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ABSTRACT 
 
 

Nanoinformatics is a relatively young field of study that is important due to its 

implications in the field of nanomedicine, specifically toward the development of 

nanoparticle drug delivery systems.  As more structural, biochemical, and physiochemical 

data become available regarding nanoparticles, the greater the knowledge-gain from using 

nanoinformatics methods will become. While there are challenges that exist with 

nanoparticle data, including heterogeneity of data and complexity of the particles, 

nanoinformatics will be at the forefront of processing these data and aid in the design of 

nanoparticles for biomedical applications. 

In this dissertation, a review of data mining and machine learning studies 

performed in the field of nanomedicine is presented. Next, the use of natural language 

processing methods to extract numeric values of biomedical property terms of poly(amido 

amine) (PAMAM) dendrimers from nanomedicine literature is demonstrated, along with 

successful extraction results. Following this is an implementation and its results of data 

mining techniques used for the development of predictive models of cytotoxicity of 

PAMAM dendrimers using their chemical and structural properties. Finally, a method and 

its results for using molecular dynamics simulations to test the ability of EDTA, as a gold 

standard, and generation 3.5 (G3.5) PAMAM dendrimers to chelate calcium.  
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GLOSSARY OF TERMS 
 
 

Amber – Assisted Model Building with Energy Refinement, is both a package of molecular 
simulation programs and a set of molecular mechanical force fields intended for 
simulation of biomacromolecules. 
 
Chelation – Refers to a type of bonding between ions/molecules and metal ions. 
 
GAFF – General Amber Force Field. 
 
Information Extraction – The computational task of extracting structured information 
from a corpus of unstructured and/or semi-structured documents.  
 
J48 – A decision tree classifier, which is based on the C4.5 algorithm. 
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of learning theory and pattern recognition in artificial intelligence.  
 
Molecular Descriptors – The numerical representations of the structural properties of a 
given molecule, intended to be used mathematically to determine biochemical 
information regarding the molecule. 
 
Molecular Dynamics (MD) Simulation – A computer simulation method for examining 
the theoretical physical movements of atoms and molecules. 
 
Nanoinformatics – A field that was defined by the necessity to aid in the management and 
utilization of the vast amounts of data being produced by the field of nanomedicine, and 
more generally nanotechnology. 
 
Nanomedicine – A field focused on the application of nanoscience techniques and 
nanoparticles to clinical research and healthcare, with the primary goal of using this 
technology for the prevention, diagnosis, and treatment of disease. 
 
Nanoparticle Drug Delivery System – The use of a particular nanoparticle or nanoparticles 
as a vector for carrying and delivering a variety of payloads, including non-viral genes, 
small interfering ribonucleic acid, and cancer drugs, to combat viruses and cancer. 
 
Natural Language Processing (NLP) – A field of computer science focused on the 
interaction of computers with human language. 
 
Pharmacodynamics – The study of the effects that a drug has on the body or an organism. 
 
Pharmacokinetics – The study of how the body affects the fate of a drug, examples include 
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Poly(amido amine) (PAMAM) Dendrimers – A class of nanoparticles distinguished by the 
highly branched structure, intended to be used as an oral therapy for cancer treatment and 
many other functions. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

Nanomedicine 

Nanoparticles, which are molecular particles with sizes ranging from 1 to 100 

nanometers (nm), are being utilized in a variety of different fields. One field in particular 

is nanomedicine, which focuses on applying nanoscience techniques and nanoparticles to 

clinical research and healthcare, with the primary goal of using this technology for the 

prevention, diagnosis, and treatment of disease1. Diagnostic devices, tissue replacement, 

and pharmaceutics are just a few of the many applications for nanoparticles in the field of 

nanomedicine2. Nanoparticle drug delivery research currently being conducted in this 

field focuses on the use of nanoparticles carrying a variety of payloads, including nonviral 

genes, small interfering ribonucleic acids, imaging agents, tissue replacement therapies, 

and pharmaceutics, to combat viruses and cancer3, 4. This field is rapidly growing and 

evolving, as can be observed by the number of publications being produced on a yearly 

basis1, 5. This literature contains a vast amount of data with valuable knowledge regarding 

the relationship between the structure of nanoparticles (i.e., size, molecular weight, 

surface charge, and zeta potential) and their biological fate, which includes but is not 

limited to bioavailability and cytotoxicity5. 

Although nanoparticles possess the potential to be effective for treating disease, 

there are a number of challenges that exist. Several pharmacokinetic and pharmacodyamic 

(PK/PD) properties of nanoparticles, including absorption, distribution, 
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metabolism, excretion, and toxicity, are poorly understood and often differ substantially 

from traditional pharmaceutics6. PK/PD essentially focuses on how the body interacts 

with a drug, and the effect the drug has on the body. This dissertation focuses on two 

specific PK/PD properties, cytotoxicity and absorption of nanoparticles. 

Cytotoxicity is an area of key concern to the nanomedicine community, because if 

a nanoparticle exhibits high cytotoxicity it is a definite cause for elimination from use in 

potential human applications7, 8. Several authors discuss the fact that toxicity of 

nanoparticles can be due to their cationic (positive) surface charge, which is necessary for 

interaction with the anionic (negative) cell membrane; if this charge is too great it can lead 

to cell membrane damage, degradation, and eventually cell lysis7-10. To counteract this 

cytotoxicity, synthetic methods can be utilized to engineer the surface of these 

nanoparticles with a variety of surface moieties, including biodegradable components. 

However, if the charge is completely neutralized or made anionic, it can result in a 

decrease in bioavailability7-10. 

When it comes to the pharmacokinetic property of absorption of nanoparticles, 

certain aspects are known and others are still unresolved. One of the major mechanisms 

for the oral absorption of nanoparticles is transcellular transport through the epithelium 

of the small intestines, specifically by way of endocytosis, and this transport can be 

influenced by many nanoparticle structural properties, such as surface charge and particle 

size11. Researchers have discovered a few mechanisms for enhancing the oral absorption 

of nanoparticles, intestinal wall bioadhesion, improved dissolution behavior, and 

transcellular uptake12. Due to the complexity and heterogeneity of the absorption 

mechanisms of nanoparticles, it is difficult to determine the predominant process by 

which transcytosis of nanoparticles occurs and identify specific attributes of these 

absorption mechanisms13-15. 

Due to the examples listed above, as well as many other potential challenges, the 
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development cycle of a nanoparticle drug delivery system for potential human applications 

can be difficult and lengthy. Tuning the many PK/PD properties to optimal configurations 

results in a nanoparticle synthesis and testing cycle that is quite repetitive and 

burdensome on scarce development resources. For these reasons, only a few nanoparticle 

systems have been used in approved FDA products to date16, 17. The nanomedicine 

community is very interested in the acceleration of translating nanomedicine bench 

scientific discoveries into clinical impact and practice. The ability to reliably predict and 

simulate PK/PD properties of nanoparticle drug delivery systems using in silico 

approaches has the potential for high payoff in nanomaterial development, allowing the 

concentration of scarce development resources into the synthesis and confirmatory testing 

of promising nanomaterials. 

 
Nanoinformatics 

To meet these ends and augment the field of nanomedicine, the field of 

nanoinformatics was established. Nanoinformatics is a field that was defined by the 

necessity to aid in the management and utilization of the vast amounts of data being 

produced in the field of nanomedicine, and more generally nanotechnology. The U.S. 

National Science Foundation laid the foundations for the field of nanoinformatics in 

200718. The 2014 National Nanotechnology Initiative Strategic Plan defines 

nanoinformatics as “the science and practice of developing and implementing effective 

mechanisms for the nanotechnology community to collect, validate, store, share, mine, 

analyze, model, and apply nanotechnology information”19. This same document also 

discusses the importance of establishing an improved nanoinformatics infrastructure, 

because it will improve the distribution and reproducibility of nanotechnology 

experimental data and promote the development and validation of models, tools, and 

techniques for transforming data into knowledge and applications19. Whereas 
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nanomedicine experimental research has well-developed protocols and methods, the 

corresponding nanoinformatics support for the field is much less developed and there is a 

substantial lack of authoritative sources of information accessible to noninformatics 

specialists20. Currently there are many major areas of informatics exploration being 

pursued in the field of nanomedicine, however this dissertation focuses on three: 

information extraction (IE), specifically natural language processing (NLP); data mining 

and machine learning; and molecular dynamics (MD) simulation. Several reviews have 

been published regarding research efforts in areas of nanoinformatics exploration, and for 

more information regarding the other areas of nanoinformatics research the reader should 

consult1, 21-26.  

The importance of using IE to rapidly advance biomedically relevant knowledge 

cannot be overstated, especially regarding domains where the literature corpus is 

diverse27. One particularly powerful IE technique is NLP, a group of methods focused on 

automatically extracting information from free-text and based upon semantic/syntactic 

analysis28. NLP methods have been very successful in a wide variety of biomedical 

domains, including nanomedicine27, 29-31. For more information regarding multiple 

implementations and uses of NLP in the field of nanomedicine, please refer to the review 

by Lewinski and McInnes31. 

Data mining and machine learning methods are quite often used to guide the 

design and development of small pharmaceutical compounds due to their success in 

medicinal chemistry20. One major focus of data mining and machine learning with this 

area of research is to establish quantitative structure activity relationships (QSARs), which 

link a molecule's structural properties to its functions. Increased use of predictive models 

within the field of nanomedicine is believed to lead to an acceleration in the translational 

process1, 32, 33. For more information regarding the application of data mining and machine 

learning to field of nanomedicine, please refer to Chapter 2, our review article regarding 



5 

 

 

 
the use of data mining and machine learning in the field of nanomedicine. 

In small molecule drug delivery research, it is very common to see the use of MD 

simulations to gain understanding and test novel hypotheses at the molecular scale34, 35. 

Recent advances in computational power have made it so that these techniques can be 

applied in the field of nanomedicine. There are several publications regarding the use of 

MD simulations in the field of nanomedicine. Many of these publications examined 

binding and interactions between nanoparticles and several different biological 

molecules36-38. Other publications have examined endocytosis of a variety of 

nanomedicines and biocorona formation on silver nanoparticles39, 40. 

 
PAMAM Dendrimers 

Poly(amido amine) (PAMAM) dendrimers were selected as the nanoparticle drug 

delivery system of interest for this dissertation because they are well documented, have 

the potential to be used as successful delivery vectors, and can be delivered orally rather 

than intravenously41. These particular nanoparticle drug delivery systems are well-

defined, highly branched structures consisting of a central core, typically ethylene 

diamine, surrounded by concentric shells, amido amine branches42, 43. As a naming 

convention, the number of concentric shells that surround the core of a PAMAM 

dendrimer is used to determine the generation of that PAMAM dendrimer. Amine- and/or 

hydroxyl-terminated PAMAM dendrimers are considered to be the full generation 

dendrimers and named as generation 1, 2, 3, etc. Carboxyl-terminated PAMAM 

dendrimers are considered to be the half generation dendrimers and named as generation 

1.5, 2.5, 3.5, etc. The structure of these polymeric nanoparticles can be modified easily to 

a variety of specifications, and due to their scaffold-like nature, they are capable of 

carrying a variety of bioactive agents and improving the solubility of poorly soluble ones44, 

45. These properties make PAMAM dendrimers promising candidates as drug carriers. 
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Despite the promising attributes of PAMAM dendrimers, a significant barrier for their use 

in human applications exists due to their potential toxicological effects, depending upon 

the structure of PAMAM dendrimer that is used. Research has shown that cationic 

PAMAM dendrimers can exhibit generation, concentration, and surface-charge-

dependent toxicity46-49.  

Very little research has been conducted in applying nanoinformatics methods and 

techniques toward PAMAM dendrimers. Other than the chapters presented in this 

dissertation, much of the nanoinformatics focus regarding PAMAM dendrimers has been 

MD simulations. One data mining paper examined the ability to predict embryonic 

zebrafish postfertilization toxic effects of several nanoparticles, including metal 

nanoparticles, dendrimers, metal oxides, and polymeric materials50. The MD simulation 

studies regarding PAMAM dendrimers have mostly focused on gaining insight on PAMAM 

dendrimer/ligand conformations and energies. The molecular docking studies have 

analyzed interactions between PAMAM dendrimers and several molecules (siRNA, 

curcumin, porphyrin, and pharmaceutical agents)51-56. Other PAMAM dendrimer MD 

simulation research has examined bivalent binding, design of multi-functional PAMAM 

dendrimer-based nano-therapeutics, and identification of key structural design principles 

for bioactive dendrimer molecules57-59. 

 
Motivation and Objectives 

The ability to reliably predict and simulate PK/PD properties of orally delivered 

PAMAM dendrimer nanoparticle drug delivery systems using in silico approaches has the 

potential for high payoff in nanomaterial development, allowing the concentration of 

scarce development resources into the synthesis and confirmatory testing of promising 

PAMAM dendrimers. Due to the challenges and knowledge gaps that exist with applying 

PAMAM dendrimers toward human applications, this figured to be a valuable 
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nanoparticle model to apply nanoinformatics methods and techniques. Our belief is that 

the applications of nanoinformatics towards PAMAM dendrimers will function as a proof-

of-concept model that can be expanded to a variety of nanomedicines. 

This dissertation contains research demonstrating the use of nanoinformatics 

methods and techniques, specifically NLP, data mining and machine learning, and MD 

simulation, to assess PAMAM dendrimers. Background material, four articles written for 

submission to academic journals, and a discussion of this research make up this 

dissertation. The coming chapters present the work that was undertaken in an effort to 

reliably predict and simulate the PK/PD properties of cytotoxicity and calcium chelation 

of orally delivered PAMAM dendrimers. Chapter 2 is a review article of data mining and 

machine learning studies performed in the field of nanomedicine. This chapter examines 

the variety of nanoparticle properties that have been predicted using data mining and 

machine learning within the field of nanomedicine. Chapter 3 is a journal article 

discussing the use of natural language processing methods to extract numeric values of 

biomedical property terms of poly(amido amine) (PAMAM) dendrimers from 

nanomedicine literature. The goal is to successfully extract this numeric data to be utilized 

in the subsequent journal articles. Chapter 4 is a journal article describing the 

development of a predictive model of cytotoxicity of PAMAM dendrimers on human colon 

carcinoma (Caco-2) cells using their chemical and structural properties. This establishes 

a QSAR for developing nontoxic PAMAM dendrimers. Chapter 5 is a journal article 

analyzing the use of MD simulations to test the ability of generation 3.5 (G3.5) PAMAM 

dendrimers to chelate calcium as a potential mechanism for absorption in the intestine. 

Chapter 6 contains a discussion of the importance of research findings from each journal 

article, the contribution of this work to the field of biomedical informatics, and potential 

for future research.



CHAPTER 2 
 
 

A REVIEW OF THE APPLICATIONS OF DATA MINING AND MACHINE  
 

LEARNING FOR THE PREDICTION OF BIOMEDICAL  
 

PROPERTIES OF NANOPARTICLES1 
 
 

Abstract 

The field of nanomedicine is increasingly becoming a very active field of research. 

However, information about exciting nano-QSAR approaches is not readily available to 

noninformatics specialists interested in nanomedicine. The goals of this review are to: (1) 

review research involving the use of data mining and machine learning for the prediction 

of biomedical properties of nanoparticles of medical interest and (2) examine the progress 

and challenges that this relatively new field of nanoinformatics faces to become a major 

contributor toward the development of effective nanomedicines. A comprehensive search 

of the existing literature in the field of nanomedicine referencing the use of data mining 

and/or machine learning techniques was conducted in the fall of 2015. The search 

produced papers that include a large and varied number of data mining applications to 

predict biomedical properties of nanomaterials of medical interest. 

This article presents a comprehensive review of applications of data mining and 

machine learning for the prediction of biomedical properties of nanoparticles of medical 

interest. These include the influence of particle physiochemical properties on cellular 

                                                           
1 Reprinted from Computer Methods and Programs in Biomedicine, Copyright 2016. David E. Jones a, 
Hamidreza Ghandehari b, c, and Julio C. Facelli a, c. a Department of Biomedical Informatics, b Departments 
of Bioengineering and Pharmaceutics and Pharmaceutical Chemistry, and c Utah Center for 
Nanomedicine,  Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, US 



9 

  

 

 
uptake, cytotoxicity, molecular loading, and molecular release, in addition to 

manufacturing properties like nanoparticle size and polydispersity, which can be 

predicted using data mining and machine learning methods. Overall the results are 

encouraging and suggest that as more systematic data from nanoparticles become 

available, machine learning and data mining would become a powerful aid in the design 

of nanoparticles for biomedical applications. There is, however, the challenge of great 

heterogeneity in nanoparticles, which will make these discoveries more challenging than 

for traditional small-molecule drug design. 

 
Introduction 

The field of nanomedicine, which focuses on the use of nanoparticles and 

nanotechnology in the bio-medical domain, is increasingly becoming a very active field of 

research. To date only a few nanoparticle systems have been used in FDA-approved 

products16, 17, and there is a great deal of interest in accelerating the translation of 

nanoscience bench scientific discoveries into clinical practice. While nanomedicine 

research has well-developed experimental protocols, the corresponding informatics 

support for nanomedicine is less developed and there is a substantial lack of authoritative 

sources of information accessible to noninformatics specialists20. Increasing the use of 

nanoparticle quantitative structure activity relationships (nano-QSARs)32, 60 and other 

predictive models in the field of nanomedicine can greatly accelerate the translational 

process1, 32, 33. However, information about exciting nano-QSAR approaches is not readily 

available to noninformatics specialists interested in nanomedicine. The goals of this 

review are to: (1) review research involving the use of data mining and machine learning 

for the prediction of biomedical properties of nanoparticles of medical interest and (2) 

examine the progress and challenges that this relatively new field of nanoinformatics faces 

to become a major contributor toward the development of effective nanomedicines.  
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A comprehensive search of the existing literature in the field of nanomedicine 

referencing the use of data mining and/or machine learning techniques was conducted in 

the fall of 2015. Both Scopus and PubMed were accessed using the search criteria, 

“nanomedicine AND ((data mining) OR (machine learning)).” Upon retrieving the initial 

set of articles, they were reviewed to assess content as well as to gather additional 

references from related publications. The methods and results reported in these 

publications are discussed in the following sections, while in the discussion section we 

present the authors’ perspective about the successes and remaining challenges when using 

artificial intelligence and data mining for the prediction of biomedical properties of 

nanoparticles of medical interest. 

The research papers covered in this review focus on applications of data mining 

and machine learning to nanoinformatics, with the goal of developing predictive models 

for a variety of nanoparticle properties and their biological effects. The material is divided 

into two main sections, one discussing papers in which some of the biomedical effects of 

nanoparticles are predicted using nanoparticle properties/conditions, and the other one 

discussing papers that, using the aforementioned techniques, attempt to predict actual 

molecular or aggregate properties of nanomaterials based on their composition and 

processing.  

 
Predicted Properties 

In this section the material is organized into sections covering the properties 

discussed above as follows: cellular uptake, cytotoxicity, molecular loading, molecular 

release, nanoparticle adherence, nanoparticle size, and polydispersity. 

 
Cellular Uptake 

Significant efforts have been made in the field of nanomedicine to understand and 

improve cellular uptake and targeting. This is primarily driven by the desire to use 
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nanoparticles to treat cancer by using them to deliver biologically active compounds 

specifically to cancerous cells61-64. The use of predictive models and nano-QSARs in this 

area could be very beneficial because the development cost of novel nanoparticles with the 

desired properties is quite high and the design space is quite large. Any computational tool 

that can assist in reducing the design space by quantitatively predicting the characteristics 

of desirable molecules before synthesis, would allow researchers to dedicate limited 

resources toward performing experimental work on the most promising candidates. 

Two papers have reported the use of data mining and machine learning to predict 

cellular uptake of nanoparticles. Both papers examined the cellular uptake data of cross-

linked iron oxide (CLIO) nanoparticles from the paper by Weissleder63.  

Fourches et al.33 developed a method for predicting the cellular uptake of CLIO 

nanoparticles, with a variety of small organic molecules decorating their surface, by 

human pancreatic cancer cells (PaCa2) as a function of the nanoparticle properties. For 

the 109 organic compounds in their study, they calculated 150 two-dimensional MOE 

descriptors (using commercial software distributed by the Chemical Computing Group), 

which included surface areas, physical properties, Kier & Hall connectivity indices, kappa 

shape indices, atom and bond counts, adjacency and distance matrix descriptors, 

molecular charges, and pharmacophore feature descriptors. Their method utilized a 5-fold 

cross validation k Nearest Neighbors (kNN) regression as the prediction algorithm. kNN 

is an algorithm whose central concept is that the activity of a certain compound can be 

predicted by examining the average activities of k compounds from the dataset that share 

chemical similarity with the compound65, 66 under consideration. Initial results for their 

model showed an R2 value of 0.72, but when they applied an applicability domain criterion 

and removed compounds that were outside of the domain under consideration, the R2 

value improved to 0.77. They found that the most important features in this model are 

associated with the lipophilicity of the compounds. In both models, the observation was 
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made that the more lipophilic the molecule bound to the CLIO nanoparticle, the greater 

the cellular uptake.  

Winkler et al.67 examined the ability of machine learning techniques to predict 

cellular uptake of CLIO nanoparticles, decorated also with a variety of small molecules, by 

human umbilical vein endothelial cells (HUVEC) and PaCa2. The dataset consisted of 108 

samples, which were split into 21 samples for the test set and 87 samples for the training 

set. Two-dimensional DRAGON descriptors were calculated for the decorated CLIO 

nanoparticles68 and two different models were developed, a linear and nonlinear nano-

QSAR model. A multiple linear regression algorithm along with an expectation 

minimization algorithm with a sparse (Laplacian) prior were used to develop the sparse 

linear nano-QSAR model69. A Bayesian regularized neural network with either a Gaussian 

or Laplacian prior was used to develop the sparse nonlinear nano-QSAR model70-72. The 

linear and nonlinear models for HUVEC uptake utilized 11 of the DRAGON descriptors 

and yielded R2 values of 0.63 and 0.66, respectively. The linear and nonlinear models for 

PaCa2 uptake utilized 19 of the DRAGON descriptors and yielded R2 values of 0.79 and 

0.54, respectively. 

The authors reported little to no overlap in the sets of DRAGON descriptors used 

for the HUVEC and PaCa2 cellular uptake models, and concluded that this suggests that 

different mechanisms for cellular uptake may be utilized by these two cell types73. The 

authors of this paper suggest that poor results observed in the macrophage and 

macrophage-like cells may be due either to the small size or surface modifications of the 

nanoparticles used in this study. 

Both of these studies, Fourches et al.33 and Winkler et al.67, reported similar results 

for their best performing method to predict PaCa2 cell line uptake (0.77 vs. 0.79), even 

though they used slightly different predictive methods and molecular descriptors. More 

than likely the reason for this is that they used the same dataset of 109 fluorescent 
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nanoparticles taken from a study performed by Weissleder63. 

 
Cytotoxicity 

Predicting cytotoxicity of nanoparticles has been the most common application of 

data mining and machine learning to research in nanoinformatics. Cytotoxicity to non-

target cells is a major concern in nanomedicine7, 8 because the use of nanoparticles for 

human treatment is contingent upon low cytotoxicity of the carriers at the needed 

therapeutic doses. Toxicity is also a serious concern for nanoparticles used in consumer 

products due to their potential environmental impact22. The ability to predict cytotoxicity 

via in silico approaches is highly desirable because of the potentially high payoff in 

nanomaterial design and the development of prescreening for toxicity. This can result in 

shifting limited development resources into the synthesis and testing of nanoparticles with 

predicted low cytotoxicity74 that are more likely to be suitable for human treatment or 

consumption. 

Experimentally, cytotoxicity can be measured by a number of in vitro toxicity 

assays that can infer cytotoxicity by examining different cellular parameters, including but 

not limited to oxidative stress, inflammatory response, genotoxicity, and cell viability75. 

The articles reviewed in this area of data mining and machine learning research report 

results on several different nanoparticle types, cell types, and cytotoxicity analysis 

methods. A summary of the systems studied, methods, and findings from these research 

articles is given in Table 2.1. 

Many of the articles reported in Table 2.1 report cytotoxicity prediction of metal 

oxide nanoparticles. Sayes and Ivanov76 used linear discriminant analyses (LDA) 

classification77  and multivariate linear regression to predict lactate dehydrogenase (LDH) 

release from rat lung alveolar macrophages and immortalized rat L2 lung epithelial cells, 

caused by exposure to titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles76. LDH 
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release is indicative of cell membrane damage and ultimately cell death. The TiO2 

nanoparticles were characterized by five different physiochemical properties that were 

experimentally measured and then used as feature descriptors in the models, these 

properties are the following: engineered size, size in water, size in PBS, concentration, and 

zeta potential. The ZnO nanoparticles were characterized by six different physiochemical 

properties that were experimentally measured: engineered size, size in water, size in PBS, 

size in CCM, concentration, and zeta potential. For both the TiO2 and ZnO nanoparticles, 

all possible combinations of descriptors were analyzed for the predictive models. The 

dataset consisted of a total of 42 samples, 24 TiO2 nanoparticle samples at different 

concentrations ranging from 25-200 mg/L and 18 ZnO nanoparticle samples at different 

concentrations ranging from 25-100 mg/L. TiO2 and ZnO nanoparticle sample sets were 

analyzed independently. The multivariate linear regression analysis of the TiO2 

nanoparticles yielded R2 values ranging from 0.15-0.70, with the highest performance 

being observed when all possible descriptors were utilized, which may be an indication of 

overfitting. The LDA analysis of the TiO2 nanoparticles yielded R2 values ranging from 

0.70-0.77. Due to the observed correlation between the different size measurements for 

ZnO, only all possible combinations of engineered size, concentration, and zeta potential 

were examined in the multivariate linear regression analysis predictive models of ZnO. 

The analysis yielded R2 values ranging from 0.19-0.49, with the highest performance 

model being obtained when all these descriptors were utilized, leading the authors to 

conclude that their dataset did not have enough data to obtain accurate predictions of LDH 

release for ZnO. The authors also acknowledge that for ZnO there might be other features 

that were not present in their dataset that are necessary to obtain better prediction models. 

This highlights the need of larger well curated datasets to gain a better understanding of 

the real limitation of nano-QSAR methods. 

Puzyn et al.60 predicted the cytotoxicity, specifically the effective concentration of 
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a compound that causes bacterial viability to be reduced by 50%, EC50, of Escherichia coli 

(E. coli), caused by exposure to 17 different metal oxide nanoparticles: ZnO, CuO, V2O3, 

Y2O3, Bi2O3, In2O3, Sb2O3, Al2O3, Fe2O3, SiO2, ZrO2, SnO2, TiO2, CoO, NiO, Cr2O3, and 

La2O3. The MOPAC 2009 software package was used to calculate 12 different molecular 

descriptors (standard heat of formation of the oxide cluster, total energy of the oxide 

cluster, electronic energy of the oxide cluster, core-core repulsion energy of the oxide 

cluster, area of the oxide cluster calculated, volume of the oxide cluster calculated, energy 

of the highest occupier molecular orbital of the oxide cluster, energy of the lowest 

unoccupied molecular orbital of the oxide cluster, energy difference between HOMO and 

LUMO energies, enthalpy of detachment of metal cations Men+ from the cluster surface, 

enthalpy of formation of a gaseous cation, and lattice energy of the oxide) of the metal 

oxide nanoparticles. A multiple regression method was combined with a genetic algorithm 

to find the best model for the prediction of cytotoxicity78. Selection of the best combination 

of calculated descriptors was performed by the genetic algorithm, which found that the 

enthalpy of formation of a gaseous cation having the same oxidation state as in the metal 

oxide structure, ∆HMe+, is the best descriptor. The multiple regression using this descriptor 

reached an R2 value of 0.85, with an externally validated regression coefficient, Q2
ext, of 

0.83, and an RMS error of 0.19. The authors concluded that their model can be used to 

predict the toxicity of novel, untested metal oxide nanoparticles, but this only applies if 

the structure is not significantly different from the metal oxide nanoparticles in the 

training set, limiting the generalizability of this approach. 

Using logistic regression models, Liu et al.79 classified cytotoxicity by examining 

the plasma membrane integrity when transformed bronchial epithelial cells (BEAS-2B) 

were exposed to nine different metal oxide nanoparticles (Al2O3, CeO2, Co3O4, TiO2, ZnO, 

CuO, SiO2, Fe3O4, and WO3). For the development of the model, a set of 10 nanoparticle 

descriptors was selected and measured experimentally. These descriptors include simple 
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constitutional descriptors (number of oxygen atoms in the metal oxide, number of metal 

atoms in the metal oxide, metal oxide molecular weight, and atomic mass of the metal); 

stability and reactivity information (atomization energy); element group properties 

(periodic table group and period of the metal in the metal oxide); simple geometric 

descriptor (nanoparticle primary size); and indicators of surface charge and aggregation 

tendency (zeta potential and isoelectric point). Additional experimental conditions were 

taken into account by adding measured values for a set of four different concentrations as 

input parameters of the model. The paper does not specifically state the number of 

samples used in the dataset, however, it appears that 83 samples were used. All possible 

combinations of the descriptors and concentrations were analyzed for their nano-QSAR 

models, which generated accuracies ranging from 93 to 100%. The atomization energy of 

the metal oxide, nanoparticle size, nanoparticle volume fraction, and period of the metal 

in the nanoparticle were the four descriptors used in the best performing model. The 

authors observed that the atomization energy had the greatest contribution to the model, 

showing that as the atomization energy decreases, the toxicity of the metal oxide 

nanoparticle increases. They argue that this could be explained by the decrease in stability 

of the metal oxide nanoparticle and the increase of its reactivity. The authors of this paper 

were impressed by their results but stated that it is necessary to expand the experimental 

dataset used in order to increase confidence and improve the reliability of their results, as 

the high accuracies reported may be a consequence of either overfitting or perhaps lack of 

diversity in the reference data. 

Horev-Azaria et al.80 used a J48 classification model to predict cytotoxicity, 

measured as cell viability using a binary classification of toxic or nontoxic, of cobalt ferrite 

nanoparticles on seven different cell lines (A549, NCI H441, HepG2, MDCK, Caco-2 TC7, 

TK6, and primary mouse dendritic-cells) and precision-cut rat lung slices. J48 is a decision 

tree classifier, which is based on the C4.5 algorithm81. The paper does not specifically state 
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the number of samples used in the dataset, but it appears that 151 samples were used. 

Their model involved the use of a ten-fold cross-validation that was tested for three 

different decreasing cell viability values: 30%, 25%, and 20%. The accuracy of their model 

reached 92.5%, 89%, and 85.2% for the 30%, 25%, and 20% cell viability values, 

respectively. The J48 decision tree shows that the most important descriptor used in 

making the predictions was the concentration of cobalt ferrite nanoparticles. Also two 

experimental conditions were present in the decision tree for making the predictions, cell-

type and exposure time, but no intrinsic nanoparticle properties were found of importance 

in the model. The authors of this paper indicated that their study is restricted to a specific 

type of nanoparticle and the cell lines used, and to make this model more generalizable, it 

would require a significantly larger database of different nanoparticles and cell lines. 

Winkler et al.67 reported the use of Bayesian neural networks and multiple linear 

regression models to predict smooth muscle cell apoptosis caused by 50 different CLIO 

nanoparticles on endothelial muscle cells, smooth muscle cells, hepatocytes, and 

monocytes. The data also consist of four biological assays to determine toxicity and four 

different concentrations of nanoparticles used, yielding a sample size of 3,200 samples. 

The two models utilized here are presented above in the cellular uptake section of the 

review. The linear and nonlinear models tested in this work achieved R2 values of 0.86 and 

0.90, respectively. The authors observed that the nanoparticles’ core material, surface 

coating type, and surface charge were the most important features needed to make 

accurate predictions of the smooth muscle apoptosis caused by CLIO nanoparticles.  

Using a Monte Carlo method, Toropova et al.82 built a nano-QSAR model to predict 

pLC50 values, which are the negative decimal logarithm of the lethal concentration of 

nanoparticle that causes 50% of the original bacterial population to die, induced by metal 

oxide nanoparticles in E. coli. The paper does not specifically state the number of samples 

used in the dataset. The authors utilized quasi-SMILES as their calculated descriptors for 
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the model. The data for their study was split into six different datasets, where each dataset 

was used as a training, calibration, or testing set. Their models yielded R2 values ranging 

from 0.73 to 0.98. The authors of this paper state that their method of distributing data 

into training, calibration, and validation sets significantly influences the results of their 

study, and suggest that data should be distributed into training and external validation 

sets instead to improve reliability of the study. 

Fourches et al.33 used support vector machine-based classification to predict 

cytotoxicity as a binary value (toxic/nontoxic) of a variety of metal nanoparticles (CLIO, 

pseudocaged, monocrystalline iron oxide, CdSe core quantum dots, and iron-based) on 

four different cell lines (monocytes, hepatocytes, endothelial cells, and smooth muscle 

cells). Their model utilized experimentally measured attributes, describing the 

nanoparticles (nanoparticle size, zeta potential, and relaxivity, which represents the 

magnetic properties of the nanoparticle). The biological activity profile was represented 

by the dose, cell line, and assay utilized for the nanoparticle; all of these values were used 

to create an arithmetic mean which was then used to create the binary classification to be 

used by the model as toxic or nontoxic. The number of samples used in this study is not 

explicitly stated, but it can be estimated to be 3,264 samples. A five-fold cross-validation 

method was used for their model, and prediction accuracies ranging from 56% to 88% 

were achieved by their model. The authors of this paper suggest that exploration of many 

different approaches will be necessary to identify and predict relationships between metal 

nanoparticle structures and their biological activity in order to provide more generalizable 

nano-QSAR relationships. 

Liu et al.50 used a variety of algorithms (IBK, Bagging, M5P, and KStar) in an effort 

to predict embryonic zebrafish postfertilization toxic effects of several nanoparticles, 

including metal nanoparticles, dendrimers, metal oxides, and polymeric materials. IBK is 

a K-nearest neighbor predictor that assigns an input to the most common output label 
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among its K nearest neighbors83. Bagging is a hybrid classification method that creates 

classes and reduces variance by bagging classifiers84. M5P is a tree algorithm that 

generates M5 Model trees and rules85, and KStar is an instance-based classifier where the 

test instance’s class is based upon the class of similar training instances86. The paper does 

not specifically state the number of samples used in the dataset. Their model used 20 input 

variables representing the nanoparticle properties (e.g., particle size distribution, 

structure, surface charge, water solubility, etc.) and experimental conditions (e.g., 

exposure route, concentration, duration, etc.). The most successful predictions were 

obtained for the 24-hour postfertilization mortality, 120-hour postfertilization mortality, 

and 120-hour postfertilization heart malformation, with accuracies of 0.84, 0.77, and 0.73, 

respectively, when using the IBK algorithm. For other prediction models, the accuracies 

corresponding to the prediction of different properties using a variety of methods are 

reported in Table 2.2. The results of Liu et al.50 indicate that dosage concentration, shell 

composition, and surface charge are the most important attributes when analyzing 

embryonic zebrafish postfertilization mortality, which agrees with previous bench 

studies87, 88. The authors of this paper discussed increasing the size and diversity of the 

data used for their study to expand and refine the impact of their predictive models. 

Jones et al.74 tested the ability of a variety of algorithms (Naïve Bayes, SMO, J48, 

Bagging, Classification via Regression, Filtered Classifier, LWL, Decision Table, DTNB, 

NBTree, and Random Forest) to predict the cytotoxicity, measured as cell viability 

considered as a binary variable (toxic/non-toxic) of poly(amido amine) (PAMAM) 

dendrimers on human colorectal cancer cells (Caco-2). Naïve Bayes is a Bayesian classifier 

which uses posterior probability to predict the value of the target attribute89, e.g., by using 

a given input attribute, the classifier attempts to find the target attribute value that 

maximizes the conditional probability of the target attribute. SMO is a support vector 

machine classifier that globally replaces all values and transforms nominal attributes into 
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binary ones90. This method starts with large sets of cases which belong to known classes, 

cases are analyzed for patterns that allow for reliable discrimination of classes. The 

patterns are represented as models, either in the form of decision trees or sets of if-then 

rules which can be used to classify new cases. Classification via regression performs its 

classification by binarizing each class and building one regression model for each class91. 

Filtered classifier is an arbitrary classifier that runs on data passed through an arbitrary 

filter92. LWL uses an instance-based algorithm to assign instance weights, the abbreviation 

stands for locally weighted learning93. Decision table is a simple decision table majority 

classifier94. DTNB is a decision table/Naïve Bayes hybrid classifier. During the search the 

algorithm determines the need to divide the attributes into two disjoint subsets: one for 

the decision table, the other for Naïve Bayes95. NBTree is a decision tree/Naïve Bayes 

hybrid classifier that builds a decision tree with Naïve Bayes classifiers at the leaves96. The 

dataset used in this study consisted of 103 samples. The predictive models utilized 51 

molecular descriptors (e.g., molecular weight, pI, molecular polarizability, etc.), which 

were calculated using MarvinSketch97. Their models achieved 10-fold cross-validated 

accuracies ranging from 65.0 to 83.5%. Their best classification models were obtained 

using the J48 and Bagging methods with 10-fold cross-validated accuracies of 83.5% for 

both methods. The decision tree from their J48 classifier (see Figure 2.1) shows that the 

descriptors used in making the best prediction were pI, molecular weight, and 

concentration of PAMAM dendrimer. Indications of the importance of using larger 

datasets to create more reliable and robust classification models are made by the authors 

of this paper. 

Overall, there is a tendency toward developing models for toxicity of metal oxide 

and metal nanoparticles. There are still many classes of nanoparticles for which no work 

has been reported on the use of data mining methods to predict their cytotoxicity, such as 

micelles, liposomes, polymeric nanoparticles, etc. It is encouraging to see that many of the 
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papers concluded that properties related to charge, concentration, and size of 

nanoparticles are important in developing predictions of cytotoxicity. These properties 

have been hypothesized to be important indicators of the potential cytotoxicity of 

nanoparticles98, but the results compiled in this review provide substantial computational 

verification. The collection/aggregation of more data regarding cytotoxicity is a definite 

must for the further development of cytotoxicity prediction methods of nanoparticles. 

 
Molecular Loading 

Molecular loading is a very important property for nanoparticles when these 

nanoparticles are intended to be used as delivery devices of drugs and/or image 

contrasting agents to specific tissues or cells. Two research articles reported the use of data 

mining and machine learning techniques to predict the ability to load molecules into 

nanoparticles. A summary of the findings from these research articles is given in Table 2.3. 

Winkler et al.67 explored the use of Bayesian neural networks and multiple linear 

regression models to predict inhibition of acetylcholinesterase (AChE) or nonspecific 

adsorption, and nonspecific protein binding to surface-modified gold nanoparticles. The 

dataset used for this study consisted of 80 samples. Two-dimensional DRAGON 

descriptors were calculated for the surface-modified gold nanoparticles 68. The two models 

utilized here are presented above in the Cellular Uptake section of the review. The linear 

and nonlinear models for AChE inhibition utilized 14 of the DRAGON descriptors and 

yielded R2 values of 0.81 and 0.80, respectively. The linear and nonlinear models for 

nonspecific protein binding utilized 10 of the DRAGON descriptors and yielded R2 values 

of 0.93 and 0.94, respectively. The nonspecific protein binding correlated only with the 

concentration of protein and did not exhibit any dependence on the nanoparticle 

properties. The authors state that for their model the results were good, but care should 

be taken when making new predictions because there is a need for reasonably sized 
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datasets, high-quality data, and high-quality descriptors to further verify the 

generalizability of their models. 

Shalaby et al.99 used artificial neural networks (ANN) to predict the entrapment 

efficiency of noscapine in di- and triblock co-polymers of poly(ethylene glycol) and 

poly(lactide). The number of samples used in this study is not explicitly stated. The 

experimentally measured input variables used by their model were the molecular weight 

of the polymer, the ratio of polymer to drug, and number of blocks per polymer. Their 

model yielded an overall R2 value 0.91486 for entrapment efficiency of noscapine 

predictions. The ratio of polymer to drug was the most important feature for the 

predictions of noscapine entrapment efficiency. Experimentally, similar results have been 

seen in poly(lactide) (PLA) and poly(ethylene glycol) (PEG)100.  

Both research articles showed promising results in the use of data mining and 

machine learning to predict the ability to load molecules to nanoparticles. The two articles 

reported R2 values above 0.90, and showed clear evidence of first-order reaction dynamics 

for the entrapment process that as the most important feature for predicting the ability to 

load molecules to nanoparticles correlates with the amount of the molecules available in 

solution to be loaded. Clearly more data regarding a much more diverse number of 

nanoparticles are needed to evaluate the relevance of nanoparticle property on molecule 

loading beyond their concentration. 

 
Molecular Release 

Due to the toxic nature of many cancer drugs, it is important to encapsulate or 

conceal them within a nanoparticle until they reach the cancerous cells or target tissues in 

the body101, 102. Some nanoparticle drug delivery systems also possess the ability to be 

suitable carriers for unstable active pharmaceutical ingredients103 in order to protect them 

from degradation before reaching the release target cells or tissues. Two publications 
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examined the use of data mining and machine learning to predict the ability to release 

molecules encapsulated in nanoparticles. A summary of the findings from these research 

articles is given in Table 2.4. 

Husseini et al.101 used ANN to model the release of doxorubicin from polymeric 

(Pluronic P105) micelles at two different frequencies of ultrasound. The number of 

samples used in this study is not explicitly stated. The model was trained using 

experimentally obtained input-output data of the release of doxorubicin from the micelles. 

The predictions made by the ANN method corresponded closely to the experimental data 

used, and the maximum prediction errors at the ultrasound frequencies of 20 and 70 kHZ 

were 0.002 and 0.001, respectively.  

Szlek et al.104 used ANN to predict the release of macromolecules (bovine serum 

albumin, human serum albumin, recombinant human erythropoietin, lysozyme, 

recombinant human epidermal growth factor, recombinant human growth hormone, 

beta-amyloid, recombinant human erythropoietin coupled with human serum albumin, 

hen ovalbumin, insulin, bovine insulin, L-asparaginase, chymotrypsin, and alpha-1 

antitrypsin) from poly(lactic-co-glycolic acid) (PLGA) nanoparticles. The paper does not 

specifically state the number of samples used in the dataset, but it appears that 754 

samples were used with 320 variables. The independent parameters used in the models 

included formulation characteristics, experimental conditions, and molecular descriptors 

calculated using the Marvin cxcalc plugin105. Feature selection was performed in order to 

remove features that did not improve the predictions, and resulted in four different 

analyses. These models achieved relative root-mean-squared errors of 17.7, 17.1, 16.4, and 

15.4 when using 21, 17, 16, and 11 features as input variables, respectively, and using the 

monotone multilayer perceptron neural network. The analysis with eleven feature input 

variables was the best and included Szeged index, pI, quaternary structure of 

macromolecule, lactide-to-glycolide in polymer ratio, poly(vinyl alcohol) inner phase 
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concentration, poly(vinyl alcohol) outer phase concentration, encapsulation rate, mean 

particle size, dissolution pH, production method, and percentage of macromolecule 

dissolved as the input variables. 

As can be seen from the results, these two articles demonstrate that it is feasible to 

create predictive models for the quantitative release of molecules from nanoparticles. 

Several different molecules released and nanoparticles were studied, however it is 

necessary to evaluate a wider variety of nanocarriers, predictive algorithms, and carried 

substances to make a final determination of the power of machine learning for this 

application.  

 
Nanoparticle Adherence 

Often in the treatment and imaging of cancer, and to take advantage of the 

enhanced permeability and retention of smaller nanoparticles, researchers limit the size 

of synthesized nanoparticles to 200-300 nm106. This is not always necessarily the best 

strategy for development of new therapies because there are many limitations that exist 

for enhanced permeation and retention-based therapies107. The nanoparticles in the study 

discussed below were designed to adhere to the walls of diseased blood vessels and avoid 

dislodgement from hydrodynamic forces and provide a useful data set to explore data 

mining and machine learning to predict nanoparticle adherence. 

Boso et al.108 utilized ANN to predict the number of polystyrene fluorescent 

nanoparticles adhering to the vessel walls as a function of wall shear rate and nanoparticle 

diameter. This is important because it is desired to develop an optimal structural 

configuration of nanoparticles to enhance their accumulation in diseased tissues. The 

paper does not specifically state the number of samples used in the dataset. The ANN 

performed quite well at predicting the optimal particle diameter with root mean squared 

error values of 0.03678 nm and 0.03460 nm, respectively. The authors of this article claim 
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that this work demonstrated that by using ANN, the number of long parallel plate flow 

chamber experiments can be minimized due to the accuracy of the predictive models. They 

also argue that the predictive model developed could be optimized for in vivo studies, 

thereby limiting the amount of animal experimentation.  

 
Nanoparticle Size 

As can be seen above, the size of nanoparticles is a very important property that 

can affect their usefulness in nanomedicine, for instance the size of a nanoparticle has 

been found to be a very important factor determining the fate of the nanoparticle in vivo109. 

Optimization of size is also important for the design and development of nanoparticles 

used to treat a variety of tumors, because the size of the nanoparticle affects their 

permeability and retention106. Nanoparticle size can change based upon solution 

conditions, manufacturing, drug loading, and release of drugs110. Two publications 

examined the use of data mining and machine learning to predict nanoparticle size. A 

summary of the findings from these research articles is given in Table 2.5. 

Asadi et al.111 determined the features that are most relevant to the prediction of 

particle size of tri-block poly(lactide)-poly(ethylene glycol)-poly(lactide) (PLA-PEG-PLA) 

nanoparticles using ANN. The paper does not specifically state the number of samples 

used in the dataset, but it appears that 51 samples were used. There were four input 

variables used in this study: amount of drug, nanoparticle polymer concentration, mixing 

rate, and solvent ratio. The method predicted the size of the polymer-based nanoparticles 

in nm. The specific ANN used was a three-layered feed-forward back propagation neural 

network, and it achieved an R2 value of 0.9434 for the validation data. They found that the 

nanoparticle polymer concentration is the most important feature when determining 

nanoparticle size.  

Shalaby et al.99 used ANN to predict the particle size of di- and triblock copolymers 
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of poly(ethylene glycol) and poly(lactide). The paper does not specifically state the number 

of samples used in the dataset, but it appears that 27 samples were used. There were three 

input variables used in this study: nanoparticle polymer molecular weight, ratio of 

nanoparticle polymer to drug, and number of blocks in the nanoparticle copolymer. The 

method predicted the size of the polymer-based nanoparticles in nm. Their model yielded 

an R2 value of 0.9783. The prediction of particle size was mostly determined by the 

molecular weight of the nanoparticle polymer type. 

Clearly, the methods for predicting nanoparticle size are quite accurate. One 

potential reason for this observation is that for these methods the prediction of the 

nanoparticle size appears to be dependent upon only a single feature. However, this single 

feature is different for the different cases reported in the articles listed above. 

 
Polydispersity 

One of the many challenges and goals of the field of nanomedicine is the ability to 

prepare narrowly dispersed nanoparticles112. Commonly, nanoparticles exhibit relatively 

high polydispersity that can result in a number of drawbacks, like mixture of nanoparticles 

with varying loading capacities, decrease in physical stability, variety of release profiles, 

and unpredictable degradation and clearance rates113-116.  

Esmaeilzadeh-Gharehdaghi et al.117 predicted the polydispersity of chitosan 

nanoparticles using ANN with four input features: amplitude of sonication of chitosan 

solution, sonication time of chitosan solution, chitosan solution concentration, and 

chitosan solution pH. The dataset used in this study consisted of 39 samples. The 

application of the model to the validation data yielded an R2 value of 0.84. The data mining 

work revealed that when the chitosan solution concentration was increased, polydispersity 

decreased, and that when the pH of the chitosan solution is lower or more acidic, the 

polydispersity increases.  
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Discussion 

The steady growth of the field of nanomedicine has led to the development of 

nanoinformatics and subsequently the use of data mining and machine learning to develop 

nano-QSARs and other methods to predict both functional and structural properties of 

nanoparticles. Research articles focusing on this area of research appear to be published 

in a wide variety of journals. The methods reported attempt to predict a large number of 

nanoparticle properties, including cellular uptake, cytotoxicity, molecular loading, 

molecular release, nanoparticle adherence, nanoparticle size, and polydispersity. 

There are two common themes that can be observed from the papers reviewed 

here. First, the most common method used to create predictions is some variant of 

artificial neural networks, ANN. There are several reasons for which this may be 

considered the method of choice, including the complexity of nanoparticle data, large 

number of attributes describing nanoparticles, and the potential difficulty in creating a 

prediction with rule-based algorithms due to the lack of sufficient empirical knowledge. 

The most common descriptors or attributes necessary to create accurate predictions often 

involve charge, concentration, and size-based properties of nanoparticles. 

Cytotoxicity from inorganic materials is the most commonly predicted 

nanoparticle property, and most reports find that the most common factors determining 

it are charge, concentration, and size; this is not surprising, as these properties have been 

hypothesized to be important indications of the potential cytotoxicity of nanoparticles98. 

Very little work has been reported on the use of data mining and machine learning 

methods to predict the cytotoxicity of organic nanoparticles. One potential reason for this 

is the lack of databases or publications analyzing the cytotoxicity caused by a variety of 

organic nanoparticles. Another reason is the variability of biological models in different 

laboratories. Factors such as potential aggregation of nanoparticles, variations in the 

media used, cell origin and passage, among others, further contribute to variability in the 
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data obtained.  

Only one of the articles reviewed50 examined in vivo applications of data mining in 

nanomedicine. There is a clear lack of use of data mining and machine learning 

applications toward in vivo data regarding nanoparticles. Again this could probably be 

attributed to the lack of easily accessible data regarding in vivo applications of 

nanoparticles and the higher degree of variability of in vivo results.  

Another commonality observed among many of the research articles presented in 

this review is the limited sample size and high dimensionality of the dataset used for 

analysis. Several consequences can arise due to lack of data, including overfitting; 

difficulty in demonstrating reliability, generalizability, and applicability of the predictive 

models to other nanoparticles; and class imbalance. Validation of a predictive model can 

be problematic when the sample size is limited and the variables representing those 

samples have high dimensionality118. The most common method for overcoming the issue 

of high dimensionality of a dataset is to utilize variable (feature) selection to reduce the 

number of variables analyzed in the predictive model119. Variable selection was commonly 

used in the research articles presented in this review, and as stated before, most of the 

researchers paired down their respective lists of variables to charge, concentration, and 

size-based properties of nanoparticles to create accurate predictions. Class imbalance is a 

challenging problem for the data mining community, it occurs when the samples 

representing one class are much lower than those representing other classes120. The 

simplest way to overcome this issue is to ensure that there is a balanced representation of 

the members of each class present in the dataset, but this is a significant challenge in 

nanoinformatics as the lack of large well-curated datasets seriously limits the amount, 

quality, and variety of data available. This is perhaps the most serious limitation observed 

in most of the papers discussed in this review.  Since the field of nanoinformatics is 

relatively young, the data mining and machine learning results reported in the research 
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articles presented in this review are very preliminary and their generalizability is still an 

issue open for further investigation. As stated previously, it is our belief that NLP methods 

and the development of large curated databases with nanoparticle information will 

contribute to relieve the limitations commonly identified in most of the articles discussed 

here. Recently, review papers have focused on several challenges that face the 

development of nano-QSARs and other predictive models, including the lack of high-

quality experimental data, lack of knowledge regarding interactions between 

nanoparticles like aggregation, high polydispersity in nanoparticles, etc.121, 122. These are 

definitely significant challenges that the field of nanoinformatics faces and should 

definitely be foci for future research.  

The papers reviewed here clearly illustrate the power and accuracy data mining 

and machine learning methods bring toward creating predictions of functional and 

structural properties of nanoparticles. With the development of text mining, text 

extraction, and useful databases in the field of nanomedicine, the authors believe that the 

development of accurate nano-QSARs and other predictive models is quite possible with 

state of the art data mining and machine learning practices. Nonetheless, the great 

heterogeneity in nanoparticles will make these discoveries more challenging than for 

traditional small-molecule drug design. 
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Table 2.1: Summary of the systems studied, methods, and findings from papers using data 
mining and machine learning to predict cytotoxicity of nanoparticles. The evaluation 
results correspond to the most successful model reported in the publication. 
 

First 
Author 

Nanoparticle 
Type 

Cell Type Cytotoxicity 
Analysis 

Predictive 
Method 

Accuracy 

Sayes 76 
Metal oxide 

nanoparticles (TiO2) 

Rat lung alveolar 
macrophages and 

immortalized rat L2 
lung epithelial cells 

LDH Release 
LDA 

classification 
R2 = 0.77 

Puzyn 60 

Metal oxide 
nanoparticles (ZnO, 

CuO, V2O3, Y2O3, 
Bi2O3, In2O3, Sb2O3, 
Al2O3, Fe2O3, SiO2, 
ZrO2, SnO2, TiO2, 
CoO, NiO, Cr2O3, 

and La2O3) 

E. coli EC50 
Multiple 

regression 
method 

R2 = 0.85 

Liu 79 

Metal oxide 
nanoparticles 

(Al2O3, CeO2, Co3O4, 
TiO2, ZnO, CuO, 
SiO2, Fe3O4, and 

WO3) 

BEAS-2B 
Plasma 

membrane 
integrity 

Logistic 
regression 

models 

Accuracy 
= 100% 

Horev-
Azaria 80 

Metal oxide 
nanoparticle 

(CoFe2O4) 

A549, NCI H441, 
HepG2, MDCK, 

Caco-2 TC7, TK6, 
and primary mouse 

dendritic-cells 

Cell viability J48 
Accuracy 
= 92.5% 

Winkler 67 
Metal oxide 

nanoparticle (CLIO) 

Endothelial muscle 
cells, smooth muscle 

cells, hepatocytes, 
and monocytes 

Smooth 
Muscle 

Apoptosis 

Bayesian 
neural 

networks 
R2 = 0.90 

Toropova 82 Metal oxide 
nanoparticles 

E. coli pLC50 Monte Carlo 
Method 

R2 = 
0.9835 

Fourches 33 

Metal nanoparticles 
(CLIO, pseudo 

caged, 
monocrystalline iron 

oxide, CdSe core 
quantum dot, and 

iron-based) 

Monocytes, 
hepatocytes, 

endothelial cells, 
and smooth muscle 

cells 

Biological 
activity 
profiles 

Support 
vector 

machine-
based 

classification 

Accuracy 
= 88% 

Liu 50 

Metal nanoparticles, 
dendrimer, metal 

oxide, and polymeric 
materials 

Embryonic zebrafish 
24 hour post-
fertilization 

mortality 
IBK 

Accuracy 
= 83.7% 

Jones 74 PAMAM dendrimers Caco-2 Cell viability J48 Accuracy 
= 83.5% 
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Table 2.2: Accuracies reported for models predicting different measurements of toxicity 
on zebra fish postfertilization embryos using different methods50. 
 

Predicted Attribute Algorithm Accuracy 
120 hour postfertilization jaw malformation IBK 0.667 
120 hour postfertilization trunk malformation IBK 0.657 
24 hour postfertilization developmental progression IBK 0.591 
120 hour postfertilization pigmentation IBK 0.565 
120 hour postfertilization eye malformation IBK 0.544 
120 hour postfertilization snout malformation IBK 0.486 
120 hour postfertilization touch response IBK 0.476 
120 hour postfertilization caudal fin malformation IBK 0.441 
120 hour postfertilization yolk sac edema Bagging 0.439 
120 hour postfertilization pectoral fin malformation IBK 0.387 
120 hour postfertilization swim bladder M5P 0.380 
120 hour postfertilization circulation IBK 0.368 
120 hour postfertilization otic malformation IBK 0.331 
120 hour postfertilization brain malformation IBK 0.297 
120 hour postfertilization axis malformation IBK 0.294 
120 hour postfertilization somite malformation Bagging 0.262 
24 hour postfertilization notochord malformation M5P 0.125 
24 hour postfertilization spontaneous movement KStar -0.003 
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Figure 2.1: Decision tree for 10-fold cross-validation J48 classifier of the fourth analysis, 
including the molecular descriptors expert selected with the concentration information of 
dendrimers used in the experiments. Values present on the branches represent the rule or 
decision used for making the classification. The boxes at the bottom represent the 
classifications, with the number of PAMAM dendrimers classified as such on the left and 
the number of exceptions (misclassifications on the right). From Ref.74 with permission. 
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Table 2.3: Summary of the data mining and machine learning methods used to predict 
molecular loading of nanoparticles. The evaluation results correspond to the most 
successful model reported in the publication. 
 

Primary 
Author 

Nanoparticle 
Type 

Loaded 
Molecule 

Type 

Loading 
Type 

Predictive 
Method 

Evaluation 
Results 

Winkler 
67 

Surface-
modified gold 
nanoparticles 

Protein 
Nonspecific 

protein 
binding 

Bayesian 
neural 

networks 
R2 = 0.94 

Shalaby 
99 

Di- and 
triblock 

copolymers of 
polyethylene 

glycol and 
polylactide 

Noscapine 
Entrapment 

efficiency 
ANN 

R2 = 
0.96484 
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Table 2.4: Summary of the data mining and machine learning methods used to predict 
molecular release from nanoparticles. The evaluation results correspond to the most 
successful model reported in the publication. 
 

Primary 
Author 

Nanoparticle 
Type 

Released Molecule 
Type 

Predictive 
Method 

Evaluation 
Results 

Husseini 
101 

Polymeric 
(Pluronic P105) 

micelles 
Doxorubicin ANN 

Maximum 
prediction 

errors = 
0.001 

Szlek 104 

Poly(lactic-co-
glycolic acid) 

(PLGA) 
nanoparticles 

Bovine serum albumin, 
human serum albumin, 

recombinant human 
erythropoietin, lysozyme, 

recombinant human 
epidermal growth factor, 

recombinant human 
growth hormone, beta-
amyloid, recombinant 
human erythropoietin 
coupled with human 
serum albumin, hen 

ovalbumin, insulin, bovine 
insulin, L-asparaginase, 

chymotrypsin, and alpha-1 
antitrypsin 

ANN RMSE = 15.4 
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Table 2.5: Summary of the data mining and machine learning methods used to predict 
nanoparticle size. The evaluation results correspond to the most successful model 
reported in the publication. 
 

Primary 
Author 

Nanoparticle Type 
Predictive 

Method 
Evaluation 

Results 

Asadi 111 
Poly(lactide)-poly(ethylene glycol)-

poly(lactide) (PLA-PEG-PLA) nanoparticles 
ANN R2 = 0.9434 

Shalaby 
99 

Di- and triblock copolymers of 
poly(ethylene glycol) and poly(lactide) 

ANN R2 = 0.97833 

 

 



 

  

 

 

CHAPTER 3 
 
 

AUTOMATIC EXTRACTION OF NANOPARTICLE PROPERTIES USING  
 

NATURAL LANGUAGE PROCESSING: NANOSIFTER AN  
 

APPLICATION TO ACQUIRE PAMAM  
 

DENDRIMER PROPERTIES2 
 

 
Abstract 

In this study, we demonstrate the use of natural language processing methods to 

extract from nanomedicine literature numeric values of biomedical property terms of 

poly(amido amine) dendrimers. We have developed a method for extracting these values 

for properties taken from the NanoParticle Ontology, using the General Architecture for 

Text Engineering and a Nearly-New Information Extraction System. We also created a 

method for associating the identified numeric values with their corresponding dendrimer 

properties, called NanoSifter.  

We demonstrate that our system can correctly extract numeric values of dendrimer 

properties reported in the cancer treatment literature with high recall, precision, and f-

measure. The micro-averaged recall was 0.99, precision was 0.84, and f-measure was 0.91. 

Similarly, the macro-averaged recall was 0.99, precision was 0.87, and f-measure was 

0.92. To our knowledge, these are the first applications of text mining to extract and 

associate dendrimer property terms from their corresponding numeric values. 

 

                                                           
2 Reprinted from PLoS ONE, 9(1), Copyright 2014. David E. Jones a, Sean Igo a, b, John Hurdle a, and Julio C. 
Facelli a, b.  a Department of Biomedical Informatics and  b Center for High Performance Computing, 
University of Utah, Salt Lake City, UT, US 
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Introduction 

Nanomedicine is the field of study that considers the application of nanoparticles 

and nanoscience techniques to health care and medical research16. A main focus of 

nanomedicine includes the use of nanoparticles as delivery vectors for pharmaceutics, 

diagnostic devices, and tissue replacement materials2. This field is relatively new, however 

it is producing large numbers of publications and substantial new data each year1. Data 

being published contain valuable information regarding how the structure of these 

nanoparticles relates to their biochemical and biophysical properties, which include but 

are not limited to their diameter, molecular weight, surface charge, zeta potential, 

bioavailability, cytotoxicity, etc.5.   

We have chosen dendrimers for our initial application of natural language 

processing (NLP) to nanomedicine because they are well-defined, highly branched 

polymeric nanoparticles that can easily be modified to differing specifications. There is 

also a substantial literature reporting their biological, chemical, and physical properties. 

Dendrimers are composed of a central core that is surrounded by concentric shells44, 45. 

The number of shells that extend out from the central core determines the particular 

generation of the dendrimer. Due to their structure, these molecules form very symmetric, 

three-dimensional particles that can be useful in the fields of pharmaceutics and medicine 

as delivery vectors41. The scaffold structure of dendrimers has been found to be a suitable 

carrier for a variety of drugs and siRNA, improving the solubility and bioavailability of 

poorly soluble agents. Currently there are several classes of dendrimers in use or under 

consideration for biomedical applications. This study focused on poly(amido amine) 

(PAMAM) dendrimers that show promise in cancer treatment. 

Databases and repositories containing information relevant to biomedical 

nanoparticles, especially their biochemical and biophysical properties, are critical for both 

primary research as well as secondary uses such as data mining and predictive modeling. 
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The American National Standards Institute’s Nanotechnology Standards Panel (ANSI-

NSP) has created a Nanotechnology Standards database which is free for individuals and 

groups seeking information about standards and other relevant documents related to 

nanomaterials and nanotechnology-related products and processes123. The database does 

not directly host standards and other similar documents, but it provides a place for 

standards-developing organizations to add their relevant documents. This may someday 

be an important resource for the future development of standardized terminology in the 

field of nanotechnology and nanomedicine, but it does not contain an extensive collection 

of values of biological properties of medical nanomaterials. 

nanoHUB.org is the premier site for computational nanotechnology research, 

education, and collaboration124. This resource provides an environment for collaboration 

and aggregation of tools used in simulating nanoscale phenomena. But with this resource 

the researchers must provide their own nanomaterial-specific data to utilize the host of 

simulation tools provided. To our knowledge, there is no authoritative, up-to-date 

database where researchers consistently contribute results from new publications on 

biomedical nanoparticles and their properties. Some attempts have been reported in the 

literature, like caNanoLab, a database created by the National Cancer Institute for sharing 

nanoparticle information125. However, caNanoLab contains a limited number of 

nanoparticles, and for those it often has incomplete information regarding their biological, 

chemical, and physical properties. Also, there are only limited capabilities to query this 

system. No data model exists to support comparing the properties of a molecule to its 

biochemical and biophysical activity. These properties are necessary to advance research 

on nanoparticles, but the only way to retrieve this information currently is by manual 

extraction from the primary literature.  

Though manual extraction is a very time consuming and resource intensive 

process, little research has been done to apply computational methods to obtain 
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nanoparticle property data from the vast biomedical literature on nanoparticles. 

Information extraction (IE) efforts are widely acknowledged to be important in harnessing 

the rapid advance of biomedical knowledge, particularly in areas where important factual 

information is published in a diverse literature27. In particular, NLP is a family of methods 

based on syntactic/semantic analysis that can extract information automatically from the 

literature28.  

NLP has been used effectively in other biomedical domains. For instance, 

Chaussabel utilized NLP algorithms to extract data from the literature on cell line 

profiling. He observed that this approach could be applied beyond genomic data 

analysis29. Garten et al. successfully applied NLP methods to the pharmacogenomics 

literature to create structured databases built on data from unstructured text30. Hunter et 

al. created a system called OpenDMAP that extracts protein transport, interaction, and 

gene expression assertions27. In the field of nanoinformatics there has been an attempt at 

harnessing the utility of NLP in the nanomedicine literature by Garcia-Remesal and 

colleagues. They developed a method utilizing named entity recognition to identify four 

different categories of information: nanoparticle names, routes of exposure, toxic effects, 

and particle targets 126. The method that this group developed was moderately successful, 

but it was designed as a proof-of-concept with limited quantitative detail. Our goal is to 

gather detailed quantitative data associated with dendrimer properties. 

In this study, we evaluate the use of NLP methods to extract numeric values for the 

properties of biomedical dendrimers reported in the cancer treatment literature. We use 

open source tools for extracting particle property values, using the NanoParticle Ontology 

(NPO) 5 as a starting point. In particular, the tools we use are a processing pipeline called 

the General Architecture for Text Engineering (GATE) and its IE module ANNIE (a 

Nearly-New Information Extraction System) 127. In a real-world sentence, a nanoparticle 

property term can appear arbitrarily far from its associated value, so we also created a 
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method of associating the two. We demonstrate that our system can correctly extract 

dendrimer property terms and their corresponding numeric values as evaluated by the 

typical NLP metrics of recall, precision, and f-measure score. 

 
Materials and Methods 

Literature Corpus 

We collected from PubMedCentral relevant articles on dendrimer nanoparticles as 

reported in the cancer treatment literature. Articles were retrieved in pdf format. The 

search criteria used was “PAMAM dendrimers AND cancer treatment.” This search yielded 

420 journal articles on March 4, 2013. Articles were excluded from this study if they did 

not contain explicit numeric values of biological, chemical, and/or physical properties of 

dendrimers. From this pool of 420 articles, we randomly selected 200 journal articles. A 

subset of 100 articles was used as the training set for our system. The other subset of 100 

articles was used for the creation of the test set for our system. Citations for both the 

training and test set of documents can be found in the supplementary information. For 

similar applications in related fields, the selection of a test set of approximately 100 

documents is a common target that represents a compromise of quality and cost of the 

manual review. For instance Zaremba et al. used a test set of 138 abstracts to analyze 

enteropathogenic bacteria, such as Escherichia coli and Salmonella, literature 128.  

 
NLP Method Development 

The NLP system reported here uses a two-step process to extract the desired 

property terms and numeric values. The first step involves the actual identification and 

annotation of the numeric values and dendrimer property terms. This corpus annotation 

pipeline was built using the Java Annotations Patterns Engine (JAPE) and integrating 

components from ANNIE within GATE. In order to search for the numeric values, we had 

to develop a regular expression model (available in the supplemental materials). The 
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specific dendrimer property terms were selected from the NPO and represent the 

properties of nanoparticles. The dendrimer property terms were selected from the NPO 

with the ultimate goal of linking the NPO with our tool to provide metadata for the data 

extractions from the nanomedicine literature. The initial nanoparticle property terms list 

was confirmed to be relevant for the nanomedicine community by expert review by the 

members of Dr. Hamidreza Ghandehari’s research lab 

(http://nanoinstitute.utah.edu/research/ustar-clusters/ghandehari-lab/ghandehari-

PI.php) at the University of Utah. The list of terms considered here includes hydrodynamic 

diameter (NPO_1915), particle diameter (NPO_1539), molecular weight (NPO_1171), zeta 

potential (NPO_1302), cytotoxicity (NPO_1340), IC50 (NPO_1195), cell viability 

(NPO_1343), encapsulation efficiency (NPO_1336), loading efficiency (NPO_1334), and 

transfection efficiency (NPO_1335). The property terms, their corresponding NPO 

identification code, and their definitions can be found in Table 3.1. To search for these 

property terms, the system utilizes a simple keyword identification scheme.  

The training set of documents was manually annotated for numeric values and 

dendrimer property terms using GATE. Following the annotation, the numeric values 

associated with each property term were extracted manually and organized in a tabular 

format for ease of use and comparison. Once the pipeline was able to successfully annotate 

the numeric values and the dendrimer property terms, we developed an algorithm that 

would associate numeric values and dendrimer property terms that occurred within the 

same sentence using proximity metrics. We selected a proximity distance metric of 200 

characters because our preliminary experiments have shown that the sensitivity and 

specificity of the system was best for this distance in the training set. For instance we 

observed that if we increased it, the number of false positives increased without any 

improvement in the observed recall of the system. Finally, we optimized performance 

iteratively before moving on to the test set of documents. 
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Reference Standard Creation 

Two domain experts were selected from the nanotechnology program at the 

University of Utah. Before allowing them to review the test subset of 100 articles, they 

independently reviewed, annotated, and extracted information from the training set of 

articles using GATE. The annotations consisted of numeric values and dendrimer property 

terms selected from the NPO. Their annotations were compared and Cohen’s kappa was 

calculated. Cohen’s kappa is a statistical measure of inter-rater reliability and for this 

study we required it to be ≥ 80%, which has been categorized as excellent by Fleiss at a 

value of 75% or higher 129. 

Upon achieving an inter-rater reliability of 80%, the annotators independently 

reviewed, annotated, and extracted information from the test set of articles. Again, the 

numeric values and dendrimer property terms were taken from the NPO and were 

annotated using GATE. Following the annotation, the numeric values associated with each 

property term were extracted and organized in a tabular format. 

 
NLP System Performance 

The subset of 100 test articles was processed by our new NLP system. The output 

from the system was organized in a tabular format for ease of use and comparison. 

 
Data Analysis 

Our NLP and manual results were compared on a by-nanoparticle property term 

basis. The extracted numeric values associated to the dendrimer property terms were 

evaluated and determined to be true positive, false positive, or false negative. First, we 

calculated the recall, precision, and f-measure of each nanoparticle property term. We 

then calculated the micro-averaged and macro-averaged recall, precision, and f-measure. 

When using micro-averaged measurements, each “source” (e.g. document) is given the 

same weight and calculations are made on a pooled contingency table 130. Macro-averaged 
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measurements are calculated by giving the same weight to each concept category or class 

(e.g., dendrimer property term) 130. 

The recall, precision, and f-measure were calculated using the following equations: 

 

Recall = TP / (TP + FN)       (1) 

 

Precision = TP / (TP + FP)       (2) 

 

F-measure = ((1 + β2) * Precision * Recall) / ((β2 * Precision) + Recall) (3) 

 

In these equations TP is true positive, FP is false positive, FN is false negative, and 

β is the weighting applied to the relationship between precision and recall. For our 

purposes we decided to weight the precision and recall evenly, so β=1. 

 
Results 

Table 3.2 summarizes the results of the evaluation of the NLP system that we 

created. The results of the system are compared against the manually annotated reference 

standard. The table shows the recall, precision, and f-measure for each of the nanoparticle 

property term and numeric value relationships. Table 3.3 displays both the micro-

averaged and macro-averaged recall, precision, and f-measure values.  

As can be seen in Table 3.2, our NLP system yields recall values ranging from 0.95 

to 1, precision values range from 0.59 to 1. The f-measure values range from 0.73 to 1. The 

micro-averaged values for recall was 0.99, precision was 0.84, and f-measure was 0.91. 

Similarly, the macro-averaged values for recall was 0.99, precision was 0.87, and f-

measure was 0.92. 
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Discussion 

The tables show an important difference between recall and precision. In this task, 

high recall is preferred to high precision because we do not want our system to miss 

instances of property terms and their associated numeric values. The number of articles 

returned for any given search (e.g., our “PAMAM dendrimers AND cancer treatment” 

search) is too large for routine manual search, but reviewing NanoSifter results is quite 

tractable. The results can be manually reviewed post-processing without much additional 

effort. From the results, it can be seen that “encapsulation efficiency” and “loading 

efficiency” were the best property terms extracted with recall, precision, and f-measure 

values of 1. These scores are likely due to the low prevalence of these properties appearing 

in our literature corpus. “Transfection efficiency” was the property term that was the least 

well extracted from nanomedicine literature. It had a recall value of 0.95, a precision value 

of 0.59, and an f-measure value of 0.73. 

These results indicate that the Nanosifter NLP system can, generally, extract 

numeric values associated with particle property terms from dendrimers reported in the 

cancer treatment literature with high recall, precision, and f-measure scores. To the 

authors’ knowledge, these results are the first application of text mining to extract numeric 

values associated to dendrimer property terms from nanomedicine literature. With 

regards to our application, the high recall values are more important than the moderate 

precision values. This is because the lack of precision is manageable and can be quickly 

corrected by manual post processing of the annotated text. 

As can be seen from the results, there was a fair amount of fluctuation in the values 

for precision for each property term. There were a few property terms that yielded 

precisions of 1 including “hydrodynamic diameter,” “zeta potential,” “encapsulation 

efficiency,” and “loading efficiency.” This can be accounted for by the limited number of 

instances that these terms appeared in the literature. Of all of the property terms used in 
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this study, these were the least common. The next tier of precision values of interest are 

those that were greater than 0.80, these include “particle diameter,” “molecular weight,” 

“cytotoxicity,” and “IC50.” These property terms yielded quite reasonable precision values, 

as we expected based upon their occurrences in the literature and the specificity of the 

syntax used when describing these property terms and their numeric values.  

The lowest precision values could be seen for “cell viability” (0.72) and 

“transfection efficiency” (0.59). One reason for these lower precision values is that the 

numeric units for these properties are percentages. There was a significant number of false 

positives in the literature corpus because the number of occurrences of percentages for 

other, non-particle items within the 200-character proximity metric was large. With 

specific regard to “transfection efficiency,” precision values for this term were the lowest 

because the terminology used to refer to this property is not standardized. There are many 

different ways in which the literature refers to this property, making it difficult not to 

overfit a method of retrieving the numeric values of this property. 

 
Limitations 

NanoSifter uses a method that appears to be generally reliable and accurate. 

However, there are imperfections that were observed while processing and analyzing the 

data from this study. First, the data extracted by our method is not always directly 

associated with a dendrimer nanoparticle. For instance, many times the system correctly 

finds, annotates, and extracts a “molecular weight measurement”, but this measurement 

may be associated with a subunit utilized in the synthesis of a PAMAM dendrimer or 

another material used in one of the articles. A method to address this limitation could 

include post-analysis manual review of the system’s performance. Another limitation of 

our system is that the NanoSifter algorithm can only pair a nanoparticle property term 

with a single numeric value annotation before and after itself. This causes a problem when 
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a sentence is more complex and contains a property term, random text, numeric value, 

random text, or another numeric value. In NLP, this is a problem called co-reference 

resolution, and it could be addressed with a more sophisticated language model than the 

one used in this study.  

Another limitation is that our system would only retrieve the first numeric value 

expressed following the property term. This situation accounts for some of the false 

negatives (“particle diameter,” “cytotoxicity,” “IC50,” and “transfection efficiency”) found 

in our analysis. This could also be addressed by using a more sophisticated language model 

than the one used in this study. Finally, the other false negatives, “molecular weight” and 

“zeta potential,” account for another limitation of our system. Since we were processing 

pdf documents in this study, occasionally there would be an instance where a property 

term exceeded a single line of text, so a dash would be inserted in the word and it would 

continue on the next line. The method used in developing this system did not account for 

this artifact, so the NanoSifter NLP system would not annotate this property term and no 

association would be made to the corresponding numeric value. A method for addressing 

this would be to use XML documents instead of pdfs in future analyses. These limitations 

are not novel to our approach, as they are common throughout the field of NLP. 

Nonetheless they are counterbalanced by the ability to extract information from journal 

articles at a much lower cost than manual review. 

 
Future Work 

Since this is early work in an important but neglected area of nanoinformatics 

there are many directions this research could be taken. The first priority will be to make 

corrections to our system to try to improve our recall, precision, and f-measure values. 

Another priority will be to attempt to use this system to annotate and extract information 

from another subclass of nanoparticles. This will help to validate the ability of this system 
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to generalize across the field of nanoparticles. One of the most important next steps would 

be to expand the property terms and numeric values that the system targets. Some specific 

properties that we are considering include “exposure times” and “cell types” interacting 

with the nanoparticles. This would allow for greater databases to be created regarding 

PAMAM dendrimers and nanoparticles in general. Another goal would be to more 

seamlessly integrate the NPO into our system so that the annotations and extractions 

contain descriptive metadata. Finally, it is important that we attempt to implement some 

sort of negation analysis tool into our system. This would specifically help in the instances 

where an article states that the dendrimer nanoparticles were not toxic at a certain 

concentration. 

 
Conclusion 

In this paper, we have presented a nanoinformatics method based on NLP 

approaches for automatically extracting numeric values associated with dendrimer 

property terms from the nanomedicine literature. The results from our analysis 

demonstrate that the NanoSifter NLP system can be used to reliably and accurately extract 

information from dendrimers developed for cancer treatment literature and shows 

promise for the future of text mining in the field of nanoinformatics. This initial research 

in the field of applying NLP to nanomedicine literature could assist in significant advances 

for the nanomedicine community. This work could lead to the creation of databases 

containing valuable information regarding nanoparticles at a much lower cost than using 

manual review. The readily available data on nanomedical relevant particles could be 

further analyzed for many secondary uses of the data. In particular, the acquired data 

could be used for data mining to find correlations between properties, create predictive 

models like quantitative structure activity relationships, and eventually reach the point 

where potential candidate molecules can be created in silico and modeled to theoretically 
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predict their biochemical activity before synthesis. This would reduce the search space for 

novel, effective nanoparticles for use in medicine and pharmaceutics. 
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Table 3.1: Listing of the NPO Property Terms 
 

PROPERTY 
TERM 

NPO 
CODE 

DEFINITION 

Hydrodynamic 
Diameter 

NPO_1915 
The hydrodynamic size which is the diameter of a 
particle or molecule (approximated as a sphere) in an 
aqueous solution. 

Particle 
Diameter 

NPO_1539 Diameter which inheres in a particle. 

Molecular 
Weight 

NPO_1171 
The sum of the relative atomic masses of the 
constituent atoms of a molecule. 

Zeta Potential NPO_1302 
The potential difference between the bulk dispersion 
medium (liquid) and the stationary layer of liquid near 
the surface of the dispersed particulate. 

Cytotoxicity NPO_1340 
Toxicity that impairs or damages cells, and it is a 
desired property of the dispersed particulate. 

IC50 NPO_1195 

A measure of toxicity which is the concentration of a 
drug or inhibitor that is required to inhibit a biological 
process or a participant’s activity in that process by 
half. 

Cell Viability NPO_1343 
Viability of a cell to proliferate, grow, divide, or repair 
damaged cell components. 

Encapsulation 
Efficiency 

NPO_1336 

The efficiency of inhering in a nanomaterial or 
supramolecular structure by virtue of its capacity to 
encapsulate an amount of molecular entity, isotope or 
nanomaterial. 

Loading 
Efficiency 

NPO_1334 
A quality inhering in a material entity by virtue of it 
having the capacity to carry an amount of another 
material entity. 

Transfection 
Efficiency 

NPO_1335 
The efficiency inhering in a bearer’s ability to facilitate 
transfection. 

 
 
 
 
 
 
 
 
 



50 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 3.2: Results from the Evaluation of the Nanosifter NLP System 
 

Nanoparticle 
Property 

Term 
TP FP FN Recall Precision F-measure 

Occurrences by 
Article 

Hydrodynamic 
Diameter 

8 0 0 1 1 1 6 

Particle 
Diameter 

211 39 1 0.995283 0.844 0.91341991 56 

Molecular 
Weight 

143 23 2 0.986207 0.86145 0.91961415 25 

Zeta Potential 41 0 1 0.97619 1 0.98795181 16 
Cytotoxicity 124 18 1 0.992 0.87324 0.92883895 29 

IC50 47 8 1 0.979167 0.85455 0.91262136 15 
Cell Viability 78 31 0 1 0.7156 0.8342246 25 

Encapsulation 
Efficiency 

1 0 0 1 1 1 1 

Loading 
Efficiency 

5 0 0 1 1 1 1 

Transfection 
Efficiency 

19 13 1 0.95 0.59375 0.73076923 9 
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Table 3.3: Micro-averaged and Macro-averaged Recall, Precision, and F-measure 
 

Type of Average Recall Precision F-measure 
Micro 0.989766 0.83684 0.90689886 
Macro 0.987885 0.87426 0.922744 

 
 
  



 

  

 

 

CHAPTER 4 
 
 

PREDICTING CYTOTOXICITY OF PAMAM DENDRIMERS  
 

USING MOLECULAR DESCRIPTORS3 
 
 

Abstract 

The use of data mining techniques in the field of nanomedicine has been very 

limited. In this paper we demonstrate that data mining techniques can be used for the 

development of predictive models of cytotoxicity of poly(amido amine) (PAMAM) 

dendrimers using their chemical and structural properties. We present predictive models 

developed using 103 PAMAM dendrimer cytotoxicity values that were extracted from 12 

cancer nanomedicine journal articles. The results indicate that data mining and machine 

learning can be effectively used to predict cytotoxicity of PAMAM dendrimers on Caco-2 

cells. 

 
Introduction 

In silico approaches, such as data mining and machine learning, have been very 

successful in medicinal chemistry and are commonly used to guide the design of small 

pharmaceutical compounds20. In contrast, even while nanomedicine is a rapidly growing 

field5, there have been only a few attempts to use data mining techniques in this field. For 

instance, Liu et al. analyzed a number of attributes of a variety of nanoparticles in  

                                                           
3 Reprinted from Beilstein Journal of Nanotechnology, 6, pp 1886-1896, Copyright 2015. David E. Jones a, 
Hamidreza Ghandehari b, c, and Julio C. Facelli a, b. a Department of Biomedical Informatics, b Departments of 
Bioengineering and Pharmaceutics and Pharmaceutical Chemistry, and c Utah Center for Nanomedicine, 
Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, US  
 



53 

  

 

 
order to predict the 24 hours postfertilization mortality in zebrafish50. Horev-Azaria and 

colleagues used predictive modeling to explore the effect of cobalt-ferrite nanoparticles on 

the viability of seven different cell lines80. Sayes and Ivanov used machine learning to 

predict the induced cellular membrane damage of immortalized human lung epithelial 

cells caused by metal oxide nanomaterials76. As discussed in a previous paper131, there are 

very limited databases of properties of nanomedical relevant compounds. We speculate 

that this has seriously limited the use of data mining techniques in the field of 

nanomedicine, but in the above referenced publication we demonstrated that natural 

language processing (NLP) techniques can be used effectively to automatically extract 

nanoparticle property information from the original literature. Here we argued that this 

development opens the possibility to explore the use of data mining and chemometric 

techniques to guide the design of new, more effective, treatments using nanoparticles. In 

this paper we apply the methods of data mining and machine learning to predict the 

cytotoxicity of poly(amido amine) (PAMAM) dendrimers.  

Cytotoxicity was selected because it is of key concern for the nanoscience and 

nanomedicine community7, 8, considering that high cytotoxicity is a definitive cause for 

eliminating a material for potential human applications. Reliable prediction of cytotoxicity 

using in silico approaches possesses the potential for high payoff in nanomaterial 

development, allowing the concentration of scarce development resources to be directed 

towards the synthesis and testing of promising materials with expected low levels of 

toxicity. Cytotoxicity can be determined by a gamete of in vitro toxicity assays focusing on 

a number of cellular parameters including cell viability, oxidative stress, genotoxicity, and 

inflammatory response75. In this paper, we focus on the cell viability to characterize 

cytotoxicity18. 

PAMAM dendrimers are good candidates for a data mining methodological study 

because they are well documented and have the potential to be highly useful as delivery 
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vectors41. These nanoparticles are composed of a central core that is surrounded by 

concentric shells, thus resulting in their well-defined, highly branched structure42, 43. The 

generation of the dendrimer is determined by the number of concentric shells that 

surround the core of the structure.  These polymeric nanoparticles can easily be tailored 

for specific applications. Benefiting from their characteristic scaffold structures, they have 

been demonstrated to be suitable carriers for a number of diverse bioactive agents, 

improving the solubility and bioavailability of poorly soluble ones44, 45. These particular 

nanoparticles are also promising for use in the treatment of cancer, including oral 

formulations. In spite of all the desirable properties of dendrimers, there is a significant 

setback for their use in biomedicine due to their potential toxicological effects, which 

depend on the structure that is used. It has been shown that cationic PAMAM dendrimers 

can have surface charge-, generation-, and concentration-dependent toxicity46-49. 

The goal of this research is to demonstrate that data mining methods like the ones 

used here can provide a presynthesis step to identify nondesirable PAMAM dendrimers 

that have a substantial probability of high toxicity. It would thus be possible to eliminate 

them from the early stages of the synthetic development pipeline with reasonable 

confidence. This technique is not meant to replace cytotoxicity assays at the bench, but 

rather to augment these methods. This method will bolster existing cytotoxicity assays by 

providing the ability to determine relevant compounds with low cytotoxicity and to 

eliminate weak-candidate PAMAM dendrimers from synthesis and confirmatory testing. 

This work also illustrates a proof of concept that data mining and machine learning can be 

applied to PAMAM dendrimers to predict their biochemical properties. This result could 

potentially be expanded to other nanomaterials in the future. 
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Results and Discussion 

Five different analyses were performed to classify a dendrimer as toxic or nontoxic 

using different combinations of molecular descriptors and experimental conditions. The 

first analysis utilized all the molecular descriptors available in MarvinSketch (see 

Experimental section and the Appendix). The second analysis involved an automatic 

feature selection method in which the molecular descriptors that were used had a nonzero 

rank according to the ChiSquaredAttributeEval method in Weka (see details in the 

Experimental section). The ChiSquaredAttributeEval method determines the rank of an 

attribute by calculating the chi-squared statistic with respect to the class92. The third 

analysis used only the molecular descriptors selected by expert advice (see details in the 

Experimental section): molecular weight, atom count, pI, and molecular polarizability. 

The fourth analysis included the same molecular descriptors used in the second analysis 

and the experimental concentration (i.e., the amount in mM of PAMAM dendrimer added 

to the human colon carcinoma Caco-2 cells culture during the cytotoxicity analysis). The 

final analysis independently assessed the performance of our best method by randomly 

splitting the dataset into a training set, including 83 of the values, and a test set, including 

20 of the values in the dataset. 

The results for the first, second, and third analyses performed to classify 

dendrimers as toxic/nontoxic are presented in Tables 4.1-4.3 and the Appendix. The tables 

list the average precision, recall, F-measure, and mean absolute error for the toxicity class 

prediction for all classifiers considered here. The tables also contain the accuracy value for 

the percentage of correctly classified instances.  For all analyses all classifiers consistently 

have accuracies at or above 60.2%. 

For the first analysis, Tables 4.1 and the Appendix, J48 and filtered classifier show 

the best results in the 10-fold cross-validation with an accuracy of 74.8%, while bagging, 

locally weighted learning (LWL), and naïve Bayes Tree (NBTree) performed the best with 
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an accuracy of 77.7% in the leave-one-out cross-validation (Appendix). The results from 

the automatic feature selection analysis, using the ChiSquaredAttributeEval and Ranker 

procedures as attribute evaluator and search method, respectively, are presented in Table 

4.2 and the Appendix. These results do not differ drastically from those observed in the 

first analysis, indicating that the use of automatic feature selection does not improve the 

classification of toxicity in this study.  Alternative automatic feature selection methods, 

using all the WEKA recommended pairings of attribute evaluator and search methods 

were also tested but did not show any significant improvement in classification prediction 

performance when using the J48 classifier. These results are presented in the Appendix. 

The classification using the features selected by expert advice, Table 4.3 and the Appendix, 

show that the LWL classifier performed the best with an accuracy of 77.7% in the 10-fold 

cross-validation. The leave-one-out cross-validation, in the Appendix, had three classifiers 

that perform with an accuracy of 78.6% (naïve Bayes, bagging, and classification via 

regression). There is an increase in accuracy across most of the classifiers between the 10-

fold and leave-one-out cross-validations. This is an interesting finding because Kohavi 

noted that k-fold cross validations typically perform better than leave-one-out cross 

validations132. This might be an artifact of the dataset not being exactly 50-50 split between 

toxic and nontoxic samples, thus leading to skewness toward nontoxic predictions.  

The decision tree used by the 10-fold and leave-one-out cross-validation J48 

classifiers for the first, second, and third analyses is depicted in Figure 4.1. It can be 

observed in the decision trees that the isoelectric point, pI, is the property that is used to 

classify the dataset. This property represents the pH at which the net charge of an ionizable 

molecule is zero. The decision tree indicates that if the pI is greater than 12.63, then the 

dendrimers are toxic. There are 59 PAMAM dendrimers that are classified as toxic of 

which 21 are misclassified. If the pI is less than or equal to 12.63, then the dendrimers are 

classified as nontoxic. There are 44 PAMAM dendrimers classified as nontoxic of which 2 
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are misclassified. 

These results indicate that data mining and machine learning can be implemented 

to predict cytotoxicity of PAMAM dendrimers on Caco-2 cells with reasonably high 

accuracy using only molecular descriptors. The misclassifications observed in Figure 4.1 

are much more significant when examining the dendrimers classified as toxic because 

almost half of these dendrimers are nontoxic. This is a substantial quantity of potentially 

useful dendrimers being ruled out, indicating the necessity for further analysis to decrease 

the number of false positives.  

Table 4.4 presents the results using the best performing classifiers from the 

previous section of the analysis using the expert-selected molecular descriptors with the 

addition of the concentration of dendrimers used in the experiments. No improvement in 

predictions was observed when using either the Filtered Classifier or LWL classifiers, but 

the J48 prediction accuracy of the classification improved to 83.5%. This substantial 

improvement of the accuracy of the J48 classifications, from 74% to 83.5 %, shows the 

importance of including the concentration information from the experimental design in 

addition to the computed molecular descriptors to properly classify compounds as toxic 

or nontoxic.  

The J48 decision tree for the analysis discussed above is depicted in Figure 2.1. In 

this case, the pI, molecular weight, and cytotoxicity concentration are the discriminators 

in the classification. As can be seen, the feature representing the concentration of 

dendrimers used in the experiments is present in the decision tree for this analysis. The 

diagram of the decision trees generated from the J48 classifier illustrates important 

attributes used in accurately predicting toxicity in PAMAM dendrimers. The greatest 

prediction accuracies were achieved after supplementing the expert-selected features with 

a descriptor representing the experimental conditions by including the concentration 

under which the data of the cytotoxicity has been acquired. Figure 2.1 has the same 
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structure at the top level as Figure 4.1: when the pI is less than or equal to 12.63, 44 

PAMAM dendrimers are classified as nontoxic with an exception of 2 that are 

misclassified. However, when the pI is greater than 12.63, it leads to other options in the 

classification of the remaining PAMAM dendrimers. The decision made at the next node 

regards the molecular weight of the PAMAM dendrimer being <= 6908.8 Da or > 6908.8 

Da. If the molecular weight is > 6908.8 Da, 24 PAMAM dendrimers are classified as toxic 

with 4 that are misclassified. If the molecular weight is <= 6908.8 Da, it leads to another 

option regarding the molecular weight being <= 3271.9 Da or > 3271.9 Da. The final option 

can be made considering the concentration target for the desired application of the 

PAMAM dendrimer. It can clearly be observed in Figure 2.1 that the number of 

misclassifications (false positives) has been significantly reduced due to this further 

analysis (from 21 in Figure 4.1 to 5 in Figure 2.1). Due to the significant decrease in false 

positives, the accuracy of the J48 classifier improved. There was a slight increase in the 

number of false negatives due to this further analysis (from 2 in Figure 4.1 to 5 in Figure 

2.1).  

The classification scheme in Figure 2.1 identifies three clusters of viable PAMAM 

dendrimers that have tolerable levels of cytotoxicity: those with a pI less than or equal to 

12.63; those with a pI greater than 12.63, but with molecular weights less than or equal to 

3271.9 Da that could be used up to concentrations of less than or equal to 0.7 mM; and 

those with a pI greater than 12.63, with molecular weights between 6908.8 and 3271.9341 

Da that can be used in formulations requiring concentrations less than or equal to 0.01 

mM. When designing novel PAMAM dendrimers, these guidelines could be used for 

developing viable candidates exhibiting little to no cytotoxicity. This demonstrates the 

importance of combining experimental conditions with molecular descriptors to achieve 

the greatest prediction accuracy in the classifiers and to find compounds that may be 

viable under more restrictive conditions. Another important observation is that the 
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properties present in the decision tree diagrams represent the more general properties of 

charge, size, and concentration, which have been hypothesized to be primary causes of 

cytotoxicity in Caco-2 cells 98. 

Tables 4.5 and 4.6 show the data from the external validation study that was 

performed to further validate the results presented above. For this study, the dataset was 

randomly split into a training set, consisting of 83 cytotoxicity values, and a test set, 

consisting of 20 cytotoxicity values from the original dataset. Table 4.5 presents the results 

from the analysis of this test set using all of the molecular descriptors. For all but one of 

the classifiers, the predicted accuracy was 65.0%, which is slightly lower than the values 

obtained for the cross validation analysis, but LWL performed very well with an accuracy 

of 95.0%. This is an interesting finding considering the highest performance of this 

classifier in the first four analyses was 77.7%. Table 4.6 shows the data from the analysis 

of the test set using only the expert-selected features as well as the cytotoxicity 

concentration data. Again, LWL performed with an accuracy of 95.0%, so no improvement 

was seen in the classification ability of this algorithm between all molecular descriptors 

and the expert-feature-selected molecular descriptors with cytotoxicity concentration 

data. There are two algorithms that exhibited a large improvement between Tables 4.5 and 

4.6, naïve Bayes and J48. Both of these algorithms improved from a prediction accuracy 

of 65.0% to 90.0%, which is substantially higher than the values obtained in the cross 

validation studies.  

These results indicate that data mining and machine learning can be implemented 

to predict cytotoxicity of PAMAM dendrimers on Caco-2 cells with accuracy. According to 

Figure 2.1, the results also indicate that properties regarding charge, size, and the desired 

concentration of the PAMAM dendrimers in the formulation are the important properties 

in the prediction of cytotoxicity on Caco-2 cells. We believe that the methods used in this 

work can be expanded to analyze and predict many other biochemically relevant 
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properties of not only unmodified PAMAM dendrimers but also surface-modified PAMAM 

dendrimers. This method will bolster existing cytotoxicity assays by providing the ability 

to determine relevant compounds with low cytotoxicity for synthesis and confirmatory 

testing, thereby reducing the search space necessary for developing biomedically relevant 

PAMAM dendrimers. This work demonstrates a proof of concept that data mining and 

machine learning can be applied to PAMAM dendrimers to predict the biochemical 

property of cytotoxicity, but also indicates that further studies including much larger data 

sets are necessary to develop reliable and robust classification methods that can be applied 

to a broader set of compounds, cell cultures and experimental designs. 

 
Conclusions 

In this study, classification methods for predicting the Boolean classification of 

cytotoxicity in Caco-2 cells treated with PAMAM dendrimers were introduced. The results 

indicate that data mining and machine learning can be used to predict cytotoxicity of 

PAMAM dendrimers on Caco-2 cells with good accuracy. In the classification method 

explored here, it was observed that the properties regarding charge, size, and 

concentration of the PAMAM dendrimers are the most important properties in the 

prediction of cytotoxicity and cell viability of Caco-2 cells treated with PAMAM 

dendrimers. To the authors’ knowledge, these results are the first application of data 

mining and machine learning to predict cytotoxicity of PAMAM dendrimers on Caco-2 

cells using a classification method.  

 
Experimental 

The overall work flow of the analysis reported in this paper is presented in Figure 

4.2. The details of the different processes are given in the following subsections. 
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Nanoparticle Selection 

The PAMAM dendrimers selected for our study included generations 0, 1, 1.5, 2, 

2.5, 3, 3.5, 4, and 4.5 compounds that have been used for transepithelial transport. The 

full generation PAMAM dendrimers (generations 0, 1, 2, 3, and 4) are amine- or hydroxyl-

terminated dendrimers. The half generation PAMAM dendrimers (generations 1.5, 2.5, 

3.5, and 4.5) are carboxyl-terminated dendrimers. For more general property information 

on the full and half generation PAMAM dendrimers see the Appendix, which includes the 

property information for the PAMAM dendrimers analyzed in this study. The toxicity 

studies used here correspond to assays of these compounds on the human colon carcinoma 

Caco-2 cell line. The publications containing property data for the nanoparticles selected 

for this study were gathered from nanomedicine articles available in Scopus and 

PubMedCentral using the search terms “PAMAM dendrimers AND cytotoxicity AND 

Caco-2 cells.” For the PAMAM dendrimer cytotoxicity values to be considered relevant for 

extraction, both cell viability and treatment concentration information had to be available 

in the publication. From this literature corpus, 103 PAMAM dendrimer cytotoxicity values 

were extracted to be included in this study133-144. NanoSifter131, followed by manual 

revision, was used to extract the cell viability and cytotoxicity treatment concentration 

information from the journal articles in the corpus described above. 

 
Chemical Structure Rendering and Molecular Descriptor Calculation 

The PAMAM dendrimers’ structures were manually constructed using 

MarvinSketch by ChemAxon97, 145. There were a total of 10 PAMAM dendrimer structures 

created for this study. They included generations 0, 1, 1.5, 2, 2.5, 3, 3.5, 4, and 4.5 PAMAM 

dendrimers. These models include both amine-terminated (full generations) and 

carboxyl-terminated (half generations) structures, as well as one hydroxyl-terminated 

structure (full generation but hydroxyl-terminated). The molecular descriptors for each 
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molecule were calculated using plugins built into MarvinSketch97. The list of 51 molecular 

descriptors calculated for each molecule is given along with their corresponding 

definitions in the Appendix. Among these molecular descriptors, there are 42 structural 

properties (2 mass-related, 6 atom-count-related, 7 bond-count-related, 4 ring-size-

related, 13 ring-count-related, and 10 other structural properties) and 9 chemical 

properties (5 charge-related and 4 hydrogen-bonding-related properties). 

 
Data Preparation and Pre-Processing 

The data, consisting of the molecular descriptors calculated for all of the molecules 

considered here and the corresponding cell viability and cytotoxicity data, was uploaded 

into WEKA 92 to perform the machine learning and data mining analysis using 

classification methods to discern between toxic and nontoxic compounds. In order to 

assign a categorical value to each dendrimer cytotoxicity data point, the threshold was 

established at the cell viability value of 90% (i.e., compounds were considered nontoxic at 

a certain concentration of PAMAM dendrimer nanoparticles if 90% of the Caco-2 cell 

population survived after the intervention). Because there is a statistical variation in cell 

viability studies, often non-toxic materials can have a few percentages above or below 

100% cell viability. Hence, the threshold of 90% was set arbitrarily to take into account 

the usual variability in this type of study. 

 
Prediction of Toxicity Using Classification Methods  

Five different analyses were performed to classify a dendrimer as toxic or nontoxic 

using different combinations of molecular descriptors and experimental conditions. The 

first analysis utilized all the molecular descriptors. The second analysis involved an 

automatic feature selection using the ChiSquaredAttributeEval and Ranker method built 

into Weka, where only molecular descriptors with a nonzero rank were included in this 

analysis. The molecular descriptors with a nonzero rank were H-bond acceptor sites, 
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isoelectric point (pI), logP, Harary index, refractivity, bond count, molecular 

polarizability, rotatable bond count, atom count, logD, aliphatic bond count, chain bond 

count, chain atom count, aliphatic atom count, exact mass, molecular weight, Wiener 

index, Randic index, Szeged index, Wiener polarity, Platt index, H-bond donor count, 

hyper Wiener index, H-bond donor sites, and H-bond acceptor count. The third analysis 

used only molecular descriptors selected by expert advice: molecular weight, atom count, 

pI, and molecular polarizability. In this paper we refer to selected by expert advice as the 

properties that an experienced researcher in nanocarriers, Dr. Ghandehari, expected to be 

relevant to predict toxicity based on his own knowledge derived from work in his lab and 

literature precedents. The fourth analysis included the same molecular descriptors as the 

ones used in the second analysis and the experimental concentration, i.e., the amount in 

mM of PAMAM dendrimer added to the Caco-2 cells during cytotoxicity analysis. The fifth 

analysis was an external validation study, in which we randomly selected 20 cytotoxicity 

values from the original dataset of 103 to create a test set. The remaining 83 cytotoxicity 

values were used as the training set. 

In this work we used the following classifiers: naïve Bayes, sequential minimal 

optimization (SMO), J48, bagging, classification via regression, filtered classifier, LWL, 

decision table, decision table/naïve Bayes (DTNB), NBTree, and random forest. We 

wanted to explore many modeling methods to provide a wide landscape of available 

techniques. Since the computational cost is low, there is no strong argument to limit this 

exploration. Naïve Bayes is a Bayesian classifier which uses posterior probability to predict 

the value of the target attribute89. That is, by using a given input attribute, the classifier 

attempts to find the target attribute value that maximizes the conditional probability of 

the target attribute. SMO is a support vector machine classifier that globally replaces all 

values and transforms nominal attributes into binary ones 90. By default it normalizes all 

attributes. J48 is a decision tree classifier, which is based on the C4.5 algorithm81. This 
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method starts with large sets of cases which belong to known classes, then cases are 

analyzed for patterns that allow for reliable discrimination of classes. The patterns are 

represented as models, either in the form of decision trees or sets of if-then rules which 

can be used to classify new cases. Bagging is a hybrid classification method that creates 

classes and reduces variance by bagging classifiers84. Classification via regression 

performs its classification by binarizing each class and building one regression model for 

each class91. Filtered classifier is an arbitrary classifier that runs on data passed through 

an arbitrary filter92. LWL uses an instance-based algorithm to assign instance weights93. 

Decision table is a simple decision table majority classifier94. DTNB is a decision 

table/naïve Bayes hybrid classifier. During the search, the algorithm determines the need 

to divide the attributes into two disjoint subsets: one for the decision table, the other for 

naïve Bayes95. NBTree is a decision tree/naïve Bayes hybrid classifier that builds a decision 

tree with Naïve Bayes classifiers at the leaves96. All the calculations were performed using 

WEKA92. 

Two different cross-validation146 schemes were performed for each classifier. The 

first one was a 10-fold cross-validation, in which the dataset was divided into 10 parts or 

folds92. During each classification run, nine of the folds were used as a training set and one 

was used as a test set and the results averaged over the ten runs. The second cross-

validation scheme used here was the leave-one-out cross-validation92. As this cross-

validation method states, one sample is left out as the test set, and the rest of the dataset 

is the training set. This method runs this through as many iterations as there are samples 

in the dataset. 

The predictions determined by WEKA were evaluated and determined to be true 

positive, false positive, or false negative by manual inspection. The precision, recall, and 

F-measure were calculated using the following equations: 

Precision = TP / (TP + FP)       (1) 
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Recall = TP / (TP + FN)       (2) 

 

F-measure = ((1 + β2) * Precision * Recall) / ((β2 * Precision) + Recall) (3) 

 

Mean Absolute Error = (Σ |fi – yi|)/n     (4) 

 

In these equations, TP is true positive, FP is false positive, FN is false negative, and β is 

the weighting applied to the relationship between precision and recall. The precision and 

recall were weighted evenly, so β=1 [6]. The precision, recall, and F-measure of each 

classifier were calculated for each classification (toxic/nontoxic). Each measure for each 

classification (toxic/nontoxic) was then averaged. The average value for the precision, 

recall, and F-measure were recorded. For mean absolute error, fi is the prediction, yi is 

the true value, and n is the number of calculated absolute errors. 

 
Table 4.1: Results from the 10-fold cross-validation listed by classifier of the first analysis 
including all molecular descriptors. See Eqs. (1)-(4) for definitions of Precision, Recall, 
F-Measure, Mean Absolute Error and Accuracy. 
 

Classifier Precision Recall F-
Measure 

Mean Absolute 
Error 

Accuracy 

Naïve Bayes 0.654 0.660 0.655 0.3370 66.0% 
SMO 0.738 0.738 0.725 0.2621 73.8% 
J48 0.789 0.748 0.750 0.3077 74.8% 
Bagging 0.746 0.738 0.740 0.3211 73.8% 
Classification 
via Regression 

0.734 0.738 0.730 0.2978 73.8% 

Filtered 
Classifier 

0.789 0.748 0.750 0.3077 74.8% 

LWL 0.775 0.738 0.741 0.2966 73.8% 
Decision Table 0.678 0.660 0.664 0.3878 66.0% 
DTNB 0.691 0.670 0.674 0.3490 67.0% 
NBTree 0.696 0.670 0.674 0.3511 67.0% 
Random 
Forest 

0.736 0.718 0.722 0.3077 71.8% 
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Table 4.2: Results from the 10-fold cross-validation listed by classifier of the second 
analysis including the automatically feature selected molecular descriptors. See Eqs. (1)-
(4) for definitions of Precision, Recall, F-Measure, Mean Absolute Error and Accuracy. 
 

Classifier Precision Recall F-
Measur

e 

Mean Absolute 
Error 

Accuracy 

Naïve Bayes 0.654 0.660 0.655 0.3370 66.0% 
SMO 0.738 0.738 0.725 0.2621 73.8% 
J48 0.789 0.748 0.750 0.3077 74.8% 
Bagging 0.746 0.738 0.740 0.3211 73.8% 
Classification 
via Regression 

0.734 0.738 0.730 0.2978 73.8% 

Filtered 
Classifier 

0.789 0.748 0.750 0.3077 74.8% 

LWL 0.775 0.738 0.741 0.2966 73.8% 
Decision Table 0.678 0.660 0.664 0.3878 66.0% 
DTNB 0.691 0.670 0.674 0.3490 67.0% 
NBTree 0.696 0.670 0.674 0.3572 67.0% 
Random 
Forest 

0.736 0.718 0.722 0.2988 71.8% 
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Table 4.3: Results from the 10-fold cross-validation listed by classifier for the third 
analysis including the molecular descriptors selected by experts. See Eqs. (1)-(4) for 
definitions of Precision, Recall, F-Measure, Mean Absolute Error and Accuracy. 
 

Classifier Precision Recall F-
Measure 

Mean Absolute 
Error 

Accuracy 

Naïve Bayes 0.762 0.748 0.750 0.2822 74.8% 
SMO 0.738 0.738 0.725 0.2621 73.8% 
J48 0.789 0.748 0.750 0.3077 74.8% 
Bagging 0.731 0.718 0.721 0.3217 71.8% 
Classification 
via Regression 

0.762 0.748 0.750 0.3230 74.8% 

Filtered 
Classifier 

0.804 0.757 0.760 0.3061 75.7% 

LWL 0.834 0.777 0.778 0.3008 77.7% 
Decision 
Table 

0.658 0.650 0.653 0.3980 65.0% 

DTNB 0.658 0.650 0.653 0.3969 65.0% 
NBTree 0.722 0.689 0.693 0.3454 68.9% 
Random 
Forest 

0.758 0.748 0.750 0.2973 74.8% 
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Figure 4.1: Decision tree for both 10-fold and leave-one-out cross-validation J48 classifier 
of the first, second, and third analyses. Values present on the branches represent the rule 
or decision used for making the classification. The boxes at the bottom represent the 
classifications with the number of PAMAM dendrimers classified as such on the left and 
the number of exceptions (misclassifications on the right). 
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Table 4.4: Results from the 10-fold cross-validation listed by classifier of the fourth 
analysis including the expert selected molecular descriptors with cytotoxicity 
concentration. See Eqs. (1)-(4) for definitions of Precision, Recall, F-Measure, Mean 
Absolute Error and Accuracy. 
 

Classifier Precision Recall F-
Measure 

Mean Absolute 
Error 

Accuracy 

Naïve Bayes 0.755 0.738 0.741 0.2984 73.8% 
SMO 0.738 0.738 0.725 0.2621 73.8% 
J48 0.838 0.835 0.836 0.2203 83.5% 
Bagging 0.836 0.835 0.835 0.2618 83.5% 
Classification 
via Regression 

0.742 0.738 0.739 0.3157 73.8% 

Filtered 
Classifier 

0.804 0.757 0.760 0.3061 75.7% 

LWL 0.834 0.777 0.778 0.2995 77.7% 
Decision 
Table 

0.658 0.650 0.653 0.3980 65.0% 

DTNB 0.658 0.650 0.653 0.3969 65.0% 
NBTree 0.716 0.689 0.693 0.3347 68.9% 
Random 
Forest 

0.769 0.767 0.768 0.2483 76.7% 
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Table 4.5: Results from the external validation test set analysis listed by classifier using all 
molecular descriptors. See Eqs. (1)-(4) for definitions of Precision, Recall, F-Measure, 
Mean Absolute Error and Accuracy. 
 

Classifier Precision Recall F-
Measure 

Mean Absolute 
Error 

Accuracy 

Naïve Bayes 0.803 0.650 0.617 0.3426 65.0% 
SMO 0.803 0.650 0.617 0.3500 65.0% 
J48 0.803 0.650 0.617 0.2776 65.0% 
Bagging 0.803 0.650 0.617 0.2953 65.0% 
Classification 
via Regression 

0.803 0.650 0.617 0.3047 65.0% 

Filtered 
Classifier 

0.803 0.650 0.617 0.2776 65.0% 

LWL 0.955 0.950 0.950 0.2510 95.0% 
Decision 
Table 

0.803 0.650 0.617 0.4206 65.0% 

DTNB 0.803 0.650 0.617 0.4182 65.0% 
NBTree 0.803 0.650 0.617 0.2945 65.0% 
Random 
Forest 

0.803 0.650 0.617 0.2784 65.0% 
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Table 4.6: Results from the external validation test set analysis listed by classifier 
including the molecular descriptors expert selected with cytotoxicity concentration. See 
Eqs. (1)-(4) for definitions of Precision, Recall, F-Measure, Mean Absolute Error and 
Accuracy. 
 

Classifier Precision Recall F-
Measure 

Mean Absolute 
Error 

Accuracy 

Naïve Bayes 0.918 0.900 0.900 0.1868 90.0% 
SMO 0.803 0.650 0.617 0.3500 65.0% 
J48 0.918 0.900 0.900 0.1768 90.0% 
Bagging 0.888 0.850 0.849 0.2408 85.0% 
Classification 
via Regression 

0.803 0.650 0.617 0.3678 65.0% 

Filtered 
Classifier 

0.803 0.650 0.617 0.2776 65.0% 

LWL 0.955 0.950 0.950 0.2467 95.0% 
Decision 
Table 

0.803 0.650 0.617 0.4206 65.0% 

DTNB 0.803 0.650 0.617 0.4182 65.0% 
NBTree 0.803 0.650 0.617 0.3082 65.0% 
Random 
Forest 

0.888 0.850 0.849 0.2187 85.0% 
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Figure 4.2: Simplified workflow diagram for the method used in this study. 
 
 

  



CHAPTER 5 
 
 

MOLECULAR DYNAMIC SIMULATIONS IN DRUG DELIVERY RESEARCH: 
 

CALCIUM CHELATION OF G3.5 PAMAM DENDRIMERS DESCRIPTORS4 
 
 

Abstract 

Poly(amido amine) (PAMAM) dendrimers have been considered as possible 

delivery systems for anticancer drugs. One potential advantage of these carriers would be 

their use in oral formulations, which will require absorption in the intestinal lumen. This 

may require the opening of tight junctions by reducing the Ca2+ concentration in the 

intestinal lumen, as has been shown as a possible absorption mechanism in EDTA. Using 

molecular dynamic simulations, we show that the G3.5 PAMAM dendrimers are able to 

chelate Ca2+ at similar proportions to EDTA, providing support to the hypothesis that oral 

formulations of PAMAM dendrimers are a plausible approach to deliver highly toxic 

anticancer agents by an oral route. 

 
Introduction 

Poly(amido amine) (PAMAM) dendrimers are complex molecules whose 

biochemical activity in vivo is not fully understood. A particular mechanism of interest is 

the pathway by which orally taken PAMAM dendrimers may reach their target location 

 

                                                           
4 David E. Jones a, Albert M. Lund a, b, Hamidreza Ghandehari c, d, and Julio C. Facelli a, d. a Department of 
Biomedical Informatics, b Department of Chemistry, c Departments of Bioengineering and Pharmaceutics 
and Pharmaceutical Chemistry, and d Utah Center for Nanomedicine, Nano Institute of Utah, University of 
Utah, Salt Lake City, UT 84112, US 
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when used as nano carriers of anticancer drugs. Specifically, there is interest in 

understanding how these particles would be able to permeate the tight junctions of the 

intestinal lumen147.  

Literature consensus shows that tight junctions are dependent upon extracellular 

calcium (Ca2+) and magnesium for their integrity and function148. Extracellular Ca2+ is 

responsible for keeping the tight junctions closed, and it is known that lower 

concentrations of Ca2+ in the intestinal lumen lead to their opening. This has been clearly 

established using ethylenediaminetetraacetic acid (EDTA), a known Ca2+ chelator, that 

has been shown to open and transverse the tight junctions149. Several publications have 

suggested that PAMAM dendrimers also would be able to travel across the intestinal 

barrier using the same mechanism150, 151. Due to their anionic charge the carboxylic-acid- 

(COOH) terminated Generation 3.5 (G3.5) PAMAM dendrimers may be capable of 

chelating Ca2+ in solution much like EDTA148. Each COOH terminated G3.5 PAMAM 

dendrimer can theoretically chelate 32 Ca2+ ions, thus significantly reducing the 

extracellular Ca2+ and therefore creating an extracellular environment that is prone to 

opening the tight junctions. This would allow for paracellular transport of G3.5 PAMAM 

dendrimers via the tight junctions. However, the ability of PAMAM dendrimers to chelate 

Ca2+ has yet to be confirmed by in vitro or in vivo studies. Simulation studies can be used 

to better understand this hypothesis and justify more experimental work. 

Molecular dynamics (MD) simulations are routinely used to provide 

understanding and testing of novel hypotheses at the molecular scale for small-molecule 

drug delivery research34, 35. With recent advances in computational power, such 

simulations can now be used in nanomedicine, for instance to better understand chemical 

and biological properties of PAMAM dendrimer nanoparticles. Many studies have focused 

on the use of MD simulations to gain insight on PAMAM dendrimer/ligand conformations 

and energies. A few molecular docking studies have been reported using MD simulations 
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to analyze the interactions of siRNA and PAMAM dendrimers51-53. Other molecular 

docking studies have involved PAMAM dendrimers and ligands such as curcumin and 

porphyrin54, 55. These include work by Avila-Salas et al., who used MD simulations and 

QSAR methods for in silico dendrimer-drug affinity studies56. Ivanov and Jacobson used 

MD simulations to test the theoretical possibility of bivalent binding of a dendrimer, 

covalently appended with multiple copies of a ligand57. Lee et al. used MD simulations 

along with chemical analysis to guide the design of a multifunctional PAMAM dendrimer-

based nano-therapeutic58.  Barata et al. used MD simulations to identify the key structural 

design principles for bioactive dendrimer molecules that could be synthesized and 

biologically evaluated59. However, to the authors’ knowledge no study has been performed 

on the ability of Ca2+ chelation by PAMAM dendrimers. In this article, we demonstrate 

how MD simulations can be used to test the ability of G3.5 PAMAM dendrimers to chelate 

Ca2+. These results have been validated using MD simulations of EDTA as a reference 

system for Ca2+ chelation. 

 
Methods 

EDTA and G3.5 PAMAM dendrimer structures were manually constructed using 

MarvinSketch by ChemAxon97, 145. The structures for each molecule were converted to their 

ionic forms by removing a hydrogen atom from the terminal COOH groups. This resulted 

in a minus four charge for the EDTA molecule, as there are four terminal COOH groups in 

it, and a minus 64 charge for the G3.5 PAMAM dendrimer molecule where there are 64 

terminal COOH groups. 

 
Force Field and Water Box Preparation 

For all simulations, the ff12sb force fields were used along with the general AMBER 

force field (GAFF) to represent the EDTA and G3.5 PAMAM dendrimer152. Four different 

solvent boxes were prepared for four different simulations: EDTA with Ca2+ in water, G3.5 
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PAMAM dendrimer with Ca2+ in water, EDTA with Ca2+ in a buffer solution, and G3.5 

PAMAM with Ca2+ in the same buffer solution. The water model used in all the simulations 

was the TIP3P153. For both simulation studies in water, the concentration of Ca2+ was 

adjusted to approximately 0.115 M, while the simulation studies in the buffer solution were 

done using concentrations of Ca2+ ions of approximately 0.0575 M with the addition of 

sodium chloride (NaCl) at a concentration of approximately 0.115 M. The concentrations 

used in the buffer simulations are representative of the experimental solutions used to 

examine the ability of EDTA to chelate Ca2+ and increase epithelial absorption by Vllasaliu 

et al. and Tomita et al.154, 155. The simulations in the buffer solution have been performed 

to further test the ability of Ca2+ chelation by EDTA and G3.5 PAMAM dendrimers when 

a competing ion (Na+) is present in the solution. For the EDTA simulations the volume of 

the water box was approximately 75,000 Å3, while for the simulations with G3.5 PAMAM 

dendrimer the volume of the water box was approximately 460,000 Å3. All the simulations 

were performed using periodical binding conditions and a nonbonded cutoff of 9.0 Å. 

Three independent MD simulations were performed for each system to obtain 

ensemble averages of multiple MD runs. Before each simulation all of the counter ions 

were randomly distributed in the water box at 8.00 Å from the molecule of interest, EDTA 

or G3.5 PAMAM dendrimer, using cpptraj156. The next three subsections describe the 

initial minimization, 40 ps equilibration, and 30 ns MD simulation parameters used in all 

MD simulations. 

 
Initial Minimization 

The initial minimization consisted of a total of 3,000 minimization iterations, of 

which 1,000 were done using the steepest descent method and 2,000 using conjugate 

gradients.  
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40 ps Equilibration 

Following the minimization, the 40 ps equilibration phase consisted of 20,000 

steps with a time step of 2 fs. For the equilibration period the temperature was increased 

from 0.0 to 300.0 K. and Langevin dynamics was used with a collision frequency of 1.0  

ps-1. 

 
30 ns MD Simulation 

Following equilibration, the 30 ns MD simulation consisted of 1.5 x 107 steps with 

a time step of 2 fs. For the MD simulation the temperature and pressure were held constant 

at 300.0 K and 1.0 bar, respectively, and Langevin dynamics was used with a collision 

frequency of 1.0 ps-1.  

 
Analysis 

Trajectory analysis of the 30 ns MD simulation was performed using cpptraj 156. 

The water molecules were removed from the trajectories and a custom Python script was 

used to plot the distance from each counter ion to the Van der Walls surface of the 

molecule of interest (EDTA or G3.5 PAMAM dendrimer) for each time step of the 30 ns 

MD simulation. This script also calculated the average distance and minimum distance of 

each counter ion to the surface of the molecule of interest (EDTA or G3.5 PAMAM 

dendrimer) during the 30 ns MD simulation and the percentage of dwell time, that is the 

number of steps in which an individual counter ion is within 3.0 Å of the surface of the 

molecule divided by the total number of steps in the MD simulation. 

 
Apt Computational Environment 

All calculations were performed on the Tangent cluster at the Center for High 

Performance Computing. Tangent is a part of the Adaptable Profile-Driven Testbed (Apt), 

an initiative by the Flux Research Group to provide a flexible, on-demand cloud computing 
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environment targeted at researchers and scientists 

(https://www.flux.utah.edu/project/apt).  

We used our research project as a demonstration of how to use a computationally 

intensive application in a cloud computing environment. This study shows that it is 

possible to perform computationally significant drug delivery research in such an 

environment, which may provide researchers an appealing and more cost-effective 

alternative to traditional, dedicated high performance computing (HPC) environments. 

 
Results and Discussion 

As discussed above, four different simulations were carried out: EDTA and Ca2+ in 

water, G3.5 PAMAM dendrimer and Ca2+ in water, EDTA and Ca2+ in a buffer, and G3.5 

PAMAM dendrimer and Ca2+ in the same buffer. The results from each of these 

simulations as well as the performance of the Apt computational environment are 

described in the following subsections. In all cases our results are reported as an average 

of the values obtained in each of the three independent MD simulations performed for 

each system to represent ensemble average values. 

 
MD Simulation Study of EDTA and Ca2+ in Water  

 Results from the EDTA and Ca2+ in water MD simulations are presented in Figure 

5.1 and Table 5.1. Figure 5.1 presents the three-dimensional depiction of the final recorded 

step of one of the MD simulations of EDTA and Ca2+ in water, where it is apparent that the 

Ca2+ atoms are attached to the EDTA molecule. Table 5.1 shows the values of the averages 

of the distance, minimum distance, and percentage dwell time of the counter ions (Cl- and 

Ca2+) included in the simulations. The average values and their standard deviations are 

the average over all the ions of the same type over all the trajectories from the three MD 

simulations performed here for this system. 

Both the figure and table present results that are indicative of the ability of EDTA 
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to chelate Ca2+ in water. Figure 5.1 presents a clear depiction of two Ca2+ ions interacting 

with the EDTA molecule in the final recorded step of one of the MD simulation runs. As 

can be seen in Table 5.1, the average minimum distance, 2.86 Å, from the surface of EDTA 

for the Ca2+ ions shows that in all the simulations the Ca2+ ions have migrated, at least 

temporarily, from a distance of 8.00 Å to a distance within 3.00 Å of the surface of the 

EDTA molecule. The average distance of the Ca2+ ions to the surface of the EDTA molecule 

is comparably large, but this is largely due to the fact that EDTA has only four terminal 

COOH groups. This allows for only two Ca2+ ions to bind to EDTA. To ensure that the same 

concentration of Ca2+ ions was used for all the MD simulation studies in water, 5 Ca2+ ions 

were used in the EDTA and Ca2+ in water MD simulations, therefore not all the Ca2+ ions 

can be in close proximity to the EDTA molecule. This resulted in a larger average distance 

and standard deviation. The average value of approximately 10 Å is consistent with a 

situation in which, on average, three Ca2+ ions are at an average distance of ~15 Å, which 

is the average distance for the Cl ions. The other two Ca2+ ions are at an average distance 

of ~2.5 Å, which corresponds to a situation in which the ions are bound to EDTA. This is 

confirmed by the average percentage dwell time for Ca2+ ions, which shows that for most 

of the simulation, 80% of the time, at least two of the Ca2+ ions are interacting with the 

surface of EDTA. These simulations’ results agree with the experimental results showing 

the large affinity of EDTA to chelate Ca2+149.  

The small standard deviations observed for the average minimum distance 

indicate that all ions at a given time in the simulation visit the proximity of the EDTA 

molecule, while the large standard deviations observed both for the average distance and 

average percentage dwell time of Ca2+ are an indication that there is dynamic equilibrium 

in which preferentially these ions are close to the EDTA surface. The small deviation on 

the Cl- ion values indicates that these ions remain far from the EDTA surface, an expected 

result based on the EDTA and Cl- polarity. 
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MD Simulation Study of EDTA and Ca2+ in a Buffer Solution 

Results from the MD simulation study of EDTA and Ca2+ in a buffer are presented 

in Table 5.2, which shows the average distance, minimum distance, and average 

percentage dwell time of all the counter ions (Cl-, Na+, and Ca2+) in the buffer solution, as 

well as their standard deviations of these values when averaged over all the trajectories in 

the three simulations performed here for this system. 

The average minimum distance of Ca2+ ions to the surface of the EDTA molecule is 

2.54 Å, slightly smaller than the one observed in the water simulation and within 3.00 Å 

of the surface of the EDTA molecule. The average distance of the Ca2+ ions is 9.05 Å, also 

slightly smaller than in the water simulations. This relatively large value can be explained 

by the same argument used for the simulations in water. The average dwell time for the 

Ca2+ ions also indicates that on average two Ca2+ ions are interacting with the surface of 

EDTA for a majority of the MD simulations. The results in the table show that the Na+ ions 

are much less likely to be close to the EDTA surface. It is not surprising that the minimum 

distance of Na+ (2.02 Å) is closer than that observed in the Ca2+, since the Na+ ions are 

smaller and they only interact with one surface group on the EDTA molecule, whereas the 

Ca2+ ions commonly interact with two surface groups on the EDTA molecule. The average 

distance and the average percentage dwell time are considerably larger and smaller, 

respectively. These results show that while the Na+ is able to get in proximity to the EDTA, 

its interaction is less favorable than for Ca+2, as demonstrated by the larger average 

distance and smaller percentage dwell time. 

The results in the buffer solution are similar to those observed in the simulations 

of EDTA and Ca2+ in water. While it can be observed in the simulations that there is some 

competition for binding sites on EDTA between the 6 Na+ ions and 2 Ca2+ ions in the 

simulations, when comparing the results in Tables 5.1 and 5.2 it is apparent that this 

competition did not affect EDTA’s ability to chelate Ca2+. This indicates that the ability of 
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EDTA to chelate Ca2+ is not affected by the presence of a competing ion (Na+) in the 

simulation environment. The results of the MD simulations are consistent with 

experimental results discussed above154, 155. 

The simulations results agree with the experimental results showing the ability of 

EDTA to chelate Ca2+149 and validate our modeling approach to study chelation of G3.5 

PAMAM dendrimers. 

 
MD Simulation Study of G3.5 PAMAM Dendrimer and Ca2+ in Water  

Results from the MD simulations of G3.5 PAMAM dendrimer and Ca2+ are 

presented in Figure 5.2 and Table 5.3. Figure 5.2 shows a three-dimensional depiction of 

the final recorded step of one of the simulations of G3.5 PAMAM dendrimer with Ca2+ in 

water, while Table 5.3 shows the values for the average distance and minimum distance 

from the surface of the G3.5 PAMAM dendrimer molecule and average percentage dwell 

time of the Ca2+ ions, as well as their standard deviations calculated over all the trajectories 

in the three independent simulations performed for this system. 

Both the figure and table present results that clearly show the ability of G3.5 

PAMAM dendrimer to chelate Ca2+. Figure 5.2 shows that multiple Ca2+ ions are 

interacting with the surface of the G3.5 PAMAM dendrimer molecule in the final recorded 

step of one of the MD simulation runs. As can be seen in Table 5.3, the average minimum 

distance of Ca2+ from the surface of G3.5 PAMAM dendrimer is 2.40 Å, which is closer 

than the average minimum distance of Ca2+ observed in the EDTA simulations in water 

(2.86 Å). Also, the average distance of the Ca2+ ions to the surface of the G3.5 PAMAM 

dendrimer molecule, 4.13 Å, is much smaller than that observed with EDTA (10.34 Å) in 

water, consistent with the fact that in this system all Ca2+ ions can be bound to the G3.5 

PAMAM at the same time. The average percentage dwell time of 0.86 shows that the G3.5 

PAMAM dendrimer is nearly always, almost ninety percent of the time, binding Ca2+ ions.  
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Note that the decrease in the average distance and dwell time is also associated with the 

fact that the calcium ions in this simulation are in the correct stoichiometric ratio, such 

that all the ions can be binding to the G3.5 PAMAM dendrimer at the same time. 

 
MD Simulation Study of G3.5 PAMAM Dendrimer and Ca2+ in a Buffer  

Results from the MD simulation study of the G3.5 PAMAM dendrimer and Ca2+ in 

a buffer are presented in Figure 5.3 and Table 5.4. Figure 5.3 shows the plots of the 

distance of the counter ions (Ca2+) from the surface of the G3.5 PAMAM dendrimer 

molecule versus time during three independent MD runs. Table 5.4 shows the values for 

the average distance and minimum distance from the surface of the G3.5 PAMAM 

dendrimer molecule and the percentage dwell time of all the counter ions (Na+ and Ca2+) 

present in the buffer solution, as well as their standard deviations calculated over all 

trajectories from the three independent MD simulations performed in this system. 

Figure 5.3 shows that for the three independent MD runs performed, at 

approximately halfway through the MD simulations all 16 Ca2+ ions are bound to the 

surface of the G3.5 PAMAM dendrimer. Table 5.4 shows results almost the same as those 

obtained in the water simulations and demonstrates preferential binding of G3.5 PAMAM 

dendrimer to Ca2+ ions. These results show that the results obtained in water can also be 

expected in a buffer solution that mimics a situation closer to the intestinal lumen milieu, 

and that the preferential binding is not sensitive to the details of the solution used in the 

simulations. Moreover, the preferential binding of Ca+2 is highlighted by the difference 

between the average distance of each ion to the surface of the G3.5 PAMAM. The average 

distance of the Ca2+ ions to the surface of the G3.5 PAMAM dendrimer molecule, 3.55 Å, 

is much smaller than that observed with the Na+ ions, 7.50 Å. This indicates that the Ca2+ 

ions appear to be more frequently bound to the G3.5 PAMAM dendrimer than the Na+ 

ions. The average minimum distance of Ca2+ from the surface of G3.5 PAMAM dendrimer 
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of 2.40 Å is consistent with what was observed in the G3.5 PAMAM dendrimer and Ca2+ 

simulation in water. The average minimum distance of Na+ (2.02 Å) is shorter than that 

observed in the Ca2+, in agreement with the results discussed above for the simulation of 

EDTA in buffer. Results of the average percentage dwell time of the Na+ and Ca2+ ions 

show a relatively large difference, 0.60 for Na+ and 0.91 for Ca2+ ions, which is similar to 

that observed in the simulation in water. This indicates that the Ca2+ ions appear to be 

more frequently bound to the G3.5 PAMAM dendrimer than the Na+ ions. Results show 

that Ca2+ is an effective chelation agent for G3.5 PAMAM dendrimer, indicating that under 

the simulation conditions the G3.5 dendrimer is a Ca2+ chelator in both water and in a 

buffer solution.   

 
Apt Computational Environment 

The use of AMBER in the Apt HPC environment has been extremely successful. 

During the course of these studies we were able to secure all the needed resources for the 

project, and because Apt is able to mirror a standard HPC environment, the migration to 

this cloud-based computing environment has been straightforward. Moreover, the 

overhead for using the Apt environment has been minimum. The only overhead incurred 

when using Apt is the instantiation and de-provisioning of the infrastructure, which is 

typically less than 15 minutes, a small fraction of a typical AMBER simulation. 

 
Conclusion 

Using MD simulations validated by agreement with existing experimental results 

in EDTA, we have shown that in MD simulations G3.5 PAMAM dendrimers are capable of 

chelating Ca2+ and therefore they may be good candidates for oral formulations that 

require opening the tight junctions for absorption. We have demonstrated that 

computationally intensive applications of interest in drug delivery research can effectively 

use cloud computing environments like Apt. 
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Figure 5.1: Three-dimensional representation of the final recorded step of one of the MD 
simulations of the EDTA and Ca2+ in water. The blue spheres represent Ca2+ ions in close 
proximity to the EDTA molecule. 
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Table 5.1: Average distance and average minimum distance from the van der Walls surface 
of the EDTA molecule and average percentage dwell time of the counter ions (Cl- and Ca2+) 
included in this simulation. Standard deviations, over the three independent runs of the 
EDTA and Ca2+ in water MD simulations, given between brackets. 
 

Counter Ion 
Average Distance 

(Å) 
Average Minimum 

Distance (Å) 
Average % Dwell 

Time 

Cl- 15.89 (0.47) 2.95 (0.21) 0.00 (0.0) 

Ca2+ 10.34 (5.70) 2.86 (0.58) 0.39 (0.42) 
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Table 5.2:  Average distance and average minimum distance from the van der Walls 
surface of the EDTA molecule and average percentage dwell time of the counter ions (Cl-, 
Na+ and Ca2+) included in this simulation. Standard deviations, over the three 
independent runs of the EDTA and Ca2+ in a buffer MD simulation, given between 
brackets. 
 

Counter Ion 
Average Distance 

(Å) 
Average Minimum 

Distance (Å) 
Average % Dwell 

Time 

Cl- 15.84 (0.43) 3.05 (0.26) 0.00 (0.0) 

Na+ 12.26 (4.04) 2.02 (0.09) 0.24 (0.29) 

Ca2+ 9.05 (4.96) 2.54 (0.40) 0.47 (0.37) 
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Figure 5.2: Three-dimensional representation of the final recorded step of one of the MD 
simulations of the G3.5 PAMAM dendrimer and Ca2+ in water. The blue spheres represent 
Ca2+ ions present in close proximity to the G3.5 PAMAM dendrimer. 
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Table 5.3: Average distance and average minimum distance from the van der Walls surface 
of the G3.5 PAMAM molecule and average percentage dwell time of the counter ion (Ca2+) 
included in this simulation. Standard deviations, over the three independent runs of the 
G3.5 PAMAM dendrimer and Ca2+ in water MD simulation, given between brackets. 
 

Counter Ion 
Average Distance 

(Å) 
Average Minimum 

Distance (Å) 
Average % Dwell 

Time 

Ca2+ 4.13 (2.83) 2.40 (0.02) 0.86 (0.22) 
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Figure 5.3: Plots of the distance of the counter ions (16 Ca2+ ions) from the van der Walls 
surface of the G3.5 PAMAM dendrimer molecule versus time for the three independent 
runs of the MD simulations of the G3.5 PAMAM dendrimer and Ca2+ in a buffer solution. 
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Table 5.4:  Average distance and average minimum distance from the van der Walls 
surface of the G3.5 PAMAM molecule and average percentage dwell time of the counter 
ion (Na+ and Ca2+) included in this simulation. Standard deviations, over the three 
independent runs of the G3.5 PAMAM dendrimer and Ca2+ in a buffer MD simulation, 
given between brackets. 
 

Counter Ion 
Average Distance 

(Å) 
Average Minimum 

Distance (Å) 
Average % Dwell 

Time 

Na+ 7.50 (3.13) 2.02 (0.05) 0.60 (0.20) 

Ca2+ 3.55 (2.20) 2.40 (0.01) 0.91 (0.13) 

 
 
 
 
 
 
 

  



CHAPTER 6 
 
 

CONCLUSIONS 
 
 

Importance of Research Findings 

The development of the field of nanoinformatics is a direct result of the steady 

growth of the field of nanomedicine and nanotechnology. Nanoinformatics is a field that 

consists of several areas of research that use different informatics methodologies. This 

dissertation focuses on the use of three different informatics methodologies to assist in the 

development of PAMAM dendrimer nanoparticle drug delivery systems: information 

extraction (IE), specifically natural language processing (NLP); data mining and machine 

learning; and molecular dynamics (MD) simulation. 

 A literature review was conducted to examine the strides that have been made 

using data mining and machine learning to develop nano-QSARs and other methods to 

predict both functional and structural properties of nanoparticles in the field of 

nanomedicine. Journal articles have been published attempting to predict several 

nanoparticle properties, including cellular uptake, cytotoxicity, molecular loading, 

molecular release, nanoparticle adherence, nanoparticle size, and polydispersity. The 

most common use of data mining and machine learning was to explore cytotoxicity caused 

by inorganic nanoparticles, and it was found that the most common factors determining 

cytotoxicity are charge, concentration, and size; this is not surprising as these properties 

have been hypothesized to be important indications of the potential cytotoxicity of 

nanoparticles98. Two areas lacking adequate research became apparent: the use of data 

mining and machine learning methods to predict cytotoxicity of organic nanoparticles and  
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to analyze in vivo data regarding nanoparticles.   

A method, NanoSifter, based upon NLP methodologies, was developed to 

automatically extract numeric values associated with dendrimer property terms from the 

nanomedicine literature. NanoSifter’s results illustrate that this NLP system is both 

reliable and accurate at extracting information regarding dendrimers from the cancer 

nanomedicine literature. The results from this system are promising for the future of IE 

in the field of nanoinformatics.  

Next, data mining and machine learning were explored for their use in predicting 

cytotoxicity in Caco-2 cells caused by poly(amido amine) (PAMAM) dendrimers. As was 

observed in many of the research articles in the review, the results of the classification 

method used show good accuracy. Also, it was observed that properties regarding charge, 

size, and concentration of the PAMAM dendrimers were the most important factors in the 

classification of cytotoxicity in Caco-2 cells treated with PAMAM dendrimers.  

Finally, the use of MD simulations was examined for the utility of determining 

whether or not generation 3.5 (G3.5) PAMAM dendrimers can chelate calcium (Ca2+). In 

order to validate the MD simulation model, EDTA was used as a gold standard molecule 

because it has been experimentally shown to chelate Ca2+. Results from the MD 

simulations show that G3.5 PAMAM dendrimers are capable of chelating Ca2+ and 

therefore they may be good candidates for oral formulations that require opening the tight 

junctions for absorption. 

 
Contribution to the Field 

 The chapters and research presented in this dissertation clearly illustrate the 

power and accuracy that nanoinformatics methods and techniques can bring toward 

gaining further knowledge and understanding in the field of nanomedicine. This 

dissertation examined the use of three very different informatics methodologies: NLP, 
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data mining and machine learning, and MD simulation. Research presented in this 

dissertation serves as a proof of concept for applying nanoinformatics methods and 

techniques to gain further knowledge and understanding of PAMAM dendrimers, which 

was successfully accomplished by the methodologies explored in this dissertation both 

individually and in combination. Therefore, these methods and techniques should in 

theory be capable of expansion to a variety of different nanoparticles used for applications 

in nanomedicine. The ability to reliably predict and simulate PK/PD properties of orally 

delivered PAMAM dendrimer nanoparticle drug delivery systems using in silico 

approaches has the potential for high payoff in nanomaterial development, allowing the 

concentration of scarce development resources into the synthesis and confirmatory testing 

of promising PAMAM dendrimers. 

 
Future Research 

 The potential for future research in the field of nanoinformatics is vast. Since it is 

a relatively young field, there are still many areas within nanoinformatics that have yet to 

be explored. There are several directions that could be taken for further advancing the 

research presented in this dissertation.  

With regard to the NanoSifter NLP system, there are a few directions of future 

research that could be taken. The obvious, low-hanging fruit would be to improve upon 

the system in order to predominantly improve our precision and f-measure values, while 

maintaining our recall. To accomplish this, it is necessary to develop a text classification 

method to further enhance NanoSifter. Two specific foci of this text classification method 

would be to separate identification of chemical entities and nanoparticles so that 

information extracted from the literature is specific to the nanoparticle of interest, and 

further analysis of percentages within the text to improve the precision achieved for the 

properties of cell viability and transfection efficiency. Two other obvious goals would be to 
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expand this IE method to include more properties and nanoparticle subclasses to be 

annotated and extracted from the literature. Something that would be very powerful would 

be to more seamlessly integrate the NPO into our system so that the annotations and 

extractions contain descriptive metadata. Another goal is the implementation of a 

negation analysis tool into the NanoSifter NLP system, because this could help capture 

data regarding instances where an article states that the dendrimer nanoparticles were not 

toxic at a certain concentration. Finally, developing and implementing a method to 

annotate and extract information from figures and tables would be very useful, as many 

times valuable information within the nanomedicine literature is contained in figures and 

tables rather than the body of text. 

Both the review and the research article regarding the use of data mining and 

machine learning to predict cytotoxicity of PAMAM dendrimers in Caco-2 cells indicate 

several potential areas for further research expansion. First of all, the methods presented 

in the research article could be expanded to analyze and predict other biochemically 

relevant properties of not only unmodified PAMAM dendrimers but also surface-modified 

PAMAM dendrimers. Also, it is necessary to improve the reliability and robustness of our 

classification model by conducting further studies, including the collection of much larger 

datasets. As with the IE methods, an obvious goal is to explore utilizing data mining and 

machine learning to predict many PK/PD properties of a variety of nanoparticle 

subclasses. A specific focus would be to look at using data mining and machine learning to 

predict PK/PD properties in vivo, because there is a lack of research in this area. Another 

future study which would improve upon the research article regarding the use of data 

mining and machine learning to predict cytotoxicity of PAMAM dendrimers in Caco-2 cells 

would be to utilize the same dataset and perform an unsupervised machine learning 

(clustering) method to statistically validate which properties of the 51 calculated molecular 

descriptors are truly indicative of cytotoxicity. 
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Some very interesting studies could be carried out utilizing MD and coarse-grained 

simulations. With regard to PAMAM dendrimers, using simulation methods to look at how 

these molecules interact with the cells of the intestinal epithelium and potentially pass 

through the tight junctions is currently being explored by colleagues. Another interesting 

simulation study would be to use simulation methods to analyze how a corona of ions and 

molecules build up around PAMAM dendrimers and how it effects PK/PD properties of 

the molecule. A final potential simulation study would be to expand the use of simulation 

methods to research and assess a variety of PK/PD properties of other nanoparticle 

subclasses. 

Another area of future work could be to focus on further development of standards 

within the field of nanoinformatics and nanomedicine. The information and knowledge 

gained from this nanoinformatics research, as well as others’ work, should and could be 

compiled for well-established subclasses of nanoparticles to assist in the development of 

standards. Standardization is vital for the advancement of both nanoinformatics and 

nanomedicine. 

As stated previously, there will be challenges along the way that we as a 

nanoinformatics community will need to overcome. Currently some of the most pressing 

challenges are the lack of high-quality experimental data, lack of knowledge regarding 

interactions between nanoparticles, such as aggregation and high polydispersity in 

nanoparticles121, 122.  It is my belief that in working together with the nanomedicine 

community, we will be able to combat these issues and propel both the fields of 

nanoinformatics and nanomedicine. 

 
 
 
 
 



APPENDIX 
 
 

Table A1: Listing of the molecular descriptors and their definitions selected from 
MarvinSketch97. 
 

Molecular 
Descriptor 

Units Definition 

Molecular 
Weight 

Da Average molecular mass calculated from the standard atomic weights 157. 

Exact Mass Da Monoisotopic mass calculated from the weights of the most abundant natural 
isotopes of the elements 158. 

Atom Count  Number of all atoms in the molecule. 
pI  Net charge of an ionizable molecule is zero at a certain pH. This pH is called the 

isoelectric point, also referred to as pI. 
logP  The octanol/water partition coefficient, which is used in quantitative structure 

activity relationships (QSAR) analysis and rational drug design as a measure of 
molecular hydrophobicity 159. 

logD  The octanol-water distribution coefficient, logD represents the compounds at any 
pH value.  

Molecular 
Polarizability 

Å3 The electric field generated by partial charges of a molecule spread through 
intermolecular cavities and the solvent. The induced partial charge (induced 
dipole) has a tendency to diminish the external electric field. This phenomenon is 
called polarizability.  

Aliphatic Atom 
Count 

 Number of atoms in the molecule having no aromatic bond (excluding hydrogens). 

Aliphatic Bond 
Count 

 Number of non-aromatic bonds in the molecule (excluding bonds of hydrogen 
atoms). 

Aromatic Atom 
Count 

 Number of atoms in the molecule having aromatic bonds. 

Aromatic Bond 
Count 

 Number of aromatic bonds in the molecule. 

Asymetric 
Atom Count 

 The number of asymmetric atoms (having four different ligands). 

Bond Count  Number of bonds in the molecule including bonds of hydrogen atoms.  
Chain Atom 
Count 

 Number of chain atoms (non-ring atoms excluding hydrogens).  

Chain Bond 
Count 

 Number of chain bonds (non-ring bonds excluding bonds of hydrogen atoms).  

Chiral Center 
Count 

 The number of tetrahedral stereogenic centers. This function identifies two chiral 
centers in 1,4-dimethylcyclohexane, which does not contain asymmetric atoms.  

Ring Atom 
Count 

 Number of ring atoms.  

Ring Bond 
Count 

 Number of ring bonds.  

Rotatable Bond 
Count 

 Number of rotatable bonds in the molecule. Unsaturated bonds, and single bonds 
connected to hydrogens or terminal atoms, single bonds of amides, sulphonamides 
and those connecting two hindered aromatic rings (having at least three ortho 
substituents) are considered non-rotatable.  

Stereo Double 
Bond Count 

 Number of double bonds with defined stereochemistry.  

Aliphatic Ring 
Count 

 Number of those rings in the molecule that have non-aromatic bonds (SSSR based). 
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Table A1: Continued 
 

Molecular 
Descriptor 

Units Definition 

Aromatic Ring 
Count 

 Number of aromatic rings in the molecule. This number is calculated from the 
smallest set of smallest aromatic rings (SSSAR), which might contain rings which 
are not part of the standard SSSR ring set. As a consequence, the sum of the 
aliphatic ring count and the aromatic ring count can sometimes be greater than the 
ring count value. The difference is the signal of a macroaromatic ring system. 

Carbo Ring 
Count 

 Number of rings containing only carbon atoms. 

Carboaliphatic 
Ring Count 

 Number of aliphatic rings containing only carbon atoms.  

Carboaromatic 
Ring Count 

 Number of aromatic rings containing only carbon atoms (SSSAR based).  

Fused Aliphatic 
Ring Count 

 Number of aliphatic rings having common bonds with other rings.  

Fused Aromatic 
Ring Count 

 Number of aromatic rings having common bonds with other rings.  

Fused Ring 
Count 

 Number of fused rings in the molecule (having common bonds).  

Hetero Ring 
Count 

 Number of rings containing hetero atom(s).  

Heteroaliphatic 
Ring Count 

 Number of aliphatic heterocycles in the molecule.  

Heteroaromatic 
Ring Count 

 Number of aromatic heterocycles in the molecule.  

Largest Ring 
Size 

 Size of the largest ring in the molecule.  

Largest Ring 
System Size 

 Number of rings in the largest ring system.  

Ring Count  Number of rings in the molecule. This calculation is based on SSSR (Smallest Set of 
Smallest Rings).  

Ring System 
Count 

 Number of disjunct ring systems.  

Smallest Ring 
Size 

 Size of the smallest ring in the molecule. 

Smallest Ring 
System Size 

 Number of rings in the smallest ring system.  

Platt Index  Sum of the edge degrees of a molecular graph.  
Randic Index  Harmonic sum of the geometric means of the node degrees for each edge.  
Harary Index  Half-sum of the off-diagonal elements of the reciprocal molecular distance matrix 

of the molecule.  
Hyper Wiener 
Index 

 A variant of the Wiener index.  

Szeged Index  The Szeged index extends the Wiener index for cyclic graphs by counting the 
number of atoms on both sides of each bond (those atoms only which are nearer to 
the given side of the bond than to the other), and sum these counts.  

Wiener Index  The average topological atom distance (half of the sum of all atom distances) in the 
molecule.  

Wiener Polarity  The number of 3 bond length distances in the molecule.  
Cyclomatic 
Number 

 The smallest number of bonds which must be removed so that no circuit remains. 
Also known as circuit rank.  

Fragment 
Count 

 Number of fragments in the sketch.  

H-Bond Donor 
Count 

 Hydrogen Bond Donor calculates atomic hydrogen bond donor inclination. 

H-Bond Donor 
Sites 

 Hydrogen Bond Donor calculates atomic hydrogen bond donor inclination. 

H-Bond 
Acceptor Count 

 Hydrogen Bond Acceptor calculates atomic hydrogen bond acceptor inclination. 

H-Bond 
Acceptor Sites 

 Hydrogen Bond Acceptor calculates atomic hydrogen bond acceptor inclination. 

Refractivity 106[m3mol-1] Molar refractivity is strongly related to the volume of the molecules and to London 
dispersive forces that has important effect in drug-receptor interaction.  
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Table A2: Results from the leave-one-out cross-validation listed by classifier of the first 
analysis including all molecular descriptors. 
 

Classifier Precision Recall 
F-

Measure 
Mean Absolute 

Error 
Accuracy 

Naïve Bayes 0.738 0.738 0.725 0.2972 73.8% 
SMO 0.780 0.767 0.751 0.2330 76.7% 
J48 0.748 0.718 0.722 0.3180 71.8% 

Bagging 0.800 0.777 0.780 0.3241 77.7% 
Classification 
via Regression 

0.780 0.767 0.751 0.2956 76.7% 

Filtered 
Classifier 

0.748 0.718 0.722 0.3180 71.8% 

LWL 0.834 0.777 0.778 0.2971 77.7% 
Decision 

Table 
0.698 0.680 0.683 0.3746 68.0% 

DTNB 0.755 0.728 0.732 0.3145 72.8% 
NBTree 0.834 0.777 0.778 0.2520 77.7% 
Random 

Forest 
0.750 0.738 0.741 0.2874 73.8% 
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Table A3: Results from the leave-one-out cross-validation listed by classifier of the second 
analysis including the automatically feature selected molecular descriptors. 
 

Classifier Precision Recall 
F-

Measure 
Mean Absolute 

Error 
Accuracy 

Naïve Bayes 0.738 0.738 0.725 0.2972 73.8% 
SMO 0.780 0.767 0.751 0.2330 76.7% 
J48 0.748 0.718 0.722 0.3180 71.8% 

Bagging 0.755 0.728 0.732 0.3241 72.8% 
Classification 
via Regression 

0.780 0.767 0.751 0.2956 76.7% 

Filtered 
Classifier 

0.748 0.718 0.722 0.3180 71.8% 

LWL 0.834 0.777 0.778 0.2971 77.7% 
Decision 

Table 
0.650 0.641 0.644 0.3736 64.1% 

DTNB 0.755 0.728 0.732 0.3145 72.8% 
NBTree 0.834 0.777 0.778 0.2520 77.7% 
Random 

Forest 
0.750 0.738 0.741 0.2879 73.8% 
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Table A4: Results from the leave-one-out cross-validation listed by classifier for the third 
analysis including the molecular descriptors selected by experts. 
 

Classifier Precision Recall 
F-

Measure 
Mean Absolute 

Error 
Accuracy 

Naïve Bayes 0.796 0.786 0.789 0.2550 78.6% 
SMO 0.738 0.738 0.725 0.2621 73.8% 
J48 0.748 0.718 0.722 0.3180 71.8% 

Bagging 0.813 0.786 0.789 0.3208 78.6% 
Classification 
via Regression 

0.796 0.786 0.789 0.2954 78.6% 

Filtered 
Classifier 

0.834 0.777 0.778 0.3051 77.7% 

LWL 0.834 0.777 0.778 0.3030 77.7% 
Decision 

Table 
0.604 0.602 0.603 0.3867 60.2% 

DTNB 0.604 0.602 0.603 0.3829 60.2% 
NBTree 0.834 0.777 0.778 0.3271 77.7% 
Random 

Forest 
0.750 0.738 0.741 0.2865 73.8% 
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Table A5: J48 classification accuracy and RMS when using the features selected using all 
possible WEKA recommended pairs of Attribute Evaluator and Search Method. The 
selected features are given in the third column.  
 

Attribute Evaluator Search Method Selected Attributes J48 
Accuracy 

J48 
RMS 
Error 

CfsSubsetEval BestFirst pI, logP 74.8 0.4163 

CfsSubsetEval ExhaustiveSearch DID NOT RUN DUE TO THE LARGE SIZE 
OF FEATUE SET 

  

CfsSubsetEval GreedyStepwise pI, logP 74.8 0.4163 

ChiSquaredAtributeEval Ranker H-Bond_Acceptor_Sites, pI, logP, 
Harary_Index, Refractivity, Bond_Count, 
Molecular_Polarizability, 
Rotatable_Bond_Count, Atom_Count, 
logD, Aliphatic_Bond_Count, 
Chain_Bond_Count, Chain_Atom_Count, 
Aliphatic_Atom_Count, Exact_Mass, 
Molecular_Weight, Wiener_Index, 
Randic_Index, Szeged_Index, 
Wiener_Polarity, Platt_Index, H-
Bond_Donor_Count, 
Hyper_Wiener_Index, H-
Bond_Donor_Sites, H-
Bond_Acceptor_Count 

74.8 0.401 

ClassifierSubsetEval GreedyStepwise NO ATTRIBUTES SELECTED   

ConsistencySubsetEval GreedyStepwise pI, logD 74.8 0.4163 

CostSensitiveAttributeEval Ranker NO ATTRIBUTES SELECTED   

CostSensitiveSubsetEval GreedyStepwise NO ATTRIBUTES SELECTED   

FilteredAttributeEval Ranker H-Bond_Acceptor_Sites, Harary_Index, 
logP, pI, Bond_Count, Refractivity, 
Molecular_Polarizability, 
Rotatable_Bond_Count, Atom_Count, 
logD, H-Bond_Donor_Sites, 
Aliphatic_Atom_Count, 
Chain_Bond_Count, 
Aliphatic_Bond_Count, Exact_Mass, 
Chain_Atom_Count, Molecular_Weight, 
Szeged_Index, Wiener_Polarity, 
Randic_Index, Wiener_Index, Platt_Index, 
H-Bond_Donor_Count, 
Hyper_Wiener_Index, H-
Bond_Acceptor_Count 

74.8 0.401 

FilteredSubsetEval GreedyStepwise pI, logP 74.8 0.4163 

GainRatioAttributeEval Ranker pI, Hyper_Wiener_Index, logP, 
Platt_Index, Aliphatic_Atom_Count, 
Szeged_Index, Aliphatic_Bond_Count, 
Chain_Atom_Count, Randic_Index, 
Molecular_Weight, Chain_Bond_Count, 
Wiener_Polarity, H-Bond_Donor_Count, 
Exact_Mass, Wiener_Index, logD, 
Harary_Index, Bond_Count, 
Rotatable_Bond_Count, Atom_Count, 
Molecular_Polarizability, Refractivity, H-
Bond_Acceptor_Sites, H-
Bond_Donor_Sites, H-
Bond_Acceptor_Count 

74.8 0.401 
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Table A5: Continued 
 

Attribute Evaluator Search 
Method 

Selected Attributes J48 
Accuracy 

J48 
RMS 
Error 

InfoGainAttributeEval Ranker H-Bond_Acceptor_Sites, Harary_Index, 
logP, pI, Bond_Count, Refractivity, 
Molecular_Polarizability, 
Rotatable_Bond_Count, Atom_Count, 
logD, H-Bond_Donor_Sites, 
Aliphatic_Atom_Count, 
Chain_Bond_Count, 
Aliphatic_Bond_Count, Exact_Mass, 
Chain_Atom_Count, Molecular_Weight, 
Szeged_Index, Wiener_Polarity, 
Randic_Index, Wiener_Index, Platt_Index, 
H-Bond_Donor_Count, 
Hyper_Wiener_Index, H-
Bond_Acceptor_Count 

74.8 0.401 

LatentSemanticAnalysis Ranker Molecular_Weight, Exact_Mass, 
Atom_Count, pI, logP, logD, 
Molecular_Polarizability, 
Aliphatic_Atom_Count, 
Aliphatic_Bond_Count, Bond_Count, 
Chain_Atom_Count, Chain_Bond_Count, 
Rotatable_Bond_Count, Platt_Index, 
Randic_Index, Harary_Index, 
Hyper_Wiener_Index, Szeged_Index, 
Wiener_Index, Wiener_Polarity, H-
Bond_Donor_Count, H-
Bond_Donor_Sites, H-
Bond_Acceptor_Count, H-
Bond_Acceptor_Sites, Refractivity 

74.8 0.401 

OneRAttributeEval Ranker Hyper_Wiener_Index, H-
Bond_Donor_Sites, Randic_Index, 
Harary_Index, Wiener_Index, Platt_Index, 
Aliphatic_Bond_Count, Szeged_Index, 
Wiener_Polarity, H-Bond_Donor_Count, 
Chain_Bond_Count, 
Aliphatic_Atom_Count, 
Chain_Atom_Count, H-
Bond_Acceptor_Sites, pI, logD, logP, 
Bond_Count, Refractivity, 
Molecular_Polarizability, Atom_Count, 
Exact_Mass, Rotatable_Bond_Count, 
Molecular_Weight, H-
Bond_Acceptor_Count, 
Aromatic_Atom_Count, 
Fused_Aromatic_Ring_Count, 
Largest_Ring_System_Size, 
Aromatic_Bond_Count, 
Ring_System_Count, Ring_Count, 
Smallest_Ring_Size, Largest_Ring_Size, 
Fragment_Count, Cyclomatic_Number, 
Smallest_Ring_System_Size, 
Asymetric_Atom_Count, 
Heteroaromatic_Ring_Count, 
Fused_Ring_Count, 
Aliphatic_Ring_Count, 
Carbo_Ring_Count, 
Carboaliphatic_Ring_Count, 
Carboaromatic_Ring_Count, 
Aromatic_Ring_Count, 
Stereo_Double_Bond_Count, 
Heteroaliphatic_Ring_Count, 
Hetero_Ring_Count, 
Chiral_Center_Count, Ring_Atom_Count, 
Ring_Bond_Count, 
Fused_Aliphatic_Ring_Count 

74.8 0.401 
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Table A5: Continued 
 

Attribute Evaluator Search 
Method 

Selected Attributes J48 
Accuracy 

J48 
RMS 
Error 

PrincipalComponents Ranker Refractivity, Molecular_Polarizability, 
Bond_Count, Atom_Count, 
Wiener_Polarity, Randic_Index, 
Aliphatic_Bond_Count, 
Aliphatic_Atom_Count, 
Chain_Atom_Count, Chain_Bond_Count, 
Molecular_Weight, Exact_Mass, 
Platt_Index, H-Bond_Donor_Count, 
Rotatable_Bond_Count, Harary_Index, H-
Bond_Acceptor_Count, H-
Bond_Donor_Sites, H-
Bond_Acceptor_Sites, logD, Szeged_Index, 
Wiener_Index, logP, 
Hyper_Wiener_Index, pI 

74.8 0.401 

ReliefFAttributeEval Ranker pI, Hyper_Wiener_Index, logP, H-
Bond_Donor_Sites, logD, H-
Bond_Donor_Count, H-
Bond_Acceptor_Sites, 
Rotatable_Bond_Count, Bond_Count, 
Atom_Count, Molecular_Polarizability, 
Refractivity, Wiener_Polarity, 
Randic_Index, Aliphatic_Bond_Count, 
Chain_Bond_Count, Chain_Atom_Count, 
Aliphatic_Atom_Count, 
Molecular_Weight, Exact_Mass, 
Platt_Index, Harary_Index, H-
Bond_Acceptor_Count, Szeged_Index, 
Wiener_Index 

74.8 0.401 

SVMAttributeEval Ranker Hyper_Wiener_Index, H-
Bond_Donor_Sites, Randic_Index, 
Harary_Index, Wiener_Index, Platt_Index, 
Aliphatic_Bond_Count, Szeged_Index, 
Wiener_Polarity, H-Bond_Donor_Count, 
Chain_Bond_Count, 
Aliphatic_Atom_Count, 
Chain_Atom_Count, H-
Bond_Acceptor_Sites, pI, logD, logP, 
Bond_Count, Refractivity, 
Molecular_Polarizability, Atom_Count, 
Exact_Mass, Rotatable_Bond_Count, 
Molecular_Weight, H-
Bond_Acceptor_Count, 
Aromatic_Atom_Count, 
Fused_Aromatic_Ring_Count, 
Largest_Ring_System_Size, 
Aromatic_Bond_Count, 
Ring_System_Count, Ring_Count, 
Smallest_Ring_Size, Largest_Ring_Size, 
Fragment_Count, Cyclomatic_Number, 
Smallest_Ring_System_Size, 
Asymetric_Atom_Count, 
Heteroaromatic_Ring_Count, 
Fused_Ring_Count, 
Aliphatic_Ring_Count, 
Carbo_Ring_Count, 
Carboaliphatic_Ring_Count, 
Carboaromatic_Ring_Count, 
Aromatic_Ring_Count, 
Stereo_Double_Bond_Count, 
Heteroaliphatic_Ring_Count, 
Hetero_Ring_Count, 
Chiral_Center_Count, Ring_Atom_Count, 
Ring_Bond_Count, 
Fused_Aliphatic_Ring_Count 

74.8 0.401 
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Table A5: Continued 
 

Attribute Evaluator Search 
Method 

Selected Attributes J48 
Accuracy 

J48 
RMS 
Error 

SymmetricalUncert 
AttibuteEval 

Ranker pI, logP, Harary_Index, 
Molecular_Polarizability, Bond_Count, 
Refractivity, Rotatable_Bond_Count, 
Atom_Count, H-Bond_Acceptor_Sites, 
Hyper_Wiener_Index, logD, 
Aliphatic_Bond_Count, 
Chain_Bond_Count, Chain_Atom_Count, 
Exact_Mass, Aliphatic_Atom_Count, 
Molecular_Weight, Wiener_Index, 
Randic_Index, Platt_Index, Szeged_Index, 
H-Bond_Donor_Count, Wiener_Polarity, 
H-Bond_Donor_Sites, H-
Bond_Acceptor_Count 

74.8 0.401 

WrapperSubsetEval GreedyStepwise NO ATTRIBUTES SELECTED   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



105 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table A6: Schema describing different properties of the various generations of PAMAM 
dendrimers98, 142, 160-165. 
 

Generation 
Generation 

Classification 
Surface 
Group 

No. 
Surface 
Group 

Molecular 
Weight 

(Da) 

Diameter 
(nm) 

G0 Full -NH2 4 517 1.5 
G1 Full -NH2 8 1430 2.2 

G1.5 Half -COOH 16 2935 2.2 
G2 (-NH2) Full -NH2 16 3256 2.9 
G2 (-OH) Full -OH 16 3272 2.9 

G2.5 Half -COOH 32 6267 3.56 
G3 Full -NH2 32 6909 3.6 

G3.5 Half -COOH 64 12931 3.8 
G4 Full -NH2 64 14215 4.5 

G4.5 Half -COOH 128 26258 4.7 
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Table A7: Table listing all of the acronyms/abbreviations and their unabbreviated forms. 
 

Acronym/Abbreviation Unabbreviated Form 
NLP Natural language processing 
PAMAM Poly(amido amine) 
ChiSquaredAttributeEval Chi squared attribute evaluation 
pI Isoelectric point 
LWL Locally weighted learning 
NBTree Naïve Bayes tree 
SMO Sequential minimal optimization 
DTNB Decision table/Naïve Bayes 
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