrast and post-contrast 

scan will impact the calculated excess RWD due to the iodine.  Although not investigated 

here, beam hardening and attenuation in a patient will likely have some minor effect on 

effective RBE.  In the context of the models, the MCNP input parameters, which include 

the X-ray spectra, cell/tissue geometry and iodine concentration and distribution (Figure 

3.2), are critical for determinations of RWD.  Better characterization of these three 

parameters in a clinical CT scan is important for the most accurate estimates of RWD.  

The MCDS parameters are fixed (independent or weak function of cell and tissue type) 

and since the mean-frequency specific energy term in Eq. 3.1 was found to be negligible 

for the investigated scenarios, the nucleus diameter parameter doesn’t effect 

MCDS+MCNP estimates. 

 Since the absorbed dose and RBE enhancement arising from the interactions of 

kilovoltage photons with iodine contrast is confined to the blood in circulation, there is 

still a question as to whether this translates into increased stochastic risk, at least to the 

extent it is currently calculated using the ICRP’s methodology (ICRP 2007).  The 

endothelial cells of the vessels containing iodine-based contrast at the time of scan likely 

receive additional dose (Joubert et al. 2005).  Organs which are perfused by contrast 

laden blood may receive additional dose in the immediate proximity to the vessels, but 

more animal-based studies need to be performed to more accurately assess if organs 

receive any appreciable absorbed dose and RBE enhancements due to iodine-enhanced 

CT.  Regardless, optimization of contrast-enhanced CT protocols is desirable, since there 

is a measurable enhancement in RWD in blood for CT scans that utilize iodine contrasts.  

Application of our system of models could aid in determining the best balance between 
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kVp, iodine concentration and RWD.  However, since the desired image enhancement is 

directly related to the iodine concentration, and thus resulting RWD at the time of scan, 

much is dependent on the interpreting physician and the threshold for acceptable image-

contrast enhancement needed for diagnosis or intervention.         

 To better quantify patient-specific risks from contrast-enhanced CT, we envision 

using our model to calculate the excess RWD from CT scans with inputs of only the 

change in HU from noncontrast to contrast scan, the Bremsstrahlung spectrum and 

operating kVp for the specific CT machine. Since many CT clinical protocols employ 

multiple scans at different circulatory phases after administration of contrast, a method 

that correlates change in HU to in vivo concentrations of iodine (Chandarana et al. 2011, 

Amato et al. 2010) and ultimately determination of RWD, could improve estimates of 

whole body absorbed dose and also aid in potential protocol optimizations.  Further 

development of the proposed system of models is in progress to address patient CT 

datasets in conjunction with a helical CT source.  

3.6 Summary and Conclusions 

This paper describes a useful multiscale system of models for the assessment of 

changes in absorbed dose and the RBE for DSB induction and cell survival arising from 

the use of iodine-based contrast agent commonly used in CT scans.  Model estimates of 

the absorbed dose and radiobiological enhancements of DSB induction from iodine 

contrast agents are in good agreement with experimental observations in vitro and in vivo 

(Grudzenski et al. 2009, Jost et al. 2009, Piechowiak et al. 2015) indicating an RWD 

~20-60% for the iodine concentrations seen clinically in contrast-enhanced CT.  The 
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RBEDSB estimate of about 1.2 is insensitive to the extracellular concentration of contrast 

agent whereas the absorbed dose increases in linear fashion with the extracellular 

concentration of contrast.  It is concluded that iodine-enhanced CT scans can increase the 

RWD to the blood by at least 20% compared to unenhanced scans.   

 In addition to quantifying the increased biological dose in iodine-enhanced CT, 

the reported studies provide compelling new evidence for the RMF-model hypothesis that, 

for photons and electrons with energies up to at least a few hundred keV, RBEDSB is an 

effective surrogate endpoint for the RBE for cell survival, i.e., RBEDSB = RBELD = RBEHD.  

This finding, in addition to the reported comparisons of measurements and results from 

the multiscale system of models reported here, provides new information and insights 

into fundamental molecular mechanisms underlying particle RBE. 

In the future, the Amato et al (2010) method to quantify the in vivo iodine 

concentration at the time of CT scan could be used in combination with the presented 

multiscale Monte Carlo model to determine patient-specific biological dose estimates 

because in reality, iodine concentrations in vivo will vary with scan parameters, injection 

timing and variations in patient physiology and habitus (Bae 2010 and references therein).  

While we have compared our system of models with the few in vivo real-time 

fluorescence imaging of -H2AX foci studies of iodine-enhanced CT scans, there still is a 

need for larger cohort studies with various types of CT angiography exams and 

correlation of HU to iodine concentration to test the usefulness of the model for patient-

specific quantification of biological dose.   A validated approach for accurate patient-

specific RWD estimates would allow for better assessments of the risks and benefits of 

contrast-enhanced CT scans.  The same approach is also extensible to interventional 
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radiology cases which utilize iodine contrast, although further modeling of the beam 

quality would be needed.     
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Figure 3.1.  Independent photon cross sections for water and iodine, plotted with 

MCPLOT in MCNP6.1.1b, data from ENDF/B VI, version 8, eprdata (electron-

photon-relaxation data) 12 (Hughes 2013).

Figure 3.2.  Flowchart of system of models.  Models (grey), input parameters (orange) 

and output (green).  Here, �̅�𝐹 is the mean-frequency specific energy,  and  are the 

linear and quadratic cell survival model parameters for the reference radiation (e.g., 60Co 

-rays), respectively, and P and P are the predicted cell survival parameters for the test 

radiation (e.g., CT beam spectrum, CT beam spectrum + iodine contrast).  The output 

summations from MCDS+MCNP are dose-averaged RBEDSB and �̅�𝐹 from the spectrum of 

electrons with kinetic energy E. 
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Figure 3.3.  Idealized MCDS+MCNP model of a cell culture monolayer (not to scale). 

Figure 3.4. MCNP6 model bremsstrahlung model of photon production and filtration: 

Top to bottom, X-ray tube containing a tungsten wedge with an anode angle of 7 within 

a vacuum envelope, a 0.8 x 0.9 cm monodirectional, monoenergetic beam of electrons is 

incident the tungsten wedge, lead collimation, F4 tally to record photon energies and 

directions, aluminum or other filtration, and the last F4 tally, which records the final 

diagnostic photon spectra. 
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Figure 3.5. Idealized MCDS+MCNP model of lymphocytes in blood (not to scale). 

Table 3.1.  Comparison of measured and simulated estimates of the absolute and relative 

numbers of DSB created by ultrasoft X-rays in Chinese hamster V79-4 cells 

Photon 

energy (keV) 

DSB/Gy/Gbp      

(de Lara et al.) 

DSB/Gy/Gbp 

(MCDS+MCNP) 

RBEDSB              

(de Lara et 

al.) 

RBEDSB 

(MCDS+MCNP) 

0.28 20.7 23.2 2.7 2.7 

0.96 17.4 20.8 2.3 2.4 

1.49 14.3 18.3 1.9 2.1 

4.55 10.4 13.3 1.4 1.5 

60Co -rays 7.6 8.6 1.0 1.0 
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Figure 3.6.  Cell survival as a function of dose due to exposure to low-energy X-rays.   

Spadinger and Palcic (1992) cell survival data for V79 and CHO cell lines (upper left and 

right graphs, respectively), Frankenberg et al. (2002) cell survival data for CGL1 cells 

(middle left graph), Hoshi et al. (1988) cell survival data for V79 cells (middle right 

graph), de Lara et al. (2002) cell survival data for V79 cells (lower left graph), and 

Fayard et al. 2002 data for V79 cells (lower right graph).  Dotted lines represent linear 

quadratic fits; solid lines represent an RMF-fit (Eq. 3.3). 
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Table 3.2.  Comparison of RBEDSB estimates using an RMF-fit (Eq. 3.3) and 

MCDS+MCNP simulations 

Reference 
Cell 

line 

Photon 

energy 

(keV)

RBEDSB 

(RMF-fit) 

RBEDSB 

(MCDS+MCNP) 

% diff, 

rel. to 

RMF-fit 

Spadinger and 

Palcic 

V79 250 1.13 1.14 0.88 

CHO 250 1.12 1.14 1.75 

V79 55 1.17 1.21 3.41 

CHO 55 1.21 1.21 0.00 

Frankenberg et al. 
CGL1 200 1.13 1.10 -2.65

CGL1 29 1.17 1.18 0.85

Hoshi et al. 

V79 180a 1.28 1.14 -11.0

V79 50b 1.49 1.17 -21.5

V79 40c 1.44 1.23 -14.6

V79 40 1.47 1.32 -10.2

De Lara et al. 
V79 4.55 1.42 1.50 5.63 

V79 0.28 2.67 2.70 1.12 

Fayard et al. 
V79 0.25 1.74 2.85 63.8 

V79 0.34 2.55 2.57 0.78 
a0.5 mm Al + 1mm Cu 
b0.7 mm Al 

c0.2 mm Al 

Table 3.3.  Photon/electron interaction dependence on iodine concentration and 

distribution from MCNP6 Table 130 

Iodine distribution 
% iodine by 

weight 

Compton 

recoil 

Photo-

electric 
Auger 

Homogenous 

0.00 53.6% 8.5% 37.9% 

0.48 17.7% 8.5% 73.8% 

4.81 2.8% 7.9% 89.3% 

Extracellular 
0.48 49.4% 10.2% 40.5% 

4.81 33.6% 14.9% 51.6% 
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Figure 3.7.  Dependence of the relative electron absorbed dose in a 5 m layer on iodine 

concentration in blood (by weight) surrounding the center sensitive volume, normalized 

to blood without contrast.  Solid lines indicate the absorbed dose for an extracellular 

iodine distribution in the microdosimetry phantom shown in Figure 3.5 (outside sensitive 

volumes), while dotted lines indicate a homogenous iodine distribution (throughout the 

phantom and sensitive volumes). 
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CHAPTER 4 

MCNP6 TALLYX IMPLEMENTATION FOR EFFICIENT 

MULTISCALE RELATIVE BIOLOGICAL  

EFFECTIVENESS (RBE) MODELING3 

4.1 Introduction 

This work proposes a more efficient and unified way to integrate information from 

the cell-level DNA damage software, the Monte Carlo Damage Simulation (MCDS)1-3, 

with the general-purpose Monte Carlo code, Monte Carlo N-Particle (MCNP6)4.  With 

the advancement of proton and heavy ion therapy, accurate relative biological 

effectiveness (RBE) modeling is key to the optimization and success of such treatments.  

It is desirable to have a computationally efficient and integrated solution that requires a 

minimal number of adjustable parameters and reliance on experimental data.  While most 

radiobiological studies have focused on DSB-induction as the primary initiating event for 

other effects such as chromosomal aberrations and cell death, SSB and BD have received 

far less attention.  A DSB, defined as at least two strand breaks on opposite side of the 

DNA strand within 10 base-pairs (bp) of each other, are the most difficult to repair.  

Within the DSB classification there are subsets of varying complexity, where DSBs 

3 This chapter is adapted from an article in preparation for submission to Medical Physics 
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include other strand breaks and base damages.  However, the  quantity of single-strand 

break (SSB) and base damage (BD) induction is much larger when compared to DSB, for 

example, for low-LET radiation, ~1,000 SSBs and up to 25,000 BDs per Gy per cell are 

induced, compared to only about 40 DSBs.1  DSBs and clustered lesions (consisting of 

>2 SSB, abasic (AP) sites, oxidized purine or pyrimidine bases, or double strand breaks 

(DSB), formed within one or two helix turns), also termed local multiply damaged sites 

(LMDS)5-7, are likely the initiating events in biological effects like reproductive cell 

death.  Others have proposed that further investigation is warranted to determine the 

degree which clusters of non-DSB lesions attribute to finding some situations in which 

DSBs alone cannot describe biological effects, such as loss of plasmid DNA 

functionality6.  Therefore, part of this work focuses on also integrating functions of SSB 

and BD induction functions into the MCNP6 source code.    

Utilizing the MCNP6 tallyx subroutine to integrate biophysical models into general 

purpose Monte Carlo codes is beneficial for efficient multiscale RBE modeling, 

especially for mixed fields of radiation.  It provides an easy way to generate dose-

averaged biological metrics within a single function, without the need for a custom 

lookup table for every particle type. It is also easier to modify the function if necessary 

for high-LET corrections, as compared to generating new tables of data, making it easier 

for the end-user and future applications. 
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4.2 Methods 

4.2.1 MCDS functions of RBEDSB, RBESSB and RBEBD 

As presented in Stewart et al.,8 the MCDS estimates of DSB induction produced 

in both aerobic and anoxic cells with respect to the particle’s (zeff/)2 have been fit to 

empirical formulas across a wide range of particle types and energies – electrons up to 

56Fe ions, with 2  (zeff/)2  105.  Here, zeff is the effective charge of the ion, which 

accounts for screening due to atomic electrons, and  is the velocity of the ion with 

respect to the speed of light.  Empirical formulas already derived (Eq. 4.1, 4.4), as well as 

newly fitted functions for SSB and BD induction (Eq. 4.2, 4.3, 4.5, 4.6) were used.  The 

TableCurve 2D Version 5.01.01 (SYSTAT Software Inc. 2002) software was used to 

perform an automated regression analysis of the MCDS estimates; utilizing the formula 

with the best r2.  Parameters used in Eq. 4.1 to 4.6 are contained in Table 4.1.      

Reference low-LET values to convert the number of cluster types per Gy per Gbp 

to respective RBE were obtained by modeling a 60Co source on a monolayer of cells and 

computing the dose-averaged RBE values in MCNP6.  For aerobic conditions the 

resultant values are 8.32 DSB, 188.63 SSB and 425.26 BD Gy-1Gbp-1.  Under anoxic 

conditions the values are 2.86 DSB, 115.53 SSB and 293.98 BD Gy-1Gbp-1.  Figure 4.1 

reflects the RBE using these reference values, from electrons up to 56Fe.  Here x=(zeff/)2 

Aerobic Cells (100% pO2) 

𝑅𝐵𝐸𝐷𝑆𝐵 = 𝑎 + 𝑏 − {𝑏(1−𝑑) + 𝑐𝑥(𝑑 − 1)}
1

1−𝑑 (4.1) 
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𝑅𝐵𝐸𝑆𝑆𝐵 =
𝑎+𝑐√𝑥+𝑒𝑥

1+𝑏√𝑥+𝑑𝑥+𝑓𝑥1.5                                                   (4.2) 

 

 

𝑅𝐵𝐸𝐵𝐷 =
𝑎+𝑐√𝑥+𝑒𝑥

1+𝑏√𝑥+𝑑𝑥+𝑓𝑥1.5                                                   (4.3) 

 

 

Anoxic Cells (0% pO2) 

 

 

 

       𝑅𝐵𝐸𝐷𝑆𝐵 =
𝑎+√𝑥{𝑐+√𝑥[𝑒+√𝑥(𝑔+𝑖√𝑥)]}

1+√𝑥{𝑏+√𝑥[𝑑+√𝑥(𝑓+ℎ√𝑥)]}
                                            (4.4) 

 

 

                       𝑅𝐵𝐸𝑆𝑆𝐵 =
𝑎+𝑐𝑙𝑛(𝑥)+𝑒𝑙𝑛(𝑥)2+𝑔𝑙𝑛(𝑥)3+𝑖𝑙𝑛(𝑥)4

1+𝑏𝑙𝑛(𝑥)+𝑑𝑙𝑛(𝑥)2+𝑓𝑙𝑛(𝑥)3+ℎ𝑙𝑛(𝑥)4+𝑗𝑙𝑛(𝑥)5                                (4.5) 

 

 

                       𝑅𝐵𝐸𝐵𝐷 =
𝑎+𝑐𝑙𝑛(𝑥)+𝑒𝑙𝑛(𝑥)2+𝑔𝑙𝑛(𝑥)3+𝑖𝑙𝑛(𝑥)4

1+𝑏𝑙𝑛(𝑥)+𝑑𝑙𝑛(𝑥)2+𝑓𝑙𝑛(𝑥)3+ℎ𝑙𝑛(𝑥)4+𝑗𝑙𝑛(𝑥)5                                 (4.6) 

 

4.2.2 Microdosimetric functions 

 
Past the absolute and relative yields of different DNA damage, it is advantageous 

to be able to estimate important microdosimetric quantities in a larger-scale general 

purpose Monte Carlo code.  For instance, to compute the average DSBs, SSBs or BDs per 

particle track, an important factor in the repair-misrepair-fixation (RMF) model of cell 

survival8,9 (and other RBE models), the mean-frequency specific energy must be known.  

The RMF has been applied to helium ion therapy10 and heavy ion therapy11 using a 

different combination of codes.  In the ICRU report 3612, the mean-frequency specific 

energy is defined as �̅�F  = 0.204LET/ρd2, where ρ is the density of water (1 g/cc) and d is 

the diameter of the nucleus (5 µm).  For particles with CSDA ranges > mean chord length 
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through the nucleus (2d/3), this is a good approximation and can be easily integrated into 

MCNP using its computed stopping power values.  For CSDA ranges ≤ the mean chord 

length �̅�F will be overestimated under the ICRU definition, while the MCDS computes �̅�F

to account for these “stoppers.”  The ICRU definition was integrated into the tallyx.F90 

subroutine for these cases, the variables for ρ and d could then be user-defined in the 

MCNP6 input file if desired.  Furthermore, by introducing the formulation of �̅�𝐹 directly 

into MCNP6, the impact of the chemical compositions of the nucleus of �̅�𝐹 can be 

assessed, as others have shown there can be significant differences in the number of 

ionization events using realistic molecular compositions and densities of cellular 

components when compared to a simple water medium,12 which MCDS and most other 

microdosimetry codes use.     

4.2.3 MCNP integration using the tallyx.f90 subroutine 

One current solution for computing dose-averaged values of RBEDSB, RBESSB, 

RBEBD and other relevant physical and radiobiological metrics as applied to MCNP6 is 

the use of dose response (DE/DF) functions.  The dose response functions modify a 

standard F6 heating tally with a lookup table that contains particle energy (DE) and 

corresponding RBEDSB, RBESSB, RBEBD values (DF) obtained from MCDS simulations.  

When assessing a mixed field of radiation, a DE/DF table is required for each particle 

type being tracked.  This approach has been used to test a variety of experimental and 

clinical scenarios, looking at electrons, light ions and neutron fields.6  Since this and past 

work has shown that all the DNA cluster types analyzed here follow the same trends with 

respect to (zeff/)2, it follows that a function describing these trends could serve as a 
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generalized equation embedded in MCNP6 that could be called for any simulation, 

regardless of mode or particle(s) type.  For accurate RBE calculations, all possible 

secondary particles must be tracked, as they mediate the absorbed dose and RBE effects.  

Using dose response functions, 2n tallies are required, where n is the number of particle 

types tracked.  Using tallyx, only 2 tallies are required regardless of the quantity of 

particle types tracked; one tally for total absorbed dose and one tally for the total RBE-

weighted dose (RWD).    

 The tallyx.f90 subroutine is part of the MCNP6 source code that allows the user 

to modify and customize the standard tallies.  The tallyx implementation described here 

integrates Eq.1-6 derived above to modify any standard MCNP6 tally, including lattice 

tallies.  The tallyx subroutine, as used here, pulls data for the rest mass, kinetic energy 

and charge of the particle(s) from other subroutines to calculate (zeff/)2.  Using the card 

FUn in the MCNP6 input file calls the tallyx subroutine to modify the tally, where n is 

the tally number.  The resultant output is a dose-weighted or dose-weighted RBE.  Using 

F6:# (all heavy ions, Z > 2) or +F6 (all charged particles), the output is defined as: 

𝑅𝑊𝐷𝑖 = ∑ ∫ 𝐷𝑗
∞

0𝑗 (𝐸)𝑅𝐵𝐸𝑖,𝑗(𝐸) (4.7) 

Here, the product Dj(E)RBEi,j(E) is integrated over all particle types j and kinetic 

energies E for the desired endpoints i (e.g., DSB, SSB, BD).  As it relates to the dose 

response table option, each modified tally only contributes to the output of a one specific 

particle j and must be weighted and summed with any other transported particles dose 

response output.  
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In the same manner, LET and �̅�F  are dose-weighted, but using the built-in physics 

models of MCNP, rather than lookup tables.  Since the MCNP-computed stopping 

powers are easy to access in the source code, it is called to compute LET as well as �̅�F  for 

CSDA ranges >> mean chord length through the nucleus using the ICRU formula in 

Section 4.3.2.  At ranges approaching the nucleus diameter, it will integrate the LET over 

the path length to estimate �̅�F.  For particle ranges < mean chord length, it is assumed that 

all the energy of the particle is deposited within the target (cell nucleus) and hence, logic 

is built into the tallyx.F90 subroutine to switch over to the formulation of �̅�F = KE 

(kinetic energy of incident particle)/ mass of nucleus.  This inclusion allows for all 

necessary radiobiological variables to be obtained/computed within MCNP without 

external libraries or lookup tables from MCDS. 

4.3 Results 

4.3.1 Comparisons of DE/DF with TALLYX Results 

As an initial test, a monoenergtic and polyenergetic selection of protons, alpha 

particles and carbon ions were simulated on a cell monolayer in aerobic and anoxic 

conditions (utilizing Eq. 1 and Eq. 4, respectively) and dose and dose  RBEDSB are 

tallied using both the tallyx approach and dose response approach.  Table 4.2 shows the 

results of the RBEDSB using the different approaches, with differences < 0.5%.  

Further simulations were performed for a mixed particle field.  Table 4.3 shows 

some result for some simple mixed fields.  The examples use a mix of alpha particles, 

carbon ions and protons.  For the DE/DF implementation, two custom dose response 

tables are needed and the dose-averaging of the RBE is computed manually from four 
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separate tally results (DE/DF output + absorbed dose output).  For the tallyx 

implementation only the +F6 tally is needed and all particle dose and RBE contributions 

and weighting is computed in one tally.  Functions of RBESSB and RBEBD were also 

tested for monoenergetic and mixed fields, results are tabulated in Tables 4.4 and 4.5.  

With the exception of some of the carbon ion simulations, which are still less than ~3% 

different, the two approaches agree within 0.5%.  This may be due to the differences in 

(zeff/)2 calculations between MCDS and MCNP, but it is still a minor discrepancy. 

4.4 Discussion and Conclusions 

A new approach to integrating RBE models into MCNP6 is proposed and 

benchmarked with an existing solution.  While the tallyx approach has not been found to 

speed up computational time to any significant degree compared to dose response 

functions in the cases tested here, its utility is apparent, from a simplification and 

efficiency standpoint, during simulations involving mixed radiation fields (using either 

the F6:# (heavy ion heating tally) or +F6 (total heating tally) in a mixed-field simulation).  

To properly assess the RBE in a mixed field of radiation, all possible secondary charged 

particles are tracked and weighted.  Using tallyx, all ion RBE parameters are computed 

with a single function and multiple lookup tables are unnecessary.  The microdosimetric 

functions of LET and 𝑧̅F  are also integrated, but utilizing MCNP’s built-in physics 

models.  Additionally, new empirical formulas for the endpoints of SSB and BD 

induction have been derived across a large range of particle types and charges that they 

can be implemented within the tallyx.f90 subroutine in the same manner as the RBEDSB 

formulas were.  This provides further means to investigate these lesser studied lesions in 
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the context of a multiscale model. 

The tallyx implementation discussed in this paper is still at an early stage of 

development and needs some work to further refine the user interface and variable 

selection in the MCNP source code to make it more accessible to all users who may wish 

to implement the source code modification.  However, initial results are encouraging and 

as treatment planning optimization shifts from physical constraints (e.g., dose-volume) to 

biological response models15, this implementation should prove a useful tool in this 

ongoing emphasis.  Described here, equations 1-6 can also be utilized in other general-

purpose Monte Carlo codes or treatment planning systems (TPS) that have the ability to 

modify the tally or scoring function as a function of (zeff/)2.    
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Figure 4.1. Plots of RBEDSB, RBESSB and RBEBD vs. (zeff/)2 for mammalian cells (dnucleus 

= 5 m) in aerobic (100% pO2) and anoxic (0% pO2) environments with respect to 60Co 

-rays.  Data from MCDS version 3.10A simulations. 
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Table 4.2. Comparison between DE/DF and TALLYX dose-averaged RBEDSB results, 

single ion tallies for mono and polyenergetic sources 

RBEDSB 

particle % O2 E (MeV) DE/DF TALLYX Diff (%)* 

1H+ 100 20 1.0644 1.0638 -0.048

1H+ 0 20 1.0675 1.0662 -0.118

1H+ 100 0.5-16 1.5085 1.5073 -0.076

1H+ 0 0.5-16 1.9254 1.9282 0.141

4He2+ 100 5 2.7287 2.7298 0.039

4He2+ 0 5 5.9464 5.9533 0.115

4He2+ 100 0.5-3 3.2243 3.2268 0.077

4He2+ 0 0.5-3 9.0719 9.0949 0.254

12C6+ 100 20 3.3228 3.3333 0.313

21C6+ 0 20 9.5893 9.6262 0.385
*difference in tallyx with respect to de/df result

Table 4.3. Comparison between DE/DF (F6:# + F6:A) and TALLYX (+F6) dose-  

averaged RBEDSD results, mixed ion tallies for polyenergetic sources

RBEDSB 

particles % O2 E (MeV) weight DE/DF TALLYX Diff (%)* 

4He2+ 

100 
5 0.75 

3.1437 3.1441 0.011 
12C6+ 20 0.25 

4He2+ 0 5 0.75 8.4818 8.4724 -0.111

12C6+ 20 0.25 

1H+ 

100 
10 0.5 

2.5190 2.5194 0.016 
4He2+ 3 0.5 

1H+ 

0 
10 0.5 

5.2533 5.2693 0.304 
4He2+ 3 0.5 
  *difference in tallyx with respect to de/df results 
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Table 4.4. Comparison between DE/DF and TALLYX dose-averaged RBESSB and RBEBD 

results, single ion tallies for mono and polyenergetic sources 

RBESSB RBEBD 

particles % 

O2 

E 

(MeV) 

DE/DF TALLYX Diff 

(%)*

DE/DF TALLYX Diff 

(%)* 
1H+ 100 20 0.9899 0.9904 0.047 0.9710 0.9698 -0.132

1H+ 0 20 0.9945 0.9950 0.057 0.9842 0.9857 0.148

1H+ 100 0.5-16 0.9046 0.9032 0.156 0.7835 0.7840 0.067

1H+ 0 0.5-16 0.9751 0.9747 -0.034 0.8688 0.8694 0.070

4He2+ 100 5 0.6309 0.6312 0.047 0.3211 0.3218 0.215

4He2+ 0 5 0.9823 0.9822 -0.011 0.5139 0.5156 0.330

4He2+ 100 0.5-3 0.4408 0.4410 0.053 0.1616 0.1613 -0.155

4He2+ 0 0.5-3 0.7246 0.7242 -0.061 0.2427 0.2423 -0.179

*difference in tallyx with respect to de/df results

Table 4.5.  Comparison between DE/DF (F6:# + F6:A,H) and TALLYX (+F6) dose-

averaged RBESSB and RBEBD results, mixed ion tallies for polyenergetic sources 

RBESSB RBEBD 

particles 
% 

O2 

E 

(MeV) 
wgt. DE/DF TALLYX 

Diff 

(%)* DE/DF TALLYX 
Diff 

(%)* 

4He2+ 

100 
5 0.75 

0.6160 0.6300 2.272 0.1361 0.1398 0.272 
12C6+ 20 0.25 

4He2+ 0 5 0.75 
0.3835 0.3917 2.145 0.2015 0.2081 3.27 

12C6+ 20 0.25 

1H+ 

100 
10 0.5 

0.6715 0.6720 0.076 0.4005 0.4004 -0.250
4He2+ 3 0.5 

1H+ 

0 
10 0.5 

0.9350 0.9343 
-

0.080 
0.5652 0.5653 0.018 

4He2+ 3 0.5 
*difference in tallyx with respect to de/df results



CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Contributions 

In this work, the accuracy of a useful multiscale RBE model has been tested against 

in vitro and in vivo laboratory experiments and then applied to a range of clinical issues 

arising radiology (diagnostic X-ray imaging) and in radiation oncology.  The special 

cases examined found 1) the RBE for high-LET, short-range particles can be modeled in 

the multiscale framework, but some correction may be needed to improve the accuracy of 

the model may be needed 2) for low-LET particles, specifically the range of secondary 

electrons encountered in diagnostic X-ray imaging, the RBEDSB alone can be used to 

accurately predict (within a few percent) other photon and electron cell survival with the 

α and β parameters for a reference radiation and essentially no ad hoc variables (e.g., the

low-dose term in the RMF model is negligible) and 3) beyond DSB, empirical formulas 

can be fitted to SSB and BD induction, as they follow the same trends across a wide 

range of particle types and energies.  These empirical formulas have been integrated in 

MCNP as generalized formulas for generating a wide-variety of biological metrics from 

macroscopic simulations of radiation transport.  This can greatly simplify and streamline 

the multiscale implementation for a variety of different, complex radiation fields.
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5.1.1 RBE for high-LET particles and effects of boron distribution 

In the case of BNCT, past in vitro/in vivo were benchmarked with the multiscale    

model with good agreement.  Several neutron sources, including one used for fast neutron 

therapy (UW CNTS) were examined for their impact on dose and RBE as well as to 

assess hypothetical boron distributions.  The high-LET 7Li particles and alpha particles 

tested the limits of the multiscale model, LET > 200 keV/m and CSDA ranges  5 m, 

but it was shown that even these scenarios can be assessed with the model with some 

modifications.  This will aid the efforts in advancing RBE modeling in heavy ion therapy 

modalities, as these special cases are encountered near the end of the particle’s track 

(Bragg peak), where there is a buildup of high-energy nuclear fragments.  As heavier ions 

(Z > 2) are of interest for radiotherapy, the need for accurate RBE modeling becomes 

increasingly important. 

5.1.2 RBE for low-LET particles and effects of X-ray contrast 

The most important finding from examining the RBE of diagnostic CT X-rays 

(with or without contrast) within the repair-misrepair-fixation (RMF) model was a further 

simplification of the framework to quantify cell survival.  As discussed in Chapter 3, it 

was determined that for the range of secondary electron energies encountered in 

diagnostic X-ray exams, and further, really the entire range of electron energies applied 

to mammalian cells, that RBELD = RBEHD = RBEDSB.  This provides support that, 

regardless of the secondary electron energy spectra, estimates of RBEDSB alone can be 

used to accurately predict other photon and electron cell survival curves with no other 

knowledge than the survival curve for a reference radiation (e.g., 60Co or 137Cs -rays).  
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Benchmarking the model-predicted estimates DSB induction against results from in vitro 

and in vivo experiments in blood lymphocytes showed good agreement for high and low 

concentrations of contrast.  The findings also showed that the more plausible case in 

iodine-enhanced CT, that the iodine was extracellular with respect to the blood 

lymphocytes, yielded model-predicted results in-line with experimental data, where 

homogeneous distribution would overestimate dose and RBE effects.  There still remains 

the question of whether the impact of these enhancements to the blood will translate into 

increased long-term cancer risk in patients undergoing these exams, but the tools laid out 

here can aid in further studies.     

5.1.3 Refinements, additions, and simplification of the model 

The last part of this work develops a method to further integrate and streamline the 

computational implementation of the model in MCNP.  It also expands the scope of the 

model to encompass categories of DNA damage other than the DSB (SSB and base 

damage).  The majority of the reported studies (Chapter 2-3) used dose response 

functions, or essentially look up tables in MCNP6 to compute the RBE values, requiring 

a unique table generated from MCDS output per particles type.  With the work contained 

in Chapter 4, general, empirical formulas are integrated into the source code of MCNP6 

which can be called for any particle(s) for dose-averaged output of RBEDSB, RBESSB, and 

RBEBD.  Additional microdosimetric parameters are also integrated, which are needed for 

integration of the RMF model and other applications.  As mentioned in the chapter, it is 

still at an early stage of development and there is much potential for expansion.     
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5.2 Future Work 

There are several aspects of this work that can be investigated further and validated 

with experimental data:   

▪ Further examination of the so called “overkill” phenomenon that occurs

with high-LET particles, such as the 7Li3+ ions in BNCT and fragmentation

ions from heavy ion therapy.  That is, the decrease in RBE or cell killing per

unit dose past a certain “peak” LET (usually ~100-250 keV/m).  Most

common approaches use a saturation or correction factor to account for

RBE decreases at high-LET, but the mechanism of this phenomenon is still

not fully understood and a mechanistic model of this would be very

beneficial.  This is briefly discussed in Chapter 2, specifically the

description of Figure 2.1, and, as mentioned in Chapter 4, some theorize

that changes in yields of other simpler forms of DNA damage have effects

on higher-order biological effects.

▪ Regarding contrast-enhanced CT, it is clear that there is a dose-enhancing

effect when using X-ray contrasts that is not yet considered in patient dose

estimates.  Establishing a method to calculate the excess dose a patient

received from injected contrast using a combination of the CT data

(increase in HU) and the multiscale model would be a beneficial tool that

could be developed.  Further studies are needed to assess long-term effects.

▪ Additionally, investigation into the dose and RBE effects for interventional

radiology and cardiology procedures that utilize contrast is worthwhile,

since it is expected that the effect is even greater due to the lower kVp and
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filtration used in fluoroscopy and angiography. 

▪ Even though the multiscale model captures all the major trends in RBE,

other effects that aren’t explicitly considered with the presented model, such

as bystander effects and immune response warrant further review.

▪ As experimental detection methods and studies of SSB and BD induction

improve, the proposed multiscale model can be further benchmarked

▪ Beyond the special case scenarios examined in this work, this multiscale

model can be applied to a myriad of other cases, for example, space and

cosmic ray radiation RBE, radiation protection, etc.  A new feature in

MCNP6.1.1b is the addition of the cosmic-source heavy ion upgrade, which

includes 14N, 28Si and 56Fe, which represents a range of actual cosmic-ray

heavy ions. This improvement generally increases the production of

secondary particles within the earth’s atmosphere and the data is location

dependent.  The multiscale model used throughout this work could be used

to assess both alphas, protons and the new heavy ion data of cosmic rays

and provide guidance for radiation protection.

5.3 Other Related Publications and Abstracts 

Stewart, R. D.; Streitmatter, S. W.; Argento, D. C.; Kirkby, C.; Goorley, J. T.; Moffitt, 

G.; Jevremovic, T.; Sandison, G. A. Rapid MCNP Simulation of DNA Double 

Strand Break (DSB) Relative Biological Effectiveness (RBE) For Photons, 

Neutrons, And Light Ions. Phys. Med. Biol. 2015, 60 (21), 8249–8274 DOI: 

10.1088/0031-9155/60/21/8249. 

Stewart, R.; Streitmatter, S.; Traneus, E.; Moskvin, V.; Schuemann, J. Benchmarks of a 

Proton Relative Biological Effectiveness (RBE) Model for DNA Double Strand 

Break (DSB) Induction in the FLUKA, MCNP, TOPAS, and RayStation™ 



108 

Treatment Planning System, 58th Annual Meeting of the American Association of 

Physicists in Medicine (AAPM); Washington DC, USA, July 31-August 4, 2016; 

American Association of Physicist in Medicine: Alexandria, VA, 2016; MO‐FG‐
CAMPUS‐TeP3‐02. 

Streitmatter, S.; Stewart, R.; Sandison G.; Relative Biological Effectiveness (RBE) of 

Protons in Pristine Bragg Peaks, 55th Annual Meeting of the American Association 

of Physicists in Medicine (AAPM); Indianapolis, IN, USA, August 4-8, 2013; 

American Association of Physicist in Medicine: Alexandria, VA, 2013; WE-E-108-

03.



APPENDIX A 

MCNP6 DOSE RESPONSE CARDS (DE/DF) 

The dose response cards (DE/DF) utilized for computing dose-averaged estimates of 

RBEDSB, �̅�F, LET, RBESSB and RBEBD, etc. contained in this dissertation are listed below.  

Here, the “intra-track RMF interaction term” is equal to RBEDSB
2 × �̅�F.  They are 

compatible with MCNP5 (electrons only), MCNPX and the most current MCNP 

software version, MCNP6.1.1b.  Note that for heavy ions (Z>2), the additional card FT 

RES is needed to separate the ion of interest from all heavy ion contribution (particle 

identifier ‘#’).  For example, for 7Li, the card FT RES 3007 is required, where 3007 is 

the nuclide identification number (ZAID), with the format ZZZAAA.  Also, listed at the 

header of each set of dose response cards are the corresponding DSB, SSB and BD Gy-1 

Gbp-1 for 60Co.  To convert tally results from RBEDSB, RBESSB and RBEBD to absolute 

DSB, SSB or BD Gy-1 Gbp-1, simply multiply the dose-averaged RBE by the 60Co 

reference values.  These lookup tables were efficiently constructed with the use of two 

custom Python scripts, which are contained in Appendix B.  The work presented in 

Chapter 4 is expected to supersede this solution, but further work on the user interface 

and adjustable variables are needed and this will remain the best solution for use without 

access to the MCNP source code.
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Protons 

Proton DOSE-RESPONSE FUNCTIONS FOR USE IN MCNP6 (April 25, 2017) 

Data generated using MCDS Version 3.10A  05-DEC-2011 

C 

C  DSB (60Co):   8.32 

C  SSB (60Co): 188.63 

C  BD  (60Co): 425.26 

C 

C  ***  ============================================================ 

C  ***   Proton  DOSE, RBE AND RELATED TALLIES 

C  ***  ------------------------------------------------------------ 

C 

FC1016  Proton Absorbed Dose 

F1016:H  1 

C 

FM1016  0.1602  $MeV/g to nGy 

C 

C 

FC1026  Proton RBE for DSB induction (100% pO2) relative to 60Co 

F1026:H  1 

C 

FM1026  0.1602  $MeV/g to nGy 

DE1026  1.000E-03 1.200E-03 1.450E-03 1.750E-03 2.100E-03 2.540E-03 

 3.050E-03 3.680E-03 4.430E-03 5.340E-03 6.430E-03 7.740E-03 

 9.330E-03 1.120E-02 1.350E-02 1.630E-02 1.960E-02 2.360E-02 

 2.850E-02 3.430E-02 4.130E-02 4.980E-02 5.990E-02 7.220E-02 

 8.700E-02 1.050E-01 1.260E-01 1.520E-01 1.830E-01 2.210E-01 

 2.660E-01 3.200E-01 3.850E-01 4.640E-01 5.590E-01 6.730E-01 

 8.110E-01 9.770E-01 1.180E+00 1.420E+00 1.710E+00 2.060E+00 

 2.480E+00 2.980E+00 3.590E+00 4.330E+00 5.210E+00 6.280E+00 

 7.560E+00 9.110E+00 1.100E+01 1.320E+01 1.590E+01 1.920E+01 

 2.310E+01 2.780E+01 3.350E+01 4.040E+01 4.860E+01 5.860E+01 

 7.050E+01 8.500E+01 1.020E+02 1.230E+02 1.480E+02 1.790E+02 

 2.150E+02 2.600E+02 3.130E+02 3.760E+02 4.530E+02 5.460E+02 

 6.580E+02 7.920E+02 9.550E+02 1.150E+03 1.380E+03 1.670E+03 

 2.010E+03 2.420E+03 2.920E+03 3.510E+03 4.230E+03 5.090E+03 

 6.140E+03 7.390E+03 8.900E+03 1.070E+04 1.290E+04 1.560E+04 

 1.870E+04 2.260E+04 2.720E+04 3.270E+04 3.940E+04 4.750E+04 

 5.720E+04 6.890E+04 8.300E+04 1.000E+05 

DF1026  3.358E+00 3.356E+00 3.355E+00 3.354E+00 3.350E+00 3.349E+00 

 3.350E+00 3.345E+00 3.343E+00 3.339E+00 3.336E+00 3.331E+00 

 3.325E+00 3.325E+00 3.318E+00 3.309E+00 3.302E+00 3.290E+00 

 3.279E+00 3.265E+00 3.248E+00 3.226E+00 3.203E+00 3.170E+00 

 3.135E+00 3.094E+00 3.043E+00 2.985E+00 2.912E+00 2.829E+00 

 2.741E+00 2.638E+00 2.530E+00 2.410E+00 2.288E+00 2.163E+00 

 2.043E+00 1.921E+00 1.806E+00 1.704E+00 1.608E+00 1.523E+00 

 1.447E+00 1.379E+00 1.322E+00 1.270E+00 1.228E+00 1.190E+00 

 1.158E+00 1.131E+00 1.109E+00 1.091E+00 1.073E+00 1.060E+00 

 1.047E+00 1.038E+00 1.031E+00 1.025E+00 1.020E+00 1.015E+00 

 1.011E+00 1.009E+00 1.006E+00 1.001E+00 1.002E+00 9.991E-01 

 9.976E-01 9.962E-01 9.979E-01 9.960E-01 9.958E-01 9.942E-01 

 9.953E-01 9.950E-01 9.948E-01 9.939E-01 9.931E-01 9.941E-01 

 9.940E-01 9.923E-01 9.939E-01 9.930E-01 9.942E-01 9.941E-01 

 9.939E-01 9.928E-01 9.929E-01 9.921E-01 9.913E-01 9.920E-01 

 9.920E-01 9.938E-01 9.938E-01 9.938E-01 9.938E-01 9.938E-01 

 9.938E-01 9.938E-01 9.938E-01 9.938E-01 

C 
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C 

FC1036  Proton RBE for SSB induction (100% pO2) relative to 60Co 

F1036:H  1 

C 

FM1036  0.1602  $MeV/g to nGy 

DE1036  1.000E-03 1.200E-03 1.450E-03 1.750E-03 2.100E-03 2.540E-03 

 3.050E-03 3.680E-03 4.430E-03 5.340E-03 6.430E-03 7.740E-03 

 9.330E-03 1.120E-02 1.350E-02 1.630E-02 1.960E-02 2.360E-02 

 2.850E-02 3.430E-02 4.130E-02 4.980E-02 5.990E-02 7.220E-02 

 8.700E-02 1.050E-01 1.260E-01 1.520E-01 1.830E-01 2.210E-01 

 2.660E-01 3.200E-01 3.850E-01 4.640E-01 5.590E-01 6.730E-01 

 8.110E-01 9.770E-01 1.180E+00 1.420E+00 1.710E+00 2.060E+00 

 2.480E+00 2.980E+00 3.590E+00 4.330E+00 5.210E+00 6.280E+00 

 7.560E+00 9.110E+00 1.100E+01 1.320E+01 1.590E+01 1.920E+01 

 2.310E+01 2.780E+01 3.350E+01 4.040E+01 4.860E+01 5.860E+01 

 7.050E+01 8.500E+01 1.020E+02 1.230E+02 1.480E+02 1.790E+02 

 2.150E+02 2.600E+02 3.130E+02 3.760E+02 4.530E+02 5.460E+02 

 6.580E+02 7.920E+02 9.550E+02 1.150E+03 1.380E+03 1.670E+03 

 2.010E+03 2.420E+03 2.920E+03 3.510E+03 4.230E+03 5.090E+03 

 6.140E+03 7.390E+03 8.900E+03 1.070E+04 1.290E+04 1.560E+04 

 1.870E+04 2.260E+04 2.720E+04 3.270E+04 3.940E+04 4.750E+04 

 5.720E+04 6.890E+04 8.300E+04 1.000E+05 

DF1036  3.612E-01 3.622E-01 3.634E-01 3.647E-01 3.661E-01 3.676E-01 

 3.693E-01 3.713E-01 3.734E-01 3.759E-01 3.785E-01 3.817E-01 

 3.853E-01 3.888E-01 3.934E-01 3.984E-01 4.040E-01 4.105E-01 

 4.179E-01 4.261E-01 4.357E-01 4.465E-01 4.589E-01 4.731E-01 

 4.890E-01 5.069E-01 5.267E-01 5.491E-01 5.734E-01 5.999E-01 

 6.282E-01 6.575E-01 6.875E-01 7.179E-01 7.480E-01 7.772E-01 

 8.048E-01 8.300E-01 8.537E-01 8.745E-01 8.930E-01 9.093E-01 

 9.234E-01 9.356E-01 9.461E-01 9.550E-01 9.623E-01 9.689E-01 

 9.743E-01 9.788E-01 9.827E-01 9.857E-01 9.885E-01 9.907E-01 

 9.928E-01 9.943E-01 9.956E-01 9.966E-01 9.974E-01 9.981E-01 

 9.988E-01 9.992E-01 9.997E-01 1.000E+00 1.000E+00 1.001E+00 

 1.001E+00 1.001E+00 1.001E+00 1.001E+00 1.001E+00 1.001E+00 

 1.001E+00 1.002E+00 1.001E+00 1.002E+00 1.002E+00 1.002E+00 

 1.002E+00 1.002E+00 1.002E+00 1.002E+00 1.002E+00 1.002E+00 

 1.002E+00 1.002E+00 1.002E+00 1.002E+00 1.002E+00 1.002E+00 

 1.002E+00 1.002E+00 1.002E+00 1.002E+00 1.002E+00 1.002E+00 

 1.002E+00 1.002E+00 1.002E+00 1.002E+00 

C 

C 

FC1046  Proton RBE for BD induction (100% pO2) relative to 60Co 

F1046:H  1 

C 

FM1046  0.1602  $MeV/g to nGy 

DE1046  1.000E-03 1.200E-03 1.450E-03 1.750E-03 2.100E-03 2.540E-03 

 3.050E-03 3.680E-03 4.430E-03 5.340E-03 6.430E-03 7.740E-03 

 9.330E-03 1.120E-02 1.350E-02 1.630E-02 1.960E-02 2.360E-02 

 2.850E-02 3.430E-02 4.130E-02 4.980E-02 5.990E-02 7.220E-02 

 8.700E-02 1.050E-01 1.260E-01 1.520E-01 1.830E-01 2.210E-01 

 2.660E-01 3.200E-01 3.850E-01 4.640E-01 5.590E-01 6.730E-01 

 8.110E-01 9.770E-01 1.180E+00 1.420E+00 1.710E+00 2.060E+00 

 2.480E+00 2.980E+00 3.590E+00 4.330E+00 5.210E+00 6.280E+00 

 7.560E+00 9.110E+00 1.100E+01 1.320E+01 1.590E+01 1.920E+01 

 2.310E+01 2.780E+01 3.350E+01 4.040E+01 4.860E+01 5.860E+01 

 7.050E+01 8.500E+01 1.020E+02 1.230E+02 1.480E+02 1.790E+02 

 2.150E+02 2.600E+02 3.130E+02 3.760E+02 4.530E+02 5.460E+02 

 6.580E+02 7.920E+02 9.550E+02 1.150E+03 1.380E+03 1.670E+03 

 2.010E+03 2.420E+03 2.920E+03 3.510E+03 4.230E+03 5.090E+03 

 6.140E+03 7.390E+03 8.900E+03 1.070E+04 1.290E+04 1.560E+04 

 1.870E+04 2.260E+04 2.720E+04 3.270E+04 3.940E+04 4.750E+04 
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            5.720E+04 6.890E+04 8.300E+04 1.000E+05 

DF1046      1.123E-01 1.129E-01 1.135E-01 1.141E-01 1.149E-01 1.157E-01 

            1.166E-01 1.176E-01 1.188E-01 1.202E-01 1.216E-01 1.233E-01 

            1.253E-01 1.275E-01 1.300E-01 1.329E-01 1.362E-01 1.400E-01 

            1.445E-01 1.499E-01 1.558E-01 1.631E-01 1.712E-01 1.810E-01 

            1.927E-01 2.065E-01 2.221E-01 2.411E-01 2.630E-01 2.890E-01 

            3.179E-01 3.507E-01 3.869E-01 4.272E-01 4.697E-01 5.142E-01 

            5.596E-01 6.048E-01 6.495E-01 6.912E-01 7.303E-01 7.665E-01 

            7.992E-01 8.279E-01 8.537E-01 8.765E-01 8.960E-01 9.131E-01 

            9.275E-01 9.400E-01 9.505E-01 9.593E-01 9.668E-01 9.731E-01 

            9.783E-01 9.827E-01 9.865E-01 9.896E-01 9.922E-01 9.942E-01 

            9.960E-01 9.976E-01 9.988E-01 9.998E-01 1.001E+00 1.001E+00 

            1.002E+00 1.002E+00 1.003E+00 1.003E+00 1.003E+00 1.004E+00 

            1.004E+00 1.004E+00 1.004E+00 1.004E+00 1.004E+00 1.004E+00 

            1.004E+00 1.004E+00 1.005E+00 1.005E+00 1.005E+00 1.004E+00 

            1.005E+00 1.005E+00 1.005E+00 1.005E+00 1.005E+00 1.005E+00 

            1.005E+00 1.005E+00 1.005E+00 1.005E+00 1.005E+00 1.005E+00 

            1.005E+00 1.005E+00 1.005E+00 1.005E+00 

C 

C 

FC1056      Proton LET (keV/um)  

F1056:H     1 

C 

FM1056      0.1602  $MeV/g to nGy 

DE1056      1.000E-03 1.200E-03 1.450E-03 1.750E-03 2.100E-03 2.540E-03 

            3.050E-03 3.680E-03 4.430E-03 5.340E-03 6.430E-03 7.740E-03 

            9.330E-03 1.120E-02 1.350E-02 1.630E-02 1.960E-02 2.360E-02 

            2.850E-02 3.430E-02 4.130E-02 4.980E-02 5.990E-02 7.220E-02 

            8.700E-02 1.050E-01 1.260E-01 1.520E-01 1.830E-01 2.210E-01 

            2.660E-01 3.200E-01 3.850E-01 4.640E-01 5.590E-01 6.730E-01 

            8.110E-01 9.770E-01 1.180E+00 1.420E+00 1.710E+00 2.060E+00 

            2.480E+00 2.980E+00 3.590E+00 4.330E+00 5.210E+00 6.280E+00 

            7.560E+00 9.110E+00 1.100E+01 1.320E+01 1.590E+01 1.920E+01 

            2.310E+01 2.780E+01 3.350E+01 4.040E+01 4.860E+01 5.860E+01 

            7.050E+01 8.500E+01 1.020E+02 1.230E+02 1.480E+02 1.790E+02 

            2.150E+02 2.600E+02 3.130E+02 3.760E+02 4.530E+02 5.460E+02 

            6.580E+02 7.920E+02 9.550E+02 1.150E+03 1.380E+03 1.670E+03 

            2.010E+03 2.420E+03 2.920E+03 3.510E+03 4.230E+03 5.090E+03 

            6.140E+03 7.390E+03 8.900E+03 1.070E+04 1.290E+04 1.560E+04 

            1.870E+04 2.260E+04 2.720E+04 3.270E+04 3.940E+04 4.750E+04 

            5.720E+04 6.890E+04 8.300E+04 1.000E+05 

DF1056      1.737E+01 1.811E+01 1.905E+01 2.018E+01 2.148E+01 2.310E+01 

            2.492E+01 2.709E+01 2.955E+01 3.237E+01 3.551E+01 3.897E+01 

            4.276E+01 4.673E+01 5.098E+01 5.537E+01 5.966E+01 6.385E+01 

            6.782E+01 7.130E+01 7.421E+01 7.643E+01 7.781E+01 7.831E+01 

            7.788E+01 7.649E+01 7.429E+01 7.124E+01 6.755E+01 6.327E+01 

            5.869E+01 5.391E+01 4.907E+01 4.424E+01 3.960E+01 3.522E+01 

            3.113E+01 2.738E+01 2.394E+01 2.091E+01 1.821E+01 1.581E+01 

            1.370E+01 1.188E+01 1.026E+01 8.837E+00 7.620E+00 6.556E+00 

            5.641E+00 4.848E+00 4.157E+00 3.582E+00 3.077E+00 2.638E+00 

            2.269E+00 1.953E+00 1.680E+00 1.446E+00 1.250E+00 1.080E+00 

            9.369E-01 8.139E-01 7.120E-01 6.231E-01 5.487E-01 4.842E-01 

            4.318E-01 3.861E-01 3.488E-01 3.181E-01 2.921E-01 2.707E-01 

            2.533E-01 2.393E-01 2.281E-01 2.194E-01 2.129E-01 2.078E-01 

            2.044E-01 2.021E-01 2.008E-01 2.003E-01 2.004E-01 2.009E-01 

            2.018E-01 2.029E-01 2.041E-01 2.055E-01 2.070E-01 2.085E-01 

            2.099E-01 2.114E-01 2.129E-01 2.143E-01 2.157E-01 2.170E-01 

            2.183E-01 2.196E-01 2.208E-01 2.220E-01 

C 

C 

FC1066      Proton ZF (mean specific energy)  
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F1066:H  1 

C 

FM1066  0.1602  $MeV/g to nGy 

DE1066  1.000E-03 1.200E-03 1.450E-03 1.750E-03 2.100E-03 2.540E-03 

 3.050E-03 3.680E-03 4.430E-03 5.340E-03 6.430E-03 7.740E-03 

 9.330E-03 1.120E-02 1.350E-02 1.630E-02 1.960E-02 2.360E-02 

 2.850E-02 3.430E-02 4.130E-02 4.980E-02 5.990E-02 7.220E-02 

  8.700E-02 1.050E-01 1.260E-01 1.520E-01 1.830E-01 2.210E-01 

 2.660E-01 3.200E-01 3.850E-01 4.640E-01 5.590E-01 6.730E-01 

 8.110E-01 9.770E-01 1.180E+00 1.420E+00 1.710E+00 2.060E+00 

 2.480E+00 2.980E+00 3.590E+00 4.330E+00 5.210E+00 6.280E+00 

 7.560E+00 9.110E+00 1.100E+01 1.320E+01 1.590E+01 1.920E+01 

 2.310E+01 2.780E+01 3.350E+01 4.040E+01 4.860E+01 5.860E+01 

 7.050E+01 8.500E+01 1.020E+02 1.230E+02 1.480E+02 1.790E+02 

 2.150E+02 2.600E+02 3.130E+02 3.760E+02 4.530E+02 5.460E+02 

 6.580E+02 7.920E+02 9.550E+02 1.150E+03 1.380E+03 1.670E+03 

 2.010E+03 2.420E+03 2.920E+03 3.510E+03 4.230E+03 5.090E+03 

 6.140E+03 7.390E+03 8.900E+03 1.070E+04 1.290E+04 1.560E+04 

 1.870E+04 2.260E+04 2.720E+04 3.270E+04 3.940E+04 4.750E+04 

 5.720E+04 6.890E+04 8.300E+04 1.000E+05 

DF1066  2.448E-03 2.937E-03 3.549E-03 4.283E-03 5.139E-03 6.216E-03 

 7.463E-03 9.004E-03 1.084E-02 1.306E-02 1.573E-02 1.893E-02 

 2.281E-02 2.738E-02 3.299E-02 3.981E-02 4.785E-02 5.758E-02 

 6.948E-02 8.353E-02 1.004E-01 1.209E-01 1.450E-01 1.742E-01 

 2.088E-01 2.500E-01 2.965E-01 3.511E-01 4.101E-01 4.704E-01 

 5.175E-01 5.246E-01 4.717E-01 4.100E-01 3.557E-01 3.088E-01 

 2.679E-01 2.324E-01 2.011E-01 1.743E-01 1.509E-01 1.304E-01 

 1.127E-01 9.747E-02 8.404E-02 7.232E-02 6.231E-02 5.357E-02 

 4.608E-02 3.958E-02 3.394E-02 2.924E-02 2.511E-02 2.152E-02 

 1.852E-02 1.593E-02 1.371E-02 1.180E-02 1.020E-02 8.810E-03 

 7.645E-03 6.641E-03 5.809E-03 5.084E-03 4.477E-03 3.950E-03 

 3.523E-03 3.150E-03 2.846E-03 2.595E-03 2.383E-03 2.209E-03 

 2.067E-03 1.952E-03 1.861E-03 1.790E-03 1.737E-03 1.696E-03 

 1.668E-03 1.649E-03 1.638E-03 1.634E-03 1.635E-03 1.639E-03 

 1.646E-03 1.655E-03 1.666E-03 1.677E-03 1.689E-03 1.701E-03 

 1.713E-03 1.725E-03 1.737E-03 1.748E-03 1.760E-03 1.771E-03 

 1.781E-03 1.792E-03 1.802E-03 1.812E-03 

C 

C 

FC1076  Proton RMF intra-track DSB interaction term (100% pO2) 

F1076:H  1 

C 

FM1076  0.1602  $MeV to nGy 

DE1076  1.000E-03 1.200E-03 1.450E-03 1.750E-03 2.100E-03 2.540E-03 

 3.050E-03 3.680E-03 4.430E-03 5.340E-03 6.430E-03 7.740E-03 

 9.330E-03 1.120E-02 1.350E-02 1.630E-02 1.960E-02 2.360E-02 

 2.850E-02 3.430E-02 4.130E-02 4.980E-02 5.990E-02 7.220E-02 

 8.700E-02 1.050E-01 1.260E-01 1.520E-01 1.830E-01 2.210E-01 

 2.660E-01 3.200E-01 3.850E-01 4.640E-01 5.590E-01 6.730E-01 

 8.110E-01 9.770E-01 1.180E+00 1.420E+00 1.710E+00 2.060E+00 

 2.480E+00 2.980E+00 3.590E+00 4.330E+00 5.210E+00 6.280E+00 

 7.560E+00 9.110E+00 1.100E+01 1.320E+01 1.590E+01 1.920E+01 

 2.310E+01 2.780E+01 3.350E+01 4.040E+01 4.860E+01 5.860E+01 

 7.050E+01 8.500E+01 1.020E+02 1.230E+02 1.480E+02 1.790E+02 

 2.150E+02 2.600E+02 3.130E+02 3.760E+02 4.530E+02 5.460E+02 

 6.580E+02 7.920E+02 9.550E+02 1.150E+03 1.380E+03 1.670E+03 

 2.010E+03 2.420E+03 2.920E+03 3.510E+03 4.230E+03 5.090E+03 

 6.140E+03 7.390E+03 8.900E+03 1.070E+04 1.290E+04 1.560E+04 

 1.870E+04 2.260E+04 2.720E+04 3.270E+04 3.940E+04 4.750E+04 

 5.720E+04 6.890E+04 8.300E+04 1.000E+05 

DF1076  2.759E-02 3.308E-02 3.993E-02 4.818E-02 5.766E-02 6.972E-02 
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 8.375E-02 1.007E-01 1.211E-01 1.456E-01 1.750E-01 2.100E-01 

 2.522E-01 3.026E-01 3.630E-01 4.360E-01 5.217E-01 6.231E-01 

 7.470E-01 8.904E-01 1.059E+00 1.258E+00 1.488E+00 1.751E+00 

 2.052E+00 2.394E+00 2.745E+00 3.129E+00 3.479E+00 3.764E+00 

 3.888E+00 3.651E+00 3.019E+00 2.382E+00 1.863E+00 1.445E+00 

 1.118E+00 8.579E-01 6.556E-01 5.063E-01 3.901E-01 3.024E-01 

 2.359E-01 1.854E-01 1.468E-01 1.166E-01 9.403E-02 7.587E-02 

 6.184E-02 5.066E-02 4.173E-02 3.482E-02 2.891E-02 2.420E-02 

 2.030E-02 1.716E-02 1.456E-02 1.239E-02 1.060E-02 9.082E-03 

 7.819E-03 6.760E-03 5.884E-03 5.094E-03 4.491E-03 3.943E-03 

 3.506E-03 3.126E-03 2.834E-03 2.574E-03 2.364E-03 2.183E-03 

 2.047E-03 1.933E-03 1.841E-03 1.768E-03 1.713E-03 1.676E-03 

 1.648E-03 1.624E-03 1.619E-03 1.612E-03 1.616E-03 1.620E-03 

 1.626E-03 1.631E-03 1.642E-03 1.650E-03 1.660E-03 1.674E-03 

 1.685E-03 1.704E-03 1.715E-03 1.727E-03 1.738E-03 1.749E-03 

 1.760E-03 1.770E-03 1.780E-03 1.789E-03  

Proton DOSE-RESPONSE FUNCTIONS FOR USE IN MCNP6 (April 25, 2017) 

Data generated using MCDS Version 3.10A  05-DEC-2011 

C 

C  DSB (60Co):   2.86 

C  SSB (60Co): 115.53 

C  BD  (60Co): 293.98 

C 

C  ***  ============================================================ 

C  ***   Proton  DOSE, RBE AND RELATED TALLIES 

C  ***  ------------------------------------------------------------ 

C 

FC2016  Proton Absorbed Dose 

F2016:H  1 

C 

FM2016  0.1602  $MeV/g to nGy 

C 

C 

FC2026  Proton RBE for DSB induction (0% pO2) relative to 60Co 

F2026:H  1 

C 

FM2026  0.1602  $MeV/g to nGy 

DE2026  1.000E-03 1.200E-03 1.450E-03 1.750E-03 2.100E-03 2.540E-03 

 3.050E-03 3.680E-03 4.430E-03 5.340E-03 6.430E-03 7.740E-03 

 9.330E-03 1.120E-02 1.350E-02 1.630E-02 1.960E-02 2.360E-02 

 2.850E-02 3.430E-02 4.130E-02 4.980E-02 5.990E-02 7.220E-02 

 8.700E-02 1.050E-01 1.260E-01 1.520E-01 1.830E-01 2.210E-01 

 2.660E-01 3.200E-01 3.850E-01 4.640E-01 5.590E-01 6.730E-01 

 8.110E-01 9.770E-01 1.180E+00 1.420E+00 1.710E+00 2.060E+00 

 2.480E+00 2.980E+00 3.590E+00 4.330E+00 5.210E+00 6.280E+00 

 7.560E+00 9.110E+00 1.100E+01 1.320E+01 1.590E+01 1.920E+01 

 2.310E+01 2.780E+01 3.350E+01 4.040E+01 4.860E+01 5.860E+01 

 7.050E+01 8.500E+01 1.020E+02 1.230E+02 1.480E+02 1.790E+02 

 2.150E+02 2.600E+02 3.130E+02 3.760E+02 4.530E+02 5.460E+02 

 6.580E+02 7.920E+02 9.550E+02 1.150E+03 1.380E+03 1.670E+03 

 2.010E+03 2.420E+03 2.920E+03 3.510E+03 4.230E+03 5.090E+03 

 6.140E+03 7.390E+03 8.900E+03 1.070E+04 1.290E+04 1.560E+04 

 1.870E+04 2.260E+04 2.720E+04 3.270E+04 3.940E+04 4.750E+04 

 5.720E+04 6.890E+04 8.300E+04 1.000E+05 

DF2026  9.741E+00 9.726E+00 9.722E+00 9.720E+00 9.707E+00 9.706E+00 

 9.709E+00 9.683E+00 9.679E+00 9.667E+00 9.648E+00 9.624E+00 

 9.606E+00 9.595E+00 9.565E+00 9.532E+00 9.499E+00 9.443E+00 

 9.391E+00 9.320E+00 9.228E+00 9.124E+00 8.992E+00 8.812E+00 

 8.616E+00 8.360E+00 8.037E+00 7.654E+00 7.178E+00 6.625E+00 
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 6.021E+00 5.362E+00 4.710E+00 4.084E+00 3.521E+00 3.046E+00 

 2.651E+00 2.343E+00 2.090E+00 1.898E+00 1.744E+00 1.613E+00 

 1.512E+00 1.424E+00 1.353E+00 1.292E+00 1.242E+00 1.205E+00 

 1.168E+00 1.137E+00 1.113E+00 1.094E+00 1.073E+00 1.063E+00 

 1.047E+00 1.038E+00 1.030E+00 1.023E+00 1.021E+00 1.013E+00 

 1.011E+00 1.007E+00 1.005E+00 9.996E-01 9.985E-01 9.958E-01 

 9.959E-01 9.929E-01 9.949E-01 9.945E-01 9.952E-01 9.924E-01 

 9.923E-01 9.924E-01 9.928E-01 9.907E-01 9.902E-01 9.929E-01 

 9.907E-01 9.913E-01 9.925E-01 9.917E-01 9.922E-01 9.931E-01 

 9.912E-01 9.916E-01 9.905E-01 9.907E-01 9.872E-01 9.918E-01 

 9.918E-01 9.917E-01 9.917E-01 9.917E-01 9.917E-01 9.917E-01 

 9.917E-01 9.917E-01 9.917E-01 9.917E-01 

C 

C 

FC2036  Proton RBE for SSB induction (0% pO2) relative to 60Co 

F2036:H  1 

C 

FM2036  0.1602  $MeV/g to nGy 

DE2036  1.000E-03 1.200E-03 1.450E-03 1.750E-03 2.100E-03 2.540E-03 

 3.050E-03 3.680E-03 4.430E-03 5.340E-03 6.430E-03 7.740E-03 

 9.330E-03 1.120E-02 1.350E-02 1.630E-02 1.960E-02 2.360E-02 

 2.850E-02 3.430E-02 4.130E-02 4.980E-02 5.990E-02 7.220E-02 

 8.700E-02 1.050E-01 1.260E-01 1.520E-01 1.830E-01 2.210E-01 

 2.660E-01 3.200E-01 3.850E-01 4.640E-01 5.590E-01 6.730E-01 

 8.110E-01 9.770E-01 1.180E+00 1.420E+00 1.710E+00 2.060E+00 

 2.480E+00 2.980E+00 3.590E+00 4.330E+00 5.210E+00 6.280E+00 

 7.560E+00 9.110E+00 1.100E+01 1.320E+01 1.590E+01 1.920E+01 

 2.310E+01 2.780E+01 3.350E+01 4.040E+01 4.860E+01 5.860E+01 

 7.050E+01 8.500E+01 1.020E+02 1.230E+02 1.480E+02 1.790E+02 

 2.150E+02 2.600E+02 3.130E+02 3.760E+02 4.530E+02 5.460E+02 

 6.580E+02 7.920E+02 9.550E+02 1.150E+03 1.380E+03 1.670E+03 

 2.010E+03 2.420E+03 2.920E+03 3.510E+03 4.230E+03 5.090E+03 

 6.140E+03 7.390E+03 8.900E+03 1.070E+04 1.290E+04 1.560E+04 

 1.870E+04 2.260E+04 2.720E+04 3.270E+04 3.940E+04 4.750E+04 

 5.720E+04 6.890E+04 8.300E+04 1.000E+05 

DF2036  5.910E-01 5.929E-01 5.948E-01 5.969E-01 5.993E-01 6.018E-01 

 6.046E-01 6.080E-01 6.116E-01 6.157E-01 6.202E-01 6.257E-01 

 6.316E-01 6.376E-01 6.453E-01 6.537E-01 6.632E-01 6.744E-01 

 6.869E-01 7.008E-01 7.170E-01 7.354E-01 7.561E-01 7.798E-01 

 8.058E-01 8.345E-01 8.646E-01 8.967E-01 9.280E-01 9.572E-01 

 9.808E-01 9.974E-01 1.005E+00 1.005E+00 9.985E-01 9.896E-01 

 9.796E-01 9.732E-01 9.683E-01 9.660E-01 9.669E-01 9.684E-01 

 9.704E-01 9.737E-01 9.771E-01 9.794E-01 9.823E-01 9.855E-01 

 9.872E-01 9.898E-01 9.918E-01 9.920E-01 9.936E-01 9.948E-01 

 9.959E-01 9.966E-01 9.973E-01 9.979E-01 9.982E-01 9.987E-01 

 9.990E-01 9.992E-01 9.995E-01 9.998E-01 1.000E+00 1.000E+00 

 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 

 1.000E+00 1.000E+00 1.000E+00 1.001E+00 1.001E+00 1.000E+00 

 1.001E+00 1.001E+00 1.001E+00 1.001E+00 1.001E+00 1.001E+00 

 1.001E+00 1.000E+00 1.001E+00 1.001E+00 1.001E+00 1.001E+00 

 1.001E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 

 1.000E+00 1.000E+00 1.000E+00 1.000E+00 

C 

C 

FC2046  Proton RBE for BD induction (0% pO2) relative to 60Co 

F2046:H  1 

C 

FM2046  0.1602  $MeV/g to nGy 

DE2046  1.000E-03 1.200E-03 1.450E-03 1.750E-03 2.100E-03 2.540E-03 

 3.050E-03 3.680E-03 4.430E-03 5.340E-03 6.430E-03 7.740E-03 

 9.330E-03 1.120E-02 1.350E-02 1.630E-02 1.960E-02 2.360E-02 
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 2.850E-02 3.430E-02 4.130E-02 4.980E-02 5.990E-02 7.220E-02 

 8.700E-02 1.050E-01 1.260E-01 1.520E-01 1.830E-01 2.210E-01 

 2.660E-01 3.200E-01 3.850E-01 4.640E-01 5.590E-01 6.730E-01 

 8.110E-01 9.770E-01 1.180E+00 1.420E+00 1.710E+00 2.060E+00 

 2.480E+00 2.980E+00 3.590E+00 4.330E+00 5.210E+00 6.280E+00 

 7.560E+00 9.110E+00 1.100E+01 1.320E+01 1.590E+01 1.920E+01 

 2.310E+01 2.780E+01 3.350E+01 4.040E+01 4.860E+01 5.860E+01 

 7.050E+01 8.500E+01 1.020E+02 1.230E+02 1.480E+02 1.790E+02 

 2.150E+02 2.600E+02 3.130E+02 3.760E+02 4.530E+02 5.460E+02 

 6.580E+02 7.920E+02 9.550E+02 1.150E+03 1.380E+03 1.670E+03 

 2.010E+03 2.420E+03 2.920E+03 3.510E+03 4.230E+03 5.090E+03 

 6.140E+03 7.390E+03 8.900E+03 1.070E+04 1.290E+04 1.560E+04 

 1.870E+04 2.260E+04 2.720E+04 3.270E+04 3.940E+04 4.750E+04 

 5.720E+04 6.890E+04 8.300E+04 1.000E+05 

DF2046  1.633E-01 1.643E-01 1.652E-01 1.662E-01 1.673E-01 1.685E-01 

 1.698E-01 1.715E-01 1.733E-01 1.753E-01 1.776E-01 1.803E-01 

 1.832E-01 1.867E-01 1.906E-01 1.951E-01 2.002E-01 2.063E-01 

 2.135E-01 2.221E-01 2.319E-01 2.437E-01 2.573E-01 2.740E-01 

 2.937E-01 3.176E-01 3.453E-01 3.786E-01 4.171E-01 4.614E-01 

 5.090E-01 5.586E-01 6.073E-01 6.535E-01 6.942E-01 7.296E-01 

 7.601E-01 7.867E-01 8.117E-01 8.339E-01 8.542E-01 8.732E-01 

 8.905E-01 9.058E-01 9.198E-01 9.319E-01 9.428E-01 9.522E-01 

 9.599E-01 9.668E-01 9.727E-01 9.776E-01 9.819E-01 9.854E-01 

 9.884E-01 9.907E-01 9.929E-01 9.943E-01 9.957E-01 9.969E-01 

 9.979E-01 9.988E-01 9.994E-01 9.999E-01 1.001E+00 1.001E+00 

 1.001E+00 1.001E+00 1.002E+00 1.002E+00 1.002E+00 1.002E+00 

 1.002E+00 1.002E+00 1.002E+00 1.003E+00 1.002E+00 1.003E+00 

 1.003E+00 1.003E+00 1.003E+00 1.003E+00 1.003E+00 1.003E+00 

 1.003E+00 1.003E+00 1.003E+00 1.003E+00 1.003E+00 1.003E+00 

 1.003E+00 1.003E+00 1.003E+00 1.003E+00 1.003E+00 1.003E+00 

 1.003E+00 1.003E+00 1.003E+00 1.003E+00 

C 

C 

Electrons 

e- DOSE-RESPONSE FUNCTIONS FOR USE IN MCNP6 (December 28, 2016)

Data generated using MCDS Version 3.10A  05-DEC-2011

C 

C  DSB (60Co):   8.32 

C  SSB (60Co): 188.63 

C  BD  (60Co): 425.26 

C 

C  ***  ============================================================ 

C  *** e- DOSE, RBE AND RELATED TALLIES

C  ***  ------------------------------------------------------------ 

C 

FC6016 e- Absorbed Dose

F6016:E 1

C 

FM6016  0.1602  $MeV/g to nGy 

C 

C 

FC6026 e- RBE for DSB induction (100% pO2) relative to 60Co

F6026:E 1
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C 

FM6026      0.1602  $MeV/g to nGy 

DE6026      1.000E-05 1.200E-05 1.450E-05 1.750E-05 2.100E-05 2.540E-05 

            3.050E-05 3.680E-05 4.430E-05 5.340E-05 6.430E-05 7.740E-05 

            9.330E-05 1.120E-04 1.350E-04 1.630E-04 1.960E-04 2.360E-04 

            2.850E-04 3.430E-04 4.130E-04 4.980E-04 5.990E-04 7.220E-04 

            8.700E-04 1.050E-03 1.260E-03 1.520E-03 1.830E-03 2.210E-03 

            2.660E-03 3.200E-03 3.850E-03 4.640E-03 5.590E-03 6.730E-03 

            8.110E-03 9.770E-03 1.180E-02 1.420E-02 1.710E-02 2.060E-02 

            2.480E-02 2.980E-02 3.590E-02 4.330E-02 5.210E-02 6.280E-02 

            7.560E-02 9.110E-02 1.100E-01 1.320E-01 1.590E-01 1.920E-01 

            2.310E-01 2.780E-01 3.350E-01 4.040E-01 4.860E-01 5.860E-01 

            7.050E-01 8.500E-01 1.020E+00 1.230E+00 1.480E+00 1.790E+00 

            2.150E+00 2.600E+00 3.130E+00 3.760E+00 4.530E+00 5.460E+00 

            6.580E+00 7.920E+00 9.550E+00 1.150E+01 1.380E+01 1.670E+01 

            2.010E+01 2.420E+01 2.920E+01 3.510E+01 4.230E+01 5.090E+01 

            6.140E+01 7.390E+01 8.900E+01 1.070E+02 1.290E+02 1.560E+02 

            1.870E+02 2.260E+02 2.720E+02 3.270E+02 3.940E+02 4.750E+02 

            5.720E+02 6.890E+02 8.300E+02 1.000E+03 

DF6026      3.383E+00 3.378E+00 3.371E+00 3.362E+00 3.354E+00 3.337E+00 

            3.317E+00 3.293E+00 3.259E+00 3.218E+00 3.166E+00 3.104E+00 

            3.031E+00 2.945E+00 2.842E+00 2.732E+00 2.611E+00 2.487E+00 

            2.353E+00 2.222E+00 2.094E+00 1.966E+00 1.852E+00 1.743E+00 

            1.642E+00 1.554E+00 1.473E+00 1.402E+00 1.341E+00 1.287E+00 

            1.242E+00 1.203E+00 1.168E+00 1.141E+00 1.115E+00 1.095E+00 

            1.077E+00 1.064E+00 1.053E+00 1.042E+00 1.034E+00 1.026E+00 

            1.023E+00 1.016E+00 1.013E+00 1.008E+00 1.006E+00 1.004E+00 

            1.002E+00 1.001E+00 9.991E-01 9.976E-01 9.982E-01 9.958E-01 

            9.970E-01 9.960E-01 9.941E-01 9.938E-01 9.941E-01 9.938E-01 

            9.945E-01 9.932E-01 9.938E-01 9.939E-01 9.924E-01 9.944E-01 

            9.940E-01 9.931E-01 9.931E-01 9.928E-01 9.929E-01 9.921E-01 

            9.913E-01 9.920E-01 9.920E-01 9.920E-01 9.938E-01 9.938E-01 

            9.938E-01 9.938E-01 9.938E-01 9.938E-01 9.938E-01 9.938E-01 

            9.938E-01 9.938E-01 9.938E-01 9.938E-01 9.938E-01 9.938E-01 

            9.938E-01 9.938E-01 9.938E-01 9.938E-01 9.938E-01 9.938E-01 

            9.938E-01 9.938E-01 9.938E-01 9.938E-01 

C 

C 

FC6036      e- RBE for SSB induction (100% pO2) relative to 60Co 

F6036:E     1 

C 

FM6036      0.1602  $MeV/g to nGy 

DE6036      1.000E-05 1.200E-05 1.450E-05 1.750E-05 2.100E-05 2.540E-05 

            3.050E-05 3.680E-05 4.430E-05 5.340E-05 6.430E-05 7.740E-05 

            9.330E-05 1.120E-04 1.350E-04 1.630E-04 1.960E-04 2.360E-04 

            2.850E-04 3.430E-04 4.130E-04 4.980E-04 5.990E-04 7.220E-04 

            8.700E-04 1.050E-03 1.260E-03 1.520E-03 1.830E-03 2.210E-03 

            2.660E-03 3.200E-03 3.850E-03 4.640E-03 5.590E-03 6.730E-03 

            8.110E-03 9.770E-03 1.180E-02 1.420E-02 1.710E-02 2.060E-02 

            2.480E-02 2.980E-02 3.590E-02 4.330E-02 5.210E-02 6.280E-02 

            7.560E-02 9.110E-02 1.100E-01 1.320E-01 1.590E-01 1.920E-01 

            2.310E-01 2.780E-01 3.350E-01 4.040E-01 4.860E-01 5.860E-01 

            7.050E-01 8.500E-01 1.020E+00 1.230E+00 1.480E+00 1.790E+00 

            2.150E+00 2.600E+00 3.130E+00 3.760E+00 4.530E+00 5.460E+00 

            6.580E+00 7.920E+00 9.550E+00 1.150E+01 1.380E+01 1.670E+01 

            2.010E+01 2.420E+01 2.920E+01 3.510E+01 4.230E+01 5.090E+01 

            6.140E+01 7.390E+01 8.900E+01 1.070E+02 1.290E+02 1.560E+02 

            1.870E+02 2.260E+02 2.720E+02 3.270E+02 3.940E+02 4.750E+02 

            5.720E+02 6.890E+02 8.300E+02 1.000E+03 

DF6036      3.319E-01 3.382E-01 3.460E-01 3.551E-01 3.653E-01 3.782E-01 

            3.926E-01 4.095E-01 4.287E-01 4.506E-01 4.750E-01 5.020E-01 



118 

 5.317E-01 5.627E-01 5.959E-01 6.304E-01 6.648E-01 6.989E-01 

 7.321E-01 7.635E-01 7.931E-01 8.201E-01 8.444E-01 8.667E-01 

 8.864E-01 9.035E-01 9.184E-01 9.315E-01 9.425E-01 9.521E-01 

 9.600E-01 9.668E-01 9.726E-01 9.773E-01 9.815E-01 9.848E-01 

 9.877E-01 9.901E-01 9.920E-01 9.937E-01 9.950E-01 9.963E-01 

 9.969E-01 9.979E-01 9.985E-01 9.993E-01 9.997E-01 9.999E-01 

 1.000E+00 1.001E+00 1.001E+00 1.001E+00 1.001E+00 1.001E+00 

 1.001E+00 1.001E+00 1.002E+00 1.002E+00 1.002E+00 1.002E+00 

 1.002E+00 1.002E+00 1.002E+00 1.002E+00 1.002E+00 1.002E+00 

 1.002E+00 1.002E+00 1.002E+00 1.002E+00 1.002E+00 1.002E+00 

 1.002E+00 1.002E+00 1.002E+00 1.002E+00 1.002E+00 1.002E+00 

 1.002E+00 1.002E+00 1.002E+00 1.002E+00 1.002E+00 1.002E+00 

 1.002E+00 1.002E+00 1.002E+00 1.002E+00 1.002E+00 1.002E+00 

 1.002E+00 1.002E+00 1.002E+00 1.002E+00 1.002E+00 1.002E+00 

 1.002E+00 1.002E+00 1.002E+00 1.002E+00 

C 

C 

FC6046 e- RBE for BD induction (100% pO2) relative to 60Co

F6046:E 1

C 

FM6046  0.1602  $MeV/g to nGy 

DE6046  1.000E-05 1.200E-05 1.450E-05 1.750E-05 2.100E-05 2.540E-05 

 3.050E-05 3.680E-05 4.430E-05 5.340E-05 6.430E-05 7.740E-05 

 9.330E-05 1.120E-04 1.350E-04 1.630E-04 1.960E-04 2.360E-04 

  2.850E-04 3.430E-04 4.130E-04 4.980E-04 5.990E-04 7.220E-04 

 8.700E-04 1.050E-03 1.260E-03 1.520E-03 1.830E-03 2.210E-03 

 2.660E-03 3.200E-03 3.850E-03 4.640E-03 5.590E-03 6.730E-03 

 8.110E-03 9.770E-03 1.180E-02 1.420E-02 1.710E-02 2.060E-02 

 2.480E-02 2.980E-02 3.590E-02 4.330E-02 5.210E-02 6.280E-02 

 7.560E-02 9.110E-02 1.100E-01 1.320E-01 1.590E-01 1.920E-01 

 2.310E-01 2.780E-01 3.350E-01 4.040E-01 4.860E-01 5.860E-01 

 7.050E-01 8.500E-01 1.020E+00 1.230E+00 1.480E+00 1.790E+00 

 2.150E+00 2.600E+00 3.130E+00 3.760E+00 4.530E+00 5.460E+00 

 6.580E+00 7.920E+00 9.550E+00 1.150E+01 1.380E+01 1.670E+01 

 2.010E+01 2.420E+01 2.920E+01 3.510E+01 4.230E+01 5.090E+01 

 6.140E+01 7.390E+01 8.900E+01 1.070E+02 1.290E+02 1.560E+02 

 1.870E+02 2.260E+02 2.720E+02 3.270E+02 3.940E+02 4.750E+02 

 5.720E+02 6.890E+02 8.300E+02 1.000E+03 

DF6046  9.752E-02 1.005E-01 1.044E-01 1.091E-01 1.146E-01 1.215E-01 

 1.295E-01 1.394E-01 1.513E-01 1.656E-01 1.826E-01 2.026E-01 

 2.264E-01 2.533E-01 2.849E-01 3.206E-01 3.591E-01 4.012E-01 

 4.468E-01 4.929E-01 5.398E-01 5.868E-01 6.320E-01 6.755E-01 

 7.161E-01 7.539E-01 7.872E-01 8.180E-01 8.448E-01 8.690E-01 

 8.896E-01 9.073E-01 9.224E-01 9.357E-01 9.469E-01 9.563E-01 

 9.643E-01 9.709E-01 9.766E-01 9.812E-01 9.853E-01 9.886E-01 

 9.913E-01 9.935E-01 9.955E-01 9.971E-01 9.983E-01 9.994E-01 

 1.000E+00 1.001E+00 1.002E+00 1.002E+00 1.003E+00 1.003E+00 

 1.003E+00 1.004E+00 1.004E+00 1.004E+00 1.004E+00 1.004E+00 

 1.004E+00 1.004E+00 1.004E+00 1.004E+00 1.005E+00 1.004E+00 

 1.005E+00 1.004E+00 1.005E+00 1.005E+00 1.005E+00 1.005E+00 

 1.005E+00 1.005E+00 1.005E+00 1.005E+00 1.005E+00 1.005E+00 

 1.005E+00 1.005E+00 1.005E+00 1.005E+00 1.005E+00 1.005E+00 

 1.005E+00 1.005E+00 1.005E+00 1.005E+00 1.005E+00 1.005E+00 

 1.005E+00 1.005E+00 1.005E+00 1.005E+00 1.005E+00 1.005E+00 

 1.005E+00 1.005E+00 1.005E+00 1.005E+00 

C 

C 

FC6056 e- LET (keV/um)

F6056:E 1

C 

FM6056  0.1602  $MeV/g to nGy 
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DE6056  1.000E-05 1.200E-05 1.450E-05 1.750E-05 2.100E-05 2.540E-05 

 3.050E-05 3.680E-05 4.430E-05 5.340E-05 6.430E-05 7.740E-05 

 9.330E-05 1.120E-04 1.350E-04 1.630E-04 1.960E-04 2.360E-04 

 2.850E-04 3.430E-04 4.130E-04 4.980E-04 5.990E-04 7.220E-04 

 8.700E-04 1.050E-03 1.260E-03 1.520E-03 1.830E-03 2.210E-03 

 2.660E-03 3.200E-03 3.850E-03 4.640E-03 5.590E-03 6.730E-03 

 8.110E-03 9.770E-03 1.180E-02 1.420E-02 1.710E-02 2.060E-02 

 2.480E-02 2.980E-02 3.590E-02 4.330E-02 5.210E-02 6.280E-02 

 7.560E-02 9.110E-02 1.100E-01 1.320E-01 1.590E-01 1.920E-01 

 2.310E-01 2.780E-01 3.350E-01 4.040E-01 4.860E-01 5.860E-01 

 7.050E-01 8.500E-01 1.020E+00 1.230E+00 1.480E+00 1.790E+00 

 2.150E+00 2.600E+00 3.130E+00 3.760E+00 4.530E+00 5.460E+00 

 6.580E+00 7.920E+00 9.550E+00 1.150E+01 1.380E+01 1.670E+01 

 2.010E+01 2.420E+01 2.920E+01 3.510E+01 4.230E+01 5.090E+01 

 6.140E+01 7.390E+01 8.900E+01 1.070E+02 1.290E+02 1.560E+02 

 1.870E+02 2.260E+02 2.720E+02 3.270E+02 3.940E+02 4.750E+02 

 5.720E+02 6.890E+02 8.300E+02 1.000E+03 

DF6056  1.632E+01 1.750E+01 1.862E+01 1.960E+01 2.041E+01 2.111E+01 

 2.163E+01 2.201E+01 2.223E+01 2.230E+01 2.222E+01 2.200E+01 

 2.164E+01 2.117E+01 2.057E+01 1.985E+01 1.905E+01 1.818E+01 

 1.722E+01 1.622E+01 1.520E+01 1.414E+01 1.310E+01 1.205E+01 

 1.102E+01 1.002E+01 9.091E+00 8.183E+00 7.339E+00 6.539E+00 

 5.814E+00 5.150E+00 4.545E+00 3.993E+00 3.498E+00 3.058E+00 

 2.664E+00 2.317E+00 2.009E+00 1.743E+00 1.511E+00 1.309E+00 

 1.135E+00 9.862E-01 8.562E-01 7.441E-01 6.496E-01 5.682E-01 

 4.995E-01 4.410E-01 3.911E-01 3.505E-01 3.157E-01 2.863E-01 

 2.625E-01 2.428E-01 2.267E-01 2.137E-01 2.036E-01 1.956E-01 

 1.898E-01 1.855E-01 1.827E-01 1.809E-01 1.802E-01 1.802E-01 

 1.808E-01 1.820E-01 1.834E-01 1.851E-01 1.871E-01 1.891E-01 

 1.913E-01 1.935E-01 1.957E-01 1.979E-01 2.000E-01 2.022E-01 

 2.044E-01 2.064E-01 2.085E-01 2.105E-01 2.125E-01 2.144E-01 

 2.163E-01 2.182E-01 2.200E-01 2.218E-01 2.235E-01 2.253E-01 

 2.270E-01 2.287E-01 2.303E-01 2.319E-01 2.335E-01 2.350E-01 

 2.366E-01 2.381E-01 2.396E-01 2.410E-01 

C 

C 

FC6066 e- ZF (mean specific energy)

F6066:E 1

C 

FM6066  0.1602  $MeV/g to nGy 

DE6066  1.000E-05 1.200E-05 1.450E-05 1.750E-05 2.100E-05 2.540E-05 

 3.050E-05 3.680E-05 4.430E-05 5.340E-05 6.430E-05 7.740E-05 

 9.330E-05 1.120E-04 1.350E-04 1.630E-04 1.960E-04 2.360E-04 

 2.850E-04 3.430E-04 4.130E-04 4.980E-04 5.990E-04 7.220E-04 

 8.700E-04 1.050E-03 1.260E-03 1.520E-03 1.830E-03 2.210E-03 

 2.660E-03 3.200E-03 3.850E-03 4.640E-03 5.590E-03 6.730E-03 

 8.110E-03 9.770E-03 1.180E-02 1.420E-02 1.710E-02 2.060E-02 

 2.480E-02 2.980E-02 3.590E-02 4.330E-02 5.210E-02 6.280E-02 

 7.560E-02 9.110E-02 1.100E-01 1.320E-01 1.590E-01 1.920E-01 

 2.310E-01 2.780E-01 3.350E-01 4.040E-01 4.860E-01 5.860E-01 

 7.050E-01 8.500E-01 1.020E+00 1.230E+00 1.480E+00 1.790E+00 

 2.150E+00 2.600E+00 3.130E+00 3.760E+00 4.530E+00 5.460E+00 

 6.580E+00 7.920E+00 9.550E+00 1.150E+01 1.380E+01 1.670E+01 

 2.010E+01 2.420E+01 2.920E+01 3.510E+01 4.230E+01 5.090E+01 

 6.140E+01 7.390E+01 8.900E+01 1.070E+02 1.290E+02 1.560E+02 

 1.870E+02 2.260E+02 2.720E+02 3.270E+02 3.940E+02 4.750E+02 

 5.720E+02 6.890E+02 8.300E+02 1.000E+03 

DF6066  2.448E-05 2.937E-05 3.549E-05 4.283E-05 5.140E-05 6.217E-05 

 7.465E-05 9.007E-05 1.084E-04 1.307E-04 1.574E-04 1.894E-04 

 2.284E-04 2.741E-04 3.304E-04 3.990E-04 4.797E-04 5.776E-04 

 6.976E-04 8.395E-04 1.011E-03 1.219E-03 1.466E-03 1.767E-03 
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 2.129E-03 2.570E-03 3.084E-03 3.720E-03 4.477E-03 5.405E-03 

 6.501E-03 7.811E-03 9.376E-03 1.125E-02 1.344E-02 1.594E-02 

 1.863E-02 2.111E-02 2.238E-02 1.984E-02 1.473E-02 1.197E-02 

 9.993E-03 8.478E-03 7.243E-03 6.226E-03 5.394E-03 4.693E-03 

 4.111E-03 3.620E-03 3.204E-03 2.868E-03 2.581E-03 2.339E-03 

 2.144E-03 1.982E-03 1.851E-03 1.744E-03 1.661E-03 1.596E-03 

 1.548E-03 1.513E-03 1.490E-03 1.476E-03 1.470E-03 1.470E-03 

 1.475E-03 1.484E-03 1.497E-03 1.510E-03 1.526E-03 1.543E-03 

 1.561E-03 1.578E-03 1.597E-03 1.614E-03 1.632E-03 1.650E-03 

 1.667E-03 1.684E-03 1.701E-03 1.718E-03 1.734E-03 1.749E-03 

 1.765E-03 1.780E-03 1.795E-03 1.809E-03 1.824E-03 1.838E-03 

 1.852E-03 1.866E-03 1.879E-03 1.892E-03 1.905E-03 1.918E-03 

 1.930E-03 1.942E-03 1.955E-03 1.966E-03 

C 

C 

FC6076 e- RMF intra-track DSB interaction term (100% pO2)

F6076:E 1

C 

FM6076  0.1602  $MeV/g to nGy 

DE6076  1.000E-05 1.200E-05 1.450E-05 1.750E-05 2.100E-05 2.540E-05 

 3.050E-05 3.680E-05 4.430E-05 5.340E-05 6.430E-05 7.740E-05 

 9.330E-05 1.120E-04 1.350E-04 1.630E-04 1.960E-04 2.360E-04 

 2.850E-04 3.430E-04 4.130E-04 4.980E-04 5.990E-04 7.220E-04 

 8.700E-04 1.050E-03 1.260E-03 1.520E-03 1.830E-03 2.210E-03 

 2.660E-03 3.200E-03 3.850E-03 4.640E-03 5.590E-03 6.730E-03 

 8.110E-03 9.770E-03 1.180E-02 1.420E-02 1.710E-02 2.060E-02 

 2.480E-02 2.980E-02 3.590E-02 4.330E-02 5.210E-02 6.280E-02 

 7.560E-02 9.110E-02 1.100E-01 1.320E-01 1.590E-01 1.920E-01 

 2.310E-01 2.780E-01 3.350E-01 4.040E-01 4.860E-01 5.860E-01 

 7.050E-01 8.500E-01 1.020E+00 1.230E+00 1.480E+00 1.790E+00 

 2.150E+00 2.600E+00 3.130E+00 3.760E+00 4.530E+00 5.460E+00 

 6.580E+00 7.920E+00 9.550E+00 1.150E+01 1.380E+01 1.670E+01 

 2.010E+01 2.420E+01 2.920E+01 3.510E+01 4.230E+01 5.090E+01 

 6.140E+01 7.390E+01 8.900E+01 1.070E+02 1.290E+02 1.560E+02 

 1.870E+02 2.260E+02 2.720E+02 3.270E+02 3.940E+02 4.750E+02 

 5.720E+02 6.890E+02 8.300E+02 1.000E+03 

DF6076  2.801E-04 3.352E-04 4.034E-04 4.842E-04 5.781E-04 6.923E-04 

 8.215E-04 9.766E-04 1.152E-03 1.354E-03 1.578E-03 1.826E-03 

 2.097E-03 2.378E-03 2.670E-03 2.979E-03 3.271E-03 3.572E-03 

 3.864E-03 4.146E-03 4.433E-03 4.712E-03 5.027E-03 5.368E-03 

 5.743E-03 6.209E-03 6.694E-03 7.310E-03 8.048E-03 8.958E-03 

 1.003E-02 1.130E-02 1.279E-02 1.464E-02 1.672E-02 1.911E-02 

 2.162E-02 2.389E-02 2.481E-02 2.155E-02 1.575E-02 1.261E-02 

 1.047E-02 8.754E-03 7.436E-03 6.329E-03 5.458E-03 4.732E-03 

 4.129E-03 3.628E-03 3.199E-03 2.854E-03 2.572E-03 2.320E-03 

 2.131E-03 1.967E-03 1.829E-03 1.723E-03 1.642E-03 1.577E-03 

 1.531E-03 1.493E-03 1.472E-03 1.458E-03 1.448E-03 1.454E-03 

 1.458E-03 1.464E-03 1.476E-03 1.489E-03 1.505E-03 1.519E-03 

 1.534E-03 1.553E-03 1.571E-03 1.589E-03 1.612E-03 1.630E-03 

 1.647E-03 1.664E-03 1.680E-03 1.696E-03 1.712E-03 1.728E-03 

 1.743E-03 1.758E-03 1.773E-03 1.787E-03 1.802E-03 1.816E-03 

 1.829E-03 1.843E-03 1.856E-03 1.869E-03 1.881E-03 1.894E-03 

 1.906E-03 1.919E-03 1.931E-03 1.942E-03 
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e- DOSE-RESPONSE FUNCTIONS FOR USE IN MCNP6 (June 11, 2016) 

Data generated using MCDS Version 3.10A  05-DEC-2011 

 

C 

C           DSB (60Co):   2.86 

C           SSB (60Co): 115.53 

C           BD  (60Co): 293.98 

C 

C    ***    ============================================================ 

C    ***                 e-  DOSE, RBE AND RELATED TALLIES 

C    ***    ------------------------------------------------------------ 

C 

FC6016      e- Absorbed Dose  

F6016:E     1 

C 

FM6016      0.1602  $MeV/g to nGy 

C 

C 

FC6026      e- RBE for DSB induction (0% pO2) relative to 60Co 

F6026:E     1 

C 

FM6026      0.1602  $MeV/g to nGy 

DE6026      1.000E-05 1.200E-05 1.450E-05 1.750E-05 2.100E-05 2.540E-05 

            3.050E-05 3.680E-05 4.430E-05 5.340E-05 6.430E-05 7.740E-05 

            9.330E-05 1.120E-04 1.350E-04 1.630E-04 1.960E-04 2.360E-04 

            2.850E-04 3.430E-04 4.130E-04 4.980E-04 5.990E-04 7.220E-04 

            8.700E-04 1.050E-03 1.260E-03 1.520E-03 1.830E-03 2.210E-03 

            2.660E-03 3.200E-03 3.850E-03 4.640E-03 5.590E-03 6.730E-03 

            8.110E-03 9.770E-03 1.180E-02 1.420E-02 1.710E-02 2.060E-02 

            2.480E-02 2.980E-02 3.590E-02 4.330E-02 5.210E-02 6.280E-02 

            7.560E-02 9.110E-02 1.100E-01 1.320E-01 1.590E-01 1.920E-01 

            2.310E-01 2.780E-01 3.350E-01 4.040E-01 4.860E-01 5.860E-01 

            7.050E-01 8.500E-01 1.020E+00 1.230E+00 1.480E+00 1.790E+00 

            2.150E+00 2.600E+00 3.130E+00 3.760E+00 4.530E+00 5.460E+00 

            6.580E+00 7.920E+00 9.550E+00 1.150E+01 1.380E+01 1.670E+01 

            2.010E+01 2.420E+01 2.920E+01 3.510E+01 4.230E+01 5.090E+01 

            6.140E+01 7.390E+01 8.900E+01 1.070E+02 1.290E+02 1.560E+02 

            1.870E+02 2.260E+02 2.720E+02 3.270E+02 3.940E+02 4.750E+02 

            5.720E+02 6.890E+02 8.300E+02 1.000E+03 

DF6026      9.831E+00 9.819E+00 9.790E+00 9.753E+00 9.719E+00 9.652E+00 

            9.564E+00 9.452E+00 9.291E+00 9.077E+00 8.791E+00 8.423E+00 

            7.961E+00 7.392E+00 6.711E+00 5.960E+00 5.198E+00 4.466E+00 

            3.811E+00 3.259E+00 2.812E+00 2.456E+00 2.186E+00 1.968E+00 

            1.795E+00 1.659E+00 1.546E+00 1.452E+00 1.375E+00 1.316E+00 

            1.258E+00 1.216E+00 1.178E+00 1.146E+00 1.123E+00 1.098E+00 

            1.079E+00 1.066E+00 1.054E+00 1.040E+00 1.032E+00 1.027E+00 

            1.022E+00 1.016E+00 1.014E+00 1.007E+00 1.007E+00 1.003E+00 

            9.999E-01 9.989E-01 9.990E-01 9.963E-01 9.970E-01 9.935E-01 

            9.953E-01 9.929E-01 9.934E-01 9.931E-01 9.941E-01 9.910E-01 

            9.923E-01 9.904E-01 9.915E-01 9.912E-01 9.907E-01 9.932E-01 

            9.922E-01 9.908E-01 9.920E-01 9.916E-01 9.905E-01 9.907E-01 

            9.872E-01 9.918E-01 9.918E-01 9.918E-01 9.917E-01 9.917E-01 

            9.917E-01 9.917E-01 9.917E-01 9.917E-01 9.917E-01 9.917E-01 

            9.917E-01 9.917E-01 9.917E-01 9.917E-01 9.917E-01 9.917E-01 

            9.917E-01 9.917E-01 9.917E-01 9.917E-01 9.917E-01 9.917E-01 

            9.917E-01 9.917E-01 9.917E-01 9.917E-01 
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C 

C 

FC6036 e- RBE for SSB induction (0% pO2) relative to 60Co

F6036:E 1

C 

FM6036  0.1602  $MeV/g to nGy 

DE6036  1.000E-05 1.200E-05 1.450E-05 1.750E-05 2.100E-05 2.540E-05 

 3.050E-05 3.680E-05 4.430E-05 5.340E-05 6.430E-05 7.740E-05 

 9.330E-05 1.120E-04 1.350E-04 1.630E-04 1.960E-04 2.360E-04 

 2.850E-04 3.430E-04 4.130E-04 4.980E-04 5.990E-04 7.220E-04 

 8.700E-04 1.050E-03 1.260E-03 1.520E-03 1.830E-03 2.210E-03 

 2.660E-03 3.200E-03 3.850E-03 4.640E-03 5.590E-03 6.730E-03 

 8.110E-03 9.770E-03 1.180E-02 1.420E-02 1.710E-02 2.060E-02 

 2.480E-02 2.980E-02 3.590E-02 4.330E-02 5.210E-02 6.280E-02 

 7.560E-02 9.110E-02 1.100E-01 1.320E-01 1.590E-01 1.920E-01 

 2.310E-01 2.780E-01 3.350E-01 4.040E-01 4.860E-01 5.860E-01 

 7.050E-01 8.500E-01 1.020E+00 1.230E+00 1.480E+00 1.790E+00 

 2.150E+00 2.600E+00 3.130E+00 3.760E+00 4.530E+00 5.460E+00 

 6.580E+00 7.920E+00 9.550E+00 1.150E+01 1.380E+01 1.670E+01 

 2.010E+01 2.420E+01 2.920E+01 3.510E+01 4.230E+01 5.090E+01 

 6.140E+01 7.390E+01 8.900E+01 1.070E+02 1.290E+02 1.560E+02 

 1.870E+02 2.260E+02 2.720E+02 3.270E+02 3.940E+02 4.750E+02 

 5.720E+02 6.890E+02 8.300E+02 1.000E+03 

DF6036  5.423E-01 5.527E-01 5.657E-01 5.809E-01 5.979E-01 6.197E-01 

 6.439E-01 6.726E-01 7.053E-01 7.423E-01 7.829E-01 8.265E-01 

 8.720E-01 9.145E-01 9.529E-01 9.823E-01 9.997E-01 1.005E+00 

 1.002E+00 9.937E-01 9.840E-01 9.753E-01 9.694E-01 9.666E-01 

 9.666E-01 9.674E-01 9.703E-01 9.727E-01 9.752E-01 9.789E-01 

 9.808E-01 9.845E-01 9.863E-01 9.890E-01 9.910E-01 9.916E-01 

 9.932E-01 9.943E-01 9.954E-01 9.964E-01 9.971E-01 9.976E-01 

 9.980E-01 9.985E-01 9.988E-01 9.992E-01 9.994E-01 9.996E-01 

 9.998E-01 1.000E+00 9.999E-01 1.000E+00 1.000E+00 1.000E+00 

 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.001E+00 

 1.000E+00 1.001E+00 1.001E+00 1.001E+00 1.001E+00 1.000E+00 

 1.001E+00 1.001E+00 1.000E+00 1.000E+00 1.001E+00 1.001E+00 

 1.001E+00 1.001E+00 1.001E+00 1.001E+00 1.000E+00 1.000E+00 

 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 

 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 

 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 

 1.000E+00 1.000E+00 1.000E+00 1.000E+00 

C 

C 

FC6046 e- RBE for BD induction (0% pO2) relative to 60Co

F6046:E 1

C 

FM6046  0.1602  $MeV/g to nGy 

DE6046  1.000E-05 1.200E-05 1.450E-05 1.750E-05 2.100E-05 2.540E-05 

 3.050E-05 3.680E-05 4.430E-05 5.340E-05 6.430E-05 7.740E-05 

 9.330E-05 1.120E-04 1.350E-04 1.630E-04 1.960E-04 2.360E-04 

 2.850E-04 3.430E-04 4.130E-04 4.980E-04 5.990E-04 7.220E-04 

 8.700E-04 1.050E-03 1.260E-03 1.520E-03 1.830E-03 2.210E-03 

 2.660E-03 3.200E-03 3.850E-03 4.640E-03 5.590E-03 6.730E-03 

 8.110E-03 9.770E-03 1.180E-02 1.420E-02 1.710E-02 2.060E-02 

 2.480E-02 2.980E-02 3.590E-02 4.330E-02 5.210E-02 6.280E-02 

 7.560E-02 9.110E-02 1.100E-01 1.320E-01 1.590E-01 1.920E-01 

 2.310E-01 2.780E-01 3.350E-01 4.040E-01 4.860E-01 5.860E-01 

 7.050E-01 8.500E-01 1.020E+00 1.230E+00 1.480E+00 1.790E+00 

 2.150E+00 2.600E+00 3.130E+00 3.760E+00 4.530E+00 5.460E+00 

 6.580E+00 7.920E+00 9.550E+00 1.150E+01 1.380E+01 1.670E+01 

 2.010E+01 2.420E+01 2.920E+01 3.510E+01 4.230E+01 5.090E+01 

 6.140E+01 7.390E+01 8.900E+01 1.070E+02 1.290E+02 1.560E+02 
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 1.870E+02 2.260E+02 2.720E+02 3.270E+02 3.940E+02 4.750E+02 

 5.720E+02 6.890E+02 8.300E+02 1.000E+03 

DF6046  1.413E-01 1.457E-01 1.515E-01 1.586E-01 1.669E-01 1.774E-01 

 1.899E-01 2.054E-01 2.244E-01 2.480E-01 2.766E-01 3.111E-01 

 3.526E-01 4.002E-01 4.546E-01 5.132E-01 5.707E-01 6.249E-01 

 6.733E-01 7.134E-01 7.475E-01 7.766E-01 8.023E-01 8.253E-01 

 8.467E-01 8.668E-01 8.841E-01 9.002E-01 9.149E-01 9.279E-01 

 9.392E-01 9.488E-01 9.574E-01 9.646E-01 9.707E-01 9.758E-01 

 9.804E-01 9.841E-01 9.873E-01 9.899E-01 9.924E-01 9.938E-01 

 9.952E-01 9.964E-01 9.976E-01 9.985E-01 9.991E-01 9.996E-01 

 1.000E+00 1.001E+00 1.001E+00 1.001E+00 1.002E+00 1.002E+00 

 1.002E+00 1.002E+00 1.002E+00 1.002E+00 1.002E+00 1.002E+00 

 1.002E+00 1.003E+00 1.003E+00 1.003E+00 1.003E+00 1.003E+00 

 1.003E+00 1.003E+00 1.003E+00 1.003E+00 1.003E+00 1.003E+00 

 1.003E+00 1.003E+00 1.003E+00 1.003E+00 1.003E+00 1.003E+00 

 1.003E+00 1.003E+00 1.003E+00 1.003E+00 1.003E+00 1.003E+00 

 1.003E+00 1.003E+00 1.003E+00 1.003E+00 1.003E+00 1.003E+00 

 1.003E+00 1.003E+00 1.003E+00 1.003E+00 1.003E+00 1.003E+00 

 1.003E+00 1.003E+00 1.003E+00 1.003E+00 

C 

C 

FC6076 e- RMF intra-track DSB interaction term (0% pO2)

F6076:E 1

C 

FM6076  0.1602  $MeV/g to nGy 

DE6076  1.000E-05 1.200E-05 1.450E-05 1.750E-05 2.100E-05 2.540E-05 

 3.050E-05 3.680E-05 4.430E-05 5.340E-05 6.430E-05 7.740E-05 

 9.330E-05 1.120E-04 1.350E-04 1.630E-04 1.960E-04 2.360E-04 

 2.850E-04 3.430E-04 4.130E-04 4.980E-04 5.990E-04 7.220E-04 

 8.700E-04 1.050E-03 1.260E-03 1.520E-03 1.830E-03 2.210E-03 

 2.660E-03 3.200E-03 3.850E-03 4.640E-03 5.590E-03 6.730E-03 

 8.110E-03 9.770E-03 1.180E-02 1.420E-02 1.710E-02 2.060E-02 

 2.480E-02 2.980E-02 3.590E-02 4.330E-02 5.210E-02 6.280E-02 

 7.560E-02 9.110E-02 1.100E-01 1.320E-01 1.590E-01 1.920E-01 

 2.310E-01 2.780E-01 3.350E-01 4.040E-01 4.860E-01 5.860E-01 

 7.050E-01 8.500E-01 1.020E+00 1.230E+00 1.480E+00 1.790E+00 

 2.150E+00 2.600E+00 3.130E+00 3.760E+00 4.530E+00 5.460E+00 

 6.580E+00 7.920E+00 9.550E+00 1.150E+01 1.380E+01 1.670E+01 

 2.010E+01 2.420E+01 2.920E+01 3.510E+01 4.230E+01 5.090E+01 

 6.140E+01 7.390E+01 8.900E+01 1.070E+02 1.290E+02 1.560E+02 

 1.870E+02 2.260E+02 2.720E+02 3.270E+02 3.940E+02 4.750E+02 

 5.720E+02 6.890E+02 8.300E+02 1.000E+03 

DF6076  2.366E-03 2.832E-03 3.401E-03 4.074E-03 4.856E-03 5.792E-03 

 6.829E-03 8.047E-03 9.360E-03 1.077E-02 1.216E-02 1.344E-02 

 1.448E-02 1.498E-02 1.488E-02 1.417E-02 1.296E-02 1.152E-02 

 1.013E-02 8.915E-03 7.994E-03 7.350E-03 7.003E-03 6.847E-03 

 6.861E-03 7.070E-03 7.367E-03 7.839E-03 8.463E-03 9.366E-03 

 1.029E-02 1.154E-02 1.300E-02 1.477E-02 1.697E-02 1.920E-02 

 2.168E-02 2.400E-02 2.485E-02 2.147E-02 1.570E-02 1.262E-02 

 1.044E-02 8.747E-03 7.442E-03 6.313E-03 5.465E-03 4.723E-03 

 4.110E-03 3.612E-03 3.198E-03 2.847E-03 2.566E-03 2.309E-03 

 2.124E-03 1.954E-03 1.826E-03 1.720E-03 1.642E-03 1.568E-03 

 1.524E-03 1.484E-03 1.465E-03 1.450E-03 1.443E-03 1.450E-03 

 1.452E-03 1.457E-03 1.473E-03 1.485E-03 1.497E-03 1.514E-03 

 1.521E-03 1.553E-03 1.570E-03 1.588E-03 1.605E-03 1.623E-03 

 1.640E-03 1.657E-03 1.673E-03 1.689E-03 1.705E-03 1.721E-03 

 1.736E-03 1.751E-03 1.765E-03 1.780E-03 1.794E-03 1.808E-03 

 1.821E-03 1.835E-03 1.848E-03 1.861E-03 1.873E-03 1.886E-03 

 1.898E-03 1.910E-03 1.922E-03 1.934E-03 
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Alpha Particles 

4He DOSE-RESPONSE FUNCTIONS FOR USE IN MCNP6 (April 25, 2016) 

Data generated using MCDS Version 3.10A  05-DEC-2011 

C 

C  DSB (60Co):   8.32 

C  SSB (60Co): 188.63 

C  BD  (60Co): 425.26 

C 

C  ***  ============================================================ 

C  ***   4He  DOSE, RBE AND RELATED TALLIES 

C  ***  ------------------------------------------------------------ 

C 

FC1016  4He Absorbed Dose 

F1016:A  1 

FM1016  0.1602  $MeV/g to nGy 

C 

C 

FC5026  4He RBE for DSB induction (100% pO2) relative to 60Co 

F5026:A  1 

FM5026  0.1602  $MeV/g to nGy 

DE5026  1.000E-03 1.500E-03 2.000E-03 2.500E-03 3.000E-03 4.000E-03 

 5.000E-03 6.000E-03 7.000E-03 8.000E-03 9.000E-03 1.000E-02 

 1.250E-02 1.500E-02 1.750E-02 2.000E-02 2.250E-02 2.500E-02 

 2.750E-02 3.000E-02 3.500E-02 4.000E-02 4.500E-02 5.000E-02 

 5.500E-02 6.000E-02 6.500E-02 7.000E-02 7.500E-02 8.000E-02 

 8.500E-02 9.000E-02 9.500E-02 1.000E-01 1.250E-01 1.500E-01 

 1.750E-01 2.000E-01 2.250E-01 2.500E-01 2.750E-01 3.000E-01 

 3.500E-01 4.000E-01 4.500E-01 5.000E-01 5.500E-01 6.000E-01 

 6.500E-01 7.000E-01 7.500E-01 8.000E-01 8.500E-01 9.000E-01 

 9.500E-01 1.000E+00 1.250E+00 1.500E+00 1.750E+00 2.000E+00 

 2.250E+00 2.500E+00 2.750E+00 3.000E+00 3.500E+00 4.000E+00 

 4.500E+00 5.000E+00 5.500E+00 6.000E+00 6.500E+00 7.000E+00 

 7.500E+00 8.000E+00 8.500E+00 9.000E+00 9.500E+00 1.000E+01 

 1.250E+01 1.500E+01 1.750E+01 2.000E+01 2.500E+01 2.750E+01 

 3.000E+01 3.500E+01 4.000E+01 4.500E+01 5.000E+01 5.500E+01 

 6.000E+01 6.500E+01 7.000E+01 7.500E+01 8.000E+01 8.500E+01 

 9.000E+01 9.500E+01 1.000E+02 1.250E+02 1.500E+02 1.750E+02 

 2.000E+02 2.250E+02 2.500E+02 2.750E+02 3.000E+02 3.500E+02 

 3.750E+02 4.000E+02 4.500E+02 5.000E+02 5.500E+02 6.000E+02 

 6.500E+02 7.000E+02 7.500E+02 8.000E+02 8.500E+02 9.000E+02 

 9.500E+02 1.000E+03 2.000E+03 5.000E+03 7.500E+03 1.000E+04 

DF5026  3.381E+00 3.379E+00 3.381E+00 3.380E+00 3.378E+00 3.379E+00 

 3.378E+00 3.377E+00 3.378E+00 3.378E+00 3.377E+00 3.377E+00 

 3.377E+00 3.376E+00 3.374E+00 3.375E+00 3.375E+00 3.373E+00 

 3.371E+00 3.372E+00 3.372E+00 3.370E+00 3.371E+00 3.370E+00 

 3.367E+00 3.368E+00 3.369E+00 3.365E+00 3.365E+00 3.366E+00 

 3.365E+00 3.364E+00 3.362E+00 3.362E+00 3.358E+00 3.355E+00 

 3.352E+00 3.349E+00 3.345E+00 3.342E+00 3.338E+00 3.334E+00 

 3.329E+00 3.323E+00 3.317E+00 3.309E+00 3.303E+00 3.294E+00 

 3.289E+00 3.283E+00 3.276E+00 3.270E+00 3.263E+00 3.253E+00 

 3.247E+00 3.239E+00 3.204E+00 3.165E+00 3.129E+00 3.092E+00 

 3.055E+00 3.018E+00 2.979E+00 2.945E+00 2.869E+00 2.804E+00 

 2.739E+00 2.679E+00 2.622E+00 2.567E+00 2.513E+00 2.466E+00 

 2.417E+00 2.373E+00 2.332E+00 2.291E+00 2.255E+00 2.222E+00 

 2.070E+00 1.948E+00 1.852E+00 1.774E+00 1.654E+00 1.607E+00 

 1.566E+00 1.500E+00 1.444E+00 1.402E+00 1.367E+00 1.338E+00 

 1.311E+00 1.288E+00 1.271E+00 1.254E+00 1.240E+00 1.224E+00 
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            1.216E+00 1.204E+00 1.195E+00 1.158E+00 1.131E+00 1.115E+00 

            1.100E+00 1.088E+00 1.079E+00 1.072E+00 1.067E+00 1.057E+00 

            1.053E+00 1.051E+00 1.044E+00 1.041E+00 1.037E+00 1.031E+00 

            1.032E+00 1.029E+00 1.027E+00 1.027E+00 1.024E+00 1.022E+00 

            1.020E+00 1.020E+00 1.010E+00 1.004E+00 1.004E+00 1.002E+00 

C 

C 

FC5036      4He RBE for SSB induction (100% pO2) relative to 60Co 

F5036:A     1 

FM5036      0.1602  $MeV/g to nGy 

DE5036      1.000E-03 1.500E-03 2.000E-03 2.500E-03 3.000E-03 4.000E-03 

            5.000E-03 6.000E-03 7.000E-03 8.000E-03 9.000E-03 1.000E-02 

            1.250E-02 1.500E-02 1.750E-02 2.000E-02 2.250E-02 2.500E-02 

            2.750E-02 3.000E-02 3.500E-02 4.000E-02 4.500E-02 5.000E-02 

            5.500E-02 6.000E-02 6.500E-02 7.000E-02 7.500E-02 8.000E-02 

            8.500E-02 9.000E-02 9.500E-02 1.000E-01 1.250E-01 1.500E-01 

            1.750E-01 2.000E-01 2.250E-01 2.500E-01 2.750E-01 3.000E-01 

            3.500E-01 4.000E-01 4.500E-01 5.000E-01 5.500E-01 6.000E-01 

            6.500E-01 7.000E-01 7.500E-01 8.000E-01 8.500E-01 9.000E-01 

            9.500E-01 1.000E+00 1.250E+00 1.500E+00 1.750E+00 2.000E+00 

            2.250E+00 2.500E+00 2.750E+00 3.000E+00 3.500E+00 4.000E+00 

            4.500E+00 5.000E+00 5.500E+00 6.000E+00 6.500E+00 7.000E+00 

            7.500E+00 8.000E+00 8.500E+00 9.000E+00 9.500E+00 1.000E+01 

            1.250E+01 1.500E+01 1.750E+01 2.000E+01 2.500E+01 2.750E+01 

            3.000E+01 3.500E+01 4.000E+01 4.500E+01 5.000E+01 5.500E+01 

            6.000E+01 6.500E+01 7.000E+01 7.500E+01 8.000E+01 8.500E+01 

            9.000E+01 9.500E+01 1.000E+02 1.250E+02 1.500E+02 1.750E+02 

            2.000E+02 2.250E+02 2.500E+02 2.750E+02 3.000E+02 3.500E+02 

            3.750E+02 4.000E+02 4.500E+02 5.000E+02 5.500E+02 6.000E+02 

            6.500E+02 7.000E+02 7.500E+02 8.000E+02 8.500E+02 9.000E+02 

            9.500E+02 1.000E+03 2.000E+03 5.000E+03 7.500E+03 1.000E+04 

DF5036      3.349E-01 3.353E-01 3.356E-01 3.359E-01 3.363E-01 3.368E-01 

            3.372E-01 3.378E-01 3.380E-01 3.384E-01 3.388E-01 3.393E-01 

            3.401E-01 3.407E-01 3.415E-01 3.422E-01 3.428E-01 3.434E-01 

            3.439E-01 3.444E-01 3.454E-01 3.465E-01 3.475E-01 3.482E-01 

            3.492E-01 3.501E-01 3.510E-01 3.517E-01 3.524E-01 3.532E-01 

            3.540E-01 3.546E-01 3.554E-01 3.563E-01 3.594E-01 3.627E-01 

            3.657E-01 3.685E-01 3.713E-01 3.741E-01 3.768E-01 3.793E-01 

            3.843E-01 3.890E-01 3.936E-01 3.984E-01 4.026E-01 4.072E-01 

            4.116E-01 4.156E-01 4.197E-01 4.236E-01 4.279E-01 4.319E-01 

            4.356E-01 4.396E-01 4.580E-01 4.756E-01 4.921E-01 5.075E-01 

            5.223E-01 5.365E-01 5.501E-01 5.629E-01 5.867E-01 6.081E-01 

            6.279E-01 6.458E-01 6.623E-01 6.775E-01 6.916E-01 7.044E-01 

            7.159E-01 7.270E-01 7.373E-01 7.469E-01 7.557E-01 7.639E-01 

            7.986E-01 8.242E-01 8.442E-01 8.604E-01 8.841E-01 8.932E-01 

            9.011E-01 9.137E-01 9.237E-01 9.314E-01 9.379E-01 9.431E-01 

            9.478E-01 9.516E-01 9.549E-01 9.578E-01 9.603E-01 9.628E-01 

            9.645E-01 9.664E-01 9.681E-01 9.744E-01 9.787E-01 9.818E-01 

            9.841E-01 9.860E-01 9.874E-01 9.887E-01 9.896E-01 9.912E-01 

            9.918E-01 9.922E-01 9.932E-01 9.939E-01 9.946E-01 9.953E-01 

            9.955E-01 9.959E-01 9.962E-01 9.965E-01 9.967E-01 9.970E-01 

            9.972E-01 9.974E-01 9.990E-01 9.999E-01 1.000E+00 1.000E+00 

 

 

 

 

 

 

 

C 

C 
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FC5046  4He RBE for BD induction (100% pO2) relative to 60Co 

F5046:A  1 

FM5046  0.1602  $MeV/g to nGy 

DE5046  1.000E-03 1.500E-03 2.000E-03 2.500E-03 3.000E-03 4.000E-03 

 5.000E-03 6.000E-03 7.000E-03 8.000E-03 9.000E-03 1.000E-02 

 1.250E-02 1.500E-02 1.750E-02 2.000E-02 2.250E-02 2.500E-02 

 2.750E-02 3.000E-02 3.500E-02 4.000E-02 4.500E-02 5.000E-02 

 5.500E-02 6.000E-02 6.500E-02 7.000E-02 7.500E-02 8.000E-02 

 8.500E-02 9.000E-02 9.500E-02 1.000E-01 1.250E-01 1.500E-01 

 1.750E-01 2.000E-01 2.250E-01 2.500E-01 2.750E-01 3.000E-01 

 3.500E-01 4.000E-01 4.500E-01 5.000E-01 5.500E-01 6.000E-01 

 6.500E-01 7.000E-01 7.500E-01 8.000E-01 8.500E-01 9.000E-01 

 9.500E-01 1.000E+00 1.250E+00 1.500E+00 1.750E+00 2.000E+00 

 2.250E+00 2.500E+00 2.750E+00 3.000E+00 3.500E+00 4.000E+00 

 4.500E+00 5.000E+00 5.500E+00 6.000E+00 6.500E+00 7.000E+00 

 7.500E+00 8.000E+00 8.500E+00 9.000E+00 9.500E+00 1.000E+01 

 1.250E+01 1.500E+01 1.750E+01 2.000E+01 2.500E+01 2.750E+01 

 3.000E+01 3.500E+01 4.000E+01 4.500E+01 5.000E+01 5.500E+01 

 6.000E+01 6.500E+01 7.000E+01 7.500E+01 8.000E+01 8.500E+01 

 9.000E+01 9.500E+01 1.000E+02 1.250E+02 1.500E+02 1.750E+02 

 2.000E+02 2.250E+02 2.500E+02 2.750E+02 3.000E+02 3.500E+02 

 3.750E+02 4.000E+02 4.500E+02 5.000E+02 5.500E+02 6.000E+02 

 6.500E+02 7.000E+02 7.500E+02 8.000E+02 8.500E+02 9.000E+02 

 9.500E+02 1.000E+03 2.000E+03 5.000E+03 7.500E+03 1.000E+04 

DF5046  9.896E-02 9.915E-02 9.933E-02 9.947E-02 9.965E-02 9.991E-02 

 1.001E-01 1.004E-01 1.006E-01 1.008E-01 1.009E-01 1.011E-01 

 1.015E-01 1.018E-01 1.022E-01 1.026E-01 1.028E-01 1.031E-01 

 1.034E-01 1.037E-01 1.043E-01 1.047E-01 1.052E-01 1.056E-01 

 1.061E-01 1.066E-01 1.069E-01 1.073E-01 1.078E-01 1.081E-01 

 1.086E-01 1.089E-01 1.093E-01 1.096E-01 1.114E-01 1.130E-01 

 1.147E-01 1.162E-01 1.177E-01 1.191E-01 1.206E-01 1.220E-01 

 1.248E-01 1.275E-01 1.302E-01 1.328E-01 1.355E-01 1.380E-01 

 1.405E-01 1.432E-01 1.457E-01 1.482E-01 1.507E-01 1.532E-01 

 1.558E-01 1.582E-01 1.706E-01 1.828E-01 1.949E-01 2.070E-01 

 2.188E-01 2.304E-01 2.419E-01 2.533E-01 2.757E-01 2.971E-01 

 3.177E-01 3.376E-01 3.564E-01 3.745E-01 3.919E-01 4.084E-01 

 4.244E-01 4.395E-01 4.540E-01 4.677E-01 4.809E-01 4.935E-01 

 5.489E-01 5.940E-01 6.312E-01 6.624E-01 7.113E-01 7.309E-01 

 7.481E-01 7.767E-01 7.995E-01 8.182E-01 8.336E-01 8.468E-01 

 8.578E-01 8.677E-01 8.761E-01 8.835E-01 8.901E-01 8.961E-01 

 9.016E-01 9.061E-01 9.108E-01 9.277E-01 9.393E-01 9.478E-01 

 9.543E-01 9.594E-01 9.636E-01 9.669E-01 9.697E-01 9.742E-01 

 9.760E-01 9.775E-01 9.802E-01 9.823E-01 9.839E-01 9.854E-01 

 9.866E-01 9.877E-01 9.886E-01 9.895E-01 9.902E-01 9.909E-01 

 9.914E-01 9.920E-01 9.967E-01 9.994E-01 9.999E-01 1.000E+00 

C 

C 

FC5056  4He LET (keV/um)  

F5056:A  1 

FM5056  0.1602  $MeV/g to nGy 

DE5056  1.000E-03 1.500E-03 2.000E-03 2.500E-03 3.000E-03 4.000E-03 

 5.000E-03 6.000E-03 7.000E-03 8.000E-03 9.000E-03 1.000E-02 

 1.250E-02 1.500E-02 1.750E-02 2.000E-02 2.250E-02 2.500E-02 

 2.750E-02 3.000E-02 3.500E-02 4.000E-02 4.500E-02 5.000E-02 

 5.500E-02 6.000E-02 6.500E-02 7.000E-02 7.500E-02 8.000E-02 

 8.500E-02 9.000E-02 9.500E-02 1.000E-01 1.250E-01 1.500E-01 

 1.750E-01 2.000E-01 2.250E-01 2.500E-01 2.750E-01 3.000E-01 

 3.500E-01 4.000E-01 4.500E-01 5.000E-01 5.500E-01 6.000E-01 

 6.500E-01 7.000E-01 7.500E-01 8.000E-01 8.500E-01 9.000E-01 

 9.500E-01 1.000E+00 1.250E+00 1.500E+00 1.750E+00 2.000E+00 

 2.250E+00 2.500E+00 2.750E+00 3.000E+00 3.500E+00 4.000E+00 
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 4.500E+00 5.000E+00 5.500E+00 6.000E+00 6.500E+00 7.000E+00 

 7.500E+00 8.000E+00 8.500E+00 9.000E+00 9.500E+00 1.000E+01 

 1.250E+01 1.500E+01 1.750E+01 2.000E+01 2.500E+01 2.750E+01 

 3.000E+01 3.500E+01 4.000E+01 4.500E+01 5.000E+01 5.500E+01 

 6.000E+01 6.500E+01 7.000E+01 7.500E+01 8.000E+01 8.500E+01 

 9.000E+01 9.500E+01 1.000E+02 1.250E+02 1.500E+02 1.750E+02 

 2.000E+02 2.250E+02 2.500E+02 2.750E+02 3.000E+02 3.500E+02 

 3.750E+02 4.000E+02 4.500E+02 5.000E+02 5.500E+02 6.000E+02 

 6.500E+02 7.000E+02 7.500E+02 8.000E+02 8.500E+02 9.000E+02 

 9.500E+02 1.000E+03 2.000E+03 5.000E+03 7.500E+03 1.000E+04 

DF5056  3.298E+01 3.310E+01 3.329E+01 3.359E+01 3.397E+01 3.494E+01 

 3.609E+01 3.734E+01 3.866E+01 4.000E+01 4.135E+01 4.270E+01 

 4.602E+01 4.923E+01 5.231E+01 5.526E+01 5.809E+01 6.079E+01 

 6.339E+01 6.588E+01 7.060E+01 7.501E+01 7.914E+01 8.304E+01 

 8.674E+01 9.027E+01 9.364E+01 9.687E+01 9.998E+01 1.030E+02 

 1.059E+02 1.087E+02 1.114E+02 1.141E+02 1.265E+02 1.377E+02 

 1.480E+02 1.576E+02 1.665E+02 1.747E+02 1.823E+02 1.892E+02 

 2.011E+02 2.104E+02 2.174E+02 2.223E+02 2.255E+02 2.272E+02 

 2.277E+02 2.273E+02 2.262E+02 2.244E+02 2.223E+02 2.199E+02 

 2.172E+02 2.143E+02 1.993E+02 1.848E+02 1.718E+02 1.604E+02 

 1.503E+02 1.415E+02 1.336E+02 1.266E+02 1.148E+02 1.050E+02 

 9.694E+01 9.008E+01 8.419E+01 7.908E+01 7.460E+01 7.064E+01 

 6.711E+01 6.395E+01 6.110E+01 5.851E+01 5.615E+01 5.399E+01 

 4.545E+01 3.941E+01 3.491E+01 3.140E+01 2.629E+01 2.436E+01 

 2.272E+01 2.007E+01 1.802E+01 1.639E+01 1.505E+01 1.393E+01 

 1.299E+01 1.217E+01 1.146E+01 1.084E+01 1.029E+01 9.793E+00 

 9.350E+00 8.950E+00 8.586E+00 7.171E+00 6.194E+00 5.477E+00 

 4.927E+00 4.491E+00 4.136E+00 3.842E+00 3.593E+00 3.196E+00 

 3.035E+00 2.893E+00 2.653E+00 2.459E+00 2.299E+00 2.163E+00 

 2.048E+00 1.949E+00 1.862E+00 1.786E+00 1.718E+00 1.657E+00 

 1.603E+00 1.554E+00 1.083E+00 8.129E-01 7.635E-01 7.436E-01 

C 

C 

FC5066  4He ZF (mean specific energy)  

F5066:A  1 

FM5066  0.1602  $MeV/g to nGy 

DE5066  1.000E-03 1.500E-03 2.000E-03 2.500E-03 3.000E-03 4.000E-03 

 5.000E-03 6.000E-03 7.000E-03 8.000E-03 9.000E-03 1.000E-02 

 1.250E-02 1.500E-02 1.750E-02 2.000E-02 2.250E-02 2.500E-02 

 2.750E-02 3.000E-02 3.500E-02 4.000E-02 4.500E-02 5.000E-02 

 5.500E-02 6.000E-02 6.500E-02 7.000E-02 7.500E-02 8.000E-02 

 8.500E-02 9.000E-02 9.500E-02 1.000E-01 1.250E-01 1.500E-01 

 1.750E-01 2.000E-01 2.250E-01 2.500E-01 2.750E-01 3.000E-01 

 3.500E-01 4.000E-01 4.500E-01 5.000E-01 5.500E-01 6.000E-01 

 6.500E-01 7.000E-01 7.500E-01 8.000E-01 8.500E-01 9.000E-01 

 9.500E-01 1.000E+00 1.250E+00 1.500E+00 1.750E+00 2.000E+00 

 2.250E+00 2.500E+00 2.750E+00 3.000E+00 3.500E+00 4.000E+00 

 4.500E+00 5.000E+00 5.500E+00 6.000E+00 6.500E+00 7.000E+00 

 7.500E+00 8.000E+00 8.500E+00 9.000E+00 9.500E+00 1.000E+01 

 1.250E+01 1.500E+01 1.750E+01 2.000E+01 2.500E+01 2.750E+01 

 3.000E+01 3.500E+01 4.000E+01 4.500E+01 5.000E+01 5.500E+01 

 6.000E+01 6.500E+01 7.000E+01 7.500E+01 8.000E+01 8.500E+01 

 9.000E+01 9.500E+01 1.000E+02 1.250E+02 1.500E+02 1.750E+02 

 2.000E+02 2.250E+02 2.500E+02 2.750E+02 3.000E+02 3.500E+02 

 3.750E+02 4.000E+02 4.500E+02 5.000E+02 5.500E+02 6.000E+02 

 6.500E+02 7.000E+02 7.500E+02 8.000E+02 8.500E+02 9.000E+02 

 9.500E+02 1.000E+03 2.000E+03 5.000E+03 7.500E+03 1.000E+04 

DF5066  2.448E-03 3.671E-03 4.895E-03 6.119E-03 7.342E-03 9.789E-03 

 1.223E-02 1.468E-02 1.713E-02 1.957E-02 2.201E-02 2.445E-02 

 3.056E-02 3.665E-02 4.274E-02 4.882E-02 5.490E-02 6.097E-02 

 6.704E-02 7.310E-02 8.520E-02 9.728E-02 1.093E-01 1.213E-01 
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            1.333E-01 1.453E-01 1.573E-01 1.692E-01 1.811E-01 1.930E-01 

            2.048E-01 2.166E-01 2.284E-01 2.402E-01 2.986E-01 3.564E-01 

            4.135E-01 4.699E-01 5.256E-01 5.807E-01 6.350E-01 6.886E-01 

            7.935E-01 8.952E-01 9.935E-01 1.088E+00 1.177E+00 1.262E+00 

            1.341E+00 1.415E+00 1.481E+00 1.540E+00 1.591E+00 1.635E+00 

            1.673E+00 1.703E+00 1.754E+00 1.679E+00 1.556E+00 1.435E+00 

            1.329E+00 1.238E+00 1.159E+00 1.091E+00 9.777E-01 8.878E-01 

            8.145E-01 7.534E-01 7.017E-01 6.573E-01 6.186E-01 5.847E-01 

            5.546E-01 5.278E-01 5.037E-01 4.819E-01 4.621E-01 4.440E-01 

            3.728E-01 3.228E-01 2.857E-01 2.568E-01 2.148E-01 1.990E-01 

            1.856E-01 1.639E-01 1.472E-01 1.338E-01 1.229E-01 1.137E-01 

            1.060E-01 9.932E-02 9.353E-02 8.844E-02 8.394E-02 7.991E-02 

            7.630E-02 7.303E-02 7.006E-02 5.851E-02 5.054E-02 4.469E-02 

            4.020E-02 3.664E-02 3.375E-02 3.134E-02 2.932E-02 2.608E-02 

            2.476E-02 2.360E-02 2.165E-02 2.006E-02 1.876E-02 1.765E-02 

            1.671E-02 1.590E-02 1.519E-02 1.457E-02 1.402E-02 1.352E-02 

            1.308E-02 1.268E-02 8.837E-03 6.632E-03 6.230E-03 6.067E-03 

C 

C 

FC5076      4He intra-track RMF interaction term (100% pO2) 

F5076:A     1 

FM5076      0.1602  $MeV to nGy 

DE5076      1.000E-03 1.500E-03 2.000E-03 2.500E-03 3.000E-03 4.000E-03 

            5.000E-03 6.000E-03 7.000E-03 8.000E-03 9.000E-03 1.000E-02 

            1.250E-02 1.500E-02 1.750E-02 2.000E-02 2.250E-02 2.500E-02 

            2.750E-02 3.000E-02 3.500E-02 4.000E-02 4.500E-02 5.000E-02 

            5.500E-02 6.000E-02 6.500E-02 7.000E-02 7.500E-02 8.000E-02 

            8.500E-02 9.000E-02 9.500E-02 1.000E-01 1.250E-01 1.500E-01 

            1.750E-01 2.000E-01 2.250E-01 2.500E-01 2.750E-01 3.000E-01 

            3.500E-01 4.000E-01 4.500E-01 5.000E-01 5.500E-01 6.000E-01 

            6.500E-01 7.000E-01 7.500E-01 8.000E-01 8.500E-01 9.000E-01 

            9.500E-01 1.000E+00 1.250E+00 1.500E+00 1.750E+00 2.000E+00 

            2.250E+00 2.500E+00 2.750E+00 3.000E+00 3.500E+00 4.000E+00 

            4.500E+00 5.000E+00 5.500E+00 6.000E+00 6.500E+00 7.000E+00 

            7.500E+00 8.000E+00 8.500E+00 9.000E+00 9.500E+00 1.000E+01 

            1.250E+01 1.500E+01 1.750E+01 2.000E+01 2.500E+01 2.750E+01 

            3.000E+01 3.500E+01 4.000E+01 4.500E+01 5.000E+01 5.500E+01 

            6.000E+01 6.500E+01 7.000E+01 7.500E+01 8.000E+01 8.500E+01 

            9.000E+01 9.500E+01 1.000E+02 1.250E+02 1.500E+02 1.750E+02 

            2.000E+02 2.250E+02 2.500E+02 2.750E+02 3.000E+02 3.500E+02 

            3.750E+02 4.000E+02 4.500E+02 5.000E+02 5.500E+02 6.000E+02 

            6.500E+02 7.000E+02 7.500E+02 8.000E+02 8.500E+02 9.000E+02 

            9.500E+02 1.000E+03 2.000E+03 5.000E+03 7.500E+03 1.000E+04 

DF5076      2.797E-02 4.191E-02 5.597E-02 6.988E-02 8.379E-02 1.118E-01 

            1.396E-01 1.674E-01 1.954E-01 2.234E-01 2.510E-01 2.789E-01 

            3.485E-01 4.178E-01 4.866E-01 5.562E-01 6.253E-01 6.936E-01 

            7.620E-01 8.313E-01 9.689E-01 1.105E+00 1.242E+00 1.378E+00 

            1.512E+00 1.649E+00 1.785E+00 1.916E+00 2.051E+00 2.186E+00 

            2.319E+00 2.451E+00 2.582E+00 2.715E+00 3.367E+00 4.012E+00 

            4.645E+00 5.269E+00 5.882E+00 6.487E+00 7.074E+00 7.653E+00 

            8.795E+00 9.887E+00 1.093E+01 1.191E+01 1.284E+01 1.369E+01 

            1.451E+01 1.524E+01 1.589E+01 1.646E+01 1.694E+01 1.731E+01 

            1.763E+01 1.786E+01 1.801E+01 1.682E+01 1.523E+01 1.373E+01 

            1.241E+01 1.128E+01 1.029E+01 9.461E+00 8.045E+00 6.980E+00 

            6.108E+00 5.408E+00 4.824E+00 4.331E+00 3.908E+00 3.556E+00 

            3.241E+00 2.972E+00 2.739E+00 2.530E+00 2.350E+00 2.191E+00 

            1.598E+00 1.225E+00 9.801E-01 8.084E-01 5.877E-01 5.140E-01 

            4.553E-01 3.688E-01 3.070E-01 2.631E-01 2.295E-01 2.035E-01 

            1.821E-01 1.649E-01 1.511E-01 1.390E-01 1.290E-01 1.198E-01 

            1.128E-01 1.059E-01 1.001E-01 7.845E-02 6.464E-02 5.554E-02 

            4.866E-02 4.339E-02 3.933E-02 3.604E-02 3.337E-02 2.913E-02 



129 
 

 

 

            2.744E-02 2.606E-02 2.361E-02 2.176E-02 2.019E-02 1.877E-02 

            1.780E-02 1.682E-02 1.603E-02 1.536E-02 1.468E-02 1.412E-02 

            1.362E-02 1.318E-02 9.013E-03 6.688E-03 6.277E-03 6.088E-03 

 

4He DOSE-RESPONSE FUNCTIONS FOR USE IN MCNP6 (April 25, 2016) 

Data generated using MCDS Version 3.10A  05-DEC-2011 

 

C 

C           DSB (60Co):   2.86 

C           SSB (60Co): 115.53 

C           BD  (60Co): 293.98 

C 

C    ***    ============================================================ 

C    ***                 4He  DOSE, RBE AND RELATED TALLIES 

C    ***    ------------------------------------------------------------ 

C 

FC1016      4He Absorbed Dose  

F1016:A     1 

FM1016      0.1602  $MeV/g to nGy 

C 

C 

FC5026      4He RBE for DSB induction (0% pO2) relative to 60Co 

F5026:A     1 

FM5026      0.1602  $MeV/g to nGy 

DE5026      1.000E-03 1.500E-03 2.000E-03 2.500E-03 3.000E-03 4.000E-03 

            5.000E-03 6.000E-03 7.000E-03 8.000E-03 9.000E-03 1.000E-02 

            1.250E-02 1.500E-02 1.750E-02 2.000E-02 2.250E-02 2.500E-02 

            2.750E-02 3.000E-02 3.500E-02 4.000E-02 4.500E-02 5.000E-02 

            5.500E-02 6.000E-02 6.500E-02 7.000E-02 7.500E-02 8.000E-02 

            8.500E-02 9.000E-02 9.500E-02 1.000E-01 1.250E-01 1.500E-01 

            1.750E-01 2.000E-01 2.250E-01 2.500E-01 2.750E-01 3.000E-01 

            3.500E-01 4.000E-01 4.500E-01 5.000E-01 5.500E-01 6.000E-01 

            6.500E-01 7.000E-01 7.500E-01 8.000E-01 8.500E-01 9.000E-01 

            9.500E-01 1.000E+00 1.250E+00 1.500E+00 1.750E+00 2.000E+00 

            2.250E+00 2.500E+00 2.750E+00 3.000E+00 3.500E+00 4.000E+00 

            4.500E+00 5.000E+00 5.500E+00 6.000E+00 6.500E+00 7.000E+00 

            7.500E+00 8.000E+00 8.500E+00 9.000E+00 9.500E+00 1.000E+01 

            1.250E+01 1.500E+01 1.750E+01 2.000E+01 2.500E+01 2.750E+01 

            3.000E+01 3.500E+01 4.000E+01 4.500E+01 5.000E+01 5.500E+01 

            6.000E+01 6.500E+01 7.000E+01 7.500E+01 8.000E+01 8.500E+01 

            9.000E+01 9.500E+01 1.000E+02 1.250E+02 1.500E+02 1.750E+02 

            2.000E+02 2.250E+02 2.500E+02 2.750E+02 3.000E+02 3.500E+02 

            3.750E+02 4.000E+02 4.500E+02 5.000E+02 5.500E+02 6.000E+02 

            6.500E+02 7.000E+02 7.500E+02 8.000E+02 8.500E+02 9.000E+02 

            9.500E+02 1.000E+03 2.000E+03 5.000E+03 7.500E+03 1.000E+04 

DF5026      9.826E+00 9.820E+00 9.828E+00 9.823E+00 9.818E+00 9.821E+00 

            9.819E+00 9.815E+00 9.818E+00 9.820E+00 9.815E+00 9.816E+00 

            9.817E+00 9.814E+00 9.808E+00 9.810E+00 9.799E+00 9.794E+00 

            9.789E+00 9.792E+00 9.792E+00 9.785E+00 9.788E+00 9.786E+00 

            9.778E+00 9.781E+00 9.782E+00 9.772E+00 9.772E+00 9.773E+00 

            9.761E+00 9.758E+00 9.752E+00 9.753E+00 9.742E+00 9.723E+00 

            9.713E+00 9.705E+00 9.685E+00 9.677E+00 9.653E+00 9.642E+00 

            9.619E+00 9.592E+00 9.563E+00 9.530E+00 9.501E+00 9.467E+00 

            9.442E+00 9.402E+00 9.372E+00 9.344E+00 9.303E+00 9.264E+00 

            9.226E+00 9.191E+00 8.996E+00 8.787E+00 8.574E+00 8.344E+00 

            8.114E+00 7.871E+00 7.627E+00 7.388E+00 6.912E+00 6.457E+00 

            6.015E+00 5.619E+00 5.255E+00 4.925E+00 4.619E+00 4.357E+00 

            4.119E+00 3.898E+00 3.713E+00 3.543E+00 3.389E+00 3.250E+00 

            2.740E+00 2.405E+00 2.190E+00 2.030E+00 1.816E+00 1.736E+00 

            1.676E+00 1.582E+00 1.507E+00 1.455E+00 1.405E+00 1.372E+00 

            1.339E+00 1.313E+00 1.293E+00 1.274E+00 1.258E+00 1.240E+00 
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 1.230E+00 1.221E+00 1.210E+00 1.167E+00 1.137E+00 1.121E+00 

 1.101E+00 1.088E+00 1.079E+00 1.074E+00 1.067E+00 1.059E+00 

 1.054E+00 1.049E+00 1.042E+00 1.039E+00 1.035E+00 1.031E+00 

 1.033E+00 1.027E+00 1.026E+00 1.027E+00 1.023E+00 1.022E+00 

 1.020E+00 1.019E+00 1.006E+00 1.002E+00 1.002E+00 1.000E+00 

C 

C 

FC5036  4He RBE for SSB induction (0% pO2) relative to 60Co 

F5036:A  1 

FM5036  0.1602  $MeV/g to nGy 

DE5036  1.000E-03 1.500E-03 2.000E-03 2.500E-03 3.000E-03 4.000E-03 

 5.000E-03 6.000E-03 7.000E-03 8.000E-03 9.000E-03 1.000E-02 

 1.250E-02 1.500E-02 1.750E-02 2.000E-02 2.250E-02 2.500E-02 

 2.750E-02 3.000E-02 3.500E-02 4.000E-02 4.500E-02 5.000E-02 

 5.500E-02 6.000E-02 6.500E-02 7.000E-02 7.500E-02 8.000E-02 

 8.500E-02 9.000E-02 9.500E-02 1.000E-01 1.250E-01 1.500E-01 

 1.750E-01 2.000E-01 2.250E-01 2.500E-01 2.750E-01 3.000E-01 

 3.500E-01 4.000E-01 4.500E-01 5.000E-01 5.500E-01 6.000E-01 

 6.500E-01 7.000E-01 7.500E-01 8.000E-01 8.500E-01 9.000E-01 

 9.500E-01 1.000E+00 1.250E+00 1.500E+00 1.750E+00 2.000E+00 

 2.250E+00 2.500E+00 2.750E+00 3.000E+00 3.500E+00 4.000E+00 

 4.500E+00 5.000E+00 5.500E+00 6.000E+00 6.500E+00 7.000E+00 

 7.500E+00 8.000E+00 8.500E+00 9.000E+00 9.500E+00 1.000E+01 

 1.250E+01 1.500E+01 1.750E+01 2.000E+01 2.500E+01 2.750E+01 

 3.000E+01 3.500E+01 4.000E+01 4.500E+01 5.000E+01 5.500E+01 

 6.000E+01 6.500E+01 7.000E+01 7.500E+01 8.000E+01 8.500E+01 

 9.000E+01 9.500E+01 1.000E+02 1.250E+02 1.500E+02 1.750E+02 

 2.000E+02 2.250E+02 2.500E+02 2.750E+02 3.000E+02 3.500E+02 

 3.750E+02 4.000E+02 4.500E+02 5.000E+02 5.500E+02 6.000E+02 

 6.500E+02 7.000E+02 7.500E+02 8.000E+02 8.500E+02 9.000E+02 

 9.500E+02 1.000E+03 2.000E+03 5.000E+03 7.500E+03 1.000E+04 

DF5036  5.472E-01 5.479E-01 5.483E-01 5.489E-01 5.495E-01 5.503E-01 

 5.510E-01 5.520E-01 5.523E-01 5.531E-01 5.538E-01 5.545E-01 

 5.558E-01 5.568E-01 5.581E-01 5.593E-01 5.604E-01 5.614E-01 

 5.622E-01 5.630E-01 5.647E-01 5.664E-01 5.682E-01 5.694E-01 

 5.710E-01 5.724E-01 5.740E-01 5.752E-01 5.763E-01 5.776E-01 

 5.790E-01 5.801E-01 5.813E-01 5.828E-01 5.881E-01 5.936E-01 

 5.987E-01 6.032E-01 6.080E-01 6.128E-01 6.173E-01 6.214E-01 

 6.299E-01 6.379E-01 6.458E-01 6.538E-01 6.609E-01 6.687E-01 

 6.761E-01 6.830E-01 6.900E-01 6.967E-01 7.038E-01 7.108E-01 

 7.168E-01 7.238E-01 7.547E-01 7.840E-01 8.109E-01 8.353E-01 

 8.579E-01 8.789E-01 8.981E-01 9.149E-01 9.436E-01 9.647E-01 

 9.806E-01 9.917E-01 9.988E-01 1.003E+00 1.005E+00 1.006E+00 

 1.005E+00 1.003E+00 1.001E+00 9.991E-01 9.964E-01 9.933E-01 

 9.825E-01 9.744E-01 9.704E-01 9.681E-01 9.662E-01 9.660E-01 

 9.672E-01 9.685E-01 9.707E-01 9.725E-01 9.739E-01 9.754E-01 

 9.768E-01 9.789E-01 9.794E-01 9.810E-01 9.809E-01 9.824E-01 

 9.834E-01 9.842E-01 9.851E-01 9.874E-01 9.897E-01 9.912E-01 

 9.913E-01 9.924E-01 9.931E-01 9.936E-01 9.942E-01 9.949E-01 

 9.953E-01 9.957E-01 9.962E-01 9.965E-01 9.969E-01 9.972E-01 

 9.972E-01 9.975E-01 9.977E-01 9.977E-01 9.979E-01 9.980E-01 

 9.981E-01 9.983E-01 9.992E-01 9.996E-01 9.996E-01 9.998E-01 
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C 

C 

FC5046      4He RBE for BD induction (0% pO2) relative to 60Co 

F5046:A     1 

FM5046      0.1602  $MeV/g to nGy 

DE5046      1.000E-03 1.500E-03 2.000E-03 2.500E-03 3.000E-03 4.000E-03 

            5.000E-03 6.000E-03 7.000E-03 8.000E-03 9.000E-03 1.000E-02 

            1.250E-02 1.500E-02 1.750E-02 2.000E-02 2.250E-02 2.500E-02 

            2.750E-02 3.000E-02 3.500E-02 4.000E-02 4.500E-02 5.000E-02 

            5.500E-02 6.000E-02 6.500E-02 7.000E-02 7.500E-02 8.000E-02 

            8.500E-02 9.000E-02 9.500E-02 1.000E-01 1.250E-01 1.500E-01 

            1.750E-01 2.000E-01 2.250E-01 2.500E-01 2.750E-01 3.000E-01 

            3.500E-01 4.000E-01 4.500E-01 5.000E-01 5.500E-01 6.000E-01 

            6.500E-01 7.000E-01 7.500E-01 8.000E-01 8.500E-01 9.000E-01 

            9.500E-01 1.000E+00 1.250E+00 1.500E+00 1.750E+00 2.000E+00 

            2.250E+00 2.500E+00 2.750E+00 3.000E+00 3.500E+00 4.000E+00 

            4.500E+00 5.000E+00 5.500E+00 6.000E+00 6.500E+00 7.000E+00 

            7.500E+00 8.000E+00 8.500E+00 9.000E+00 9.500E+00 1.000E+01 

            1.250E+01 1.500E+01 1.750E+01 2.000E+01 2.500E+01 2.750E+01 

            3.000E+01 3.500E+01 4.000E+01 4.500E+01 5.000E+01 5.500E+01 

            6.000E+01 6.500E+01 7.000E+01 7.500E+01 8.000E+01 8.500E+01 

            9.000E+01 9.500E+01 1.000E+02 1.250E+02 1.500E+02 1.750E+02 

            2.000E+02 2.250E+02 2.500E+02 2.750E+02 3.000E+02 3.500E+02 

            3.750E+02 4.000E+02 4.500E+02 5.000E+02 5.500E+02 6.000E+02 

            6.500E+02 7.000E+02 7.500E+02 8.000E+02 8.500E+02 9.000E+02 

            9.500E+02 1.000E+03 2.000E+03 5.000E+03 7.500E+03 1.000E+04 

DF5046      1.434E-01 1.437E-01 1.439E-01 1.441E-01 1.444E-01 1.448E-01 

            1.451E-01 1.454E-01 1.458E-01 1.461E-01 1.462E-01 1.466E-01 

            1.472E-01 1.476E-01 1.481E-01 1.487E-01 1.492E-01 1.497E-01 

            1.501E-01 1.504E-01 1.513E-01 1.520E-01 1.527E-01 1.533E-01 

            1.540E-01 1.547E-01 1.552E-01 1.558E-01 1.565E-01 1.570E-01 

            1.578E-01 1.583E-01 1.588E-01 1.593E-01 1.619E-01 1.645E-01 

            1.670E-01 1.692E-01 1.716E-01 1.738E-01 1.760E-01 1.781E-01 

            1.825E-01 1.867E-01 1.909E-01 1.950E-01 1.991E-01 2.032E-01 

            2.071E-01 2.114E-01 2.155E-01 2.195E-01 2.236E-01 2.276E-01 

            2.318E-01 2.357E-01 2.564E-01 2.769E-01 2.975E-01 3.186E-01 

            3.393E-01 3.598E-01 3.800E-01 4.001E-01 4.387E-01 4.750E-01 

            5.088E-01 5.393E-01 5.668E-01 5.913E-01 6.137E-01 6.330E-01 

            6.505E-01 6.663E-01 6.801E-01 6.924E-01 7.036E-01 7.140E-01 

            7.531E-01 7.808E-01 8.016E-01 8.185E-01 8.443E-01 8.547E-01 

            8.637E-01 8.787E-01 8.908E-01 9.005E-01 9.088E-01 9.163E-01 

            9.220E-01 9.272E-01 9.321E-01 9.357E-01 9.394E-01 9.430E-01 

            9.459E-01 9.482E-01 9.509E-01 9.600E-01 9.664E-01 9.712E-01 

            9.747E-01 9.776E-01 9.800E-01 9.818E-01 9.835E-01 9.860E-01 

            9.870E-01 9.879E-01 9.894E-01 9.906E-01 9.915E-01 9.922E-01 

            9.926E-01 9.932E-01 9.938E-01 9.942E-01 9.946E-01 9.950E-01 

            9.951E-01 9.956E-01 9.984E-01 9.998E-01 1.000E+00 1.000E+00 

C 

C 

FC5076      4He intra-track RMF interaction term (0% pO2) 

F5076:A     1 

FM5076      0.1602  $MeV to nGy 

DE5076      1.000E-03 1.500E-03 2.000E-03 2.500E-03 3.000E-03 4.000E-03 

            5.000E-03 6.000E-03 7.000E-03 8.000E-03 9.000E-03 1.000E-02 

            1.250E-02 1.500E-02 1.750E-02 2.000E-02 2.250E-02 2.500E-02 

            2.750E-02 3.000E-02 3.500E-02 4.000E-02 4.500E-02 5.000E-02 

            5.500E-02 6.000E-02 6.500E-02 7.000E-02 7.500E-02 8.000E-02 

            8.500E-02 9.000E-02 9.500E-02 1.000E-01 1.250E-01 1.500E-01 

            1.750E-01 2.000E-01 2.250E-01 2.500E-01 2.750E-01 3.000E-01 

            3.500E-01 4.000E-01 4.500E-01 5.000E-01 5.500E-01 6.000E-01 

            6.500E-01 7.000E-01 7.500E-01 8.000E-01 8.500E-01 9.000E-01 
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            9.500E-01 1.000E+00 1.250E+00 1.500E+00 1.750E+00 2.000E+00 

            2.250E+00 2.500E+00 2.750E+00 3.000E+00 3.500E+00 4.000E+00 

            4.500E+00 5.000E+00 5.500E+00 6.000E+00 6.500E+00 7.000E+00 

            7.500E+00 8.000E+00 8.500E+00 9.000E+00 9.500E+00 1.000E+01 

            1.250E+01 1.500E+01 1.750E+01 2.000E+01 2.500E+01 2.750E+01 

            3.000E+01 3.500E+01 4.000E+01 4.500E+01 5.000E+01 5.500E+01 

            6.000E+01 6.500E+01 7.000E+01 7.500E+01 8.000E+01 8.500E+01 

            9.000E+01 9.500E+01 1.000E+02 1.250E+02 1.500E+02 1.750E+02 

            2.000E+02 2.250E+02 2.500E+02 2.750E+02 3.000E+02 3.500E+02 

            3.750E+02 4.000E+02 4.500E+02 5.000E+02 5.500E+02 6.000E+02 

            6.500E+02 7.000E+02 7.500E+02 8.000E+02 8.500E+02 9.000E+02 

            9.500E+02 1.000E+03 2.000E+03 5.000E+03 7.500E+03 1.000E+04 

DF5076      2.363E-01 3.540E-01 4.728E-01 5.904E-01 7.078E-01 9.441E-01 

            1.180E+00 1.414E+00 1.651E+00 1.887E+00 2.120E+00 2.356E+00 

            2.945E+00 3.530E+00 4.111E+00 4.699E+00 5.272E+00 5.848E+00 

            6.425E+00 7.009E+00 8.169E+00 9.313E+00 1.047E+01 1.162E+01 

            1.275E+01 1.390E+01 1.505E+01 1.616E+01 1.729E+01 1.843E+01 

            1.952E+01 2.063E+01 2.173E+01 2.285E+01 2.834E+01 3.369E+01 

            3.901E+01 4.426E+01 4.931E+01 5.437E+01 5.917E+01 6.402E+01 

            7.342E+01 8.235E+01 9.086E+01 9.879E+01 1.063E+02 1.131E+02 

            1.196E+02 1.250E+02 1.301E+02 1.344E+02 1.377E+02 1.404E+02 

            1.424E+02 1.439E+02 1.420E+02 1.297E+02 1.144E+02 9.994E+01 

            8.752E+01 7.671E+01 6.744E+01 5.954E+01 4.671E+01 3.702E+01 

            2.947E+01 2.379E+01 1.938E+01 1.594E+01 1.320E+01 1.110E+01 

            9.408E+00 8.020E+00 6.945E+00 6.048E+00 5.306E+00 4.689E+00 

            2.799E+00 1.867E+00 1.370E+00 1.058E+00 7.086E-01 5.998E-01 

            5.210E-01 4.104E-01 3.341E-01 2.833E-01 2.426E-01 2.140E-01 

            1.901E-01 1.712E-01 1.563E-01 1.436E-01 1.329E-01 1.229E-01 

            1.154E-01 1.088E-01 1.025E-01 7.967E-02 6.534E-02 5.613E-02 

            4.876E-02 4.339E-02 3.928E-02 3.618E-02 3.338E-02 2.924E-02 

            2.751E-02 2.597E-02 2.351E-02 2.167E-02 2.008E-02 1.876E-02 

            1.784E-02 1.677E-02 1.599E-02 1.535E-02 1.466E-02 1.411E-02 

            1.361E-02 1.316E-02 8.952E-03 6.662E-03 6.250E-03 6.072E-03 

 

 

 

 

Lithium Ions 

 
7Li DOSE-RESPONSE FUNCTIONS FOR USE IN MCNP6 (May 25, 2016) 

Data generated using MCDS Version 3.10A  05-DEC-2011 

 

C 

C           DSB (60Co):   8.32 

C           SSB (60Co): 188.63 

C           BD  (60Co): 425.26 

C 

C    ***    ============================================================ 

C    ***                 7Li  DOSE, RBE AND RELATED TALLIES 

C    ***    ------------------------------------------------------------ 

C 

FC6016      7Li Absorbed Dose  

F6016:#     1 

FT6016      RES 3007 

FM6016      0.1602  $MeV/g to nGy 

C 

C 

FC6026      7Li RBE for DSB induction (100% pO2) relative to 60Co 

F6026:#     1 

FT6026      RES 3007 
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FM6026  0.1602  $MeV/g to nGy 

DE6026  1.000E-03 1.200E-03 1.450E-03 1.750E-03 2.100E-03 2.540E-03 

 3.050E-03 3.680E-03 4.430E-03 5.340E-03 6.430E-03 7.740E-03 

 9.330E-03 1.120E-02 1.350E-02 1.630E-02 1.960E-02 2.360E-02 

 2.850E-02 3.430E-02 4.130E-02 4.980E-02 5.990E-02 7.220E-02 

 8.700E-02 1.050E-01 1.260E-01 1.520E-01 1.830E-01 2.210E-01 

 2.660E-01 3.200E-01 3.850E-01 4.640E-01 5.590E-01 6.730E-01 

 8.110E-01 9.770E-01 1.180E+00 1.420E+00 1.710E+00 2.060E+00 

 2.480E+00 2.980E+00 3.590E+00 4.330E+00 5.210E+00 6.280E+00 

 7.560E+00 9.110E+00 1.100E+01 1.320E+01 1.590E+01 1.920E+01 

 2.310E+01 2.780E+01 3.350E+01 4.040E+01 4.860E+01 5.860E+01 

 7.050E+01 8.500E+01 1.020E+02 1.230E+02 1.480E+02 1.790E+02 

 2.150E+02 2.600E+02 3.130E+02 3.760E+02 4.530E+02 5.460E+02 

 6.580E+02 7.920E+02 9.550E+02 1.150E+03 1.380E+03 1.670E+03 

 2.010E+03 2.420E+03 2.920E+03 3.510E+03 4.230E+03 5.090E+03 

 6.140E+03 7.390E+03 8.900E+03 1.070E+04 1.290E+04 1.560E+04 

 1.870E+04 2.260E+04 2.720E+04 3.270E+04 3.940E+04 4.750E+04 

 5.720E+04 6.890E+04 8.300E+04 1.000E+05 

DF6026  3.386E+00 3.386E+00 3.385E+00 3.385E+00 3.385E+00 3.386E+00 

 3.385E+00 3.386E+00 3.388E+00 3.384E+00 3.387E+00 3.386E+00 

 3.385E+00 3.384E+00 3.385E+00 3.383E+00 3.385E+00 3.383E+00 

 3.385E+00 3.384E+00 3.385E+00 3.384E+00 3.382E+00 3.380E+00 

 3.382E+00 3.381E+00 3.380E+00 3.379E+00 3.377E+00 3.376E+00 

 3.377E+00 3.374E+00 3.372E+00 3.370E+00 3.365E+00 3.363E+00 

 3.361E+00 3.358E+00 3.350E+00 3.343E+00 3.332E+00 3.320E+00 

 3.307E+00 3.291E+00 3.270E+00 3.245E+00 3.212E+00 3.172E+00 

 3.125E+00 3.065E+00 2.992E+00 2.911E+00 2.815E+00 2.707E+00 

 2.590E+00 2.469E+00 2.339E+00 2.209E+00 2.086E+00 1.962E+00 

 1.847E+00 1.740E+00 1.643E+00 1.553E+00 1.477E+00 1.407E+00 

 1.348E+00 1.295E+00 1.249E+00 1.214E+00 1.181E+00 1.154E+00 

 1.129E+00 1.110E+00 1.092E+00 1.079E+00 1.067E+00 1.058E+00 

 1.051E+00 1.043E+00 1.037E+00 1.033E+00 1.030E+00 1.026E+00 

 1.024E+00 1.021E+00 1.020E+00 1.018E+00 1.020E+00 1.017E+00 

 1.018E+00 1.015E+00 1.016E+00 1.015E+00 1.017E+00 1.015E+00 

 1.016E+00 1.016E+00 1.016E+00 1.015E+00 

C 

C 

FC6036  7Li RBE for SSB induction (100% pO2) relative to 60Co 

F6036:#  1 

FT6036  RES 3007 

FM6036  0.1602  $MeV/g to nGy 

DE6036  1.000E-03 1.200E-03 1.450E-03 1.750E-03 2.100E-03 2.540E-03 

 3.050E-03 3.680E-03 4.430E-03 5.340E-03 6.430E-03 7.740E-03 

 9.330E-03 1.120E-02 1.350E-02 1.630E-02 1.960E-02 2.360E-02 

 2.850E-02 3.430E-02 4.130E-02 4.980E-02 5.990E-02 7.220E-02 

 8.700E-02 1.050E-01 1.260E-01 1.520E-01 1.830E-01 2.210E-01 

 2.660E-01 3.200E-01 3.850E-01 4.640E-01 5.590E-01 6.730E-01 

 8.110E-01 9.770E-01 1.180E+00 1.420E+00 1.710E+00 2.060E+00 

 2.480E+00 2.980E+00 3.590E+00 4.330E+00 5.210E+00 6.280E+00 

 7.560E+00 9.110E+00 1.100E+01 1.320E+01 1.590E+01 1.920E+01 

 2.310E+01 2.780E+01 3.350E+01 4.040E+01 4.860E+01 5.860E+01 

 7.050E+01 8.500E+01 1.020E+02 1.230E+02 1.480E+02 1.790E+02 

 2.150E+02 2.600E+02 3.130E+02 3.760E+02 4.530E+02 5.460E+02 

 6.580E+02 7.920E+02 9.550E+02 1.150E+03 1.380E+03 1.670E+03 

 2.010E+03 2.420E+03 2.920E+03 3.510E+03 4.230E+03 5.090E+03 

 6.140E+03 7.390E+03 8.900E+03 1.070E+04 1.290E+04 1.560E+04 

 1.870E+04 2.260E+04 2.720E+04 3.270E+04 3.940E+04 4.750E+04 

 5.720E+04 6.890E+04 8.300E+04 1.000E+05 

DF6036  3.259E-01 3.261E-01 3.261E-01 3.261E-01 3.263E-01 3.265E-01 

 3.268E-01 3.268E-01 3.267E-01 3.271E-01 3.272E-01 3.275E-01 

 3.278E-01 3.281E-01 3.283E-01 3.287E-01 3.289E-01 3.295E-01 
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            3.298E-01 3.304E-01 3.309E-01 3.315E-01 3.322E-01 3.331E-01 

            3.340E-01 3.351E-01 3.358E-01 3.372E-01 3.386E-01 3.402E-01 

            3.419E-01 3.439E-01 3.460E-01 3.486E-01 3.519E-01 3.551E-01 

            3.590E-01 3.634E-01 3.686E-01 3.748E-01 3.817E-01 3.898E-01 

            3.991E-01 4.098E-01 4.224E-01 4.370E-01 4.536E-01 4.726E-01 

            4.943E-01 5.186E-01 5.459E-01 5.742E-01 6.050E-01 6.380E-01 

            6.708E-01 7.035E-01 7.353E-01 7.666E-01 7.951E-01 8.215E-01 

            8.455E-01 8.673E-01 8.862E-01 9.034E-01 9.177E-01 9.307E-01 

            9.413E-01 9.506E-01 9.585E-01 9.649E-01 9.704E-01 9.752E-01 

            9.792E-01 9.825E-01 9.854E-01 9.875E-01 9.895E-01 9.910E-01 

            9.923E-01 9.935E-01 9.945E-01 9.951E-01 9.957E-01 9.963E-01 

            9.967E-01 9.971E-01 9.973E-01 9.975E-01 9.975E-01 9.977E-01 

            9.977E-01 9.980E-01 9.979E-01 9.981E-01 9.979E-01 9.980E-01 

            9.980E-01 9.980E-01 9.980E-01 9.981E-01 

C 

C 

FC6046      7Li RBE for BD induction (100% pO2) relative to 60Co 

F6046:#     1 

FT6046      RES 3007 

FM6046      0.1602  $MeV/g to nGy 

DE6046      1.000E-03 1.200E-03 1.450E-03 1.750E-03 2.100E-03 2.540E-03 

            3.050E-03 3.680E-03 4.430E-03 5.340E-03 6.430E-03 7.740E-03 

            9.330E-03 1.120E-02 1.350E-02 1.630E-02 1.960E-02 2.360E-02 

            2.850E-02 3.430E-02 4.130E-02 4.980E-02 5.990E-02 7.220E-02 

            8.700E-02 1.050E-01 1.260E-01 1.520E-01 1.830E-01 2.210E-01 

            2.660E-01 3.200E-01 3.850E-01 4.640E-01 5.590E-01 6.730E-01 

            8.110E-01 9.770E-01 1.180E+00 1.420E+00 1.710E+00 2.060E+00 

            2.480E+00 2.980E+00 3.590E+00 4.330E+00 5.210E+00 6.280E+00 

            7.560E+00 9.110E+00 1.100E+01 1.320E+01 1.590E+01 1.920E+01 

            2.310E+01 2.780E+01 3.350E+01 4.040E+01 4.860E+01 5.860E+01 

            7.050E+01 8.500E+01 1.020E+02 1.230E+02 1.480E+02 1.790E+02 

            2.150E+02 2.600E+02 3.130E+02 3.760E+02 4.530E+02 5.460E+02 

            6.580E+02 7.920E+02 9.550E+02 1.150E+03 1.380E+03 1.670E+03 

            2.010E+03 2.420E+03 2.920E+03 3.510E+03 4.230E+03 5.090E+03 

            6.140E+03 7.390E+03 8.900E+03 1.070E+04 1.290E+04 1.560E+04 

            1.870E+04 2.260E+04 2.720E+04 3.270E+04 3.940E+04 4.750E+04 

            5.720E+04 6.890E+04 8.300E+04 1.000E+05 

DF6046      9.464E-02 9.468E-02 9.480E-02 9.486E-02 9.484E-02 9.489E-02 

            9.497E-02 9.504E-02 9.510E-02 9.524E-02 9.531E-02 9.546E-02 

            9.554E-02 9.568E-02 9.577E-02 9.599E-02 9.619E-02 9.633E-02 

            9.649E-02 9.681E-02 9.712E-02 9.736E-02 9.770E-02 9.809E-02 

            9.846E-02 9.897E-02 9.953E-02 1.001E-01 1.008E-01 1.016E-01 

            1.024E-01 1.035E-01 1.045E-01 1.059E-01 1.074E-01 1.092E-01 

            1.112E-01 1.135E-01 1.163E-01 1.196E-01 1.234E-01 1.280E-01 

            1.333E-01 1.396E-01 1.473E-01 1.567E-01 1.677E-01 1.810E-01 

            1.968E-01 2.157E-01 2.383E-01 2.640E-01 2.941E-01 3.286E-01 

            3.662E-01 4.072E-01 4.514E-01 4.972E-01 5.432E-01 5.897E-01 

            6.340E-01 6.766E-01 7.156E-01 7.525E-01 7.856E-01 8.160E-01 

            8.418E-01 8.654E-01 8.852E-01 9.024E-01 9.173E-01 9.299E-01 

            9.407E-01 9.497E-01 9.575E-01 9.639E-01 9.693E-01 9.738E-01 

            9.777E-01 9.807E-01 9.833E-01 9.853E-01 9.871E-01 9.886E-01 

            9.898E-01 9.907E-01 9.915E-01 9.921E-01 9.925E-01 9.928E-01 

            9.930E-01 9.932E-01 9.934E-01 9.936E-01 9.938E-01 9.938E-01 

            9.938E-01 9.940E-01 9.938E-01 9.938E-01 
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C 

C 

FC6056  7Li LET (keV/um)  

F6056:#  1 

FT6056  RES 3007 

FM6056  0.1602  $MeV/g to nGy 

DE6056  1.000E-03 1.200E-03 1.450E-03 1.750E-03 2.100E-03 2.540E-03 

 3.050E-03 3.680E-03 4.430E-03 5.340E-03 6.430E-03 7.740E-03 

 9.330E-03 1.120E-02 1.350E-02 1.630E-02 1.960E-02 2.360E-02 

 2.850E-02 3.430E-02 4.130E-02 4.980E-02 5.990E-02 7.220E-02 

 8.700E-02 1.050E-01 1.260E-01 1.520E-01 1.830E-01 2.210E-01 

 2.660E-01 3.200E-01 3.850E-01 4.640E-01 5.590E-01 6.730E-01 

 8.110E-01 9.770E-01 1.180E+00 1.420E+00 1.710E+00 2.060E+00 

 2.480E+00 2.980E+00 3.590E+00 4.330E+00 5.210E+00 6.280E+00 

 7.560E+00 9.110E+00 1.100E+01 1.320E+01 1.590E+01 1.920E+01 

 2.310E+01 2.780E+01 3.350E+01 4.040E+01 4.860E+01 5.860E+01 

 7.050E+01 8.500E+01 1.020E+02 1.230E+02 1.480E+02 1.790E+02 

 2.150E+02 2.600E+02 3.130E+02 3.760E+02 4.530E+02 5.460E+02 

 6.580E+02 7.920E+02 9.550E+02 1.150E+03 1.380E+03 1.670E+03 

 2.010E+03 2.420E+03 2.920E+03 3.510E+03 4.230E+03 5.090E+03 

 6.140E+03 7.390E+03 8.900E+03 1.070E+04 1.290E+04 1.560E+04 

 1.870E+04 2.260E+04 2.720E+04 3.270E+04 3.940E+04 4.750E+04 

 5.720E+04 6.890E+04 8.300E+04 1.000E+05 

DF6056  4.348E+01 4.359E+01 4.370E+01 4.380E+01 4.391E+01 4.406E+01 

 4.426E+01 4.455E+01 4.499E+01 4.562E+01 4.651E+01 4.771E+01 

 4.931E+01 5.130E+01 5.384E+01 5.698E+01 6.066E+01 6.503E+01 

 7.020E+01 7.606E+01 8.273E+01 9.033E+01 9.874E+01 1.082E+02 

 1.187E+02 1.305E+02 1.431E+02 1.574E+02 1.732E+02 1.912E+02 

 2.110E+02 2.331E+02 2.576E+02 2.846E+02 3.129E+02 3.404E+02 

 3.650E+02 3.836E+02 3.942E+02 3.956E+02 3.887E+02 3.748E+02 

 3.559E+02 3.339E+02 3.095E+02 2.840E+02 2.587E+02 2.337E+02 

 2.097E+02 1.868E+02 1.652E+02 1.459E+02 1.280E+02 1.115E+02 

 9.713E+01 8.433E+01 7.296E+01 6.298E+01 5.439E+01 4.683E+01 

 4.036E+01 3.471E+01 2.995E+01 2.574E+01 2.215E+01 1.899E+01 

 1.638E+01 1.406E+01 1.213E+01 1.049E+01 9.070E+00 7.856E+00 

 6.824E+00 5.953E+00 5.207E+00 4.580E+00 4.059E+00 3.601E+00 

 3.227E+00 2.914E+00 2.650E+00 2.436E+00 2.257E+00 2.111E+00 

 1.992E+00 1.898E+00 1.824E+00 1.766E+00 1.722E+00 1.688E+00 

 1.666E+00 1.650E+00 1.640E+00 1.634E+00 1.632E+00 1.633E+00 

 1.635E+00 1.639E+00 1.643E+00 1.648E+00 

C 

C 

FC6066  7Li ZF (mean specific energy)  

F6066:#  1 

FT6066  RES 3007 

FM6066  0.1602  $MeV/g to nGy 

DE6066  1.000E-03 1.200E-03 1.450E-03 1.750E-03 2.100E-03 2.540E-03 

 3.050E-03 3.680E-03 4.430E-03 5.340E-03 6.430E-03 7.740E-03 

 9.330E-03 1.120E-02 1.350E-02 1.630E-02 1.960E-02 2.360E-02 

 2.850E-02 3.430E-02 4.130E-02 4.980E-02 5.990E-02 7.220E-02 

 8.700E-02 1.050E-01 1.260E-01 1.520E-01 1.830E-01 2.210E-01 

 2.660E-01 3.200E-01 3.850E-01 4.640E-01 5.590E-01 6.730E-01 

 8.110E-01 9.770E-01 1.180E+00 1.420E+00 1.710E+00 2.060E+00 

 2.480E+00 2.980E+00 3.590E+00 4.330E+00 5.210E+00 6.280E+00 

 7.560E+00 9.110E+00 1.100E+01 1.320E+01 1.590E+01 1.920E+01 

 2.310E+01 2.780E+01 3.350E+01 4.040E+01 4.860E+01 5.860E+01 

 7.050E+01 8.500E+01 1.020E+02 1.230E+02 1.480E+02 1.790E+02 

 2.150E+02 2.600E+02 3.130E+02 3.760E+02 4.530E+02 5.460E+02 

 6.580E+02 7.920E+02 9.550E+02 1.150E+03 1.380E+03 1.670E+03 

 2.010E+03 2.420E+03 2.920E+03 3.510E+03 4.230E+03 5.090E+03 

 6.140E+03 7.390E+03 8.900E+03 1.070E+04 1.290E+04 1.560E+04 



136 

 1.870E+04 2.260E+04 2.720E+04 3.270E+04 3.940E+04 4.750E+04 

 5.720E+04 6.890E+04 8.300E+04 1.000E+05 

DF6066  2.448E-03 2.937E-03 3.549E-03 4.283E-03 5.140E-03 6.217E-03 

 7.465E-03 9.007E-03 1.084E-02 1.307E-02 1.573E-02 1.894E-02 

 2.283E-02 2.739E-02 3.301E-02 3.984E-02 4.788E-02 5.762E-02 

 6.953E-02 8.360E-02 1.006E-01 1.211E-01 1.454E-01 1.749E-01 

 2.102E-01 2.529E-01 3.024E-01 3.631E-01 4.349E-01 5.218E-01 

 6.234E-01 7.432E-01 8.846E-01 1.052E+00 1.248E+00 1.474E+00 

 1.734E+00 2.020E+00 2.329E+00 2.629E+00 2.895E+00 3.071E+00 

 3.094E+00 2.958E+00 2.730E+00 2.475E+00 2.227E+00 1.989E+00 

 1.768E+00 1.564E+00 1.375E+00 1.208E+00 1.056E+00 9.175E-01 

 7.973E-01 6.911E-01 5.972E-01 5.150E-01 4.445E-01 3.826E-01 

 3.296E-01 2.834E-01 2.445E-01 2.100E-01 1.808E-01 1.550E-01 

 1.337E-01 1.148E-01 9.896E-02 8.560E-02 7.400E-02 6.410E-02 

 5.568E-02 4.857E-02 4.248E-02 3.737E-02 3.312E-02 2.938E-02 

 2.633E-02 2.378E-02 2.162E-02 1.987E-02 1.841E-02 1.723E-02 

 1.625E-02 1.549E-02 1.488E-02 1.441E-02 1.405E-02 1.378E-02 

 1.359E-02 1.346E-02 1.338E-02 1.333E-02 1.332E-02 1.332E-02 

 1.334E-02 1.337E-02 1.341E-02 1.345E-02 

C 

C 

FC6076  7Li RMF intra-track DSB interaction term (100% pO2) 

F6076:#  1 

FT6076  RES 3007 

FM6076  0.1602  $MeV/g to nGy 

DE6076  1.000E-03 1.200E-03 1.450E-03 1.750E-03 2.100E-03 2.540E-03 

 3.050E-03 3.680E-03 4.430E-03 5.340E-03 6.430E-03 7.740E-03 

 9.330E-03 1.120E-02 1.350E-02 1.630E-02 1.960E-02 2.360E-02 

 2.850E-02 3.430E-02 4.130E-02 4.980E-02 5.990E-02 7.220E-02 

 8.700E-02 1.050E-01 1.260E-01 1.520E-01 1.830E-01 2.210E-01 

 2.660E-01 3.200E-01 3.850E-01 4.640E-01 5.590E-01 6.730E-01 

 8.110E-01 9.770E-01 1.180E+00 1.420E+00 1.710E+00 2.060E+00 

 2.480E+00 2.980E+00 3.590E+00 4.330E+00 5.210E+00 6.280E+00 

 7.560E+00 9.110E+00 1.100E+01 1.320E+01 1.590E+01 1.920E+01 

 2.310E+01 2.780E+01 3.350E+01 4.040E+01 4.860E+01 5.860E+01 

 7.050E+01 8.500E+01 1.020E+02 1.230E+02 1.480E+02 1.790E+02 

 2.150E+02 2.600E+02 3.130E+02 3.760E+02 4.530E+02 5.460E+02 

 6.580E+02 7.920E+02 9.550E+02 1.150E+03 1.380E+03 1.670E+03 

 2.010E+03 2.420E+03 2.920E+03 3.510E+03 4.230E+03 5.090E+03 

 6.140E+03 7.390E+03 8.900E+03 1.070E+04 1.290E+04 1.560E+04 

 1.870E+04 2.260E+04 2.720E+04 3.270E+04 3.940E+04 4.750E+04 

 5.720E+04 6.890E+04 8.300E+04 1.000E+05 

DF6076  2.807E-02 3.368E-02 4.066E-02 4.908E-02 5.890E-02 7.127E-02 

 8.556E-02 1.033E-01 1.245E-01 1.496E-01 1.805E-01 2.171E-01 

 2.615E-01 3.137E-01 3.782E-01 4.559E-01 5.488E-01 6.596E-01 

 7.967E-01 9.576E-01 1.152E+00 1.387E+00 1.662E+00 1.997E+00 

 2.404E+00 2.890E+00 3.455E+00 4.147E+00 4.960E+00 5.947E+00 

 7.109E+00 8.459E+00 1.006E+01 1.195E+01 1.413E+01 1.667E+01 

 1.958E+01 2.278E+01 2.614E+01 2.938E+01 3.214E+01 3.386E+01 

 3.384E+01 3.203E+01 2.919E+01 2.607E+01 2.298E+01 2.002E+01 

 1.727E+01 1.469E+01 1.231E+01 1.024E+01 8.364E+00 6.721E+00 

 5.347E+00 4.211E+00 3.268E+00 2.512E+00 1.933E+00 1.472E+00 

 1.125E+00 8.576E-01 6.602E-01 5.066E-01 3.945E-01 3.067E-01 

 2.429E-01 1.925E-01 1.545E-01 1.261E-01 1.033E-01 8.532E-02 

 7.095E-02 5.981E-02 5.063E-02 4.354E-02 3.772E-02 3.291E-02 

 2.910E-02 2.586E-02 2.326E-02 2.122E-02 1.952E-02 1.815E-02 

 1.705E-02 1.615E-02 1.548E-02 1.494E-02 1.461E-02 1.424E-02 

 1.409E-02 1.387E-02 1.382E-02 1.375E-02 1.376E-02 1.373E-02 

 1.378E-02 1.381E-02 1.384E-02 1.386E-02 
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7Li DOSE-RESPONSE FUNCTIONS FOR USE IN MCNP6 (May 25, 2016) 

Data generated using MCDS Version 3.10A  05-DEC-2011 

 

C 

C           DSB (60Co):   2.86 

C           SSB (60Co): 115.53 

C           BD  (60Co): 293.98 

C 

C    ***    ============================================================ 

C    ***                 7Li  DOSE, RBE AND RELATED TALLIES 

C    ***    ------------------------------------------------------------ 

C 

FC6016      7Li Absorbed Dose  

F6016:#     1 

FT6016      RES 3007 

FM6016      0.1602  $MeV/g to nGy 

C 

C 

FC6026      7Li RBE for DSB induction (0% pO2) relative to 60Co 

F6026:#     1 

FT6026      RES 3007 

FM6026      0.1602  $MeV/g to nGy 

DE6026      1.000E-03 1.200E-03 1.450E-03 1.750E-03 2.100E-03 2.540E-03 

            3.050E-03 3.680E-03 4.430E-03 5.340E-03 6.430E-03 7.740E-03 

            9.330E-03 1.120E-02 1.350E-02 1.630E-02 1.960E-02 2.360E-02 

            2.850E-02 3.430E-02 4.130E-02 4.980E-02 5.990E-02 7.220E-02 

            8.700E-02 1.050E-01 1.260E-01 1.520E-01 1.830E-01 2.210E-01 

            2.660E-01 3.200E-01 3.850E-01 4.640E-01 5.590E-01 6.730E-01 

            8.110E-01 9.770E-01 1.180E+00 1.420E+00 1.710E+00 2.060E+00 

            2.480E+00 2.980E+00 3.590E+00 4.330E+00 5.210E+00 6.280E+00 

            7.560E+00 9.110E+00 1.100E+01 1.320E+01 1.590E+01 1.920E+01 

            2.310E+01 2.780E+01 3.350E+01 4.040E+01 4.860E+01 5.860E+01 

            7.050E+01 8.500E+01 1.020E+02 1.230E+02 1.480E+02 1.790E+02 

            2.150E+02 2.600E+02 3.130E+02 3.760E+02 4.530E+02 5.460E+02 

            6.580E+02 7.920E+02 9.550E+02 1.150E+03 1.380E+03 1.670E+03 

            2.010E+03 2.420E+03 2.920E+03 3.510E+03 4.230E+03 5.090E+03 

            6.140E+03 7.390E+03 8.900E+03 1.070E+04 1.290E+04 1.560E+04 

            1.870E+04 2.260E+04 2.720E+04 3.270E+04 3.940E+04 4.750E+04 

            5.720E+04 6.890E+04 8.300E+04 1.000E+05 

DF6026      9.842E+00 9.843E+00 9.838E+00 9.838E+00 9.839E+00 9.841E+00 

            9.840E+00 9.841E+00 9.847E+00 9.835E+00 9.843E+00 9.840E+00 

            9.838E+00 9.835E+00 9.838E+00 9.832E+00 9.839E+00 9.833E+00 

            9.838E+00 9.837E+00 9.837E+00 9.836E+00 9.828E+00 9.823E+00 

            9.829E+00 9.826E+00 9.825E+00 9.822E+00 9.817E+00 9.812E+00 

            9.816E+00 9.796E+00 9.793E+00 9.786E+00 9.772E+00 9.756E+00 

            9.749E+00 9.731E+00 9.710E+00 9.679E+00 9.626E+00 9.583E+00 

            9.524E+00 9.447E+00 9.345E+00 9.220E+00 9.052E+00 8.828E+00 

            8.545E+00 8.171E+00 7.705E+00 7.164E+00 6.525E+00 5.795E+00 

            5.071E+00 4.372E+00 3.739E+00 3.208E+00 2.781E+00 2.446E+00 

            2.174E+00 1.965E+00 1.800E+00 1.657E+00 1.551E+00 1.457E+00 

            1.387E+00 1.324E+00 1.269E+00 1.228E+00 1.192E+00 1.162E+00 

            1.135E+00 1.115E+00 1.093E+00 1.082E+00 1.068E+00 1.059E+00 

            1.052E+00 1.041E+00 1.036E+00 1.033E+00 1.029E+00 1.027E+00 

            1.023E+00 1.020E+00 1.020E+00 1.017E+00 1.017E+00 1.016E+00 

            1.019E+00 1.014E+00 1.016E+00 1.015E+00 1.016E+00 1.016E+00 

            1.016E+00 1.016E+00 1.013E+00 1.013E+00 

C 

C 

FC6036      7Li RBE for SSB induction (0% pO2) relative to 60Co 

F6036:#     1 

FT6036      RES 3007 
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FM6036  0.1602  $MeV/g to nGy 

DE6036  1.000E-03 1.200E-03 1.450E-03 1.750E-03 2.100E-03 2.540E-03 

 3.050E-03 3.680E-03 4.430E-03 5.340E-03 6.430E-03 7.740E-03 

 9.330E-03 1.120E-02 1.350E-02 1.630E-02 1.960E-02 2.360E-02 

 2.850E-02 3.430E-02 4.130E-02 4.980E-02 5.990E-02 7.220E-02 

 8.700E-02 1.050E-01 1.260E-01 1.520E-01 1.830E-01 2.210E-01 

 2.660E-01 3.200E-01 3.850E-01 4.640E-01 5.590E-01 6.730E-01 

 8.110E-01 9.770E-01 1.180E+00 1.420E+00 1.710E+00 2.060E+00 

 2.480E+00 2.980E+00 3.590E+00 4.330E+00 5.210E+00 6.280E+00 

 7.560E+00 9.110E+00 1.100E+01 1.320E+01 1.590E+01 1.920E+01 

 2.310E+01 2.780E+01 3.350E+01 4.040E+01 4.860E+01 5.860E+01 

 7.050E+01 8.500E+01 1.020E+02 1.230E+02 1.480E+02 1.790E+02 

 2.150E+02 2.600E+02 3.130E+02 3.760E+02 4.530E+02 5.460E+02 

 6.580E+02 7.920E+02 9.550E+02 1.150E+03 1.380E+03 1.670E+03 

 2.010E+03 2.420E+03 2.920E+03 3.510E+03 4.230E+03 5.090E+03 

 6.140E+03 7.390E+03 8.900E+03 1.070E+04 1.290E+04 1.560E+04 

 1.870E+04 2.260E+04 2.720E+04 3.270E+04 3.940E+04 4.750E+04 

 5.720E+04 6.890E+04 8.300E+04 1.000E+05 

DF6036  5.325E-01 5.327E-01 5.327E-01 5.327E-01 5.331E-01 5.334E-01 

 5.339E-01 5.339E-01 5.338E-01 5.344E-01 5.346E-01 5.351E-01 

 5.355E-01 5.360E-01 5.363E-01 5.370E-01 5.373E-01 5.383E-01 

 5.388E-01 5.397E-01 5.405E-01 5.416E-01 5.427E-01 5.442E-01 

 5.458E-01 5.475E-01 5.487E-01 5.510E-01 5.534E-01 5.560E-01 

 5.587E-01 5.622E-01 5.657E-01 5.700E-01 5.755E-01 5.809E-01 

 5.874E-01 5.947E-01 6.035E-01 6.138E-01 6.256E-01 6.391E-01 

 6.551E-01 6.733E-01 6.946E-01 7.193E-01 7.474E-01 7.791E-01 

 8.143E-01 8.525E-01 8.921E-01 9.290E-01 9.618E-01 9.873E-01 

 1.002E+00 1.006E+00 1.001E+00 9.931E-01 9.827E-01 9.752E-01 

 9.692E-01 9.670E-01 9.663E-01 9.675E-01 9.697E-01 9.722E-01 

 9.756E-01 9.781E-01 9.813E-01 9.835E-01 9.852E-01 9.878E-01 

 9.899E-01 9.916E-01 9.920E-01 9.931E-01 9.941E-01 9.948E-01 

 9.955E-01 9.963E-01 9.968E-01 9.971E-01 9.974E-01 9.976E-01 

 9.979E-01 9.982E-01 9.982E-01 9.983E-01 9.985E-01 9.984E-01 

 9.983E-01 9.986E-01 9.984E-01 9.986E-01 9.985E-01 9.985E-01 

 9.985E-01 9.985E-01 9.987E-01 9.987E-01 

C 

C 

FC6046  7Li RBE for BD induction (0% pO2) relative to 60Co 

F6046:#  1 

FT6046  RES 3007 

FM6046  0.1602  $MeV/g to nGy 

DE6046  1.000E-03 1.200E-03 1.450E-03 1.750E-03 2.100E-03 2.540E-03 

 3.050E-03 3.680E-03 4.430E-03 5.340E-03 6.430E-03 7.740E-03 

 9.330E-03 1.120E-02 1.350E-02 1.630E-02 1.960E-02 2.360E-02 

 2.850E-02 3.430E-02 4.130E-02 4.980E-02 5.990E-02 7.220E-02 

 8.700E-02 1.050E-01 1.260E-01 1.520E-01 1.830E-01 2.210E-01 

 2.660E-01 3.200E-01 3.850E-01 4.640E-01 5.590E-01 6.730E-01 

 8.110E-01 9.770E-01 1.180E+00 1.420E+00 1.710E+00 2.060E+00 

 2.480E+00 2.980E+00 3.590E+00 4.330E+00 5.210E+00 6.280E+00 

 7.560E+00 9.110E+00 1.100E+01 1.320E+01 1.590E+01 1.920E+01 

 2.310E+01 2.780E+01 3.350E+01 4.040E+01 4.860E+01 5.860E+01 

 7.050E+01 8.500E+01 1.020E+02 1.230E+02 1.480E+02 1.790E+02 

 2.150E+02 2.600E+02 3.130E+02 3.760E+02 4.530E+02 5.460E+02 

 6.580E+02 7.920E+02 9.550E+02 1.150E+03 1.380E+03 1.670E+03 

 2.010E+03 2.420E+03 2.920E+03 3.510E+03 4.230E+03 5.090E+03 

 6.140E+03 7.390E+03 8.900E+03 1.070E+04 1.290E+04 1.560E+04 

 1.870E+04 2.260E+04 2.720E+04 3.270E+04 3.940E+04 4.750E+04 

 5.720E+04 6.890E+04 8.300E+04 1.000E+05 

DF6046  1.371E-01 1.372E-01 1.373E-01 1.374E-01 1.374E-01 1.375E-01 

 1.376E-01 1.377E-01 1.378E-01 1.380E-01 1.381E-01 1.383E-01 

 1.384E-01 1.386E-01 1.387E-01 1.391E-01 1.394E-01 1.396E-01 
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            1.398E-01 1.403E-01 1.407E-01 1.410E-01 1.415E-01 1.422E-01 

            1.427E-01 1.434E-01 1.442E-01 1.451E-01 1.461E-01 1.472E-01 

            1.485E-01 1.501E-01 1.517E-01 1.538E-01 1.559E-01 1.587E-01 

            1.617E-01 1.652E-01 1.694E-01 1.744E-01 1.804E-01 1.873E-01 

            1.957E-01 2.057E-01 2.181E-01 2.332E-01 2.513E-01 2.738E-01 

            3.009E-01 3.339E-01 3.738E-01 4.187E-01 4.700E-01 5.257E-01 

            5.803E-01 6.318E-01 6.777E-01 7.167E-01 7.497E-01 7.783E-01 

            8.033E-01 8.259E-01 8.467E-01 8.660E-01 8.832E-01 8.994E-01 

            9.133E-01 9.261E-01 9.368E-01 9.462E-01 9.543E-01 9.614E-01 

            9.672E-01 9.724E-01 9.766E-01 9.802E-01 9.832E-01 9.858E-01 

            9.879E-01 9.897E-01 9.912E-01 9.922E-01 9.928E-01 9.938E-01 

            9.943E-01 9.950E-01 9.953E-01 9.956E-01 9.959E-01 9.961E-01 

            9.962E-01 9.963E-01 9.965E-01 9.966E-01 9.966E-01 9.966E-01 

            9.966E-01 9.967E-01 9.967E-01 9.967E-01 

C 

C 

FC6076      7Li RMF intra-track DSB interaction term (0% pO2) 

F6076:#     1 

FT6076      RES 3007 

FM6076      0.1602  $MeV/g to nGy 

DE6076      1.000E-03 1.200E-03 1.450E-03 1.750E-03 2.100E-03 2.540E-03 

            3.050E-03 3.680E-03 4.430E-03 5.340E-03 6.430E-03 7.740E-03 

            9.330E-03 1.120E-02 1.350E-02 1.630E-02 1.960E-02 2.360E-02 

            2.850E-02 3.430E-02 4.130E-02 4.980E-02 5.990E-02 7.220E-02 

            8.700E-02 1.050E-01 1.260E-01 1.520E-01 1.830E-01 2.210E-01 

            2.660E-01 3.200E-01 3.850E-01 4.640E-01 5.590E-01 6.730E-01 

            8.110E-01 9.770E-01 1.180E+00 1.420E+00 1.710E+00 2.060E+00 

            2.480E+00 2.980E+00 3.590E+00 4.330E+00 5.210E+00 6.280E+00 

            7.560E+00 9.110E+00 1.100E+01 1.320E+01 1.590E+01 1.920E+01 

            2.310E+01 2.780E+01 3.350E+01 4.040E+01 4.860E+01 5.860E+01 

            7.050E+01 8.500E+01 1.020E+02 1.230E+02 1.480E+02 1.790E+02 

            2.150E+02 2.600E+02 3.130E+02 3.760E+02 4.530E+02 5.460E+02 

            6.580E+02 7.920E+02 9.550E+02 1.150E+03 1.380E+03 1.670E+03 

            2.010E+03 2.420E+03 2.920E+03 3.510E+03 4.230E+03 5.090E+03 

            6.140E+03 7.390E+03 8.900E+03 1.070E+04 1.290E+04 1.560E+04 

            1.870E+04 2.260E+04 2.720E+04 3.270E+04 3.940E+04 4.750E+04 

            5.720E+04 6.890E+04 8.300E+04 1.000E+05 

DF6076      2.371E-01 2.845E-01 3.435E-01 4.145E-01 4.976E-01 6.021E-01 

            7.227E-01 8.722E-01 1.051E+00 1.264E+00 1.524E+00 1.834E+00 

            2.209E+00 2.650E+00 3.195E+00 3.852E+00 4.636E+00 5.572E+00 

            6.730E+00 8.089E+00 9.730E+00 1.171E+01 1.404E+01 1.687E+01 

            2.030E+01 2.441E+01 2.919E+01 3.503E+01 4.191E+01 5.024E+01 

            6.006E+01 7.132E+01 8.483E+01 1.008E+02 1.192E+02 1.403E+02 

            1.648E+02 1.913E+02 2.196E+02 2.463E+02 2.682E+02 2.821E+02 

            2.807E+02 2.640E+02 2.384E+02 2.104E+02 1.825E+02 1.550E+02 

            1.291E+02 1.044E+02 8.161E+01 6.203E+01 4.495E+01 3.082E+01 

            2.050E+01 1.321E+01 8.348E+00 5.299E+00 3.439E+00 2.288E+00 

            1.557E+00 1.094E+00 7.923E-01 5.769E-01 4.352E-01 3.292E-01 

            2.571E-01 2.012E-01 1.594E-01 1.291E-01 1.051E-01 8.653E-02 

            7.173E-02 6.042E-02 5.075E-02 4.374E-02 3.777E-02 3.295E-02 

            2.912E-02 2.578E-02 2.320E-02 2.122E-02 1.948E-02 1.816E-02 

            1.702E-02 1.612E-02 1.549E-02 1.490E-02 1.452E-02 1.422E-02 

            1.410E-02 1.384E-02 1.382E-02 1.373E-02 1.376E-02 1.375E-02 

            1.376E-02 1.379E-02 1.376E-02 1.379E-02 

 

 



APPENDIX B 

PYTHON SCRIPTS 

MCDS Input Generator Script 

This script was developed to quickly generate the MCDS input files for a span of 

ion kinetic energies and the .bat or .sh file for sequentially running them on a Windows or 

Linux system, respectively.  User defined variables include minimum and maximum 

kinetic energy, number of energy bins, oxygenation percentage, particle type and the cell-

specific geometry variables (generally unchanged).  Currently it is setup for log spacing 

of bins, but linear spacing can be selected by commenting out lines 32-33 and 

uncommenting lines 29-30.  The .out files generated after the MCDS batch simulations 

are used in a subsequent script to create the lookup tables for integration into MCNP.  

The numpy external library is needed for the script to function.
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###################################################################################### 

#########################  MCDS Input Generator v1.1  (05/10/16, SS)  ################ 

###################################################################################### 

#import necessary libraries and functions 

import numpy as np 

import matplotlib.pyplot as plt 

################################################################ 

######################  adjustable parameters  #################  

################################################################ 

E_min = float(1E-5)  #minimum kinetic energy (MeV) 

E_max = float(1E+3)  #maximum kinetic energy (MeV) 

N_steps = int(100)  #number of energy bins 

O1 = int(0)  #Oxygenation (%) 

P1 = 'e'  #MCDS particle type 

Gbp = int(1)  #Gbp of DNA 

ndia = int(5)  #nucleus diameter in microns 

cdia = int(5)  #cell diameter in microns 

wem = int(0)  #water equivalent material between source and cell 

nocs = int(25000)  #number of cell simulations 

################################################################ 

File_num = np.arange(0,N_steps,1) 

E_bins = np.logspace(np.log10(E_min),np.log10(E_max), num=N_steps)  #log bin spacing 

E_bins2 = ["{0:.2E}".format(float(x)) for x in E_bins] 

'''E_bins = np.linspace(E_min,E_max, num=N_steps)  #lin bin spacing, uncomment to use linear bin spacing 

E_bins2 = ["{0:.2E}".format(float(x)) for x in E_bins]''' 

table = open('mcds_run.sh', 'w')  #create .sh file for batch Linux runs 

table.write('#!/bin/bash'+'\n') 

table.write('# Script for running MCDS simulations on Neva (Linux server)'+'\n') 

table.write('\n') 

a=0 

while a<N_steps: 

 table.write('../mcds mcds'+str(File_num[a])+'.inp'+'\n') 

  a=a+1 

table.close 

for i in File_num: 

 table = open('mcds'+str(File_num[i])+'.inp', 'w')  #create MCDS input files 

 table.write('\n') 

 table.write('CELL: DNA='+str(Gbp)+'  NDIA='+str(ndia)+' CDIA='+str(cdia)+' WEM='+str(wem)+'\n') 

 table.write('RADX: PAR='+str(P1)+' KE='+str(E_bins2[i])+'\n') 

 table.write('EVO2: pO2='+str(O1)+'\n') 

 table.write('\n') 

 table.write('SIMCON: nocs='+str(nocs)+' seed=987654321') 

 table.close() 
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MCDS to MCNP Parse Script 

 

This script was developed to quickly construct dose-response cards (DE/DF), 

which modify a standard heating tally (F6) in MCNP6 (or MCNPX), with an array of 

MCDS output files (sequentially numbered .out files of monotonically increasing kinetic 

energy).  This script is meant to be run in the directory containing the output files and it 

produces a table of values, plot and dose-response cards ready to copy into MCNP input 

files.  Dose-response cards include:  RBEDSB, RBESSB, RBEBD, LET (keV/m), �̅�F (Gy) 

and the RMF intra-track DSB interaction term (RBEDSB
2× �̅�F), where the output is dose-

averaged.  

 
###################################################################################### 

##########################  MCDS Parsing Script v4.7  (4/29/16, SS)  ######################### 

###################################################################################### 

 

#import necessary libraries and functions 

 

import sys 

import glob 

import fileinput 

import numpy as np 

import matplotlib.pyplot as plt 

from decimal import * 

import datetime 

import textwrap 

import re 

 

################################################################         

######################  adjustable parameters  ######################   

################################################################ 

 

DSB_60Co_aer = float(8.32)  #DSB, Co-60, 100% O2     

SSB_60Co_aer = float(188.63)  #SSB, Co-60, 100% O2 

BD_60Co_aer = float(425.26)  #BD, Co-60, 100% O2 

 

DSB_60Co_an = float(2.86)  #DSB, Co-60, 0% O2 

SSB_60Co_an = float(115.53)  #SSB, Co-60, 0% O2 

BD_60Co_an = float(293.98)  #BD, Co-60, 0% O2 

 

DE_DF_width = int(72)  #column termination for text wrap, shouldn't need to change 

Tally_num = str(6)  #changes first number for all dose response card tallies, use only integers 1-9 

 

################################################################ 

 

def natural_key(string_): 

    return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_)]   #function to sort MCDS output 

files in ascending order 

 

File = sorted(glob.glob("*.out"), key=natural_key)  #searches current directory for ".out" files, sorts 

 

T = np.count_nonzero(File)  #number of MCDS output files in directory 

print (str(T)+'   MCDS files') 

 

#find particle type in all files 

 

P1 = [] 

b=0 

while b<T: 

         a=0 

         for line in open(str(File[b])): 
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 if "INCIDENT PARTICLE:" in line: 

 data = line.strip().split() 

 P1.append(data[a+2]) 

  b=b+1 

#find oxygenation 

O1 = [] 

b=0 

while b<T: 

 a=0 

 for line in open(str(File[b])): 

 if "% O2" in line: 

 data = line.strip().split() 

 O1.append(data[a]) 

 b=b+1 

  O2 = ["{0:.3E}".format(float(x)) for x in O1] 

#find particle energy 

E1 = [] 

b=0 

while b<T: 

 a=0 

 for line in open(str(File[b])): 

 if "MeV >=" in line: 

 data = line.strip().split() 

 E1.append(data[a]) 

 b=b+1 

 E2 = ["{0:.3E}".format(float(x)) for x in E1]  #convert string to float to scientific notation with 4 

sig figs 

#find CSDA range (cm) 

CSDA1 = [] 

b=0 

while b<T: 

 a=0 

 for line in open(str(File[b])): 

 if "CSDA" in line: 

 data = line.strip().split() 

 CSDA1.append(data[a]) 

 b=b+1 

 CSDA2 = ["{0:.3E}".format(float(x)) for x in CSDA1] 

#find LET 

LET = [] 

b=0 

while b<T: 

 a=0 

 for line in open(str(File[b])): 

 if "LET (keV/um)" in line: 

 data = line.strip().split() 

 LET.append(data[a+5])  #nucleus entry, use a+2 for incident, a+3 for cell entry 

 b=b+1 

  LET2 = ["{0:.3E}".format(float(x)) for x in LET] 

#find (Zeff/beta)^2 

Zeff_b2 = [] 

b=0 

while b<T: 

 a=0 

 for line in open(str(File[b])): 

 if "(Zeff/beta)^2" in line: 

 data = line.strip().split() 

 Zeff_b2.append(data[a+4])  #nucleus entry, use a+1 for incident, a+2 for cell entry 

 b=b+1 

 Zeff_b3 = ["{0:.3E}".format(float(x)) for x in Zeff_b2] 

#find ZF 

ZF = [] 

b=0 

while b<T: 

 a=0 

 for line in open(str(File[b])): 

 if "ZF (Gy)" in line: 

 data = line.strip().split() 

 ZF.append(data[a+5])  #nucleus entry, use a+2 for incident, a+3 for cell entry 

 b=b+1 

  ZF2 = ["{0:.3E}".format(float(x)) for x in ZF] 

#find DSB, SSB, BD and ALL, append to list 
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DSB = [] 

SSB = [] 

BD = [] 

ALL = [] 

b=0 

while b<T: 

 a=0 

 for i,line in enumerate(open(str(File[b]))): 

  if i ==151:  #line-1 that contains Table 2 output (number of 

clusters per cell) 

 data = line.strip().split() 

 DSB.append(data[a+1]) 

 SSB.append(data[a+3]) 

 BD.append(data[a+5]) 

 ALL.append(data[a+7]) 

 b=b+1 

 DSB2 = ["{0:.3E}".format(float(x)) for x in DSB] 

 SSB2 = ["{0:.3E}".format(float(x)) for x in SSB] 

 BD2 = ["{0:.3E}".format(float(x)) for x in BD] 

 ALL2 = ["{0:.3E}".format(float(x)) for x in ALL] 

################################################################ 

if O1[0] == '1.0000E+02': 

 DSB_60Co = DSB_60Co_aer 

 SSB_60Co = SSB_60Co_aer 

 BD_60Co = BD_60Co_aer 

else: 

 DSB_60Co = DSB_60Co_an 

 SSB_60Co = SSB_60Co_an 

 BD_60Co = BD_60Co_an 

print(str(DSB_60Co)+'  DSB/Gy/Gbp (60Co)') 

RBE_DSB = [float(x)/DSB_60Co for x in DSB] 

RBE_SSB = [float(x)/SSB_60Co for x in SSB] 

RBE_BD = [float(x)/BD_60Co for x in BD] 

a=0 

RMF2=[] 

while a <T: 

 RMF2.append(float(RBE_DSB[a])*float(RBE_DSB[a])*float(ZF[a])) 

 a=a+1 

RBE_DSB2 = ["{0:.3E}".format(float(x)) for x in RBE_DSB] 

RBE_SSB2 = ["{0:.3E}".format(float(x)) for x in RBE_SSB] 

RBE_BD2 = ["{0:.3E}".format(float(x)) for x in RBE_BD] 

RMF3 = ["{0:.3E}".format(float(x)) for x in RMF2] 

################################################################ 

#######################  Write data to a table  ####################### 

################################################################ 

table = open(str(P1[0])+'_'+str(int(float(O1[0])))+'_O2_MCDS_output.txt', 'w') 

table.write('Data generated using MCDS Version 3.10A  05-DEC-2011'+' 

('+datetime.date.today().strftime("%B %d, %Y")+')'+'\n') 

table.write('=================================================================================================

=================================== \n') 

table.write('PARTICLE   OXYGEN        E(MeV)     (Zeff/Beta)^2   LET(keV/um)     CSDA(cm)      ZF(Gy) 

DSB/Gy/Gbp    SSB/Gy/Gbp  BD/Gy/Gbp\n') 

table.write('=================================================================================================

=================================== \n') 

a=0 

while a<T: 

 table.write('  ' +P1[a]+'  '+ str(O2[a]).ljust(11) +'  '+ str(E2[a]).ljust(11) + '  ' + 

str(Zeff_b3[a]).ljust(11) + '  ' + str(LET2[a]).ljust(11) + '  ' +  str(CSDA2[a]).ljust(11) +  '  ' + 

str(ZF2[a]).ljust(11) + '   ' +  str(DSB2[a]).ljust(11) +'  ' +  str(SSB2[a]).ljust(11) +'  ' + 

str(BD2[a]).ljust(11) +'\n') 

 a=a+1 

print(str(P1[0])+'_'+str(int(float(O1[0])))+'_O2_MCDS_output.txt  created') 

table.close() 

################################################################ 

###############  Select MCNP particle type for DE/DF  ################# 

############################################################### 

if P1[0] == '4He':  #MCDS particle identifier 

 P2 = 'A   '  #MCNP particle identifier 

  P16=P26=P36=P46=P56=P66=P76='C' 

else: 

 if P1[0]== '3He': 

 P2 = 'S   ' 
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  P16=P26=P36=P46=P56=P66=P76='C' 

 else: 

 if P1[0] == '3H': 

 P2 = 'T   ' 

  P16=P26=P36=P46=P56=P66=P76='C' 

 else: 

 if P1[0] == '2H': 

 P2 = 'D   ' 

  P16=P26=P36=P46=P56=P66=P76='C' 

 else: 

 if P1[0] == 'proton': 

 P2 = 'H   ' 

  P16=P26=P36=P46=P56=P66=P76='C' 

 else: 

 if P1[0] == 'e-': 

 P2 = 'E   ' 

  P16=P26=P36=P46=P56=P66=P76='C' 

 else: 

 if P1[0] == '12C': 

 P2 = '#   ' 

 P16 = 'FT'+str(Tally_num)+'016  RES 6012' 

 P26 = 'FT'+str(Tally_num)+'026  RES 6012' 

 P36 = 'FT'+str(Tally_num)+'036  RES 6012' 

 P46 = 'FT'+str(Tally_num)+'046  RES 6012' 

 P56 = 'FT'+str(Tally_num)+'056  RES 6012' 

 P66 = 'FT'+str(Tally_num)+'066  RES 6012' 

 P76 = 'FT'+str(Tally_num)+'076  RES 6012' 

 else: 

 if P1[0] == '7Li': 

  P2 = '#   ' 

 P16 = 'FT'+str(Tally_num)+'016  RES 3007' 

 P26 = 'FT'+str(Tally_num)+'026  RES 3007' 

 P36 = 'FT'+str(Tally_num)+'036  RES 3007' 

 P46 = 'FT'+str(Tally_num)+'046  RES 3007' 

 P56 = 'FT'+str(Tally_num)+'056  RES 3007' 

 P66 = 'FT'+str(Tally_num)+'066  RES 3007' 

 P76 = 'FT'+str(Tally_num)+'076  RES 3007' 

 else: 

 if P1[0] == '6Li': 

  P2 = '#   ' 

 P16 = 'FT'+str(Tally_num)+'016  RES 3006' 

 P26 = 'FT'+str(Tally_num)+'026  RES 3006' 

 P36 = 'FT'+str(Tally_num)+'036  RES 3006' 

 P46 = 'FT'+str(Tally_num)+'046  RES 3006' 

 P56 = 'FT'+str(Tally_num)+'056  RES 3006' 

 P66 = 'FT'+str(Tally_num)+'066  RES 3006' 

 P76 = 'FT'+str(Tally_num)+'076  RES 3006' 

 else: 

 if P1[0] == '14N': 

 P2 = '#   ' 

 P16 = 'FT'+str(Tally_num)+'016  RES 7014' 

 P26 = 'FT'+str(Tally_num)+'026  RES 7014' 

 P36 = 'FT'+str(Tally_num)+'036  RES 7014' 

 P46 = 'FT'+str(Tally_num)+'046  RES 7014' 

 P56 = 'FT'+str(Tally_num)+'056  RES 7014' 

 P66 = 'FT'+str(Tally_num)+'066  RES 7014' 

 P76 = 'FT'+str(Tally_num)+'076  RES 7014' 

 else: 

 if P1[0] == '16O': 

  P2 = '#   ' 

 P16 = 'FT'+str(Tally_num)+'016  RES 8016' 

 P26 = 'FT'+str(Tally_num)+'026  RES 8016' 

 P36 = 'FT'+str(Tally_num)+'036  RES 8016' 

 P46 = 'FT'+str(Tally_num)+'046  RES 8016' 

 P56 = 'FT'+str(Tally_num)+'056  RES 8016' 

 P66 = 'FT'+str(Tally_num)+'066  RES 8016' 

 P76 = 'FT'+str(Tally_num)+'076  RES 8016' 

 else: 

 if P1[0] == '20Ne': 

 P2 = '#   ' 

 P16 = 'FT'+str(Tally_num)+'016  RES 10020' 

 P26 = 'FT'+str(Tally_num)+'026  RES 10020' 

 P36 = 'FT'+str(Tally_num)+'036  RES 10020' 

 P46 = 'FT'+str(Tally_num)+'046  RES 10020' 

 P56 = 'FT'+str(Tally_num)+'056  RES 10020' 

 P66 = 'FT'+str(Tally_num)+'066  RES 10020' 

 P76 = 'FT'+str(Tally_num)+'076  RES 10020' 

 else: 

 if P1[0] == '16N': 

 P2 = '#   ' 

 P16 = 'FT'+str(Tally_num)+'016  RES 7016' 

 P26 = 'FT'+str(Tally_num)+'026  RES 7016' 

 P36 = 'FT'+str(Tally_num)+'036  RES 7016' 

 P46 = 'FT'+str(Tally_num)+'046  RES 7016' 

 P56 = 'FT'+str(Tally_num)+'056  RES 7016' 
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 P66 = 'FT'+str(Tally_num)+'066  RES 7016' 

 P76 = 'FT'+str(Tally_num)+'076  RES 7016' 

 else: 

 if P1[0] == '13C': 

 P2 = '#   ' 

 P16 = 'FT'+str(Tally_num)+'016  RES 6013' 

 P26 = 'FT'+str(Tally_num)+'026  RES 6013' 

 P36 = 'FT'+str(Tally_num)+'036  RES 6013' 

 P46 = 'FT'+str(Tally_num)+'046  RES 6013' 

 P56 = 'FT'+str(Tally_num)+'056  RES 6013' 

 P66 = 'FT'+str(Tally_num)+'066  RES 6013' 

 P76 = 'FT'+str(Tally_num)+'076  RES 6013' 

 else: 

 if P1[0] == '56Fe': 

 P2 = '#   ' 

 P16 = 'FT'+str(Tally_num)+'016  RES 26056' 

 P26 = 'FT'+str(Tally_num)+'026  RES 26056' 

 P36 = 'FT'+str(Tally_num)+'036  RES 26056' 

 P46 = 'FT'+str(Tally_num)+'046  RES 26056' 

 P56 = 'FT'+str(Tally_num)+'056  RES 26056' 

 P66 = 'FT'+str(Tally_num)+'066  RES 26056' 

 P76 = 'FT'+str(Tally_num)+'076  RES 26056' 

################################################################ 

#######################  Write data to DE/DF  ####################### 

################################################################ 

table = open(str(P1[0])+'_'+str(int(float(O1[0])))+'_O2_MCNP_dose_response.dedf', 'w') 

table.write(str(P1[0])+' DOSE-RESPONSE FUNCTIONS FOR USE IN MCNP6 

'+'('+datetime.date.today().strftime("%B %d, %Y")+')'+'\n') 

table.write('Data generated using MCDS Version 3.10A  05-DEC-2011'+'\n')

table.write('\n') 

table.write('C'+'\n') 

table.write('C   DSB (60Co):  '+str(DSB_60Co)+'\n') 

table.write('C   SSB (60Co): '+str(SSB_60Co)+'\n') 

table.write('C   BD  (60Co): '+str(BD_60Co)+'\n') 

table.write('C'+'\n') 

table.write('C  ***  ============================================================'+'\n') 

table.write('C  ***'+'  '+str(P1[0])+ '  DOSE, RBE AND RELATED TALLIES'+'\n') 

table.write('C  ***  ------------------------------------------------------------'+'\n') 

table.write('C'+'\n') 

table.write('FC'+str(Tally_num)+'016'+'  '+str(P1[0])+' '+'Absorbed Dose ' +'\n') 

table.write('F'+str(Tally_num)+'016:'+str(P2)+'  '+'1'+'\n') 

table.write(str(P16)+'\n') 

table.write('FM'+str(Tally_num)+'016'+'  '+'0.1602  $MeV/g to nGy'+ '\n') 

###### RBE[DSB] card 

table.write('C'+'\n') 

table.write('C'+'\n') 

table.write('FC'+str(Tally_num)+'026'+'  '+str(P1[0])+' '+'RBE for DSB induction ' 

+'('+str(int(float(O1[0])))+'% pO2)'+' relative to 60Co' + '\n') 

table.write('F'+str(Tally_num)+'026:'+str(P2)+'  '+'1'+'\n') 

table.write(str(P26)+'\n') 

table.write('FM'+str(Tally_num)+'026'+'  '+'0.1602  $MeV/g to nGy'+ '\n') 

wrapper = textwrap.TextWrapper(initial_indent='DE'+str(Tally_num)+'026'+'  ',width=DE_DF_width, 

 subsequent_indent='            ') 

E2 = map(str, E2) 

E3 = ' '.join(E2) 

table.write(wrapper.fill(str(E3))) 

table.write('\n') 

wrapper = textwrap.TextWrapper(initial_indent='DF'+str(Tally_num)+'026'+'  ',width=DE_DF_width, 

 subsequent_indent='            ') 

RBE_DSB2 = map(str, RBE_DSB2) 

RBE_DSB3 = ' '.join(RBE_DSB2) 

table.write(wrapper.fill(str(RBE_DSB3))) 

table.write('\n') 

###### RBE[SSB] card 

table.write('C'+'\n') 

table.write('C'+'\n') 

table.write('FC'+str(Tally_num)+'036'+'  '+str(P1[0])+' '+'RBE for SSB induction ' 

+'('+str(int(float(O1[0])))+'% pO2)'+' relative to 60Co' + '\n') 

table.write('F'+str(Tally_num)+'036:'+str(P2)+'  '+'1'+'\n') 

table.write(str(P36)+'\n') 

table.write('FM'+str(Tally_num)+'036'+'  '+'0.1602  $MeV/g to nGy'+ '\n') 

wrapper = textwrap.TextWrapper(initial_indent='DE'+str(Tally_num)+'036'+'  ',width=DE_DF_width, 

 subsequent_indent='            ') 

E2 = map(str, E2) 
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E3 = ' '.join(E2) 

table.write(wrapper.fill(str(E3))) 

table.write('\n') 

wrapper = textwrap.TextWrapper(initial_indent='DF'+str(Tally_num)+'036'+'  ',width=DE_DF_width, 

 subsequent_indent='            ') 

RBE_SSB2 = map(str, RBE_SSB2) 

RBE_SSB3 = ' '.join(RBE_SSB2) 

table.write(wrapper.fill(str(RBE_SSB3))) 

table.write('\n') 

###### RBE[BD] card 

table.write('C'+'\n') 

table.write('C'+'\n') 

table.write('FC'+str(Tally_num)+'046'+'  '+str(P1[0])+' '+'RBE for BD induction ' 

+'('+str(int(float(O1[0])))+'% pO2)'+' relative to 60Co'+ '\n') 

table.write('F'+str(Tally_num)+'046:'+str(P2)+'  '+'1'+'\n') 

table.write(str(P46)+'\n') 

table.write('FM'+str(Tally_num)+'046'+'  '+'0.1602  $MeV/g to nGy'+ '\n') 

wrapper = textwrap.TextWrapper(initial_indent='DE'+str(Tally_num)+'046'+'  ',width=DE_DF_width, 

 subsequent_indent='            ') 

E2 = map(str, E2) 

E3 = ' '.join(E2) 

table.write(wrapper.fill(str(E3))) 

table.write('\n') 

wrapper = textwrap.TextWrapper(initial_indent='DF'+str(Tally_num)+'046'+'  ',width=DE_DF_width, 

 subsequent_indent='            ') 

RBE_BD2 = map(str, RBE_BD2) 

RBE_BD3 = ' '.join(RBE_BD2) 

table.write(wrapper.fill(str(RBE_BD3))) 

table.write('\n') 

###### LET card 

table.write('C'+'\n') 

table.write('C'+'\n') 

table.write('FC'+str(Tally_num)+'056'+'  '+str(P1[0])+' '+'LET (keV/um) '+'\n') 

table.write('F'+str(Tally_num)+'056:'+str(P2)+'  '+'1'+'\n') 

table.write(str(P56)+'\n') 

table.write('FM'+str(Tally_num)+'056'+'  '+'0.1602  $MeV/g to nGy'+ '\n') 

wrapper = textwrap.TextWrapper(initial_indent='DE'+str(Tally_num)+'056'+'  ',width=DE_DF_width, 

 subsequent_indent='            ') 

E2 = map(str, E2) 

E3 = ' '.join(E2) 

table.write(wrapper.fill(str(E3))) 

table.write('\n') 

wrapper = textwrap.TextWrapper(initial_indent='DF'+str(Tally_num)+'056'+'  ',width=DE_DF_width, 

 subsequent_indent='            ') 

LET2 = map(str, LET2) 

LET3 = ' '.join(LET2) 

table.write(wrapper.fill(str(LET3))) 

table.write('\n') 

###### ZF card 

table.write('C'+'\n') 

table.write('C'+'\n') 

table.write('FC'+str(Tally_num)+'066'+'  '+str(P1[0])+' '+'ZF (mean specific energy) ' +'\n') 

table.write('F'+str(Tally_num)+'066:'+str(P2)+'  '+'1'+'\n') 

table.write(str(P66)+'\n') 

table.write('FM'+str(Tally_num)+'066'+'  '+'0.1602  $MeV/g to nGy'+ '\n') 

wrapper = textwrap.TextWrapper(initial_indent='DE'+str(Tally_num)+'066'+'  ',width=DE_DF_width, 

 subsequent_indent='            ') 

E2 = map(str, E2) 

E3 = ' '.join(E2) 

table.write(wrapper.fill(str(E3))) 

table.write('\n') 

wrapper = textwrap.TextWrapper(initial_indent='DF'+str(Tally_num)+'066'+'  ',width=DE_DF_width, 

 subsequent_indent='            ') 

ZF2 = map(str, ZF2) 

ZF3 = ' '.join(ZF2) 

table.write(wrapper.fill(str(ZF3))) 

table.write('\n') 

###### RMF card 

table.write('C'+'\n') 

table.write('C'+'\n') 



148 

table.write('FC'+str(Tally_num)+'076'+'  '+str(P1[0])+' '+'RMF intra-track DSB interaction term ' 

+'('+str(int(float(O1[0])))+'% pO2)'+'\n') 

table.write('F'+str(Tally_num)+'076:'+str(P2)+'  '+'1'+'\n') 

table.write(str(P76)+'\n') 

table.write('FM'+str(Tally_num)+'076'+'  '+'0.1602  $MeV to nGy'+ '\n') 

wrapper = textwrap.TextWrapper(initial_indent='DE'+str(Tally_num)+'076'+'  ',width=DE_DF_width, 

 subsequent_indent='            ') 

E2 = map(str, E2) 

E3 = ' '.join(E2) 

table.write(wrapper.fill(str(E3))) 

table.write('\n') 

wrapper = textwrap.TextWrapper(initial_indent='DF'+str(Tally_num)+'076'+'  ',width=DE_DF_width, 

 subsequent_indent='            ') 

RMF3 = map(str, RMF3) 

RMF4 = ' '.join(RMF3) 

table.write(wrapper.fill(str(RMF4))) 

table.write('\n') 

print(str(P1[0])+'_'+str(int(float(O1[0])))+'_O2_MCNP_dose_response.dedf  created') 

table.close() 

################################################################ 

###########################  Plot Data  ########################### 

################################################################ 

plt.figure(1) 

plt.semilogx() 

plt.plot(E1,DSB,'.', label='DSB') 

plt.plot(E1,SSB,'.', label='SSB') 

plt.plot(E1,BD,'.',label='BD') 

plt.plot(E1,ALL,'.', label='ALL') 

plt.title(str(P1[0])+' ions,  '+str(int(float(O1[0])))+'% O2') 

plt.xlabel('Energy (MeV)', fontsize = 12)  

plt.ylabel('number of clusters per cell', fontsize = 12) 

plt.minorticks_on() 

plt.legend(loc=9,ncol=5 ,fontsize=10) 

plt.savefig(str(P1[0])+'_'+str(int(float(O1[0])))+'_O2_MCDS_plot.png') 

print(str(P1[0])+'_'+str(int(float(O1[0])))+'_O2_MCDS_plot.png  created') 

plt.show() 



APPENDIX C 

TALLYX.F90 SUBROUTINE 

!+ $Id: tallyx.F90,v 1.4 2009/09/15 16:58:25 hgh Exp $ 

! Copyright LANS/LANL/DOE - see file COPYRIGHT_INFO

subroutine tallyx(t,ib) 

! dummy for user-supplied tallyx subroutine.

! t is the input and output tally score value.

! ib controls scoring.  see the user's manual. 

! .. Use Statements ..

  use fixcom,   only: jtlx 

  use errprn_mod,   only: errprn 

  use mcnp_global,   only: iptal, tds, tally_for_par 

  use mcnp_params,   only: dknd, one, zero 

  use mcnp_particles,  only: charge, gpt           !charge of particle, string

  use fluence_to_dose, only: dfact 

  use pblcom,  only: pbl 

  use tskcom,  only: ital 

  use ephcom,  only: stppwr 

  use varcom,  only: ion_a, ion_z, ion_src_a, ion_src_z, ion_chg 

  use mcnp_debug 

  implicit real(dknd) (a-h,o-z) 

! .. Scalar Arguments ..

real(dknd) :: t

integer :: ib

  func=RDUM(1) 

  dtar=RDUM(2) 

  if (pbl%i%ipt==3) then 

 ion_a2=0.00054857  ! electron (e) rest mass (amu)

 v=pbl%r%erg 

 c=charge(pbl%i%ipt) 

  else if (pbl%i%ipt==9) then 

 ion_a2=1.00727647  ! proton (h) rest mass (amu)

 v=pbl%r%erg  

 c=charge(pbl%i%ipt) 

  else if (pbl%i%ipt==31) then 

 ion_a2=2.01355556  ! deuteron (d) rest mass (amu)

 v=pbl%r%erg 

 c=charge(pbl%i%ipt) 

  else if (pbl%i%ipt==32) then 

 ion_a2=3.01551369  ! triton (t) rest mass (amu)

 v=pbl%r%erg 

 c=charge(pbl%i%ipt) 

  else if (pbl%i%ipt==33) then 

 ion_a2=3.01494471  ! helion (s) rest mass (amu)

 v=pbl%r%erg 

 c=charge(pbl%i%ipt) 

  else if (pbl%i%ipt==34) then 

 ion_a2=4.00150618  ! alpha (a) rest mass (amu)

 v=pbl%r%erg 

 c=charge(pbl%i%ipt) 

  else 

 ion_a2=ion_a 

 v=pbl%r%vel 

 c=ion_chg 

  end if 

 !------------------------------------------------------------------------- 

! Calculate beta, zeff, x

!-----------------------------------------------------------------------



 150 

  b=sqrt(1.-(1./((1.+(v/(ion_a2*931.5)))**2))) ! beta 

  zeff=c*(1-exp(-125*b*c**(-2./3.)))           ! Zeff 

  x=(zeff/b)**2                                ! (Zeff/beta)^2

 !------------------------------------------------------------------------- 

! Calculate RBE(DSB), RBE(SSB), RBE(BD)

!

! pO2 = 100% 

! DSB (60Co):   8.32 

! SSB (60Co): 188.63 

! BD  (60Co): 425.26 

 ! 

! po2 = 0% 

! DSB (60Co):  2.86 

! SSB (60Co): 115.53

! BD  (60Co): 293.98 

 !------------------------------------------------------------------------- 

  RBE_DSB_100=0.9902+2.411-(2.411**(1.-1.539)+0.000732*x*(1.539-1))** & 

  &(1./(1-1.539)) 

  RBE_DSB_0=(1.502+sqrt(x)*(1.037+sqrt(x)*(0.135+sqrt(x)*(-0.00823+0.0003077* & 

  &sqrt(x)))))/(1.+sqrt(x)*(1.611+sqrt(x)*(-0.0115+sqrt(x)*(-0.0006096+ & 

  &0.00003047*sqrt(x)))))  

  RBE_SSB_100=((1.001-0.003468*sqrt(x)+0.0002142*x)/(1-0.003754*sqrt(x)+ & 

 &0.0006658*x+0.0000001028*x**1.5)) 

  RBE_SSB_0=((0.99954102-0.44385537*alog(x)+0.075736504*alog(x)**2-0.00592203 & 

  &*alog(x)**3+0.000181752*alog(x)**4)/(1-0.44572796*alog(x)+0.076670658* & 

  &alog(x)**2-0.00597358*log(x)**3+0.000160081*alog(x)**4+0.00000217649* & 

  &alog(x)**5)) 

  RBE_BD_100=((0.99999501-0.0073091938*sqrt(x)+0.00016008872*x)/ & 

  &(1-0.0080920565*sqrt(x)+0.0014413807*x+8.643173e-7*x**1.5)) 

  RBE_BD_0=((1.0003012-0.41085633*alog(x)+0.065436498*alog(x)**2- & 

  &0.00482080*alog(x)**3+0.000140979*alog(x)**4)/(1-0.40744935*alog(x)+ & 

  &0.061453313*alog(x)**2-0.00302474*alog(x)**3-0.00016191*alog(x)**4+ & 

  &1.73989e-5*alog(x)**5)) 

 !------------------------------------------------------------------------- 

! Calculate ZF (ICRU Report 36 definition)

!-------------------------------------------------------------------------

  ZF=(0.204*stppwr*0.1)/(dtar**2) ! frequency-mean specific energy in Gy

  LET=stppwr*0.1 

  RMF_100=((RBE_100**2)*ZF) 

  RMF_0= ((RBE_0**2)*ZF) 

!print *, "velocity=  ", pbl%r%vel 

!print *, "energy=  ", pbl%r%erg 

! print *, "ion Z=  ", ion_z 

! print *, "ion A=  ", ion_a 

! print *, "ion chg=  ", ion_chg 

! print *, "ion ipt=  ", pbl%i%ipt 

!print *, "beta=  ", b 

!print *, "zeff=  ", zeff 

!print *, "x=  ", x 

!print *, "RBE 100=  ", RBE_DSB_100 

!print *, "RBE 0=  ", RBE_DSB_0 

!print *, "ZF=  ", ZF 

! print *, "RMF_100=  ", RMF_100 

! print *,  charge(pbl%i%ipt) 

!print *, ion_a2

!print *, v

!print *, stppwr

! print *, gpt

! print *, charge

! print *, iptal

  if (func==100) then 

  t=t*RBE_DSB_100 

  else if (func==0) then 

  t=t*RBE_DSB_0 

  else if (func == 1) then 

  t=t*ZF 

  else if (func == 2) then 

  t=t*RMF100  

  else if (func == 3) then 

  t=t*RBE_SSB_100 

  else if (func == 4) then 
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  t=t*RBE_SSB_0 

  else if (func == 5) then 

  t=t*RBE_BD_100 

  else if (func == 6) then 

  t=t*RBE_BD_0 

  else if (func == 7) then 

  t=t*LET 

  else 

  ib=-1 

  end if 

  return 

end subroutine tallyx 
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