
EXPLORING RELATIONSHIPS BETWEEN HORIZONTAL 

CURVE ROADWAY DEPARTURE CRASHES AND  

GEOMETRIC DESIGN CONSISTENCY ON  

RURAL, TWO-LANE HIGHWAYS 

by 

Mingde Lin 

A thesis submitted to the faculty of 

The University of Utah 

in partial fulfillment of the requirements for the degree of 

Master of Science 

Department of Civil and Environmental Engineering 

The University of Utah 

December 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276263168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Copyright © Mingde Lin 2017 

All Rights Reserved



T h e  U n i v e r s i t y  o f  U t a h  G r a d u a t e  S c h o o l

STATEMENT OF THESIS APPROVAL 

The thesis of Mingde Lin 

has been approved by the following supervisory committee members: 

Richard J. Porter , Chair 3/17/2017 
Date Approved 

Xiaoyue Cathy Liu , Member 3/22/2017 
Date Approved 

 Milan Zlatkovic , Member 3/15/2017 
Date Approved 

and by Michael Barber , Chair/Dean of 

the Department/College/School of Civil and Environmental Engineering 

and by David B. Kieda, Dean of The Graduate School. 



 

 

 

ABSTRACT 

 

In 2014, there were 17,791 fatalities as a result of roadway departure crashes in 

the U.S., representing 54% of all traffic fatalities in the U.S. Roadway departure crashes 

account for approximately 52%of traffic fatalities in the state of Utah.  A significant 

number of roadway departure crashes occur on horizontal curves along rural, two-lane 

highways. Previous research has indicated that providing “consistent” designs that are 

compatible with driver expectations and capabilities can reduce the number of roadway 

departure crashes at these locations. Various measures of design consistency have been 

proposed to quantify the levels by which a road design meets driver expectations and 

capabilities, including speed differentials, alignment indices, and visual demand/work 

load estimates. Among them, alignment indices have been proven as direct design 

consistency measures to analyze crash frequency. 

The objective of this research was to estimate relationships between the expected 

frequency of horizontal curve roadway departure crashes and geometric design 

consistency, characterized by using alignment indices along rural, two-lane highways in 

Utah. Negative binomial and zero-inflated negative binomial regression models were 

estimated which relate expected frequencies of roadway departure crashes to design and 

traffic characteristics of the rural, two-lane road segments. The dataset consists of 578 

horizontal curves with corresponding design and traffic information, as well as 

characteristics of the upstream and downstream tangents and curves. Horizontal 
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alignment indices, curve lengths, average daily traffic volumes (ADTs), and general 

geometric variables were tested in the model specifications. To build the dataset for 

model estimation, roadway features were gathered along rural, two-lane state routes in 

Utah using the Utah Department of Transportation’s LIDAR files. Crash data were also 

provided by the Utah Department of Transportation for these same routes and spanned 

the years 2008 through 2014. Eventually, the best two models were explored in this study. 

One model included the following parameters: the natural logarithm of average annual 

daily traffic, the changed radius rate, vertical curvature change rate, maximum change in 

degree of curvature, indicator variable for the presence of a vertical curve on a horizontal 

curve, and average grade. The other model had the same variables as the first model, but 

the ratio of average radius over radii replaced the changed radius rate and the average 

change in degree of curvature replaced the maximum change in degree of curvature.  
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CHAPTER 1 

 

INTRODUCTION 

 

This chapter consists of two sections. First, the problem statement will provide an 

overview of traffic safety in the U.S. and define roadway departure crashes and design 

consistency. The second section defines the research objective and scope, and outlines the 

tasks required to accomplish the research objectives. 

 

1.1 Problem Statement 

Millions of people are killed or injured in highway crashes each year in the United 

States (U.S.). The National Highway Traffic Safety Administration (NHTSA) (2015) 

estimates the cost of motor vehicle crashes to be approximately $871 billion per year. 

The societal cost of traffic injuries and fatalities includes personal harm and suffering, as 

well as economic losses. Millions of families have been mentally harmed as a result of 

losing their relatives in traffic crashes. Even though traffic fatalities in the U.S. have 

decreased in the last few years, more than 30,000 still occur each year. The American 

Association of State Highway and Transportation Officials (AASHTO) calls for a 

reduction of 1,000 fatalities per year to achieve their goal of a 50% reduction by 2030. 

AASHTO, as well as the Federal Highway Administration (FHWA) and state 

departments of transportation (DOTs), have also embraced the “Towards Zero Death” 
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traffic safety vision. 

Roadway departure crashes have constituted a majority of highway fatalities in 

recent years. The FHWA defines a roadway departure crash as “a crash which occurs 

after a vehicle crosses an edge line or a center line, or otherwise leaves the traveled way” 

(FHWA, 2015). In 2014, 17,791 fatalities resulted from roadway departure crashes, 

which represented 54% of all traffic fatalities in the U.S.  There were 54,036 motor 

vehicle crashes in Utah during 2014, which resulted in 23,364 injuries and 256 deaths. 

Failure to keep in the proper lane was identified as a crash cause in approximately 12% of 

all crashes and 20% of fatal crashes (Utah Department of Public Safety Highway Safety 

Office, 2014). Average annual roadway departure fatalities from 2007 to 2013 were 

approximately 52% of all fatalities in Utah (Jalayer, Mohammad, and Zhou, 2016). A 

significant number of roadway departure crashes occur on horizontal curves along rural, 

two-lane highways. (FHWA, 2016)   

The AASHTO Highway Safety Manual (HSM) includes an abundance of 

analytical methodologies and techniques to estimate the expected number of all types of 

crashes on road segments or intersections (AASHTO, 2010). However, the current crash 

statistic methodologies in the HSM still need to be generated and updated with new 

information. Therefore, evaluation of design consistency measures provides potential 

effects on safety performance, by analyzing roadway design attributes with respect to 

driver expectancy. In other words, a “consistent” design is one that is compatible with 

driver expectation and capabilities. A consistent design along a rural highway has the 

potential to reduce crash severity and frequency. Design consistency has safety 

implications and is intuitively linked to roadway departure crashes.  Ng and Sayed (2004) 
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and Wu et al. (2013) have attempted to explicitly link measures of design consistency to 

safety. These studies offer a starting point for additional analysis, but do not necessarily 

provide generalizable safety findings related to roadway departure crashes on horizontal 

curves along rural, two-lane roads in the U.S.   

 

1.2 Research Objective and Scope 

The objective of this research was to explore the relationship between the 

expected number of roadway departure crashes on horizontal curves and design 

consistency measures, focusing on alignment indices (geometric design characteristics) 

along rural, two-lane highways. Relationships were estimated using a cross sectional 

study design and a series of negative binomial regression models. Data were collected in 

Utah.  The database for this research was built by leveraging the results of a large data 

collection effort conducted by the Utah DOT using mobile light detection and ranging 

(LiDAR).  The research objective was accomplished through the following eight tasks:     

 Review research literature on design consistency measures and the 

relationships between design consistency and safety. 

 Review count model selections.  

 Collect traffic and geometric design characteristics for rural, two-lane 

highways in Utah. 

 Verify and refine geometric design characteristics and measurements provided 

by the Utah Data Portal and Mobile LiDAR data, including horizontal curve 

geometrics, cross slope, and vertical grade. 

 Build horizontal curve segments for analysis. 
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 Define roadway departure crashes and merge crash counts to the defined 

horizontal curve segments. 

  Estimate geometric design consistency measures in this study.  

 Explore the relationship between the expected number of roadway departure 

crashes and design consistency through a series of negative binomial 

regression models, with design consistency defined in this study using a 

number of different alignment indices. 

 



 

 

CHAPTER 2 

 

LITERATURE REVIEW 

 

This chapter includes an overview of design consistency and design consistency 

measures (i.e., operating speed, alignment indices, driver workload, and vehicle stability), 

especially for alignment indices measures, and different crash count models used in 

previous research. The first section provides background information on design 

consistency. The second section presents an overview on how different measurements are 

used to evaluate design consistency. Alignment indices, as important measurements for 

this study, will be discussed in more detail in this section. The third section introduces the 

background of crash count models and how these models are employed for safety and 

design consistency studies. The last section demonstrates the different data collection 

methods and the Mobile LiDAR method which is utilized in this study. 

 

2.1 Background of Design Consistency 

According to past research, design consistency has typically taken into account 

three considerations: driving performance, speed, and safety. Performance considerations 

address the impact of heavy driver workloads on a driver’s readiness and understanding, 

which interrupt driver expectancy. Speed considerations address how different design 

elements impact the operating speed. Operating speed evaluates the design consistency 
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along different road elements. Safety addresses how geometric design measurements (e.g., 

alignment indices) impact highway safety from a transportation engineering perspective 

(Gibreel et al., 1999).  

Design consistency has been evaluated and studied widely in the past century 

based on three considerations. In the middle of the 1960s, geometric design created the 

expectation and improved ability of the motorist to guide and control a vehicle in a safe 

driving manner (Glennon et al., 1978). In the early part of the 1980s, researchers found 

poor design consistency performance caused higher driver workload. The inconsistent 

design was summarized as “a geometric feature or combination of adjacent features that 

have such unexpectedly high driver workload that motorists may be surprised and 

possibly drive in an unsafe manner” (Messer, 1980). Later on, research revealed driving 

operation error is reduced more by geometric design variables that conform to drivers’ 

expectations than variables that violate their expectancies (Post et al., 1981). In terms of 

the design consistency concept, the definition recommended by Wooldridge et al. (2003) 

states that “Design Consistency is the conformance of a highway’s geometric and 

operational features with driver expectancy.” 

This definition is the most applicable when considering multiple measures of 

effectiveness and different roadway environments. Wooldridge et al. (2003) created a 

survey for determining the definition of design consistency. Researchers provided five 

potential definitions to the U.S. state DOTs and transportation researchers. The phrase of 

“driver expectancy” was finally adapted instead of the terms of “similar roadway”, 

“section of highway”, or “driver workload”. The phrase “highway’s geometric features” 

from the design consistency definition referred to safety considerations which include 
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traffic accidents, vehicle stability, cross sections, horizontal alignment, vertical alignment, 

sight distance, and traffic volume. “Operating features” represents operating speed, 

design speed, and expected speed based on speed considerations.   

From performance considerations, driver expectancy can be regarded as 

reasonable safety probabilities of driver behavior in a given environment. Alexander et al. 

(1986) indicates that “Expectancy relates to a driver’s readiness to respond to situations, 

events, and information in predictable and successful ways.”  

Driver workload, driver anticipation, highway aesthetics, and interchange design 

are the factors which may interfere with driver expectancy. Even though many factors 

impact the design consistency evaluation, four quantitative measures were identified by 

past studies for directly or indirectly developing geometric design models to estimate the 

crash frequency based on safety considerations.  The next subsection describes these four 

design consistency measures. 

 

2.2 Overview of Design Consistency Measures 

The four design consistency measures are categorized as speed differences, 

vehicle stability, alignment indices, and driver workload. The speed differences usually 

indicate the difference between operating speed and design speed (V85 - Vd) or the 

reduction in operating speeds between two successive elements (∆V85) (Lamm et al., 

1999; Fitzpatrick and Collins, 2000). The meaning of V85 describes the 85th percentile 

operating speed, which is selected by the drivers under free flow conditions (Tarris et al., 

1996). These speed equations are utilized to explain safety criteria. Past studies proved a 

larger speed difference caused a higher crash frequency (Anderson et al., 1999; Ng and 
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Sayed, 2004; Wu et al., 2013). However, Butsick et al. (2015) indicated that the speed 

differences only indirectly identify the reasons associated with the drop in speed, because 

speed differences act as surrogate measures of consistency. In addition, the estimation of 

the speed differences was limited by the field validation which ensures circumstantial 

applicability. Thus, Butsick et al. (2015) suggested utilizing geometric alignment data to 

measure design consistency with safety considerations that could be more practical. 

Driver workload is the other significant measure for evaluating design consistency. 

Even though visual demand and available sight distance have been identified as two 

parameters to measure driver workload, almost all of the research utilized the visual 

demand of drivers to analyze design consistency. Visual demand is quantified by the 

amount of visual information the driver requires to maneuver the vehicle on the right 

track of the roadway (Fitzpatrick et al., 2000). Messer (1980) and Messer et al. (1981) 

developed two equations for drivers familiar and unfamiliar with the roadway as it relates 

visual demand to the horizontal curve radius. Ng and Sayed (2004) utilized the 

methodology developed by Messer et al. (1981) to indicate the positive relationship 

between crash frequency and lack of visual demand due to a longer distance of roadway 

caused by a larger curve radius. However, Andrew et al. (2015) also indicated that the 

measure of driver workload from performance considerations also serves as a surrogate 

measure of consistency. 

Vehicle stability, another design consistency measure, is quantified by side 

friction. Side friction demand equations are formed by the 85th percentile operation speed, 

radius, and superelevation of the roadway (Lamm et al. 1999). Ng and Sayed (2004) 

utilized the equation developed by Lamm et al. (1999) and found the positive relationship 
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between crash frequency and higher changes in vehicle stability. Again, aforementioned 

measures of design consistency indirectly explore the relationship between geometric 

design consistency as surrogate variables and crash frequency. Thus, this study will focus 

on directly exploring the relationship between geometric alignment indices and crash 

frequency. More previous studies on alignment indices are introduced in the following 

section. 

 

2.3 Background of Alignment Indices 

Alignment indices are design consistency measures which directly focus on 

studying roadway geometric design parameters from a horizontal and vertical alignment 

perspective. Fitzpatrick et al. (2000) defined alignment indices as “quantitative measures 

of the general character of a roadway segment’s alignment.” When operating speeds are 

missing or have a poor prediction on long tangents, the changes in alignment indices are 

able to show where the geometric inconsistencies are located. In terms of increasing 

geometric inconsistencies, alignment indices change in relation to the high rate or large 

increase of different segments of the roadway. Fitzpatrick et al. (2000) mentioned three 

proposed indicators of geometric inconsistency which are described below:  

 A large increase/decrease in the values of alignment indices for successive 

roadway segments. 

 A high rate of change in alignment indices over some length of roadway.  

 A large difference between the individual feature and the average value of the 

alignment index.  

Anderson et al. (1999) summarized three major advantages of using alignment 
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indices in design consistency evaluations. First, alignment indices are easier to explain, 

utilize, or design for the practioner in the transportation engineering field. Second, based 

on a system-wide perspective, alignment indices which consider horizontal and/or 

vertical alignment elements provide a quantitative mechanism for comparing successive 

geometric elements. This kind of mechanism is the basis of the definition of design 

consistency. Third, alignment indices are able to quantify the interaction between the 

horizontal and vertical alignments. Thus, alignment indices are classified as horizontal 

alignment indices, vertical alignment indices, and composite indices. In the following 

subsections, several alignment indices, which may be applied in this thesis, will be 

introduced based on horizontal alignment indices. The vertical alignment indices and 

combination indices play a subsidiary role.   

 

2.3.1 Horizontal Alignment Indices 

Much of the previous literature has suggested that the horizontal alignment 

indices are important, because these indices potentially exist in the relationship between 

curves, speeds, and crash rates. In this subsection, six alignment indices will be discussed: 

 The curvature change rate (CCR), 

 The degree of curvature (DC),  

 The average radius of curvature (Avg. R),  

 The changed radius rate (CRR),  

 The ratio of average radius over radii (RRR), and 

 The ratio of tangent length over radius (RTR).  

Firstly, the curvature change rate (CCR) and the degree of curvature (DC) have 
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been used to evaluate geometric design consistency by Lamm et al. (1987), Morrall et al. 

(1994), and Faghri et al. (1999). Lamm et al. (1987) indicated both indices are equally 

important, while other studies selected the DC to assess consistency. CCR was 

recognized as an index with significant impacts on crash frequency by Castro et al. 

(2005). The CCR is defined as the ratio of the sum of deflection angles to the total length 

of the segment. The equation for CCR is shown in Eq. 2-1 below: 

 

 𝐶𝐶𝑅 = ∑(∆𝑖 𝐿⁄ ) (𝑑𝑒𝑔𝑟𝑒𝑒/ 𝑚𝑖𝑙𝑒) (2-1) 

 

Where:  

∑ ∆𝑖 = deflection angle (degree); 

𝐿 = length of segment (mile). 

Castro et al. (2005) found a moderately good correlation between the crash rate variation 

and the increments of CCR.  The DC is defined as the relation between the curve length 

and its radius. The equation for DC is shown in Eq. 2-2 below:  

 

 𝐷𝐶 = 5730/𝑅 (𝑑𝑒𝑔𝑟𝑒𝑒/𝑓𝑒𝑒𝑡) (2-2) 

 

Where:  

𝐷𝐶 = degree of curvature (degree); 

𝑅 = curve radius (feet). 

The equation for the degree of curvature of a segment is given as:  

 

 𝐷𝐶 =  ∑(𝐷𝐶𝑖/𝐿) (𝐷𝑒𝑔𝑟𝑒𝑒/𝑀𝑖𝑙𝑒) (2-3) 

 

Where:  
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DCi =degree of curvature of each element of the segment (degree); 

L = total segment length (mile). 

In this study, the research team created an algorithm to determine the horizontal 

curve based on raw data from pieces of curves in the LiDAR database. The horizontal 

curve estimation processes are shown in the Data Collection section. Then, the degree of 

curvature can be determined later. The total segment length for each principle curve 

segment consists of the upstream tangent length, curve length, and downstream tangent 

length in this thesis. The DC along the tangent segments are zero. DCi consists of DC in 

the middle of curve, and DCs in the upstream curve and downstream curve.  

The average radius of curvature (Avg. R) is another important index which will be 

employed in this thesis. The definition of Avg. R is the average horizontal radius of 

curvature of the segment.  

 

 𝐴𝑣𝑔 𝑅 =  ∑(𝑅𝑖 𝑁⁄ ) (𝑓𝑒𝑒𝑡) (2-4) 

 

Where:  

Ri = radius of curve i (feet); 

N = number of horizontal curves within the segment. 

Fitzpatrick et al. (2000) and Anderson et al. (1999) have proven the sensitivity 

relationship between the average radius of curvature and crash frequency.  

In addition, Anderson et al. (1999) showed a general comparison by applying a 

term of changed radius rate (CRR). The CRR is defined as the radius of the ith curve on 

the roadway section over the average radius for the whole test roadway section, as shown 

in Eq. 2-5.  
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 𝐶𝑅𝑅𝑖 =  𝑅𝑖/𝑅𝑚𝑒𝑎𝑛 (2-5) 

 

Where: 

Ri = radius of curve i (feet); 

Rmean = the average radius of horizontal curvature for a roadway segment (feet). 

CRR is used to show inconsistency with the flat curves. If CRR is less than 1, it 

demonstrates a significant impact on design consistency in this roadway section. 

However, CRR does not categorize a curve as good, fair, or poor. Califso et al. (2009) 

developed and categorized alignment indices of design consistency criteria for evaluation. 

Their results identified two alignment indices based on a homogeneous sample of 15 

subjects which were tested along a 6.8-mile length with four test sections. One of the 

alignment indices is the ratio of average radius over radii (RRR). It is formed as the ratio 

between the average radius of horizontal curvatures for a roadway segment and the radius 

of each individual horizontal curve. Eq. 2-6 describes the RRR as:  

 

 𝑅𝑅𝑅 =  𝑅𝑚𝑒𝑎𝑛/𝑅𝑖 (2-6) 

 

Where: 

Rmean = the average radius of horizontal curvatures for a roadway segment (feet); 

Ri = the radius of horizontal curve i (feet).  

In this study, the average radius of each segment has three horizontal curvatures. 

When the RRR is smaller, the geometric design is more consistent along the road. The 

other measure is the ratio of tangent length over radius (RTR), which represents the 

upstream tangent length over the bending radius of the horizontal curve. The equation for 
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RTR is shown below: 

 

 𝑅𝑇𝑅 = 𝑇𝐿/𝑅𝑖 (2-7) 

 

Where:  

TL = the tangent length (feet);  

Ri = radius curve i (feet). 

In this thesis, RTR consists of three measures: 1) the upstream tangent length over 

the radius of the middle curve, 2) the downstream tangent length over the radius of the 

middle curve, and 3) the average tangent length over the radius of the middle curve in 

each principle curve segment. Consistency ratings for the RRR and RTR are shown in 

Table 1. 

 

2.3.2 Vertical Alignment Indices and Composite Alignment Indices 

Due to the amount of mountainous terrain or hilliness along rural highways, these 

terrains affect the sensitivity relationship of the speed, crash frequency, and vertical 

alignment indices. The vertical curvature change rate (VCCR) and the average rate of 

vertical curvature (AVC) are two vertical alignment indices which have a significant 

influence on crash frequency. The definition of VCCR is the index of the gradient change 

per roadway segment. The VCCR is given as:  

 

 𝑉𝐶𝐶𝑅 =
∑|𝐴𝑖|

∑ 𝐿
 (

%

𝑚𝑖
) (2-8) 

 

Where:  

|𝐴𝑖| = absolute gradient difference over vertical curve i (%);  
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L = length of segment (mile).  

Castro (2005) found that the VCCR has been emphasized for analyzing crash rate 

variations. The difference of grade in each principle curve segment can be identified 

roughly by viewing LiDAR collection video. The length of the segment is the same as the 

length in the horizontal curve segment.  

The average rate of vertical curvature (AVC) is a vertical alignment index which 

indicates the amount of change in the vertical alignment (Anderson et al., 1999). The 

equation for AVC is:  

 

 𝐴𝑉𝐶 =
∑(𝐿𝑖 |𝐴𝑖|⁄ )

𝑁
  (2-9) 

 

Where:  

Li = length of the vertical curve i on the roadway section (feet); 

|𝐴𝑖| = absolute gradient difference over vertical curve i (%);  

N = number of vertical curves within the section.  

Fitzpatrick et al. (2000) and Anderson et al. (1999) have found a relationship 

between the AVC and crash frequency. However, it may not be used in this study due to 

limitations in identifying the vertical curvature accurately.  

Until now, only one composite alignment index has been applied by Castro et al. 

(2005). The composite alignment index (CCR combo) is defined by Fitzpatrick et al. 

(2000) as the sum of the horizontal curvature change rate and the vertical curvature 

change rate. The equation is shown as:  

 

 𝐶𝐶𝑅 𝑐𝑜𝑚𝑏𝑜 = 𝐶𝐶𝑅 + 𝑉𝐶𝐶𝑅 =
∑ ∆𝑖

𝐿
 +

∑ |𝐴𝑖|

𝐿
  (2-10) 
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Where:  

∆𝑖 = deflection angle (degrees); 

|𝐴𝑖| = absolute gradient difference over vertical curve i (%);   

L = length of segment (feet). 

Castro et al. (2005) indicated that the composite alignment index becomes a 

reasonably good tool to evaluate alignment consistency. The horizontal alignment part of 

the CCR combo has more effect on the model than vertical alignment indices.   

 

2.4 Count Models 

Different statistical models have been applied for modeling crash frequency in 

past decades, in order to explore potential methods for this study. Due to the non-negative 

integer characteristic of crash frequency data, the application of Poisson and negative 

binomial regression count models is the most appropriate choice for modeling crash 

frequencies.  In the following subsections, this study will introduce definitions and 

applications of these count models, including the Poisson model, Poisson lognormal 

model, Poisson gamma / negative binomial (NB) model, and an extension of two 

previous models, specifically the zero-inflated Poisson (ZIP) and negative binomial 

models (ZINB).  

 

2.4.1 Poisson Model and Poisson Lognormal Model 

The Poisson model is the most basic crash count model, which assumes that the 

mean and variance are equal. The Poisson distribution usually has been used as an 

appropriate selection for crash frequency analysis. The characteristics of these crash 
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frequencies are relatively small non-negative integers. In the late 1980s and early 1990s, 

the Poisson regression approach for modeling crash frequencies was adopted and applied 

popularly for research studies (Jovanis and Chang, 1986; Jones et al., 1991; and Miaou 

and Lum, 1993).   

However, crash frequencies sometimes follow a lognormal distribution which 

means a normal distribution falls on a logarithmic scale (Aguero-Valverde, 2013). Thus, 

the Poisson lognormal models have been employed for crash frequency studies since the 

late 1990s (Anderson et al., 1999; Miranda Moreno et al., 2005; Ma et al., 2007). 

Anderson et al. (1999) utilized the Poisson model and Poisson lognormal model to 

analyze the relationship between safety and geometric design consistency measures for 

rural, two-lane highways. In the section exploring the relationship between speed 

reduction and crashes occurring on horizontal curves, they collected 1,747 crashes for 

5,287 curves, with a mean of 0.11 accidents per curve per year. They developed two 

approaches to treat exposure. In the first approach, the natural logarithm of AADT and 

curve length were used separately. In the second approach, an exposure variable known 

as million vehicle-kilometers of travel (MVKT) was applied in the Poisson model and 

provided a more significant model than the first approach. The authors decided to use the 

Poisson model instead of the negative binomial by assessing the results from goodness of 

fit criteria. Goodness of fit criteria will be discussed in greater detail in the Methodology 

section dealing with selecting better count models.  

In the second section of this study, Anderson et al. (1999) employed the Poisson 

lognormal model to analyze the relationship between alignment indices and crash 

frequency, because the researchers found that their observed crash frequency distribution 
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in 3 years was more like the lognormal distribution than the Poisson distribution. They 

found that crash frequency was closely related with alignment indices measures. Most 

interestingly, they found the average radius of horizontal curvature and the average rate 

of vertical curvature had a greater effect on crash frequency than the ratio of maximum 

radius to minimum radius on a roadway section. 

  

2.4.2 Negative Binomial Model 

To overcome over-dispersion, the negative binomial regression model is 

developed using a gamma probability distribution. This model is frequently utilized by 

researchers in modeling crash frequency, and has been popular to estimate the average 

crash frequency from observed crash counts in transportation studies. Lord et al. (2005) 

reported that an abundance of previous research has found that the variance to mean 

ratios of crash data are greater than one (Abbess et al., 1981; Poch and Mannering, 1996; 

Hauer, 1997). 

Saito et al. (2015) utilized a negative binomial model to predict crash frequency 

for horizontal curve segments of rural, two-lane highways in Utah. Crash sample periods 

were used either for a 3-year period from 2010 to 2012, or a 5-year period from 2008 to 

2012. They also utilized the database from the Utah LiDAR collection, which was 

provided by UDOT’s LiDAR asset management program. The database contained 1495 

curved segments which were randomly selected in the state of Utah. The results showed 

that four significant variables impacted potential crash occurrence. These four variables 

include average annual daily traffic (AADT), segment length, total truck percentage, and 

horizontal curve radius. In this study, the curve radius will be transformed by different 
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combinations with other alignment indices or the total radius of the studied segment. 

The characteristics of over-dispersion may include the preponderance of zeros, a 

condition which occurs when there is a greater-than-expected number of zero 

observations in the negative binomial process and the preponderance of large outcomes. 

To overcome this preponderance of zeros, a zero-inflated model will be presented and 

discussed in the following subsection. 

 

2.4.3 Zero-Inflated Model 

The zero-inflated count model is able to handle data with a preponderance of 

zeros. Essentially, the zero-inflated models are followed by a dual state process. Lord et 

al. (2005, 2007) indicated a dual state process includes a perfect state (zero state) and an 

imperfect state with a mean (non-zero state). In terms of highway safety, the perfect state 

represents the count of crashes per specific time period when there are zero accidents at 

an entity (intersection, road segment, etc.), and the imperfect state represents the count of 

crashes when there are more than zero accidents. However, a Poisson or negative 

binomial model cannot explain the “excess” zeros under this dual state process.   

Lee and Mannering (2002) deployed a zero-inflated count model to analyze 

roadway run off (roadway departure) crashes on a 96.6 km (~ 60 miles) section of 

highway in Washington State. The total number of roadway run off crashes was 489 in a 

3-year period. They found that posted speed limits above 85 km/h (~55mph) increased 

the crash frequencies in the negative binomial crash state (imperfect state) and decreased 

the frequencies in the zero state (perfect state). Increasing road shoulder width also 

increased the probability of roadway run off crashes in a perfect state. To prove the 
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implication of the estimation results, they also used the pseudo-elasticity to test the 

incremental change in the count of crashes by changes in their indicator variables.  

Easa and You (2009) studied the relationship between crash frequency and 

relevant variables under five different alignment combinations, including horizontal 

curves combined with crest vertical curves, horizontal curves combined with sag vertical 

curves, and horizontal curves combined with multiple vertical curves, as well as these 

curves combined with grades of less than 5% and grades of more than 5%. They 

employed Poisson, negative binomial, zero-inflated Poisson and zero-inflated negative 

binomial models to explore each combination. They utilized ZIP and ZINB in the final 

estimated models. They came to two conclusions referred to in this study. First, the 

degree of curvature has the most significant impact on crash frequency. Second, the crash 

frequency on horizontal curves combined with sag vertical curves is greater than 

horizontal curves combined with crest vertical curves.  

 

2.5 Background of Data Collection Methods 

State DOTs have applied various methods on collecting roadside inventory data 

based on cost of time, equipment, and labor. Current methods used include integrated 

GPS/GIS mapping, field inventory, photo/video log, aerial imagery, satellite imagery, 

mobile LiDAR, Airborne LiDAR, terrestrial laser scanning, etc. A survey from the 

Highway Safety Manual (HSM) pointed out that air-based methods are less popular 

choices among state DOTs because of the difficulty in identifying small objects. Field 

inventory methods still require a heavy labor workload, provide less accurate data 

collection, and suffer from a lack of new supporting technology. Thus, this study focuses 
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on exploring data collected through integrated GPS/GIS mapping, photo/video log, 

terrestrial laser scanning, and mobile LiDAR.      

Objective roadside inventory data collection methods have been studied in the 

past decade. Photo/video logs, as mobile collection methods, are able to automatically 

record photos/videos on roadway information after later processing. The advantage of 

this method is less exposure to traffic and short field data collection times. However, the 

drawback of this method is the inability to measure different feature dimensions, such as 

the coordinate of each tested milepost. Large data need to be reduced. Integrated 

GPS/GIS mapping systems used an integrated GPS/GIS field data logger to record and 

store inventory information. Outcomes of this method can be viewed in a mapping 

application. This method has low cost of equipment, easier data transferring, and low data 

reduction effort. The data reduction process involves inputting data into a computer aided 

design (CAD) software program, and importing the results into the drawing format which 

is easier to manipulate and analyze intuitively. But this method involves long field 

collection times and crew exposure to traffic. In addition, limitations could include a GPS 

outage, which could be caused by a tree or tall buildings.  

In recent years, state DOTs have employed and updated collection technology, 

such as terrestrial laser scanning and Mobile LiDAR. The former uses direct 3D precision 

point information to acquire highway inventory data.  The drawbacks of this method are 

long field data collection times, exposure to traffic, high initial cost, long data reduction 

time, and large data size. Mobile LiDAR has more mobility with an instrumented 3D 

precision point sensor and other sensors to capture geospatial data accurately and 

precisely. The remarkable advantage of Mobile LiDAR is the reduced amount of time for 
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collecting data – for a 20-mile segment of a highway, the time was reduced to 30 minutes 

from 10 days. It also improves the safety of the survey crew compared with other 

methods. The new system is able to measure at a rate of 50,000 to 500,000 points per 

second per scanner (Tang and Zakhor et al., 2011). Even though shortcomings of the 

Mobile LiDAR method include expensive equipment and the long data extraction and 

reduction time, this method is able to capture valuable data for DOT programs (Jalayer et 

al. 2014).  

Data were made available through UDOT’s online data portal, a central 

clearinghouse of all public UDOT data. The research team relied on a roadway inventory 

developed from LiDAR data and processed and calibrated by one or more data collection 

contractors. This resulted in direct and easy access to a significant number of roadway 

inventories not typically available in traditional datasets, including cross slope and 

vertical grade. However, the data were being processed in a way to support asset 

management, and the accuracy of certain data elements was at a level consistent with that 

need and inconsistent with safety analysis. Additional data processing will be presented 

in the data collection section. 
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Table 1. The Califso et al. Design Consistency Evaluation on Alignment Indices 

RRR Consistency Rating RTR 

<1.5 Good <1 

1.5 to 2 Fair 1 to 2 

≥2 Poor ≥2 

 



 

 

 

CHAPTER 3 

 

RESEARCH METHODS 

 

This chapter describes the research methods. A series of count models were 

estimated to explore the relationship between the expected number of roadway departure 

crashes and horizontal and vertical alignment indices.  In the first section, the negative 

binomial (NB) model will be discussed. In the second section, zero-inflated negative 

binomial (ZINB) models are introduced to attempt to address the excessive zeros in the 

crash frequency database. 

  

3.1 Negative Binomial Model 

Negative binomial (NB) models have been estimated for over-dispersed crash 

frequency data, or data for which the variance is greater than the mean (Miaou et al. 1993; 

Shankar et al. 1995).  A gamma-distributed error term in the NB model helps overcome 

erroneous coefficient estimates and erroneous inferences that result from ignoring the 

over-dispersion. Based on statistical road safety modeling (SRSM) (Hauer, 2004), the 

expected number of roadway departure crashes on segment i, μi is expressed by NB as:  

 

 μi =  E (Yi) = exp(𝛽0 + ∑ 𝛽𝑗𝑋𝑖𝑗𝑖=1 𝑡𝑜 𝑘 + 𝜀𝑖) (3-1) 
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Where:  

μi = E(Yi) = the expected number of roadway departure crashes on segment i;  

k = the number of independent variables;  

Xij = independent variable j on road segment i;  

β0 = constant or intercept; 

βj = parameter that quantifies the magnitude and direction of the effect of independent 

variable j in Xij on μi;  

εi = unknown or unmodeled effects on μi, represented as a disturbance term.  

Alignment indices, a design consistency measure, were the primary explanatory 

variables of interest.  Based on the previous literature review section, horizontal and 

vertical alignment indices were tested as potential right-hand-side variables in Eq. 3-1. In 

addition, other variables were also tested in model specifications to minimize omitted 

variable estimator bias. These variables included posted speed limit indicators, tangent 

length indicators, as well as the exposure measures LnAADT (natural logarithm of the 

annual average daily traffic of a roadway segment) and LnCL (natural logarithm of the 

curve length of a roadway segment). Omitted variable bias means over- or under-

estimating the safety effect of design consistency variables due to missing unmeasured 

variables that are correlated with design consistency variables. The exposure variables 

LnAADT and LnCL are commonly specified in crash prediction modeling (Reurings et 

al., 2006). Various specifications of LnAADT and LnCL were tested, which will be 

discussed in the Data Analysis section. 

Exp(εi) is gamma distributed with mean 1 and variance α. This results in the 

mean-variance relationship being expressed as: 
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 𝑉𝐴𝑅(𝑌𝑖)  =   𝜇𝑖 +  𝛼 [𝜇𝑖]2 (3-2)  

 

Where: 

μi = E(Yi) = the expected number of roadway departure crashes on segment i;  

VAR(Yi) = variance of roadway departure crashes on segment i; 

α = over-dispersion parameter.  

The over-dispersed data are represented by a value for α that is greater than 0. If α 

is less than 0, the data are under-dispersed. A larger estimate of α indicates greater over-

dispersion. Eq. 3-2 indicates the variance is greater than the mean in most cases. The 

probability density function of the negative binomial distribution is defined as the 

following form (Miaou, 1994):  

 

 P(Yi = yi)  =
Г(

1

α
+ yi)

Г(yi+1)Г(
1

α
)

(
1

1+αμi
)

1

α
(

αμi

1+αμi
)𝑦𝑖 (3-3) 

 

Where:  

P(Yi=yi) = the probability density function of the NB for roadway departure crashes on 

segment i;  

α = dispersion parameter;  

μi = the expected number of roadway departure crashes on segment i; 

Г(.) = a value of the gamma function. 

The McFadden Pseudo R-Squared was used to evaluate goodness-of-fit of the 

negative binomial models.  This measure is analogous to the R-squared term in linear 

regression, where values range from 0 to 1, but never approach 0 or 1, and higher values 

indicate better model fit. The McFadden Pseudo R-Squared is described in Eq. 3-4. 
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 ρ2 = 1–
𝐿(𝑓𝑢𝑙𝑙)

𝐿(0)
 (3-4) 

 

Where: 

ρ2 = McFadden Pseudo R-Squared; 

L(full) = log-likelihood of the model with explanatory variables; 

L (0) = log-likelihood of the intercept-only model.  

 

3.2 Zero-Inflated Negative Binomial Models 

The zero-inflated count model was formally introduced by Lambert (1992) as a 

method of accounting for excessive zero counts. This model has been explored in traffic 

safety for the past two decades and mainly provides a method to handle study sites which 

have a preponderance of instances in which there are no crashes. This thesis will explore 

the zero-inflated negative binomial model (ZINB), in addition to a NB model, due to the 

excessive number of sites with zero roadway departure crashes. Generally, the ZINB uses 

a logit model to describe roadway departure crash frequencies in either a zero state or 

non-zero state, and the NB count model is used to describe the crash frequency of non-

zero roadway departure crashes. 

Mathematically, the probability density function of the zero-inflated negative 

binomial distribution with two states (zero and non-zero states) are represented as 

(Hosseinpour et al., 2014): 

 

 P(Yi = yi = 0) = Pi + (1 − Pi)
1

(1+αμi )
1
α

 (3-5) 
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 P(Yi = yi > 0) = (1 − Pi)
Г((

1

α
)+ yi)

Г(
1

α
)Г(yi+1)

(αμi)yi

(1+αμi)
(yi+(

1
α))

     

 (3-6) 

 

Where: 

yi = the number of roadway departure crashes for segment i;  

Pi = the probability of segment i being in a zero crash state, which is fitted in a logistic 

regression model. The expression of Pi is shown as:  

 

 𝑃𝑖 =
𝑒𝑥𝑝(𝐾𝑖𝛽)

1+exp (𝐾𝑖𝛽)
 (3-7) 

 

Where:  

Ki = the function of explanatory variables in logistic regression model; 

β = the estimable coefficients. 

In the ZINB model testing process, all geometric alignment indices will be tested 

by utilizing the NB model in the non-zero state; meanwhile, geometric variables and 

exposure variables will be tested by utilizing the logit binary model in the zero-state. In 

the zero-state logit binary model process, the positive signs of coefficients in the logit 

binary model implies the higher probability of being in the zero state. For example, if the 

coefficient for the indicator RRR < 1.5 (an indicator of poor design criteria) (Califso et al., 

2009) had a positive sign in the logistic regression model and a statistically significant 

confidence interval, it would imply that RRR < 1.5 increases the probability of being in 

the zero state.  

The Vuong test is commonly used to evaluate the appropriateness of using a zero-

inflated count model, and it is used here to compare between the NB and ZINB models. 

The test was first provided by Vuong (1989) and is shown below: 
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 𝑚𝑖 = ln (
∑ 𝑃1(𝑦𝑖|𝑥𝑖)𝑖

∑ 𝑃2(𝑦𝑖|𝑥𝑖)𝑖
) (3-8) 

 

 𝑉 =  𝑚𝑚𝑒𝑎𝑛(𝑛)0.5/𝑆𝐷(𝑚) (3-9) 

 

Where:  

P1(yi|xi) = the predicted probability density function of the standard negative binomial; 

P2(yi|xi) = the predicted probability density function of the zero-inflated negative 

binomial; 

mmean = the mean of mi; 

SD(m) = the standard deviation of mi; 

n = number of the observations;  

V = the Vuong test for a standard normal distribution.  

If V is greater than 1.96, it means the NB model is preferred over the ZINB model. 

If V is less than 1.96, then the ZINB model is preferred over the NB model. However, 

many previous studies reported the Vuong’s statistic test did not apply a penalty for the 

complexity of model variables (Greene, 2000; Washington et al., 2003; Lord et al., 2007). 

Vuong (1989) even suggests applying Akaike’s information criterion (AIC) and Bayesian 

information criterion (BIC) for correcting this test. These two goodness-of-fit measures 

are able to penalize the model and overcome the complexity. The equations are defined 

as follows:  

 

 𝐴𝐼𝐶 = −2𝐿𝐿 + 2𝑃 (3-10) 

 

 𝐵𝐼𝐶 = −2𝐿𝐿 + 𝑃(𝑙𝑛(𝑛)) (3-11) 
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Where:  

LL = the logarithm of the maximum likelihood estimation for each model; 

P = the number of model parameters; 

n = the number of observations.  

Simply speaking, the lowest value of AIC or BIC represents the preferable model. 

The statistically significant difference between two models was found by Raftery (1995) 

and Hilbe (2011). Table 2 presents the significant levels for AIC and BIC. 

In this study, the number of observations will be more than 500, which means the 

ZINB will be more favored than the NB if the difference in the AIC is more than 2.5 and 

the ZINB has a lower AIC. However, if the two models did not show a significant 

difference in AIC, the difference of BIC would indicate the favored model which is 

indicated by the lower BIC model.  STATA statistical software was utilized to estimate 

the NB and ZINB models. In addition, STATA will also be used to implement model 

selection tests, such as the AIC, BIC, and Vuong test. It provides and implements all 

equations shown above for negative binomial and zero-inflated negative binomial 

regression models.     
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Table 2 Raftery’s (1995) BIC and Hilbe’s (2011) AIC for Significant Levels 

∆AIC  Results if A<B ∆BIC  Results if A<B 

≤2.5 No difference ≤2 Weak difference 

2.5 to 6 Prefer A if n>256 2 to 6 Positive difference 

6 to 9 Prefer A if n>64 6 to 10 Strong difference  

>10 Prefer A <10 Very strong difference 

 

 

 



 

 

 

CHAPTER 4 

 

DATA COLLECTION 

 

This chapter discusses the process of collecting different data resources for the 

final database. The final database consists of five main components of data files, 

including horizontal curvature data, traffic flow data, posted speed limit data, geometric 

roadway inventory data, and crash data. All data were obtained from the UDOT Data 

Portal and UDOT Traffic and Safety Division. The first section introduces the procedures 

of horizontal curve estimation and validation based on horizontal curvature data file. Also, 

the posted speed limit and annual average daily traffic (AADT) as traffic flow data will 

be subsequently described. Second, this section explains the validation procedures of 

vertical grade and cross slope, which are two major roadway inventory variables. The 

third section presents the definition and the collection of roadway departure crashes. The 

last section in this chapter shows the definition of all variables and descriptive statistic 

summary for the final data.  

 

4.1 UDOT Data Files 

4.1.1 Horizontal Curve Estimation and Validation   

Initially, UDOT Data Portal provided thousands of “broken” pieces of horizontal 

curvature segments which were not used as the completed entire horizontal curve. The
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main purpose of using this database was developing a method of combining “broken” 

curve segments into complete horizontal curves and estimating their key geometric 

characteristics. The key geometric characteristics include radius, deflection angle, curve 

degree, etc. The time of manipulation process was consumed at least 500 person-hours on 

this initial effort.  The spent time were distributed on examining the data, testing various 

alternatives, developing the algorithms, and visually verifying all results in Google Earth. 

The major programming language was utilized by adopting VBA (Visual Basic for 

Application) in Microsoft Excel. The procedure of estimating horizontal curve was 

implemented in the following key steps: 

Step 1. Imported the curve shape file into GIS software (ArcGIS) and computed the 2-

dimensional Cartesian UTM coordinates from Longitudes and Latitudes in WGS84.  

Step 2: Exported the attribute table to a CSV (Comma Separated Value) data file and 

imported it into Excel.   

Step 3: Combined the short segments and estimated PC and PT locations, curve radii, 

deflection angles, and curve length.   

Step 4: Examined and cleaned up the data. This step helped screen out abnormal and 

missing values.  The research team examined the data and cleaned up the data using the 

following criteria:  

 Curves with missing GPS coordinates. 

 Curves with missing traffic volumes. 

 Abnormally long (a few miles) and abnormally short (less than 0.05 mile) curves.  

 Curves with at least one crash coded as intersection-related. 

The following content of this section provide a brief description of details of the 
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algorithm applied in estimation of horizontal curve process. Figure 1 shows an example 

of a horizontal curve that is split into many short segments, which is shown at the end of 

this chapter. The cyan arc represented the entire horizontal curve while the yellow arc is 

one of the “broken” short segments. 

In step 1, the “Calculate Geometry” tool was used to add X and Y fields into the 

attribute table in ArcGIS.  The X and Y fields were then converted from Longitude and 

Latitude in degrees to X and Y position in meters. All calculations would later be done 

using these 2-dimensional X-Y coordinates in meters. Figure 2 is a screen shot showing 

the “Calculate Geometry” tool for converting GPS coordinates from degrees to meters in 

ArcGIS. This step of data conversion was done for the entire data file. The units of 

horizontal curve length in the final data file were converted from meters to miles.  

In step 2, the data files in ArcGIS were exported into a CSV data file by using the 

data export tool in ArcGIS. Then, the data were imported into an Excel spreadsheet for 

further calculation. In step 3, the direction of all segments on the decreasing milepost 

direction was reversed. In the data file, UDOT noted “N” represented as the decreasing 

milepost direction and “P” represented as the increasing milepost direction. Related VBA 

codes were developed to identify all records in the data file. Those identified segments 

were systematically re-coded in the decreasing milepost direction. The new direction 

changed from “N” to “P”. In other words, the value of ending milepost was received in 

the new beginning milepost. Vice versa, the value of the beginning milepost became the 

new ending milepost. 

In the last step, the order of data was sorted by route number and the mileposts 

after reversing the direction of segment. PC and PT locations were detected based on 
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various characteristics of each short segment (e.g., radius is very large for a tangent and 

within a reasonable range for a short segment on curve) by using VBA programming 

codes. The curve length was estimated from the mileposts of PC and PT. The deflection 

angle was calculated from the estimated curve length and the estimated curve radius. The 

equation is shown below.  

 

 𝐷𝐶 =
180

𝜋
∗  

𝐿

2∗𝑅
 (4-1) 

 

Where DC means deflection angle, L was curve length in feet, and R was radius in feet.   

After this step, short “broken” curve segments were merged into complete 

horizontal curves with the estimated values for their key geometric features. After this 

process, the data file was reduced from about 6,500 curves down to 4,416 horizontal 

curves. The reduction in the number of curves can be explained by the following reasons. 

It was difficult for the developed algorithm to identify small deflection angles. The 

algorithm also had problems accurately detecting curves for winding stretches of 

roadway where no or very short tangents exist between curves. In addition, the data often 

seem to be inaccurate for road segments in mountainous terrain.   

 

4.1.2 Visual Screening of Data in Google Earth 

This subsection discusses how to visually check, verify, and recover a horizontal 

curve data file associated with all 4,416 curves in Google Earth. The procedures of 

validation and recovery were implemented in the following steps:   

Step 1: Marked PC and PT locations in Google Earth. 

Step 2: Checked and verified all curves in Google Earth. 
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Step 3: Recovered or aligned the new horizontal curves in Google Earth. 

In the first step, GPS coordinates of PC and PT were created as place markers by 

using Keyhole Markup Language (KML) in Google Earth. PC and PT markers were 

coded with different colors for easy identification (Red color for PC and Green color for 

PT).  Both PC and PT markers were attached with curve identifiers and key curve 

geometric characteristics (such as, radius, beginning and ending milepost, deflection 

angle, and curve length.). This key information of horizontal curves was prepared for 

validation when the curve was checked in Google Earth (discussed in Step 2). Figure 3 

presents an example of PC and PT markers in Google Earth. The red color marker 

represented GPS location of PC and green color represented GPS location of PT. PC and 

PT markers have almost identical key information except milepost.  

In the second step, all KML files of PC and PT markers of all horizontal curves 

were imported into Google Earth. Each individual horizontal curve was checked visually 

to verify the consistency between the key curve geometric characteristics attached to 

markers and locations of all markers. The distance measurement tool in Google Earth was 

also occasionally used for verifying the curve length.  Figure 3 presented an accurate 

example of horizontal curve with relevant geometric characteristics. In this example, the 

horizontal curve has a deflection angle of 31.01 degrees with a 0.499-mile curve length. 

Judging the curve in Google Earth based on geometric design requirements, these 

numbers were reasonable to appear. A distance of 0.5-mile curve length was measured by 

the distance tool in Google Earth. Therefore, all information for this horizontal curve was 

consistent and the curve was tagged in the data file for analysis. Some inconsistent 

information was also found by using the same method to check. In Figure 4, it was an 
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example of a curve with inconsistent information. The marker labels indicated that the 

curve is 0.059-mile-long which means the location of PC and PT were almost at the same 

location. Thence, all curves with similarly inconsistent information as this example were 

removed from the dataset. 

As Figure 4 illustrates, the GPS locations of PC and PT were inaccurate. The 

inaccurate GPS locations appeared more frequently in mountainous areas during the 

process of data validation. The potential reason for this inaccurate result was the poor 

GPS signal reception in the terrain of Utah’s mountains. Thus, this part of the GPS 

database was recommended to be excluded without more accurate location data.  

Through this process, the horizontal curves located at or near one or more 

intersections were screened out and identified. These cases were finally removed from 

the database for reducing crash analysis interference by intersections. In Figure 5, it 

represented an example of a horizontal curve located at an intersection. Traffic volume of 

this horizontal curve was certainly affected by the intersection and interchange. However, 

there was no indication of the intersection from the data itself.  The intersection was only 

identified visually in Google Earth. This curve was eventually removed from the final 

dataset. 

In addition, the process of data validation in Google Earth was also helpful to 

identify winter closure. With the “Roads” layer activated, Google Earth provided sections 

of roadway that are closed during winter season. Figure 6 presented an example of winter 

closure information in Google Earth. During this data screening process, if a curve was 

found to be within a section of roadway with the “closed winters” label, it was tagged 

with an indicator variable. After the process of validating the database in Google Earth, 
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the final dataset shrank to 1,755 horizontal curve segments. 

To study design consistency with successive curves, mending and extending the 

final database was necessary. Thus, the process of improving database quality will be 

shown in the following steps. First, based on an overview of all 4416 curves in Google 

Earth, the potential recovery database includes improper locations at PC or PT or both, 

poor GPS coordinates, passing zones in a two-lane rural highway, and intersections 

without/with signs. The countermeasures involved fixing the improper locations by using 

Google Earth measurements and recovering the curves with passing zones and 

intersections without signs. Google Earth measurements consist of four procedures.  

 I. Identified the GPS coordinates of PC and PT,  

 II. Converted the latitude and longitude to UTM, and calculated curve length, 

 III. Measured deflection angle, and calculated radius,  

 IV. Fixed milepost of PC and PT.  

Figure 7 presented an example of manual measurements for determination of 

horizontal curves in Google Earth. In the example shown below, a new PT location was 

identified by engineering judgment, while the coordinates of new locations were 

consequentially gained. The point of intersection (PI) was found by drawing two 

extending lines along the upstream and downstream tangent length. Deflection angle was 

measured by using the ruler tool in Google Earth. Then, the curve radius was calculated 

based on deflection angle equations which have already been shown in the previous 

section.  

According to the methods applied for recovering the database, 1318 curves (out of 

4416) have been proved and fixed for this study so far with the limited working time. The 
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remaining database is also able to possibly be fixed by using a similar method in future 

research.   

 

4.1.3 Final Horizontal Curve Segment Entity Database  

Due to the limited number of validated horizontal curve segments, the research 

team decided to analyze each tangent-curve-tangent as an entity instead of long segments 

with multiple successive horizontal curves. To consider the effect of successive curve 

segments on design consistency, the research team created an algorithm to find at least 

three successive curves. The middle of three successive curves was analyzed as the 

studied curve. The upstream and downstream tangent length was calculated based on 

UDOT Milepost. If tangent length is too short or too long to be satisfied with roadway 

design requirements, these entities would be excluded from the database. UDOT RMOI 

(2011) recommended the maximum permissible rate of superelevation as 6%. The 

average of roadway cross slope is between 1.5% and 3% based on requirements of snow 

plows and ice clearance operations in Utah. Thus, the minimum tangent length was found 

around 300 feet (0.057 mile) under a design speed of 65 mph, and cross slope changed 

from 1.5% to 6%. Table 3 shows the minimum tangent length results at different design 

speeds. The maximum tangent length was determined to be around 20,000 feet (3.79 mile) 

by considering the distribution of tangent lengths. Ng and Sayed (2004) also provided the 

maximum tangent length as around 20,000 feet. The final observations included 582 

remaining entities.  

 



40 

 

 

4.1.4 AADT and Post Speed  

The average annual daily traffic (AADT) data are stored in a GIS shape file and 

captured through UDOT’s data portal. The AADT data were allowed to import into 

ArcGIS software and were converted into a Comma Separated Value (CSV) format. The 

data in CSV format were brought into Excel and merged into each horizontal curve based 

on route number and UDOT milepost. Compared with the length of horizontal curves, the 

length of road segments within AADT data are longer along rural, two-lane highways. 

Thus, most of the horizontal curves often completely fell within one of these long 

segments.  In some instances, horizontal curves belong to two different roadway 

segments with different AADTs. This situation always occurred at those horizontal 

curves with an intersection. In this case, the weighted average of two different AADTs 

were calculated. However, horizontal curves with intersections were eventually dropped 

from the final dataset and were not included in the analysis due to the influence of 

intersections. The AADT data were merged into final entity data for 7 years (2008 to 

2014). The natural logarithm of AADT data was calculated according to the average 

value of AADT in 7 years.  

The posted speed limit data were stored in a GIS shape file as polylines in the 

UDOT data portal. The data with ‘N’ direction was excluded and the data with 'P' 

direction represents the speed in both directions on all nondivided routes. The posted 

speed limit data were officially published in 2015. The posted speed limit data were 

extracted to an Excel file from the shapefile in ArcGIS. The four major locations of the 

posted speed limit data were captured, including the middle point of upstream tangent 

length, the point of curvature, the point of tangent, and the middle point of downstream 



41 

 

 

tangent length. The posted speed limit data were also utilized for approximately 

estimating superelevation inside of the horizontal curve as design speed.  

 

4.2 Roadway Inventory Data File 

Cross slope and vertical grade data were provided by a Mobile LiDAR data 

collection machine. These data were recorded every 0.1 mile along either the increasing 

milepost direction or decreasing milepost direction. In terms of cross slope validation, 

four alternative methods were created to calculate the cross slope and merge the result as 

superelevation into the final database based on the milepost. Alternative 1 is the average 

of all cross slopes inside of the horizontal curve either in the increasing or decreasing 

milepost direction. Alternative 2 is the average of the cross slopes at the middle of the 

horizontal curve in both directions. Alternative 3 is the average of the cross slopes at the 

middle of the horizontal curve in both directions, with the signs of the cross slope in the 

decreasing milepost direction being reversed. Alternative 4 is the average of all cross 

slopes inside of the horizontal curve, with the signs of the cross slope in the decreasing 

milepost direction being reversed.  

The UDOT Roadway Design Manual of Instruction (RMOI) indicates the 

maximum permissible rate of superelevation is 6% because of Utah’s weather conditions. 

AASHTO (2011) records the minimum radii for design superelevation rates, design 

speeds, and the maximum superelevation as 6%. To roughly validate the cross slope from 

Mobile LiDAR, AASHTO’s superelevation was calculated based on the posted speed 

limit and the radius of each horizontal curve from the final database.  The results of the 

four alternatives were used to compare with AASHTO’s superelevations. By computing 
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the difference between the superelevation of the 4 alternatives and the AASHTO values 

for each horizontal curve, the research team decided to use difference values of 1, 1.5, 2, 

and 2.5 as a comparable reference. Figure 8 shows the percentage of confidence level for 

superelevation using each of the 4 reference difference values among the 4 alternatives.  

Alternative 2 has the highest confidence level compared with the other 3 

calculation methods. However, alternative 3 was eventually selected for calculating the 

validated cross slope. 74% of the samples fall below the reference difference value of 2. 

This alternative is more realistic than alternative 2, because the signs of the cross slope in 

the different direction interfered with the final calculation. In addition, the team also 

checked the horizontal curve direction based on the signs of the cross slope from 284 

samples. Under alternative 2, 99% of the samples have the correct direction when 

compared with the real horizontal curve directions in Google Earth. 

In terms of vertical grade validation, the main purpose is to identify signs of grade 

and the different types of vertical alignment and straight grades inside of the horizontal 

curves. The Team possesses the raw original grade database from Mobile LiDAR, as well 

as the verified grade with absolute integer values which were provided by the UDOT data 

portal. Thus, the first step was to test the signs of vertical grades by combining verified 

grade data and raw LiDAR grade data to estimate the signs of grades. This involved 

evaluating the signs of the raw grade data for both directions of travel for a given road 

segment to identify likely positive or negative grades, and applying those signs to the 

verified grade data. After figuring out the signs of the verified value, five critical grades 

at locations inside of the horizontal curves were captured from the new corrected verified 

grade database. These five locations included the point of curvature, one quarter of the 
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curve length, the middle of the curve, three quarters of the curve length, and the point of 

the tangent. Vertical alignment profiles were approximately plotted based on horizontal 

distances and vertical elevations of these five critical locations.  

Then, by checking Web Navigator video, which visually provided all data within 

each 0.01-mile interval from the LiDAR database, the types of vertical alignment profiles 

were observed by engineering judgment. The four classical types of vertical alignments 

have been summarized and presented by AASHTO (2010). Figure 9 illustrates these four 

types of vertical alignments which include the type 1 crest, type 1 sag, type 2 crest, and 

type 2 sag. According to the characteristics of these vertical curves, the team was able to 

approximately validate the grade values with signs and identify them. Figures 10 and 11 

present an example plot of the vertical alignment and the video image captured from the 

Web Navigator website, respectively. These two figures clearly indicate that the vertical 

curve at this example location is a type 1 sag curve, in which the initial grade is negative 

and the final grade is positive. After the process of validation, almost all principal curves 

were applicable, except 5 principal curve segments had wrong coordinates which could 

not be found on video. A total of 516 principal curves involved at least one type of 

vertical curve. In addition, 62 horizontal curves were built on level ground.  

 

4.3 Crash Data File 

Total crash and roadway departure crash data between the years 2008 and 2014 

were obtained from the UDOT traffic safety division. The safety division provided crash 

files which include attributes describing the manner of collision, roadway junction feature, 

contributing circumstance, and crash locations for collisions occurring in rural areas of 
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Utah. The crash location information consists of the route number, milepost, and GPS 

coordinates. In the crash files, each row represents the crash ID, vehicle ID, number of 

vehicles involved in each crash, year in which the crash occurred, route number, GPS 

locations, sequence of events, roadway junction features, and driver contributing 

circumstance. These variables were identified by the Utah DI-9 instruction manual, 

which recorded Utah police report codes and provided UDOT connecting communities’ 

code table listings.  

The total crash data were directly merged into the horizontal curve database by 

each year. Before merging the horizontal curve database with the roadway departure 

crash data, these crashes must first be defined and identified. UDOT crash rollups defined 

roadway departure crashes based on the following attribute description:  

 Roadway junction features do not include four legs, T, Y, five legs or more, 

roundabout, ramp intersection with crossroad, bike/pedestrian path intersection, 

and 

 Driver contributing circumstance only contains ran off road, or the sequence of 

events includes ran off road right, left, crossed median, and collision with fixed 

object. 

According to the FHWA roadway departure crash definition, the research team 

created two alternative roadway departure crash definitions based on the crash attributes. 

Among the 3 alternatives, Alternative UDOTRWD (described by the crash rollup 

definition above), Alternative UURWD1, and Alternative UURWD2, the last two 

alternatives included situations in which the following conditions were present: 

 Driver contributing circumstance condition included “failed to keep proper lane” 
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 Sequence of events includes “travel in the opposite direction” where the crash 

occurs with “other motor vehicle in transport,” and the manner of collision 

includes either “head on” or “sideswipe opposite direction” 

The UURWD2 definition also considered overturn events listed in the “sequence of 

events 1” variable.  

All three roadway departure crash alternative definitions are shown in Table 4. 

The roadway departure crashes of all three alternatives were identified by making queries 

based on the definitions. The crash data merging methods utilized both the research 

team’s algorithm and the safety data merge program developed by Chongkai. Both 

methods were found to be the equivalent to each other. Figure 12 shows the roadway 

departure crash frequency comparisons among 7 years (2008-2014) with different 

roadway departure crash definitions for crashes occurring in Utah. In this thesis, the 

roadway departure crash data based on the Alternative UURWD2 definition were 

selected as the dependent variable because it represented the most comprehensive 

roadway departure crash definition.    

 

4.4 Variable Definitions and Descriptive Statistics 

The final entity database was manipulated and utilized for studying the sensitive 

relationship between crashes and alignment index measures. Tables 5, 6, and 7 present 

data descriptions for all variables which include general attributes, horizontal attributes, 

vertical attributes, horizontal alignment index attributes, vertical alignment index 

attributes, and crash attributes. General attributes included 12 variables, which are 

presented in Table 5. Horizontal attributes contained 15 variables, which are shown in 
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Table 6. Six significant horizontal alignment index variables and the relative indicators 

are shown in the horizontal alignment index attributes in Table 6. In Table 7, vertical 

alignment index attributes include one vertical alignment index and 6 types of vertical 

curve or straight grade inside of horizontal curves. Vertical attributes presented grades at 

critical locations and the relative indicator variables. All variables were explored in the 

modeling study.  

Tables 8, 9, and 10 provide descriptive statistics summaries of 578 horizontal 

curve segments for general and crash attributes, horizontal attributes and horizontal 

alignment index attributes, and vertical attributes and vertical alignment index attributes. 

The average total crash frequency was 0.773 per horizontal curve in 7 years. The average 

roadway departure crash frequency was 0.391. The number of left-turning horizontal 

curves studied was similar to the number of right turning curves, which was found by 

identifying the direction based on increasing mileposts. Due to crash counts recorded in 

both travel directions, curve directions could not significantly impact safety in this study. 

However, curve directions were able to be used to verify the reliability of the cross slope 

validation. In the horizontal disaggregate data table, the length of selected curve segments 

(with the tangent length) ranged from 300 feet to 20,000 feet. Curve segments with spiral 

curves, composite curves, and curves with lengths less than 300 feet and greater than 

20,000 feet were excluded in this study. In the vertical disaggregate data table, more than 

50% of the horizontal curves have straight grade segments. The grade ranged from -10 to 

9 for most of the critical locations. The analysis and results will be presented in the 

following chapter.  
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Figure 1. Example of “broken” segments of a horizontal curve. 

 

 

Figure 2. A screen capture of “Calculate Geometry” tool in ArcGIS for converting 

coordinates from degrees into meters. 
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Figure 3. An example of curve with accurate information. 

 

 

Figure 4. An example of discrepancy between curve length and GPS coordinates. 
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Figure 5. An example of curve at or near intersection. 

 

 

Figure 6. Example of winter closure information in Google Earth. 

 



50 

 

 

 

Figure 7. An example of manual measurement in Google Earth. 

 

Table 3. Minimum Design Tangent Length  

  

Minimum Tangent Length (ft) 

Design Speed (mph) 

e(%) 35 40 45 50 55 60 65 

1.5 197.2 210.8 226.1 244.8 260.1 272 283.9 

 

 

Figure 8. Superelevation validation comparisons  
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Figure 9. Types of vertical alignments  

 

 

Figure 10. Example of vertical alignment inside of horizontal curve. 
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Figure 11. Example of video image from Web Navigator. 

 

Table 4. Roadway Departure (RWD) Crash Descriptions 

DI-9 

Box 
Definition UDOTRWD UURWD1 UURWD2 Relationship 

28 
Roadway/Junction 

Feature 

NOT 4-Leg, T, Y, 5-Leg or More, 

Roundabout, Ramp Intersection with 

Crossroad, Bike/Ped Path Intersection 

  

AND 

17  

(1 or 2) 

Driver 

Contributing 

Circumstance 

Ran Off Road 

OR 

N/A 
Failed to Keep  

Proper Lane 

  
Sequence of 

Events 1 

ROR Right, Left,  

Crossed Median/Centerline,  

Collision with Fixed Object 

N/A 

Opposite Direction  

(Head on, Sideswipe 

Opposite Direction) 

  Overturn  
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Figure 12. Alternative roadway departure (RWD) crash frequency comparisons 

among 7 years (2008-2014) in Utah  
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Table 5. General and Crash Variables Descriptions 

General Attributes 

Variables Definition  

C_Dir Curve Direction  

Ln_CL Natural log of length of horizontal curve in feet 

Ln_AADT Natural logarithm of total AADT (From 2008 to 2014) 

Fri_Fatr 
The side-friction factors are employed in horizontal curve with post 

speed, superelevation and radius 

PS Post Speed Limit(mi/h) 

PS_30 1= Post Speed Limit at 30 mi/h, 0 = Others  

PS_35 1= Post Speed Limit at 35 mi/h, 0 = Others  

PS_40 1= Post Speed Limit at 40 mi/h, 0 = Others  

PS_45 1= Post Speed Limit at 45 mi/h, 0 = Others  

PS_50 1= Post Speed Limit at 50 mi/h, 0 = Others  

PS_55 1= Post Speed Limit at 55 mi/h, 0 = Others  

PS_60 1= Post Speed Limit at 60 mi/h, 0 = Others  

PS_65 1= Post Speed Limit at 65 mi/h, 0 = Others  

Crash Attributes 

T_Crash Total Crash between 2008 and 2014  

T_RWD UU Roadway Departure Crash Type II between 2008 and 2014 
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Table 6. Horizontal Variables Descriptions 

Horizontal Attributes  

Variables Definition  

CL Distance between PC and PT (Curve segment length, mi)  

USM_CL Upstream Curve Length in the previous curve (mi) 

DSM_CL Downstream Curve Length in the next curve (mi) 

USM_TL 
Upstream Tangent Length (Distance between PT of previous curve 

and PC of the tested curve, mi) 

DSM_TL 
Downstream Tangent Length (Distant between PT of the tested curve 

and PC of next curve, mi) 

Radius Curve Radius (feet) 

USM_R Upstream Curve Radius (feet) 

DSM_R Downstream Curve Radius (feet) 

Curve_D Degree of curve 

USM_D Degree of Upstream Curve 

DSM_D Degree of Downstream Curve 

D_Ang Deflection Angle 

USM_D_Ang Deflection Angle of Upstream Curve 

DSM_D_Ang Deflection Angle of Downstream Curve 

Super_e The cross slope at the middle of horizontal curve  

MCDC Maximum changed in degree of curve 

ACDC Average changed in degree of curve 

MCDA Maximum changed in deflection angle 

ACDA Average changed in deflection angle 
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Table 6. (Continued) 

Horizontal Alignment Indices Attributes 

Variables Definition  

CCR The curvature change rate  

DC The degree of curvature  

Avg_R The average radius of curvature  

CRR The changed radius rate  

RRR The ratio of radius and total radii  

RTR The ratio of tangent length over radius  

RTR_USM The ratio of upstream tangent length over radius  

RTR_DSM The ratio of downstream tangent length over radius  

RRR_G 
1= good design consistency criteria on RRR, 0= other design consistency 

criteria on RRR 

RRR_F 
1= fair design consistency criteria on RRR, 0= other design consistency 

criteria on RRR 

RRR_P 
1= poor design consistency criteria on RRR, 0= other design consistency 

criteria on RRR 

RTR_G 
1= good design consistency criteria on RTR, 0= other design consistency 

criteria on RTR 

RTR_F 
1= fair design consistency criteria on RTR, 0= other design consistency 

criteria on RTR 

RTR_P 
1= poor design consistency criteria on RTR, 0= other design consistency 

criteria on RTR 
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Table 7. Vertical Variables Descriptions  

Vertical Attributes 

Variables Definition  

Ai Absolute gradient difference (%) 

G_PC Grade at point curvature of the horizontal curve (%) 

G_1_4CL Grade at point curvature of the horizontal curve (%) 

G_1_2CL Grade at point curvature of the horizontal curve (%) 

G_3_4CL Grade at point curvature of the horizontal curve (%) 

G_PT Grade at point curvature of the horizontal curve (%) 

G_USM_50ft Grade at 50 feet before PC of the horizontal curve (%) 

G_USM_100ft Grade at 100 feet before PC of the horizontal curve (%) 

G_DSM_50ft Grade at 50 feet after PT of the horizontal curve (%) 

G_DSM_100ft Grade at 100 feet after PT of the horizontal curve (%) 

Avg_G Average Grade inside of the horizontal curve (%) 

G_-9_-4 
1= grade between -9 and -4 % inside of horizontal curve,0= 

otherwise 

G_-4_0 1= grade between -4 and 0 % inside of horizontal curve,0= otherwise 

G_0_4 1= grade between 0 and 4 % inside of horizontal curve,0= otherwise 

G_4_9 1= grade between 4 and 9 % inside of horizontal curve,0= otherwise 

HC_VC 1= vertical curves on horizontal curve, 0=otherwise 

Vertical Alignment Indices Attributes 

VCCR Vertical curvature change rate  

CCR_Combo 
The sum of the horizontal curvature change rate and the vertical 

curvature change rate 

Pos_G Positive straight grade on horizontal curve (%) 

Neg_G Negative straight grade on horizontal curve (%) 

TI_Crest 1= type 1 crest curve on horizontal curve, 0= otherwise 

TII_Crest 1= type 2 crest curve on horizontal curve, 0= otherwise 

TI_Sag 1= type 1 sag curve on horizontal curve, 0= otherwise 

TII_Sag 1= type 2 sag curve on horizontal curve, 0= otherwise 
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Table 8. Summary Descriptive Statistics for General and Crash Disaggregate Data  

Variable Obs. Mean Standard deviation Min Max 

General Attributes 

Curve_Dir 578 0.510 0.500 0 1 

CL_mi 578 0.206 0.121 0.047 1.147 

Ln_AADT 578 6.523 0.889 4.508 8.594 

Post Speed 578 55.908 7.003 30 65 

Speed_30 578 0.002 0.042 0 1 

Speed_35 578 0.019 0.137 0 1 

Speed_40 578 0.024 0.154 0 1 

Speed_45 578 0.062 0.242 0 1 

Speed_50 578 0.107 0.310 0 1 

Speed_55 578 0.464 0.499 0 1 

Speed_60 578 0.073 0.260 0 1 

Speed_65 578 0.249 0.433 0 1 

Crash Attributes 

Tot_Crash 578 0.773 1.538 0 14 

Tot_RWD 578 0.391 0.972 0 12 
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Table 9. Summary Descriptive Statistics for Horizontal Disaggregate Data  

Horizontal Attributes  

Variable Obs. Mean 

Standard 

deviation Min Max 

CL_mi 578 0.206 0.121 0.047 1.147 

USM_CL_mi 578 0.199 0.113 0.055 1.055 

DSM_CL_mi 578 0.202 0.122 0.047 1.248 

USM_TL_mi 578 0.474 0.520 0.057 3.214 

DSM_TL_ft 578 2551.098 2726.809 300.540 18231.840 

Radius_ft 578 2420.676 1331.414 318.281 8872.976 

USM_R_ft 578 2385.378 1303.047 335.340 8872.976 

DSM_R_ft 578 2353.732 1313.492 318.281 10568.230 

Curve_Deg 578 3.225 2.121 0.646 18.003 

USM_Deg 578 3.263 2.169 0.646 17.087 

DSM_Deg 578 3.294 2.053 0.542 18.003 

D_Ang 578 31.959 22.326 3.428 177.492 

USM_D_Ang 578 32.383 22.425 4.969 177.492 

DSM_D_Ang 578 33.177 23.041 3.428 148.884 

Super_e 578 0.039 0.016 0 0.089 

MCDC 578 2.031 1.97 0.021 14.543 

ACDC 578 1.489 1.505 0.021 13.673 

MCDA 578 25.163 21.361 0.871 135.103 

ACDA 578 17.854 15.352 0.709 98.127 

Horizontal Alignment Indices Attributes  

CCR 578 82.992 63.277 5.126 450.527 

DC 578 9.281 8.996 0.675 69.914 

Avg_R 578 0.452 0.194 0.112 1.267 

CRR 578 1.011 0.317 0.277 2.092 

RRR 578 1.104 0.408 0.478 3.614 

RTR 578 1.164 0.955 0.108 6.325 

RTR_USM 578 1.140 1.184 0.078 8.010 

RTR_DSM 578 1.188 1.276 0.100 9.404 
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Table 10. Summary Descriptive Statistics for Vertical Disaggregate Data 

Vertical Alignment Indices Attributes  

Variable Obs. Mean Standard deviation Min Max 

VCCR 578 0.001 0.002 0 0.012 

CCR_Combo 578 0.017 0.012 0.001 0.085 

Pos_G 578 0.246 0.431 0 1 

Neg_G 578 0.362 0.481 0 1 

Type I_Crest 578 0.047 0.211 0 1 

Type II_Crest 578 0.130 0.336 0 1 

Type I_Sag 578 0.026 0.159 0 1 

Type II_Sag 578 0.080 0.271 0 1 

HC_VC 578 0.270 0.460 0 2 

Vertical Attributes 

Ai 578 1.036 2.157 0 13 

G_PC 578 -0.090 2.841 -10 9 

G_1_4CL 578 -0.170 2.836 -10 9 

G_1_2CL 578 -0.159 2.795 -10 8 

G_3_4CL 578 -0.234 2.827 -10 8 

G_PT 578 -0.258 2.788 -10 8 

G_USM_50ft 578 -0.071 2.852 -10 9 

G_USM_100ft 578 -0.087 2.855 -10 9 

G_DSM_50ft 578 -0.270 2.799 -10 8 

G_DSM_100ft 578 -0.282 2.816 -10 8 

Avg_G 578 1.904 1.763 0 10 

HC_G_-9_-4 578 0.067 0.251 0 1 

HC_G_-4_0 578 0.521 0.500 0 1 

HC_G_0_4 578 0.367 0.482 0 1 

HC_G_4_9 578 0.043 0.204 0 1 

 

 



 

 

 

CHAPTER 5 

 

DATA ANALYSIS RESULTS 

 

This chapter includes model estimation results and interpretations. First, all eight 

major horizontal and vertical alignment indices are evaluated individually with respect to 

their relationship to the expected number of roadway departure crashes. The purpose of 

this step is to identify the approximate sensitivity between safety and each alignment 

index “alone,” and test four different types of specifications regarding the usage of the 

natural logarithm of both average annual daily traffic and curve length. Second, all 

variables and alignment indices are evaluated as part of a more comprehensive model 

specification by using a negative binomial model. Third, zero-inflated Poisson and 

negative binomial models are estimated to determine how well they fit the data compared 

to a standard, negative binomial model. The final statistical results in terms of a 

recommended model will be presented at the end of this section.  

 

5.1 Relationship between Roadway Departure Crashes and 

Individual Design Consistency Measures 

Before testing the models, the AADT and horizontal curve length, as two major 

variables in this study, will be transformed in three alternative specifications. Wu et al. 

(2013) has implemented specifications similar to this study. First, the natural logarithm of 
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average AADT for 7 years and the natural logarithm of curve length (in miles) are 

applied as two predictor variables. Second, the natural logarithm of AADT is deployed as 

a predictor variable, while the natural logarithm of the curve length is regarded as an 

offset variable (exposure variable). The coefficient of the offset or exposure variable is 

restricted to one. This specification was used in the crash prediction models which are 

suggested in the HSM (AASHTO 2010). Moreover, a number of research studies related 

to the design consistency topic have applied homogeneous segments to overcome 

heteroskedasticity in regression model analysis (Anderson et al., 1999; Appelt et al., 2000; 

Ng et al., 2003; Butsick et al., 2015). The third specification regarded the natural 

logarithm of AADT as the exposure variable and the natural logarithm of segment length 

as a predictor variable. This common specification in crash modeling has also been 

implemented by Anastasopoulos et al. (2008) and Kopits and Cropper (2005). In the last 

specification, the natural logarithm of curve length and AADT are combined as exposure 

variables (Miaou el al., 2003; Miaou and Song, 2005; Wu et al., 2013). 

Eight models for relating each individual alignment index to roadway departure 

crashes under four alternative specifications are presented in Table 11. Considering the 

coefficient of each variable for all eight models, Alternative IV has the lowest Pseudo 

R^2 for each “alone” model, which represents the lowest predictive power. Meanwhile, 

the P-value and coefficient of each alignment index is obviously insignificant. Wu et al. 

(2013) also indicated the combined exposure variables between curve length and AADT 

produced lower predictive power compared with the last three formulations. Then, 

comparing Alternatives I, II, and III, Alternatives I and II have more predictive power 

than Alternative III, which means the Pseudo R^2 values of Alternatives I and II are 
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larger than Alternative III. Meanwhile, each alignment index in Alternative III is less 

significant than the other two alternatives. This means Alternative III, with Ln AADT as 

the exposure variable, will be thrown out in the final combination models. Even though 

the variables in Alternatives I and II had similar P-values, this pattern did not prove to be 

a predictable assumption when applied in the final combination models. This test cannot 

be strongly distinguished from the more predictive specification until iterating a 

reasonable model with combinations of predictive variables. Thus, final models, with or 

without curve length as an exposure variable, will be finalized after comparing the 

combination models by employing a negative binomial modeling method.   

Analyzing the eight individual alignment index variables, Avg_R and CRR have a 

negative correlation with roadway departure crashes, and the other six variables have 

positive correlation in the models. The results of the models with Avg_R and CRR 

agreed with our expectations regarding the coefficient signs. Increases in the average of 

the radius, or the radius of the tested curve, reduced roadway departure crashes on the 

horizontal curve segments. Obviously, the results of the model with RRR have a 

completely opposite explanation from CRR, since the value of RRR is the inverse of the 

CRR. For alignment index RTR, either increasing the tangent length or decreasing the 

radius of the tested curve was estimated to cause more roadway departure crashes. It was 

noteworthy that CRR, RRR, and RTR have more predictive power compared with the 

remaining alignment index variables. The results of models with CCR, VCCR, and 

CCR_Combo indicated that the CCR has higher predictive power than VCCR, which 

means the horizontal alignment may have more weight than the vertical alignment in 

CCR_Combo. Although all eight variables have significant P-values in the individual 
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models, not all variables were significant in the final combination models. The final 

models will be presented in the following section. 

 

5.2 Relationship between Roadway Departure Crashes and All 

Design Consistency Measures 

The sensitivity relationship between the expected number of roadway departure 

crashes and all types of alignment indices, estimated in Alternatives I and II, were 

investigated in this section. Among the aforementioned alignment index variables, the 

values of CRR and RRR were inverse to each other and had the most predictive power. 

Thus, the CRR and RRR variables will be used exclusively to distinguish between two 

different base models, which may include the other six alignment indices and geometric 

variables. Ultimately, a standard negative binomial regression model with more than 100 

model combinations was generated in Model A (including CRR) and Model B (including 

RRR). 

The final models were presented under two different alternative specifications in 

Table 12 and Table 13. Table 12 and Table 13 presented all statistically significant design 

consistency measures in Model A and Model B, respectively. To summarize the final 

results in Model A and Model B, the final alignment indices in both Alternative II-A and 

Alternative II-B have more predictive power and more statistically significant impact 

than Alternative I-A and Alternative I-B. In addition, the Pseudo R^2 values in 

Alternative II-A or B were slightly larger than in Alternative I-A or B.  This 

demonstrated that the Alternative II specification, with the natural logarithm of the 

horizontal curve length as the offset variable, had a better fit and was used in the final 
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model to explain design consistency measures. Thus, the final model specification used 

the natural logarithm of the horizontal curve length as an offset variable. 

In model Alternative II-A, it was found that higher values of the tested curve 

radius or changed radius rate (CRR) significantly reduced the expected number of 

roadway departure crashes. The estimated coefficient for VCCR indicated that a higher 

vertical grade change per mile resulted in an increase in the expected frequency of 

roadway departure crashes. Other significant geometric variables include the maximum 

change in degree of curvature (MCDC), HC_VC, and Average grade. Higher values of 

MCDC, representing the sudden change in the degree of the curve, increased the 

expected number of roadway departure crashes. Horizontal curves with a vertical curve 

indicator showed a negative impact on expected roadway departure crashes, which might 

be explained by drivers being less distracted when driving along a horizontal curve with a 

vertical curve. Thus, a higher VCCR and a lower CRR caused an inconsistent design.  

In model Alternative II-B, a similar result was found to Alternative II-A, except 

with the opposite explanation for RRR. VCCR was also significant in this model. ACDC, 

which is an extra geometric variable, was shown in this model compared with Alternative 

II-A. The results indicated that a higher average change in the degree of curvature 

increased the expected frequency of roadway departure crashes.  Overall, the model log-

likelihood for Alternative II-A and Alternative II-B were almost the same, as were the 

pseudo R^2 values. The results indicate that the expected number of roadway departure 

crashes is most affected by three major alignment indices: CRR, RRR, and VCCR. 

However, considering the preponderance of zero crashes in the model (mentioned in the 

methods section), a zero-inflated negative binomial model will be tested in the following 
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section which will indicate whether the alignment indices are influenced by a zero-state 

process. 

 

5.3 Exploring “Excessive” Zero Roadway Departure Crashes and 

All Design Consistency Measures 

The relationship between the expected number of roadway departure crashes and 

all design consistency measures was explored by using a zero-inflated negative binomial 

model in order to explore the influence of “excessive” zero crashes. Figure 13 illustrates 

the frequency distribution of roadway departure crashes on all of the principle horizontal 

curve segments. Almost 80% of the segments (443 out of 578) experienced zero crashes 

during the 7-year period. A zero-inflated distribution will be satisfied with this 

assumption appropriately. All the variables in Model A and Model B will be re-tested by 

using zero-inflated negative binomial models. The two processes in the ZINB include the 

zero-state and non-zero state for roadway departure crashes. Some of the variables that 

influence the non-zero crash state process will potentially impact the safety performance 

effects of design consistency measures in the standard negative binomial models.  

Table 14 showed that all of the variables in Model A were tested in a ZINB model, 

and some of them were significant in the zero-state crash process. All of the variables in 

Model A were significant in the non-zero state of this model. The predictive power of 

these variables had no apparent differences compared with Model B, even though Avg_G 

was insignificant because of the small number of observations for the roadway departure 

crash process. In the logit part of this model (zero-state), the CRR, VCCR, Avg_G, and 

natural logarithm of AADT were included in the final ZINB model. Ln_AADT, CRR, 



67 

 

 

and Avg_G were significant at nearly the 90% confidence level, but VCCR had an 

insignificant influence on the zero-state crash process. Nonetheless, VCCR was still kept 

in the final model to improve its predictive performance. Ln_AADT had a negative 

impact on zero-state crashes, indicating that roadways with higher AADT would be more 

likely to have roadway departure crashes, which is expected. CRR has a negative 

coefficient sign, which means higher CRR is more likely to result in observing roadway 

departure crashes (non-zero crash state). Higher Avg_G is also more likely to result in 

observing roadway departure crashes. The Vuong test directly demonstrated that ZINB-A 

is better than ZIP-A, as expected. The model comparison between ZINB-A and NB-A 

will be presented in the next subsection. 

Table 15 showed that all variables in Model B were tested using a ZINB model, 

and some of them were significant in the zero-state crash process. The explanation for the 

predictive power in the non-zero state of this model was similar to that given for the 

ZINB-A. The indicator RRR_P and RRR_F replaced CRR in the logit part of the ZINB. 

Values classifying RRR as poor design consistency and fair design consistency are more 

likely to result in a zero-crash state. The results of these two variables intuitively conflict 

with the finding in Califso et al. (2009). The reason for keeping RRR_P and RRR_F is 

because it has a more significant impact on the final model compared to RRR. The 

additional explanatory benefit for keeping these two indicator variables is that it allows 

testing different thresholds for design consistency classification (poor, fair, and good) 

based on the safety design criteria method mentioned in Califso et al. (2009). Other 

variables in the logit part of ZINB-B have a similar explanation to those given for ZINB-

A. The Vuong test directly demonstrated that ZINB-B is better than ZIP-B, as expected. 
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The model comparison between ZINB-B and NB-B will be presented in the next 

subsection. 

 

5.4 Model Selections 

This subsection will determine the best final model among the zero-inflated 

negative binomial models (ZINB-A and ZINB-B) and the negative binomial models (NB-

A and NB-B). To summarize the difference between the models, Figure 14 shows the 

predicted probability of different roadway departure crash frequencies with different 

models. Due to only having one site with 12 roadway departure crashes (only 0.1% 

probability) in the database, it was excluded in this figure. The NB-A and NB-B models 

produced no roadway departure crashes for 58.9% and 58.3% of observed sites, 

respectively. This was higher than the 57.8% and 56.6% of sites with no roadway 

departure crashes in the ZINB-A and ZINB-B models, respectively, although all 

probability of those models are lower than 76.6% of actual observations. The models 

generally underestimated the frequency of the zero-state condition, but overestimated the 

expected frequency of roadway departure crashes.  

To quantitatively select the best model, the Vuong test, AIC, and BIC were 

utilized for comparing models. The Vuong test indicated that the value of V is more than 

99% significant in the ZINB model compared with the ZIP model, meaning that the 

ZINB model is more favored to be applied than the ZIP model, which was intuitively 

expected.  

Model selection between the ZINB and NB models was determined by utilizing 

the AIC and BIC tests. Table 16 shows the results of the fitted models between NB and 
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ZINB for the roadway departure crash model with design consistency measures. ∆A and 

∆B represent the difference calculated by the value of AIC and BIC in NB and the value 

of both tests in ZINB. The AIC test for Model A and Model B did not present a 

significant difference between ZINB and NB, since ∆A and ∆B are both less than 2.5. 

However, the superiority of the NB model was proven by the BIC test. The absolute 

values of ∆A and ∆B were more than 10, which revealed a very strong difference 

between ZINB and NB based on the Raftery’ rule. The lower BIC value in the NB model 

indicated that it is highly favorable over the ZINB model for Model A and Model B. The 

NB model was adopted as the final model selection, which indicated that homogeneous 

segments are associated with the overdispersion in observed roadway departure crashes, 

and the excessive zero-crash state is not properly fitted with the ZINB model.  

Even though the values of AIC and BIC in NB-A are lower than in NB-B, it 

cannot simply prove that the most favorable model is NB-A because the parameters in 

these two models are not completely the same and have their own special interpretations 

for the relationships between roadway departure crashes and design consistency measures. 

Eventually, there are two final models with different parameters that have a significant 

impact on roadway departure crashes. The final parameters with Model NB-A include the 

natural logarithm of average annual daily traffic, the changed radius rate, vertical 

curvature change rate, maximum change in degree of curvature, the indicator variable for 

vertical curves in horizontal curves, and average grade. The final parameters with Model 

NB-B include the natural logarithm of average annual daily traffic, the ratio of average 

radius over radii, vertical curvature change rate, maximum change in degree of curvature,  
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average change in degree of curvature, the indicator variable for vertical curves in 

horizontal curves, and average grade.  
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Table 11. Negative Binomial Models with Individual Design Consistency Measures 

Alternative I II III IV 

AI Variable CCR 

Pseudo R^2 0.086 0.082 0.011 0.006 

Coefficient 0.004 0.004 0.003 0.003 

Standard Error 0.001 0.001 0.001 0.001 

P-Value 0.003 0.001 0.017 0.021 

AI Variable DC 

Pseudo R^2 0.081 0.082 0.001 0.002 

Coefficient 0.022 0.031 0.02 0.014 

Standard Error 0.01 0.01 0.011 0.01 

P-Value 0.028 0.001 0.051 0.159 

AI Variable Avg_R 

Pseudo R^2 0.081 0.08 0.006 0.001 

Coefficient -0.991 -1.339 -0.539 -0.365 

Standard Error 0.466 0.463 0.475 0.459 

P-Value 0.033 0.004 0.256 0.427 

AI Variable CRR 

Pseudo R^2 0.106 0.106 0.028 0.021 

Coefficient -1.458 -1.6 -1.336 -1.24 

Standard Error 0.284 0.283 0.294 0.29 

P-Value 0 0 0 0 

AI Variable RRR 

Pseudo R^2 0.108 0.107 0.031 0.024 

Coefficient 0.972 1.055 0.933 0.883 

Standard Error 0.183 0.183 0.196 0.195 

P-Value 0 0 0 0 

AI Variable RTR 

Pseudo R^2 0.082 0.077 0.007 0.002 

Coefficient 0.217 0.223 0.136 0.137 

Standard Error 0.094 0.098 0.094 0.094 

P-Value 0.021 0.023 0.146 0.146 

AI Variable VCCR 

Pseudo  R^2 0.079 0.074 0.004 0 

Coefficient 0.016 0.016 0.001 0.001 

Standard Error 0.01 0.01 0.01 0.001 

P-Value 0.084 0.092 0.916 0.886 

AI Variable CCR_Comb 

Pseudo  R^2 0.087 0.083 0.01 0.006 

Coefficient 0.004 0.005 0.003 0.003 

Standard Error 0.001 0.001 0.001 0.001 

P-Value 0.001 0.001 0.019 0.022 
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Table 12. Model A with Design Consistency Measures 

NB Models Alternative I- A Alternative II- A 

Parameter Coeff. 
Std.Err

. 

P-

Value  
Coeff. 

Std.Err

. 

P-

Value  

Ln_AADT 1.034 0.123 0 1.058 0.124 0 

CRR 
-

1.325 0.272 0 

-

1.416 0.270 0 

VCCR 0.031 0.016 0.044 0.035 0.015 0.024 

MCDC 0.087 0.360 0.018 0.092 0.037 0.012 

HC_VC 
-

0.537 0.351 0.126 

-

0.650 0.347 0.061 

Avg_G 0.095 0.046 0.04 0.098 0.047 0.038 

Ln_CL_Mi 0.675 0.186 0 1 (offset) 

Constant 
-

6.108 0.946 0 

-

5.675 0.920 0 

/lnalpha 
-

0.081 0.266   

-

0.078 0.268   

Alpha 0.922 0.245   0.925 0.248   

No.of 

Observation  578 578 

LR chi2 116.37(7) 119.82 (6) 

Prob > chi2 0 0 

Pseudo R2 0.127 0.13 

chibar2(01) 42.14 41.32 

Log likelihood  -397.87 -399.386 
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Table 13. Model B with Design Consistency Measures 

 

NB Models Alternative I- B Alternative II- B 

Parameter Coeff. 
Std.Err

. 

P-

Value  
Coeff. 

Std.Err

. 

P-

Value  

Ln_AADT 1.020 0.123 0 1.047 0.124 0 

RRR 1.033 0.225 0 1.089 0.225 0 

VCCR 0.032 0.015 0.038 0.036 0.015 0.016 

MCDC 0.261 0.149 0.079 0.261 0.151 0.084 

ACDC 
-

0.330 0.208 0.113 

-

0.325 0.211 0.123 

HC_VC 
-

0.584 0.350 0.096 

-

0.723 0.346 0.037 

Avg_G 0.117 0.047 0.012 0.121 0.048 0.011 

Ln_CL_Mi 0.624 0.185 0.001 1 (offset) 

Constant 
-

8.464 0.955 0 

-

8.120 0.946 0 

/lnalpha 
-

0.055 0.264   

-

0.049 0.266   

Alpha 0.946 0.250   0.952 0.253   

No.of 

Observation  578 578 

LR chi2 114.59(8) 116.99 (7) 

Prob > chi2 0 0 

Pseudo R2 0.126 0.127 

chibar2(01) 42.07 41.3 

Log likelihood  -398.756 -400.802 
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Figure 13. Roadway departure crashes distribution  
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Table 14. Zero-Inflated Negative Binomial Model A with Design Consistency 

Measures 

Models ZINB-A 

Parameter Coefficient Standard Error P-Value  

Ln_AADT 0.966 0.125 0 

CRR -1.660 0.281 0 

VCCR 0.030 0.015 0.047 

MCDC 0.111 0.037 0.003 

HC_VC -0.696 0.337 0.039 

Avg_G 0.046 0.049 0.352 

Constant -4.612 0.964 0 

ln_CL_mi 1 (offset) 

Inflation model Logit 

Ln_AADT -3.304 1.879 0.079 

CRR -14.019 6.879 0.042 

VCCR -1.212 9.243 0.896 

Avg_G -5.131 3.158 0.104 

Constant 33.520 17.872 0.061 

/lnalpha -0.246 0.292 0.4 

Alpha 0.782 0.229 

 Number Of Observation 578 

Zero Observation 443 

LR chi2 54.12 (6) 

Prob > chi2 0 

Log likelihood  -393.4361 

ZINB vs ZIP Pr>chibar2 = 0.0001 

ZINB vs NB Pr>z =0.024 
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Table 15. Zero-Inflated Negative Binomial Model B with Design Consistency 

Measures 

Models ZINB-B 

Parameter Coefficient Standard Error P-Value 

Ln_AADT 0.967 0.132 0 

RRR 1.305 0.240 0 

VCCR 0.032 0.015 0.03 

MCDC 0.307 0.153 0.045 

ACDC -0.386 0.216 0.073 

HC_VC -0.791 0.337 0.019 

Avg_G 0.075 0.051 0.139 

Constant -7.597 1.024 0 

ln_CL_mi 1 (offset) 

Inflation model Logit 

Ln_AADT -1.579 0.995 0.112 

RRR_P 3.525 2.583 0.172 

RRR_F 4.771 2.449 0.051 

VCCR -0.440 0.537 0.413 

Avg_G -2.474 1.540 0.108 

Constant 8.832 6.493 0.174 

/lnalpha -0.257 0.304 0.398 

Alpha 0.774 0.235 

 Number of Observation 578 

Zero Observation 443 

LR chi2 55.87(7) 

Prob > chi2 0 

Log likelihood  -394.813 

ZINB vs ZIP Pr>chibar2 = 0.0000 

ZINB vs NB Pr>z =0.0187 
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Figure 14. Probability of roadway departure (RWD) crashes among different 

models 

 

Table 16. Comparisons between Zero-Inflated Negative Binomial and Negative 

Binomial in Model A and Model B (578 Observations) 

Models NB- A 
ZINB-

A 
∆A NB- B 

ZINB-

B 
∆B 

Degree of 

Freedom 
8 13 -5 9 15 -6 

AIC 814.773 812.872 1.901 819.605 819.624 -0.019 

BIC 849.65 869.547 -19.897 858.841 885.02 -26.179 
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CHAPTER 6 

 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

6.1 Summary 

Roadway departure crashes are one of the most frequent causes of traffic fatalities 

in the U.S., leading to over half of all traffic fatalities every year. The AASHTO 

Highway Safety Manual (HSM) still needs to be improved and updated with new 

analytical methodologies and techniques for predicting crash frequency on road segments 

or at intersections. As part of this effort, researchers have evaluated the safety 

performance effects of design consistency measures, analyzing roadway design attributes 

with respect to driver expectancy. Geometric alignment indices, as a type of design 

consistency measure, have been shown to affect safety performance and are intuitively 

linked to roadway departure crashes. The literature review conducted in this study 

summarized previous efforts to analyze roadway crashes by different geometric 

alignment indices and quantitative modeling methodologies.   

The objective of this study was to explore the relationship between geometric 

design consistency measures and the expected number of horizontal curve roadway 

departure crashes on rural, two-lane highways by using count models. The data used for 

analysis in this thesis were provided by the Utah DOT and collected using a Mobile 

LiDAR system. This technology is able to accurately capture geospatial and roadway 
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inventory data. However, the data were processed in such a way as to support asset 

management, and the accuracy of certain data elements was at a level consistent with that 

need and inconsistent with safety analysis. Additional data processing was required to 

improve the accuracy and reliability of the database for modeling purposes. Vertical 

grade and cross slope variables were processed and tested before implementing the final 

models. The final database consisted of 578 principle curve entities, which have a 

combined length of 900 miles total from 37 highway routes in Utah. Each principle curve 

entity consists of three successive horizontal curves. Roadway departure crashes were 

identified by combining Federal Highway Administration and Utah Department of 

Transportation roadway departure crash definitions. A total of 217 roadway departure 

crashes were identified on study curve locations between 2008 and 2014.  

Negative binomial modeling was employed for modeling the frequency of 

roadway departure crashes to discover the sensitive geometric variables. To explore the 

“excessive” zeroes in the database, zero-inflated negative binomial (ZINB) models were 

also employed to compare with the standard negative binomial model. In the modeling 

approach, all eight alignment indices (CCR, DC, AVG_R, RRR, CRR, RTR, VCCR, and 

CCR_Combo) and other general geometric variables were tested in the model, and two 

exposure variables (the natural logarithm of AADT and horizontal curve length) were 

tested in different model specifications during the process.  

 

6.2 Findings and Conclusions 

This analysis offers a statistical approach to identify the geometric design 

consistency variables that impact the frequency of roadway departure crashes. The 
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process of analytical study consisted of four steps, which include the evaluation of 

individual alignment indices, the determination of final model specifications with 

different exposures, the identification of geometric design consistency measures, and the 

selection of the best models. All findings and conclusions will be shown as follows:  

 

6.2.1 Finding and Conclusion 1 

Eight alignment indices explored from past safety research were all individually 

significant in this roadway departure crash study. The estimated effect of these alignment 

indices are summarized below. Based on the horizontal alignment indices, the higher 

value of the change radius rate (CRR) and the average radius of curvature (Avg_R) 

reduced the frequency of roadway departure crashes. Vice versa, the higher value of the 

ratio of average radius over radii (RRR) increased the frequency of roadway departure 

crashes.  For the ratio of tangent length over radius (RTR), either increasing tangent 

length or decreasing the radius of the tested curve causes a potential increase in the 

frequency of roadway departure crashes. In addition, the higher value of the curvature 

change rate (CCR) and the degree of curvature (DC) increased the frequency of roadway 

departure crashes. The results indicated that all individual horizontal alignment indices 

affected the frequency of roadway departure crashes. Among them, CRR and RRR have 

more influence than the other four alignment indices. Based on vertical alignment indices, 

even though the higher value of vertical curvature change rate (VCCR) and the composite 

alignment index (CCR_Comb) may increase the frequency of roadway departure crashes, 

it provided lower predictive power than the other six horizontal alignment indices. This 

result indicated that the vertical alignment indices had a smaller effect on the frequency 
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of roadway departure crashes than the horizontal alignment indices. This finding agrees 

with the results of previous studies.  

 

6.2.2 Finding and Conclusion 2 

The four model specifications were compared based on the goodness-of-fit and 

predictive power for each variable. The model specification with the natural logarithm of 

curve length as an offset variable was selected as the best model. It also was used in the 

crash prediction models which are suggested in the HSM (AASHTO 2010). This model 

specification had the most predictive power and statistically significant impact on the 

tested variables compared to the other three model specifications. In addition, this model 

specification accounts for expected roadway departure crash frequencies increasing with 

longer curve lengths by assuming that the crash rate is proportional to the curve length 

(the effect of the offset variable). 

 

6.2.3 Finding and Conclusion 3 

The two best models were found by utilizing negative binomial regression 

analysis. One model’s (Model A) final parameters include the natural logarithm of 

average annual daily traffic (AADT), the changed radius rate (CRR), vertical curvature 

change rate (VCCR), maximum change in degree of curvature (MCDC), the indicator 

variable for a vertical curve in a horizontal curve, and average grade. It was found that 

the higher changed radius rate reduced the expected frequency of roadway departure 

crashes significantly, which might indicate that higher CRR improves the driver 

performance consistently. Coefficients for VCCR indicated that the higher vertical grade 
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change per mile resulted in a higher expected frequency of roadway departure crashes. 

The higher value of MCDC increased the expected roadway departure crash frequency. 

The horizontal segments with vertical curvature showed decreases in expected roadway 

departure crash frequencies. This might be explained by the possibility that it is less 

distracting/complicated to drive along a horizontal curve with vertical curvature due to its 

more complex geometry. Thus, higher VCCR and lower CRR indicate an inconsistent 

design.  

The other model’s (Model B) final parameters include the ratio of average radius 

over radii (instead of the changed radius rate), average change in degree of curvature 

(ACDC), and the rest of variables were the same as the first model. This model provided 

similar results to Model A, except the opposite effect for RRR. VCCR was also 

significant in this model. ACDC is the additional geometric variable in this model 

compared with Model A. It indicated the higher average change in degree of curvature 

increased the expected frequency of roadway departure crashes. This finding would 

imply that some geometric elements from alignment indices, including the horizontal 

curve radius, degree of curvature, and vertical grade, significantly affect both design 

consistency and crash frequency. 

 

6.2.4 Finding and Conclusion 4 

The standard negative binomial model was more favorable to fit the data in this 

study than the zero-inflated negative binomial model, as indicated by the Vuong test, AIC, 

and BIC. The zero-inflated negative binomial model may have been adversely impacted 

by the low sample-mean and small sample size bias, since the dataset of this study is very 
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small. 

 

6.3 Recommendations 

Though this study found valuable information on the sensitivity relationship 

between roadway departure crashes and geometric design consistency measures, there are 

a variety of suggestions for improvement in future research. The future recommendations 

are as follows:   

 To overcome heterogeneity caused by temporal and spatial changes, a mixed-

effect negative binomial model might be utilized.  

 To avoid a large amount of “excessive zeros” in the database, better data from 

other States might also be applied.   

 To increase the number of observations of roadway departure crashes at more 

locations, the horizontal curve determination algorithm needs to be improved. In 

addition, a series of successive curve segments need to be implemented instead of 

a principle curve segment.  

 To discuss the roadway departure crashes influenced by horizontal curves with 

vertical alignment, vertical curve length needs to be determined and the different 

terrain should be identified.  

  To find safety design criteria for RRR in a roadway departure crash study, Cafiso 

et al. (2009) suggested the threshold of RRR was able to be identified by using 

linear correlation with speed profile thresholds, which is safety criterion I and 

safety criterion II (Lamm et al., 1987). Therefore, design speed and 85th percentile 

speed should be collected in future work.  
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 To explore the relationship between geometric design alignment and roadway 

departure crash severity levels, roadway departure crash severity need to be 

categorized and utilized by a multinomial logit model, which is widely applicable 

for discrete choice modeling to explore the severity distribution function.  

 Speed and performance considerations should also be explored using other design 

consistency measures (e.g., speed profile, driver workload). These design 

consistency measures may causes indirectly effect of safety performance. 
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