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ABSTRACT 

 

 Advances in sequencing technologies have made it possible to generate large 

amounts of microbiological sequence data without culture methods. The data generated 

pose a significant data analysis challenge. This is especially true in clinical diagnostics 

where accurate and timely diagnoses are key. To enable infectious disease diagnostics, 

we created Taxonomer, a kmer-based metagenomics software tool, which can rapidly 

process large amounts of sequence data with accuracy and precision similar to slower 

alignment-based approaches. A kmer is a nucleotide subsequence of k length. Kmer exact 

matching is performed in RAM, utilizing data structures with rapid query times, making 

kmer approaches magnitudes faster than alignment methods. Prior to Taxonomer, other 

kmer-based methods were subject to high false positive rates. Taxonomer differs by 1) 

providing a workflow that reduces false-positives, 2) including host-transcript profiling, 

and 3) providing a novel protein kmer tool to identify viruses, which are typically too 

divergent to reliably identify using nucleotide sequence.  

A web-based front-end was created with the D3 enabled iobio framework. 

Reference sets utilized in Taxonomer were obtained from NCBI, GreenGenes, unite, and 

uniprot databases. A wide-range of simulated datasets and real clinical specimens were 

created or obtained to evaluate Taxonomer. Taxonomer was compared to previously 

published pipelines (SURPI), classifiers (Kraken, RDP classifier), and sequence 

alignment methods (BLAST, SNAP, RapSearch2, DIAMOND). Taxonomer was also 
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compared to a commercially available respiratory virus panel and utilized on a large 

cohort of pneumonia positive patients that had previously undergone extensive 

microbiological diagnostics. 

Taxonomer had agreement at 98.7% with SURPI to assign reads at the phylum 

level. Taxonomer, RDP classifier, and Kraken classified simulated 16S rRNA reads 

correctly at the species level at 59.5, 61.7, and 46.0%, respectively. Protein classification 

using reads derived from viruses showed similar sensitivity to alignment-based methods 

with RapSearch2, and DIAMOND but with slightly decreased analysis times. 

Taxonomer provides an accurate workflow for processing samples in a diagnostic 

setting. It identifies bacteria, fungi, virus, and human transcripts from clinical specimens 

with accuracy comparable to alignment methods. Its web-based front-end makes it 

accessible to laboratories without significant compute resources. 
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CHAPTER 1 

 

INTRODUCTION 

 

Advances in diagnostic technology have provided greater resolution to examine 

the natural world. In the field of microbiology, new technologies have enabled 

researchers to better distinguish between microorganism species and strains. This has led 

to the discovery of many novel bacteria and fungi and led to a doubling of new bacterial 

species named nearly every 10 years (1). In 1977, Carl Woese et al. analyzed the 16S 

rRNA gene from bacteria and established a gene-based approach to understand the 

phylogenetic relationship of bacteria (2). In the nearly 40 years that have followed, the 

16S rRNA gene is still the standard marker for bacterial evolutionary genetics studies and 

molecular identification. The growth of named bacterial species has increased from 

~3,000 to ~12,000 (see Figure 1.1), since the introduction of gene-based phylogenetics. 

Similar gene-based approaches utilizing the rRNA genes for fungal organisms have been 

employed to broaden our understanding of eukaryotic microorganisms. These gene-based 

approaches remain popular because of the rich reference sets that have been created, 

standardized protocols, and assessed interpretation criteria. 

DNA sequencing is central to these gene-based methods for microorganism 

detection, identification, and phylogeny. Recent developments in sequence technologies, 

in particular massively parallel sequencers often called Next-generation Sequencing 
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(NGS), have allowed the expansion of these techniques. NGS has opened up a new field 

of research called metagenomics, the study of complex microbial communities. 

Metagenomics and NGS represent a significant advancement in microbiological research 

because it allows the investigation of environments without culture.  

Clinical metagenomics is emerging as a field of important research. Measuring 

the composition of bacterial species present at sites on the human body has shown 

associations with allergies (3), eczema (4), and irritable bowel syndrome (5). While cost 

and turn-around-time remain a barrier to routine implementation of clinical 

metagenomics in reference laboratories, it is clear that metagenomics techniques will be 

important for future diagnostics as more knowledge is gained about the human-

microbiome interaction. 

Metagenomics sequencing techniques can generate massive amounts of data that 

may take weeks to analyze. This has created an opportunity for computational biologists 

to develop new techniques, data resources, and strategies for analyzing metagenomics 

data. While techniques and tools exist for rapid analysis, the diagnostic implementation is 

challenging because of poor precision, lack of clarity on whether the information is 

actionable, and complexity in interpretation.  

This dissertation describes the creation of Taxonomer, a rapid metagenomics tool 

targeting clinical and diagnostic microbiology. Taxonomer is distinct from other 

metagenomics tools in that it focuses on speed and maximizing sensitivity and specificity 

for the identification of bacterial and fungal species, identification of sequences from 

known divergent and novel viruses, and performs human transcriptional analysis to detect 

fluctuations in gene expression involved in immunological response. Taxonomer works 
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in a high Random Access Memory (RAM) environment and utilizes short DNA 

sequences (kmers) to perform sample analysis in minutes. Taxonomer exists as a web-

based platform placed into the iobio framework (6), which makes it accessible to 

laboratories without significant computational resources. 

The introduction chapter seeks to provide additional context explaining 

Taxonomer’s design choices. Additional background is provided to illustrate the need for 

Taxonomer. Chapter 2 fully describes the components of Taxonomer, benchmarks the 

tool against current tools, and includes several use cases. Chapter 3 compares 

metagenomics methods to a standard respiratory viral diagnostic panel, and Chapter 4 

demonstrates how Taxonomer can be employed to understand the etiology of pneumonia 

using a large cohort of well-characterized samples. 

 

1.1 Kmer-Based Methods 

Alignment methods for DNA compute a scoring matrix to determine the optimal 

alignment between two sequences. Matching bases receive high scores; ‘mismatches’ and 

‘gaps’ receive low scores. From the scoring matrix, the best possible alignment can be 

determined. Many metagenomic tools use alignment methods to determine the taxonomic 

origin of a sequence (7,8). However, producing an alignment is not essential to answer 

the underlying question: Does this sequence belong to a human, bacterial species, or 

fungal species? A quicker alternative to alignment is exact kmer matching.  

Kmer matching does not compute a score but simply queries a database or hash 

table to determine the kmer present. The utility of kmer matching is provided in the 

following illustration (see Figure 1.2): imagine we want to determine if a sequence is 
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derived from Acinetobacter baumannii or Staphylococcus aureus. First, we analyze the 

reference sequences; in this illustration we use GenBank references NC_021733 (A. 

baumannii) and NC_002745 (S. aureus) and count the 31 base pair (bp) kmers. The A. 

baumannii strain’s genome is 4,001,621 bp and the number of distinct 31 bp kmers in 

that genome is 3,925,464. This shows that only 1.9% of the A. baumannii genome 

contains redundant 31 bp sequences. For S. aureus, the genome size is 2,814,816 bp and 

the 31 bp kmer count is 2,743,338; 2.5% of the kmers are redundant. When comparing 

the two genomes’ 31bp kmers (n=6,668,802), only 102 (0.002%) are seen in both 

species. In this simple illustration, it is clear to see that a single kmer derived from one 

organism is unlikely to be confused with the other. NGS sequence length can vary from 

50 – 300 bp, meaning that for a single sequence, as many as 20 to 270 31bp kmers will be 

queried for each sequence. Even with multiple queries per sequence, interrogated kmer-

based methods can be 900 times faster than alignment methods like BLAST (9). In 

Chapter 2, we provide data and comprehensive benchmarks that show the efficacy of 

kmers to both discriminate sequences from numerous taxa and identify the origin of a 

sequence down to the species level in some cases. 

 

1.2 Bacterial Identification 

Microbial culture independent studies have led to the discovery of over 200,000 

hypothetical bacterial species based on 16S rDNA sequence comparison. When you 

contrast this with the number of microorganisms that have been named (n = ~14,000), it 

is apparent that the majority of the known bacterial world has not been named or even 

grown in a laboratory. Currently, there are over 5,000,000 bacterial sequences in public 
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databases of which ~3,000,000 are 16S rRNA gene sequences (10), and only around 

~5,000 species have complete bacterial genomes (11). NGS sequencing makes it possible 

to sequence genomic regions outside of the 16S rRNA gene; however, the decades of 

work have created a robust and complete database to identify and compare 

microorganisms. As NGS has become more available, the use of 16S rDNA in studies has 

helped us understand bacterial communities of both environmental and health 

significance. It is estimated that through current research, the microbial world as 

understood by the 16S rRNA gene will be saturated by the end of the current decade, 

meaning that nearly all bacteria species will have had its 16S rRNA sequenced (12).  

The 16S rRNA gene is a well-established marker, but it provides a limited view of 

a microorganism’s phenotype. Additionally, the evolutionary rate at which it mutates can 

be too slow to provide adequate information to differentiate some species (13). Other 

DNA targets can provide more resolution to speciate; for example in mycobacteria, the 

rpoB gene is often used to differentiate members of the Mycobacterium chelonae and M. 

abscessus group. However, the use of alternative targets is hindered by both database 

coverage and the inability to create universal primers that work outside of a family or 

phylum. 

 

1.3 Fungal Identification 

 As with bacteria, molecular fungal identification is carried out by using ribosomal 

sequence. While bacteria identification is largely performed with the small subunit of the 

ribosome (i.e. 16S rDNA), the markers for fungal identification are either the 28S gene 

(LSU) or Internal Transcribed Spacer (ITS). Within the last few years, the ITS has 
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become preferred over the LSU because it has higher variability, thus providing greater 

species resolution (14). The amount of reference information for fungi is significantly 

less than the information available for the bacterial 16S rRNA gene. While over 

3,000,000 16S rRNA sequences are available, only ~10,000 LSU and ~500,000 ITS 

sequences are present in public reference databases (15,16). 

 

1.4 Bacterial and Fungal Identification Resources 

 Several publically available resources have been created to facilitate identification 

of microorganisms and phylogenetic studies. The main role of these resources is to house 

and curate 16S, ITS, LSU sequences and provide tools which aide users to query or 

interact with the reference set. The need for these resources is clear when looking at the 

annotations present in International Nucleotide Sequence Database Collaboration 

(INSDC) databases, where nearly less that <20% of the sequences are annotated to the 

species level (see Figure 1.3). While there is redundancy between the different resources, 

each provides some distinct value.  

 Bacterial resources include GreenGenes, Silva, and the Ribosomal Database 

project (10,15,17). Each of these resources curate publically available 16S rRNA 

sequences INSDC. Sequences are filtered for quality and the taxonomic lineage 

annotation is reassessed and amended if necessary. In addition to the curation, the 

resources provide tools to classify sequences against their curated data. Both GreenGenes 

and Silva provide datasets that are clustered and aligned. The clustering of sequences 

provides a method to reduce redundant data as well as estimate the breadth of species 

present in the database without having to evaluate taxonomic annotations associated with 
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the sequences. Observation of the 16S rRNA gene have established that strains of the 

same species generally have <1.0% difference in percent identity (12). Therefore, 

clustering sequences at 99% identity yields estimates of hypothetical abundance. 

Sequences belonging to a cluster (i.e., within 1% sequence identity) are considered to be 

part of the same Operational Taxonomic Unit (OTU) or Species Hypothesis (SH). A 

canonical OTU sequence, usually the centroid, is selected to represent the OTU in subset 

databases. Publically available reference sequences for fungi are available in SILVA 

(LSU) and Unite (ITS) (15,16). Both SILVA and Unite provide clustered sequences 

collapsed to OTUs. 

 Taxonomer leverages the curated 16S rRNA and ITS clustered datasets provided 

by GreenGenes and Unite to identify bacteria and fungal sequences, respectively. These 

marker genes provide 100X more species coverage than is provided by whole genome 

sequence. In Chapter 2, we demonstrate an increase in sensitivity and specificity by using 

these highly curated references over other tools utilizing uncurated and/or genomic 

references sets. 

  

1.5 Molecular Viral Identification 

 Viral identification is significantly different from the identification of bacteria and 

fungi for several reasons. They lack universally conserved genes, strains of the same viral 

species can be highly divergent, and size varies drastically between different viruses. 

Like bacteria and fungi, a significant portion of viruses remain unknown; however, unlike 

bacteria and fungi, which contain conserved genes (e.g., 16S rDNA, LSU, rpoB) that 



 

 

8 

allow comparison to already known species, viruses may have little shared sequence 

identity to other known viruses. 

 To detect novel viral sequences, nucleotides are translated into amino acids and 

compared against a protein database. The reduction in complexity when converting a 

DNA sequence to an amino acid sequence more readily allows for the detection of 

distantly related sequences. However, searching in protein space is more computationally 

expensive since the query needs to be translated into all 6 frames and more alignments 

may be seeded. In Chapters 2, 3, and 4 we demonstrate the benefit of protein searching in 

the detection of viral sequences from clinical specimens. 

 

1.6 Metagenomics 

In the above sections, we discussed the current practices and resources for 

microorganism identification. In this section, we address metagenomics. For our purpose, 

metagenomics is defined as the identification of bacteria, fungi, and virus, and the 

detections of markers associated with an infection in a complex sample. This definition 

succinctly describes what Taxonomer tries to achieve by identifying bacteria, fungi, 

viruses, and profiling human transcripts. Metagenomic methods provide a diagnostic 

advantage by eliminating the need for culturing. It also has the ability to detect both novel 

and under-appreciated bacterial, fungal, and viral species that analyte-based testing 

cannot. 
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1.6.1 Amplicon Sequencing 

 Amplicon sequencing was not the specific target of Taxonomer, but it is 

important to note because it is used extensively in human microbiome/metagenomics 

studies. Amplicon sequencing uses Polymerase Chain Reaction (PCR) to magnify a 

portion of the 16S rRNA gene, or other marker, from a sample. The resulting amplicon is 

sequenced. Because a single molecule is sequenced by this technique, the analysis is 

fairly straightforward and computationally inexpensive. Analysis steps can be reduced by 

counting and removing duplicate sequences, leaving only a portion of the reads to be 

compared against reference sets. The drawback of this approach is that it is not suitable 

for viruses and if the intent is to measure multiple taxa, then multiple amplicons need to 

be generated. 

 

1.6.2 Shotgun Methods 

 Taxonomer was developed utilizing shotgun sequencing as the primary sample 

type. Two broad shotgun techniques exist, RNA-seq or DNA-seq, which use libraries 

created from isolated RNA and DNA, respectively. These sample types are more 

complex to analyze because they contain sequence from random genomic regions of the 

taxa present in the sample. This means very few sequences will be duplicates and thus 

each sequence read needs to be analyzed to determine its taxonomic origin.  

 

1.6.3 Analysis of Shotgun Metagenomics 

 A clinical metagenomics sample can contain sequence from the patient, the 

microbiome community, environmental source, and/or pathogen. The diversity of the 
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taxa that may be present has led many to create bioinformatics pipelines that sequentially 

identify and bin sequences belonging to certain taxa (7,18). Central to these pipelines are 

the alignment tools that compare reads to different reference sets; ideally the initial 

screening steps will be performed by a rapid alignment tool with a small reference 

database to remove a large portion of reads from the samples set. This first step is most 

frequently performed using the human genome. Subsequent steps use larger databases, 

which take a longer time to process to identify reads that are from bacterial, fungal, and 

other organisms. A logical data flow is essential because the time to analyze samples can 

take hours to days to process depending on the composition of taxa present (see Chapter 

2). 

 Metagenomics data are complex and understanding how to interpret the data is 

important to avoid false conclusions. In shotgun metagenomics, data can be derived from 

different regions of the microorganism genome. Using these random DNA fragments for 

identification with the same algorithm may lead to erroneous conclusions (19-21). 

Several factors may exacerbate this issue, including a) a lack of database references for 

the region being screened, b) a lack of knowledge of the evolutionary pressure and the 

subsequent mutation rate in order to accurately compare results to reference sequences, 

and contaminated reference sequences.  

 We created Taxonomer to minimize the issues described above. Central to 

Taxonomer‘s approach is the use of vetted marker genes for identification, and a 

classification system that provides confidence scores based on kmer weighting. In the 

subsequent chapters, we illustrate the benefits of our approach. 
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Figure 1.2. Venn diagram showing the shared 31 bp 
kmer composition of A. baumannii and S. aureus.  
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Figure 1.3. The taxonomic lineage annotations of 
bacterial sequences deposited into International 
Nucleotide Sequence Database Collaboration (INSDC) 
databases. The references are grouped into deposit 
categories bacteria (BCT) and environmental (ENV). The 
majority of sequences deposited do not have annotation 
indicating their genus or species. Some of these represent 
unnamed or unplaced bacterial species. 



 

 

 

 

CHAPTER 2 

 

TAXONOMER: INTERACTIVE WEB-BASED METAGENOMICS  

ANALYSIS PORTAL FOR UNIVERSAL PATHOGEN  

DETECTION AND HOST RESPONSE-BASED 

DIAGNOSIS AND DISCOVERY1 

 

2.1 Introduction 

With replacement of microbial culture by molecular tests, the laboratory diagnosis 

of infectious diseases increasingly relies on pathogen-specific tests. While more sensitive, 

they require a priori knowledge of likely etiologic agents (i.e. answering the question ‘is 

pathogen X present’). For several common syndromes (e.g. pneumonia, sepsis, 

encephalitis), many different pathogens can cause clinically indistinguishable symptoms. 

Thus, increasingly large, yet inherently limited diagnostic panels are necessary for 

detection of common pathogens, and exhaustive follow-up testing may be required if 

first-line tests are negative. A unified approach for detection of all potential pathogens 

(panmicrobial detection) will increase diagnostic yield, decrease time to result for 

unexpected pathogens, and improve targeted treatment. 

                                                        
 

1 This chapter has been submitted to Genome Biology. Co-authors include Dr. 
Mark Yandell, Dr. Karen Eilbeck, and Dr. Robert Schlaberg. Keith Simmon is co-first 
author. 
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Panmicrobial detection will also enable more comprehensive microbial profiling 

studies. For example, dysbiosis of the mucosal and cutaneous microbiota has been linked 

to metabolic, immunologic, cardiovascular, and neoplastic diseases (1-6). However, 

today most microbiome studies still rely upon PCR amplification of marker genes (e.g. 

bacterial 16S rRNA). This approach introduces bias (7), ignores effects of the relevant 

viral and phage flora for which no marker gene exists (8-10), and is unable to assess host 

response differences, all of which are known to influence the outcome of infectious 

diseases and modulate human microbial communities. 

More recently, wide availability of next-generation sequencing instruments and 

lower reagent costs have enabled enrichment-independent metagenomics through shotgun 

sequencing of mixed microbial and host DNA or RNA directly from patient samples. 

This enrichment-independent approach to metagenomics enables hypothesis-free 

detection and genomic characterization of a theoretically unlimited number of pathogens 

(i.e. answering the question ‘what pathogen is present’). Indeed, metagenomic 

approaches have already led to the diagnosis of previously unrecognized infections and 

discovery of novel pathogens (11-13). Moreover, RNA-seq-based metagenomics 

potentially enables novel diagnostic approaches. For example, host transcriptional 

responses to pathogens can be used to inform treatment decisions, e.g. by differentiating 

viral from bacterial infections or colonization from true infections, thus helping to limit 

antibiotic treatment (14-16). 

Unfortunately, analysis of the large datasets generated by high-throughput 

metagenomics requires a combination of bioinformatics skills, computational resources, 

and microbiological expertise that is absent from most laboratories, especially diagnostic 
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laboratories. Thus, more computationally efficient, accurate, and easy-to-use analysis 

tools are needed. 

Here we describe Taxonomer, an ultrafast, user-friendly, web-based tool for 

metagenomic sequence analysis. Taxonomer supports both nucleotide and protein-based 

classification and enables new analysis modalities for clinical metagenomics datasets. We 

illustrate the power of Taxonomer using samples from a national pneumonia study (17), 

and published RNA-seq data from patients with highly pathogenic virus infections.  

Using Taxonomer, we detect previously unrecognized human infections in these data, 

and identify an antiviral transcript response signature directly from nasopharyngeal swabs 

of children with influenza, which has important implications for diagnosis and discovery. 

Taxonomer is publically available via an iobio (18) web-service, allowing rapid, highly 

interactive analyses using personal computers and mobile devices. 

 

2.2 Materials and Methods 

2.2.1 Binner Module 

Identifying small numbers of pathogen sequences hidden among vast numbers of 

host and/or microbiota-derived sequencing reads is a major algorithmic challenge for 

metagenomics-based pathogen detection tools. The standard approach is to use digital 

subtraction (19), whereby all sequencing reads are first aligned to the host’s genome 

sequence. This is the approach used by SURPI (20), for example. During subtraction, 

reads of host origin are removed. Additional subtraction steps may be used for removal of 

non-relevant microbial sequences, including those known to represent reagent 

contamination (21) or sequencing adaptors. A greatly reduced number of presumably 
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relevant microbial sequences are then classified by alignment to larger reference 

databases. Since only the remaining reads are matched with selected reference sequences, 

pathogens can be missed entirely if they are homologous to sequences in the subtraction 

database. Taxonomer overcomes this inherent limitation of digital subtraction by means 

of its ‘Binner’ module, which compares each read to every reference database in parallel, 

assigning them to broad, non-exclusive taxonomic categories (see Figure 2.1).  

Taxonomer’s Binner database is created by counting unique 21bp kmers in 

different taxonomic/gene datasets using Kanalyze (22) (version 0.9.7). Each 

taxonomic/gene dataset represents a ‘bin’ in which query sequences can be placed based 

on their kmer content. Each database is assigned a unique bit flag that allows kmers that 

belong to one or more bins to be recognized and counted. The database bins and flags are 

shown in Table 2.1. The kmer counts are merged into a binary file that contains the kmers 

and the database flag. This binary file shares a similar organization to our classification 

databases, and is organized to optimize query speed. Reads are then assigned to the 

taxonomic group(s) with which most kmers are shared. Ties are resolved as shown in 

Table 2.2 and results summarized for visualization (see Table 2.3). High binning 

accuracy is possible because of the minimal intersections (0.47%) of kmer content from 

comprehensive human and microbial reference databases (see Figure 2.2). Optimal kmer 

count cutoffs were determined by Youden’s indexes and F1 scores (23) and ranged from 

3 to 13 (default, n=11) (see Figure 2.3 and Table 2.4). To eliminate binning of reads 

containing adapter sequence, by default, the binner ignores kmers present in Illumina 

Tru-Seq adapters. A database of External RNA Controls Consortium (ERCC) control 

sequences allows quantification of ERCC spike-in controls.  
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To demonstrate the advantage of Taxonomer’s non-greedy binning algorithm, we 

compared high-level taxonomic assignments made by SURPI, which employs greedy 

digital subtraction using sequence alignments by SNAP (24), to those of Taxonomer’s 

alignment-free Binner (see Figure 2.4). While high-level taxonomic assignments agree 

for 73.8% of RNA-seq reads, Taxonomer assigned 16% of reads an ambiguous origin 

(i.e. they match equally to multiple databases), and 96% of these were classified as 

human by SURPI. This was mostly due to highly conserved ribosomal and mitochondrial 

sequences (data not shown), but similar effects were also apparent for fungal sequences 

(18% classified as human by SURPI). Taxonomer’s Binner was also able to capture more 

phage/viral sequences (7,426) than the alignment-based method (5,798), and resulted in 

fewer unclassified sequencing reads (3.2% vs. 4.5%). Consistent with lower abundance 

of rRNA and mtRNA sequences in DNA sequencing data, Taxonomer had many fewer 

ambiguous assignments (0.04%, of which 40% were classified as human and 59% as 

viral by SURPI; overall agreement 98.7%). 

 

2.2.2 Classifier Module 

Classification in Taxonomer is based on exact kmer matching. Taxonomer uses 

databases that are optimized for rapid kmer queries that store every reference in which a 

kmer is found as well as an associated kmer weight for every reference. The fundamental 

question for classification is how likely it is that a particular kmer (Ki) originates from 

any reference sequence, refi. To answer this question, Taxonomer calculates a kmer 

weight: 
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 𝐾𝑊𝑟𝑒𝑓𝑖(𝐾𝑖) = 𝐶𝑟𝑒𝑓(𝐾𝑖) 𝐶𝑑𝑏(𝐾𝑖)⁄
𝐶𝑑𝑏(𝐾𝑖) 𝑇𝑜𝑡𝑎𝑙 𝑘𝑚𝑒𝑟 𝑐𝑜𝑢𝑛𝑡⁄  (2.1) 

 

where C represents a function that returns the count of Ki. Cref(Ki) indicates the count of 

the Ki in a particular reference. Cdb(Ki) indicates the count of Ki in the database. This 

weight provides a relative, database-specific measure of how likely it is that a kmer 

originated from a particular reference. In order to classify a query sequence, we calculate 

the sum of the kmer weights for every reference that has a matching kmer in the query 

sequence. Suppose that there are N possible kmers from query sequence Q. Then, for 

every reference, refi, that shares a kmer with Q, the total kmer weight for refi is: 

 

 
𝑇𝐾𝑊(𝑟𝑒𝑓𝑖) = ∑ 𝐾𝑊𝑟𝑒𝑓𝑖

𝑁

𝑗=1
(𝐾𝑗) (2.2) 

 

Each read is assigned to the reference that has the maximum total kmer weight. In the 

case of a tie, the query sequence is assigned to the taxonomic lowest common ancestor 

(LCA). 

 

2.2.3 Protonomer Module 

We developed a mapping scheme between amino acids and their corresponding 

codons to facilitate mapping in protein space while using the same strategies and speed 

we developed for classification in nucleotide space. When the amino acid database is 

built for classification, Taxonomer assigns every amino acid to just one codon. This 

unique mapping, which we term a non-degenerate translation, is used to generate an 
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artificial DNA sequence that corresponds to the protein sequence in the database. This 

DNA sequence is entered into Taxonomer’s nucleotide classification databases. Query 

reads are translated into all 6 reading frames using the same non-degenerate translation 

scheme used to build the database and each translated frame is then classified. Kmer 

weighting and read classification assignment are performed as described above. The 

default Protonomer database is subsets of UniRef90 and UniRef50. Empirically, we 

found a kmer size of 30 (10 amino acids) to perform best. We chose to classify viruses in 

protein space because of their high mutation rates, genetic variability, and incomplete 

reference databases (25). Protonomer was benchmarked against two other rapid protein 

search tools, RAPSearch2 (26) (employed by SURPI) and DIAMOND (27) (an ultrafast, 

BLAST-like protein search tool), using RNA-seq data from respiratory samples of 24 

children with documented viral infections as determined by an FDA-cleared molecular 

test (eSensor Respiratory Virus Panel, GenMark) or targeted PCR (17), (see Table 2.5) 

for which complete viral genomes could be manually constructed (Geneious, version 

6.1). Viral reads were defined by mapping all reads binned as ‘Viral’ or ‘Unknown’ to 

the manually constructed viral genomes. Sensitivity and specificity were determined 

based on detection of known viral reads (true positives) and non-viral reads (true 

negatives). Protonomer provides a single taxonomic identifier per read as the 

classification assignment, which makes interpretation of results extremely simple. 

Neither RAPSearch2 nor DIAMOND classify a read; instead they only provide BLAST-

like alignment information. For benchmarking against RAPSearch2 and DIAMOND, the 

LCA of the alignment with the lowest E-value was assigned as the classification. All 

tools were benchmarked using the viral subset of UniRef90 as their database. Both 
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Protonomer and RAPSearch2 process paired reads by concatenating them together with a 

'-' between mate pairs. DIAMOND does not support paired end reads, so each pair was 

searched separately, and the hit with the lowest e-value from each read was used to make 

the classification assignments. 

 

2.2.4 Host Gene Expression Estimations 

Taxonomer also uses its nucleotide classifier to assign reads to host reference 

transcripts. By default, these are transcripts and corresponding gene models (GTF file) 

from the ENSMBL human reference sequence, GRCh37.75. Empirically, we found that a 

kmer size of 25 worked best for mapping reads to human transcripts. We benchmarked 

Taxonomer’s gene expression estimates against Sailfish’s  and Cufflinks’ (28) using both 

biological and synthetic data. We had Taxonomer output all ties between transcripts 

during the classification step; we then randomly assigned a read to a single transcript.  

We used these transcript level assignments to calculate gene level expression. We next 

employed a linear regression to correct for transcript assignment bias in a similar fashion 

to Sailfish.  The reported correlations were then calculated using these corrected values. 

This level of gene expression analysis is not currently available through the web interface 

because of the way data are streamed; however, the results given from the web interface 

are a very good approximation (Spearman correlation > 0.93 on a set of genes that both 

methods have positive counts and Spearman correlation > 0.75 when the gene set is 

unrestricted). In the first experiment, we employed qPCR results taken from the 

microarray quality control study (MAQC) (29); specifically, human brain tissue samples. 

We also compared performance using synthetic RNA-seq reads (2x76bp, n=15,000,000) 
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generated with the Flux Simulator tool (30) (see Table 2.6 for parameters). TopHat (31) 

was used to produce alignments for Cufflinks. Like Taxonomer, Sailfish does not need 

external alignment information.  

 

2.2.5 Databases 

The Classifier and Protonomer databases are modular and easily constructed, 

consisting only of multi-fasta files with a ‘parent tag’ on their definition lines. These tags 

describe each reference sequence’s immediate phylogenetic parent-taxon.  

 

2.2.5.1 Bacterial Classification 

Bacterial classification is based on a marker gene approach (16S rRNA gene) and 

the Greengenes database (reference set with operational taxonomic units, OTU, clustered 

at 99%, version 13_8 (32), (see Table 1.1). This reference set contains 203,452 OTU 

clusters from 1,262,986 reference sequences. The taxonomic lineage for each OTU was 

used to create a hierarchical taxonomy map to represent OTU relationships. To support 

the OTU ‘species’ concept, the taxonomy was completed for ranks in the taxonomic 

lineage that had no value. Unique dummy species names from the highest taxonomic rank 

available were used to fill empty values. Versions of the Greengenes database were 

formatted for use within BLAST, the RDP Classifier, and Kraken. 

 

2.2.5.2 Fungal Classification  

Fungal classification is also based on a marker gene approach (internal 

transcribed spacer, ITS, rRNA sequences) and the UNITE database (33) (version 
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sh_taxonomy_qiime_ver6_dynamic_s_09.02.2014). This reference set contains 45,674 

taxa (species hypothesis, SH) generated from 376,803 reference sequences with a default-

clustering threshold of 98.5% and expert taxonomic curation. Dummy names were 

created for ranks that had no value. Versions of the unite database were formatted for use 

with BLAST, the RDP Classifier, and Kraken.  

 

2.2.5.3 Viral Classification and Discovery 

The virus classification database consists of the viral subset of UniRef90  (release 

2014_06) combined with the bacterial subset of UniRef50 (release 2015_03) (34). The 

viral protein database was reduced to 289,486 viral sequences based on NCBI taxonomy. 

Phage sequences were separated, leaving a total of 200,880 references for other viruses. 

NCBI taxonomy was used to determine the sequence relationship. For viral classification 

and discovery benchmarks and for contig-level classification, only the viral subset of 

UniRef90 was used.  

 

2.2.5.4 Additional Classification Databases  

For testing purposes, additional bacterial classification databases were constructed 

from RefSeq (identical to Kraken’s full database; n=210,627 total references; n=5,242 

bacterial references, using NCBI taxonomy), and the complete ribosomal database project 

databases download on September 24, 2014 (n=2,929,433 references, using RDP 

taxonomy).  
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2.2.5.5 Database Construction  

Databases are constructed to maximize query speed. Kmers are stored in 

lexicographical order and kmer minimizers are used to point to blocks of kmers in the 

database. Once a block of kmers is isolated, a binary search is used to complete the 

query. This scheme provides extraordinary query speeds, as demonstrated by Wood and 

Salzberg (35). We employ the same basic database layout as Kraken, with the important 

difference that instead of storing just the LCA of a kmer, we also store the kmer count 

and every reference (up to an adjustable cutoff) with associated kmer weight.  

 

2.2.6 Gene Classification Protocols 

We extracted reference sequences from widely used, curated public databases for 

benchmark experiments (36). These reference sequences were used to generate synthetic 

read datasets having a variety of read-lengths and error rates using wgsim 

(https://github.com/lh3/wgsim). PCR-amplified 16S rRNA gene sequences from two 

metagenomics studies on stool (37) and the home environment (38) were also used. The 

analysis was limited to taxa with relative abundance >0.1% per sample (10 random 

samples were selected from each study).  

 

2.2.6.1 Bacterial 16S rRNA  

From the SILVA 119 non-redundant small-subunit ribosomal sequence reference 

database (36), we extracted bacterial reference sequences between 1200-1650bp of length 

and excluded references annotated as cyanobacteria, mitochondria, and chloroplasts. 

Only high-quality references without ambiguous bases, alignment quality values >50%, 
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and sequence quality >70% were included. All the above values are reported by SILVA. 

Percent identity to the closest Greengenes OTU was determined by MegaBLAST59 using 

hits with a query coverage >80%. Synthetic reads (100bp single-end, 100bp paired-end, 

250 paired-end) were generated from these reference sequences at 5X coverage. 

 

2.2.6.2 Fungal ITS 

To test the accuracy of identifying fungal ITS sequences that are not represented 

in the UNITE database, we utilized the UNITE_public_dataset (version_15.01.14). 

Percent identity to the closest UNITE species hypothesis (SH, OTU’s clustered at 98.5%) 

was determined by MegaBLAST using hits with a query coverage >80%. Synthetic reads 

(250bp single-end) were generated from these reference sequences at 5X coverage. Due 

to the variable length of ITS sequences (mean 585bp, range 51-2,995bp, n=376,803), 

paired-end sequences were not generated. 

 

2.2.7 Classification Criteria for Reference Methods 

2.2.7.1 BLAST 

Default MegaBLAST parameters were used. Top scoring references were 

identified and used to assign OTUs/SHs. Multiple OTUs/SHs were assigned to synthetic 

reads when more than one OTU/SH reference shared 100% identity. If no OTU/SH had 

100% identity to a read, then all OTUs within 0.5% of the top hit were assigned to the 

read. The taxonomy of the assigned OTUs/SHs was compared and the highest rank in 

common was used to assign a taxonomic value to the read. The percent identity was used 

to determine the assignment of the highest taxonomic rank. Sequence reads with >97% 
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identity to a reference were assigned to species, >90% identity to genus, and <90% to 

family when lineage information was available at this rank.  

 

2.2.7.2 RDP Classifier 

RDP Classifier analyses were performed on a local server (see Section 2.29). 

Classifications were resolved to the rank with a minimum confidence level of ≥0.5.  

 

2.2.7.3 Kraken 

Kraken analyses were performed on a local server (see Section 2.29). Kraken 

reports the taxon identifier for each read’s final taxonomic assignment. An accessory 

script (Kraken-filter) can be used to apply confidence scores, although we found this 

value had little impact on results of our benchmarks.  

 

2.2.7.4 SURPI 

SURPI analyses were performed using an Amazon EC2 instance through the 

published Amazon Machine Image. SURPI reports the best hit for its mapping tools 

(SNAP, RAPSearch2), which were used for comparison.  

 

2.2.8 Taxonomer Implementation 

Taxonomer was written in C with Python bindings through Cython. An 

implementation of Taxonomer that contains the entire pipeline functionality was written 

in C and drives the iobio web interface. 
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2.2.9 Server Specifications 

Benchmarking was performed on a machine with Red Hat Linux, 1TB of RAM 

and 80 CPUs. The number of CPUs was restricted to 16 unless otherwise noted. 

 

2.2.10 Web-Service and Visualization 

Taxonomer is publically available as a web-service built upon the iobio 

framework (18). It is available at taxonomer.iobio.io. Complex metagenomic data can be 

processed quickly and effectively interpreted through web-based visualizations. Figure 

2.5 illustrates the interface. As reads are being streamed to the analysis server, a pie chart 

is presented summarizing the results of the binning procedure. When one of the bacterial, 

fungal, viral, or phage bins of the pie chart is selected, the results of the 

Classifier/Protonomer modules are displayed in a sunburst visualization. Additional 

information is provided at the top of the web page about how many reads were sampled, 

the number of reads classified, and the detection threshold. The detection threshold 

informs a user about how abundant a particular organism must be in order to be detected 

with the number of reads sampled. This provides an indicator of the sensitivity of 

detection in the sample. In addition, a slider allows the user to select an absolute cutoff 

for the minimum number of reads required in order to be displayed in the sunburst.  

 

2.2.11 DNA and RNA-seq of Patient Samples 

2.2.11.1 Nucleic Acid Extraction  

Samples (75-200µL) were extracted using the QIAamp Viral RNA extraction kit 

(Qiagen). Extraction was carried out as described by the manufacturer with the exception 
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of the AW1 washing step. For this step, 250µL of AW1 wash buffer was added to the 

QIAamp Mini column before centrifugation at 8000 rpm. Then, 80µL of DNase I mix 

(Qiagen) containing 10µL of RNase-free DNase I and 70µL of Buffer RDD was added to 

the column for on column DNase digestion. After incubation at room temperature for 15 

minutes, an additional 250µL of AW1 was added to the column before centrifugation at 

8000 rpm. The manufacturer suggested protocol was continued at this point with column 

washing using Buffer AW2. After all washing steps, RNA was eluted in 60µL of water. 

Extraction for total DNA was performed using 75-200µL of sample with the DNeasy 

Blood and Tissue Kit (Qiagen) according to the manufacturer’s instructions. DNA was 

eluted in 200 µL of nuclease-free water. This study was approved by the University of 

Utah (IRB_00035409) and CDC (5827) IRBs. 

 

2.2.11.2 Depletion of Human DNA  

Microbial DNA was enriched with NEBNext Microbiome DNA Enrichment Kit 

(NEB). Briefly, MBD2-Fc-bound magnetic beads were prepared by combining 3µL of 

MBD2-Fc protein with 30µL of Protein A Magnetic Beads per sample and placing the 

mixture in a rotating mixer for 10 min at room temperature before washing with 1X 

Binding Buffer. Extracted DNA (200ng in 200µL) was added to 50µL 5X Binding 

Buffer. The resulting 250uL were added to MBD2-Fc-bound magnetic beads for 15 min 

at room temperature with rotation. The enriched microbial DNA was cleaned-up with 

Agencourt AMPure XP Beads (Beckman Coulter). 
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2.2.11.3 Library Generation  

For HiSeq and MiSeq sequencing, indexed cDNA libraries were produced from 

extracted RNA using the TruSeq RNA Sample Prep Kit v2 (Illumina) omitting poly-A 

selection. RNA was dried and resuspended in 19.5 µL of Elute, Prime, Fragment Mix. 

The remainder of the library preparation was conducted per manufacturer’s instructions. 

Before library generation from DNA, enriched microbial DNA was fragmented with the 

Covaris S2 Ultrasonicator using intensity 5, duty cycle 10%, and 200 cycles/burst for 80 

seconds all at 7 °C. Libraries generated from fragmented enriched microbial DNA were 

prepared using the KAPA Hyper Prep Kit (KAPA Biosystems) according to the 

manufacturer’s instructions. PCR cycles used for library amplification were dependent 

upon the amount of input DNA and 13 cycles were used for these experiments. Libraries 

were quantitated by qPCR using the KAPA SYBR FAST ABI Prism qPCR Kit (KAPA 

BioSciences) and the Applied Biosystems 7900HT Fast Real-Time PCR System (Applied 

Biosciences). Library size was determined with the Agilent High Sensitivity DNA Kit 

and Agilent 2100 Bioanalyzer. After pooling of the indexed sequencing libraries, a 

second qPCR and bioanalyzer run was performed to estimate the final concentration 

before sequencing. For Ion Proton sequencing, indexed cDNA libraries were produced 

from extracted RNA using the SMARTer Universal Low Input RNA Kit (Clontech) with 

numbers of PCR cycles ranging from 10-15 based on RNA yield. 
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2.2.11.4 Sequencing  

Pooled sequencing libraries were analyzed on a HiSeq 2500 (2x100bp), MiSeq 

(2x250bp, both Illumina), or Ion Proton (median read length 139bp, Life Technologies) 

instruments according to manufacturers’ protocols. 

 

2.2.12 Statistical Analyses 

For gene expression analyses, we report both the Pearson and Spearman 

correlations as was done before (39). Correlation coefficients were calculated using the 

scipy library for python. The Pearson correlation of the log transformed gene expression 

estimates necessitates the removal of any genes whose estimated expression is 0. The log 

transform prevents outliers from dominating the correlation.  We also report the 

Spearman correlation, for which the log transform is not as necessary since it is a 

correlation based on ranks. Thus, the inclusion of genes with estimates of 0 can be 

avoided. 

 

2.3 Results 

To demonstrate the power and utility of Taxonomer, we carried out benchmark 

analyses using biological and synthetic datasets. These include a large number of 

pediatric nasopharyngeal (NP)/oropharyngeal (OP) swabs from the Centers for Disease 

Control and Prevention (CDC) Etiology of Pneumonia In the Community (EPIC) study 

(17) as well as published data (21,40,41).  
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2.3.1 Speed and Completeness of Classification 

We used RNA-seq data from three virus-positive NP/OP samples with a range of 

host vs. microbial composition profiles to compare speed and completeness of 

classification by Taxonomer to two other ultra-fast metagenomics tools: Kraken, and 

SURPI (see Table 2.5). Kraken was the fastest tool (mean 1.5 min/sample), but classified 

the fewest reads because it relies on nucleic acid-level classification alone, and uses a 

single reference database. Although SURPI enables amino acid-level searches for virus 

detection and discovery, this greatly extended analysis times to between 1.5 and >12 

hours/sample. Taxonomer achieved run times similar to Kraken (~5 minutes/sample, 5-

8x106 reads/sample), while performing nucleotide and protein-based microbial 

classification as well as host gene expression profiling. Taxonomer also classified the 

largest number of reads. Collectively, these results demonstrate how Taxonomer 

combines the ultrafast speed of Kraken with an extended suite of analysis and search 

capabilities that exceed those of SURPI.  

 

2.3.2 Bacterial and Fungal Classification  

Reads derived from taxa that are absent from classification databases can result in 

false negative and false positive classifications, especially at the genus and species level 

(see Figure 2.6). Thus, comprehensive classification databases are essential and several 

options exist. RefSeq contains whole genome sequences of only ~5,000 bacterial taxa 

(www.ncbi.nlm.nih.gov/refseq/), whereas more comprehensive 16S rRNA sequence 

databases (36,42,43) suggest existence of 100,000-200,000 species. As a result, 16S reads 

from unrepresented bacteria are more readily identified than reads derived from other 
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genomic targets (see Figure 2.7). To maximize classification accuracy, Taxonomer 

employs a 16S marker gene approach and a custom Greengenes-derived database.  

 

2.3.3 Default Benchmarks 

 Performance of classification tools is frequently only tested with synthetic reads 

derived from the reference database; i.e. perfect matches exist for all synthetic reads. This 

is a highly artificial challenge, as novel microbial species or strains are routinely 

encountered in clinical or environmental samples. To provide a more realistic challenge, 

we generated synthetic reads from phylogenetically diverse 16S sequences almost half 

(n=468, 46%) of which lacked perfect matches in Taxonomer’s reference database (see 

Figure 2.8). The utility of Taxonomer’s kmer weighting approach is illustrated in Figure 

2.9, demonstrating superior accuracy compared to SURPI and Kraken when using each 

tool’s default databases and command lines. At the species level, Taxonomer correctly 

classified 59.5%, incorrectly classified 15.7%, and failed to classify 24.8% of the reads. 

By comparison, Kraken classified 29% of the reads to the correct species but classified 

every remaining read (71%) incorrectly. As SURPI aligns each read from a mate pair 

independently and in many cases best matches are discordant (see Table 2.8), results are 

shown for correct classification of either (left half) or both read mates (right half). In both 

analyses, SURPI underperformed Taxonomer and Kraken.  

 

2.3.4 Database Benchmarks 

Next, we assessed the effect of three different databases (RefSeq, RDP, and 

Taxonomer’s custom Greengenes-derived database) on Taxonomer’s accuracy using the 
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same synthetic reads (see Figure 2.10). With the Greengenes-derived database, 

Taxonomer correctly classified 59.5% of the reads at the species level, and recovered 

94.9% of species. Using RefSeq (Kraken’s default database), Taxonomer’s values drop to 

27% and 71.6%, respectively, similar to Kraken’s results when using the same database: 

29% and 71%, respectively. Although Taxonomer misclassified very few reads using the 

RDP database, overall performance was inferior. Thus, Taxonomer’s Greengenes-derived 

database is its default for bacterial classification.  

 

2.3.5 Algorithmic Benchmarks 

To compare accuracy of classification algorithms, we used the same database 

(Taxonomer’s Greengenes-derived db), and classified the same synthetic reads with 

Taxonomer, MegaBLAST (www.ncbi.nlm.nih.gov/blast/html/megablast.html), RDP 

Classifier, and Kraken (see Figure 2.11). SURPI was not included, as it provides no 

means to replace its reference databases. Overall, Taxonomer’s performance closely 

approximated that of the RDP Classifier, an established reference tool (59.5% and 61.4% 

correct species-level classifications, respectively). Kraken’s performance improved using 

the Taxonomer’s Greengenes-derived database, but Taxonomer still correctly classified 

13.5% more reads, had a lower false positive rate (15.7% vs. 20.1%), recovered more 

taxa correctly (94.9% vs. 83%), and had a lower false recovery rate (23.3% vs. 37.9%). 

Similar performance advantages are also seen for fungal classification and recovery rates 

using Taxonomer’s ITS database (see Figure 2.12). Lastly, we examined the impact of 

read length and sequencing error rates on classification accuracy (see Figure 2.13 and 

2.14). As would be expected, performance improved for all tools as a function of read 
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lengths. Taxonomer and Kraken were more sensitive to sequencing errors than BLAST 

and the RDP Classifier, which is not surprising given their reliance on exact kmer 

matching. Nevertheless, these same analyses demonstrate that Taxonomer’s nucleotide 

classification algorithm is tolerant to ~5% random error, with Taxonomer achieving 

greater classification accuracies than Kraken on these noisy data.  

 

2.3.6 Bacterial Community Composition 

Since quantifying microbial community composition is a frequent goal of 

metagenomics studies, we compared Taxonomer’s bacterial abundance estimates to those 

of the RDP Classifier using recently published 16S amplicon sequencing (37,38) and 

RNA-seq-based metagenomics data (see Table 2.9 and Table 2.10). Taxonomer’s 

abundance estimates were highly correlated with RDP’s across taxonomic levels for all 

three datasets. Spearman correlation coefficients (ρ) were 0.96 and 0.997 (order) and 

0.858 and 0.826 (genus) for 16S amplicon data as well as 0.992 (order) and 0.955 (genus) 

for RNA-seq (see Figure 2.15). However, Taxonomer’s average analysis times were 260 

to 440-fold less than RDP’s (see Figure 2.16). Collectively, these benchmarks illustrate 

the importance of Taxonomer’s classification databases and the power and speed of its 

classification algorithm. 

 

2.3.7 Viral Classification and Discovery 

Taxonomer uses reads from the ‘viral’ and ‘unknown’ bins for detection of viral 

and phage sequences via its Protonomer module (see Figure 2.1). We compared 

Protonomer to two rapid protein search tools, RAPSearch2 (employed by SURPI) and 
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DIAMOND (an ultrafast, BLAST-like protein search tool), using RNA-seq data from 

virus-positive, pediatric NP/OP samples (n=24). Protonomer demonstrated the best 

overall performance, being more sensitive (median 94.6%) than DIAMOND (90.5%) and 

more specific (90.7%) than RAPSearch2 (88.0%, see Figure 2.17). As expected, 

sensitivity of all tools correlated with phylogenetic distance of viral strains to reference 

sequences (see Figure 2.18). DIAMOND was most vulnerable to novel sequence 

polymorphisms. As DIAMOND does not support joint analysis of paired sequencing 

reads, results of the mate-pair with the lowest E-value were used, likely resulting in 

optimistic performance estimates. Protonomer was also the fastest of the three tools in 

classifying 104 to 106 reads/sample (median time per sample: Protonomer 14 seconds; 

DIAMOND 37 to 46 seconds; RAPSearch2 343 to 169 seconds  (see Figure 2.17) and 

Figure 2.18). 

To demonstrate Taxonomer’s ability to detect viral pathogens in public health 

emergencies, we analyzed published RNA-seq data from serum of a patient with 

hemorrhagic fever caused by a novel rhabdovirus (Bas Congo Virus) (40); a throat swab 

from a patient with avian influenza (H7N9 subtype) (41), and plasma from a patient with 

Ebola virus (21) (see Figure 2.19). Even after removal of target sequences from the 

classification database, to simulate detection of unknown pathogens, all three viruses or 

close relatives were detected, thus demonstrating Taxonomer’s utility for rapid virus 

detection and discovery in public health emergencies. 
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2.3.8 Human mRNA Transcript Profiling 

Quantification of synthetic reads and a commercial RNA standard (29) by 

Taxonomer was accurate over a broad range of transcript abundance when compared to 

standard tools (Sailfish, Cufflinks, see Figure 2.20 and Table 2.11). Indeed, Taxonomer’s 

accuracy was intermediate between Sailfish’s and Cufflinks’, demonstrating state-of-the-

art performance. To highlight utility of simultaneous pathogen detection and transcript 

expression profiling, we compared human mRNA expression profiles directly from 

respiratory samples of patients with influenza A virus infection (17) (cases, n=4) and 

asymptomatic controls (n=40, see Figure 2.21). Influenza A virus was detected in all case 

samples (see Figure 2.22). Expression profiles for 17 human genes were significantly 

higher in cases, and clearly differentiated cases from controls (see Figure 2.23 and 2.24 

and Table 2.12). As expected, Gene Ontology (44) assignments for the top 50 genes 

demonstrated their involvement in recognizing pathogen-associated molecular patterns 

and in the antiviral host response (see Table 2.13). Most but not all of these genes are 

known players in the host response to viral infections 

(www.ncbi.nlm.nih.gov/biosystems/217173). Together, these results demonstrate the 

accuracy and power for discovery and diagnostic application of Taxonomer’s combined 

pathogen detection and host response profiling. 

 

2.3.9 Microbial Detection in Real-World Scenarios 

In Figure 2.25, we show that Taxonomer can be used to detect previously 

unrecognized infections, to identify microbial contamination in RNA-seq data, and to 

analyze data from commonly used next-generation sequencers. In RNA-seq data from 
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test-negative patients with suspected Ebola virus disease, Taxonomer detected a range of 

other reported infections (21) (HIV, Lassa virus, Enterovirus - typed by Taxonomer as 

Coxsackievirus, GB virus C). However, Taxonomer also identified previously 

unrecognized bacterial infections (Chlamydophila psittaci, Elizabethkingia 

meningoseptica) that may have caused the patients’ symptoms (see Figure 2.25A, and 

2.26). Taxonomer’s power for virus discovery was demonstrated by analyzing RNA-seq 

data from an NP/OP sample (17) that contained a novel anellovirus with only 44%-60% 

predicted protein sequence identities to the most similar sequenced strain (see Figure 

2.27). While 44 of 239 anellovirus reads were classified to the family Anelloviridae at the 

read-level (see Figure 2.25B), analysis of contigs assembled from all reads binned by 

Taxonomer as ‘viral’ and ‘unknown’ could be leveraged to further boost sensitivity, 

which resulted in detection of 4 contigs (representing all 239 reads) to the family 

Anelloviridae (data not shown). Taxonomer can also be leveraged to quality control next-

generation sequencing data (45-50). To demonstrate this, we analyzed RNA-seq data 

from induced pluripotent stem cell cultures with and without Mycoplasma contamination 

(see Figure 2.25B). Taxonomer identified 56% of reads as bacterial and classified the 

contaminant as M. yeatsii. Lastly, Taxonomer produced highly comparable results when 

the same two respiratory samples were sequenced on three popular instruments (MiSeq, 

HiSeq, Ion Proton). In all three cases, similar proportions of reads were classified to 

known viral (influenza A) and bacterial (Mycoplasma pneumoniae) pathogens (see Figure 

2.25D and Table 2.14) demonstrating that Taxonomer is compatible with the different 

read lengths and error profiles of these sequencing platforms. 
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2.4 Discussion 

In Taxonomer, we have created a tool that is fast, accurate, and capable of the 

gamut of analyses required to take full advantage of large and complex DNA and RNA-

seq datasets for metagenomics. Taxonomer provides means for nucleotide and protein 

based homology searches, phylogenetic classification at the read and contig level, and 

host transcriptional profiling. As a result, Taxonomer provides greater accuracy and 

comprehensive taxonomic profiling than fast alignment-free tools (e.g. Kraken), while 

providing 10-100X faster classification and greater accuracy than comprehensive 

alignment-based tools (e.g. SURPI). In addition, Taxonomer achieves accuracies on 16S 

amplicon data that closely approach the current standard, RDP. This is made possible by 

Taxonomer’s comprehensive databases and its novel kmer weighting approach, which 

combine to reliable bacterial community profiling from RNA-seq data in which 16S 

sequences are highly abundant. Moreover, Taxonomer is very fast, requiring only a few 

minutes to carry out its broad array of analyses. On the same typical HiSeq 2500 datasets, 

Taxonomer is days faster than RDP, hours faster than SURPI, and within minutes of the 

fastest published tool, Kraken, which only provides nucleotide classification.  

Taxonomer provides maximum flexibility for detection of known and unknown 

bacteria, fungi, and viruses. As the vast majority of bacteria, fungi, and viruses remain 

unknown (25,51-53), reference databases are inevitably incomplete. As we demonstrated, 

Taxonomer’s marker gene-based approach for bacterial and fungal identification and 

discovery leverages large databases that provide maximum taxonomic information, which 

helps avoid misclassifications pitfalls (54).  
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Taxonomer’s integrated means for protein-based classification further improves 

its sensitivity, especially for virus detection where nucleotide–based classification is of 

limited utility due to high mutation rates and high sequence diversity in many viral phyla. 

Moreover, our results demonstrate the power of Taxonomer in real-world scenarios by 

identifying known viruses (respiratory viruses, HIV, Lassa virus, Coxsackievirus, GB 

virus C, Bas Congo Virus, avian influenza A virus H7N9) and unrecognized bacteria and 

viruses in previously test-negative patients (Anellovirus, Chlamydophila psittaci, 

Elizabethkingia meningoseptica). 

Host gene expression profiling, part of Taxonomer’s integrated analysis 

architecture, is of growing interest for infectious diseases testing (55). While host gene 

expression profiles can differentiate viral from bacterial infections using blood samples 

(14-16), Taxonomer enables simultaneous pathogen detection and gene expression 

profiling from routinely collected respiratory samples. This may eliminate the need for a 

blood draw, improve diagnosis and discovery, and enable novel applications such as 

differentiating true infections from asymptomatic carriage, characterizing chronic 

infections in immunocompromised patients, and monitoring antimicrobial treatment 

success.  

As we demonstrated, Taxonomer can also be used to rapidly identify microbial 

contamination in RNA-seq studies, which can confound transcriptional response profiles 

(48) or lead to unsafe biological interpretations (56). Contamination by exogenous 

sequences directly or through commonly used laboratory reagents have led to erroneous 

disease associations and genome assemblies, further highlighting quality control 

applications for Taxonomer (45-50). This is of particular concern when source DNA or 
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RNA is of low concentration, as with single-cell sequencing studies (57). Lastly, 

metagenomic sequencing data are usually purged of host sequences prior to deposition in 

public databases to guarantee anonymity of patients. During analysis of some such 

sequences (21), varying numbers of human reads were detected, suggesting that 

Taxonomer is more effective at detecting (and removing) host-derived sequences than 

currently used tools. Therefore, screening of metagenomics datasets with Taxonomer 

prior to submission could improve protection of study subjects’ privacy. Taxonomer is 

the only ultrafast metagenomics tool that combines all analytical modalities necessary for 

these applications.  

Finally, with Taxonomer we have sought to democratize these analyses by 

providing a fast, interactive web service based upon the iobio (58) visualization toolkit. 

The ability to conveniently upload and rapidly analyze RNA-seq data from patient 

samples using personal computers and mobile devices means that results can be quickly 

shared and reviewed by experts, even across great geographic distances enhancing 

collaborations and facilitating public health responses. As costs and turn-around times for 

high-throughput sequencing continue to fall and mobile sequencers become available 

(59), Taxonomer will enable diagnostic laboratories to analyze high-throughput 

sequencing data in meaningful timeframes without costly computational infrastructure or 

specialized bioinformatics expertise. 
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Figure 2.1. Taxonomer’s architecture. Raw FASTA, FASTQ, or SRA files (with 
or without gzip compression) are the input for Taxonomer. For paired-end data, 
mate pairs are analyzed jointly. Taxonomer consists of four main modules. The 
‘Binner’ module categorizes (‘bins’) reads into broad taxonomic groups (host 
and microbial) followed by comprehensive microbial and host gene expression 
profiling at the nucleotide (‘Classifier’ module) or amino acid-level 
(‘Protonomer’ and ‘Afterburner’ modules). Normalized host gene expression 
(gene-level read counts) and microbial profiles can be downloaded. Read subsets 
can be downloaded for custom downstream analyses. 
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Figure 2.2. Intersections of 21-mers in Binner module databases. The widths of the 
cords that connect different sections indicate the number of intersecting kmers. 
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Figure 2.3. Receiver operator characteristics curves for 
classification of human and microbial sequences by  the Binner 
module. Boxed and circled thresholds represent optimal cutoffs 
as determined by F1 score and Youden’s index, respectively.  
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Figure 2.4. Agreement between read binning by the Binner module versus 
SURPI’s assignments. SURPI’s assignments are based upon sequential 
subtraction.  
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Figure 2.5. Taxonomer web-service. Taxonomic classification of bacteria, fungi, and 
viruses is visualized as a sunburst graph (center), in which the size of a given slice 
represents the relative abundance at the read level. Taxonomic ranks are shown 
hierarchically with the highest rank in the center of the graph. Sequences that cannot 
be classified to the species level, either because they are shared between taxa or 
represent novel microorganisms, are collapsed to the lowest common ancestor and 
shown as part of slices that terminate at higher taxonomic ranks (e.g. genus, family). 
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Figure 2.6. False-positive and false-negative classifications of query sequences not 
represented in the reference database. (A) Read-level classification accuracy for 
synthetic reads simulated (20X coverage) from SILVA references (n=10,000) with 
identical representation in the reference database as classified by BLAST, the RDP 
Classifier, Kraken, and Taxonomer. (B) Panel b shows the same analysis with 
SILVA references (n=10,000) for whom highly similar, but non-identical references 
(97% to 98.99% pairwise sequence identity based on full-length MegaBLAST) are 
present in the reference database. (C) This effect is even more pronounced for 
synthetic reads simulated from SILVA references (n=10,000) that only share 90% 
to 96.99% pairwise sequence identity with the closest match in the reference 
database (based on full-length MegaBLAST). All studies were performed with 
250bp paired-end 16S rDNA reads simulated at 20X coverage from randomly 
selected SILVA references with no error. 
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Figure 2.7. Sensitivity for binning of bacterial and viral reads can 
be low for phylogenetically distant species. Synthetic bacterial 
and viral reads were generated from single-cell sequencing-based 
draft bacterial genomes, bacterial genome scaffolds derived from 
metagenomic sequencing data, and recently published genome 
sequences.  
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Figure 2.8. Read-level (top) and taxon-level (bottom) bacterial classification 
accuracy of BLAST, the RDP Classifier, Kraken, and Taxonomer. All tools with 
the Greengenes 99% OTU database using (A) 100bp single-end and (B) 100bp 
paired-end 16S rDNA reads simulated at 5X coverage from 1,013 randomly 
selected SILVA references with ≥97% sequence identity to reference sequences.  
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Figure 2.9. Taxonomer sensitivity and specificity for read-level bacterial 
classification compared to two other rapid classification tools SURPI and 
Kraken. Analysis preformed with each tool’s default settings and databases: nt 
(www.ncbi.nlm.nih.gov/nucleotide, SURPI), RefSeq (Kraken),and Greengenes 
99% OTU (Taxonomer). Results for SURPIare based on correct identification by 
either (dark bar) or both(light bar) read mates. 
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Figure 2.10. Comparison of three commonly used reference databases in 
Taxonomer. RefSeq (n=210,627; 5,242 bacterial genomes), Greengenes 99% 
OTU (n=203,452), and RDP (n= 2,929,433). Taxonomer provides greatest read-
level (top) and taxon-level (bottom, i.e. percentage of bacterial species 
identified) sensitivity for bacterial classification at only a moderate decrease in 
specificity when using the Greengenes database compared to the RDP and 
RefSeq databases (simulated 16S rDNA as in panel a). Because of its large size 
and greater completeness, the RDP database provides the greatest species-level 
specificity at the tradeoff of sensitivity. For ease of reference, the top right-most 
column is repeated from panel a. 
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Figure 2.11. Bacterial 16S rRNA classification accuracy. Taxonomer 
classification is similar to the RDP Classifier and superior to Kraken at the read-
level (top) and taxon-level (bottom, all using the Greengenes database). Given the 
applied criteria, BLAST is less sensitive but more specific. 
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Figure 2.12. Fungal ITS classification accuracy. Taxonomer performs similar to the 
RDP Classifier and better than Kraken for classification of synthetic fungal internal 
transcribed spacer (ITS) sequences at the read-level (top) and taxon-level (bottom). 
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Figure 2.13. Effect of Sequence length on classification 16SrRNA reads.  Read-level 
(top) and taxon-level (bottom) bacterial classification accuracy of BLAST, the RDP 
Classifier, Kraken, and Taxonomer (all tools with the Greengenes 99% OTU 
database) using (A) 100bp single-end and (B) 100bp paired-end 16S rDNA reads 
simulated at 5X coverage from 1,013 randomly selected SILVA references with 
≥97% sequence identity to reference sequences (see methods). Performance of 
Taxonomer is comparable to the RDP Classifier and superior to Kraken; given the 
applied criteria, BLAST is less sensitive but more specific. 
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Figure 2.14. Impact of sequencing error rates. Family, genus, and species level 
classification accuracy for BLAST, the RDP Classifier, Kraken, and Taxonomer 
using the same read-length and database across error rates of 0.01%, 0.1%, 1%, 
5%, and 10%. 
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Figure 2.15. Classification of metagenomics data compared to the RDP classifier 
(A) Bacterial community profiling using RNA-Seq-based shotgun metagenomics 
with pediatric nasopharyngeal and oropharyngeal swab samples (n=20) with 
Taxonomer and the RDP Classifier at the genus-level. (B) RNA-Seq 
metagenomics results (as in panel a) were also analyzed by Kraken using the 
Greengenes 99% OTU reference database. (C) 16S rRNA gene amplicon 
sequences of variable region 4 from 2 published data sets generated on HiSeq2000 
(dark green, 1x150bp reads) and MiSeq instruments (light green, 2x150 reads). (D) 
16S rRNA gene amplicon sequences (as in panel c) were also analyzed by Kraken 
using the Greengenes 99% OTU reference database. 
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Figure 2.16. Analysis times for the RDP Classifier 
(R), Taxonomer (T), and Kraken (K). Time for 
classification of samples shown in Figure 2.15. 
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Figure 2.20. Published RNA-seq data from a commercially available 
RNA standard (see Table 2.11) analyzed by Taxonomer, Sailfish, and 
Cufflinks. Estimated transcript expression was compared to data 
obtained by quantitative PCR (qPCR). 
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Figure 2.21 Application of Taxonomer to metagenomic RNA-seq data from 
routine respiratory samples from patients with influenza infection. 
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Figure 2.22. Classification of viral sequencing reads by 
Protonomer and typing of this strain as influenza A 
(H1N1). 
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Figure 2.23. Differential gene-level mRNA 
expression profiles from 4 patients with influenza 
A virus compared to asymptomatic controls (n=40; 
top 50 differentially expressed genes are shown).  
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Figure 2.24. Sub-analysis of differential gene-level mRNA expression profiles from 4 
patients with influenza A virus compared to asymptomatic controls infection (A) 
Expression profiles for the 17 most differentially expressed genes differentiate cases 
from controls (principal component analysis, PC1 and PC2 explaining 93.8% of the 
total variance). (B) Normalized expression levels for individual patients of seven of 
the top 17 genes.  
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Figure 2.26. Taxonomer in clinical samples. (A) Taxonomer detected Elizabethkingia 
meningoseptica in sample SAMN03015718 (SRR1564828). Mean coverage of the 16S 
rRNA gene was 16,162-fold and the consensus sequence shared 99.9% nucleotide 
sequence identity with the type strain of E. meningoseptica (AJ704540, ATCC 13253). E. 
meningoseptica is a ubiquitous gram-negative bacterium that characteristically causes 
meningitis or sepsis in newborns but also immunocompromized adults. (B) Taxonomer 
classified a reported Enterovirus as Enterovirus A in plasma from a patient with 
suspected Ebola virus disease in Sierra Leone (SRR1564825). Mean sequencing depth 
was 162X covering 96% of the reference sequence (AY421765). Analysis of a manually 
constructed viral consensus genome sequences identified the strain as sharing 80% 
nucleotide sequence identity with Coxsackie virus A7, strain Parker. 
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Figure 2.27. Phylogenetic tree of consensus sequence of novel Anellovirus (see Figure 
2.25B) with reference sequences for Torque teno mini viruses. Torque teno virus 1 is 
shown as outgroup. 
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Table 2.2 Bin assignment for reads with equal numbers of kmer matches to multiple 
Binner databases and kmer matches below threshold. Some reference sequence 
databases are subsets or overlap with others (e.g. ‘Human transcripts’ and ‘Human 
genome’) and some sequences may be assigned varying taxID’s (e.g. phage sequences 
may be annotated as viruses or as bacteria, if integrated as prophages). As a result, 
query sequences may share an equal number of kmers with more than one reference 
database. The ‘Binner’ module assigns these query sequences as outlined below. 

 
Equal kmer count of… And… Assignment 
‘Human transcripts’ ‘Human genome’ and/or 

‘Mitochondrial genomes’ 
‘Human transcripts’ 

‘Bacterial 16S’ ‘Bacterial LSU’ and/or ‘Bacterial 
genomes’ and/or ‘Plastids 
LSU/SSU’ 

‘Bacterial 16S’ 

‘Fungal ITS’ ‘Fungal genomes’ and/or ‘Fungal 
LSU/SSU’ 

‘Fungal ITS’ 

‘Phage’ ‘Viruses (NCBI)’ and/or ‘Bacterial 
genomes’ 

‘Phage’ 

All other ties  ‘Ambiguous’ 
Kmer count < threshold  ‘Unknown’ 
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Table 2.3 Contents of visualized pie charts in the web portal. Sub-bin assignments are 
summarized for interactive visualization at Taxonomer.iobio.io as indicated. 

 
Bin Sub-bins 
Human ‘Human genome’, ‘Human transcripts’, ‘Mitochondrial genomes’ 
Bacterial ‘Bacterial genomes’, ‘Bacterial SSU’, ‘Bacterial LSU’, ‘Plastids LSU/SSU’ 
Fungal ‘Fungal genomes’, ‘Fungal LSU/SSU’, ‘Fungal ITS’ 
Viral ‘Viruses (NCBI)’, ‘Phage’ 
Other ‘Other Eukaryotes LSU/SSU’ 
Ambiguous Any database combination not specified above 
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Table 2.4 Optimal kmer cutoffs for bin 
assignments based on the Youden’s Index 
and F1 Score. Optimal kmer cutoffs 
determined by receiver operator 
characteristics analysis using the Youden’s 
Index and F1 Score (23) are shown. The 
default cutoff used by the ‘Binner’ module is 
11. 

 
Bin Youden’s Index F1 Score 
Human 13 13 
Bacteria 5 8 
Fungal 3 4 
Virus 3 4 
Parasite* 22 21 
*Parasites are not present in the binner 
databases, reads from parasites are 
considered true positives if they remain 
unbinned 
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Table 2.5 Viruses, percent nucleotide-level identity to reference sequences in 
the NCBI nt database, as well as numbers of total and viral reads for pediatric 
upper respiratory tract specimens used to compare ‘Protonomer’, RAPSearch2, 
and DIAMOND for protein-level classification of viral sequences.  

 

Virus 
Nucleotide 

ID 
GenBank 

Accession 
Total 

Reads 
Target 

Reads (n) 

Target 
Reads 

(%) 
HCoV (HKU1) 99.8% KF686344  317,354   305,544  96.3% 
HCoV (NL43) 99.8% JQ765567  44,825   20,800  46.4% 
HCoV (OC43) 99.7% AY903460  15,515   6,919  44.6% 
Coxsackie Virus B4 84.1% KF878966  21,399   1,027  4.8% 
HBoV 99.6% JQ923422  206,869   1,119  0.5% 
HMPV 98.5% GQ153651  80,362   7,059  8.8% 
HMPV 99.0% EF535506  55,240   2,683  4.9% 
HRV-A 90.9% EF173415  11,369   2,413  21.2% 
HRV-C 85.2% DQ875932.2  490,829   491  0.10% 
HRV-C 85.3% DQ875932.2  704,819   394  0.06% 
HRV-C 79.3% JF436925.1  662,784   200  0.03% 
HRV-C 97.3% JX074056  385,808   208,446  54.0% 
HRV-C 82.1% JF317017  306,436   232,451  75.9% 
HRV-C 97.2% JX074056  246,973   35,474  14.4% 
HRV-C 75.9% KF958311  28,862   2,657  9.2% 
HRV-C 96.0% JN990702  330,157   252,416  76.5% 
HRV-C 76.5% GQ223228  179,888   153,429  85.3% 
HRV-C 95.4% GQ323774  58,005   1,369  2.4% 
PIV-1 99.2% JQ901989  107,818   9,392  8.7% 
PIV-3 99.4% KF530232  48,547   15,651  32.2% 
RSV-A 99.7% KF826849.1  762,085   2,218  0.29% 
RSV-B 97.9% JQ582843  1,784   1,035  58.0% 
RSV-B 97.9% JQ582843  40,707   32,047  78.7% 
RSV-B 99.7% JN032120.1  516,693   495,469  95.9% 
 
HCoV – human coronavirus 
HBoV – human bocavirus 
HMPV – human metapneumovirus 
HRV – rhinovirus 
PIV – parainfluenza virus 
RSV – respiratory syncytial virus. 
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Table 2.6 Flux Simulator parameters used to generate simulated RNAseq 
reads for benchmarking transcript assignment. Following the benchmarks 
used for Sailfish we filtered the transcript GTF using the gffread utility with 
the flags -C -M -E and -T, as well as any transcripts consisting soley of Ns. 
The GTF was sorted using the FluxSimulator sortGTF command and used to 
generate the synthetic data for benchmarking. 

 
Stage Parameters 
Expression  
 

NB_MOLECULES 5000000 
REF_FILE_NAME 
Homo_sapiens_ENSMBL_37.75.gtf 
TSS_MEAN 50 
POLYA_SCALE NaN 
POLYA_SHAPE NaN 

Fragmentation FRAG_SUBSTRATE RNA 
FRAG_METHOD UR 
FRAG_UR_ETA NaN 
FRAG_UR_D0 1 

Reverse Transcription RTRANSCRIPTION YES 
RT_PRIMER RH 
RT_LOSSLESS YES 
RT_MIN 500 
RT_MAX 5500 

Filtering & Amplification FILTERING YES 
GC_MEAN NaN 
PCR_PROBABILITY 0.05 

Sequencing READ_NUMBER 150000000 
READ_LENGTH 76 
PAIRED_END YES 
ERR_FILE 76 
FASTA YES 
UNIQUE_IDS NO 
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Table 2.11 Accession numbers for human brain RNAseq 
data used to compare with MAQC qPCR data. 

 
Sample Source Reads 
SRR037452 Human brain 11,712,885 
SRR037453 Human brain 11,413,794 
SRR037454 Human brain 11,816,021 
SRR037455 Human brain 11,244,980 
SRR037456 Human brain 12,081,324 
SRR037457 Human brain 11,365,146 
SRR037458 Human brain 11,616,331 
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Table 2.12 Genes (n=17) that are differentially regulated in nasopharyngeal 
and oropharyngeal swabs from children with pneumonia who tested positive 
for influenza virus (n=4) compared to asymptomatic controls (n=40). Read 
counts and P-values (raw and adjusted) are shown. A – controls; B – 
influenza (see Figure 2.23). 

 
Gene ID Base Mean A Base Mean B Fold Change p p(adj) 
IFIT1 0.7 73.4 104.5 7.1E-19 1.5E-14 
IFI6 0.5 31.4 64.8 6.3E-13 6.7E-09 
IFIT2 2.1 135.5 63.8 7.8E-09 5.5E-05 
ISG15 1.4 61.2 43.3 1.4E-08 6.4E-05 
OASL 0.6 20.3 33.3 1.5E-08 6.4E-05 
IFIT3 2.1 81.2 38.7 5.4E-08 1.9E-04 
NT5C3A 0.7 20.1 30.7 3.3E-07 9.9E-04 
MX2 1.4 27.4 19.2 4.0E-07 1.1E-03 
IFITM1 2.4 32.8 14.0 6.4E-07 1.5E-03 
CXCL10 0.6 37.3 64.6 9.0E-07 1.9E-03 
IFI44L 1.5 26.6 17.8 1.6E-06 3.1E-03 
MX1 4.2 56.5 13.5 1.8E-06 3.2E-03 
IFIH1 1.4 21.3 15.0 9.7E-06 1.6E-02 
OAS2 2.8 37.5 13.2 1.3E-05 1.9E-02 
SAMD9 2.8 61.9 22.5 2.6E-05 3.7E-02 
RSAD2 1.4 47.0 33.7 2.9E-05 3.8E-02 
DDX58 1.1 16.6 15.3 3.9E-05 4.8E-02 
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CHAPTER 3 

 

UNBIASED DETECTION OF RESPIRATORY VIRUSES  

BY NEXT-GENERATION SEQUENCING AND  

TAXONOMER, A RAPID, INTERACTIVE,  

WEB-BASED DATA ANALYSIS TOOL2 

 

3.1 Introduction 

Laboratory diagnosis of infectious diseases has historically taken a syndrome-

based approach. Culture of appropriate specimens on a combination of relevant media or 

cell lines enables detection of many common bacterial, viral, and fungal pathogens. 

However, culture requires experienced personnel, several days to weeks to yield a 

definitive answer, depends on viability and appropriate culture conditions, and has 

limited sensitivity. Molecular tests have superior turnaround times, sensitivity, and 

taxonomic resolution. However, only targeted pathogens can be detected and 

differentiation of clinically or epidemiologically relevant strains or genotypes is limited. 

In addition, designs of molecular tests needs to be updated when new species or strains 

are recognized and to ensure that newly identified genetic variants can be detected. 

                                                        
 
2 A version of this chapter has been accepted for publication in the Journal of 

Clinical Microbiology. Co-authors include Dr. Mark Yandell, Dr. Karen Eilbeck, Dr. 
Robert Schlaberg, and Keith Simmon. 
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 In contrast, next-generation sequencing-based metagenomic testing combines 

many advantages of molecular tests and culture-based methods. Host and pathogen-

derived nucleic acids are sequenced without a priori knowledge of expected pathogens 

allowing simultaneous detection of a virtually unlimited number of microorganisms, 

provided they possess sufficient sequence homology with reference sequences to enable 

classification. Unbiased, sequence-based pathogen detection will provide the greatest 

benefit when many diverse pathogens may cause overlapping symptoms, when an 

etiologic diagnosis influences treatment, and when molecular markers for drug resistance 

are known. One such application is the detection of respiratory pathogens. Even with 

state-of-the-art, multiplex molecular tests, identifying the etiology of respiratory tract 

infections is often unsuccessful; e.g. respiratory pathogens can only be detected in ~40-

80% of patients with community-acquired pneumonia (CAP) with current tests (1-5). In 

addition, respiratory viruses of unclear pathogenicity (e.g. rhinovirus) are often found as 

the sole pathogen in respiratory samples, leaving doubt about the true etiology (6-9). 

With unbiased pathogen detection, alternative causes can be excluded with much greater 

confidence. Lastly, metagenomics-based testing provides sequence information on 

detected strains, often enabling genotyping, assessment of molecular markers for drug 

resistance, or molecular epidemiologic studies. 

While several recent studies have demonstrated the power of next-generation 

sequencing-based metagenomics for pathogen detection (10-18), its performance 

compared to commercially available molecular tests is incompletely understood. Equally 

important, it remains to be demonstrated whether these approaches can be implemented 

in diagnostic laboratories and employed within a clinically meaningful timeframe using 
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computational resources and data analysis expertise available in diagnostic laboratories. 

Complexities of laboratory workflow, speed of sequence analysis, and expertise required 

for result analysis and interpretation are chief concerns.  

We evaluate the analytical performance of metagenomics for detection of 

respiratory viruses using kit-based RNA-seq analysis of total RNA extracted from 

pediatric nasopharyngeal (NP) swabs. Resulting sequencing data were analyzed with a 

rapid, interactive, web-based data analysis tool, Taxonomer, eliminating the need for 

expensive computational hardware and bioinformatics expertise (19). We compared 

results to those of an FDA-cleared, multiplex PCR panel, the GenMark eSensor RVP 

(RVP), and demonstrated the utility of viral sequence information.  

 

3.2 Materials and Methods 

3.2.1 Samples 

Nasopharyngeal (NP) swabs from children less than 5 years of age tested by the 

GenMark eSensor Respiratory Virus Panel (GenMark Dx, Carlsbad, CA) between April 

2013 and March 2014 were de-identified using standard institutional procedures 

(University of Utah IRB number 56504) and stored at -80°C. Specimens positive for 

RNA viruses tested by the GenMark assay were retrospectively collected with preference 

given to dual infections (human metapneumovirus n=5, human rhinovirus n=10, 

Influenza A n=5, Influenza B n=5, parainfluenza 1 n=5, parainfluenza 2 n=1, 

parainfluenza 3 n=4, respiratory syncytial virus n=8). In addition, 67 samples were 

selected at random for inclusion in a direct side-by-side comparison. 
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3.2.2 GenMark eSensor Respiratory Virus Panel 

Nucleic acid was extracted from 200uL of each sample, plus 10uL of internal 

control, on the NucliSENS easyMAG (BioMerieux, Durham, NC) and eluted into 60uL, 

5uL of which was reverse transcribed and amplified with the eSensor Respiratory Virus 

Panel reagents following the manufacturer’s instructions (GenMark). The following 14 

viral targets are reported the eSensor XT-8TM system (GenMark): adenovirus B/E, 

adenovirus C, influenza A, influenza A H1, influenza A H3, influenza A 2009 H1N1, 

influenza B, respiratory syncytial virus subtype A, respiratory syncytial virus subtype B, 

parainfluenza virus 1, parainfluenza virus 2, parainfluenza virus 3, human 

metapneumovirus, and human rhinovirus. 

 

3.2.3 Library Preparation and RNA Sequencing 

NP swabs were thawed, vortexed, and 160uL of the transport media was 

transferred for extraction with the QIAamp Viral RNA mini kit, following the 

manufacturer’s instructions (Qiagen, Valencia, CA). Eluted RNA was vacuum dried and 

stored at -80°C overnight. RNA-seq libraries were prepared with the TruSeq RNA 

Sample Prep Kit, following the manufacturer’s instructions (Illumina, San Diego, CA). 

Libraries were quantified with the Illumina Universal Library Quantification Kit (Kapa 

Biosystems, Inc., Wilmington, MA). Library quality was assessed with a High Sensitivity 

DNA Analysis Kit on a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). 

Libraries from 24 samples were combined in equimolar ratios for a final concentration of 

9.6nM and sequenced in batches of 24 samples per lane on a HiSeq 2500 instrument 

(Illumina, San Diego, CA).  
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3.2.4 Data Analysis 

RNA-seq data were analyzed with Taxonomer, a kmer-based, rapid, interactive 

metagenomic sequence analysis tool accessed through a web interface on the iobio 

framework, (http://taxonomer.iobio.io) (19,20). Taxonomer classifies each read to the 

highest taxonomic rank possible given a comprehensive sequence database. Relevant 

human pathogens detected by Taxonomer were manually confirmed with using Geneious 

(Biomatters, Ltd., Auckland, New Zeland) by mapping reads against a curated list of full-

length viral reference sequences downloaded from NCBI.  

Sequence-based typing of viral strains was performed by manual alignment to a 

reference genome and BLAST analysis of the largest contig of the appropriate genomic 

segment (e.g. VP1/3 for rhinovirus) or whole viral genome, if possible. Strains were 

considered typed if the references with the highest sequence identity over the entire 

contig all belonged to the same genotype (e.g. RSV-B was the highest match with no 

RSV-A at the same percent identity). 

 

3.2.5 Monoplex, Real-Time PCR for Respiratory Viruses 

Total nucleic acid was extracted on the Chemagic MSM I platform (Perkin Elmer) 

using 200uL of the NP swab transport media. Nucleic acid was eluted into 80uL and 

10uL of the elution was used for amplification on an ABI 7900 instrument (Life 

Technologies, Foster City, CA). Real-time PCR assays for human metapneumovirus, 

respiratory syncytial virus, influenza A and B virus, parainfluenza virus types 1-4, and 

enterovirus validated for diagnostic testing at ARUP Laboratories were used for 

comparison (see Table 3.1) (21,22). For human rhinovirus and coronavirus species 
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(HKU1, NL63, OC43), research tests were used (23). All assays employ the QuantiTect 

RT-PCR kit (Qiagen), which includes an internal control and UNG, as well as 

primer/probe sets from Epoch Biosciences (ELITech Group, Bothell, WA). The 

following amplification conditions were used in all assays: 1 cycle for 10 min at 20C 

(UNG step), 1 cycle for 30 min at 50C (RT), 1 cycle for 15 min at 95C (Taq activation), 

then 50 cycles of 15 sec at 95C, 30 sec at 56C, and 30 sec at 76C, then 1 final melt cycle 

of 15 sec at 95C, 15 sec at 45C, and 15 sec at 95C. RNA standards specific for each virus 

were used to generate standard curves. Monoplex, real-time PCR was performed for each 

of the viruses detected by the RVP on the respective samples. 

 

3.2.6 Statistics 

Linear and Spearman’s rank correlations were performed with Prism version 5.04 

software (GraphPad Software, Inc., La Jolla, CA) and P-values less than 0.05 were 

considered significant. 

 

3.3 Results 

3.3.1 Agreement with RVP-Positive Samples 

Archived nasopharyngeal swabs positive for one or more viruses by the RVP 

were retrospectively selected to cover each RNA virus target on the RVP. Preference was 

given to samples with co-detection of >1 virus. Agreement between RNA viruses 

detected by the RVP and RNA-seq in 42 samples was 86% (see Figure 3.1). Six 

respiratory viruses detected by the RVP were not detected by RNA-seq (blue bars). Four 

of these (one each of rhinovirus, influenza B virus, parainfluenza type 2, and respiratory 
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syncytial virus) were also not detected by monoplex, real-time PCR (hashed blue bars). 

Considering these false-positive by RVP, adjusted positive agreement between the RVP 

and metagenomics was 95%. Both of the remaining RVP-positive/PCR-

positive/metagenomics-negative samples were low-positive for rhinovirus with monoplex 

PCR threshold cycles of 33 and 35.  

 

3.3.2 Side-by-Side Comparison 

Between April 2013 and March 2014, all NP swabs from children less than 5 

years of age submitted for the RVP were banked after testing. From these, 67 were 

selected at random for testing by RNA-seq. Of these, 36 (53.7%) were positive by RVP 

for one or more respiratory virus resulting in detection of 37 respiratory viruses 

(Adenovirus, n=2; HMPV, n=4; influenza A virus, n=3; PIV-1, n=1; HRV, n=20; RSV, 

n=7). Of these 37 respiratory virus detections, 34 91.9% were also detected by RNA-seq. 

The RVP detected 3 additional, two of which tested negative by monoplex, real-time 

PCR while the third one could not be tested due to limited sample volume. RNA-seq and 

Taxonomer analysis detected 12 additional respiratory viruses, 3 of which were targeted 

by the RVP. The overall positivity rate for RNA-seq was 63%. Seven of the 12 additional 

viruses (58.3%) were confirmed by monoplex, real-time PCR, 3 were PCR-negative, and 

2 could not be tested due to due to limited sample volume. For the 3 viruses detected by 

RNA-seq but not monoplex, real-time PCR had low viral read counts (4-31 reads). 

However, these reads were located across unique regions of the viral genome and 

sequences differed by several nucleotides from those of other viral strains detected at 

higher read counts on the same runs, suggesting they were not misclassifications and 
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unlikely to be contaminants. Rhinovirus was the most frequently detected pathogen by 

either method (n=22), RSV was second (n=6), followed by coronavirus (not included on 

the RVP, n=5) and HMPV (n=5). Manual confirmation of Taxonomer results showed 

100% qualitative agreement for detection of respiratory viruses. 

Co-detection of ≥2 respiratory viruses was more common with RNA-seq (14%) 

than with the RVP (3%). The majority of co-detections involved rhinoviruses and human 

bocavirus. When possible, these co-detections were confirmed with lab developed real-

time PCR. There were several samples that were positive by both the RVP and RNA-seq 

but negative by monoplex, real-time PCR, suggesting that RNA-seq has at least 

comparable sensitivity compared to the RVP and monoplex, real-time PCR. Bocavirus 

was a common partner in co-detections by RNA-seq (n=4), but is not targeted by the 

RVP. 

 

3.3.3 Taxonomic Composition of Total RNA from NP Swabs and  

Abundance of Viral RNA 

Unlike with PCR, the sensitivity of RNA-seq-based metagenomics for pathogen 

detection is heavily influenced by the nucleotide composition of the sample. To 

characterize the relative contribution of host and microbial RNA in routinely collected 

NP swabs, we used Taxonomer to determine the high-level taxonomic classification of all 

reads (median of 15 million reads per sample, IQR 19-8 million reads). Since total RNA 

was sequenced, the majority of RNA-seq reads were of human origin (median 56.1%, 

IQR 47.7-62.3%), a median of 33.3% were not unambiguously classifiable (mostly 

ribosomal or mitochondrial RNA, data not shown, IQR 16.3-42.9%), a median of 3.4% of 
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reads were bacterial (IQR 0.9-14.8%), and only a median of 0.01% of reads was of viral 

origin (IQR 0.002-0.07%, see Figure 3.2). However, the number of viral reads spanned 

>5 orders of magnitude, with as few as 2 and as many as 3.2x105 reads detected by 

Taxonomer in RVP and monoplex, real-time PCR-positive sample. This highlights the 

importance of sample preparation and sequencing methods that minimize the likelihood 

of sample-to-sample contamination or limit methods to separate contamination from 

pathogen detection. 

 

3.3.4 Correlation of Viral Read Counts with Viral Loads  

Determined by PCR 

Semi-quantitative detection of respiratory viruses has been shown to correlate 

with disease severity, at least in some studies (24-26). Thus, we compared viral loads in 

NP swab samples determined by real-time PCR with normalized viral reads counts using 

the large number of viruses detected by metagenomics (n=68) using the normalization 

scheme described in (27). Briefly, numbers of viral reads were divided by the number of 

total reads and the size of the respective viral genome in kilobases and then multiplied by 

1 million to generate an RPKM value. In addition, monoplex, real-time lab-developed 

PCR was used with standards of known concentration to determine viral copies per mL of 

viral transport media. Correlation of RPKM and viral copies per mL was highly 

significant with a P-value <0.0001 (see Figure 3.3). This suggests that normalized viral 

read counts can be used for semiquantitative measurement of the viral burden in clinical 

samples.  
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3.3.5 Reproducibility 

Three samples positive by RNA-seq each with a distinct fractional abundance of 

viral reads were selected to evaluate within-run and between-run variability. Two of the 

viruses were also detected by the RVP; the third one was a sample positive by PCR for 

coronavirus. Each sample was processed from start to finish (extraction to analysis) a 

total of five (HRV and HMPV) or 14 (HCoV) times. Libraries were sequenced on the 

same (within run) and on different (between-run) HiSeq lanes (see Figure 3.1). The 

fraction of viral reads is graphed as a proportion of the total RNA reads for each repeat 

and the coefficient of variation was calculated from these values. Given the complexity of 

the workflow, RNA-seq and Taxonomer analysis demonstrated excellent reproducibility, 

with coefficients of variation of 65% (HMPV, lowest fractional abundance), 16% 

(HCoV), and 47% (HRV, greatest fractional abundance). 

 

3.3.6 Sequence-Based Characterization of Viral Strains 

and Antiviral Drug Resistance Determination 

As metagenomics provides sequence information in addition to mere 

determination of presence or absence of pathogens, we studied available viral sequences 

to demonstrate utility. Even though viral reads were a very small proportion of the total 

reads, sufficient sequence was obtained for 84% of positive specimens to enable high-

resolution, sequence-based genotyping. Consistent with the RVP results, all of the 

influenza A virus-positive specimens were typed as 2009 H1N1 strains. By RNA-seq, we 

were able to examine the oseltamivir resistance mutation at amino acid position 275 

(H275Y) of the neuraminidase gene in six out of eight positive specimens (1.6-200-fold 
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median coverage). None of the six isolates had the H275Y amino acid substitution. RSV-

B was far more common than RSV-A (nine vs. three of twelve RSV-positive samples, 

respectively). These results were consistent with RVP-based typing. Most rhinoviruses 

belonged to rhinovirus species C (62%) with only 21% belonging to rhinovirus species A, 

and 3% to rhinovirus B. Fourteen percent of rhinoviruses were untypeable (see Figure 

3.1). For 14 (52%) of the rhinovirus-positive samples, coverage of the viral genome was 

sufficient to generate full-length viral consensus sequences. Genetic diversity was 

greatest for strains that belonged to rhinovirus species C. Strains B and N that clustered 

closely together, were collected during the same month from patients from the same state. 

The most divergent sample from any full-length sequence in the NCBI nt database was 

sample I, which had only 75% sequence identity with the closest match, HRV-C3 (strain 

HRV-QPM, EF186077.2). This sample was missed by the RVP but tested positive by the 

monoplex, real-time PCR with a Ct of 20. The one enterovirus sequence was most similar 

to coxsackievirus B4 strain E2 (NCBI accession number AF311939, 84% overall 

nucleotide identity). The alpha coronavirus NL63 was detected in 3 samples and beta 

coronaviruses HKU1 and OC43 were detected in 2 samples, each. All human bocavirus 

detected (n=4) belonged to genotype 1. 

 

3.3.7 Detection of RNA from DNA viruses 

RNA-seq was able to detect only 2 of 6 adenovirus-positive samples (see Figure 

3.2a). Only very few adenovirus reads were generated in the 2 RNA-seq-positive samples 

(see Figure 3.2b). However, human bocavirus RNA was detected at high read counts in 

four samples. Additionally, high levels of RNA reads from a number of non-respiratory 
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DNA viruses were detected by metagenomics including HSV-1, CMV, EBV, and 

anellovirus (data not shown). Optimized nucleic acid extraction methods or simultaneous 

preparation of cDNA and DNA libraries may enable more complete characterization of 

the DNA virome in clinical samples.  

 

3.3.8 Reagent Contamination 

Contamination from reagents employed during extraction, library preparation, and 

sequencing has been previously described (28). To assess the contamination generated by 

our approach, we extracted and sequenced 3 molecular grade water samples alongside 

clinical samples. The reads generated by these samples were largely bacterial. No 

respiratory viruses or known human pathogenic viruses were detected (data not shown). 

 

3.4 Discussion 

We showed that RNA-seq-based metagenomics combined with a rapid, user-

friendly data analysis tool has accuracy and sensitivity that compared favorably with a 

commercial multiplex PCR test. The unbiased approach of RNA-seq allowed us to query 

a theoretically unlimited number of pathogens in parallel, resulting in detection of more 

human viruses and a higher positivity rate. These included well-known respiratory 

viruses with clinical relevance when detected in the upper respiratory tract as well as 

potential pathogens that may only be relevant in the appropriate (e.g. 

immunocompromized) host and when detected from the lower respiratory tract (e.g. 

HSV, CMV). Interestingly, even though we used RNA-seq and included a DNase 

treatment step, DNA viruses were detected in some but not all PCR-positive samples. It is 
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possible that detection of mRNA from DNA viruses may serve as a marker of active 

replication. This is of relevance as several DNA viral respiratory pathogens can become 

latent (e.g. HSV, CMV) or persist for extended periods (e.g. HBoV) so that detection of 

their genomic DNA may not be a sufficient indication for acute infections.  

The sensitivity of RNA-seq-based metagenomics is a function of sample 

composition and sequencing depth. When sequenced to the same depth, samples with an 

abundance of non-pathogen RNA (e.g. highly cellular samples or samples with abundant 

normal flora) result in lower analytical sensitivity than sample in which the pathogen 

RNA is more abundant (e.g. less cellular samples, higher pathogen load, absence of 

normal flora). As ribosomal RNA (rRNA) represents a large proportion of host RNA, 

rRNA depletion strategies have been used to mitigate this effect. We decided not to use 

this approach as it may have off-target effects (e.g. depleting microbial rRNA or other 

sequences with sufficient homology), which limits the unbiased nature of metagenomics. 

In addition, rRNA depletion or target enrichment steps add complexity and cost to the 

workflow. Samples were sequenced to a depth of 5-10 x 106 reads/sample to limit 

sequencing costs. This sequencing depth resulted in comparable positivity rates and 

agreement with targeted PCR of >90%. When clinically relevant, samples can be 

sequenced deeper resulting in proportionally increases of analytical sensitivity.  

When approaching the limit of detection, small numbers of viral reads pose 

challenges to result interpretation as they can represent results that are true-positive, low-

level detection or artifacts. False-positive detections can be due to contamination during 

library preparation (e.g. sample-to-sample contamination prior to indexing), may be a 

result of sequencing artifacts (e.g. run-to-run carry-over or de-multiplexing errors), or 
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may be caused by erroneous classification during data analysis (e.g. due to highly 

homologous or low-complexity regions) (29). Thus, the confidence of viral detection 

depends on the number of viral reads and evenness of coverage. Given the testing 

complexity, read counts may vary between analytical replicates. To determine the within-

run and between-run variability, we tested multiple aliquots of 3 virus-positive samples 

from sample extraction through data analysis. Respiratory viral read counts across a wide 

range of fractional abundance were highly reproducible within and between runs (CV 

ranging from 16% to 63%). Taken together, our results indicate that metagenomics 

combined with rapid, interactive, and user-friendly data analysis has value in 

supplementing current, PCR-based tests and may replace pathogen-specific tests in the 

future. 

Other than its broad scope, another distinct advantage of metagenomics-based 

pathogen detection is the ability to determine the molecular subtype of a particular virus 

and query it quickly for genotypic markers of drug resistance or pathogenicity. In our 

study, molecular typing was possible for 84% of all viral strains. Relevant information 

derived from typing included (1) almost ⅔ of rhinoviruses belonged to the more 

pathogenic species C including one highly divergent strain missed by the RVP (30,31); 

(2) all influenza A viruses were 2009 H1N1 strains but none contained the H275Y 

mutation conferring oseltamivir resistance; (3) RSV-B was 3-times more prevalent than 

RSV-A, which may be relevant as strain-specific differences in pathogenicity have been 

suggested; (4) high-resolution typing of an enterovirus as Coxsackievirus B4; (5) typing 

of 7 coronaviruses as NL63, HKU1, and OC43; (6) and genotyping of 4 bocavirus strains 

as HBoV-1. As genotype-phenotype correlations become better understood, genotypic 
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strain characterization will gain importance. This will also facilitate epidemiologic 

investigations or studies of vaccine effectiveness. Particularly in the case of influenza, 

real-time sequence information will improve surveillance studies, enable early detection 

of antiviral drug resistance, and inform vaccination strategies. 

Respiratory viral burden correlates with disease severity and may help 

differentiate asymptomatic shedding from active infection (24-26,32). Published studies 

correlating viral read counts with quantitative PCR had limited sample sizes (13-15). 

Thus, we tested whether normalized read counts could be used for quantification of the 

viral burden by comparison to viral loads determined by pathogen-specific, laboratory-

developed, quantitative real-time PCRs. While viral reads always represented a small 

fraction of total reads (see Figure 3.3a), normalized counts correlated highly significantly 

with viral loads. RNA-seq could therefore also be used to measure viral burden. 

While we demonstrated analytical performance comparable to an FDA-cleared 

multiplex PCR, there are several barriers for routine diagnostic deployment of 

metagenomics-based testing. These include lengthy turn-around times, costs, and 

complexity of data analysis. First, the library preparation method used in this study 

required ~14 hours. We performed sequencing on an illumina HiSeq 2500 instrument in 

high output run mode, which took an additional ~11 days. At the time of writing, partially 

automated solutions for RNA-seq library preparation within ~8 hours and sequencing 

within ≤1 day for comparable per-base costs have become available (11,33). These 

advances are starting to enable diagnostic laboratories to provide results in a clinically 

meaningful timeframe and with a workflow that can be implemented in diagnostic 
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laboratories. However, for wide adoption, rapid, automated, closed system library 

preparation methods and quicker sample-to-data times are needed.  

Second, cost is a great concern regarding the use of next-generation sequencing in 

infectious disease diagnostics. For the present study, RNA-seq reagent costs per sample 

were within $10-20 of reagent costs for RVP. This was in part due to multiplexing 24 

samples per sequencing lane. At the time of writing, cheaper library preparation kits and 

sequencing platforms have further decreased costs, quickly eliminating the cost 

differential. Enrichment of viral sequences and depletion of uninformative host RNA can 

reduce sequencing costs by increasing coverage but introduces complexity and costs of 

library preparations (34,35). We analyzed RNA-seq data solely for the presence of 

respiratory viruses, ignoring bacterial respiratory pathogens, as most of those can be part 

of the normal upper respiratory tract flora and only NP swabs were tested. However, 

when used with lower respiratory tract samples, RNA-seq has the potential to also replace 

a large number of commonly performed culture and PCR-based tests, at which point costs 

for unbiased pathogen detection will be even more competitive.  

Finally, data analysis needs to be rapid, user-friendly, and reliable enough so it 

can be implemented without large investments in highly trained personnel and 

computational infrastructure. We used our recently published metagenomics data analysis 

tool, Taxonomer, to screen for the presence of respiratory viruses (19). Taxonomer 

analyzed ~1x106 reads/minute, requiring <10 minutes per sample. For diagnostic 

applications, data analysis solutions are needed that minimize the time users spend 

reviewing results. We confirmed all respiratory virus detections manually to ensure 

accuracy. However, this was only informative in samples with low viral read counts 
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given concern of false-positive results due to misclassification or sequencing artifacts. 

Several RVP and multiplex PCR-positive samples only produced <10 reads for that virus, 

making detections unreliable at this low end (see Figure 3.3b). Deeper sequencing or 

target enrichment depletion approaches could alleviate the problem but increase costs 

and/or workflow complexity. For highly variable viruses (e.g. Picornaviridae), suspicious 

reads can be mapped back to viral consensus sequences of source strains to identify reads 

that likely represent artifacts. For diagnostic adoption, interpretive criteria similar to 

those being established for genomics laboratories will need to be developed and 

incorporated in diagnostic data analysis tools to enable consistent and rapid analyses 

(36,37). 

In summary, we showed that metagenomics-based detection of respiratory viruses 

holds promise as a diagnostics tool enabling unbiased pathogen detection, molecular 

tying, and genotypic assessment of drug resistance or pathogenicity. Barriers to adoption, 

including turnaround time, cost, and complex data analysis are rapidly being removed. 

Initial adoption may be for testing of immunocompromized or otherwise predisposed 

patients, when routine therapeutic approaches fail, during clusters of infections of 

unknown etiology, or when molecularly characterize of pathogens is sought. As 

highlighted by a diverse HRV-A strain missed by the RVP, the unbiased nature of 

metagenomics can also assist with detection of novel viruses or variant strains 
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Figure 3.1. Respiratory Virus detection by RNA-seq plus Taxonomer and performance 
comparison with a commercial multiplex PCR panel. (A) Fractional abundance of 
human, bacterial, and viral sequences in RNA-seq results from an NP swab of a female 
infant who tested positive for influenza A virus, determined by Taxonomer and 
visualized through Taxonomer’s IOBIO interface (19, 20). In this sample, ~1.5% of reads 
were of viral and 2.7% of bacterial origin. (B) Taxonomer identified 1.74x105 reads as 
viral, of which 1.73x105 (99.4%) could be classified to the species level (influenza A 
virus), and 7.9x104 (45.3%) to the subtype H1N1. (C) RNA-seq plus Taxonomer 
identified 36 of 42 (86%) of the respiratory viruses detected by a commercial, FDA-
cleared PCR panel. Four of the 6 respiratory viruses missed by metagenomics (1 each of 
HRV, IBV, PIV-2, and RSV) could not be detected by quantitative, monoplex real-time 
PCR (hashed bar). Eliminating these 4 samples from the analysis, RNA-seq plus 
Taxonomer identified 36 of 38 (95%) of the respiratory viruses detected by the PCR 
panel. (D) Using NP swab samples (n=67) collected during a 12-month period, the 
commercial PCR panel detected 37 and RNA-seq plus Taxonomer detected 48 viral 
infections (37 targeted by the PCR panel, 11 not targeted by the PCR panel, asterisk). 
Among the viruses targeted by the PCR panel, three were only identified by RNA-seq 
plus Taxonomer and three were only detected by the PCR panel. 

ADV – adenovirus, HMPV – human metapneumovirus, IAV – influenza A virus, PIV – 
parainfluenza virus, HRV – human rhinovirus, RSV – respiratory syncytial virus, HCoV 
– human coronavirus, CMV – cytomegalovirus, HBoV – human bocavirus, EV – 
enterovirus, MV – measles virus, ITS – internal transcribed spacer  



 

 

Figure 3.2. Overall taxonomic composition of RNA-seq reads and numbers of viral reads 
by respiratory virus. (A) Fractional abundance of reads binned as human, human mRNA, 
bacterial, bacterial 16S, viral, phage, fungal, fungal ITS, ambiguous, and unknown is 
shown as median and interquartile range (box plots) and as violin plots. Only reads 
identified as viral (red, median ~1:10-4 reads) were used for this analysis. (B) Viral read 
counts differed across 5 orders of magnitude. 
 
ADV – adenovirus, HMPV – human metapneumovirus, IAV – influenza A virus, PIV – 
parainfluenza virus, HRV – human rhinovirus, RSV – respiratory syncytial virus, HCoV 
– human coronavirus, CMV – cytomegalovirus, HBoV – human bocavirus, EV – 
enterovirus, MV – measles virus, ITS – internal transcribed spacer 
 



 

 

 

 

Figure 3.3. Correlation of normalized read counts with viral burden and precision of viral 
read abundance within and between sequencing runs. (A) The correlation between viral 
copies per mL of viral transport media and determined by quantitative PCR and 
normalized viral reads (viral reads per kb viral genome size per million total reads, 
RPKM) detected by RNA-seq and Taxonomer was assessed by a Spearman correlation 
test (rho=0.7 P<0.0001). (B) Reproducibility was evaluated by extracting and sequencing 
the same sample 5 (human rhinovirus, HRV; and human metapneumovirus, HMPV) or 
14 (human coronavirus, HCoV) times. Replicate libraries were prepared independently 
and sequenced on the same lane (within run) or different lanes (between run). Fractional 
abundance (viral reads per total reads) is shown for within run replicates (same color) and 
between-run replicates (different colors). Precision is shown as percent coefficient of 
variation (%CV). 
 RPKM)
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Figure 3.4. High-resolution, sequence-based typing of 14 
human rhinovirus strains based on RNA-seq directly from 
NP swabs. Most strains belonged to rhinovirus species C 
(n=12, 86%) with 2 strains (14%) belonging to lineage 1, 4 
strains (29%) belonging to lineage 2, and 6 strains (43%) 
belonging to lineage 3; 2 strains belonged to rhinovirus 
species B and no rhinovirus species A strains were detected. 
Near full-length sequences of 14 human rhinovirus strains 
(strains A through N) were aligned (MUSCLE) and a 
neighbor-joining consensus tree (1,000 replicates) is shown. 
Full-length reference sequences for Rhinovirus A (HRV-
A89), B (HRV-B14), and representative full-length genome 
sequences from each of the Rhinovirus C lineages 
(EF077280, GQ223227, and JN990702, (38)) were included 
for comparison. Poliovirus 1 was used as outgroup. For 
strains sequenced as part of this study, month, year, and state 
of sample collection are indicated in parentheses. Colors 
represent species and lineage-level clades. 
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Table 3.1 Primer and probe sequences for the unpublished monoplex, real-time PCR 
assays for respiratory viruses. Asterisks indicate primer and probe sequences 
incorporating chemically modified bases to increase the thermodynamic stability: A* = 
super A base, T* = neutral base. 

 
Virus Name Sequence 
Parainfluenza 
1 

PI1-L8 AATAAATCATAAGCAATGAAAGATGGATGAA
TCACTC 

PI1-E11 AATAAATCATAACTTCA*AGTTCTTCTGCA*CC
A 

PI1-FAM8 MGB-FAM-ACAATCA*CGATTCA*TGG-NFQ 
PI1-FAM11 MGB-FAM-ACAATTA*CGA*TT*AGTGG-NFQ 

Parainfluenza 
2 

PI2-L1 AATAAATCATAAGGTATAGCAGTGACTGAAC 
PI2-E1 AATAAATCATAACCATTTA*CCTAAGTGATG 
PI2-AP593-1 MGB-AP593-1-CTTTTGCGATTGATTCCA-NFQ 

Parainfluenza 
3 

PI3-L3 AATAAATCATAAGTATATCAACTGTGTTCAAC
TCC 

PI3-L4 AATAAATCATAAGTATATCAACTGTGTTCGAC
TCC 

PI3-E4 AATAAATCATAACAAGTA*CAATA*TCTTCTAT
GCC 

PI3-AP525-1 MGB-AP525-1-CTTTCATCAACTTTGG-NFQ 
Parainfluenza 
4 

PI4-L2 AATAAATCATAAAACCTCGCAGTAGTGGTCTG 
PI4-E3 AATAAATCATAACTAGATTACCATCAACAGGA

AAG 
PI4-AP642-1 MGB-AP642-1-AT*T*T*ACCTAATCT*T*T*C-

NFQ 
hMPV Forward AATAAATCATAAGAGARAAYTATTTCCATG 

Reverse AATAAATCATAATGYT*CTGT*TA*ATAT*YCM
A*CAC 

Probe MGB-FAM-G*CAT*GZ*CA*Z*T*GGT*GT*GG-Q 
ADV ADV-E1 AATAAATCATAAGATGGCCACCCCATCGA 

ADV-E2 AATAAATCATAAGATGGCTACCCCTTCGA 
ADV-E3 AATAAATCATAAGATGGCCACCCCCTCGA 
ADV-E4 AATAAATCATAAGATGGCCACTCCCTCGA 
ADV-L1 AATAAATCATAAGGCCCGAGATGTGCATGTA 
ADV-L2 AATAAATCATAAGTCCGGCGATGTGCATGTA 
ADV-L3 AATAAATCATAAGCCCGGCGATGTGCATGTA 
ADV-FAM1 
ADV-FAM5 

MGB-FAM-CCATTGG*GGCAG*CATCGA-NFQ 
MGB-FAM-ACTGCGGCA*TCA*TCGA-NFQ 

 



 

 

 

CHAPTER 4 

 

VIRAL PATHOGEN DETECTION BY METAGENOMICS AND 

PANVIRAL PCR IN CHILDREN WITH PNEUMONIA WITH 

 NO IDENTIFIABLE ETIOLOGY, RESULTS FROM THE 

 CDC ETIOLOGY OF PNEUMONIA IN THE 

 COMMUNITY (EPIC) STUDY3 

 

4.1 Introduction 

Pneumonia is the leading cause of childhood death globally and more than 2 

million children die of pneumonia every year (1). In the United States, up to 50% of 

children ≤5 years with community-acquired pneumonia (CAP) require hospitalization, 

accounting for 110,000 admissions annually (2,3). Pathogens vary by age (4-6) but 

viruses are the most common causes of CAP in children ≤5 years, especially in the 

absence of lobar pneumonia and pleural effusion (6,7). However, a pathogen cannot be 

identified in 14-23% of children with CAP, even with extensive, state-of-the-art 

diagnostic testing (8-15). This situation may be due to viruses that are not part of the test 

panel, strains escaping detection due to genetic variation, unrecognized bacterial 

                                                        
 
3 A version of this chapter has been prepared for Emerging Infectious Diseases. Co-
authors include Dr. Mark Yandell, Dr. Karen Eilbeck, Dr. Robert Schlaberg, and Keith 
Simmon. 
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infections, novel and emerging pathogens, or inadequate sample collection. Most of these 

limitations of current diagnostic tests could be overcome by the use of unbiased pathogen 

detection methods, such as high-throughput sequencing and broad-range PCR. In contrast 

to currently-used pathogen-specific tests, unbiased methods do not require a priori 

knowledge of likely pathogens; can detect previously unrecognized or unsuspected 

pathogens, be they viruses, bacteria, fungi, or parasites; and are tolerant to sequence 

polymorphism that may interfere with PCR-based detection (16,17). Two popular 

methods for unbiased pathogen detection are shotgun metagenomic sequencing of DNA 

or RNA extracted directly from patient samples and broad-range PCR amplification 

targeting conserved genomic regions. 

In a recent national pediatric pneumonia study (Etiology of Pneumonia In the 

Community, EPIC), no clear etiology could be identified for ~19% of children with CAP 

despite use of state-of-the-art methods (8). Pathogen identification, however, is critical in 

order to tailor therapy appropriately, treat bacterial infections with antibiotics, and 

discontinue unnecessary antibiotics in cases of viral pneumonia. In addition, accurate 

pathogen identification is also required for effective infection-control and to examine 

vaccine effectiveness. The aim of the present study was to (1) reduce the proportion of 

children with CAP but no identifiable causative agent and to (2) assess whether unbiased 

pathogen detection methods may be more efficient than ever larger panels of pathogen-

specific tests to determine the etiology of CAP in young children. 

We applied unbiased pathogen detection using two independent approaches, 

RNA-seq and panviral genus/family PCR, to detect respiratory pathogens in 

nasopharyngeal (NP)/oropharyngeal (OP) swabs from children <5 years hospitalized with 
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CAP of unclear etiology (n=70). Banked samples from asymptomatic, age and season-

matched children (n=90) were used as controls. RNA-seq-based metagenomics (next-

generation shotgun sequencing of any RNA in a patient sample) enables sequence-

independent detection of any pathogens with sufficient sequence homology to known 

viruses, bacteria, fungi, or parasites to allow their classification using existing reference 

databases [16]. This method requires no a priori knowledge of likely pathogens and 

represents the most unbiased method available. Panviral genus/family PCR uses broad-

range PCR primers designed to detect members of viral genera and families that contain 

known human pathogens. As such, it allows detection of known pathogens as well as 

novel viruses that are close relatives of targeted viruses (18).  

 

4.2 Materials and Methods 

4.2.1 Study Population 

The EPIC study population, enrollment criteria, and specimen collection are 

described in detail elsewhere (7). In brief, children with CAP younger than 5 years of age 

hospitalized at Primary Children’s Hospital in Salt Lake City between January 1, 2010 

and June 30, 2012 were included in this study based on pneumonia with negative 

pathogen detection tests per EPIC protocol (8). Inclusion criteria included acute infection, 

acute respiratory illness, and radiographically confirmed pneumonia. Control patients 

younger than 5 years of age without pneumonia were enrolled at Primary Children’s 

Hospital between February 1, 2011 and June 30, 2012. Patients that received live 

attenuated influenza vaccine or underwent otolaryngologic surgery were excluded. 

Control patients underwent same-day elective surgery and NP/OP swabs were collected 
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in the operating room. To assess occurrence of respiratory symptoms or fever after 

enrollment as a control, a follow-up telephone interview was conducted with controls 14 

days after sample collection. General exclusion criteria were hospitalization within 7 

(immunocompetent children) or 90 (immunosuppressed children) days, alternative 

diagnosis of a respiratory disorder, newborns in continuous inpatient care, children with 

tracheostomy tube, cystic fibrosis, cancer with neutropenia, children who had received a 

solid-organ or hematopoietic stem-cell transplant (<90 days), active graft-versus-host 

disease, or bronchiolitis obliterans. 

 

4.2.2 Sample Collection and Pathogen Detection per 

 EPIC Protocol 

Combined nasopharyngeal (NP) and oropharyngeal (OP) swabs were collected as 

soon as possible after presentation but no more than 72 hours before or after hospital 

admission. Swabs were transferred into 3 ml Universal Transport Media (Diagnostic 

Hybrids, Inc.), refrigerated, and stored at -80°C within 24 hours. During the EPIC study, 

bacterial pathogens (Haemophilus influenzae or other gram-negative bacteria, 

Staphylococcus aureus, Streptococcus anginosus, Streptococcus mitis, Streptococcus 

pneumoniae, or Streptococcus pyogenes) were sought by culture (blood, endotracheal 

aspirate, bronchoalveolar-lavage specimen, pleural fluid) or PCR (whole blood, pleural 

fluid); Chlamydophila pneumoniae and Mycoplasma pneumoniae were also sought by 

PCR from NP/OP swabs. Viral pathogens (adenovirus, coronavirus, HMPV, human 

rhinovirus, influenza, parainfluenza virus, RSV) were detected by PCR from NP/OP 

swabs and by serology (except human rhinovirus and coronaviruses).  
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4.2.3 RNA-Seq 

4.2.3.1 Nucleic Acid Extraction 

Combined NP/OP swab samples (75-200µL) in universal transport media were 

extracted using the QIAamp Viral RNA extraction kit (Qiagen). Extraction was carried 

out as described by the manufacturer with the addition of on-column DNase treatment: 

after AW1 wash 80µL of DNase I mix (Qiagen), containing 10µL of RNase-free DNase I 

and 70µL of Buffer RDD, was added to the QIAamp Mini column, incubated at room 

temperature for 15 minutes, and an additional wash step with 250µL AW1 was 

performed. This study was approved by the University of Utah (IRB_00035409) and 

CDC (5827) IRBs. 

 

4.2.3.2 Library Generation 

Indexed cDNA libraries were prepared with the TruSeq RNA Sample Prep Kit, 

following the manufacturer’s instructions (Illumina, San Diego, CA). Libraries were 

quantified by qPCR with the Illumina Universal Library Quantification Kit (Kapa 

Biosystems, Inc., Wilmington, MA) and the Applied Biosystems 7900HT Fast Real-Time 

PCR System (Applied Biosciences). Library size and quality was assessed with a High 

Sensitivity DNA Analysis Kit on an Agilent 2100 Bioanalyzer (Agilent Technologies, 

Santa Clara, CA).  Libraries from 24 samples were combined in equimolar ratios for a 

final concentration of 9.6nM and sequenced in batches of 24 samples per lane on a HiSeq 

2500 instrument (Illumina, San Diego, CA) generating 2x100bp sequencing reads. 
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4.2.3.3 Analysis of Metagenomics Data 

Matching paired-end reads were concatenated adding a ‘-’ between read 1 and 

read 2. The resulting sequences were analyzed by Taxonomer and results visualized 

through taxonomer.iobio.io (19). Taxa with only 1 read assigned to them were ignored. 

Viral taxa (other than phages) were confirmed manually by mapping the sequencing files 

against the relevant reference sequences in Geneious (version 8.1, Biomatters). Viral taxa 

identified based on <100 reads were only considered if reads were not an identical match 

to any other sample within the same batch by manual analysis. 

 

4.2.4 Panviral Family/Genus PCR Panel 

4.2.4.1 Nucleic Acid Extraction 

Combined NP/OP swab samples (200µL) in universal transport media were 

extracted either using a manual method by the QIAamp Viral RNA extraction kit 

(Qiagen) or using an automatic method by the BioSprint 96 One For All kit (Qiagen) on a 

Kingfisher 96 platform (Thermo) according to the manufacturer instruction.  

 

4.2.4.2 Panviral Family/Genus PCR 

Panviral family/genus PCRs were designed to amplify known and potentially 

novel members of the viral families/genera listed below. They were designed using the 

CODEHOP principle to conserved genes and regions (20,21). Samples were tested with 

broadly reactive reverse transcriptase PCR (RT-PCR) or PCRs for the following viral 

families/genera: Adenoviridae, Togaviridae (Alphavirus), Anelloviridae, Arenaviridae, 

Astroviridae, Bornaviridae, Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, 
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Flaviviridae (Flavivirus), Herpesviridae, Orthomyxoviridae (Influenzaviruses A, B and 

C), Paramyxoviridae, Parvoviridae, Picornaviridae (Enterovirus and Parechovirus), 

Polyomaviridae, Reoviridae (Aquareovirus, Orthoreovirus, Orbivirus, Rotavirus, and 

Seadornavirus) and Rhabdoviridae (22-29). First round RT-PCR for RNA viruses was 

performed with Superscript III/Platinum Taq One Step kits (Invitrogen) and Titanium 

Taq (Clontech) kits for the second round PCR. First and second round PCR for DNA 

viruses was performed with Hot Start Ex Taq kits (Takara). Positive and negative PCR 

controls containing mutation-engineered synthetic RNA transcript or DNA amplicon and 

nuclease-free water, respectively, were included in each run. PCR products were 

visualized on 2% agarose gels.  

 

4.2.4.3 Sequence Confirmation 

Positive bands of the expected size that had strong signal and without additional 

bands were cleaned up using Exonuclease I (New England Biolabs) and Shrimp Alkaline 

Phosphatase (Roche). Samples were incubated at 37°C for 15 minutes followed by 80°C 

for 15 minutes to inactivate the Exonuclease and Shrimp Alkaline Phosphatase. Positive 

bands of the expected size with additional bands present in the PCR products were 

purified using QIAquick Gel Extraction kits (Qiagen). Purified PCR amplicons were 

sequenced with the PCR primers in both directions on an ABI Prism 3130 Automated 

Capillary Sequencer (Applied Biosystems) using Big Dye 3.1 cycle sequencing kits (Life 

Technologies). 

 

 



 
 

 

124 

124 

4.3 Results 

4.3.1 Study Population and Seasonal Trends of  

Test-Negative CAP 

A total of 70 children with no identifiable etiology CAP and 90 asymptomatic 

children were included in this study (see Table 4.1). The proportion of children enrolled 

across seasons, in different age groups (<1 year, 1-2 years, 2-4 years), and with 

underlying conditions (asthma or reactive airway disease; preterm birth) was similar 

among cases and controls. Among the cases, 96% of children presented with fever, 83% 

with cough, 46% with dyspnea, 45% had radiographical evidence of consolidation, 65% 

of alveolar or intestinal infiltrates, and of 28% pleural effusion. The median length of 

hospital stay was 3 days, 28% of cases required ICU admission, but all of the cases 

survived. All control patients were asymptomatic at the time of enrollment. In a 

questionnaire administered 14 days after enrollment, 62% reported no respiratory 

symptoms since enrollment, 10% reported cough, and 9% reported fever. Overall, 19% of 

children below age 5 had CAP with no identifiable etiology (see Figure 4.1). This 

proportion varied by season ranging from 0-20% during most winter and spring months 

to 30-60% during several summer and fall months. 

 

4.3.2 Detection of Known Respiratory Pathogens by 

RNA-Seq and Panviral PCR 

Banked NP/OP samples from children hospitalized with pneumonia (n=63) and 

asymptomatic controls (n=52) in which respiratory pathogens were detected per EPIC 

protocol were used to assess the ability of RNA-seq and panviral PCR to detect known 
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pathogens. Samples were selected to contain RNA viruses (human coronavirus, n=5; 

human rhinovirus, n=50; human metapneumovirus, n=12; influenza A virus, n=1; 

influenza B virus, n=1; parainfluenza virus 1-3, n=5; respiratory syncytial virus, n=29), 

DNA viruses (adenovirus, n=8), and bacterial pathogens (M. pneumoniae, n=7). Overall, 

56 of 60 (93%) and 43 of 59 (73%) of known pathogens were detected by RNA-seq or 

panviral PCR in cases and controls (see Table 4.2), respectively. In cases, combined 

RNA-seq or panviral PCR detected 56 of 60 (93%), RNA-seq alone 54 of 60 (90%), and 

panviral PCR alone 34 of 60 (57%) of known pathogens (see Table 4.2). In controls, 

these numbers were 43 of 59 (73%) by combined RNA-seq and panviral PCR, 38 of 59 

(64%) by RNA-seq, and 13 of 59 (22%) by panviral PCR. Overall, RNA-seq was at least 

as sensitive as panviral PCR in identifying known respiratory pathogens. Sensitivity for 

each of the known pathogens for detection by RNA-seq, panviral PCR, and the 

combination of both methods is shown in Table 4.2. Of note, RNA-seq detected none of 

the 8 ADV-positive samples (cases n=3, controls n=5), whereas panviral PCR detected 

1of 3 (33%) cases and 3 of 5 controls (60%). Detection of HRV was more sensitive by 

RNA-seq than panviral PCR. All known M. pneumoniae infections were detected by 

RNA-seq. 

In addition, RNA-seq and panviral PCR detected 58 cases of previously 

undetected human viral infections in children with CAP and 61 in asymptomatic controls 

(see Figure 4.2). The largest number of previously unrecognized viral infections we 

caused by anelloviruses (cases n=45, controls n=38), HHV6 (cases n=8, controls n=9), 

and HHV7 (cases n=6, controls n=10). While these undetected viruses were unlikely 

pathogenic, others may have contributed to patients’ symptoms (e.g. astrovirus, human 
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parechovirus, human bocavirus). These results demonstrated the ability of RNA-seq and 

panviral PCR to detect known viral pathogens and identify additional viruses. 

 

4.3.3 Pathogen Detection in Children with Pneumonia 

 with No Identifiable Etiology 

Human viruses were detected in 53 (76%) children with pneumonia and 55 (61%) 

controls (see Figure 4.3). Among likely respiratory pathogens, odds ratios (OR) were 

highest for HBoV (OR 10.0, 95% confidence interval (CI) 2.2-46), Coxsackieviruses (OR 

9.4, 95% CI 0.5-185), HRV-A (OR 4.0, 95% CI 0.4-39), adenovirus (OR 3.9, 95% CI 

0.2-97), and HPIV-4 (OR 2.6, 95% CI 0.2-29). In addition, measles virus (cases, n=2), 

polyomaviruses (cases, MW polyomavirus, n=1; Merkel cell polyomavirus, n=1), 

Epstein-Barr virus (EBV, cases n=4, controls, n=2), β-papillomavirus (cases, HPV type 

5, n=1), herpes simplex virus (HSV, cases, n=1), and rotavirus (cases, n=1) had odds 

ratios >2. Of the potential pathogens, only ADV and HRV were targeted in the EPIC 

study. 

The most prevalent viruses were anelloviruses (49% in cases, 36% in controls), 

HHV6 (13% in cases, 10% in controls), and HHV7 (9% in cases, 10% in controls), all of 

which had odds ratios between 0.5 and 2. Parvovirus B19 (cases, n=1; controls, n=1) and 

Echovirus (controls, n=1) also had odds ratios of 0.5 to 2. Cytomegalovirus (CMV, cases, 

n=1; controls, n=3), human parechovirus (HPeV, cases, n=1; controls, n=3), and 

cardioviruses (controls, n=2) were more commonly detected in controls than in cases.  

Figure 4.3 also shows the proportion of pathogens co-detected with other viruses. 

Reflecting the greater prevalence of viruses in cases, a total of 68% of detection in cases 
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and 33% of detection in controls were co-detections. In cases, co-detections affected 50% 

or more of detections for all pathogens except HPeV, HSV, beta-papillomavirus, 

polyomavirus, and C. trachomatis. 

HBoV was the only pathogen with a statistically significant association 

(P<0.001). As distribution of age and season of enrollment differed between cases and 

controls (see Table 4.1), we included both as categorical variables in a multivariable 

model. HBoV remained strongly associated with CAP in these multivariable analyses. 

HBoV was co-detected with other pathogens in 9 of 11 cases (82%). Co-detected viruses 

were anelloviruses (n=7), EBV (n=2), HRV-A (n=2), ADV (n=1), Coxsackievirus (n=1), 

HHV6 (n=1), and HHV7 (n=1). 

 

4.3.4 Bacterial Pathogens in Children with Pneumonia  

with No Identifiable Etiology 

Overall, there was great variability in the overall taxonomic composition of the 

RNA extracted from NP/OP samples as determined by RNA-seq and Taxonomer 

analysis. In at least two patients with negative results per EPIC protocol, potential 

bacterial pathogens were identified in great abundance (see Figure 4.4). Both samples 

were from 1-year-old children and in both, >95% of all sequencing reads were derived 

from bacteria. In patient J13, almost 95% of the bacterial reads mapped to Pseudomonas 

fluorescens (best match: strain LBUM223) and in patient M4, almost 90% of bacterial 

reads mapped to Serratia marcescens (best match: strain FGI94). Across all cases, a 

mean of 37±26% of reads were of human origin and 46±31% of bacterial origin with the 
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remaining reads being of viral, fungal, or not unambiguously classifiable. For controls, 

these numbers were 32±20% and 43±28%, respectively. 

 

4.3.5 Comparison of Viral Detection by Metagenomics  

and Panviral PCR 

In cases, 32% of viral detections were by both methods, 22% by RNA-seq only, 

and 47% by panviral PCR only (see Figure 4.5). In controls, these numbers were 19%, 

20%, and 61%, respectively. Most viruses that were only detected by panviral PCR were 

DNA viruses that are shed for extended periods by healthy individuals, e.g. anelloviruses, 

HHV6, HHV7. In the absence of active replication in the upper respiratory tract, these 

viruses are not detectable by RNA-seq. Of the remaining viruses, 46% and 21% were 

detected by both methods, 38% and 64% by RNA-seq only, and 15% and 14% by 

panviral PCR only in cases and controls, respectively. 

 

4.4 Discussion 

Making an etiologic diagnosis in patients with pneumonia is important for 

understanding the epidemiology, providing appropriate therapy and for limiting 

unnecessary use of antimicrobials. However, extensive testing using current approaches 

are unable to identify a pathogen in ~20% of children and ~60% of adults (8,30). We 

used upper respiratory tract samples from children enrolled in EPIC with well-

documented pneumonia but no pathogen identified by culture, molecular, and serologic 

methods to assess the diagnostic yield of two unbiased pathogen detection tools, RNA-

seq and broad-range PCR. In this systematic analysis, we showed that RNA-seq and PVR 
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had high sensitivity and specificity compared with pathogen-specific, PCR-based tests. 

We were able to identify potential viral pathogens in ~30% of NP/OP samples from 

children hospitalized with pneumonia with no identified pathogen despite extensive 

testing with other methods.  

The detected viruses can be broadly categorized into 4 groups: (1) known 

respiratory pathogens, (2) viruses of unclear pathogenicity, (3) opportunistic viruses that 

are pathogenic in immunocompromised hosts, (4) viruses not thought to play a 

pathogenic role in respiratory tract illness. Among known respiratory pathogens, we 

detected Coxsackievirus, HRV, ADV, HPIV, human parechovirus, and measles virus, 

which together were detected in 33% of children with CAP. Coxsackievirus, HRV, ADV, 

HPIV and measles virus more often than among controls (OR >2), but due to the low 

frequency of detection, these differences did not reach statistical significance. Human 

parechovirus and echovirus can cause respiratory tract infections but were detected 

infrequently in both cases and controls (OR 1.3 and 0.4, respectively). The two patients 

with measles virus detection did not show signs of measles and had recently been 

vaccinated. Thus, the detected measles virus most likely represents the vaccine strain. 

Unfortunately, the low number of reads precluded demonstrating this by examining the 

complete viral genome. Cardioviruses, which are a possible cause of respiratory tract 

infections (31), were only detected in controls.  

HBoV was the most commonly detected virus among children with CAP and no 

identified pathogen (13 of 70 [19%]) and detection was strongly associated with CAP 

(OR 10.0, P<0.001). Only 2 of these infections (15%) were co-detections with other 

putative viral pathogens. HBoV was not targeted as part of EPIC due to uncertainty over 
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its role as a human pathogen. HBoV is a Parvovirus with a DNA genome. HBoV DNA 

can be detected for weeks to months following acute infections, which has complicated 

epidemiologic studies to demonstrate its pathogenicity. Pan viral PCR detected HBoV 

DNA in 12 of 70 cases (17.1%) and 2 of 90 asymptomatic controls (2.2%). RNA-seq 

identified HBoV mRNA in 10 of 70 cases (14.3%) and none of 90 asymptomatic controls 

(odds ratio 31.4, 95% CI 1.8-546, P<0.05). Sequencing reads spanning splice sites of the 

viral capsid mRNA (32) confirmed that mRNA rather than genomic DNA served as 

sequencing template (data not shown). This strong association is in contrast with 

numerous PCR-based studies targeting viral genomic DNA (33,34), suggesting that 

detection of HBoV mRNA may serve as a marker for acute (i.e. clinically relevant) 

infections. While these results will need to be confirmed in larger studies, our results 

suggest that HBoV is associated with CAP and may be a true pathogen. 

Human herpesviruses that can cause respiratory tract infections including 

pneumonia in immunocompromised hosts (e.g. HSV, CMV, parvovirus B19, HHV6) 

were also more frequently detected in cases than controls. However, children with known 

immune compromising conditions were excluded from EPIC. Detection of these viruses 

likely is a result of reactivation of latent infection rather than acute infection. Lastly, we 

detected a number of viruses not known to cause respiratory tract infections, including 

EBV, anelloviruses, HHV7, polyomaviruses, papillomavirus. Their detection in NP/OP 

samples of asymptomatic children as well as CAP patients is consistent with previous 

reports. Their detection demonstrates both the power of unbiased pathogen detection but 

also emphasized the importance of using appropriate controls. Interestingly, detection 

rates for these DNA viruses were much higher by DNA-based PVP than by RNA-seq. It 
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is possible that RNA-based testing may be more sensitive for DNA viruses during high 

level replication when mRNA is abundant. Interestingly, we detected C. trachomatis by 

RNA-seq in one infant with pneumonia. C. trachomatis is an important but uncommonly 

diagnosed cause of pneumonia in that age group. 

While both RNA-seq and PVP provide broad-range detection of respiratory 

viruses, each has potential advantages and disadvantages. RNA-seq is highly unbiased, 

demonstrated by the detection of divergent enteroviruses not identified by PVP, and 

enables identification of non-viral pathogens, as exemplified by detection of M. 

pneumoniae, C. trachomatis. While RNA-seq was more sensitive than PVP for detection 

of RNA viruses, PVP detected more DNA viruses, many of which were not detected by 

RNA-seq.  This may have been due in part to shedding predominantly of viral particles 

(containing genomic DNA) with low levels of active replication (i.e. production of 

mRNA) in the upper respiratory tract. Performing next-generation sequencing with both 

RNA-seq and DNA-seq might increase the yield for DNA viruses and bacteria, but at 

increased cost. However, without active replication in the upper respiratory tract where 

samples were taken from, these viruses may not be detectable by RNA-based approaches. 

As hypothesized, broad-range pathogen detection enabled identification of viruses 

not part of comprehensive test panels (e.g. HBoV, Coxsackievirus, HPIV-4, Echovirus, 

human parechovirus), genetically divergent strains escaping PCR-based detection (e.g. 

HRV-A, HRV-C), and unrecognized bacterial infections (e.g. C. trachomatis). In addition 

to the Taxonomer analysis described above, we also performed de novo assembly of 

RNA-seq results and searched resulting contiguous sequences for conserved protein 

profiles (35) on all data from children with CAP without identifying additional putative 



 
 

 

132 

132 

pathogens (data not shown). Despite these extensive efforts, a potential pathogen was not 

detected in 46 children (65.7%) with CAP of unknown etiology. This could have been 

due to testing of NP/OP swabs and not lower respiratory tract samples; inadequate timing 

of sample collection; polymicrobial infections caused by bacterial or fungal pathogens; or 

non-infectious mimics. It can also not be excluded that highly diverse viruses without 

homology to known human viral pathogens may have been caused CAP in some of the 

children. Further advancing the diagnostic yield in children with CAP is likely require 

additional sampling and host-based markers of infectious processes that may help 

confirm infectious etiologies even when a pathogen cannot be directly detected. 
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Figure 4.1. Proportion of children with CAP with no identifiable etiology during the 
2½-year EPIC study. The proportion of children below age 5 who had no pathogen 
identified per EPIC testing protocol (n=619) ranged between 0% and 60%. CAP 
with no identifiable etiology (n=70) was more common during summer/fall than 
during winter/spring respiratory season. 
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Figure 4.2. Detection of additional human viruses by RNA-seq and panviral PCR in 
EPIC participants with positive pathogen-specific tests. Human viruses detected by 
RNA-seq and panviral PCR that were not targeted in EPIC included human 
parechovirus (HPeV), human bocavirus (HBoV), Ebstein Barr Virus (EBV), human 
herpesvirus 6 (HHV6), and human herpesvirus 7 (HHV7). (PVP – panviral 
genus/family PCR). 
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Figure 4.3. Viruses detected by RNA-seq and/or panviral PCR in children with 
pneumonia with no identifiable etiology (n=70, red) and asymptomatic controls 
(n=90, blue). A total of 20 different human viruses were detected in NP/OP 
samples. In addition, Chlamydia trachomatis was detected in one newborn child 
with pneumonia. Fifteen viruses were more frequently detected in cases than 
controls (odds ratios > 1), with HBoV (P<0.001) having significant associations 
with CAP (Fisher’s exact test). Hashed bars indicate co-detection with one or 
more additional viruses. 
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Figure 4.4. An abundant bacterial flora (>95% of sequencing reads) dominated 
by a single potential pathogen was detected by RNA-seq in NP/OP samples of 
two children. A, 94.6% of sequencing reads generated from the NP/OP sample of 
patient J13 was identified as Pseudomonas fluorescens; 35% of the genome of 
strain LBUM223 (NCBI accession number CP_011117) was covered at a mean 
of 332X. B, In patient M4, 89.7% of sequencing reads were derived from 
Serratia marcescens covering 1.5% of the genome sequence of strain FGI94 
(NCBI accession number NC_020064) at a mean of 537X. 
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Figure 4.5. Pathogen detection in children with CAP with no identified etiology and 
asymptomatic controls by method. 
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Table 4.1 Demographic and clinical information of children selected for 
study with community acquired pneumonia. 

  Community 
Acquired 

Pneumonia 
(n=71) 

Control 
Patients 
(n=92) 

P-value  
(chi square) 

Age group, n (%)     p = 0.05 
     <1 yr 14 (20%)  23 (25%)   
     1-2 yr 27 (38%) 19 (21%)  
     2-4 yr 30 (42%) 50 (54%)  
Month of enrollment   p = 0.04 
    January - March 23 (33%) 13 (14%)  
    April - June 25 (36%) 37 (41%)  
    July - September 16 (23%) 25 (28%)  
    October - December 6 (9%) 15 (17%)  
Symptom, n (%)     n/a 
     Cough 59 (83%)  0  
     Fever 68 (96%) 0  
     Anorexia 54 (76%)  0  
     Dyspnea 33 (46%) 0  
Symptoms on follow-up     n/a 
     None 0 57 (62%)  
     Cough 0 9 (10%)  
     Fever 0 8 (9%)  
Underlying condition, n (%)     n/a 
     Asthma or reactive airway 
disease 

6 (8%) 3 (3%)   

     Preterm birth among 
children <2 yr 

12 (17%) 15 (16%)  

Radiographic findings, n 
(%) 

    n/a 

     Consolidation 32 (45%) 0  
     Alveolar or intestinal 
infiltrate 

46 (65%) 0  

     Pleural effusion 20 (28%) 0  
Hospitalization     n/a 
     Length of stay, median 
(IQR) 

3 (2-4) 0  

     ICU admission 20 (28%) 0  
     Death in the hospital 0 (0%) 0  
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CHAPTER 5  

 

CONCLUSION 

 

This dissertation represents an advance in the field of clinical metagenomics and 

computational biology. In Chapter 1 and 2, we outlined some of the important 

considerations for classifying random DNA fragments in metagenomic samples. These 

considerations included classifying reads from DNA regions with substantial database 

coverage for known species and using marker genes with clearly understood evolutionary 

rates. With these concerns in mind, we created Taxonomer, a kmer-based tool that uses a 

novel analysis workflow with simultaneous read binning and marker gene classification.  

In Chapter 2, we benchmarked Taxonomer against other rapid analysis tools that 

currently represent the best practices for analyzing metagenomic data. These benchmarks 

established Taxonomer as the most precise rapid metagenomics tool for the detection of 

virus, bacteria, and fungi to-date. Additionally, we showed Taxonomer has the ability to 

measure human transcript expression to predict a viral infection, enhancing the tools 

functionality for clinical usage and interpretation. We combined Taxonomer with the 

iobio visualization framework (1) to create taxonomer.iobio, which couples the speed and 

accuracy of Taxonomer with interactive visualizations that allow users to explore data 

from the highest to lowest taxonomic level. Several use cases were presented to show 

how Taxonomer and metagenomics could be implemented in the research and clinical 
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setting. 

Chapter 3 compared the metagenomics-based Taxonomer approach to a FDA-

approved and commercially available respiratory virus panel (RVP). Sensitivity was 

greater when detecting viruses by Taxonomer. This improved sensitivity was largely a 

result of detecting divergent viruses or virus not covered in the FDA cleared RVP panel. 

While not presented in Chapter 3, the metagenomics approach also provides an avenue to 

measure bacterial and fungal pathogens, without additional analysis time. This is not 

possible using the RVP. The benefit of bacterial detection is seen in Chapter 4. 

Challenges still exist for the implementation of metagenomics in the clinical 

laboratory. These challenges include turn-around-time, cost, and interpretation. The RVP 

panel has a turn-around-time of 6 hours and a simple +/- interpretation of viral presence. 

In contrast, the metagenomics analysis used in Chapter 3 required ~14 hours of library 

prep and ~11 days on the sequencer before the data were processed by Taxonomer. When 

using Taxonomer, the user must explore the resulting data to identify pathogens among 

other micro flora. The sample cost for metagenomics sequencing can be comparable to 

that of RVP panel when processing ~24 samples on a single sequencing run. The 

feasibility of waiting for additional samples prior to testing is not ideal for a time-

sensitive diagnostic. One additional attribute of the RVP panel is its ability to be 

deployed at point-of-care; this is currently not possible for metagenomics-based testing. 

For small to medium size laboratories, point-of-care testing with commercially available 

RVP panels may still present the best option for respiratory diagnostics; however, larger 

laboratories may be able to leverage the additional information that metagenomics-based 

testing provides in order to report more actionable clinical information like antibiotic 
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resistance and secondary infections. 

In Chapter 4, we utilized metagenomics and Taxonomer to characterize pediatric 

pneumonia using samples from a large multicenter study. This study was initiated by the 

CDC to understand the etiology of pneumonia in the community (EPIC) (2,3). Fourteen 

to 23 percent of pediatric patients with radiological confirmed pneumonia had no 

pathogen identified using standard diagnostics. In the children that had no identifiable 

etiology, human viruses were detected in (53) 76% and (55) 61% of the cases and 

controls, respectively. Several likely respiratory pathogens were identified, including 

human bocavirus, coxsackieviruses, and human rhinovirus. Additionally, we co-detected 

viruses in a number of samples of which the implication on pathogenicity is still 

uncertain. Taxonomer also identified two likely bacterial pathogens, Pseudomonas 

fluorescens and Serratia marcescens, in patients with no etiology, showing the added 

benefit of bacterial screening that metagenomics provides.  

Chapter 4 also compared a panviral PCR targeting multiple viral families to the 

metagenomics approach. While detection limits theoretically should be better for PCR, 

the metagenomic approach was able to detect more viruses then the PCR panel. This 

along with the data from Chapter 3 clearly shows that metagenomics can provide suitable 

depth of coverage to provide a detection limit that rivals PCR. The PCR panel was 

superior for the detection of DNA viruses (adenovirus), which would need to be actively 

replicating to be detected via RNA-seq metagenomics. 

The majority experiments described in this dissertation were performed on the 

Illumina HiSeq sequencing platform, which requires ~11 days to finish a sequencing run. 

This time frame is not ideal and it should be noted that sequencing technologies do 
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currently exist that enable the sequencing to be done in ~24hrs with similar levels of 

coverage to those obtain in our studies. If trends continue, new sequencing technologies 

will enable metagenomics to be performed as rapidly and as inexpensively as 

commercially available panels or PCR-based tests. In lieu of widespread adoption, the 

role of metagenomics in clinical laboratories may be to help influence the design of the 

next-generation of analyte-based tests.  

In our studies, metagenomics provided meaningful insight beyond current 

diagnostics options. In Chapter 3 and 4, we showed that human bocavirus was commonly 

detected in patients with pneumonia. It was also shown to be a likely cause of pneumonia 

because it was more often detected in cases then controls. However, bocavirus is not part 

of the analytes detected in either the RVP panel in Chapter 3 or the EPIC study in 

Chapter 4. This illustrates how metagenomics can be used to influence the next-

generation of analyte-based tests. 

Taxonomer’s iobio interactive visual front-end simplifies data interpretation, 

which can be overwhelming for metagenomics data. It allows the user to drill down into 

the taxonomic lineage and filter results based on coverage and read count. Currently, a 

large number of reads are simply classified at a high taxonomic level (e.g. Bacteria or 

Fungi); potentially these reads can offer clinically useful information. For example, if 

classification of the 16S rRNA reads indicate the presence of a Staphylococcus species, 

then the remaining bacterial reads can be interrogated for markers that may provide 

species level resolution or for pathogenic features like methicillin resistance. As more of 

these reads are used to obtain clinical information, the taxonomer.iobio visualization will 

have to be improved to incorporate these data in a meaningful and intuitive way so it can 
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be consumed by clinicians.  

The speed of Taxonomer is an attribute querying kmer-based datasets, and its 

accuracy is a result of a novel workflow, which bins sequences and then classifies the 

reads from genes (16S rRNA; ITS) that are most likely to provide reliable results. We are 

indebted to the providers of the gene resources we utilized in Taxonomer. These 

resources delivered highly accurate taxonomic information attached to quality controlled 

reference sequences (4-7). What is missing are data sources, which could link sample 

source, diagnosis, co-pathogens, antibiotic resistances, antibiograms, alternative marker 

genes, pathogenic genes, and epidemiological information to these references or taxa that 

would allow more clinically oriented information to be queried and then displayed. It is 

these resources that will allow Taxonomer and other rapid approaches to leverage the 

entirety of the data generated by metagenomics and concisely display the relevant clinical 

information. Ultimately, it is tools like Taxonomer that will facilitate the creation of these 

resources. In the meantime, Taxonomer provides superior ability to profile microbial 

communities and detect novel microorganisms that standard diagnostics tests cannot 

achieve, even though challenges remain for widespread implementation of 

metagenomics. 

This dissertation represents an important step forward in biomedical informatics.  

When the work herein was initiated, metagenomics analysis pipelines could take days to 

weeks to complete (8). The analysis time was greatly influence by the sample 

composition. Generally, samples with more fungal or bacterial sequences have longer 

analysis times. Taxonomer’s data flow design reduced the analysis time and alleviated 

the influence of sample composition by allowing simultaneous screening of relevant taxa 
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(see Figure 2.1). Along with significant speed increases, Taxonomer leveraged 

microbiological resources that had been, by a large part, developed outside of medical 

research where lives are not a stake (4,5,9). This project established algorithms, 

intelligent data flows, intuitive interactive visualizations, and comprehensive testing to 

enable ‘clinical metagenomics’ from those resources. While many challenges remain in 

clinical metagenomics the tools and information produced as part of this dissertation have 

moved the field forward.  
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