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ABSTRACT 

 

 Throughout much of history, safe and effective drug doses have been discovered 

through trial-and-error and validated via anecdote.  Such approaches are limited in their 

ability to define how a drug’s safety and effectiveness are influenced by the addition of 

other co-administered medications and the presence of other acute and/or chronic diseases.  

Consideration of all these pharmacological and pathophysiological factors is impractical 

given the complexity of the many interactions that may occur. 

To further advance clinical pharmacology, it has become necessary to leverage the 

increasing speed and storage capacity of computers.  Developments in mathematics, 

statistics, and computer science have revolutionized the field of clinical pharmacology by 

making computers far more than glorified calculators.  Today, sophisticated algorithms can 

be used to interrogate and learn from pharmacological datasets and make informed 

predictions about the safety and effectiveness of drug dosing regimens.  The goal of these 

population pharmacokinetic analyses is to yield accurate predictions of clinically-relevant 

pharmacokinetic parameters and improve our understanding of the biological processes 

that mediate drug disposition. 

In this dissertation, we present the results of three pharmacokinetic studies that 

demonstrate the clinical utility of population pharmacokinetic modelling, along the way 

challenging conventional dosing strategies for vancomycin in preterm neonates and 

zolpidem among severely burned children.  Additionally, we developed a simulation-based 
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parameter estimation algorithms.  This work lays the foundation for a transparent dialogue 

regarding the relative strengths and weaknesses of individual algorithms, which heretofore 

has not been possible.  We conclude with a discussion of the additional unanswered 

questions that may now be investigated using the benchmarking framework developed 

here. 

The results of the studies described in this dissertation underscore the importance 

of enhancing the clinical adoption of population pharmacokinetic models.  However, these 

models must be rigorously evaluated to ensure that they are unbiased and precise.  In 

simulations, three of the most commonly used pharmacokinetic parameter estimation 

algorithms differentiated themselves when they were applied in different clinical scenarios.  

This finding highlights an intriguing practical fact that algorithm selection should be 

guided by the clinical question at hand. 
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CHAPTER 1 

 

POPULATION PHARMACOKINETIC MODELING 

 

The Relationship between Clinical Trials and Population Pharmacokinetics 

 Confirmatory clinical trials aim to reject the null hypothesis that the treatment 

regimen under investigation has no effect.[1] By design, these trials study a limited number 

of doses in relatively homogeneous patient populations.[2] Unfortunately, these trials often 

only answer the very first question of interest to clinicians – is my patient likely to benefit 

from this therapy? If the answer is yes, then several other practical questions must also be 

asked, including: 

1) What is an appropriate initial dose for my patient? 

2) How soon will beneficial (and potentially harmful) effects start? 

3) How long will the beneficial (and potentially harmful) effects last? 

4) Will tolerance develop? 

5) What is the likelihood that the initial dose will need to be changed? 

6) What metrics should be used to determine if the dosing regimen needs to be 

changed? 

7) At what point should the dosing regimen be changed, and is a large or a small 

change appropriate?
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Sheiner raised these questions several years ago to illustrate the difference between 

confirmatory clinical trials and population pharmacokinetic studies.[2] Population 

pharmacokinetic analyses are well suited to the types of questions described above as they 

allow us to quantify and understand the variability in drug responses among a population 

of patients, which then makes it possible to develop personalized dosing regimens after 

establishing how an individual patient differs from the population at large.[3] 

 

Individual vs. Population Pharmacokinetics 

 Traditionally, pharmacokinetic studies have involved intensive serial blood 

sampling performed in a limited number of healthy, male, adult volunteers.[4-6] These 

studies allow the investigator to estimate the variability in plasma drug concentrations 

between individuals following the administration of a certain dose. In contrast, the 

population pharmacokinetic approach allows the investigator to characterize the 

pharmacokinetics of the drug of interest using fewer blood samples by treating all of the 

individuals in the study as a random sample from a larger population. From these data, it 

is then possible to estimate measures of central tendency for the pharmacokinetic 

parameters of the entire population, while simultaneously estimating within and between 

subject variability and quantifying the amount of residual, unexplained variability.[7] This 

improves the population mean and variance estimates and improves accuracy when 

selecting an initial dosing regimen or adjusting a dosing regimen in response to therapeutic 

drug monitoring data. 
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History of Population Pharmacokinetics 

 Historically, pharmacokinetic analyses were conducted using a two-stage 

procedure in which each individual’s pharmacokinetic parameters were calculated using 

nonlinear regression methods. The parameters calculated for each individual were then 

averaged together to yield summary descriptive statistics for the population, including 

estimates of the mean pharmacokinetic parameter values and their variances. Similarly, 

other factors that influence the drug’s concentration-time profile were identified using 

classical statistical approaches (e.g., linear regression or covariance analysis). Although 

this approach has been shown to yield unbiased pharmacokinetic parameter estimates for 

the population mean, the variance and covariance are often overestimated.[8-11] 

 To better meet the needs of individual patients, Sheiner, Rosenberg, and Melmon 

developed a ‘conceptual scheme and associated statistical methodology designed to 

provide the basis for a clinically useful computer program to suggest optimal dosing 

regimens for a number of drugs’ in 1972.[12] This conceptual scheme and statistical 

methodology was purpose built to perform well in clinical scenarios with sparse amounts 

of data, where the traditional two-stage procedure failed. The principal factor that 

differentiates this approach is that it considers the cohort of patients being treated (the 

‘population’) as the unit of analysis, rather than the individual. Consequently, estimation 

of the pharmacokinetic parameters can be performed despite the use of sparse, unbalanced, 

or fragmented data, as compared with the two-stage procedure that required rigid, intensive 

sampling designs akin to those observed in prospective randomized controlled trials. 

Additionally, the nonlinear mixed effects modeling approach outlined by Sheiner, 

Rosenberg, and Melmon models the mean pharmacokinetic parameter values for the 
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population (derived from fixed effects terms) as well as the variability within the 

population (derived from random effects terms). For the remainder of this dissertation, this 

approach shall be interchangeably referred to as ‘population pharmacokinetic modeling’ 

and ‘nonlinear mixed effects modeling’. 

Building from their population pharmacokinetic conceptual framework, Sheiner 

and Beal developed the first version of NONMEM (nonlinear mixed effects modeling) in 

1980, which employed a first-order parameter estimation algorithm.[13, 14] 

Independently, in 1986, Mallet et al. developed the first nonparametric pharmacokinetic 

parameter estimation algorithm.[15] In 1990, Lindstrom and Bates developed the first-

order conditional estimation algorithm for nonlinear mixed effects models with repeated 

measures data.[16] Shortly thereafter, Schumitzky developed a nonparametric expectation 

maximization algorithm in 1991.[17] More recently, stochastic approximation expectation 

maximization algorithms were developed and simulations with interaction terms were 

conducted, which demonstrated their superiority over traditional first-order conditional 

estimation methods.[18-20] Additional details regarding the statistical methodologies 

employed in each of these iterative advancements in pharmacokinetic parameter estimation 

algorithms are described below. 

 

General Mathematical Formulation 

Population pharmacokinetic models involve the fitting of nonlinear mixed effects 

models to drug concentration data collected from multiple patients with the purpose of 

simultaneously estimating:  (1) the pharmacokinetic parameters for the typical individual 

in the population; (2) the variability within the population; and (3) the unexplained 
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variability that may result from measurement error or a poorly specified model.[13] The 

general mathematical formulation for a nonlinear mixed effects model is: 

𝑦𝑖𝑗 = 𝑓 (𝑡𝑖𝑗 , 𝑔(𝜃, 𝜂𝑖, 𝑥𝑖, 𝑧𝑖)) + ℎ(𝑡𝑖𝑗, 𝑔(𝜃, 𝜂𝑖 , 𝑥𝑖, 𝑧𝑖), 𝜀𝑖𝑗) (1.1) 

where 𝑓() is the function used to describe the structure of the model and ℎ() is the function 

used to describe the residual error model. 𝑡𝑖𝑗 represents the drug concentration measured 

for individual 𝑖 at time 𝑗. 𝑔() is a vector function that defines the 𝑖th individual’s 

pharmacokinetic parameters given the vector of typical value parameters 𝜃, the 𝑖th 

individual’s random effects 𝜂𝑖, the 𝑖th individual’s vector of study design variables 𝑥𝑖 (e.g., 

the dosing regimen), and 𝑧𝑖, the 𝑖th individual’s covariate vector (e.g., body weight, 

postmenstrual age, creatinine clearance, etc.). 

 It is unlikely that the pharmacokinetic parameters of the 𝑖th individual will perfectly 

match the typical pharmacokinetic parameter values for the population (𝜃); therefore, the 

individual pharmacokinetic parameters are said to deviate from 𝜃 by a vector of random 

effects terms of the same length as the number of pharmacokinetic parameters being 

estimated for the 𝑖th individual (𝜂𝑖), where 𝜂𝑖~𝑁(0, Ω). Here Ω is a covariance matrix that 

reflects the correlations between the individual pharmacokinetic parameters. The diagonal 

components of Ω reflect the between subject variability for each pharmacokinetic 

parameter. 

 The residual error model (𝜀𝑖𝑗) describes the difference between the individual 

predicted concentration and the measured drug concentration, which is assumed to follow 

a normal distribution of the form 𝜀𝑖𝑗~𝑁(0, Σ). 𝜀𝑖𝑗 is a vector of residual error terms and Σ 

is the covariance matrix that reflects the correlations between the 𝜀𝑖𝑗 terms. 
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Methodological Approaches Employed in Population Pharmacokinetic Analyses 

 To derive estimates of the population pharmacokinetic parameters maximum 

likelihood estimation methods are used. The maximum likelihood method specifies the 

probability density function for individual 𝑖 that optimizes the pharmacokinetic parameter 

estimates needed to maximize the likelihood of observing the vector of measured drug 

concentrations given the patient’s dosing record and covariate vectors. The joint 

probability distribution for 𝑦𝑖 and 𝜂𝑖 can be expressed as: 

𝑝(𝑦𝑖, 𝜂𝑖|𝜓) = 𝐿𝑖(𝜓|𝑦𝑖, 𝜂𝑖) = 𝑝(𝑦𝑖|𝜓, 𝜂𝑖) ∗ 𝑝(𝜂𝑖|𝜓) (1.2) 

in which 𝐿𝑖 is the 𝑖th individual’s likelihood given 𝑦𝑖 and 𝜂𝑖. 𝜓 is the vector of the typical 

parameter values (𝜃) and the variance-covariance matrices (Ω and Σ). 𝑝(𝑦𝑖|𝜓, 𝜂𝑖) is the 

conditional probability density of the measured drug concentrations (𝑦𝑖) given 𝜓 and 𝜂𝑖. 

Lastly, 𝑝(𝜂𝑖|𝜓) is the conditional probability density of 𝜂𝑖 given 𝜓; however, since 𝜂𝑖 

cannot be measured experimentally the marginal distribution of the measured drug 

concentrations (𝑦𝑖) is reformulated to yield the following likelihood function: 

𝐿(𝑦|𝜓) = ∫ 𝑝(𝑦𝑖|𝜂𝑖, 𝜓) ∙ 𝑝(𝜂𝑖, 𝜓) 𝑑𝜂𝑖 (1.3) 

where 𝑝(𝑦𝑖|𝜂𝑖 , 𝜓) is the conditional probability of the measured drug concentrations (𝑦𝑖) 

given the vector of random effects (𝜂𝑖) and 𝜓. 𝑝(𝜂𝑖, 𝜓) denotes the joint population 

parameter density of the individual random effects. 

 For nonlinear functions, the likelihood cannot be maximized with a closed form 

solution. Therefore, several specialized software programs have been developed to 

approximate the maximum likelihood estimation. The most commonly used is the 

nonlinear mixed effects modeling program NONMEM (ICON Development Solutions, 

Ellicott Bay, MD, United States), which approximates the integrand and yields a closed 
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form expression for 𝐿(𝑦|𝜓) that is computationally tractable.[21] Initially, NONMEM 

utilized a first-order algorithm, which is known to result in biased parameter estimates with 

high between subject variability.[22] More recently, NONMEM has adopted a first-order 

conditional estimation algorithm in which the individual random effects estimates from the 

current iteration of the model are conditionally estimated from the random effects estimates 

obtained from the previous iteration of the linearized model.[23] 

An alternative pharmacokinetic parameter estimation algorithm is employed in the 

software program Monolix (Lixoft, Orsay, France), which uses expectation maximization 

(EM) methods that integrate the posterior density by performing Monte Carlo sampling 

over all possible individual parameters during the expectation step, which is then followed 

by a single iteration maximization step that moves the pharmacokinetic parameter value 

closer toward the maximum likelihood.[24] Delyon et al. demonstrated that the EM 

algorithm converges under very general conditions and Kuhn and Lavielle further 

established that the coupling of the EM algorithm with the Markov Chain Monte Carlo 

procedure rapidly converses toward the maximum likelihood estimate.[25, 26] 

Pmetrics is another commonly used population pharmacokinetic modeling program 

that makes no assumptions regarding the distribution of the density function.[17] Pmetrics 

uses a nonparametric adaptive grid algorithm that performs no formal numerical 

optimization; rather it quasi-Monte Carlo methods to generate a grid of Faure points that 

can be rapidly tested to assess whether they improve the likelihood beyond the grid 

consisting of points derived from the model’s initial estimates.[27] More specifically, this 

deterministic set of Faure points is used to approximate the integration featured in Equation 

1.3.[27] This process is iteratively repeated to yield a final, discrete nonparametric 
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distribution of pharmacokinetic parameter estimates.[27] This algorithm has the advantage 

of appropriately identifying sub-populations with different pharmacokinetic profiles (e.g., 

varying hepatic formation clearances of CYP3A-metabolized drugs due to genetic 

polymorphisms that affect the level of CYP3A expression).[28] 

As noted above, several specialized population pharmacokinetic modeling 

programs have emerged over the last 30 years that employ different pharmacokinetic 

parameter estimation algorithms, which have the potential to lead to dramatically different 

results.[21, 24] For this reason, benchmarks are needed to experimentally assess the 

strengths and weaknesses of current population pharmacokinetic modeling programs. The 

accuracy and precision of these estimates may impact clinical decisions and lead to 

alterations in medical management, such that the selection of a pharmacokinetic parameter 

estimation method with lower bias and higher precision is desirable.  

 

Applications of Population Pharmacokinetics 

 The drug development process involves several iterative stages in which 

compounds are evaluated to confirm their safety and efficacy prior to regulatory approval, 

marketing, and widespread use.[29] Population pharmacokinetic modeling is used to 

increase our understanding of the quantitative relationships between drug dosing regimens, 

patient characteristics, and drug pharmacokinetics. Today, the use of population 

pharmacokinetic modeling is actively encouraged by the United States Food and Drug 

Administration (FDA) and the European Medicines Agency (EMA).[29, 30] Despite the 

widespread acceptance of population pharmacokinetic methods in the drug approval 

process, relatively few population pharmacokinetics studies have been conducted among 
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children. Rectifying this scarcity of pediatric-specific population pharmacokinetic data has 

the potential to:  (1) result in optimized dosing regimens that improve therapeutic 

effectiveness across the pediatric age spectrum from neonates to adolescents; (2) reduce 

the incidence of adverse drug reactions; and (3) generate substantial cost savings to the 

healthcare system.[31] 

 

Dosing Optimization 

 Deriving the ‘optimal’ individualized dose that is neither ineffective nor toxic is the 

ultimate goal of many physicians, pharmacologists, regulatory agencies, and 

pharmaceutical companies.[32] Achieving this goal is challenging for many drugs due to 

pharmacokinetic variability within and between patients. For drugs with narrow 

therapeutic windows (a small margin separates sub-therapeutic from toxic concentrations), 

it is necessary to conduct population pharmacokinetic studies to determine whether 

predictable factors (covariates) can be identified that influence the extent and peak of drug 

exposure.[33] If substantial variability remains after such investigations and a target 

concentration range has been established, then it may be prudent to measure drug 

concentrations in each patient (a practice known as therapeutic drug monitoring).[34, 35] 

Drug concentration measurements obtained from therapeutic drug monitoring can then be 

used to refine the model’s pharmacokinetic parameter predictions for that patient in a 

Bayesian manner.[36] 
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Statement of Objectives 

 The objective of this dissertation is to demonstrate the clinical utility of population 

pharmacokinetic models and to assess the predictive performance of several population 

pharmacokinetic modeling programs that are commonly used in evaluating drug 

concentration time profiles and the response to therapy. 

 The specific aims are as follows: 

1) Define the population pharmacokinetics of two drugs belonging to 

different drug classes in a selection of rarely-studied pediatric patient 

populations. These analyses include an evaluation of the population 

pharmacokinetics of: 

 Vancomycin among children with invasive methicillin-

resistant Staphylococcus aureus (MRSA) infections; and 

 Zolpidem among children with severe burn injuries. 

2) Assess the performance of several commonly used population 

pharmacokinetic software programs in establishing precise and 

unbiased pharmacokinetic parameter estimates with varying:  amounts 

of error / noise, sample sizes, and numbers of samples from each 

patient. 

The foundation for the first specific aim is outlined in Chapter 2. Chapters 3 and 4 

discuss two clinical applications of vancomycin population pharmacokinetic models 

among children with cystic fibrosis and neonates with invasive bacterial infections, 

respectively. Chapter 5 describes a population pharmacokinetic study involving the 

sedative agent zolpidem, which was administered in an effort to restore normal sleep 
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architecture among a cohort of severely burned children. Chapter 6 describes a simulation-

based approach to benchmarking population pharmacokinetic software programs and is 

under preparation for submission.  Publications that have stemmed directly from this work 

include: 

 Stockmann C, Roberts JK, Yu T, et al. Vancomycin pharmacokinetic models: 

informing the clinical management of drug-resistant bacterial infections. Expert 

Review of Anti-infective Therapy 2014; 12(11): 1371-88. 

 Stockmann C, Sherwin CM, Zobell JT, et al. Population pharmacokinetics of 

intermittent vancomycin in children with cystic fibrosis. Pharmacotherapy 

2013; 33(12): 1288-96. 

 Stockmann C, Hersh AL, Roberts JK, et al. Predictive performance of a 

vancomycin population pharmacokinetic model in neonates. Infectious 

Diseases and Therapy 2015; 4(2): 187-98. 

 Stockmann C, Sherwin CM, Buterbaugh W, et al. Preliminary assessment of 

zolpidem pharmacokinetics in pediatric burn patients. Therapeutic Drug 

Monitoring 2014; 36(3): 295-301. 

 Stockmann C, Gottschlich M, Healy D, et al. Relationship between zolpidem 

concentrations and sleep parameters in pediatric burn patients. Journal of Burn 

Care and Research 2014; 36(1):137-44. 

During the course of this dissertation, several fruitful collaborations have also led 

to publications that are not discussed within this dissertation, which are featured in 

Appendix A. 
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CHAPTER 2 

 

VANCOMYCIN PHARMACOKINETIC MODELS: INFORMING 

THE CLINICAL MANAGEMENT OF DRUG-RESISTANT 

BACTERIAL INFECTIONS 

 

Abstract 

 This review aims to critically evaluate the pharmacokinetic literature describing the 

use of vancomycin in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) 

infections. Guidelines recommend that trough concentrations be used to guide vancomycin 

dosing for the treatment of MRSA infections; however, numerous in vitro, animal model, 

and clinical studies have demonstrated that the therapeutic effectiveness of vancomycin is 

best described by the area under the concentration versus time curve (AUC) divided by the 

minimum inhibitory concentration (MIC) of the infecting organism (AUC/MIC). Among 

patients with lower respiratory tract infections, an AUC/MIC≥400 was associated with a 

superior clinical and bacteriological response. Similarly, patients with MRSA bacteremia 

who achieved an Etest AUC/MIC≥320 within 48 hours were 50% less likely to experience 

treatment failure. For other patient populations and different clinical syndromes (e.g., 
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children, the elderly, patients with osteomyelitis, etc.) pharmacokinetic/pharmacodynamic 

studies and prospective clinical trials are needed to establish appropriate therapeutic 

targets. 

 

Background 

 Vancomycin was first approved for use by the United States Food and Drug 

Administration (FDA) in 1958.[1] Despite more than 50 years of experience with this 

antibiotic, uncertainty remains regarding the most appropriate vancomycin dosing 

strategy.[2] This is primarily attributable to its variable pharmacokinetic profile, the 

emergence of vancomycin resistance, and its toxic effects.[3] Currently, intravenous 

vancomycin is reserved nearly exclusively for the treatment of methicillin-resistant 

Staphylococcus aureus (MRSA) infections, which until the late 1970s and early 1980s were 

extremely rare and confined to a few large hospitals.[4] More recently, other factors, such 

as the controversial ‘MIC creep’ phenomenon and a heightened awareness of the potential 

for sub-therapeutic dosing have further complicated vancomycin dosing. At the level of an 

individual patient, high between subject variability complicates efforts to develop 

simplified or standardized vancomycin dosing regimens.[5] Despite these challenges, 

pharmacokinetic and pharmacodynamic modeling techniques may be used to inform 

vancomycin dosing, even for adult populations, for which large amounts of data exist.[2] 

 Over the last 10 years, vancomycin dosing regimens have shifted toward larger, 

more frequent doses.[6] This has likely occurred in response to in vitro studies, which 

demonstrated that low vancomycin concentrations exert a selective pressure that drives the 

emergence of more resistant S. aureus isolates.[7] To prevent such occurrences, 
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professional society guidelines have increased vancomycin exposure targets in an effort to 

more rapidly achieve and maintain therapeutic concentrations.[8] Consequently, many 

patients who receive vancomycin today are being maintained at concentrations that are 

closer to levels associated with nephrotoxicity than ever before, which makes therapeutic 

drug monitoring imperative.[9] Simultaneously, there has been an increase in the incidence 

of hospital- and community-associated MRSA.[10] In 2003, nearly 60% of S. aureus 

isolates obtained from patients in the intensive care unit were methicillin-resistant.[11, 12] 

More recently, the US Centers for Disease Control and Prevention (CDC) estimated that 

the incidence of MRSA infections declined 31% from 2007 to 2012.[13] Although the 

reasons for this decline are unclear, the continued widespread use of vancomycin in the 

context of fewer invasive MRSA infections poses substantial risks and must be evaluated 

in light of the potential for promoting vancomycin resistance. 

 The safe and effective administration of vancomycin at the level of the individual 

patient, especially in light of current practice patterns, may require more sophisticated 

techniques than merely dosing by total body weight and estimated renal function.[14] 

Population pharmacokinetic models, which leverage data from a population of patients to 

derive an optimal population-specific dosing strategy, are one such example.[15] When 

applied to direct patient care, the purpose of population pharmacokinetic modeling is to 

provide quantitative and semi-quantitative guidelines for dose optimization. Unlike 

traditional pharmacokinetic evaluations, the population pharmacokinetic approach is 

unique in that it:  (1) derives pharmacokinetic parameter estimates that are representative 

of the population being treated; (2) recognizes sources of variability (e.g., between subject, 

intra-subject, and inter-occasion variability); (3) identifies factors that influence the 
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pharmacokinetic behavior of the drug; and (4) quantitatively expresses the magnitude of 

the unexplained variability within the patient population being treated.[15] For patients 

requiring antibiotic therapy for the treatment of drug-resistant bacterial infections it is 

critical to quickly establish an effective and safe dosing regimen. Consequently, the 

purpose of this review is to critically evaluate the vancomycin pharmacokinetic literature 

with respect to its use in the treatment of MRSA infections. A secondary objective is to 

identify special patient populations who may require alternative vancomycin dosing 

regimens as a consequence of their demographic factors, physiologic status, or co-morbid 

conditions. The patient populations investigated in this review include:  neonates and 

infants, children and adolescents, the elderly, obese patients, cancer patients, patients 

requiring continuous renal replacement therapy, patients with cystic fibrosis, and the 

critically ill. Emphasis will be placed on the integration of vancomycin population 

pharmacokinetic models into clinical care and the role that vancomycin therapeutic drug 

monitoring plays in preserving the utility of this antibiotic, as few suitable alternatives 

exist. 

 

Pharmacokinetic Profile 

 The chemical structure of vancomycin is presented in Figure 2.1. 

 

Absorption 

 Vancomycin is not well absorbed through the gastrointestinal tract and therefore 

achieves high colonic concentrations, which have been reported to range from 500-1000 

mcg/mL following oral doses of 500 mg every 6 hours.[16] Due to this unique absorption  
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Figure 2.1. Chemical (A) and molecular (B) structures of the glycopeptide antibiotic 

vancomycin.   
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profile, vancomycin is recommended for the treatment of Clostridium difficile 

infections.[17] However, it must be noted that patients with bowel inflammation can have 

increased absorption following oral vancomycin administration.[18] Moreover, patients 

with severe renal disease and inflammatory bowel disease have the potential to reach toxic 

serum concentrations.[18, 19] Other modes of administration, such as intraperitoneal, 

intraventricular, and intrathecal dosing, have been rarely reported.  Bunk et al. compared a 

single 10 mg/kg dose of vancomycin administered intravenously to a 10 mg/kg dose given 

intraperitoneally and noted that 65% of the intraperitoneal dose was absorbed, which 

yielded a peak plasma concentration of 6.3 mcg/mL.[20] They suggested that therapeutic 

plasma concentrations in excess of 10 mcg/mL could be reached with an intraperitoneal 

dose of 30 mg/kg followed by 1-5 mg/kg in each peritoneal exchange for patients in chronic 

renal failure. Intraventricular and intrathecal dosing have been described in several case 

reports, all of which reported high cerebrospinal fluid (CSF) concentrations without 

evidence of high serum concentrations.[21, 22] For the treatment of MRSA infections, 

vancomycin is commonly administered intravenously due to its poor oral bioavailability 

and extreme pain associated with intramuscular administration.[23] Therefore, the 

remainder of this review will focus on the intravenous use of vancomycin, which is 

delivered as a slow intravenous infusion with a standard infusion time of approximately 1 

hour for a 1 g dose to avoid red man syndrome.[24-26] 

 

Distribution 

 Vancomycin time-versus-concentration profiles have been reported as mono-, bi-, 

or triphasic, though the majority of the literature suggests a biphasic process after 

intravenous administration.[4, 27-30] The α-distribution phase ranges from 0.5-1 hr and 
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the β-elimination half-life is between 6-12 hrs in adults with normal renal function, which 

demonstrates its high between subject variability.[4, 28-31] After a single administration 

of the recommended dose of 15 mg/kg, peak serum concentrations at 2 hrs after infusion 

reach approximately 25 mcg/mL.[32, 33] Vancomycin is highly hydrophilic, with a volume 

of distribution at steady state comparable to that of total body water.[34, 35] The volume 

of distribution has been reported to range from 0.39-2.04 L/kg at steady state and is 

influenced by age, gender, and body weight.[4, 28-31, 36] The volume of the central 

compartment is approximately 10% of the volume of distribution, which is similar to the 

total volume of blood.[31] Protein binding in the serum is moderate, with most reports 

ranging from 50-55%.[37, 38] Due to its large volume of distribution, vancomycin readily 

crosses into ascitic, pericardial, synovial, and pleural fluids.[39] In addition, concentrations 

in abscess fluid are similar to those in serum.[40] Very low concentrations of vancomycin 

cross the blood brain barrier (0-0.18 CSF to serum ratios), unless the meninges are 

inflamed, which can then result in CSF to serum ratios of 0.36-0.48.[41, 42]  

Concentrations in lung tissue range from 5-50% of serum concentrations and have an 

overall blood to epithelial lining fluid ratio of 6:1 in critically ill patients.[43-46] 

Vancomycin concentrations in the bone are approximately 10% of serum concentrations, 

though this increases to 20-30% in infected bone.[47] An exploratory analysis of the 

pharmacokinetics and tissue penetration of vancomycin administered via continuous 

infusion as prophylaxis for vascular surgery found that vancomycin concentrations in the 

arterial wall were approximately 50% of those found in the serum; however, penetration 

into fat was lower at 22%.[48] 
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Metabolism 

 Early pharmacokinetic studies indicated that vancomycin is not efficiently 

metabolized.[32, 49] However, more recent studies have suggested that hepatic clearance 

may occur to a small degree, although these reports failed to find evidence of a prolonged 

vancomycin half-life among patients with impaired hepatic function.[29, 30] In addition, 

it is estimated that non-renal clearance may account for between 5-30% of total 

clearance.[24, 50] 

 

Elimination 

 Up to 90% of the vancomycin dose is excreted unchanged within 24 hrs.[25] Renal 

excretion occurs primarily through glomerular filtration.[31] Nielsen et al. reported a 

vancomycin clearance to creatinine clearance ratio of 0.53 ± 0.11.[51] Similarly, Krogstad 

et al. reported a mean vancomycin clearance to creatinine clearance ratio of 0.68 ± 

0.07.[31] These discrepancies may be suggestive of renal tubular reabsorption; however, 

no definitive reports have documented renal tubular reabsorption in humans and this 

discrepancy may be explained by moderate serum protein binding.[39] In adult population 

pharmacokinetic models, vancomycin clearance has been found to be highly correlated 

with creatinine clearance, weight, and age.[52-58] If creatinine clearance is not measured 

directly, the Cockroft-Gault equation may be used, which includes body weight, sex, age, 

and serum creatinine concentrations, to estimate creatinine clearance.[59] 
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Considerations for Pharmacokinetic Modeling 

 Many vancomycin population pharmacokinetic models have been published for 

adults in the last 20 years.  In this section of the review, we will focus on studies that 

evaluated adults with serious drug-resistant bacterial infections. In coming sections, studies 

evaluating patients with renal impairment and other pathophysiologic process and co-

morbidities will be discussed at length. 

Seven seminal adult vancomycin pharmacokinetic modeling studies are presented 

in Table 2.1. The age ranges across these studies varied from 17-95 years.[52-54, 56-58] 

With regard to the development of the vancomycin structural model, several used one-

compartment models and several others used two-compartment models. Vancomycin is 

well-known to feature a biphasic distribution and elimination phase, which is revealing as 

studies that involved intensive sampling often fit a two-compartment model; whereas 

sparse sampling schemes often could only fit a one-compartment model. Between subject 

variability was modeled using an exponential,[53, 55, 57, 58] a combined,[52] a 

proportional,[54] and an additive error model.[56] The between subject variability ranged 

from 19.8-38.5% and 18.2-36.4% for clearance and volume of distribution, respectively. 

Residual unexplained variability was modeled as an additive,[53, 56] combined,[52, 54, 

55] and an exponential error model.[57, 58] Residual variability for the exponential and 

additive models ranged from 12.7-24.9% and 1.6-18.5%, respectively. The estimates for 

clearance ranged from 0.031-0.086 L/hr/kg in adults.[52-58] Estimates reported for the 

volume of distribution from the central compartment were quite variable, ranging from 

0.39-2.04 L/kg.[57, 60] The majority of the population pharmacokinetic studies reported 

an effect of creatinine clearance or the rate of glomerular filtration on clearance.[2, 52]  In   
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Table 2.1. A comparison of adult vancomycin population pharmacokinetic studies. 

Study (Year)   Ref. 

Revilla et al. 

(2010) 

Patient population Intensive care unit patients 53 

 Number of patients studied 191  

 

Age, years (median 

[range], 

mean ± standard deviation) 

61.1 ± 16.3 [18-85]  

 Number of compartments One  

 

Final model (central 

compartment) 

CL = θ1 x CLCR + Ageθ
2 

V = θ3 x θ4
A, where A = 0 if 

SCr ≤1 mg/dL and A = 1 if SCr 

>1 mg/dL 

 

 Clearance 0.67 mL/min/kg  

 Volume of distribution 0.82 L/kg  

 
Between subject variability 

model 

Exponential  

 Residual variability model Additive  

 Validation External  

Thomson et al. 

(2009) 

Patient population Adults who received 

vancomycin 

82 

 Number of patients studied 398  

 

Age, years (median 

[range], 

mean ± standard deviation) 

66 [16-97]  

 Number of compartments Two  

 

Final model CL = θ1 x CLCR 

V1 = θ3 x Total body weight 

Q  = θ4 

V2 = θ5 x Total body weight 

 

 
Clearance CL = 2.99 L/hr 

Q  = 2.28 L/hr 

 

 
Volume of distribution V1 = 0.675 L/kg 

V2 = 0.732 L/kg 

 

 
Between subject variability 

model 

Exponential  

 Residual variability model Combined  

 Validation External  
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Table 2.1. Continued. 

Staatz et al. 

(2006) 

Patient population Cardiothoracic surgery wound 

infections 

55 

 Number of patients studied 102  

 Age, years (median 

[range], 

mean ± standard deviation) 

66 [17-81]  

 Number of compartments One  

 Final model (central 

compartment) 

CL = θ1 x (1 + θ2 x (CLCR – 

CLCR, median)) 

V = θ3 

 

 Clearance 2.97 L/hr  

 Volume of distribution 1.24 L/kg  

 Between subject variability 

model 

Exponential  

 Residual variability model Combined  

 Validation External  

Tanaka et al. 

(2010) 

Patient population MRSA infections 56 

 Number of patients studied 164  

 Age, years (median 

[range], 

mean ± standard deviation) 

74 [17-94]  

 Number of compartments One  

 Final model (central 

compartment) 

CL = θ1 x GFR 

V = θ2 

 

 Clearance 0.88 L/hr  

 Volume of distribution 0.86 L/kg  

 Between subject variability 

model 

Additive  

 Residual variability model Additive  

 Validation Internal  

Llopis-Salvia 

and Jimenez-

Torres (2006) 

Patient population Intensive care unit patients 52 
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Table 2.1. Continued. 

 Number of patients studied 50  

 Age, years (median 

[range], 

mean ± standard deviation) 

60 [18-81]  

 Number of compartments Two  

 Final model (central 

compartment) 

CL = θ1 + θ2 x CLCR 

V = θ3 x WT 

 

 Clearance 0.03 L/hr  

 Volume of distribution 0.41 L/kg  

 Between subject variability 

model 

Combined  

 Residual variability model Combined  

 Validation Internal  

Sanchez et al.  

(2010) 

Patient population Adults who received 

vancomycin 

54 

 Number of patients studied 141  

 Age, years (median 

[range], 

mean ± standard deviation) 

55 ± 14.6  

 Number of compartments Two  

 Final model (central 

compartment) 

CL = θ1 + θ2 x CLCR 

V = θ3 x WT 

 

 Clearance 0.16 L/hr  

 Volume of distribution 0.28 L  

 Between subject variability 

model 

Proportional  

 Residual variability model Combined  

 Validation External  

Yamamoto et 

al. (2009) 

Patient population Gram-positive infections 57 

 Number of patients studied 100  

 Age, years (median 

[range], 

mean ± standard deviation) 

65.4 ± 15.1 [25.8-99.7]  
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Table 2.1. Continued. 

 Number of compartments Two  

 Final model (central 

compartment) 

CL = θ1 

V = θ4 x WT 

 

 Clearance 3.83 L/hr  

 Volume of distribution 0.48 L  

 Between subject variability 

model 

Exponential  

 Residual variability model Exponential  

 Validation Internal  

Yasuhara et al. 

(1998) 

Patient population MRSA infections 58 

 Number of patients studied 190  

 Age, years (median 

[range], 

mean ± standard deviation) 

64.3 ± 13.8 [19.3-89.6]  

 Number of compartments Two  

 Final model (central 

compartment) 

CL = θ1 

V = θ3 

 

 Clearance 3.51 L/hr  

 Volume of distribution 60.7 L (steady state)  

 Between subject variability 

model 

Exponential  

 Residual variability model Exponential  

 Validation None  
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addition, weight and age were the most common covariates that affected the volume of 

distribution. No categorical covariates had a significant effect on clearance or the volume 

of distribution. Model evaluations were evenly distributed between internal (bootstrap or 

visual predictive check)[52, 56, 57] and external validation procedures.[53-55] 

 

Pharmacodynamic Profile 

 The vast majority of vancomycin pharmacodynamic studies have been conducted 

in vitro. However, in the last decade a few in vivo pharmacodynamic studies have been 

conducted, many of which will be discussed at length in this section of the review. 

 

Exposure-Response Profiles 

When evaluating the exposure-response profile of an antibiotic it is necessary to 

consider the magnitude of the drug exposure and its potency against a specific bacterial 

pathogen.[61] In developing exposure-response profiles, both of these may be 

quantitatively expressed as a ratio of the drug exposure (e.g., maximum concentration or 

the area under the concentration time curve [AUC]) and its potency (expressed as the 

minimum inhibitory concentration [MIC]).[61] As a consequence of the wide range of 

MICs among different pathogenic microorganisms, these pharmacokinetic / 

pharmacodynamic ratios have a broader range when compared to those that include a single 

measure of drug exposure or potency alone.[61] 
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Pharmacokinetic / Pharmacodynamic Indices 

 In vivo antibacterial activity may be predicted from two factors:  (1) the antibiotic 

concentration at the effect site and (2) the duration of time that the pathogen is exposed to 

the antibiotic.[62] Consequently, numerous in vitro and animal studies have been 

conducted to evaluate which pharmacokinetic / pharmacodynamic index best predicts 

vancomycin antibacterial activity.[63-65] These studies demonstrated that the relationship 

between vancomycin concentrations and bacterial killing is best described by the AUC 

divided by the MIC of the infecting pathogen (AUC / MIC) (Figure 2.2).[64, 66] In murine 

infection models, the vancomycin AUC / MIC was the best predictor of bacterial killing 

against MSSA, MRSA, and vancomycin intermediate S. aureus (VISA).[67, 68] 

 

Antibiotic Susceptibility Testing 

 Antibiotic susceptibility testing results range from quantitative (e.g., actual MIC 

values) to qualitative (e.g., susceptible, intermediate, resistant).[62] For the latter, it is 

critical to determine whether the MIC breakpoints are chosen to detect drug resistance or 

to predict the antibacterial activity of a drug for a patient receiving a typical dose of the 

antibiotic.[69] These are two fundamentally different questions that are often not clarified 

when breakpoint MICs are selected. For the purpose of conducting pharmacokinetic / 

pharmacodynamic analyses, it is preferable to use actual MIC values and establish MIC 

breakpoints (if needed) based upon the intended goals of the analysis. 

In seeking to predict whether a given vancomycin regimen is likely to be effective 

for an individual patient there are several factors that must be considered, including the 

variability in vancomycin pharmacokinetics and the range of MICs encountered in clinical  
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practice. Reliable predictions are challenging to develop as MIC-based vancomycin 

susceptibility tests are based primarily on the in vitro determination of the inhibition of 

growth for standardized low inocula (105-106), exponential-phase staphylococci.[3] As 

such, the MIC does not take into account the effects of vancomycin on higher inocula, such 

as those seen in the setting of critical illness.[70-73] Additionally, the effects of biofilm 

formation and stationary-phase growth are not taken into account with current vancomycin 

susceptibility testing methods.[73] Consequently, others have suggested that alternative 

pharmacokinetic / pharmacodynamic indices, such as the time above a multiple of the MIC, 

the time above the stationary-phase maximum bactericidal concentration, or the time above 

an inoculum-corrected MIC may be more accurate predictors of vancomycin efficacy in 

clinical practice.[3] However, these targets have not been evaluated in clinical trials yet 

and the AUC / MIC ratio remains the most widely accepted vancomycin pharmacokinetic 

/ pharmacodynamic index. 

 

Considerations for Pharmacodynamic Modeling 

 To optimize antibacterial activity and improve patient safety, vancomycin 

therapeutic drug monitoring is recommended for patients with invasive MRSA infections 

by the Infectious Diseases Society of America.[74] This practice involves the collection of 

serum samples that are assayed to determine the concentration of vancomycin at specified 

time-points.[75] These data may then be used in combination with MIC data to derive 

optimal patient-specific vancomycin dosing regimens.[75] Although this approach 

represents a major advance in the field of personalized medicine several limitations hinder 

its widespread adoption, including:  the requirement for collecting multiple blood samples, 
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rapid determination of the MIC, and the need for sophisticated modeling software to 

integrate the pharmacokinetic / pharmacodynamic data and provide individualized dosing 

recommendations.[62] 

Population pharmacokinetic / pharmacodynamic modeling leverages historical data 

describing the variability in vancomycin pharmacokinetics and the range of bacterial MICs 

encountered in clinical practice to derive probability density functions for the likelihood of 

achieving specific pharmacokinetic / pharmacodynamic targets (Figure 2.3).[76] Monte 

Carlo simulations are commonly used for this purpose.[77] In the case of invasive MRSA 

infections, a local hospital may establish its range of MICs using data from previous years 

and develop a probability density function that describes the likelihood that an MRSA 

isolate will have an MIC <1, 1-2, or ≥2 mcg/mL. Additionally, historical data may be used 

to establish the likelihood that a patient treated with a typical dose of vancomycin will have 

an AUC <200, 200-400, or >400 mcg*hr/mL. These distributions may then be used as 

inputs to develop a large number of computer simulations exploring possible AUC / MIC 

ratios. For each simulation, a single random AUC value is chosen along with a random 

MIC value, in accordance with their respective probabilities. As the simulation proceeds, 

large numbers of AUC and MIC pairs are developed allowing one to summarize the 

resulting AUC / MIC ratios as a function of their probability distribution. It is then possible 

to set a desired target (e.g., AUC / MIC >400) and calculate the probability of achieving 

that target. 
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Figure 2.3. Probability distribution for a hypothetical population of patients receiving 

vancomycin. In this example, (A) a compartmental model is used to describe vancomycin 

pharmacokinetics, which allows the AUC to be determined by dividing the dose by the 

estimated clearance rate. (B) The distribution of methicillin-resistant Staphylococcus 

aureus MIC values is used to define the range of MICs observed in the hypothetical 

population of patients. (C) The AUC / MIC ratio may be determined using Monte Carlo 

simulation, which in this example yields a 26.7% probability of achieve an AUC / MIC 

ratio ≥400. 

  



34 
 

Dosing Optimization 

AUC/MIC Targets 

 Vancomycin dosing guidelines recommend that pharmacokinetic / 

pharmacodynamic targets be used to guide the clinical management of MRSA 

infections.[75] These guidelines rely heavily upon a study by Moise-Broder et al. that 

evaluated 108 patients hospitalized with S. aureus lower respiratory tract infections who 

required vancomycin treatment.[78] In this study, the authors found that the clinical and 

bacteriological response was superior among patients with an AUC / MIC ≥400. Moreover, 

an AUC / MIC ≥400 was associated with a decreased time to bacterial eradication and a 

decrease in the time to improved pneumonia scores. In contrast, no relationship was defined 

between the time above the MIC and the clinical response to therapy. It should be noted 

that MICs were determined using the broth microdilution method in this study, which has 

been recently shown to result in higher AUC / MIC targets when compared to the Etest 

method.[2, 78] Additionally, the vancomycin AUC was not calculated from measured 

vancomycin concentrations but was instead predicted from renal function (creatinine 

clearance). 

Following the publication of consensus recommendations from several leading 

professional societies that endorsed a vancomycin AUC / MIC ≥400 target for all serious 

MRSA infections, Holmes et al. evaluated this target among 182 patients with S. aureus 

bacteremia (77% MRSA).[79] The authors found that a broth microdilution AUC / MIC 

≥400 was not associated with lower 30-day all-cause or attributable mortality from S. 

aureus bacteremia. However, using classification and regression tree methods, it was found 

that an AUC / MIC >373 within the first 96 hours of therapy was associated with a 
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reduction in mortality, following adjustment for potential confounders. This effect 

persisted in subgroup analyses limited comparing cases of MRSA versus MSSA and low 

versus high MICs (defined as an Etest MIC value >1.5 mcg/mL). 

Several recent studies have suggested that the AUC / MIC ≥400 target may not be 

universally applicable for all MRSA-associated clinical syndromes.[80, 81] Brown et al. 

found that an AUC / MIC <211 was associated with increased mortality among patients 

with MRSA bacteremia and infective endocarditis.[80] Additionally, Gawronski et al. 

investigated the association between AUC / MIC ratios and the time to microbiological 

clearance in patients with MRSA bacteremia and osteomyelitis.[81] The authors used the 

classification and regression tree method to determine that an AUC / MIC >293 yielded 

the greatest difference in the time to microbiological clearance. For patients with an AUC 

/ MIC >293 the mean time to clearance was two days shorter (4 vs. 6 days of bacteremia). 

Additional prospective clinical trials are warranted to confirm these findings. 

 

Trough Concentration Targets 

Historically, vancomycin trough concentrations have been used as a marker of 

vancomycin exposure.[74] Current clinical practice guidelines recommend that a minimum 

trough concentration of 10 mcg/mL is recommended to achieve antibacterial activity and 

to avoid promoting bacterial resistance.[74] For invasive MRSA infections, a therapeutic 

trough concentration target of 15-20 mcg/mL is recommended, which was predictive of an 

AUC / MIC >400 among adults with S. aureus lower respiratory tract infections.[78] 

However, Gawronski et al. found that trough concentrations did not correlate with AUC / 

MIC ratios among patients with MRSA bacteremia and osteomyelitis.[81] Consequently, 
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the authors recommended that total drug exposure be estimated by measuring the AUC / 

MIC for each patient to ensure optimal dosing. 

 

Empiric and Definitive Dosing Regimens 

 Vancomycin is frequently prescribed empirically for the treatment of presumed 

MRSA infections. Conventional dosages (1 g every 12 hrs or 15-20 mg/kg actual body 

weight every 8-12 hrs) are recommended for adult patients with normal renal function.[75] 

However, to reliably achieve a vancomycin trough concentration of 10-15 mcg/mL or an 

AUC / MIC > 400, Thomson et al. demonstrated that alternative dosing strategies may be 

needed.[82] The authors developed a population pharmacokinetic model using data from 

398 patients with a median age of 66 years (range 16-97) who received vancomycin from 

1991-2004 and subsequently evaluated its performance using data from 100 patients 

(median age 71 years [range 22-91]) treated with vancomycin from 2004-2007. Using 

conventional dosing guidelines 19% of patients achieved a trough within 10-15 mcg/mL. 

The authors then used the population pharmacokinetic parameter estimates derived from 

their model to predict vancomycin trough concentrations in a simulated dataset of 110 

patients with varying weights (40-120 kg) and creatinine clearance (15-125 mL/min). 

Revised dosing recommendations were then generated by examining the likelihood of 

achieving a target trough concentration of 10-15 mcg/mL at doses with fixed increments 

of 250 mg administered at intervals of 12, 24, and 48 hours. This process was repeated 

until the authors established a series of dosing recommendations that resulted in 55% of 

patients in the simulated dataset achieving the target trough concentration of 10-15 
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mcg/mL. Using these dosing recommendations, 87% of the simulated patients were 

predicted to achieve an AUC / MIC >400. 

For MRSA isolates with an MIC equal to 1 mcg/mL, definitive vancomycin doses 

should be maintained at a higher level (60 mg/kg/day) to achieve trough concentrations of 

15-20 mcg/mL.[8] Despite the use of larger doses, however, Patel and colleagues used 

Monte Carlo simulation techniques and found that the probability of achieving an AUC / 

MIC >400 was only 57% with an aggressive dosing regimen of 2 g every 12 hrs when the 

MIC was equal to 2 mcg/mL; in contrast to approximately 100% target attainment when 

MICs were ≤1 mcg/mL.[14] A similar trend was noticed by Gawronski et al., in which 

only 9% of patients were able to reach an AUC / MIC >400 with MICs >1 mcg/mL.[81] 

Based on these findings, alternative antibiotics (e.g., linezolid) should be considered for 

MRSA isolates with MICs >1 mcg/mL. 

 

Continuous Infusion 

 Continuous infusion of vancomycin features several practical advantages, 

including lower costs, decreased pharmacokinetic variability, and increased ease of 

monitoring when compared to intermittent infusion.[83, 84] A recent meta-analysis 

evaluated one randomized controlled trial and five observational studies and found that 

continuous infusion was associated with a lower risk of nephrotoxicity and no difference 

in mortality.[85] This finding is in agreement with a study by Hutschala et al., which found 

that critically ill patients undergoing cardiac surgery had a lower incidence of acute renal 

failure requiring venovenous hemofiltration after vancomycin was administered via 

continuous infusion as compared to intermittent infusion.[86] Roberts et al. evaluated the 
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population pharmacokinetics of vancomycin administered via continuous infusion and 

found that high loading (35 mg/kg) and maintenance (35 mg/kg/day) doses were needed to 

rapidly achieve therapeutic vancomycin concentrations of 20 mcg/mL among critically ill 

patients.[87] Additional studies are needed to determine whether larger doses of 

vancomycin administered via continuous infusion affect mortality or the time to clinical 

and microbiological response. However, a report by Ingram et al. suggests that there may 

be an upper limit for steady-state vancomycin concentrations (≥28 mcg/mL) beyond which 

toxicity was frequently noted.[88] 

 

Special Populations 

Neonates and Infants 

 Establishing appropriate vancomycin dosing regimens for neonates and infants is 

challenging due to physiological and developmental factors that contribute to high 

pharmacokinetic variability.[89] For example, neonates have a high proportion of water by 

weight and rapidly changing renal function in the post-natal period, all of which have the 

potential to alter vancomycin pharmacokinetics.[90] These factors change most rapidly 

during the first week of life.[90] 

Although many studies have investigated vancomycin pharmacokinetics in 

neonates and infants, an optimal dosing regimen has not yet been evaluated clinically.[34, 

90] Variation in vancomycin clearance among pre-term (gestational age <37 weeks) and 

term (≥37 weeks gestation) neonates has been shown to be influenced by weight, post-

menstrual age, and renal function.[91-94] This is reflected in the wide range of vancomycin 

half-lives (2-12 hours) reported among neonates.[90, 95] Population pharmacokinetic 
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studies have been reported to improve the likelihood of achieving target vancomycin 

concentrations among neonates.[96] Although two-compartment models with a long 

distribution phase best reflect vancomycin pharmacokinetics, one-compartment models 

perform reasonably well in providing individual pharmacokinetic parameter estimates that 

may be used for the purpose of developing individualized neonatal dosing regimens.[89, 

97] An added advantage of this approach is the ability to determine vancomycin 

pharmacokinetic parameters while obtaining relatively few blood samples.[89] Post-hoc 

dose adjustments are frequently required to achieve target concentrations due to 

unexplained pharmacokinetic variability, which continues to make therapeutic drug 

monitoring essential despite advances in neonatal-specific population pharmacokinetic 

models.[90, 96] 

Few studies have been able to link neonatal vancomycin pharmacokinetic / 

pharmacodynamic targets with positive clinical outcomes.[98] Currently, neonatal dosing 

is based on trough concentration targets derived from studies involving adults receiving 

treatment for MRSA infections.[98] Translation of these targets to neonatal medicine is 

challenging due to the fact that MRSA infections are relatively rare.[97, 99] In this patient 

population, coagulase-negative S. aureus is the most commonly identified infectious 

organism, which may require alternative vancomycin dosing regimens and the use of 

different pharmacokinetic / pharmacodynamic targets.[97, 99] 

Recently, Zhao et al. evaluated vancomycin continuous infusion regimens for 

neonates and found that the regimens used varied widely, presumably owing to a paucity 

of pharmacokinetic data.[100] To address this need, the authors evaluated 116 neonates 

who received vancomycin via continuous infusion and found that 41% had therapeutic 
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vancomycin concentrations (15-25 mcg/mL). Moreover, the distribution of observed 

concentrations varied widely (range 5.1-61.5 mcg/mL). Using a one-compartment 

population pharmacokinetic model, the authors developed an optimized dosing regimen 

incorporating birth weight, current weight, postnatal age, and serum creatinine. In a 

prospective evaluation of this optimized regimen, 71% of the 58 neonates evaluated 

achieved the target range of 15-25 mcg/mL. However, the proportion that achieved an AUC 

/ MIC > 400 is unknown. 

 

Children and Adolescents 

Similar to adults, the emergence of MRSA has led to a significant increase in the 

use of vancomycin among children.[101] Therapeutic target trough concentrations have 

rapidly evolved over the last decade.[8] Although treatment failure is rare, sub-therapeutic 

vancomycin trough concentrations (<5 mcg/mL) have been reported to be associated with 

a heightened risk for treatment failure.[102-104] Collectively, reports of rare treatment 

failures, inconsistent target attainment rates, and the absence of a clear causal relationship 

between vancomycin concentrations and toxicity in pediatric patients has led to upward 

revisions in pediatric dosing recommendations from several leading professional 

societies.[105-107] 

After two years of age, without allometric scaling, weight-related vancomycin 

clearance declines with increasing age and serum creatinine concentration.[108] Dosing 

regimens that account for the influence of age, serum creatinine, and the susceptibility of 

the target organism (e.g., MIC) have been reported to improve target attainment rates 

among children.[108] This is particularly true for children <12 years of age, for which 
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higher doses are typically required, and also for critically ill children who require 

admission to the pediatric intensive care unit.[107, 109] 

Pediatric therapeutic drug monitoring is common and is primarily based on trough 

concentration targets.[8] Current guideline recommendations suggest targeting steady state 

troughs >10 mcg/mL, with 15-20 mcg/mL recommended for the treatment of invasive 

MRSA infections.[8] These targets reflect a change in the primary motivation for 

vancomycin therapeutic drug monitoring, which is now less focused on detecting toxicity 

and more focused on ensuring that vancomycin concentrations are likely to be 

therapeutic.[110] It must be noted, however, that these targets are extrapolated from adult 

studies and may not directly correlate with pediatric outcomes.[110] Consequently, several 

institutions are in the process of re-evaluating their pediatric vancomycin therapeutic drug 

monitoring practices and are shifting away from the use of troughs exclusively in an effort 

to establish AUC-based dosing regimens, which have the potential to better describe 

vancomycin exposure over the entire dosing interval.[111] Frymoyer et al. determined that 

between 75-90% of children with vancomycin trough concentrations of approximately 7-

10 mcg/mL achieve an AUC / MIC >400 when the MIC is ≤1 mcg/mL.[101, 109] 

However, no studies have evaluated the rate of treatment failure among children with 

MRSA infections with trough concentrations of 7-10 mcg/mL and MICs ≤1 mcg/mL, 

which has led to wide variations in pediatric therapeutic drug monitoring and vancomycin 

dosing practices.[112, 113] 
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The Elderly 

 The clinical pharmacokinetics of many antimicrobials, including vancomycin, are 

altered among the elderly.[114] This occurs principally due to a decrease in renal clearance 

that occurs with increasing age and is characterized by a prolonged half-life and increased 

AUC.[114] These changes may be amplified among patients with severe infections who 

are prescribed nephrotoxic agents. 

In a study by Cutler et al., the pharmacokinetics of vancomycin were investigated 

in six healthy elderly men (61-77 years of age) and six healthy, young men (20-26 years of 

age).[115] It was reported that these individuals had an increased volume of distribution, 

increased tissue binding (calculated indirectly), an increased half-life, and significantly 

reduced vancomycin clearance.[115] However, the coefficients of variation for the derived 

pharmacokinetic parameters were relatively low (14-16%), suggesting that this relatively 

homogeneous population may not accurately reflect the true variability in vancomycin 

pharmacokinetics among elderly patients who are receiving vancomycin for the treatment 

of invasive MRSA infections. Guay et al. evaluated 148 elderly patients (≥60 years of age) 

who received vancomycin for the treatment of suspected or documented gram-positive or 

mixed infections.[116] The authors observed a significant increase in the volume of 

distribution, half-life, and a decreased rate of vancomycin clearance when compared to 

younger adults. In their population pharmacokinetic model, it was determined that 

advanced age was a strong predictor of vancomycin clearance, half-life, and volume of 

distribution. Due to these effects, it was established that elderly patients with normal renal 

function (serum creatinine values ≤1.5 mg/dL) require smaller daily doses as compared 
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with younger patients (18-59 years) to maintain similar target peak and trough 

concentrations (18.2 ± 5.8 vs. 25.2 ± 7.8 mg/kg/day). 

Recently, Mizokami et al. studied 94 elderly patients (75-99 years) with hospital-

acquired MRSA pneumonia and compared their clinical outcomes using trough- and AUC-

based vancomycin therapeutic drug monitoring methods.[117] The authors found that 

trough concentrations were not predictive of 28-day mortality, whereas an AUC <250 or 

>450 mcg*hr/mL was strongly associated with an increased risk of death (odds ratio 23.2, 

95% confidence interval 6.8-78.7). However, the authors did not report the method used to 

identify these thresholds (e.g., classification and regression tree analysis). Additionally, 

this retrospective study had a relatively small number of survivors with an AUC / MIC 

>450 (n = 11) and those who did not survive had more severe infections, which makes it 

difficult to determine whether a target AUC / MIC of 250-450 mcg*hr/mL improves 

treatment outcomes for elderly patients with hospital-acquired MRSA pneumonia. 

 

Obese Patients 

 A limited number of studies have investigated vancomycin pharmacokinetics 

among morbidly obese individuals. Bauer et al. evaluated morbidly obese and non-obese 

individuals and found that vancomycin clearance rates were similar (1.2 mL/min/kg vs. 1.1 

mL/min/kg, respectively).[118] The authors recommended that the total daily dose of 30 

mg/kg total bodyweight be divided every 6 or 8 hrs.[118] Similarly, Blouin et al. found no 

difference with respect to vancomycin clearance when clearance was expressed per kg of 

total bodyweight.[28] Additionally, they recommended that the total daily dose should be 

divided every 4 or 6 hrs to prevent high peak concentrations, which are associated with a 
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heightened risk for nephrotoxicity.[28] In accordance with these results, Vance-Bryan et 

al. reported that total bodyweight had a significant influence upon vancomycin clearance 

and volume of distribution in a study cohort in which 47% of the patients were obese.[119] 

As a consequence of the lack of difference in clearance per kg bodyweight, all reports have 

concluded that vancomycin should be dosed on total bodyweight with total daily doses 

varying from 20-30 mg/kg. 

Review articles evaluating vancomycin dosing in obese individuals have primarily 

summarized the above mentioned clinical studies, all of which emphasize the need for 

dosing regimens to be based upon total bodyweight and for dosing three or more times per 

day.[120-123] As vancomycin target concentrations are now higher than those targeted at 

the time that these studies were published it seems reasonable that obese individuals should 

now receive a total daily dose of at least 37.5 mg/kg divided three times per day to prevent 

potentially toxic high peak concentrations. When individual doses exceed 1 g (e.g., 1.5 and 

2 g), the infusion period should be extended to 1.5-2 hrs.[75] If vancomycin is administered 

by continuous infusion, a dose of 30 mg/kg/day is expected to result in exposures similar 

to those achieved with three intermittent infusion doses of 12.5 mg/kg. To rapidly reach 

steady state, a loading dose of 25 mg/kg may be considered.[75] Therapeutic drug 

monitoring is recommended for all morbidly obese individuals, even when there is no 

evidence of renal insufficiency. Prospective clinical studies are needed to evaluate these 

dosing proposals for morbidly obese individuals in light of the increased target vancomycin 

concentrations that are currently aimed for. 
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Patients with Cancer 

 Patients with cancer frequently receive empiric vancomycin for episodes of febrile 

neutropenia and courses of definitive therapy for the treatment of infections caused by 

gram-positive organisms.[124] As patterns of vancomycin use have adapted to relatively 

recent recommendations that target higher pharmacokinetic / pharmacodynamic targets, 

patients with cancer are at a disadvantage owing to their more rapid clearance when 

compared to adults, children, and elderly patients without cancer.[8, 125-131] In a 

vancomycin pharmacokinetic / pharmacodynamic study conducted among adults with 

hematologic malignancies, it was found that only patients with normal renal function who 

received a standard 2 g/day dose achieved therapeutic vancomycin concentrations.[132] 

Among children with cancer, Krivoy et al. reported an increase in vancomycin clearance 

and lower trough concentrations when compared to children without cancer.[130] On the 

basis of these findings, high vancomycin doses are recommended for patients with 

cancer.[124] 

Large vancomycin doses are required to achieve therapeutic concentrations for 

patients with cancer; however, patients with cancer are at an elevated risk for 

nephrotoxicity and warrant close monitoring.[133] Recognition of the potential for additive 

nephrotoxicity due to the use of vancomycin and the co-prescribing of other nephrotoxic 

agents (e.g., chemotherapy, cyclosporine, aminoglycosides, etc.) often leads to the use of 

low vancomycin doses (e.g., 1 g every 12 hrs for adults), which increases the risk for 

treatment failure and the emergence of resistance.[133] Moreover, patients with cancer are 

more likely to have less susceptible S. aureus isolates.[134] Rolston et al. tested the in vitro 

activity of vancomycin against 392 gram-positive isolates from patients with cancer and 



46 
 

found that 100% of the MRSA isolates and 98% of the MSSA isolates had MICs ≥1 

mcg/mL, which has been strongly associated with treatment failure.[134] 

There are major limitations associated with extrapolations from small, retrospective 

analyses often based solely on vancomycin trough concentrations. Consequently, there is 

a need for prospective, disease-specific population pharmacokinetic / pharmacodynamic 

studies to determine whether patients with cancer have an altered vancomycin 

pharmacokinetic profile. Currently, therapeutic drug monitoring is essential to 

individualize vancomycin therapy, thereby balancing therapeutic efficacy with the 

potential for developing toxicity among patients with cancer. 

 

Continuous Renal Replacement Therapy 

Multiple studies have examined the effect of continuous renal replacement therapy 

(CRRT) on vancomycin pharmacokinetics in critically ill patients.[87, 135-138] Many of 

these arrived at conflicting results regarding the influence of CRRT on vancomycin 

clearance and volume of distribution. DelDot et al. evaluated 10 critically ill patients 

receiving continuous venovenous hemodiafiltration (CVVHDF) and found that the mean 

total body clearance of vancomycin was 2.5 ± 0.7 L/hr, whilst that cleared by CVVHDF 

was 1.8 ± 0.4 L/hr (76% of total body clearance).[135] Another vancomycin 

pharmacokinetics study conducted among patients undergoing continuous venovenous 

hemofiltration (CVVH) found that CVVH represented approximately 50% of total 

vancomycin clearance.[139] Additionally, varying volume of distribution estimates have 

been reported.[87, 136] Theoretically, it is expected that the pathophysiology of acute 

kidney injury would result in impaired water and solute excretion, which would result in a 
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larger extracellular fluid compartment and lead to an increase in the volume of 

distribution.[140] In one of the largest studies to date this was not found to occur; however, 

the authors acknowledge that they were unable to account for fluid maintenance in the 

intensive care unit, which likely represents a critical covariate needed to accurately model 

vancomycin pharmacokinetics for this patient population.[136] 

In a recent study, Covajes et al. evaluated 85 patients requiring CRRT and 

determined that higher vancomycin doses were needed for patients with the highest CRRT 

intensity (>40 mL/kg/hr).[141] The authors targeted a steady state concentration of 20-30 

mcg/mL and reported that the two significant factors that influenced vancomycin target 

attainment rates within the first three days of therapy were the daily dosage amount and 

the intensity of CRRT. On day one of therapy, 51% of patients had adequate steady state 

vancomycin concentrations, 20% had supra-therapeutic concentrations, and 29% had sub-

therapeutic concentrations. The majority of patients with adequate steady state vancomycin 

concentrations received a daily dose of 16-35 mg/kg. Due to the rapid evolution of acute 

kidney injury and the potential for rapid deterioration, therapeutic drug monitoring should 

be performed as early as 6 hours after administration of the first vancomycin dose, with 

maintenance dosing established after additional samples have been drawn.[142] This is 

especially critical as up to 49% of patients undergoing CRRT have been reported to have 

sub-therapeutic vancomycin concentrations.[143] Moreover, as the duration of CRRT 

increases non-renal clearance decreases, eventually approaching vancomycin clearance 

rates observed in patients with chronic renal failure.[50] Due to high variability in non-

renal clearance over time, individualized vancomycin dosing regimens are essential for 

patients with acute renal failure.[50] 
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Patients with Cystic Fibrosis 

The prevalence of pulmonary MRSA infections has increased among patients with 

cystic fibrosis.[144, 145] In 2008, the Cystic Fibrosis Foundation reported that 50% of 

patients with cystic fibrosis were infected with S. aureus and 23% were infected with 

MRSA.   Among patients with cystic fibrosis, MRSA is primarily isolated from children 

and young adults.[147] 

Pleasants et al. evaluated vancomycin pharmacokinetics among 10 adults with 

acute pulmonary exacerbations of cystic fibrosis.[148] The volume of distribution, total 

body clearance, and terminal elimination rate were similar among patients with cystic 

fibrosis when compared to previous pharmacokinetic parameter estimates derived from 

studies with healthy adult volunteers.[148, 149] However, Stockmann et al. found that 

vancomycin clearance was slower among children with cystic fibrosis (0.08 L/hr/kg) when 

compared to children without cystic fibrosis (0.10-0.16 L/hr/kg).[150-153] It is unclear 

whether lower vancomycin doses are needed to accommodate the decreased clearance 

among children with cystic fibrosis; however, vancomycin may be dosed similarly for 

adults with and without cystic fibrosis. As for all patients, therapeutic drug monitoring is 

highly recommended to prevent sub-therapeutic dosing and toxicity.[8] 

 

Critically Ill Patients 

Critically ill patients are an inherently heterogeneous population with varying 

extents of organ dysfunction, often requiring mechanical support for failing organ systems, 

and the administration of many life-saving medications.[52] All of these factors may 

modify the pharmacokinetic profile of vancomycin. 
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Llopis-Salvia et al. conducted a population pharmacokinetic study among 50 

critically ill adults who required vancomycin for the treatment of suspected or proven 

gram-positive infections.[52] The authors used a two-compartment model and determined 

that the total body clearance for a 60 kg patient was 60 mL/min, with approximately 28% 

occurring via non-renal mechanisms. The volume of distribution in the central and 

peripheral compartments were estimated as 0.41 and 1.32 L/kg, respectively, and were 

linearly related to total body weight. In contrast, Rodvold et al. reported a volume of 

distribution in the central compartment of 0.21-0.24 L/kg in a population of patients with 

renal dysfunction.[154] The increased volume of distribution among critically ill patients 

may be explained, at least in part, by the physiologic changes in body compartments that 

occur as a consequence of fluid overload and/or from the accumulation of fluid in the third 

space due to tissue edema.[155] 

A Bayesian pharmacokinetic approach has been proposed to feature excellent 

predictive performance in evaluating vancomycin dosing regimens for critically ill 

patients.[52, 156] Ito et al. developed a two compartment vancomycin infusion algorithm 

that resulted in a mean bias of 7.7 ± 7.6 mcg/mL and a mean precision of 8.9 ± 6.2 mcg/mL 

for estimating vancomycin trough concentrations.[156] More recently, Llopis-Salvia et al. 

established a Bayesian model that yielded improved predictive performance with regard to 

both the trough bias (-0.2 mcg/mL) and precision (3.9 mcg/mL).[52] 

Current guidelines recommend that vancomycin be administered via intermittent 

infusion; however, some investigators prefer continuous infusion, particularly for critically 

ill patients.[74, 157, 158] For septic patients with a large volume of distribution continuous 

infusion may be preferable.[52, 159, 160] Saugel et al. retrospectively evaluated 164 adults 
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admitted to their medical intensive care unit and reported that a vancomycin continuous 

infusion regimen with a median daily dose of 960 (95% confidence interval 526-1723) mg 

resulted in a median vancomycin concentration of 19.8 (9.8-29.4) mcg/mL.[161] Using a 

target of 15-25 mcg/mL, the authors found that serum vancomycin concentrations were 

frequently sub-therapeutic on day one (44%), day two (29%), and day three (23%). These 

findings suggest that therapeutic drug monitoring is essential to ensure attainment of 

therapeutic vancomycin concentrations. Moreover, it may be speculated that higher doses 

may be necessary for critically ill patients. 

 

Expert Commentary and Five-Year View 

 More than 50 years after the discovery of vancomycin, dosing regimens continue 

to evolve. Historically, pharmacokinetic / pharmacodynamic targets have been based on 

the use of trough concentrations, which are crude surrogates that are unable to capture the 

overall shape and extent of drug exposure over the entire dosing interval.[102] Within the 

last five years there has been a movement toward AUC-based therapeutic drug monitoring, 

which is a more accurate representation of vancomycin exposure.[75] Over the next five 

years, we expect that pharmacokinetic and pharmacodynamic models will continue to be 

vital tools used to establish targets for the treatment of invasive MRSA-associated 

bacteremia, osteomyelitis, skin and soft tissue infections, and meningitis. Moreover, we 

expect that studies will evaluate the AUC/MIC >400 target that is currently recommended 

for adults with MRSA-associated lower respiratory tract infections in other patient 

populations, which may feature altered vancomycin pharmacokinetic profiles.[74] 
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In addition to their utility in establishing therapeutic targets, these pharmacokinetic 

/ pharmacodynamic models may be used to evaluate the efficacy and safety of alternative 

vancomycin administration methods. Currently, fewer than 50% of neonates reach 

therapeutic vancomycin concentrations with guideline-recommended intermittent dosing 

regimens.[97, 162] The reasons for this are likely to be multifactorial and may include:  

uncertainties regarding an appropriate therapeutic concentration; developmental 

considerations related to the acquisition of renal function; differences in the etiological 

agents of neonatal sepsis; unknown vancomycin concentrations at the site of action; and an 

unclear mechanism for vancomycin-induced nephrotoxicity, all of which contribute to the 

need for prospective, clinical trials guided by population pharmacokinetic / 

pharmacodynamic modeling.[98] 

Continuous infusion of vancomycin is increasingly being used for adults with 

invasive MRSA infections; however, many studies report differing vancomycin target 

concentrations.[85] Further research is needed to establish a link between clinical outcomes 

and steady state vancomycin concentrations achieved with continuous infusion regimens. 

With such data, it would be possible to develop pharmacokinetic / pharmacodynamic 

models to identify optimal dosing regimens that would be likely to achieve positive clinical 

outcomes by maximizing the likelihood of attaining desired vancomycin target 

concentrations. In the event that this occurs within the next five years, it will be critical to 

evaluate whether such dosing regimens are appropriate for other patient populations, for 

which limited data currently exist. 
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CHAPTER 3 

 

POPULATION PHARMACOKINETICS OF INTERMITTENT 

VANCOMYCIN IN CHILDREN 

WITH CYSTIC FIBROSIS 

 

Abstract 

 Background: Vancomycin is the drug-of-choice for the treatment of methicillin-

resistant Staphylococcus aureus (MRSA) infections in children with cystic fibrosis. 

However, no studies have characterized the pharmacokinetic profile of vancomycin among 

pediatric cystic fibrosis patients. 

Objective: To evaluate the pharmacokinetics of intermittent vancomycin 

administration in children with cystic fibrosis and identify covariates that significantly 

influence vancomycin efficacy and safety. 

Methods: Therapeutic drug monitoring data were obtained from two cystic fibrosis 

care centers that identified children <18 years who received vancomycin treatment for an 

acute pulmonary exacerbation from 2005-2010. Trough and peak serum concentrations 

were determined before and after the third or fourth dose. Nonlinear mixed effects models
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were developed to evaluate the population pharmacokinetics of vancomycin. 

Results: Among the 67 children (mean age 12.1+5.3 years), the mean vancomycin 

dose was 17.4+4.4 mg/kg. The mean trough concentration (Cmin) was 10.3+3.8 mg/L. The 

mean daily area under the serum concentration time curve (AUC24) was 282.5+816.9 

mg*hr/L. A one-compartment model with first-order elimination best described the data. 

Weight significantly influenced vancomycin clearance (P<0.001). In the final model, 

clearance was estimated as 5.57 L/hr/70 kg, and the volume of distribution was 44.1 L/70 

kg. The between subject variabilities for clearance and volume of distribution were 27% 

and 40%, respectively. 

Conclusions: Using a one-compartment model to evaluate the pharmacokinetic 

properties of vancomycin in children with cystic fibrosis, clearance increased with body 

weight. Pharmacodynamic studies are needed to establish an optimal vancomycin dosing 

regimen for the treatment of pediatric exacerbations of cystic fibrosis. 

 

Background 

Vancomycin is commonly used to treat severe methicillin-resistant Staphylococcus 

aureus (MRSA) infections and has been widely studied in adults.[2] The prevalence of 

MRSA lower respiratory tract infections in patients with cystic fibrosis (CF) is 

increasing.[3-5]  From 1996 to 2006, the proportion of patients with CF who had one or 

more positive culture(s) for MRSA increased from 2% to 19%.  According to the 2008 

Cystic Fibrosis Foundation (CFF) Patient Registry, more than 50% of patients with CF are 

infected with S. aureus, and 23% are infected with MRSA.6,7  Among patients with CF, 

MRSA is primarily isolated from children and young adults.[8] 
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The importance of proper vancomycin dosing has been highlighted in a consensus 

national guideline endorsed by several leading professional societies.[2]  Guideline 

recommendations were supported by data from adults without CF.  Pharmacokinetic data 

to guide the optimal dosing of vancomycin in patients with CF are limited across all age 

groups.  A small pharmacokinetic analysis of vancomycin in 10 adults with CF was 

published in 1996.[9]  This study found that the disposition and pharmacokinetics of 

vancomycin were similar in adults with CF and healthy adult volunteers.  However, there 

is a critical shortage of pharmacometric data for children and young adults with CF, who 

are most frequently infected with MRSA. 

Although MRSA possesses virulence factors that can damage host tissue, the 

clinical consequences of MRSA infection in children with CF are poorly understood.[10, 

11] In a large observational study, Ren et al. reported that patients who were culture-

positive for MRSA had greater airway obstruction compared with patients with methicillin-

sensitive S. aureus (MSSA).[12] A follow-up study found that despite greater airway 

obstruction, aggressive treatment with antibiotics, and more frequent hospitalizations, the 

rate of lung function decline was not significantly different for patients with MRSA or 

MSSA.[13] However, Dasenbrook and colleagues retrospectively examined 19,833 

patients with CF and found evidence of an increased risk of death among patients with 

MRSA infection versus patients with MSSA infection.[14]  

The objective of this study was to characterize the pharmacokinetic parameters of 

vancomycin in a population of children recruited from two CF care centers.  Potential 

covariates were assessed for their effect upon vancomycin pharmacokinetic parameters. 
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Methods 

Setting and Study Population 

This retrospective study consisted of 67 pediatric patients who received 

vancomycin for treatment of a CF pulmonary exacerbation.  Children who received 

treatment at Intermountain Primary Children’s Medical Center, Salt Lake City, Utah and 

Cardinal Glennon Children’s Medical Center, St. Louis, Missouri from January 1, 2005 

through December 31, 2010 were eligible for inclusion.  Patient demographics, including 

age, sex, weight, height, and serum creatinine were recorded through a combination of 

electronic and manual abstraction from the medical record. This study was reviewed, 

approved, and granted a waiver of informed consent by Institutional Review Boards at both 

study sites. 

 

Drug Administration and Sample Collection 

 Intermountain Primary Children’s Medical Center and Cardinal Glennon 

Children’s Medical Center routinely evaluate for evidence of MRSA infection among 

children with CF undergoing treatment for an acute pulmonary exacerbation. Vancomycin 

is used as the first-line therapy for MRSA at both study sites.[15]  All patients received a 

60-minute infusion of vancomycin using a syringe pump at doses of 15-20 mg/kg 

administered 2, 3, or 4 times daily.  The mean dose was 16.5 + 4.2 mg/kg for patients 

treated at Intermountain Primary Children’s Medical Center and 17.9 + 4.5 mg/kg for 

patients treated at Cardinal Glennon Children’s Medical Center. Dosing adjustments were 

made for peak concentrations less than 20 mg/L, peak concentrations greater than 40 mg/L, 

and trough concentrations greater than 20 mg/L. 
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Blood samples were collected from all patients for therapeutic drug monitoring as 

part of routine medical care. Samples were drawn within 30 minutes before the dose 

(trough concentration) and 30 minutes after the end of the intravenous infusion (peak 

concentration). Treatment duration was typically 10 to 14 days, based on clinical status and 

pulmonary function testing results. 

 

Vancomycin Assay 

 Serum drug concentrations were measured using a fluorescence polarization 

immunoassay (Abbott  AxSYM, Abbott Park, IL).[16] Assay validation was performed for 

clinical purposes. The lower and upper limits of quantification were 2.0 mg/L and 100.0 

mg/L, respectively. At Cardinal Glennon Children’s Medical Center, the intra-day relative 

standard deviation (a measure of precision) ranged from 3.5-4.3% and the inter-day relative 

standard deviation ranged from 0.6-0.9%. The relative error (a measure of accuracy) ranged 

from 2.9-4.3%. At Primary Children’s Medical Center, the intra-day and inter-day relative 

standard deviations ranged from 4.7-7.1%.  

 

Pharmacokinetic Analysis 

 Vancomycin pharmacokinetic parameters were evaluated using NONMEM 7.2 

(non-linear mixed effects modeling; ICON Development Solutions, Ellicott City, MD).  

Data from the two centers were initially assessed separately.  Results were found to be 

comparable, and the data were pooled for all further analyses.  Pooled data were fitted with 

one- and two-compartment first-order conditional estimation with interaction models.  The 

one-compartment model estimated vancomycin clearance (CL) and the volume of 
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distribution (VD). 

Structural models were selected for further assessment using the Akaike 

information criterion (AIC) and the Schwarz Bayesian criterion (SBC).[17]  Diagnostic 

plots were used to visually inspect the model’s fit, including observed vs. population 

predicted vancomycin concentrations and observed vs. individual predicted vancomycin 

concentrations.  Residuals and conditional weighted residuals (CWRES) were also plotted 

vs. time or population predicted vancomycin concentrations.  Models were further 

compared by assessing the precision of the parameter estimates, measures of variability, 

and the objective function value (OFV).  A reduction in the OFV of more than 5.99 (-2 log 

likelihood difference) was considered to be statistically significant with two degrees of 

freedom and a P<0.05.[18] 

Model variability and random effects were classified as one of two types of error:  

1) between-subject variability (BSV) and 2) residual unexplained variability (RUV).  BSV 

is the variability inherent between different patients and was assumed to be log-normally 

distributed according to an exponential equation of the form: 

𝑃𝑖 = 𝜃𝑝𝑜𝑝 ∗ exp(𝜂𝑖
𝜃) ;         𝜂𝑖

𝜃 i. i. d. ~ N(0, ω𝜃
2 ) (3.1) 

where Pi is the value of the pharmacokinetic parameter for the ith individual, θpop is the 

population mean for P, and ηi
θ represents the between subject random effect for the ith 

individual on θ, each of which are independent and identically distributed with a mean of 

zero and a variance of ω2.[19] 

The RUV was the second source of variability and reflects the difference between 

the model prediction for the individual and the measured observation.  This includes the 

error in the assay, errors in drug dose, errors in the time of measurement, etc.[20]  During 
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model development, RUV was evaluated using additive, proportional, and combined error 

models.  A combined residual error model resulted in the greatest improvement in the OFV. 

The equation for the combined error model was: 

𝑌𝑖𝑗 = 𝑌𝑚𝑖𝑗(1 + 𝜀𝑖𝑗) + 𝜀𝑖𝑗 (3.2) 

where Yij is the observed concentration for the ith individual at time j, Ymij is the model 

prediction, and εij is a normally-distributed random error with a mean of zero and a variance 

of σ2. 

The area under the plasma concentration vs. time curve over a day (AUC24) for 

vancomycin was calculated for each patient using the following equation: 

𝐴𝑈𝐶24 =
𝐷𝑎𝑖𝑙𝑦 𝑣𝑎𝑛𝑐𝑜𝑚𝑦𝑐𝑖𝑛 𝑑𝑜𝑠𝑒

𝑉𝑎𝑛𝑐𝑜𝑚𝑦𝑐𝑖𝑛 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒
 

(3.3) 

 

Covariate Analysis 

Potential covariates were initially identified through generalized additive modeling. 

Further testing was performed by evaluating potential covariates using stepwise forward 

addition and then stepwise backward elimination procedures. A reduction in the OFV of 

>5.99 (P<0.05) was required to retain covariates in the forward addition step. In the 

backward elimination step, covariates were retained if they resulted in a reduction in the 

OFV of >9.21 (P<0.01).  

Age, weight, height, sex, and serum creatinine were included in the covariate 

analysis.  To adjust for differences in body size and metabolic rate, allometric scaling was 

applied to standardize body weight between the parameter estimates determined for this 

pediatric population and values reported for a typical 70 kg adult by fixing the exponents 

in the allometric model to 0.75 for clearance (equation 3) and to 1 for the VD.[21] 
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𝐶𝐿𝑖 = (𝐶𝐿𝑝𝑜𝑝 ∗ (𝐵𝑊
70⁄ )

𝜃
) ∗ exp(𝜂𝐶𝐿) 

(3.4) 

where CLi is the individual clearance in the ith individual, CLpop is the estimate of the 

population clearance, 𝜂𝐶𝐿 is the random between subject variability, θ is the shift parameter 

describing the systematic dependence of clearance on individual body weight, and BW is 

the body weight of the ith individual. 

 

Model Evaluation 

 Models were evaluated and selected based on the goodness of fit and unstable 

models were excluded from the model building process.  The stability of the models was 

assessed by changing the number of significant digits and the initial parameter estimates 

for CL and VD. Models were also compared using the Akaike information criterion (AIC) 

and Schwarz information criterion (SIC) to discriminate between non-hierarchical models 

as part of the model selection criteria.[17] Nonparametric bootstrapping techniques were 

utilized to evaluate the stability of the final pharmacokinetic model and to quantify the 

uncertainty in parameter estimates.[22]  PDx-Pop was used to derive 1000 bootstrap runs 

by randomly sampling with replacement from the original dataset.  Standard errors were 

computed for both the estimated population parameters and random effect error models.  

Model stability was further assessed by generating visual predictive checks, in which the 

90% confidence interval from the measured vancomycin concentrations were compared to 

the results obtained from 100 simulated vancomycin datasets. 
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Results 

Patients and Pharmacokinetics 

The median age of the study population was 13.9 years (interquartile range:  8-17), 

and a majority of patients were female (60%). The mean body weight of the patients was 

40.6 + 19.5 kg.  Additional demographic characteristics are summarized in Table 3.1. From 

these 67 patients, there were 227 unique hospitalizations. Cardinal Glennon contributed 

337 vancomycin concentration measurements (mean 7.9 + 9.6 concentrations per patient), 

and Intermountain Primary Children’s Medical Center contributed 149 (mean 6.3 + 6.8 

concentrations per patient). The mean peak (Cmax) and trough (Cmin) vancomycin 

concentrations were 25.4 + 11.0 mg/L and 10.1 + 3.8 mg/L, respectively. The mean AUC24 

was 282.5 + 816.9 mg*hr/L. 

 

Population Pharmacokinetic Models 

 Several structural models were explored to determine the model that best fit the 

vancomycin concentration data.  One-compartment and two-compartment structural 

models with first-order elimination were assessed with additive, proportional, and 

combined error models.  Structural models also incorporated the rate and duration of the 

IV infusion for each subject. 

A one-compartment model was used to describe the serum concentrations of 

vancomycin in this patient population. The base model was a one-compartment model with 

first-order elimination, which was selected as the initial base model on the basis of the 

OFV, AIC, and SBC.  Base model parameter estimates for CL were similar for the Cardinal 

Glennon and Intermountain Primary Children’s models, 2.38 and 3.24 L/hr, respectively. 
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Table 3.1. Demographic characteristics among children with cystic fibrosis who received 

vancomycin for the treatment of an acute pulmonary exacerbation. 

Characteristic 

Cardinal Glennon 

Number (%) 

(n=43) 

Primary Childrens 

Number (%) 

(n=24) 

Combined  

Number (%) 

(n=67) 

Age, yrs    

Median 14 12.5 13.9 

Interquartile range 9 – 17 7.1 – 15.5 8 – 17 

Sex    

Male 19 (44) 8 (33) 27 (40) 

Female 24 (56) 16 (67) 40 (60) 

Weight, kg    

Median 43.2 36.6 41.2 

Interquartile range 27.1 – 59.9 23.1 – 46.8 25.5 – 56.8 

Height, cm    

Median 154 140 150 

Interquartile range 108 – 163 124 – 159 118.5 – 159.5 
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Similarly, the base model estimates for VD were 46.6 and 18.6 L for the Cardinal Glennon 

and Intermountain Primary Children’s data, respectively.  Due to the similarity of these 

estimates, data from the two centers were combined for a pooled analysis.  The base model 

estimated CL as 2.70 L/hr and VD as 44.8 L for the pooled analysis. 

A covariate analysis was undertaken in which each covariate was added to the 

model.  Following univariate analyses, weight (P<0.001) and serum creatinine (P<0.05) 

were identified as having a significant influence on vancomycin pharmacokinetics.  

However, in multivariate analyses accounting for weight, serum creatinine had no 

significant influence.  The inclusion of allometric scaling significantly improved the OFV 

(P<0.001).  This model determined that vancomycin clearance increased with increasing 

weight. 

The final covariate model was chosen as it produced the most significant 

minimization of the OFV (Δ 37.9), reduced the BSV, and decreased the RUV.  The 

parameter estimates derived from the final covariate model are shown in Table 3.2.  Also 

presented are several metrics used to assess the stability and robustness of the final model 

including standard errors, coefficients of variation, 95% confidence intervals, and 

bootstrapped estimates (n=1000). The 95% confidence interval surrounding the 

bootstrapped point estimate for the BSV in VD includes 0. 

 

Model Evaluation 

Diagnostic plots were generated for assessing model fit between observed 

vancomycin concentrations versus population predicted and individual predicted values 

(Figure 3.1).  Plots of the conditional weighted residuals (based on the first-order  
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conditional estimation method) versus the population predicted vancomycin concentrations 

were also examined (Figure 3.1).  In aggregate, visual inspection revealed that the final 

covariate model fit the data more tightly than the initial base model, indicating superior 

performance. 

Bootstrapping techniques were also used to assess the robustness of the final 

covariate model.  Mean estimates from the 1000 bootstrap runs were similar to the 

population estimates derived from the final covariate model.  Bootstraps were successfully 

generated 88% of the time for the pooled data from both Cardinal Glennon and 

Intermountain Primary Children’s Medical Center.  Simulations from the final covariate 

model were derived from the observed vancomycin data in an effort to reveal evidence of 

model misspecification, which is not easily detected by other methods.[23]  Visual 

predictive checks (VPC) present a graphical comparison of the observed vancomycin data 

and simulated data and are shown in Figure 3.2, with the median simulated value compared 

to the 5th, 10th, 90th, and 95th quantiles.  Of the 48,600 simulated observations 93% fell 

within the 90% confidence interval of the observed vancomycin concentrations, 

demonstrating reasonable model stability and agreement. 

 

Discussion 

 Monitoring of vancomycin concentrations is common to prevent sub-therapeutic 

dosing and toxicity.[24] Despite extensive study among other patient populations,[25-27] 

vancomycin population pharmacokinetics have not been described for children with CF.  

In this study, vancomycin CL and VD were estimated using a one-compartment model with 

data derived from children with CF from two centers.  Vancomycin CL increased with   



80 
 

Figure 3.1. Diagnostic plots of the final model. (A) Observed versus population-predicted 

vancomycin concentrations; (B) observed versus individual-predicted vancomycin 

concentrations; (C) conditional weighted residuals versus population-predicted 

vancomycin concentrations; and (D) conditional weighted residuals versus the time after 

dose. (Solid black lines indicate regression lines and dashed black lines represent lines of 

identity.)  
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A) 

B) 
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Figure 3.1. Continued.  

C) 

D) 



83 
 

 

  

F
ig

u
re

 
3
.2

. 
V

is
u
a
l 

p
re

d
ic

ti
ve

 
ch

ec
k 

fo
r 

th
e 

fi
n
a
l 

co
va

ri
a
te

 
m

o
d
el

. 
O

b
se

rv
ed

 
v

an
co

m
y
ci

n
 

co
n
ce

n
tr

at
io

n
s 

ar
e 

co
m

p
ar

ed
 w

it
h
 t

h
e 

1
0

th
, 

5
0

th
, 

an
d
 9

0
th

 p
er

ce
n
ti

le
s 

fo
r 

1
0
0
 s

im
u
la

te
d
 d

at
as

et
s.

 

C
o
m

p
ar

is
o
n
 o

f 
m

ed
ia

n
 (

so
li

d
 b

lu
e 

li
n
e)

 a
n
d
 t

h
e 

1
0

-9
0

th
 p

er
ce

n
ti

le
 i

n
te

rv
al

 (
d
as

h
ed

 r
ed

 l
in

es
).

 



84 
 

increasing weight and is an important covariate that merits consideration in establishing 

initial dosing regimens for children with acute pulmonary exacerbations of CF. 

The pathophysiology of CF affects the pharmacokinetics of many antibacterials 

prescribed for the treatment of acute pulmonary exacerbations.[28, 29]  To evaluate 

whether vancomycin dosage requirements differ between patients with CF and those 

without, Pleasants et al. evaluated the pharmacokinetics of vancomycin among 10 adults 

with CF.[9]  The authors reported pharmacokinetic parameter estimates that were similar 

to earlier studies among healthy adult volunteers.  In an earlier study that evaluated 

vancomycin pharmacokinetics among adults with burn injuries, CL was estimated as 5.3 

L/hr/70 kg.[30]  This compares favorably with our CL estimate of 5.57 L/hr/70 kg.  Among 

56 adults with varying levels of renal impairment, the mean VD at steady-state was 0.72 

L/kg.[31]  The mean VD among our cohort of pediatric patients with CF was 0.63 L/kg.  

These findings suggest that vancomycin pharmacokinetics in children are not substantially 

different from values that have been reported in adult populations with normal to minor 

renal impairment.  In contrast, vancomycin CL among children without CF has been 

reported to range from 0.10 to 0.16 L/hr/kg.[32-34]  It is possible that the relatively young 

ages of the children included in these studies (mean ages of 3.9, 5.6, and 7.6 years, 

respectively) or the pathophysiologic changes that result from CF may account for the 

difference between the CL estimate of 0.08 L/hr/kg reported here among a population of 

slightly older children (mean age of 12.1 years).  Despite this, the mean VD in the present 

population was 0.63 L/kg, which is similar to estimates obtained in several earlier studies 

conducted among different populations of children without CF.[32-35]  In aggregate, these 

data support the notion that vancomycin CL among older children with CF may more 
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closely resemble adult CL estimates, while the VD of vancomycin is similar to values 

reported among healthy children. 

In the present study, current body weight was an important covariate that influenced 

vancomycin clearance among children with CF.  Previous studies in both children and 

adults without CF have also identified current weight as an important determinant of 

vancomycin pharmacokinetics.[36, 37] 

Controversy exists as to whether a one-compartment or a two-compartment model 

is more appropriate for characterizing vancomycin pharmacokinetics.[38]  Albrecht et al. 

reported that the half-life of vancomycin ranged from 0.2 to 0.8 hours.[39]  This led the 

authors to conclude that a one-compartment model using two serum concentrations is 

acceptable for pharmacokinetic modeling studies.[39]  In evaluating a Bayesian approach, 

Pryka et al. assessed the relative predictive utility of one- and two-compartment models 

and determined that a two-compartment model was more precise and less biased.[40]  

However, Rosell et al. proposed that it is difficult to ethically-justify the number of serum 

concentrations needed to rigorously evaluate a two-compartment model.[41]  In clinical 

practice, post-distributive vancomycin concentrations are frequently obtained, which allow 

the use of one-compartment model equations to describe the pharmacokinetics of a two-

compartment drug.[42]  This study utilized data that were collected during routine 

therapeutic drug monitoring and therefore featured a limited number of vancomycin 

concentrations for each patient.  With the limited data available, we found that a one-

compartment model tended to under-predict low vancomycin concentrations and over-

predict high concentrations among children with CF.  It is likely that more frequent 

sampling may have supported the use of a two-compartment model. 
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Interpretation of these findings is subject to several limitations.  Data were collected 

during routine therapeutic drug monitoring, and a limited number of vancomycin 

concentrations were measured for each patient.  Additionally, this study was not designed 

to correlate vancomycin pharmacokinetics with clinical efficacy, although trough 

concentrations of <10 mg/L have been associated with treatment failure, which may be due 

to poor tissue penetration and selection of vancomycin-heteroresistant S. aureus.[43]  This 

emphasizes the importance of achieving appropriate vancomycin serum concentrations for 

each patient, which requires individualized dosing and knowledge of important covariates 

that influence vancomycin pharmacokinetics. 

The pathophysiology of CF has been reported to alter aminoglycoside 

pharmacokinetics, making it difficult to establish dosing regimens that optimize 

antibacterial efficacy and safety.[44]  As the prevalence of MRSA has increased over the 

last 30 years, vancomycin use has also increased.[45, 46]  Despite this, relatively little is 

known about the pharmacokinetics of vancomycin in children with CF.  In this study, 

vancomycin pharmacokinetics were adequately described with a one-compartment first-

order elimination model.  Vancomycin CL was lower than has been reported among studies 

of younger children without CF.  Clearance was also significantly influenced by current 

body weight.  The VD was similar among children with CF, healthy children, and 

heterogeneous adult populations.  Future pharmacodynamic studies are needed to establish 

markers of efficacy and safety, which may be used to develop an optimal vancomycin 

dosing regimen for the treatment of acute pulmonary exacerbations of CF among children. 
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CHAPTER 4 

 

PREDICTIVE PERFORMANCE OF A VANCOMYCIN 

POPULATION PHARMACOKINETIC  

MODEL IN NEONATES 

 

Abstract 

 Introduction: The pharmacokinetics of vancomycin are highly variable among 

neonates, which makes dosing challenging in this population. However, adequate drug 

exposure is critical, especially when treating methicillin-resistant Staphylococcus aureus 

(MRSA) infections. Utilization of population pharmacokinetic models and Bayesian 

methods offers the potential for developing individualized therapeutic approaches. To meet 

this need, a neonatal vancomycin population pharmacokinetic model was recently 

published. The current study sought to externally evaluate the predictive performance and 

generalizability of this model. 

Methods: A retrospective chart review of neonates who received vancomycin and 

had ≥1 peak and ≥1 trough concentrations at five Intermountain Healthcare neonatal 

intensive care units from 2006-2013 was performed and served as the external validation 
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cohort. The published population pharmacokinetic model was implemented in NONMEM 

7.2 with the structural and variance parameter values set equal to the estimates reported 

previously. The model was then used to predict the first peak and trough concentration for 

each neonate in the validation cohort and the model prediction error and absolute prediction 

error were calculated. Normalized prediction distribution errors (NPDE) were also 

evaluated. 

Results: A total of 243 neonates were studied with a median postmenstrual age of 

33 (interquartile range [IQR]:  28-39) weeks and a median weight of 1.6 (IQR:  1.0-2.9) 

kg. The model predicted the observed vancomycin concentrations with reasonable 

precision. For all vancomycin concentrations, the median prediction error was -0.8 (95% 

CI:  -1.4 to -0.4) mg/L and the median absolute prediction error was 3.0 (95% CI:  2.7 to 

3.5) mg/L. No trends in NPDE across weight, postmenstrual age, serum creatinine or time 

after dose were observed. 

Conclusions: An evaluation of a recently published neonatal vancomycin 

population pharmacokinetic model in a large external dataset supported the predictive 

performance and generalizability of the model. This model may be useful in evaluating 

neonatal vancomycin dosing regimens and estimating the extent of drug exposure. 

 

Introduction 

Optimizing vancomycin dosing to rapidly achieve adequate drug exposure is 

imperative in treating neonatal sepsis, particularly when treating invasive methicillin-

resistant Staphylococcus aureus (MRSA) infections.[1] However, this has been 

challenging in neonates as the pharmacokinetics of vancomycin are highly variable among 
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neonates due to developmental and pathophysiological changes.[2, 3] Recent studies have 

shown that standard neonatal vancomycin dosing strategies, such as those outlined in 

NeoFax®, do not reliably achieve trough concentrations >10 mg/L.[4, 5] In addition, the 

ratio of the 24-hour area under the concentration-time curve (AUC24) to the minimum 

inhibitory concentration (MIC) – the best predictor of successful outcomes when treating 

invasive MRSA infections – is not routinely utilized to assess the appropriateness of 

vancomycin dosing in neonates, presumably due to practical limitations associated with 

calculating the AUC24. 

Innovative vancomycin dosing strategies are therefore needed in neonates that 1) 

incorporate known patient-specific determinants of vancomycin pharmacokinetics such as 

size, maturation, and renal function in the dose selection and 2) allow for assessment of 

AUC24 based on the dosing history and vancomycin concentration(s) measured as part of 

routine therapeutic drug monitoring.[3, 6, 7] To develop such an individualized therapeutic 

approach in neonates, utilization of population pharmacokinetic models and Bayesian 

methods will be essential.[8-11] We recently developed a neonatal vancomycin population 

pharmacokinetic model that capitalized on patient data readily available in the electronic 

medical record:  weight (an indicator of size), postmenstrual age (an indicator of 

maturation), and serum creatinine (an indicator of renal function).[7] The model has the 

potential to improve our ability to define vancomycin dosing regimens that reliably achieve 

recommended exposure targets; however, it is critical to first evaluate whether this model 

and its findings are generalizable to neonates outside of the original population used to 

develop the model. The objective of the current study was to conduct an external evaluation 
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of this published pharmacokinetic model and to enhance our understanding of the 

relationship between vancomycin trough concentration and AUC24 in neonates. 

 

Methods 

Validation Cohort 

Approval to conduct this study was granted by the University of Utah and Primary 

Children’s Hospital (PCH) Institutional Review Boards. PCH is a freestanding children’s 

hospital with a level IV neonatal intensive care unit that is staffed by University of Utah 

neonatologists. PCH is owned and operated by Intermountain Healthcare, which is a large, 

not-for-profit, vertically-integrated healthcare delivery system that serves Utah, Idaho, 

Wyoming, Nevada, and Montana. In addition to PCH, four other level II-III neonatal 

intensive care units operated by Intermountain Healthcare were included in this study. 

A retrospective chart review was conducted for all neonates who had vancomycin 

therapeutic drug monitoring performed from 2006-2013 at five Intermountain Healthcare 

neonatal intensive care units. Neonates were included if they were <54 weeks 

postmenstrual age and had ≥2 doses of vancomycin, ≥1 peak concentration, ≥1 trough 

concentration, and ≥1 serum creatinine level. Vancomycin concentrations were quantified 

using a particle-enhanced turbidimetric inhibition immunoassay on an Abbott Architect 

cSystem platform (Abbott Laboratories, Abbott Park, Illinois). Vancomycin concentrations 

were defined based on their temporal relationship to dosing records. Trough concentrations 

were defined as concentrations obtained within three hours of the next vancomycin dose 

and peak concentrations were defined as concentrations obtained within three hours of the 

preceding dose. Serum creatinine levels collected within ±48 hours of vancomycin dosing 
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and concentration records were carried forward and backward and were used in the 

analyses. To account for the known difference in measured serum creatinine concentrations 

between the Jaffe method (used in the original model derivation cohort) and the enzymatic 

method (used in the current external validation cohort), a previously described linear 

conversion factor was applied to all of the enzymatic serum creatinine concentrations 

included in this external validation (𝑒𝑛𝑧𝑦𝑚𝑎𝑡𝑖𝑐 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 1.050 ∗

𝐽𝑎𝑓𝑓𝑒 𝑚𝑒𝑡ℎ𝑜𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 − 0.122).[12] Exclusion criteria included a diagnosis of 

congenital kidney disease, major congenital heart disease (other than ventricular septal 

defect, atrial septal defect, or patent ductus arteriosus), or extracorporeal membrane 

oxygenation (ECMO) during the vancomycin course. 

 

Model Evaluation 

The published neonatal vancomycin population pharmacokinetic model was 

implemented in the non-linear mixed effects modeling software NONMEM 7.2 (ICON 

Development Solutions, Ellicott City, MD) as previously described.[7] Briefly, a one 

compartment model with first-order elimination was used to describe vancomycin 

pharmacokinetics. Clearance (CL) was predicted by weight (an indicator of size), 

postmenstrual age (PMA; an indicator of maturation) and serum creatinine (Cr; an indicator 

of renal function) according to the following equation: 

𝐶𝐿 (𝐿/ℎ) = 0.345 ∙  (
𝑊𝑒𝑖𝑔ℎ𝑡

2.9 𝑘𝑔
)0.75  ∙  

1

1 + (
𝑃𝑀𝐴𝑤𝑒𝑒𝑘𝑠

34.8 )−4.53
 ∙  (

1

𝐶𝑟𝑚𝑔/𝑑𝐿
)0.267 (4.1) 

Volume of distribution (V) was predicted by weight: 
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𝑉 (𝐿) = 1.75 ∙  (
𝑊𝑒𝑖𝑔ℎ𝑡

2.9 𝑘𝑔
) (4.2) 

After accounting for known predictors, the remaining variation between neonates 

was described by an exponential error model for both CL (% coefficient of variation [% 

CV] 21.6%) and V (% CV 10.9%). Residual variability (a measure of the difference 

between the model predicted concentration for a neonate and the observed concentration 

in that neonate) was captured using a combined proportional (% CV 20.5%) and additive 

error model (standard deviation [SD] ± 1.3 mg/L). 

For each neonate in the external validation cohort, vancomycin concentrations were 

then predicted by using the parameters of the population pharmacokinetic model and 

simulating the actual dosing regimen given to the neonate (using the NONMEM 

MAXEVAL=0 POSTHOC command). Only concentrations at times for which a neonate 

had therapeutic drug monitoring performed were simulated. Model-predicted vancomycin 

concentrations (PRED from the NONMEM output) were then compared with the 

corresponding observed vancomycin concentrations. As described by Sheiner and 

Beal,[13] the bias and precision of the model were assessed by calculating the median 

prediction error and median absolute prediction error for the first trough and peak 

concentration according to the following formulas: 

Prediction error (bias):                                  (
𝐶𝑜𝑛𝑐𝑝𝑟𝑒𝑑−𝐶𝑜𝑛𝑐𝑜𝑏𝑠

𝐶𝑜𝑛𝑐𝑜𝑏𝑠
) (4.3) 

Absolute prediction error (precision):       (
|𝐶𝑜𝑛𝑐𝑝𝑟𝑒𝑑−𝐶𝑜𝑛𝑐𝑜𝑏𝑠|

𝐶𝑜𝑛𝑐𝑜𝑏𝑠
) (4.4) 

where Concpred refers to the model-predicted vancomycin concentration and Concobs refers 

to the observed vancomycin concentration. Model predicted vancomycin concentrations 

calculated using each patient’s individual Bayesian estimate of CL and V (i.e. the IPRED 
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from the NONMEM output which incorporates the patient’s drug concentrations in 

addition to the fixed covariate effects in the model predictions) were also evaluated using 

the same approach.  

The predictive performance of the model was further evaluated using simulation-

based diagnostic methods. Normalized prediction distribution errors (NPDE) were 

calculated by simulating 1000 datasets and comparing the predicted concentrations to the 

observed concentrations using the NPDE command in NONMEM.[14, 15] The NPDE 

should follow a normal distribution with a theoretical mean of 0 and variance equal to 

1.[14] 

 

Trough Concentration and AUC24 Relationship 

Following model evaluation, the relationship between trough concentration and 

AUC24 was examined. Bayesian estimates of CL for each neonate from the population 

pharmacokinetic model were used to calculate AUC24 at the time that vancomycin trough 

concentrations were collected.[8] AUC24 was calculated as the daily dose ÷ CL. For a given 

trough concentration, the proportion of neonates with that trough concentration who 

achieved an AUC24 ≥400 was calculated. An AUC24 ≥400 mg*hr/L would predict an 

AUC24/MIC ≥400 for an MIC of ≤1 mg/L. AUC24 calculations, descriptive statistics, and 

graphical analyses were performed in R 3.1.1 (R Foundation for Statistical Computing, 

Vienna, Austria). 
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Results 

External Validation Cohort 

Overall, 243 neonates had vancomycin dose and concentration data available and 

served as the external validation cohort. The median dose was 15.5 mg/kg (interquartile 

range [IQR]:  13.9-19.3) and the median dosing interval was 11.5 hrs (IQR:  8.0-12.5 hrs). 

Demographic and clinical characteristics of the neonates in the external validation cohort 

are shown in Table 4.1. For comparison, demographic and clinical characteristics of the 

neonates in the cohort used to develop the original published pharmacokinetic model are 

also shown. Overall, the validation cohort was of lower weight and age and had higher 

serum creatinine concentrations. 

In the external validation cohort, a total of 734 vancomycin concentrations were 

available for analysis. Each neonate contributed a mean of 3.0 (± 1.8) vancomycin 

concentrations. The time of vancomycin concentration collection relative to the previous 

dose is shown in Table 4.2. All neonates had at least one concentration measured within 

three hours of the end of the vancomycin infusion. No concentrations were below the lower 

limit of quantitation. 

 

Model Evaluation 

The vancomycin pharmacokinetic model adequately described the observed 

vancomycin concentrations in the external cohort of neonates (Figure 4.1A). Model 

predicted vancomycin concentrations (PRED) were slightly lower than the observed 

concentrations (median prediction error -0.8 [95% CI:  -1.4 to -0.4] mg/L). The precision 

of the model was reasonable with a median absolute prediction error of 3.1 (95% CI:  2.7   
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Table 4.1. Demographic and clinical characteristics of neonates who received vancomycin 

and had therapeutic drug monitoring performed. 

Characteristic 

Model Development Cohort 

(n=249) a 
External Validation Cohort 

(n=243) b 

Median / No. Range Median / No. Range 

Female, n (%) 121 (49%) -- 103 (42%) -- 

Gestational 

age, weeks 
34 23 – 42 30 22 – 41 

Birthweight, 

kg 
2.0 0.4 – 4.4 1.3 0.5 – 5.1 

Weight, kg 2.9 0.5 – 6.3 1.6 0.4 – 6.8 

Postnatal age, 

days 
19 0 – 173 12 0 – 196 

Postmenstrual 

age, weeks 
39 24 – 53 33 23 – 54 

APGAR at 5 

minutes 
8 1 – 10 8 1 – 10 

Serum 

creatinine, 

mg/dL d 

0.4 0.1 – 2.7 0.6 0.3 – 1.5 

a Patient characteristics of the 249 neonates used to develop the neonatal vancomycin 

population pharmacokinetic model described by Frymoyer et al.[7] 
b Patient characteristics of the 243 neonates used in the current external validation. 
c The serum creatinine concentration in the model derivation cohort was measured 

using the Jaffe method. The serum creatinine concentration in the external validation 

cohort was measured using the enzymatic method and was converted to a Jaffe-

standardized equivalent using a linear equation described by Srivastava et al.[12] 

Converted values are presented in the table above. 
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Table 4.2. Timing of 734 neonatal vancomycin concentrations relative to the end of the 

most recent 1 hour infusion. 

Time since the end of 

the most recent 

infusion 

N (%) 

0 – 1 hr 122 (17%) 

1 – 2 hrs 192 (26%) 

2 – 4 hrs 27 (4%) 

4 – 6 hrs 63 (9%) 

6 – 8 hrs 66 (9%) 

8 – 12 hrs 152 (21%) 

12 – 24 hrs 107 (15%) 

>24 hrs 5 (1%) 
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Figure 4.1. An external evaluation of the predictive performance of a previously published 

neonatal vancomycin population pharmacokinetic model. (A) Diagnostic plot depicting the 

model fit for observed versus population-predicted vancomycin concentrations. The 

dashed black line represents the locally weighted scatterplot smoothed fit of the data. (B) 

Kernel density plot of the normalized prediction distribution errors with a histogram 

depicting a normal, Gaussian distribution overlaid for comparative purposes. 
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to 3.2 mg/L). The predictive performance of the model for peak and trough concentrations 

is featured in Table 4.3. When incorporating patient concentrations to obtain Bayesian 

estimates of PK parameters for each neonate, the precision of the model predicted 

vancomycin concentrations (IPRED) improved (Table 4.4).  For example, the median 

absolute prediction error of IPRED was 1.7 (95% CI:  1.5 to 1.8) mg/L. 

Simulation based diagnostics of the vancomycin pharmacokinetic model 

demonstrated a mean NPDE of 0.05 and a variance of 0.96, indicating no bias and an ability 

of the model to reasonably capture the underlying variability in the external validation 

cohort. Additionally, there were no trends in NPDE across weight, postmenstrual age, 

serum creatinine, or time after dose (Figure 4.2). 

 

Trough Concentration and AUC24 Relationship 

A linear relationship between increased AUC24 and higher trough concentrations 

was observed in the external validation cohort (r2 = 0.60; Figure 4.3A). AUC24 was highly 

variable at a given trough concentration (i.e., a 2 to 3 fold range of AUC24 was achieved at 

a given trough concentration), and therefore, AUC24 could not be precisely predicted for 

an individual neonate based on a trough concentration alone. However, a trough 

concentration of 11 mg/L predicted the achievement of an AUC24 ≥400 in 93% of neonates 

(Figure 4.3B). The median (range) AUC24 at this trough concentration was 542 (308 to 

649) mg*hr/L. 
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Table 4.3. Predictive performance of the neonatal population pharmacokinetic model in 

the external validation cohort.  

 
All 

concentrations 
First peak First trough 

Prediction error 

Median -0.8 -2.0 -0.1 

95% confidence interval -1.4 to -0.4 -2.9 to -1.4 -0.5 to 0.2 

Percent prediction error 

Median -4.5% -7.5% -1.5% 

95% confidence interval -7.2% to -2.2% -9.4% to -4.9% -4.5% to 2.7% 

Absolute prediction error 

Median 3.0 3.9 2.1 

95% confidence interval 2.7 to 3.5 3.4 to 4.1 1.7 to 2.7 

Absolute percent prediction error 

Median 15.2% 12.6% 20.1% 

95% confidence interval 14.1% to 17.3% 10.9% to 14.4% 16.8% to 24.0% 
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Table 4.4. Predictive performance of the neonatal population pharmacokinetic model in 

the external validation cohort after incorporating patient drug concentrations in 

predictions (e.g., IPRED method). 

 
All 

concentrations 
First peak First trough 

Prediction error 

Median -0.7 -1.7 -0.2 

95% confidence interval -0.9 to -0.5 -2.2 to -1.4 -0.4 to 0.1 

Percent prediction error 

Median -3.8% -5.8% -1.7% 

95% confidence interval -4.9% to -3.2% -7.5% to -4.6% -3.4% to 0.6% 

Absolute prediction error 

Median 1.7 2.7 0.9 

95% confidence interval 1.5 to 1.8 2.1 to 3.1 0.7 to 1.1 

Absolute percent prediction error 

Median 8.8% 8.4% 9.1% 

95% confidence interval 8.1% to 9.7% 7.3% to 9.6% 7.3% to 10.8% 
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Figure 4.2. Assessment of the predictive performance of the neonatal vancomycin 

population pharmacokinetic model. (A) Normalized prediction distribution errors versus 

weight, measured in kilograms. (B) Normalized prediction distribution errors versus the 

time elapsed since the last vancomycin dose, measured in hours. (C) Normalized prediction 

distribution errors versus postmenstrual age, measured in weeks. (D) Normalized 

prediction distribution errors versus serum creatinine concentrations, measured in 

milligrams per deciliter. The dashed black lines represent locally weighted scatterplot 

smoother fits of the data.  
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Figure 4.3. The association between vancomycin trough concentrations and the extent of 

drug exposure, as measured by the 24-hour area under the curve (AUC24). (A) Higher 

vancomycin trough concentrations were associated with higher AUC24 values, although 

substantial variability was noted. (B) The probability of achieving a pharmacokinetic / 

pharmacodynamic target associated with clinical and microbiological success for invasive 

methicillin-resistant Staphylococcus aureus infections (an AUC24 ≥400) increased with 

higher vancomycin trough concentrations. All neonates with a trough ≥12 mg/L had an 

AUC24 ≥400, although many neonates achieved the AUC24 target with lower trough 

concentrations.  
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Discussion 

External validation of a population pharmacokinetic model is described by the 

United States Food and Drug Administration (FDA) as “the most stringent method for 

testing a developed model”.[16] Yet, external validation is performed in <10% of published 

pharmacokinetic models and concerns about the clinical utility of the model often 

remain.[17] The external validation performed in the current study strengthens a previously 

published neonatal vancomycin population pharmacokinetic model. Namely, we found the 

pharmacokinetic model to be unbiased across the largest cohort of neonates used in a 

validation study to date. The precision of the model when utilizing only a neonate’s 

postmenstrual age, weight, and serum creatinine was 12.6% for peak concentrations and 

20.1% for trough concentrations.  When a neonate’s drug concentrations are incorporated 

into the model (such as would occur after therapeutic drug monitoring in the NICU), the 

precision further improved to 8.4% and 9.1% for peak and trough concentrations, 

respectively.  This level of precision suggests that the model may be useful in evaluating 

vancomycin dosing regimens and estimating the extent of drug exposure in the clinical 

setting.  

A recent clinical study by Ringenberg et al. highlights the current challenges with 

vancomycin dosing in neonates. In a multicenter retrospective evaluation, vancomycin 

dosing guidelines from Neofax resulted in only 25% of the neonates studied achieving a 

target trough concentration of 10-20 mg/L with empiric dosing.[4] Moreover, the authors 

reported that 20% of the neonates included in their study had a trough concentration <5 

mg/L (Theresa Ringenberg personal communication, April 15, 2015). Even after 

therapeutic drug monitoring and dose-adjustment, only 45% of neonates achieved the goal 
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trough concentration of 10-20 mg/L at any point during their course of therapy. This study 

clearly reveals the significant clinical challenge associated with reliably achieving 

therapeutic and safe vancomycin concentrations in this highly variable patient 

population.[4] More innovative vancomycin dosing strategies and approaches are needed 

in neonates that can help providers personalize empiric dose selection, interpret therapeutic 

drug monitoring data, and adjust dosing so that exposure targets are achieved.  

Population pharmacokinetic models are a powerful tool that can aid clinicians and 

help inform dosing decisions.[18, 19] By incorporating patient-specific characteristics, 

dosing information, drug concentrations, and consideration of the variability between 

patients, population pharmacokinetic models offer the opportunity to provide a more 

personalized approach to therapeutic decision making. This is especially valuable in a 

highly variable population, such as neonates, receiving a narrow therapeutic window drug 

such as vancomycin.  

In adults, Bayesian approaches utilizing population pharmacokinetic models have 

already been shown to have the potential to help support vancomycin dosing decisions.[19, 

20] Advancement of similar approaches in neonates is needed. The development and 

external validation of a neonatal vancomycin population pharmacokinetic model lays the 

foundation for this future work. For example, our group is currently developing a model-

based approach to individualize the empiric dose in neonates that incorporates the 

predictors of weight, postmenstrual age, and serum creatinine. Using a simulation 

framework, the vancomycin dose for a given neonate that is most likely to achieve an 

AUC24 >400 while still maintaining a trough concentration <20 mg/L is calculated. A user-

friendly, web-based application is currently being developed to facilitate the adoption of 
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this model in our neonatal intensive care units, including integration into the electronic 

health record.  In addition, the ability to estimate AUC24 and assist providers with dose 

adjustment within the clinical workflow would be of high value.  

Until more robust clinical dosing support tools are developed, clinicians will 

continue to rely on trough concentration monitoring to help guide vancomycin dosing in 

neonates. Our findings reinforce the large variability observed in vancomycin trough 

concentrations among neonates and the inability of a trough concentration alone to reliably 

predict an individual neonate’s AUC24.  Targeting an AUC24/MIC ≥400 is recommended 

by the Infectious Disease Society of America when treating invasive MRSA infections, 

and a trough concentration of 15-20 mg/L is suggested in adults to achieve this target.[1, 

21] The current study provides further support that in neonates a vancomycin trough 

concentration of 15-20 mg/L is unnecessary to achieve an AUC24/MIC ≥400 with an MIC 

≤1 mg/L and that lower trough concentrations are likely adequate based on AUC24 

considerations.[7] Accordingly, a trough concentration of approximately 10 mg/L is likely 

a reasonable first-line target that will provide adequate exposure for invasive MRSA while 

also appropriately covering for coagulase negative staphylococcal infections.  Further dose 

adjustment and individualization of the therapeutic approach should be guided by the 

specific pathogen identified, susceptibility testing, clinical status, etc. For example, for 

MRSA infections with MICs ≥2 mg/L, an alternative to vancomycin may be necessary 

since an AUC24/MIC ≥400 will not be achieved in neonates even at trough concentrations 

of 15-20 mg/L.[7] Lastly, the extent to which the target AUC24/MIC ≥400 is generalizable 

to neonates is unclear and requires further study. 
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Conclusions 

In summary, an evaluation of a recently published neonatal vancomycin population 

pharmacokinetic model in a large external dataset supported the predictive performance 

and generalizability of the model. The model may be useful in evaluating vancomycin 

dosing regimens and estimating the extent of drug exposure in neonates. 
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CHAPTER 5 

 

PRELIMINARY ASSESSMENT OF ZOLPIDEM 

PHARMACOKINETICS IN PEDIATRIC 

BURN PATIENTS 

 

Abstract 

 Purpose: Severely burned patients frequently experience sleep fragmentation and 

insomnia. This study evaluated the population pharmacokinetics of the sleep-enhancing 

agent zolpidem among burned children. 

Methods: Zolpidem was administered according to the following age-based dosing 

schedule: 2-4 years, 2.5 mg/dose; 5-10 years, 5.0 mg/dose; and >10 years, 10 mg/dose. 

Serum samples were collected pre-dose, 1, 2, 4, 5, 6, and 8 hours post-dose. The population 

pharmacokinetic analysis modelled zolpidem concentrations using non-linear mixed 

effects models. 

Results: Eleven patients with a mean (+SD) age of 8.3+4.0 years and a mean total 

burn surface area of 56+22% were recruited.  Seventy-three zolpidem concentrations were



115 
 

 

measured with a mean Cmax of 291+140 ng/mL. A two-compartment model with first-order 

absorption best described the data. Zolpidem clearance was estimated at 0.03 L/hr/kg 

(relative standard error, 55%) and increased with body weight (P<0.05). The central 

compartment volume of distribution was estimated at 0.05 L/kg (relative standard error, 

25%), which was inversely related to the proportion of the body surface with third degree 

burns (P<0.001). 

Conclusions: A population pharmacokinetic model has been developed that reliably 

characterized the pharmacokinetic parameters of zolpidem when used as a sleep-enhancing 

agent among pediatric burn patients. Further studies are needed to link this 

pharmacokinetic model with pharmacodynamic data, which may include an assessment of 

the effects of higher zolpidem doses and/or more frequent administration upon sleep 

architecture. 

 

Introduction 

Zolpidem tartrate is an imidazopyridine sedative and hypnotic agent that is rapidly 

absorbed, metabolized, and eliminated.[1] In studies among adult subjects, zolpidem has 

been shown to decrease the number of night-time awakenings, decrease the time required 

to fall asleep, increase total sleep time, and improve sleep quality among insomniacs.[2] 

Zolpidem has been used for the management of sleep disorders for more than 20 years and 

has been reported to be safe and effective for a variety of sleep-related complaints.[3, 4] 

Burn injuries are marked by a dramatic catabolic phase that is characterized by an 

increase in energy expenditure, protein catabolism, and cachexia.[5, 6] Alterations in sleep 

patterns have been shown to be independent risk factors for poor pain tolerance in adults 
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with severe burn injuries.[7] Among burn patients, restorative sleep may be impaired due 

to physiological, psychological, environmental, and treatment-related stimuli that interfere 

with normal sleep patterns.[8-10] These detrimental effects suggest that sleep-enhancing 

agents, such as zolpidem, may be useful for improving burn survival and recovery.[11] 

In a recent study, children with severe burn injuries were randomized to receive 

zolpidem or haloperidol and had continuous polysomnographic recordings obtained to 

evaluate the effects of these agents on sleep architecture.[12] Forty patients were enrolled 

in this blinded crossover study, in which each patient alternately received zolpidem one 

week and haloperidol the next. Zolpidem was found to have a small, but significant, effect 

in improving the proportion of stage 3 and rapid eye movement sleep (0.8 vs. 0.6 hours), 

but did not affect the total duration of sleep. In contrast, haloperidol increased total sleep 

time (5.3 vs. 4.3 hours) and increased stage 2 sleep (3.3 vs. 2.4 hours). The authors 

concluded that sleep was marginally improved with both drugs and there were no 

significant differences between the two therapeutic agents. It was noted, however, that the 

relatively short half-life of zolpidem (mean 2.5 hours) may have attenuated its beneficial 

effects upon sleep architecture. To date, no studies have examined zolpidem 

pharmacokinetics in burn patients; however, drug metabolism is generally thought to be 

elevated as a consequence of the pathophysiology of burn injuries, including: altered 

protein binding, bioavailability, and tissue blood flow; heightened renal clearance; and a 

higher volume of distribution.[13, 14] As a consequence of these pharmacokinetic changes 

and the relatively short half-life of zolpidem, it is possible that this agent may fail to prevent 

sleep fragmentation as it wears off, thereby decreasing the amount of restorative sleep 

among burn patients. 
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The primary aim of this study was to develop a population pharmacokinetic model 

to explore the pharmacokinetics of zolpidem among children with severe burn injuries. 

 

Materials and Methods 

Subjects and Study Design 

This study was conducted as an open-label inpatient pharmacokinetic study that 

involved pediatric burn patients who consented to receive zolpidem tartrate for use as a 

sleep-enhancing agent over four consecutive days. Acutely burned children were screened 

at the time of their admission to the burn unit for enrollment into this prospective 

pharmacokinetic study. Inclusion criteria included a total burn surface area (TBSA) greater 

than 20%, age between 3 and 18 years, and admission within 5 days of the burn injury. 

Children were excluded from enrollment if there were pre-existing neurological, sleep or 

psychiatric disorders; a history of brain injury; endocrine disease; questionable 72 hour 

survival; severe obesity (body mass index >97th percentile); or if administration of other 

sleep-inducing agents was planned within 24 hours. Demographic data were collected for 

all study participants. 

This study was reviewed and approved by the University of Cincinnati Institutional 

Review Board. Parental permission and informed assent (when appropriate) were obtained 

prior to the performance of any study-related procedures. 

 

Drug Administration 

Historically, zolpidem dosing was based upon the age of the child.  In this study, 

we aimed to examine the pharmacokinetics of zolpidem when dosed according to routine 
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clinical practice. Dose amounts for each child are presented in Table 5.1. Two pilot subjects 

received a single 5 mg night-time dose of zolpidem at 2200 hours. Nine subsequent patients 

received a second dose at 0200 hours in an attempt to maintain sleep throughout the night. 

Zolpidem was administered as a crushed tablet that was dissolved in 5 mL of water and 

was given via a nasoenteric Frederick-Miller feeding tube, followed by a 5 mL flush.  

 

Sample Collection 

Zolpidem concentration-time data were prospectively collected for each enrolled 

subject. On the fourth and final day of zolpidem therapy, blood samples were collected 

over an 8-hour period from an indwelling catheter. Samples were drawn in non-heparinized 

tubes immediately prior to the first dose and at 1, 2, 4, 5, 6, and 8 hours post-dose. The 

total amount of blood drawn at each sampling interval did not exceed 3.0 mL. Whole blood 

samples were centrifuged at 1500 g (approximately 3000 rev/min) for 10 min at 4°C. 

Centrifuged samples were then stored at -80°C prior to pharmacokinetic analysis. 

 

Analytical Assay 

Zolpidem serum concentrations were analyzed using a validated high-performance 

liquid chromatography (HPLC) assay tethered to a fluorescence detector.[15] The assay 

was linear over the range from 25-1000 ng/mL. Intra- and inter-day coefficients of 

variation were less than 8.2%. 
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Pharmacokinetic Analysis 

Zolpidem pharmacokinetic parameters were estimated using Monolix 4.2 (Lixoft, 

Orsay, France), interfaced through Matlab R2012b (The Mathworks Inc., Natick, MA, 

United States). Monolix employs a stochastic approximation expectation maximization 

parameters without approximating the statistical model.[16] The consistency and minimum 

variance of the estimates have been optimized in the Monolix SAEM implementation.[17] 

Furthermore, Markov Chain Monte Carlo (MCMC) simulations were performed in 

Monolix using a simulated annealing procedure to accelerate the algorithm’s convergence 

toward a solution. Descriptive statistics were used to characterize the study population with 

Stata 11.2 (StataCorp, College Station, TX, United States) and R version 2.15.1 (Cran.R-

project.org). 

One- and two-compartment structural models were fitted to the naïve pooled data 

with and without lags. All compartmental models were parameterized to give estimates of 

zolpidem clearance (CL/F) and the apparent volume of distribution (Vd/F). Models were 

evaluated and selected based on the goodness of fit. Unstable models were excluded from 

the model building process, as well as models that produced non-physiological results (e.g., 

negative clearance). Model stability was assessed by changing the initial estimates for CL/F 

and Vd/F. 

Selection of structural models was facilitated using the Akaike information 

criterion (AIC) and the Bayesian information criterion (BIC).[18] During model 

development several diagnostic plots were used to visually assess the model’s fit, including 

observed versus population predicted zolpidem concentrations and observed versus 

individual predicted zolpidem concentrations. Plots of the residuals and conditional 
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weighted residuals (CWRES) versus time or population predicted zolpidem concentrations 

were also visually inspected. Models were also compared by examining the precision of 

parameter estimates, measures of variability, and the objective function value (OFV). 

Model fit was based on minimization of the OFV. A reduction of more than 3.84 (-2 log 

likelihood difference) was considered statistically significant with P<0.05 and one degree 

of freedom. 

A mixed effects model was built to incorporate intra- and inter-individual 

variability and residual unexplained variability (RUV). Inter-individual variability was 

assumed to be log-normally distributed and was assessed using an exponential equation of 

the form:  

𝐶𝐿𝑖/𝐹 = 𝜃𝑝𝑜𝑝 ∗ exp(𝜂𝑖) 
(5.1) 

where CLi/F is the clearance value parameter for the ith individual, θpop is the population 

mean for zolpidem CL, and η represents the inter-individual random effect with a mean of 

zero and a variance of ω2. 

During model development, RUV was evaluated using a combined additive and 

constant coefficient of variation error model. This followed the form of: 

Y = IPRED ∗ (1 + 𝜀prop) + 𝜀add (5.2) 

where Y is the observed zolpidem concentration, IPRED is the individual predicted 

concentration, and εprop and εadd are the RUV terms for the additive and proportion error 

models. 
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Base Model Development 

The base model was developed using an empirical approach that focused on 

assessing several structural models. An evaluation of multiple absorption models was 

performed to identify the model that best described zolpidem absorption in the dataset. Lag 

time and absorption rate constants (Ka) were also assessed to determine if they improved 

estimations of the zolpidem absorption process. 

 

Covariate Analysis 

Several demographic and clinical characteristics were investigated for their 

influence upon zolpidem pharmacokinetics. Patient age, gender, race, ethnicity, type and 

extent of burn injury, elapsed time since the burn injury, current body weight, height, and 

body mass index (BMI), C-reactive protein (CRP), and serum creatinine were evaluated. 

An exploratory analysis was performed to identify relationships between zolpidem 

pharmacokinetic parameters and the above characteristics. The empirical Bayesian 

estimates from the individual parameters obtained from the base model were plotted 

against the covariate values and were compared by visual inspection. 

To correct for differences in body size and metabolic rate, allometric scaling was 

applied to zolpidem CL/F and Vd/F, which were standardized to a body weight of 70 

kg.[19] After the initial analysis, final covariates were selected for inclusion within the 

model following a stepwise inclusion approach. Covariates were added within the model 

until there was no further decrease in the OFV. A backward stepwise approach was used 

to remove covariates from the model. 
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Model Evaluation 

Model performance was assessed numerically and graphically, in which observed 

drug concentrations were visually inspected for their correlation with predicted 

concentrations. As described by Goobie et al., conditional weighted residual plots were 

constructed and assessed using the empirical -2 to +2 region criterion, in the absence of 

any serial correlation or heteroscedasticity.[20] Standard errors were assessed for both the 

estimated population parameters and random effects error models. Goodness-of-fit plots 

and visual predictive checks were used to evaluate model fit. The final covariate model 

was also assessed by generating numeric and visual predictive checks. Further, the final 

model was also assessed with plots of the normalized prediction distribution error (NPDE) 

as a function of time and population predicted zolpidem concentrations.[21] 

 

Results 

Subjects and Pharmacokinetics 

Data were collected from 11 children with acute burn injuries, 8 of whom were 

male and 3 were female. The mean age of the subjects included in this study was 8.3 + 4.0 

years. Additional demographic characteristics of the study cohort are featured in Table 5.1. 

The extent of the mean TBSA burn was 56% + 22%. All 11 children had thermal burn 

injuries and 2 (18%) patients also suffered an inhalation injury. 

Two pilot subjects received a single dose of zolpidem just prior to sleep onset 

(10:00 p.m.). Nine subjects also received a second dose of zolpidem 4 hours after the first 

dose (2:00 a.m.). There were 73 zolpidem serum concentrations measured with a median 

of 7 (range 5-7) per patient. 
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Initial exploratory analysis of the data revealed characteristic concentration-time 

profiles for all subjects. Figure 5.1A displays the raw zolpidem concentration data at each 

sample time for the two pilot patients who received a single dose of zolpidem. Figure 5.1B 

presents the raw zolpidem concentration data for the subsequent nine patients who received 

two doses. For these patients, the mean peak serum concentration was 291 + 140 ng/mL. 

 

Population Pharmacokinetic Models 

The population pharmacokinetic analysis included all 73 measured zolpidem 

concentrations from the 11 study participants. A two-compartment model with first order 

absorption was identified as the base model that best described the data, as assessed by the 

OFV, AIC, and BIC. This model was utilized for subsequent covariate model development. 

 

Covariate Models 

Inclusion of body weight in the initial covariate analysis revealed that 

allometrically-scaled body weight exerted a substantial influence upon zolpidem CL/F. 

Additionally, the volume of distribution in the central compartment (Vc/F) was inversely 

associated with the proportion of the body surface with third degree burns. None of the 

other covariates (e.g., age, gender, race, ethnicity, type of burn injury, total body burn 

surface area, elapsed time since the burn injury, CRP, and serum creatinine) influenced 

zolpidem pharmacokinetic parameter estimates. 

The final covariate model was selected as it produced the most significant reduction 

of the OFV (Δ 13.5), reduced the inter-individual variability, and decreased the RUV. 

Additionally, visual inspection of the diagnostic plots was used to confirm the selection of  
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Figure 5.1. Zolpidem concentration versus time curves. (A) Two pilot subjects received a 

single dose of zolpidem and (B) nine subjects received an additional dose of zolpidem four 

hours after receiving their first dose.  
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the final model (Figure 5.2). The parameter estimates derived from the final covariate 

model are featured in Table 5.2. 

 

Model Evaluation 

Diagnostic plots of the population and individually predicted zolpidem 

concentrations were compared against the observed concentrations for all patients (Figure 

5.2). Conditional weighted residuals and NPDE metrics revealed a random distribution 

around 0, with nearly all values within the -2 to +2 range (Figure 5.3). Simulations from 

the observed zolpidem concentration data are presented in Figure 5.4 using a visual 

predictive check, with the median value compared to the 10th and 90th percentiles. 

Approximately 94% of the simulated observations fell within the 90% prediction interval, 

demonstrating reasonable agreement between the observed and simulated zolpidem 

concentration data. 

 

Discussion 

This is the first study to evaluate the pharmacokinetics of zolpidem when used as a 

sleep-enhancing agent among children with severe burn injuries. Zolpidem 

pharmacokinetics are strongly influenced by both body weight and the extent of third 

degree burn injuries. Due to the relatively short half-life of zolpidem, a single dose failed 

to result in sleep that persisted throughout the night for two pilot subjects. The remaining 

nine participants received a second dose administered 4 hours later, which improved the 

duration of sleep throughout the latter half of the night. 
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Figure 5.2. Zolpidem final covariate model observed versus (A) population-predicted 

concentrations and (B) individual-predicted concentrations. The line of identity is shown 

as a solid black line. The dashed gray line represents the spline of the data. 

  



128 
 

Table 5.2. Zolpidem population pharmacokinetic parameter estimates from the final two-

compartment covariate model.  

Parameters 

Mean 

Parameter 

Estimate 

Standard 

Error 
% RSE 

Θ – Pharmacokinetic Parameters    

Ka - Absorption rate (hr-1) 0.18 (fixed) -- -- 

CL/F - Clearance (L/hr/kg) 0.03 0.015 55 

Vc/F 
- Volume of distribution in the 

central compartment (L/kg) 
0.05 0.012 25 

Q/F 
- Intercompartmental clearance 

(L/hr/kg) 
0.04 0.020 47 

Vp/F 
- Volume of distribution in the 

peripheral compartment (L/kg) 
0.69 2.9 421 

ω – Between-Subject Variability    

CL/F - Clearance 0.25 0.26 103 

Vc/F 
- Volume of distribution in the 

central compartment 
0.37 0.09 26 

Q/F - Intercompartmental clearance 0.96 0.28 30 

Vp/F 
- Volume of distribution in the 

peripheral compartment 
4.3 3.2 75 

ε – Residual Unexplained Variability 28 3.1 11 
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Figure 5.3. Zolpidem final covariate model (A) conditional weighted residuals versus time 

and population-predicted concentrations and (B) normalized prediction distribution errors 

as a function of time and population-predicted concentrations. 
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Figure 5.3. Continued.  
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Few studies have established therapeutic dosage regimens for sleep-enhancing 

agents among children.[22] The only other pediatric zolpidem pharmacokinetic study was 

conducted by Blumer et al., which utilised a single dose escalation design to evaluate three 

zolpidem dosage regimens (0.125, 0.25, and 0.5 mg/kg) among otherwise healthy children 

with insomnia.[23] The authors found that zolpidem doses of >0.25 mg/kg (maximum of 

10 mg/day) were safe, well tolerated, and potentially efficacious. However, the 

appropriateness of this dosing regimen for children with severe burn injuries is unknown. 

Burn injuries evolve over time and can profoundly impact the pharmacokinetics and 

pharmacodynamics of many drugs.[24] A few days after the burn injury, patients enter a 

hypermetabolic state with high blood flow to the liver and kidneys, increased α1-acid-

glycoprotein concentrations, and loss of the drug due to exudate leakage – all of which 

contribute to altered protein binding, drug distribution, and clearance.[25] Clinically, many 

hypermetabolic burn patients eliminate drugs rapidly, necessitating higher doses and/or 

shorter dosing intervals to maintain therapeutic serum concentrations. In a previous study, 

we evaluated the effects of a single zolpidem dose of 0.5 mg/kg upon sleep duration and 

architecture among burned children.[12] The authors found that this dose was ineffective 

in restoring normal sleep architecture and speculated that sleep fragmentation may have 

occurred later in the night as a consequence of sub-therapeutic serum concentrations. 

Further pharmacodynamic assessments are needed to assess whether a second dose 

administered 4 hours after the first improves sleep quality in this critically-ill pediatric 

population. 

In the previously mentioned study conducted by Blumer et al., the 

pharmacokinetics of zolpidem were evaluated among otherwise healthy children suffering 
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from insomnia.[23] Age was found to significantly influence the zolpidem area under the 

concentration time curve, half-life, and mean residence time. In this study, body weight 

was significantly associated with zolpidem clearance, which likely reflects the cachexia 

associated with severe burn injuries. Additionally, the extent of third degree burn injuries 

was inversely associated with the volume of distribution in the central compartment. As a 

consequence, the children enrolled in this study achieved higher serum zolpidem 

concentrations than have been previously reported among healthy children.[23] This may 

be at least partially attributable to pathophysiologic changes in the volume of distribution 

among burn patients, which strongly affect hydrophilic drugs such as zolpidem tartrate.[26] 

Despite the relatively high zolpidem concentrations measured in this study, it was noted by 

clinical investigators that with two doses each night sleep quantity and quality were still 

suboptimal. Future studies are warranted to define the relationship between the sleep-

enhancing effects of zolpidem (pharmacodynamics) and measured serum concentrations. 

Defining this relationship will be critical to ensure that a therapeutic range is developed for 

children with severe burn injuries.  

Recently, the U.S. Food and Drug Administration (FDA) approved new labelling 

changes, which advocate a lowering of the recommended initial dose of immediate- and 

extended-release zolpidem formulations.[27, 28] These changes were made to decrease the 

risk of next-day driving impairment among adults; however, the appropriateness of this 

recommendation for pediatric patients is not known. In this study, two pilot subjects who 

received a single 5 mg dose of zolpidem failed to sustain sleep throughout the night. The 

next nine subjects received a second dose of zolpidem during the latter half of the night, 

which was found to improve sleep duration. According to recent FDA guidelines,[27] the 
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recommended initial dose of the immediate-release formulation of zolpidem is now 5 mg 

for women and 5 or 10 mg for men. The gender-specific difference in dosing 

recommendations is a function of adult pharmacokinetic studies conducted among healthy 

volunteers, which reported that women clear zolpidem at a slower rate than men.[29] Sex 

was not identified as a significant covariate in this pediatric burns study; however, the 

limited sample size may have obscured our ability to detect a subtle variation in zolpidem 

clearance between male and female participants. 

Interpretation of these findings warrants the consideration of several limitations. 

First, the association between zolpidem pharmacokinetics and pharmacodynamic 

endpoints, including changes in sleep architecture, remains unknown for pediatric burn 

patients. Further research is needed to link zolpidem dosing with polysomnographic 

evidence of clinical efficacy. Second, children in this study were enrolled at a mean of 18 

days post-burn. As such, the findings described herein may not generalize to children in 

the hypermetabolic stage immediately following their burn injury nor after significant 

wound healing and convalescence has occurred. Third, this study featured a limited number 

of serum samples from eleven children with severe burn injuries. This relatively small 

sample size limits our ability to precisely define the covariates that influence the disposition 

of zolpidem tartrate; however, this is the first study to date that has sought to systematically 

evaluate the pharmacokinetics of this drug in this unique patient population. Lastly, 

inadequate pain control in the burn population has been associated with poor sleep 

quality.[8] In this study, it was not possible to correlate pain control with sleep 

disturbances, although this may be an important component of future pharmacodynamic 

studies. 
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Conclusions 

The current study characterized the pharmacokinetic parameters of zolpidem when 

used as a sleep-enhancing agent among children with severe burn injuries. Assessments 

from the clinical team treating the first two pilot subjects suggested that a single 5 mg dose 

of zolpidem was insufficient to achieve sustained sleep throughout the night. Nine 

subsequent patients received a second dose 4 hours after the first, which increased the 

duration of sleep through the latter half of the night. These findings suggest that future 

clinical trials should investigate higher doses and/or more frequent dosing for children with 

acute burn injuries. Recent FDA recommendations to decrease adult zolpidem doses are 

not likely to be appropriate for severely burned children. Further studies are needed to 

define the target zolpidem concentration required to improve sleep architecture among 

burned children. Additionally, pharmacodynamic studies and simulations may be helpful 

in developing appropriate dosing regimens for this vulnerable population. 
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CHAPTER 6 

 

SIMULATION-BASED PHARMACOMETRIC  

BENCHMARKING OF MONOLIX,  

NONMEM, AND PMETRICS 

 

Introduction 

Pharmacometric models can be used to quantify the variability in drug 

concentrations over time by fitting mathematical equations to clinical data. Population 

pharmacokinetic analyses involve the fitting of nonlinear mixed effects models to dosing 

and concentration data from multiple subjects at multiple points in time.[1-4] Mixed effects 

modeling involves the simultaneous quantification of the effects of random variability 

(between subject and residual variability) and fixed effects (such as weight, age, or renal 

function) on plasma drug concentrations.[5] These models are useful in then defining 

influential sources and correlates of variability in drug concentrations among patients, 

which can be used to derive personalized dosing regimens.[6] 

Multiple software platforms have emerged over the last 30 years for conducting 

population pharmacokinetic analyses, many of which feature different parameter 

estimation methods that have the potential to lead to different results when the same 

structural model is fit to the same dataset.[2, 3] For this reason, benchmarks are needed to
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experimentally assess the strengths and weaknesses of current pharmacometric modeling 

programs and their estimation methods. The accuracy and precision of these 

pharmacokinetic parameter estimates may impact clinical decisions and lead to alterations 

in medical management, such that the selection of a pharmacokinetic parameter estimation 

method with lower bias and higher precision is desirable. Additionally, it is unknown 

whether the selection of the optimal modeling program and parameter estimation method 

differs based on the design of the clinical trial. The objective of this study was to assess the 

predictive performance of three of the most commonly used population pharmacokinetic 

modeling programs and their parameter estimation algorithms when applied to simulated 

data under a variety of clinical trial designs with varying amounts of error, varying sample 

sizes, and varying numbers of concentrations obtained from each subject. 

 

Methods 

Experimental Design 

 This study was designed to assess the predictive performance of three commonly 

used population pharmacokinetic modeling programs when their respective 

pharmacokinetic parameter estimation algorithms were applied to simulated datasets. 

Construction of the simulated one compartment datasets was performed using a structural 

model of the form: 

One-compartment model:  𝑑𝐴1
𝑑𝑡

= −𝑘𝑒𝑙 ∗ 𝐴1 (6.1) 

Initially, a dataset was simulated with 160 neonatal subjects, each of whom received a 

single 140 mg/kg dose of the drug and had a total of 10 plasma concentrations measured at 

5, 15, 30, 45, 60, 90, 120, 180, 360, and 540 minutes post-dose. 
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To assess the impact of varying the amount of error on the predictive performance 

of each software program, new datasets were constructed in which each concentration was 

randomly permuted by 20%, 40%, 60%, and 80%. Additionally, to assess the influence of 

the study design parameters on the predictive performance of the software programs, the 

number of subjects (n = 10, 20, 40, 80, and 160) and the number of concentrations obtained 

from each subject (n = 2, 4, 6, 8, and 10) was varied. These permutations of the original 

simulated dataset resulted in the generation of 100 datasets due to the creation of unique 

datasets with each combination of the error, sample size, and number of concentration 

terms (4 error terms * 5 sample size terms * 5 concentration number terms = 100 unique 

datasets). A survey of the literature was performed to confirm the sample size, number of 

concentrations per subject, and error terms included in the simulations covered a sufficient 

range of values that may be reasonably expected to be feasible when designing a 

prospective clinical trial.[6-8] These datasets are included in Appendix C. 

The 100 simulated datasets were generated by MGS and CMTS and were labeled 

with coded identifiers, such that the investigator performing the analysis (CS) was blinded 

to the true values used to initialize the simulation and to the amount of error included in 

each dataset. 

 

Software Programs Tested 

 Three population pharmacokinetic modeling programs were employed in this 

benchmarking study.  Each of these software programs allows the user the opportunity to 

employ different estimation algorithms, which are discussed separately in the following 

paragraphs: 

1) Monolix (Lixoft, Orsay, France):  Monolix uses expectation maximization (EM) 
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methods to integrate the posterior density by performing Monte Carlo sampling 

over all possible individual parameters during the expectation step, followed by a 

single iteration maximization step that moves the fixed-effect parameter values 

closer toward the maximum likelihood.[9, 10] Monte Carlo-based methods have 

the advantage of not using a linearized approximation to the integral and are 

theoretically less biased.[9] EM algorithms are inherently stochastic and are 

therefore less likely to be forced into a local minimum but they may yield less 

precise results.[11] 

2) NONMEM (nonlinear mixed effects modelling; ICON Development Solutions, 

Ellicott City, MD, USA):  NONMEM uses the Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) quasi-Newton algorithm to maximize the approximated likelihood.[12] 

With the first-order conditional estimation with interaction (FOCEI) method, the 

likelihood is linearized with respect to the random effects using a first-order Taylor 

series expansion.[2] The integration step is performed by assuming that the 

posterior density can be approximated by a multivariate normal density with respect 

to the individual parameters.[2] 

3) Pmetrics (Laboratory of Applied Pharmacokinetics and Bioinformatics, University 

of Southern California, Los Angeles, CA, USA):  Pmetrics uses a nonparametric 

adaptive grid (NPAG) algorithm to estimate the unknown probability distribution 

(F) of the pharmacokinetic model parameter values using a set of discrete 

distributions with the same number of support points as the number of subjects 

included in the study.[13] To define F, a large grid of potential support points (G0) 

is laid out on the surface of F. To determine probabilities of the support points and 
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the corresponding likelihood, a primal-dual interior point method is used.[14, 15] 

The vast majority of the support points have exceedingly low probabilities (<10-12), 

which are then deleted from the grid yielding a smaller grid (G1). New support 

points are then added around each of the remaining support points, which leads to 

a new expanded grid (G2) with an improved likelihood. This process is iteratively 

repeated thereby giving rise to Gk grids with larger likelihoods. When the difference 

between the previous grid and the current grid is extremely small, the model is said 

to have converged. 

  

Model Implementation 

 The simulated datasets featured a strong influence of weight (kg) on the 

pharmacokinetic parameters of clearance and volume of distribution. As an additional 

sensitivity analysis, the parameter estimates obtained from the three population 

pharmacokinetic modeling programs were compared using incorrectly-specified one-

compartment models that did not account for the influence of weight on clearance or the 

volume of distribution. Correctly-specified models that incorporate the influence of weight 

on clearance and the volume of distribution were also tested to assess the sensitivity of 

these software programs to model misspecification. The influence of weight on clearance 

and the volume of distribution was modeled with an estimated power function of the form: 

𝜃𝑖 = 𝜃𝑝𝑜𝑝 ∗ 𝑊𝑇𝑖
𝜃𝑐𝑜𝑣 ∗ 𝑒𝜂𝑖 (6.2) 

where θi is the individual model-predicted pharmacokinetic parameter (e.g., clearance or 

volume of distribution) for individual i with a weight of WTi (kg), θpop is the population 

mean pharmacokinetic parameter θ, θcov is the effect of the weight covariate, and ηi is the 
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between-subject random effect on the pharmacokinetic parameter θ with a mean of 0 and 

a variance of Ω. The initial estimates for the fixed effects in each model script were 

uniformly set equal to 1. 

A proportional error model was used to describe the residual variability, which took 

the form: 

𝑌𝑖𝑗 = �̂�𝑖𝑗 + (�̂�𝑖𝑗 ∗ 𝜀𝑖𝑗) (6.3) 

where Yij is the measured drug concentration for the ith individual at time j, Ŷij is the model-

predicted drug concentration, and εij is a normally-distributed random error term with a 

mean of 0 and a variance of Σ. 

 

Statistical Analysis 

The predictive performance of Monolix, NONMEM, and Pmetrics’ respective 

pharmacokinetic parameter estimation algorithms was compared with the true clearance 

and volume of distribution values used to develop the simulated one-compartment 

pharmacokinetic datasets. As described by Sheiner and Beal,[16] the performance of each 

algorithm was assessed by computing its relative bias and precision according to the 

following equations: 

Percent prediction error (bias):                                 100 ∗ (𝜃𝑒𝑠𝑡−𝜃𝑡𝑟𝑢𝑒
𝜃𝑡𝑟𝑢𝑒

) (6.4) 

Absolute percent prediction error (precision):       100 ∗ (|𝜃𝑒𝑠𝑡−𝜃𝑡𝑟𝑢𝑒|
𝜃𝑡𝑟𝑢𝑒

) (6.5) 

The bias and precision were calculated for both clearance and the volume of 

distribution estimates derived from each of the population pharmacokinetic modeling 

programs. Analyses were performed globally with the results of all of the datasets pooled 

together, which were then followed by sub-analyses that were stratified by the error, sample 
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size, and number of concentrations per subject terms. Descriptive statistics were calculated 

and the bias and precision were compared for each of the population pharmacokinetic 

modeling programs using the nonparametric Wilcoxon-Mann-Whitney test. All statistical 

analyses were performed in R 3.1.3 (R Foundation for Statistical Computing, Vienna, 

Austria) with a two-tailed alpha of 0.05. 

 

Results 

 Across the 100 datasets, there were a total of 37,200 simulated concentrations. The 

simulated concentration-time profiles for these simulated neonatal subjects are featured in 

Figure 6.1. The median postmenstrual age of the simulated study population was 38.0 

(interquartile range [IQR]:  37.1-39.0) weeks and the median current body weight was 2.17 

(IQR:  1.23-3.42) kg. 

 

Correctly-Specified Models with Covariates 

 The median parameter estimates and the IQR of the parameter estimates for all 

estimated parameters for the correctly-specified models that incorporated the influence of 

current body weight on clearance and the volume of distribution are featured in Figures 

6.2A and 6.2B, respectively, for each of the population pharmacokinetic modeling 

programs. In this figure, the values of the parameters were normalized by dividing the 

model-estimated parameter value by the known, true value. The solid gray horizontal line 

corresponds to the true value of each pharmacokinetic parameter. The x-axis features each 

of the three population pharmacokinetic modeling programs that were tested. The heavy 

solid black horizontal line within each box plot denotes the median normalized value of 
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Figure 6.1. Simulated drug concentration vs. time profiles. A total of 37,200 concentrations 
were simulated across 100 datasets with varying sample sizes, varying numbers of 
concentrations obtained from each subject, and varying error terms. The solid blue line 
depicts the loess spline of the data and the blue shaded region depicts the 95% confidence 
interval for the loess spline.  The vertical gray error bars represent 95% confidence intervals 
for the simulated drug concentrations at each time point. 
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Figure 6.2. Clearance (A) and volume of distribution (B) parameter estimates using 

correctly-specified covariate models. For each parameter, the estimated value was 
normalized by the true value. The gray horizontal line depicts the true normalized values 
(equal to 1). The box plots depict the 25th, 50th, and 75th percentiles. The vertical lines 
extending from each boxplot extend to 1.5 times the interquartile range, with values beyond 
this point denoted by unfilled circles. 
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the pharmacokinetic parameters and the lighter weight solid black lines forming the box 

denote the 25th and 75th percentiles. The whiskers extending from each box plot extend to 

1.5 times the IQR. Observations beyond the whiskers are presented as unfilled circles. 

Generally, clearance estimates were biased slightly higher than their true values with both 

Monolix and NONMEM, whereas the volume of distribution estimates were very close to 

their true values with both of these programs. In contrast, clearance estimates were 

generally unbiased with Pmetrics, whereas volume of distribution estimates were biased 

slightly lower than their true values. Notably, the range of normalized values was 

considerably larger for Pmetrics than Monolix, which was in turn slightly larger than that 

observed with NONMEM. 

The bias of the population pharmacokinetic modeling programs was tested with a 

20% error applied to the pharmacokinetic parameters with varying sample sizes and 

numbers of concentrations from each subject. For all three programs, bias decreased with 

larger numbers of concentrations from each subject (P<0.001) and larger sample sizes 

(P=0.005). However, the pharmacokinetic parameter estimates were biased for all three 

population pharmacokinetic modeling programs. As seen in Table 6.1, pharmacokinetic 

parameter estimates obtained from both Monolix and NONMEM were positively biased, 

whereas the estimates obtained from Pmetrics were negatively biased. Monolix was less 

biased than NONMEM, which was less biased than Pmetrics (P<0.001 for all 

comparisons). 

The precision of the population pharmacokinetic parameters was tested with 20% 

error (Figure 6.3A and Table 6.1).  In simulations with larger numbers of concentrations 

from each subject, the percent absolute prediction error decreased with Monolix,  
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Table 6.1. Bias and precision of the estimated population pharmacokinetic parameter 

values obtained using Monolix, NONMEM, and Pmetrics for the correctly-specified 

models with covariates. 

 Monolix NONMEM Pmetrics 

Simulated with 20% error 

Median percent 
prediction error 
(IQR)a 

8.9% 
(-1.1% to 64.4%) 

19.1% 
(0.0% to 67.5%) 

-27.8% 
(-44.0% to 1.4%) 

Median percent 
absolute prediction 
error (IQR)b 

40.6% 
(3.8% to 65.5%) 

21.5% 
(0.5% to 67.5%) 

37.3% 
(22.7% to 60.7%) 

Simulated with 40% error 

Median percent 
prediction error 
(IQR)a 

13.2% 
(-1.7% to 62.8%) 

22.7% 
(0.1% to 67.8%) 

-33.1% 
(-59.7% to -8.0%) 

Median percent 
absolute prediction 
error (IQR)b 

35.8% 
(5.7% to 64.2%) 

22.8% 
(0.9% to 67.8%) 

40.5% 
(26.7% to 63.3%) 

Simulated with 60% error 

Median percent 
prediction error 
(IQR)a 

16.9% 
(-2.4% to 61.4%) 

26.1% 
(0.5% to 66.9%) 

-32.9% 
(-60.4% to -11.4%) 

Median percent 
absolute prediction 
error (IQR)b 

37.1% 
(7.1% to 63.5%) 

26.1% 
(0.9% to 66.9%) 

41.8% 
(26.7% to 62.8%) 

Simulated with 80% error 

Median percent 
prediction error 
(IQR)a 

18.2% 
(-3.6% to 60.8%) 

20.9% 
(-0.5% to 66.2%) 

-43.2% 
(-62.8% to -28.2%) 

Median percent 
absolute prediction 
error (IQR)b 

37.8% 
(8.2% to 62.5%) 

26.6% 
(1.9% to 66.2%) 

49.6% 
(30.9% to 63.6%) 

a Percent prediction error is a measure of bias. 
b Percent absolute prediction error is a measure of precision. 
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NONMEM, and Pmetrics (P<0.001). In contrast, increasing sample sizes had a negligible 

effect on percent absolute prediction errors (P=0.3). Overall, with 20% error and varying 

sample sizes and numbers of concentrations from each subject, percent absolute prediction 

errors were lowest for NONMEM, followed by Pmetrics, and then Monolix (P<0.001 for 

all comparisons). 

When the modeling programs were tested with datasets that featured 80% error, 

bias increased and precision decreased (Figure 6.3B and Table 6.1). Pharmacokinetic 

parameter estimates were positively biased for both Monolix and NONMEM, whilst 

Pmetrics pharmacokinetic parameter estimates were negatively biased (P<0.001 for all 

comparisons). Increasing the number of concentrations from each subject decreased 

percent absolute prediction errors (P<0.001). Additionally, increasing the number of 

subjects slightly decreased percent absolute prediction errors (P=0.05). With 80% error, 

percent absolute prediction errors were lowest for NONMEM, followed by Monolix, and 

then Pmetrics (P<0.001 for all comparisons). 

 

Incorrectly-Specified Models without Covariates 

 In Figures 6.4A and 6.4B the normalized values of the pharmacokinetic parameter 

estimates are presented for incorrectly-specified models that did not incorporate the 

influence of weight on clearance or the volume of distribution. Monolix, NONMEM, and 

Pmetrics clearance estimates were positively biased, whereas the volume of distribution 

estimates were unbiased. Notably however, the range of normalized values for Pmetrics 

was considerably larger than that observed for Monolix and NONMEM, which may be 

interpreted as evidence of model misspecification. 
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Figure 6.4. Clearance (A) and volume of distribution (B) parameter estimates using 

incorrectly-specified models without covariates. For each parameter, the estimated value 
was normalized by the true value. The gray horizontal line depicts the true normalized 
values (equal to 1). The box plots depict the 25th, 50th, and 75th percentiles. The vertical 
lines extending from each boxplot extend to 1.5 times the interquartile range, with values 
beyond this point denoted by unfilled circles. 
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 When the incorrectly-specified models were applied to simulated datasets with 20% 

error, the results of all three modeling programs were significantly biased (P<0.001 for 

all).  Neither increasing the number of concentrations per subject (P=0.2) nor increasing 

the sample size (P=0.3) reduced the bias. As seen in Table 6.2, the magnitude of the bias 

was comparable among all three modeling programs (P>0.1 for all comparisons). 

Similarly, increasing the number of concentrations per subject (P=0.7) and increasing the 

sample size (P=0.2) did not improve the precision of the parameter estimates. The precision 

of the pharmacokinetic parameter estimates was slightly higher for NONMEM than for 

Monolix (P=0.02) (Figure 6.5A); however, the precision of the pharmacokinetic parameter 

estimates obtained with Pmetrics was substantially higher than that observed with 

NONMEM and Monolix (P<0.001 for both). 

Similar to the findings observed with 20% error, when the incorrectly-specified 

models were applied to datasets with 80% error, all three modeling programs yielded 

significantly biased pharmacokinetic parameter estimates (P<0.001 for all). Larger sample 

sizes (P<0.001) and increased numbers of samples obtained from each subject (P=0.01) 

were associated with increased bias. Pmetrics was substantially more biased than both 

NONMEM and Monolix (P<0.001 for both); however, NONMEM was slightly more 

biased than Monolix (P=0.002). The precision of the pharmacokinetic parameter estimates 

was not affected by changes in the number of samples obtained from each subject (P=0.7). 

In contrast, precision decreased with larger sample sizes (P<0.001). With the incorrectly-

specified models, the median percent absolute prediction error was highest for Pmetrics, 

followed by NONMEM, and then Monolix (Figure 6.5B). 
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Table 6.2. Bias and precision of the estimated population pharmacokinetic parameter 

values obtained using Monolix, NONMEM, and Pmetrics for the incorrectly-specified 

models without covariates. 

 Monolix NONMEM Pmetrics 

Simulated with 20% error 

Median percent 
prediction error 
(IQR) a 

16.4% 
(0.6% to 31.7%) 

17.2% 
(0.1% to 67.3%) 

29.9% 
(-5.8% to 90.7%) 

Median percent 
absolute prediction 
error (IQR) b 

16.5% 
(3.9% to 64.1%) 

17.3% 
(3.8% to 67.3%) 

32.7% 
(13.8% to 90.7%) 

Simulated with 40% error 

Median percent 
prediction error 
(IQR) a 

16.9% 
(0.0% to 62.1%) 

19.7% 
(-0.4% to 67.4%) 

24.8% 
(-6.3% to 90.4%) 

Median percent 
absolute prediction 
error (IQR) b 

19.6% 
(5.9% to 62.1%) 

23.0% 
(5.8% to 67.4%) 

34.5% 
(14.8% to 90.4%) 

Simulated with 60% error 

Median percent 
prediction error 
(IQR) a 

18.6% 
(-0.8% to 58.0%) 

21.2% 
(-1.0% to 66.5%) 

31.2% 
(-2.9% to 101.5%) 

Median percent 
absolute prediction 
error (IQR) b 

21.9% 
(7.5% to 58.0%) 

25.1% 
(7.7% to 66.6%) 

38.3% 
(16.3% to 101.5%) 

Simulated with 80% error 

Median percent 
prediction error 
(IQR) a 

18.3% 
(-1.9% to 55.4%) 

20.0% 
(-2.3% to 66.2%) 

38.3% 
(-0.2% to 114.9%) 

Median percent 
absolute prediction 
error (IQR) b 

22.4% 
(8.5% to 55.4%) 

26.7% 
(8.9% to 66.2%) 

42.6% 
(17.5% to 114.9%) 

a Percent prediction error is a measure of bias. 
b Percent absolute prediction error is a measure of precision. 
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Discussion 

Across a wide range of simulated error terms, sample sizes, and varying numbers 

of concentrations obtained from each subject, with correctly-specified covariate models, 

the three population pharmacokinetic modeling programs tested were modestly biased 

(median percent prediction error of 32%) and imprecise (median percent absolute 

prediction error of 37%). Several consistent themes emerged for all three population 

pharmacokinetic modeling programs, including a decrease in bias with larger numbers of 

concentrations obtained from each subject and a more modest decrease in bias with larger 

sample sizes for correctly-specified models. Additionally, increasing the number of 

concentrations obtained from each subject, but not larger sample sizes, improved the 

precision of the pharmacokinetic parameter estimates. Despite these consistent findings 

across all three population pharmacokinetic modeling programs, relative strengths and 

weaknesses were also identified with each of the modeling programs parameter estimation 

algorithms tested. 

As expected, the stochastic approximation EM algorithm implemented in Monolix 

yielded less biased parameter estimates than those obtained with the FOCEI method in 

NONMEM and the NPAG method in Pmetrics, with the correctly-specified covariate 

model. Also as expected, Monolix pharmacokinetic parameter estimates were less precise 

than those obtained with the FOCEI method implemented in NONMEM. Monolix 

performed equally as well as NONMEM but considerably worse than Pmetrics at 

identifying model misspecification, as evidenced by relatively low percent prediction and 

percent absolute prediction errors with the incorrectly-specified model. Nevertheless, 

Monolix is freely available to students and academics and features a user-friendly graphical 
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interface. 

The FOCEI algorithm implemented in NONMEM was more precise than the EM 

algorithm implemented in Monolix and the NPAG algorithm implemented in Pmetrics. 

Additionally, NONMEM’s FOCEI algorithm was less biased than Pmetrics’ NPAG 

algorithm when applied to correctly-specified models. Similar to Monolix, NONMEM 

struggled to identify misspecified models; however, unlike Monolix, NONMEM requires 

an annual license and does not come packaged with a graphical interface. 

The NPAG algorithm implemented in Pmetrics yielded more biased and imprecise 

pharmacokinetic parameter estimates than both Monolix and NONMEM when applied to 

incorrectly-specified models that did not incorporate the influence of weight on clearance 

or the volume of distribution. However, when the NPAG algorithm was applied to 

correctly-specified models, the pharmacokinetic parameter estimates were more biased 

than those obtained with Monolix and NONMEM. With correctly-specified models, 

similar precision was achieved with Pmetrics and Monolix; however, Pmetrics’ NPAG 

algorithm yielded less precise parameter estimates when compared with NONMEM’s 

FOCEI algorithm. As with Monolix, Pmetrics is available at no cost to students and 

academics. Although Pmetrics is not bundled with a standalone graphical interface, it is 

interfaced through the open source statistical software program R. 

This study is limited by its use of simulated drug concentration time profiles, which 

cannot possibly capture the breadth of biological processes involved in human 

pharmacokinetic studies. Nevertheless, this simulation-based design was adopted so that it 

would be possible to compare the pharmacokinetic modeling programs’ results with 

known, true values, which are unknowable in clinical pharmacokinetic studies. 
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Additionally, the metrics used to benchmark these population pharmacokinetic modeling 

programs included the percent prediction error and the percent absolute prediction error; 

however, alternative metrics exist. Nevertheless, the percent prediction error and the 

percent absolute prediction error were used as they provide a cogent way to simultaneously 

compare the results of different pharmacokinetic parameter estimation algorithms 

employed in different modeling programs across a wide range of study designs. A further 

limitation of this study is that the length of time required to run the models was not 

captured; however, no modeling program took longer than 1 hr to run a single model. 

In pharmacokinetic simulations with study designs mimicking those observed in 

previously published clinical trials, the bias and precision of three of the most commonly 

used population pharmacokinetic modeling programs was approximately 30-35%. This 

suggests that additional efforts are needed to develop less biased and more precise 

pharmacokinetic parameter estimation algorithms. However, these simulations revealed 

relative strengths and weaknesses of Monolix, NONMEM, and Pmetrics, which should be 

considered when attempting to identify the most appropriate estimation algorithm and 

modeling program for each project. Across all three population pharmacokinetic modeling 

programs, bias was found to decrease substantially with the collection of additional 

concentrations from each subject, and to a lesser degree with increasing sample sizes. In 

contrast, precision was found to improve only with a greater number of concentrations 

collected from each subject. 
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CHAPTER 7 

 

CONCLUSIONS 

 

 By and large, clinical pharmacology – and population pharmacokinetics in 

particular – remains a field that is ripe for investigation as many questions are still 

unanswered despite decades of experience using well-established methods and modeling 

programs. In this dissertation, we revisited the clinical utility of population 

pharmacokinetic modeling, along the way challenging conventional dosing strategies for 

vancomycin in preterm neonates and zolpidem among severely burned children, in an effort 

to shed light on the importance of conducting clinical pharmacokinetics studies. 

 Ideally, population pharmacokinetic studies should be designed to reflect clinical 

practice and involve participants who are similar to those for whom the study’s results are 

intended to be applied to.  Unfortunately, there is a dearth of well-designed pediatric 

population pharmacokinetic studies, which has hampered the development of safe and 

effective dosing regimens for many medications that are used in children’s hospitals around 

the world.[1]  Although multiple factors likely underlie the shortage of pediatric population 

pharmacokinetic studies, the perception that pediatric studies are costly, time consuming, 

and logistically challenging is likely one of the leading factors.[2] To dispel this fallacy, 

we leveraged vancomycin therapeutic drug monitoring data from two vulnerable pediatric 



162 
 

populations to provide evidence supporting the safety and effectiveness of current dosing 

regimens for children with cystic fibrosis and validated new dosing regimens that more 

reliably achieve therapeutic targets for preterm neonates with invasive bacterial 

infections.[3, 4] Additionally, we identified evidence of sub-therapeutic dosing among 

severely burned children treated with the sleep-enhancing agent zolpidem in a prospective 

clinical trial.[5] 

It is of equal – if not more – importance to also assess the validity of population 

pharmacokinetic modeling programs against a true gold standard, thereby ensuring that the 

recommendations that are developed from population pharmacokinetic studies are 

unbiased and accurate. Toward this effort, we developed a simulation-based framework for 

benchmarking the bias and accuracy of population pharmacokinetic parameter estimates 

and confirmed the average bias and precision of three of the most commonly used 

population pharmacokinetic modeling programs to be approximately 30-35%.  This finding 

suggests that although these models may perform adequately for drugs with wide 

therapeutic windows, additional research is needed to improve the predictive performance 

of the pharmacokinetic parameter estimation algorithms employed in these programs, 

particularly when they will be applied to characterize the pharmacokinetic properties of 

drugs with narrow therapeutic windows. 

The main contribution of our simulation-based benchmarking paradigm was 

identification of the relative strengths and weaknesses of the pharmacokinetic parameter 

estimation algorithms implemented in the three modeling programs we studied. These 

differences in the performance characteristics of the estimation algorithms ought to be 

considered when designing population pharmacokinetic studies.  For first-in-human studies 
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or trials involving patient populations in which the investigational drug has not been 

studied before, gaining insight into the factors that influence the drug’s pharmacokinetics 

may be more important than predictive accuracy.  In cases such as these, one might 

consider using the NPAG algorithm implemented in Pmetrics, as it performed best in 

identifying ill-specified covariate models.  Conversely, for clinical use (e.g., therapeutic 

drug monitoring), the correct covariate-model structure has likely already been defined 

previously and the goal is instead to accurately predict a patient’s pharmacokinetic 

parameters, for which Monolix’s EM algorithm or NONMEM’s FOCEI algorithm may be 

preferred. 

This preliminary work sets the stage for many additional directions of future 

investigation, including those of a practical and a theoretical nature.  We are currently 

recruiting participants as part of a clinical trial that will compare target rates of treatment 

failure and nephrotoxicity among neonates who are dosed according to the vancomycin 

model described in Chapter 4 as compared with historical controls at the University of Utah 

and Stanford University.  Additionally, we submitted a grant requesting funding to perform 

a pharmacokinetic-guided dosing study of zolpidem among children with severe burn 

injuries who are cared for in the Shriners’ network of children’s hospitals.  From a more 

theoretical standpoint, we believe that the simulation-based framework for benchmarking 

population pharmacokinetic parameter estimation algorithms described in this dissertation 

can be applied to many additional interesting questions, which include (but are not limited 

to): 

1) Do the same patterns identified in Chapter 6 hold true with more complex 

pharmacokinetic models (e.g., transit absorption compartments, enterohepatic 
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recirculation, etc.)? 

2) Which algorithms perform best for pharmacodynamic analyses?  What are the 

influential factors in pharmacodynamic analyses that affect bias and precision 

and to what extent can these be controlled for with optimal clinical trial design? 

3) Which algorithms perform best for mixture models?  Under what circumstances 

is bias minimized and precision maximized? 

4) How much of an effect do date and time errors in dosing and concentration 

records have on pharmacokinetic parameter estimates?  Does the effect vary 

with different estimation algorithms? 

Overall, this dissertation lays the foundation for a permanent re-assessment of the 

role of population pharmacokinetic analyses in drug development and clinical practice.  

The clinical utility demonstrated in the three real-world case studies presented in Chapters 

3, 4, and 5 should foster the development of new pharmacokinetic parameter estimation 

algorithms that can further improve the predictive accuracy and interpretability of 

population pharmacokinetic analyses.  Additionally, the novel simulation-based 

benchmarking framework that we developed here can easily be extended to provide a true 

gold standard to guide the development of new algorithms.  With clinical impact driving 

the development of these new algorithms, it should be understood that these models cannot 

be thought of as ‘black boxes’, but rather they must be thought of as rational tools that can 

provide insights into the underlying biology and pharmacology hidden within the data, 

whilst simultaneously yielding accurate pharmacokinetic predictions that may be used to 

guide drug dosing. 
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As we look to the future and consider the situations in which population 

pharmacokinetic models may be most useful, it is worth noting that the factors influencing 

pharmacokinetic variability differ between drugs, disease states, and the presence / absence 

of other co-prescribed medications. Many drugs feature wide therapeutic windows for 

which a single well-designed population pharmacokinetic study may be sufficient to 

establish an effective and safe range of exposures. For drugs such as these, population 

pharmacokinetic modeling can facilitate the development of dosing regimens designed to 

reliably achieve the target exposure range for the vast majority of patients. 

The situation is more complicated for medications that are used in the hospital 

setting as these often feature narrow therapeutic windows and may be administered to 

critically-ill patients. In situations such as these, a one size fits all approach to dosing is 

unlikely to be maximally efficacious and safe. Instead, collection of one or two samples to 

measure drug concentrations from an individual patient may be performed to develop a 

personalized pharmacokinetic model. Moreover, these additional concentrations can be 

leveraged to better inform the dosing recommendations for the population at large via 

Bayesian updating of the population pharmacokinetic model.  
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$PROBLEM   Neonatal vancomycin population pharmacokinetic model 
                               
$INPUT C ID TIME AMT DV MDV RATE WT SCR JSCR PMA PNA TYPE 

DOSE 
 

  ; ID  =  Subject identifier 
  ; TIME  =  Time (measured in hours) 
  ; AMT  =  Dose amount (mg) 
  ; DV  =  Drug concentration (mg/L) 
  ; MDV  =  Missing dependent variable 
  ; RATE  =  Infusion rate (mg/hr) 
  ; WT  =  Weight (kg) 
  ; SCR  =  Serum creatinine concentration (mg/dL) 
  ; JSCR  =  Linear conversion of enzymatic SCr to  

the Jaffe method 
  ; PMA  =  Postmenstrual age (weeks) 
  ; PNA  =  Postnatal age (days) 
  ; TYPE  =  Drug concentration type (0 = trough,  

1 = peak) 
  ; DOSE  =  Daily dose (mg/day) 
 
$DATA NEONATAL_VANCO_DATA.CSV IGNORE=C 
$SUB  ADVAN1 TRANS2 
 
$PK 
  TH1  =  THETA(1) 
  TVCL =  TH1 * (WT/2.9)**0.75 * 

(1/(1+(PMA/THETA(3))**(-(THETA(4))))) * 
(1/JSCR)**(THETA(5)) 

  CL  =  TVCL * EXP(ETA(1)) 
  TH2  =  THETA(2) 
  TVV  =  TH2 * (WT/2.9)**1.0 
  V  =  TVV * EXP(ETA(2)) 
  TM50 =  THETA(3) 
  HILL =  THETA(4) 
  CR  =  THETA(5) 
  S1  =  V 
  AUC  =  DOSE / CL 
 
IF(AMT.GT.0) THEN 
  TDOS =  TIME 
  TAD  =  0 
ENDIF 
 
IF(AMT.EQ.0) THEN 
  TAD  =  TIME - TDOS 



169 
 

ENDIF 
 
$THETA 
  0.345  FIXED  ; Population clearance 
  1.75  FIXED  ; Population volume of distribution 
  34.8  FIXED  ; TM50 
  4.53  FIXED  ; Hill coefficient 
  0.267  FIXED  ; Creatinine effect 
 
$OMEGA BLOCK(2) FIXED 
  0.0465 
  0.00734  0.0119 
 
$SIGMA 
  0.0421 FIXED  ; Proportional error 
  1.168 FIXED  ; Additive error 
 
$ERROR 
  A1  = A(1) 
  Y  = F + F * ERR(1) + ERR(2) 
  IPRED = F 
 
$ESTIMATION METHOD = 1 INTERACTION MAXEVAL = 0 POSTHOC 
$TABLE ID TIME DV MDV CL V TH1 TH2 TM50 HILL CR WT PMA JSCR AUC 
TYPE IPRED NOPRINT ONEHEADER FILE = neonatal_vanco.fit 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B 

 

ZOLPIDEM POPULATION PHARMACOKINETIC 

ANALYSIS CODE



171 
 

DESCRIPTION:  
  ambien_final.mlxtran 
 
DATA:  
  path = "%MLXPROJECT%/", 
  file = "zolpidem_data.csv", 

headers = {ID, TIME, Y, MDV, AMT, COV, COV}, 
  columnDelimiter = "," 
 
VARIABLES:  
  THIR [use = cov], 
  WT, 
  t_WT = log(WT) [use = cov,  centeredBy = mean] 
 
INDIVIDUAL:  
  Cl = {distribution = logNormal, covariate = t_WT, iiv = yes}, 
  Q = {distribution = logNormal, iiv = yes}, 
  V1 = {distribution = logNormal, covariate = THIR, iiv = yes}, 
  V2 = {distribution = logNormal, iiv = yes}, 
  ka = {distribution = logNormal, iiv = yes} 
 
STRUCTURAL_MODEL:  
  file = "oral1_2cpt_kaClV1QV2", 
  path = "%MLXPATH%/libraries/PKLibrary", 
  output = {Cc} 
 
OBSERVATIONS:  
  y1 = {type = continuous, prediction = Cc, error = combined1} 
 
TASKS:  
  ; settings 
  globalSettings = { 
    withVariance = no, 
    settingsGraphics = "%MLXPROJECT%/ambien_final_graphics.xmlx", 

settingsAlgorithms = 
"%MLXPROJECT%/ambien_final_algorithms.xmlx", 

    resultFolder = "%MLXPROJECT%/ambien_final"}, 
  ; workflow 
  estimatePopulationParameters( 
    initialValues = { 
      pop_Cl = 1, 
      beta_{Cl,t_WT} = 0.75 [method = FIXED], 
      pop_Q = 1, 
      pop_V1 = 1, 
      beta_{V1,THIR} = 0, 
      pop_V2 = 1, 
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      pop_ka = 0.18 [method = FIXED], 
      a_y1 = 1, 
      b_y1 = 0.3, 
      omega_Cl = 1, 
      omega_Q = 1, 
      omega_V1 = 1, 
      omega_V2 = 1, 
      omega_ka = 1 
    }), 
estimateFisherInformationMatrix(method = {linearization}), 
estimateIndividualParameters(method = {conditionalMode}), 
estimateLogLikelihood(method = {linearization}), 
displayGraphics(), 



 
   
 Reprinted with permission from Stockmann, C. et al. Relationship Between 
Zolpidem Concentrations and Sleep Parameters in Pediatric Burn Patients. Journal of Burn 

Care & Research 36, 137-144, doi:10.1097/BCR.0000000000000164 (2014). Copyright 
2014 Wolters Kluwer Health, Inc. 
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BENCHMARKING DATASETS 
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