
LOW OVERHEAD DATA RACE DETECTION

TECHNIQUES FOR LARGE OPENMP

APPLICATIONS

by

Simone Atzeni

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

December 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276263097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© Simone Atzeni 2017

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Simone Atzeni

has been approved by the following supervisory committee members:

Ganesh Gopalakrishnan , Chair(s) 08/10/2017
Date Approved

Zvonimir Rakamarić , Co-Advisor 08/15/2017
Date Approved

Dong H. Ahn , Member 08/07/2017
Date Approved

Hari Sundar , Member 08/10/2017
Date Approved

Ryan Stutsman , Member 08/10/2017
Date Approved

by Ross Whitaker , Chair/Dean of

the Department/College/School of Computer Science

and by David B. Kieda , Dean of The Graduate School.

ABSTRACT

High Performance Computing (HPC) on-node parallelism is of extreme importance

to guarantee and maintain scalability across large clusters of hundreds of thousands of

multicore nodes. HPC programming is dominated by the hybrid model “MPI + X”, with

MPI to exploit the parallelism across the nodes, and “X” as some shared memory parallel

programming model to accomplish multicore parallelism across CPUs or GPUs. OpenMP

has become the “X” standard de-facto in HPC to exploit the multicore architectures of

modern CPUs. Data races are one of the most common and insidious of concurrent errors

in shared memory programming models and OpenMP programs are not immune to them.

The OpenMP-provided ease of use to parallelizing programs can often make it error-prone

to data races which become hard to find in large applications with thousands lines of code.

Unfortunately, prior tools are unable to impact practice owing to their poor coverage or

poor scalability.

In this work, we develop several new approaches for low overhead data race detection.

Our approaches aim to guarantee high precision and accuracy of race checking while main-

taining a low runtime and memory overhead. We present two race checkers for C/C++

OpenMP programs that target two different classes of programs. The first, ARCHER, is fast

but requires large amount of memory, so it ideally targets applications that require only

a small portion of the available on-node memory. On the other hand, SWORD strikes a

balance between fast zero memory overhead data collection followed by offline analysis

that can take a long time, but it often report most races quickly. Given that race checking

was impossible for large OpenMP applications, our contributions are the best available

advances in what is known to be a difficult NP-complete problem.

We performed an extensive evaluation of the tools on existing OpenMP programs and

HPC benchmarks. Results show that both tools guarantee to identify all the races of a

program in a given run without reporting any false alarms. The tools are user-friendly,

hence serve as an important instrument for the daily work of programmers to help them

identify data races early during development and production testing. Furthermore, our

demonstrated success on real-world applications puts these tools on the top list of debug-

ging tools for scientists at large.

iv

To Nicole, the love of my life.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . viii

LIST OF TABLES . ix

ACKNOWLEDGMENTS . x

CHAPTERS

1. INTRODUCTION . 1

1.1 Thesis Statement . 2
1.2 Background . 2
1.3 Contributions of the Dissertation . 4
1.4 Organization of the Dissertation . 5

2. EFFECTIVELY SPOTTING DATA RACES IN LARGE OPENMP
APPLICATIONS . 6

2.1 Introduction . 6
2.2 Approach . 9

2.2.1 Static Analysis Phase . 10
2.2.2 Dynamic Analysis Phase . 11

2.3 Evaluation . 12
2.3.1 OmpSCR Benchmark Suite . 13
2.3.2 AMG2013 Case Study . 18
2.3.3 ARCHER Resolves Real-World Races . 19

2.4 Related Work . 20
2.5 Discussion . 21

2.5.1 Latest OpenMP Specifications . 22
2.5.2 Compiler Optimization Flags . 22

2.6 Conclusions and Future Work . 23
2.7 Summary . 23

3. AN OPERATIONAL SEMANTIC BASIS FOR OPENMP RACE ANALYSIS . . . 25

3.1 Introduction . 25
3.2 Background . 27
3.3 Operational Semantics . 29

3.3.1 Predicates and Conventions . 33
3.3.2 Offset-Span Labels . 33
3.3.3 System State . 34
3.3.4 Helper Functions and Predicates . 36
3.3.5 Operational Semantics Rules . 37

3.3.6 Operational Semantics Example . 40
3.3.7 Lowering OpenMP Constructs . 42

3.4 Implementation . 44
3.5 Conclusions . 45
3.6 Summary . 46

4. SWORD: A BOUNDED MEMORY-OVERHEAD DETECTOR OF OPENMP
DATA RACES IN PRODUCTION RUNS . 47

4.1 Introduction . 47
4.1.1 Memory Overhead . 48
4.1.2 Shadow-Cell Eviction . 49
4.1.3 Race Masking . 50

4.2 Background . 51
4.2.1 Operational Semantics for OpenMP Race Checking 52
4.2.2 Offset-Span Labels . 53

4.3 SWORD Technique and Implementation . 54
4.3.1 Dynamic Analysis . 54

4.3.1.1 Compiler Instrumentation . 54
4.3.1.2 Log Collection . 54
4.3.1.3 Bounded Dynamic Analysis Overhead . 55

4.3.2 Offline Analysis . 55
4.3.2.1 Interval Tree Example . 58

4.3.3 Limitations . 59
4.4 Experimental Results . 59

4.4.1 DataRaceBench Microbenchmarks . 60
4.4.2 OmpSCR Microbenchmarks . 60
4.4.3 HPC Benchmarks . 63

4.5 Related Work . 66
4.6 Conclusions . 67
4.7 Summary . 68

5. CONCLUSIONS . 69

REFERENCES . 71

vii

LIST OF FIGURES

1.1 Taxonomy of existing data race detection techniques. 3

2.1 ARCHER tool flow. 9

2.2 Targeted instrumentation on a sample OpenMP program. 11

2.3 Runtime and memory overhead of the tools on the OmpSCR benchmark suite
executed with 16 threads. 16

2.4 Different metrics of comparison for the tools. 17

2.5 AMG2013 execution slowdown factor introduced by the tools (a) and the
relative performance factor of ARCHER (SA) against the other tools (b). 19

3.1 Possible interleavings for program in Listings 3.1. The dashed line indicates
the write operation of Thread 0 can happen simultaneously with the opera-
tions of Thread 1. The solid line indicates the happens-before edge between
the threads. 28

3.2 Structure of the OpenMP program in Listing 3.2. 30

3.3 OpenMP concurrency operational semantics . 38

3.4 Structure of the OpenMP program in Listing 3.1. 41

4.1 Different interleavings generated by the same program. Dashed lines indi-
cate that the write operations of Thread 0 can occur simultaneously with the
operations of Thread 1. Solid lines indicate happens-before edges between
the threads. 50

4.2 Structure of an OpenMP program . 52

4.3 SWORD tool flow . 54

4.4 Example of threads that access the same memory interval but do not have
common addresses . 57

4.5 Example interval trees. The red/underlined nodes are the two overlapping
intervals that identify the race. The node’s fields represent, respectively,
begin, end of the interval, count, type of operation, access size, and program
counter. 58

4.6 Geometric mean of runtime and memory overhead for OmpSCR suite; the
number of threads varies from 8 to 24. 61

4.7 Relative slowdown and memory overhead compared to the baseline for HPC
benchmarks . 64

4.8 Runtime and memory overhead on AMG2013 with varying problem size
executed with 24 threads. 65

LIST OF TABLES

2.1 Execution slowdown factor for various tool configurations. 14

3.1 State machine transitions for the example in Listing 3.1. 41

4.1 Example of thread’s metadata file. Each line corresponds to one barrier in-
terval. Column pid is parallel region ID, ppid is parent parallel region ID,
bid is barrier ID, offset and span define offset-span label, level is level of
parallelism, data begin is offset (in bytes) in the log file of the beginning of
the respective data chunk, size is its size. 55

4.2 Data races reported in OmpSCR suite . 61

4.3 Overheads on the OmpSCR suite executed with 24 threads, including the
execution time of the parallel offline analysis. Column baseline is the base-
line runtime; archer is the ARCHER runtime; archer-low is the low memory
overhead ARCHER configuration runtime; DA is the total dynamic analysis
runtime including logging; OA is the offline analysis runtime when executed
sequentially; MT (Max Time) is the longest offline analysis runtime for any
parallel region indicating how long parallel analysis runs; #PR is the num-
ber of independent parallel regions to analyze; LS is the amount of storage
required to store the generated log files. 62

4.4 Data races reported in HPC benchmarks. OOM indicates that a tool ran out
of memory during the analysis. 63

4.5 Overheads on the HPC benchmarks executed with 24 threads, including the
execution time of the parallel offline analysis. See Table 4.3 for explanation of
columns. OOM indicates that the tool ran out of memory during the analysis. 65

ACKNOWLEDGMENTS

My PhD journey has come to an end. Although it has been full of challenges, it has

also been intellectually fulfilling and a rewarding experience. In this page, I would like

to acknowledge those people who have been part of this journey and have helped me in

many ways during my 4 years here at Utah.

First and foremost, I would like to thank my advisor Prof. Ganesh Gopalakrishnan

who has been essential during my whole PhD experience. I cannot thank him enough

for his constant support during my research experience, which includes not only financial

support and research advice, but also emotional support every time my PhD life put me in

front of new challenges. Second, I would like to thank my coadvisor Zvonimir Rakamarić

who has been more a second advisor rather than a coadvisor. Zvonimir’s research advice

and emotional support have been instrumental in shaping my whole PhD experience.

Third, I would like to truly thank Dong H. Ahn from Lawrence Livermore National Labo-

ratory (LLNL) for his financial support, research advice, and for giving me the opportunity

to work in one of the largest computing facilities in the United States. Dong has been for me

a third advisor during my PhD experience, he has given me the opportunity to spend two

summers at LLNL where I could apply my research in real-world scenarios and collaborate

with some of the greatest scientists in the world. Finally, I would like to sincerely thank the

rest of my committee members Hari Sundar and Ryan Stutsman, who provided me great

guidance and always find the time to help me whenever I was in need.

Thanks to all my friends in the Gauss and Soarlab research groups for their great sup-

port. In particular I would like to thank Marko Dimjašević and Mohammed Al-Mahfoudh,

who have shared this experience with me since the beginning and together we have faced

many of the PhD challenges, classes, but also fun and emotional moments. Thanks to

Sriram Aananthakrishnan, Mark Baranowski, Geof Sawaya, Montgomery Carter, Charlie

Jacobsen, Ian Briggs, and Shaobo He for all the technical discussions, coding advice, polit-

ical talks, and pub nights out. All of you made these 4 years easier, fun, and memorable.

I would also like to thank two friends in particular that I have met here at Utah. Thanks

to my friend Murry Mullenax, from the Steiner’s Master Swimming group, for his advice

on technical writing, for helping me out by proofreading this dissertation, and for our

endless conversations. I would also like to thank Maurizio Bocca, an Italian fellow that I

met at the beginning of my PhD who has become a great friend and gave me great advice

for successfully complete my PhD

This dissertation would not have been possible without the support of my family.

Thank you, mom Lucia, dad Tonio, and Alessia for the video calls during my lunch breaks,

your texts, and your encouragement and emotional support during these 4 years. I missed

you all, and I look forward to being able to come visit all of you more often now that my

PhD has come to an end.

During my PhD I met the love of my life, Nicole. She and her family have welcomed

me in their home, given me emotional support and encouragement every time I needed it

the most. Thanks to Nicole’s parents, Cherie and Lee, for helping me by proofreading this

dissertation, and becoming my second family while being far away from home. Thanks to

Nicole’s siblings Chris, Bobbi, Carrie, and Gabe for the fun family dinners and for being

always there to enjoy with me the holidays and breaks. I feel very lucky to have Nicole in

my life, and now that this PhD journey has come to an end we look forward to starting our

life together.

xi

CHAPTER 1

INTRODUCTION

Multithreaded programming has become widespread in use, given the need to em-

ploy multicore CPUs to gain higher performance at a given energy budget. In the High

Performance Computing (HPC) world, this has led to an increased adoption of on–node

parallelism in large software applications. The work in progress at national research facil-

ities [1, 2, 3] confirms this trend.

Multithreaded programming is achieved through different programming models (e.g.

Pthreads); however, the predominant paradigm of choice in HPC is OpenMP [4], which

guarantees portability and ease of use. At the Lawrence Livermore National Laboratory

(LLNL), one of the world’s largest computing facilities, one of the main ongoing tasks for

computational scientists is the porting of critical multiphysics applications [5] to OpenMP.

In this community, OpenMP is of paramount importance to enable shared memory parallel

programming; yet, porting large HPC applications to OpenMP is error-prone. The correct-

ness of these applications is crucial to the reliability of critical simulations pertaining to real

world phenomena of fundamental importance such as modeling of nuclear explosions,

weather simulations, hydrodynamics modeling, and so forth. One of the most common

error types in OpenMP applications is the data race [6]. Data race detection is hard to

achieve with traditional debugging methods, and it is also known to be a NP-complete

problem [7]. Fast and precise checking tools to detect data races are needed now more

than ever. While data race is a well-known problem and Pthreads data race detection tools

have been proposed over the past 20 years, none or just a few of them are actually able to

analyze OpenMP programs. This dissertation targets this critical need.

Data race detection research has focused both on static and dynamic analysis tech-

niques. Static analysis techniques allow for exploration of all the inputs of the program

and the interleavings of the threads. In addition, they are scalable and fast since they

2

do not incur any runtime overhead. However, the lack of information that exists only

at runtime makes these techniques imprecise; in fact, they often miss races and generate

false positives. Runtime techniques are precise, as they do not report any false positives,

and only report races in the branches of programs that are actually executed. On the

other hand, dynamic analysis for data race detection is known to generate a high runtime

and memory overhead due to the operations it needs to perform and the state it needs to

maintain during the execution.

The runtime overhead of even the best of dynamic tools, such as the ThreadSanitizer

(Tsan) and IntelrInspector XE, can cause between 5×–20× slowdown, and the memory

overhead can be between 2×–10× of the memory used by the normal execution of the

programs. For large programs, such as HPC applications, the runtime and memory over-

heads can be even larger. The high runtime slowdown and memory usage make such

tools useless from the point of view of actual developers, who probably would not be

keen on waiting a long time to check their programs or they may not even have enough

machine resources to run the tools. We definitely need better techniques – static, dynamic,

or combinations – to detect data races in large OpenMP applications.

1.1 Thesis Statement
The goal of this dissertation is to provide new approaches for data race detection with

low runtime and memory overheads while maintaining high precision and accuracy. With

that said, our thesis statement is the following:

Combining the best of existing static and dynamic analysis techniques, and
tailoring the implementation to the actual concurrency structure of structured
parallel languages such as OpenMP, we can make data race checking of HPC
applications practical.

1.2 Background
The problem of data race detection has been tackled by several researchers [8, 9, 10,

11, 12, 13, 14], through different techniques. Existing data race detection methods can

be classified in four different categories as shown in Figure 1.1. Methods based on static

analysis, dynamic analysis, hybrid techniques, and symbolic execution present strengths

and limitations that raise the need for developing new techniques to enable or improve

3

Data Race
Detection Methods

Static Analysis Dynamic Analysis Symbolic ExecutionHybrid Techniques

Figure 1.1: Taxonomy of existing data race detection techniques.

the analysis of large OpenMP HPC applications. We explain the pros and cons of existing

techniques that belong to the categories we identified:

• Static Analysis: Static analysis techniques utilize methods such as dependency anal-

ysis [15], alias analysis [16], type systems [17], interprocedural analysis [18], and so

forth. While static analyses are able to consider all possible program behaviors with-

out actually executing the program, they may report false positives due to dynamic

behaviors that can not be actually modeled (e.g., pointers and aliases). Thus, static

analysis is often not effective and can report false alarms or miss races.

• Dynamic Analysis: Dynamic techniques rely on compiler or binary instrumentation

to gather information at runtime about memory accesses, synchronization opera-

tions, thread identifiers, and so forth. Dynamic approaches base their analysis on

techniques such as happens-before [11, 9] or lockset analysis [10]. These techniques

are more accurate; however, they depend on the current execution of the program,

and in the case where a date race does not exhibit itself for a specific run, they miss

the race. In addition, the overhead is often prohibitively high, which makes them

inappropriate to analyze large scale applications.

• Hybrid Techniques: Hybrid techniques combine static and dynamic approaches. Static

analyses are often used to collect information that can be used by the dynamic anal-

yses to increase the precision or reduce the overhead [14].

• Symbolic Execution: Symbolic execution [19] methods try to explore all possible pro-

gram paths through symbolic values. The execution is then encoded into first-order

4

logic formulas and followed by Satisfiability Module Theories (SMT) based solving.

To obtain scalable analysis [20, 21] the encoding must be well designed and opti-

mized based on domain knowledge of the program.

1.3 Contributions of the Dissertation
In this dissertation we present different contributions to overcome the limitations of

the aforementioned methods. First, we combine existing techniques such as static and

dynamic analyses, to bring together the best of the two approaches which are respectively

low overhead and high precision and accuracy. Secondly, we formally define the concur-

rency of the OpenMP programming model through an operational semantics that exploits

the OpenMP concurrency structure for race detection. Finally, starting from the opera-

tional semantics definition, we implement a novel OpenMP data race detection technique

which guarantees zero memory overhead, soundness, and completeness of the data race

detection analysis for a given input. These contributions result in two different data race

detection tools for OpenMP programs that we present in detail in the chapters that follow.

The first tool, ARCHER (see Chapter 2), applies static analysis techniques to identify

race free regions of code and remove them from the runtime analysis. On the other hand,

the dynamic analysis checks the rest of the program for data races by applying an happens-

before based technique. The results of our work show high precision and accuracy while

maintaining a low runtime overhead. However, ARCHER suffers from high memory over-

head (6×) memory overhead, which makes it unsuitable for large applications that require

more than 16% of the available memory.

The high memory overhead issue inspired us to research and implement a new tech-

nique to reduce the memory overhead. Therefore we created SWORD, another OpenMP

data race checker (Chapter 4) based on a formal operational semantics definition that we

explain in Chapter 3. SWORD implements a fast logging technique to save information

about the program memory accesses into files. This approach keeps the memory overhead

to almost zero. We then implemented an offline analysis technique of the logs to identify

the races. The offline analysis is highly parallelizable both across a multicore architecture

and across a cluster. Results show that the logging techniques plus offline race detection

algorithm reduce the memory overhead, enabling the analysis of large HPC applications

5

that were not possible with the existing tools.

The new approaches are novel contributions to effective and efficient data race detec-

tion for OpenMP programs. The two tools, subjects of this dissertation, are complementary

in order to cover different classes of OpenMP programs. ARCHER is fast and detects most

of the data races; however, because of its high memory overhead, it can only analyze a

class of applications that requires a small amount of memory to complete the data race

detection process. On the other hand, SWORD provides a technique that is able to analyze

programs that necessitate of large amount of memory where other tools would fail, and

thus guaranteeing better coverage for a given run.

1.4 Organization of the Dissertation
This dissertation is organized as follows: In Chapter 2, we present the first tool ARCHER

with details about its data race detection approach and an extensive evaluation on well-

know benchmarks and real-world applications; Chapter 3, illustrates an operational se-

mantics to enable precise and accurate data race analysis exploiting the structured con-

currency model of OpenMP; with Chapter 4, we present our implementation of the oper-

ational semantics in a tool called SWORD, with experimental results that demonstrate the

effectiveness and efficiency of the approach; finally in the Chapter 5, we summarize all the

contributions and conclude the dissertation.

CHAPTER 2

EFFECTIVELY SPOTTING DATA RACES IN

LARGE OPENMP APPLICATIONS

This chapter is based on work published at the Workshop on the LLVM Compiler

Infrastructure in HPC [22] and at the IEEE International Parallel & Distributed Processing

Symposium 2016 [23]1.

In this chapter we present ARCHER, the first of the two data race detection tools subject

of this dissertation. We illustrate the details of ARCHER’s techniques and an extensive

evaluation of the tool in term of effectiveness and efficiency.

2.1 Introduction
High performance computing (HPC) is undergoing an explosion in raw computing

capabilities as evidenced by recent announcements of next-generation computing system

projects [1, 2, 3]. To meet the stipulated performance and power budgets, many key

software components in these projects are being transitioned to adopt on-node parallelism

to a greater degree. The predominant programming model of choice in this transition

is OpenMP—due in large part to its portability and ease of use. In fact, the main task

for computational scientists at Lawrence Livermore National Laboratory (LLNL), one of

the world’s largest computing facilities, is the porting of mission-critical multiphysics

applications [5] to exploit OpenMP.

We find, however, that efficient and scalable development tools for OpenMP are still

quite scarce, making development efforts hard. In particular, none of the preexisting

OpenMP data race checkers is capable of handling the code sizes involved, or provides ef-

fective debugging support for concurrency bugs. Meanwhile, libraries such as Hypre [24],

1 c©2016 IEEE. Adapted, with permission, from Atzeni S., Gopalakrishnan G., Rakamarić Z., Ahn D. H.,
Laguna I. Schulz, M, Lee G., Protze J., Müller M. S., Archer: Effectively Spotting Data Races in Large OpenMP
Applications, June 2016

7

which underlie many critical applications, have run into data races during this transition.

In one LLNL application, because of this lack of debugging tools, developers who faced

these races even took the draconian approach of reverting back to sequential code.

This work describes ARCHER, our new OpenMP data race detector, its unique capabil-

ities in terms of scalability and precision, its use of a proposed standard, and our philoso-

phy of building on well-engineered open-source software. While the core concept of a data

race has been known for decades (uncoordinated, i.e., not separated by a happens-before

edge, accesses on a memory location by two threads, with one access being a write),

transitioning this idea into HPC practice required adherence to four key tenets.

1. Scalable Happens-Before Tracking Methods: Checking for races in production OpenMP

programs requires the ability to track a huge number of memory references and their

happens-before ordering. A significant amount of ARCHER’s scalability stems from

its exploitation of a preexisting tool—namely ThreadSanitizer (TSan) [12]. TSan’s

unique architecture enables it to implement the idea of vector-clock-based race check-

ing far more efficiently than comparable tools do. Embracing TSan and its LLVM-

based tooling approach enables us to write custom LLVM passes, and in general

take advantage of the growing popularity of LLVM in HPC [22]. Previous OpenMP

data race checking tools were never released for public evaluation, were based on

binary instrumentation through PIN [25], or employed symbolic methods [20]. These

approaches are neither scalable nor widely portable. ARCHER has been publicly re-

leased under the BSD License [26]. (Note: TSan was originally designed for PThread

and Go programs, and cannot be directly applied to OpenMP programs as will soon

be described.)

2. Static/Dynamic Analysis of Structured Parallelism: In ARCHER, we capitalize on OpenMP’s

structured parallelism to support two key features never before exploited in an OpenMP

race checker. First, we exploit OpenMP’s structured parallelism to easily write LLVM

passes that identify guaranteed sequential regions within OpenMP. Such analysis

would be difficult to conduct in the context of unstructured parallelism (e.g., PThreads).

Second, we identify and suppress parallel loops from race checking. ARCHER achieves

this by black-listing accesses within parallelizable loops with the help of a static

8

analysis.

3. Modular Interfacing with OpenMP Runtimes: While structured parallelism has been

exploited in the context of Java-like languages (e.g., Habanero Java [27]), such ex-

ploitation in the context of OpenMP and ARCHER required a combination of in-

novations. Unlike in languages such as Habanero Java where the language and

the runtime are designed together, in OpenMP vendors provide their own custom

runtimes. Tools, such as TSan, must be suitably modified to ignore OpenMP internal

actions, which may otherwise be falsely assumed to be data races [22]. ARCHER’s

approach is architected based on the OMPT standard [28] so that our solutions may

modularly be incorporated with multiple OpenMP runtimes.

4. Collaboration with Active Projects: ARCHER has already made significant impact within

LLNL. As one example, HYDRA [29] is a large multiphysics application developed at

LLNL, which is used for simulations at the National Ignition Facility (NIF) [30] and

other high energy density physics facilities. It comprises many physics packages

(e.g., radiation transfer, atomic physics, and hydrodynamics), and although all of

them use MPI, a subset of them use thread-level parallelism (OpenMP and PThreads)

in addition to MPI. It has over one million lines of code and a development lifetime

that exceeds 20 years. In the summer of 2013, developers began porting HYDRA

to Sequoia [31], the over 1.5 million core IBM Blue Gene/Q-based system that had

just been brought online at that time. Although the efforts included incorporating

more threading for performance, the developers got significantly impeded when

they could not resolve a non-deterministic crash on an OpenMP-threaded version

of Hypre [24] (used by one of HYDRA’s scientific packages). The developers found it

very difficult to debug this error that occurred intermittently after varying numbers

of time steps, only at large scales (at or above 8192 MPI processes), and only under

compiler optimizations. After spending considerable amounts of time, the team sus-

pected the presence of a data race within Hypre, but the difficulties in debugging and

time pressure forced them to work around the issue by selectively disabling OpenMP

in Hypre. When ARCHER was brought onto the scene, it located “benign races”

involving two threads racing to write the same value to the same location—a practice

9

known to be dangerous in the presence of compiler optimizations [32]. Removing

these benign races fixed the bug. This episode—detailed in Section 2.3.3—clearly

shows that effective data race checkers specifically tailored to high-end computing

environments are invaluable during critical projects.

2.2 Approach
Figure 2.1 illustrates how ARCHER implements our tenets by combining well-layered

modular static and dynamic analysis stages. In more detail, our static analysis passes [33,

34, 35] help classify the given OpenMP code regions into two categories: guaranteed race-free

and potentially racy. Our dynamic analysis then applies state-of-the-art data race detection

algorithms [12, 9] to check only the potentially racy OpenMP regions of code. The stat-

ic/dynamic analysis combination is central to the scalability (while maintaining analysis

precision) of ARCHER, as evidenced by its ability to handle real-world examples that exist-

ing tools cannot handle with the same levels of precision and scalability (see Section 2.3.2).

As described earlier, we implemented ARCHER using the LLVM/Clang tool infrastruc-

ture [36, 37] and the TSan dynamic race checker [12]. On the static analysis side, ARCHER

uses Polly [35] to perform data dependency and loop-carried data dependency analysis

(together called data dependency analysis from now on). This results in a Parallel Blacklist.

ARCHER also extends some of the static analysis passes already present in LLVM. Specifi-

cally, our extension builds a call graph and traverses it to identify memory accesses that do

not come from within an OpenMP construct (i.e., sequential code regions). This results in

a Sequential Blacklist. These blacklists are combined and used to limit the instrumentation

in TSan.

On the dynamic analysis side, ARCHER uses our customized version of TSan to detect

Static Analysis (OpenMP C/C++ Clang/LLVM Compiler)

Call graph

Find Functions within
OpenMP Regions

(recursively locates
functions within

omp_outlined blocks)

Data Dependency
Analysis Pass (obtains
DD info through Polly;

returns dependent
loads and stores)

Sequential Code
Detection Pass

(returns all loads and
stores not contained

within parallel regions)

Loads /
Stores

Blacklist

TSan Instrumentation
Pass

(Instruments loads /
stores not contained in

Blacklist)

OpenMP
Source
Code

Dynamic Analysis

Annotated
OpenMP
Runtime

TSan Runtime

Executable
Data
Race

Report

(1)

(2)

(3)

(4)

(5)
(6)

LLVM
IR

Code

Figure 2.1: ARCHER tool flow.

10

data races at runtime. To prevent TSan from being confused by OpenMP runtime internal

actions (and falsely report them as OpenMP-level races), ARCHER employs TSan’s Anno-

tation API to highlight these synchronization points within LLVM OpenMP Runtime (the

runtime presently associated with ARCHER in our studies). As we have already pointed

out, our efforts are being migrated to adhere to the OMPT standard.2

2.2.1 Static Analysis Phase

We now detail some of the finer details of our static analysis, including feeding the

blacklist information to the TSan runtime. TSan carries out its dynamic data race detection

by first instrumenting all the load and store actions of a program at compile time, and

using this instrumentation to help track happens-before. TSan also provides a feature that

allows users to blacklist functions [38] (by their name) that should not be instrumented and

that are thus to be ignored at runtime. Unfortunately, this granularity of instrumentation

is insufficiently refined to handle our sequential and parallel blacklists that express the

intent to blacklist individual accesses (that are, in almost all cases, not demarcated by

function boundaries). Thus, in order to communicate our blacklists to TSan, we extended

its blacklisting capabilities to enable a finer-grained selection at the level of source lines.

This allows the modified TSan used by ARCHER to exploit our sequential and parallel

blacklists, thus guaranteeing a high degree of analysis precision and scalability.

In more detail, after the LLVM intermediate representation (IR) and call graph are

generated, our analysis transforms OpenMP pragmas in the LLVM IR code as outlined

functions named omp_outlined.NUM, where NUM is an identifier for each parallel region

present in the code. Our first pass visits the call graph, and for each omp_outlined function

finds all the functions called within it. For each of these functions, the analysis is recur-

sively applied. Thereafter, data dependency analysis and sequential code detection are

applied (step (3) in Figure 2.1). For the former, an existing tool in the LLVM/Clang suite

called Polly [35] is used. In the example given in Figure 2.2, the first for-loop (lines 7–9) is

data parallel (i.e., data independent) and is blacklisted, while the second one (lines 12–14)

is not (exhibits a loop-carried dependence) and hence is not blacklisted.

2Some of us are associated with the OMPT efforts, thus facilitating our collaboration further to benefit a
wide variety of OpenMP runtimes.

11

1 main()({
2 //(Serial(code
3 setup();
4 sort();
5
6 #pragma(omp(parallel(for
7 for(int(i(=(0;(i(<(N;(++i)({
8 a[i](=(a[i](+(1;
9 }

10
11 #pragma(omp(parallel(for
12 for(int(i(=(0;(i(<(N;(++i)({
13 a[i](=(a[i(+(1];
14 }
15
16 #pragma(omp(parallel
17 {
18 sort();
19 }
20
21 //(Serial(code
22 printResults();
23 }

Serial code blacklisted

No data-dependent
code blacklisted

Potentially racy
code instrumented

Used in serial and parallel code

Serial code blacklisted

Figure 2.2: Targeted instrumentation on a sample OpenMP program.

ARCHER also identifies sequential code sections (step (4)). In Figure 2.2, lines 3 and 22

are sequential instructions and are hence blacklisted. However, function sort(), invoked

at lines 4 and 18, cannot be blacklisted, as it is invoked both from a sequential and parallel

context. The payoff due to such sequential code detection is potentially very high in real-

world projects where only some of the loops are parallelized with OpenMP (based on the

benefits, the number of cores available, etc.). As already pointed out, these analyses are

greatly facilitated by OpenMP’s structured parallelism.

2.2.2 Dynamic Analysis Phase

Our use of TSan for OpenMP race checking hinges on the fact that OpenMP parallelism

is typically realized through a PThread-based runtime library. As already mentioned,

unmodified TSan cannot be meaningfully used for OpenMP due to the large number of

false positives (“false alarms”) it reports [22].

The OpenMP standard specifies several high-level synchronization points. Explicit

synchronization points include barrier, critical, atomic, and taskwait. Implicit syn-

12

chronization includes single, task, and the OpenMP reduction clause. As semantically

intended and realized in the runtime, the threads can enter a critical section only in a seri-

alized manner, thus avoiding a data race. However, TSan lacks any knowledge about these

synchronization points. We use the Annotation API of TSan to mark these synchronization

points within the OpenMP runtime to avoid such false positives. This technique was

successful in eliminating all false positives in our benchmarks. Finally, the combination

of the ARCHER’s static analysis and new TSan instrumentation that exploits the blacklist

information produces a selectively instrumented binary (step (6) in Figure 2.1).

2.3 Evaluation
We evaluate ARCHER in three stages through: (1) a collection of smaller benchmarks

called the OmpSCR benchmark suite [39] (an OpenMP source code collection); (2) AMG2013,

a non-trivial application from the HPC CORAL benchmark suite [40]; and (3) the HYDRA

case study. Our evaluation is in terms of the effectiveness, performance, and scalability of

ARCHER compared to IntelrInspector XE. We also compare ARCHER against an unmod-

ified version of TSan applied to the same benchmarks.3 When using TSan and ARCHER,

we compile our benchmarks using Clang/LLVM, and when using IntelrInspector XE, we

compile them using the Intel Compiler. When running our benchmarks under ARCHER,

we link them against our annotated LLVM OpenMP Runtime [41, 22]. When running them

under IntelrInspector XE as well as TSan, we employ the uninstrumented version of the

same runtime. We studied the following configuration selections:

1. ARCHER: We employ four configurations: (1) the basic configuration of ARCHER that

applies both static and dynamic analysis to reduce runtime and memory overhead;

(2) ARCHER run without static analysis support (only dynamic race checking using

the enhanced runtime to avoid false positives is used); (3) apply just the Sequential

Blacklist; and (4) apply just the Parallel Blacklist.

2. TSan: When running the unmodified version of TSan, we employ its default param-

eters.

3Despite this exercise yielding numerous false positives, it provides a good performance baseline.

13

3. IntelrInspector XE: IntelrInspector XE provides many “knobs” for controlling per-

formance and analysis quality tradeoffs. Of these, we exercise three configurations:

(1) a default mode that checks memory accesses at the coarse-grain granularity of

four bytes; (2) the extreme-scope configuration that sets memory access granularity at

a single byte (incidentally, this is the same granularity as what TSan employs), which

obtains higher precision at higher cost; (3) the use-maximum-resources configuration

that allows IntelrInspector XE to detect more data races, but at the cost of increased

memory consumption and greater runtime overhead.

We perform our evaluation on the Cab cluster at LLNL. Each Cab node has two 8-core,

2.6 GHz Intel Xeon E5-2670 processors and 32GB of RAM. It runs the TOSS Linux distri-

bution (kernel version 2.6), which is a customized distribution specifically targeting en-

gineering and scientific applications. Runtimes and memory overhead of all benchmarks

were averaged across 10 executions, each time running with a variable number of threads

(ranging from 2 to 16). In the experimental results, Release denotes the original benchmark

characteristics. SequentialBlacklisting and ParallelBlacklisting denote that just those blacklist-

ing strategies are exploited, ARCHER denotes that both are used, while ARCHER “no SA”

denotes that none are used.

2.3.1 OmpSCR Benchmark Suite

We chose the OmpSCR benchmark suite (see Table 2.1) primarily because it harbors

a few known races, as reported in prior work [25]. We, however, found several addi-

tional races not previously reported. With respect to each tool and configuration, we now

describe the overall analysis quality followed by the runtime overheads. Then, we sum-

marize the overall merit of these tools by plotting their analysis quality vs. performance

scores.

Our evaluation shows that ARCHER detects all of the documented races in all config-

urations. In particular, it discovered six such races in the following benchmarks: c_md,

c_loopA.badSolution, c_loopB.badSolution1, c_loopB.badSolution2, c_testPath, and

c_jacobi3. In addition, ARCHER reported six previously undocumented races in the fol-

lowing C++ benchmarks: cpp_qsomp1, cpp_qsomp2, cpp_qsomp3, cpp_qsomp4, cpp_qsomp5,

and cpp_qsomp6. (We manually verify that all the reported races are real.) In contrast,

14

Table 2.1: Execution slowdown factor for various tool configurations.

Benchmark In
sp

ec
to

rD
ef

au
lt

In
sp

ec
to

rE
xt

re
m

eS
co

pe

In
sp

ec
to

rM
ax

R
es

ou
rc

es

A
R

C
H

ER
“n

o
SA

”
A

R
C

H
ER

c_fft 18.2 22.1 66.8 8.1 7.9
c_fft6 21.0 25.3 188.8 12.2 12.7

c_jacobi01 38.2 27.5 25.2 19.2 15.6
c_jacobi02 38.7 26.7 25.6 19.6 17.8

c_loopA.badSolution 5.1 7.0 41.1 5.9 3.9
c_loopA.solution1 10.2 12.2 64.9 9.4 10.5
c_loopA.solution2 5.1 7.1 41.2 5.5 3.6
c_loopA.solution3 4.5 5.8 42.1 5.1 4.2

c_loopB.badSolution1 6.2 7.5 36.8 5.5 3.8
c_loopB.badSolution2 15.6 16.2 43.7 2.3 2.3

c_loopB.pipelineSolution 5.4 7.8 36.7 5.6 3.6
c_lu 18.0 19.6 240.7 13.8 13.0

c_mandel 5.6 5.4 5.3 1.7 1.7
c_md 12.7 21.1 253.4 197.3 197.1

c_pi 11.1 10.7 11.1 2.3 2.6
c_qsort 14.2 16.9 34.1 5.8 5.7

c_testPath 133.0 133.6 138.3 18.3 17.9
cpp_qsomp1 57.5 57.4 289.5 18.0 18.1
cpp_qsomp2 57.8 57.6 286.6 17.9 11.9
cpp_qsomp5 56.8 62.5 338.2 20.4 20.8
cpp_qsomp6 57.5 57.9 253.5 18.2 11.9
cpp_qsomp7 57.8 57.8 229.3 18.8 18.3

Mean 29.5 30.3 122.4 19.6 18.4
Median 16.8 20.3 54.3 10.8 11.2

Geometric Mean 18.3 20.2 71.5 10.0 8.8

IntelrInspector XE incurs varying degrees of accuracy and precision loss in all three

configurations.

In term of accuracy (the number of correctly detected races divided by the number of

true races that should have been detected), IntelrInspector XE, in its default and extreme-

scope configurations, misses races in benchmarks c_loopB.badSolution1, cpp_qsomp1,

cpp_qsomp2, cpp_qsomp5, and cpp_qsomp6. On the other hand, IntelrInspector XE under

the max-resources configuration detects most of these races, though it still misses the races

in cpp_qsomp5 and c_loopB.badSolution1.

15

In terms of precision (the number of correctly detected races divided by the number

of all the races detected, including false positives—i.e., “false alarms”), ARCHER in both

configurations4 incurs no false positives, while IntelrInspector XE does. For example,

in benchmark c_md, IntelrInspector XE reports an additional race that is clearly a false

positive, as documented in related work [42]. In addition, in cpp_qsomp7—which uses

the tasking construct as per OpenMP 3.1—IntelrInspector XE reports two false positives,

which ARCHER in both configurations correctly avoids reporting as races. These results

clearly demonstrate that ARCHER accurately understands the OpenMP task synchroniza-

tion semantics.

We now discuss in detail performance results in terms of runtime and memory over-

heads. We only present the results for 16 threads because the tools incur similar over-

heads as we vary the number of threads.5 Figure 2.3 details runtime and memory over-

heads for benchmarks in the OmpSCR benchmark suite. In a nutshell, ARCHER out-

performs IntelrInspector XE across all of its configurations on most of the benchmarks.

IntelrInspector XE incurs the least overhead in its default configuration, but this comes at

the expense of degraded analysis quality. The extreme-scope configuration of IntelrInspector

XE, which is closer to the ARCHER’s analysis granularity, incurs much higher overhead

than ARCHER with a few exceptions. The max-resources configuration results in a very

high resource consumption and its overheads are always higher than that of ARCHER.

ARCHER performs slightly better with static analysis support than without, catching

all the data races in both cases. This can be mainly attributed to the fact that the OmpSCR

benchmarks are small (in terms of the lines of code), and hence static analysis finds very

few blacklisting opportunities. Still, ARCHER with static analysis support is overall 15%

faster on the average. In Section 2.3.2, we show that on real-world HPC application static

analysis reduces much more the runtime overhead, thus underscoring its importance in

practice.

4We omit the evaluation of ARCHER in the Sequential and Parallel Blacklisting configurations for the
OmpSCR benchmark suite since the results for those configurations match the results of ARCHER without
static analysis.

5We omit three OmpSCR benchmarks in our performance results. The data race in c_jacobi3 highly
influences the execution time of the benchmark, varying it by a factor of 1000 from run to run. The other
two are cpp_qsomp3 and cpp_qsomp4, where data races cause them to crash.

16

c_fft

c_fft6

c_jacobi01

c_jacobi02

c_loopA.badSolution

c_loopA.solution1

c_loopA.solution2

c_loopA.solution3

c_loopB.badSolution1

c_loopB.badSolution2

c_loopB.pipelineSolution

c_lu

c_mandel

c_md

c_pi

c_qsort

c_testPath

cpp_qsomp1

cpp_qsomp2

cpp_qsomp5

cpp_qsomp6

cpp_qsomp7

0

100

101

102

103
R

u
n
ti

m
e
 (

s)

c_fft

c_fft6

c_jacobi01

c_jacobi02

c_loopA.badSolution

c_loopA.solution1

c_loopA.solution2

c_loopA.solution3

c_loopB.badSolution1

c_loopB.badSolution2

c_loopB.pipelineSolution

c_lu

c_mandel

c_md

c_pi

c_qsort

c_testPath

cpp_qsomp1

cpp_qsomp2

cpp_qsomp5

cpp_qsomp6

cpp_qsomp7

0

100

101

102

103

104

M
e
m

o
ry

 (
M

B
)

Release InspectorDefault InspectorExtremeScope InspectorMaxResources Archer(no SA) Archer

Figure 2.3: Runtime and memory overhead of the tools on the OmpSCR benchmark suite
executed with 16 threads.

We assess the merits of the tools by plotting their analysis quality against performance.

Table 2.1 shows the execution slowdown for each of the OmpSCR benchmarks under each

of the tool configurations. We give the mean, median, and geometric mean in the last three

rows. For space reasons, we omitted our other statistical measurements. However, using

a confidence level of 0.05, we compared the slowdown distributions of each configuration

(i.e., how our 10 measurements varied for each target benchmark) and verified that the

distributions of ARCHER and ARCHER “no SA” do not overlap for a majority of cases. This

indicates that the difference in performance between ARCHER and ARCHER “no SA” is

statistically significant. In addition, Figure 2.4a gives the precision and accuracy of the

tools, displayed with their true and false positives counts. The plot show that ARCHER

provides the best analysis quality with respect to other state-of-the-art race detectors in-

17

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.0

Precision

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.0
A

cc
u
ra

cy

InspectorDefault (6,2)InspectorExtremeScope (6,3)

InspectorMaxResources (9,2)

Archer "no SA" (12,0)

Archer (12,0)

Precision and Accuracy

(a) Precision and accuracy; in parentheses we
report the number of reported races and false
positives.

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.0

F-score

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

G
e
o
m

e
tr

ic
 M

e
a
n
 S

lo
w

d
o
w

n

InspectorDefault

InspectorExtremeScope

InspectorMaxResources

Archer "no SA"

Archer

F-score vs. performance overhead slowdown

(b) Overall merit expressed as analysis quality
vs. performance.

Figure 2.4: Different metrics of comparison for the tools.

cluding IntelrInspector XE.

In Figure 2.4b, we use an F-score (F1 score) [43] to capture the overall quality of analysis.

The F-score is a measure of analysis quality that accounts for both accuracy and precision

(as defined previously) and is given by:

F1 = 2 · precision · accuracy
precision + accuracy

.

Thus, the F-score reaches its best value at 1 and worst at 0. In Figure 2.4b we plot each

tool onto a two-dimensional space defined by the F-score and slowdown geometric mean.

We use the geometric mean as our performance metric because the mean and median

are significantly skewed by outliers. Indeed, the slowdown values run the gamut from

253.4x to 1.7x (mainly because of the very different charateristics and running times of

the OmpSCR benchmarks), and this biases the arithmetic mean and median, while the

geometric mean is designed to compute a figure of merit under such circumstances. The

plot shows the general attributes of each tool in terms of accuracy and runtime overheads,

and our design goal is to create a tool that lies as close as possible to the lower right corner.

It is clear from the plot that ARCHER best meets this goal, as compared to other state-of-

the-art tools: both versions of ARCHER (with and without static analysis) do much better

than IntelrInspector XE in all its configurations.

18

2.3.2 AMG2013 Case Study

To complement our OmpSCR study with a larger code base, we perform an evaluation

on AMG2013, which contains approximately 75,000 lines of code. AMG2013 [44] is a

parallel algebraic multigrid solver for linear systems and is based on Hypre [24, 45], a

large linear solver library developed at LLNL. Our experiments with ARCHER discovered

three races within AMG2013, which were previously unreported. Thus, this application

was useful to quantify both the performance and analysis quality of the tools. In the

following, we compare the precision and performance of unmodified TSan, each ARCHER

configuration, and IntelrInspector XE in three different configurations.

The unmodified TSan, after reporting about 150 false positives, crashes and never

finishes its analysis. IntelrInspector XE reports all three data races when it is configured

with use-maximum resources. When using the extreme-scope configuration, it reports all

three of the races, but only when running with 16 threads. Finally, when using the default

configuration, IntelrInspector XE always misses one particular race of the three.

We now compare the performance of these tools in all of the different configurations.

Figure 2.5 shows the AMG2013 execution slowdown factor introduced by the tools a and

the relative performance factor of ARCHER (SA) against the other tools b. Both ARCHER

and IntelrInspector XE are dynamic checkers, and hence they introduce a large runtime

overhead with respect to the application execution under no tool control (see Figure 2.5a).

However, it is clear that ARCHER has significant performance advantages relative to other

tools. In fact, Figure 2.5b shows the relative performance of ARCHER (with and without

static analysis) against all of the three configurations of IntelrInspector XE. ARCHER

is generally 2–15x faster than IntelrInspector XE depending on the number of threads.

When compared to itself, ARCHER without static analysis support improves the perfor-

mance by a factor between 1.2 and 1.5 depending on the number of threads.

ARCHER also reduces the memory overhead relative to IntelrInspector XE in com-

parable configurations (modes other than default). However, its memory footprint still

appears unnecessarily large. We surmise that this is because of TSan’s runtime shadow

memory allocation policy, which ARCHER inherits unmodified. In particular, when an

array is initialized, all of its elements are accessed, and this causes TSan to allocate shadow

memory corresponding to the entire array during initialization. Thereafter, TSan does

19

2 4 8 12 16

of threads

0

10

20

30

40

50

S
lo

w
d
o
w

n

139 136 120 93 100

(a) AMG2013 execution slowdown

2 4 8 12 16

of threads

0

1

2

3

4

5

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
ce

 o
f

A
rc

h
e
r

(S
A

)

13 13 9 4 3

(b) Relative performance of ARCHER (SA)
InspectorDefault InspectorExtremeScope InspectorMaxResources Archer (no SA) Archer SequentialBlacklisting ParallelBlacklisting

Figure 2.5: AMG2013 execution slowdown factor introduced by the tools (a) and the
relative performance factor of ARCHER (SA) against the other tools (b).

not selectively deallocate this shadow memory, for instance, based on whether the array

locations are live beyond a certain point. In our future work, we plan to confirm this,

and then achieve selective deallocation—a possibility suggested by OpenMP’s structured

parallelism model.

The overall gains due to static analysis depend on the proportion of sequential regions

(for Sequential Blacklisting) and data independent loops (for Parallel Blacklisting). Our

future work will focus on characterizing these gains across many more large case studies.

2.3.3 ARCHER Resolves Real-World Races

We now present how ARCHER aided LLNL scientists in resolving the intermittent

crashes in HYDRA mentioned in Section 2.1. This investigation was spurred into action

when our AMG2013 experiment discovered the three races mentioned earlier. Of the

three data races flagged by ARCHER, two6 were found in a fairly complex OpenMP region

spanning over 400 source lines with tens of reaching variables. The fact that these flagged

sites were contained within a deeply nested control-statement level further complicated

manual analysis; thus, we contacted the developer for further validation.

In response, the developer confirmed that both were indeed true races. Specifically,

6Specifically, one between the memory accesses at lines 1183 and 1248 and the other at lines 1184 and 1249
within par_interp.c

20

one thread accesses the first element of a portion of an array defined by P_diag_i and

P_offd_i (belonging to the next thread), while the second thread subtracts a number

from this element. However, because the number being subtracted for this particular

element was zero, this condition was never detected during testing. While program-

mers often consider this type of races (i.e., multiple threads writing the same value to

the same memory location) benign, the developer did recognize that the containing func-

tion, hypre_BoomerAMGInterpTruncation, was one of the routines that they had to disable

OpenMP parallelization on for reliable use within HYDRA.

Encouraged by our findings, the application’s team resumed their debugging of this

issue. They applied a fix to these benign data races to the latest Hypre release (2.10.0b) and

reran the simulation. This time, however, the simulation failed in a different way: a crash

occurred very quickly and much more deterministically. Next, we applied ARCHER to this

Hypre release using a representative test code provided by the developer, and ARCHER

reported several additional benign data races; tqhe races were detected between lines 2313

and 2315 of par_coarsen.c where threads write the constant 0 to the same element in an

array: CF_marker[j] = 0.

The developer was initially skeptical that these races were the root cause because threads

write the same numerical constant: 0 in the coarsening and 1 in par_lr_interp.c. How-

ever, when we fixed all of these races, for example by synchronizing the respective assign-

ments with OpenMP critical, the crashes no longer appeared. We theorize that the compiler

(IBM XL) used on this platform, which would assume race-free code for optimization,

transformed the code in such a way that those benign races turned into harmful ones, a

pitfall described previously by Boehm [32].

While the developer is currently trying to find a way to resolve the races in a more

performant manner, it was made clear that data race checkers like ARCHER, which are

tailored to large HPC applications, are crucial to avoid a programmer productivity loss on

such elusive bugs.

2.4 Related Work
Data race detection in general is one of the most widely studied problems in concurrent

program design and has been shown to be NP-hard [7]; a complete survey is beyond

21

the scope of this section and so we focus on closely related approaches for correctness

checking.

According to Erickson et al. [46], data races must be taken as “the smoking gun” for

any number of root causes: insufficient atomicity (as per intended code behavior), an

unreliable communication idiom, unintended sharing [13], or a misunderstanding of how

generated code behaves vis-a-vis the higher level program view (including possible mis-

compilation [32]). Static race detection methods provide high checking efficiency, but are

known to generate false positives (e.g. [47, 8]); each false positive can be a month of wasted

reconfirmation time [48]. Polynomial-time race checking can often be achieved under

structured concurrency [27]. Predictive methods attempt to find many more “implied”

races based on an initial execution through the program (e.g., [49]).

ARCHER derives much of its efficiency by avoiding the instrumentation of independent

loop iterations as well as sequential code regions. These approaches to achieve parsi-

monious instrumentation have recently been shown effective in the context of TSan and

PThread programs through a technique called section-based program analysis [50]. The

idea of specializing race checking has also taken root in the context of GPU programs

where symbolic methods coupled with the idea of using a two-thread abstraction scheme

have become popular [21, 51, 52]. This approach is also, in principle, applicable to OpenMP

data race checking [20].

2.5 Discussion
Despite OpenMP being around for over two decades, there are no practical data race

detectors for OpenMP programs that an HPC practitioner can use in the field today; ARCHER

is the first such race checker and its approach is both timely and necessary to provide the

widening field of OpenMP programming with this critical correctness tool capability. In

fact, the main developer of TSan has taken active interest in our work, and even the LLVM

community has helped us by supporting TSan on the PowerPC platform [53].

While ARCHER has proven to be useful at debugging real-world races in OpenMP

applications, we now discuss the practical implications of our approach with respect to

(1) features in the latest OpenMP specifications and (2) the use of compiler optimization

flags.

22

2.5.1 Latest OpenMP Specifications

The OpenMP Architecture Review Board released the latest OpenMP specification (Ver-

sion 4.0) in July 2013. We expect that it will take major compilers a few years to come to

full compliance with this specification. At the point of writing, there exists no compiler

that can fully support OpenMP 4—including its device construct. The OpenMP branch

of Clang/LLVM, under which we demonstrate our approach, supports only OpenMP 3.1.

While this practical limitation only allowed us to explore the problem space in OpenMP

3.1, we recognize that OpenMP 4, when implemented by compilers and thus adopted by

our applications, will present a new set of challenges to our approach.

In particular, with the device construct, OpenMP threads will be run not only on CPUs

but also on accelerators, such as GPUs, which could also be subject to the harmful effects

of data races. Unfortunately, tooling in this area is not as comprehensive as designers

may like. For example, the CUDA Memcheck tool [54] is limited in that it can only detect

data races that occur in the thread-block level shared memory space; yet, in practice, races

also occur in the global memory scope [52]. Given the current trends to provide coherent

memory between CPUs and GPUs [2], it is clear that the community will need more

comprehensive race detection techniques. In addition, because of the higher numbers of

OpenMP threads that can run on GPUs, techniques to further enhance scalability (e.g., by

exploiting thread symmetry relationships) must be researched and developed.

2.5.2 Compiler Optimization Flags

Recent work [32] suggests that it is critical to pinpoint and fix data races that many

programmers consider benign. In particular, the presence of any data race can lead a

compiler to turn a benign race into a harmful one, even when code transformations that are

considered safe are used. In this regard, ARCHER can best detect data races at the source

level with no compiler optimization (-O0). This is because an optimization can hide the

presence of a race through transformations. Further, there could be data races introduced

through an illegal transformation. This is a problem within the compiler and ARCHER

does not pursue this class of errors.

23

2.6 Conclusions and Future Work
In this work we presented ARCHER, an OpenMP data race checker that embodies

the design principles needed to cope with and exploit the characteristics of large HPC

applications and their perennial development lifecyle. ARCHER seamlessly combines the

best from static and dynamic techniques to deliver on these principles. Our evaluation

results strongly suggest that ARCHER meets the design objectives by incurring low runtime

overheads while offering very high accuracy and precision. Further, our interaction with

scientists shows that it has already proven to be effective on highly elusive, real-world

errors, which can significantly waste scientists’ productivity.

However, our challenge does not end here. As part of bringing ARCHER to full produc-

tion, we must further innovate. In particular, we need to reduce its runtime and memory

overheads further so as to benefit a wide range of production uses. For this purpose, we

will keep tapping into a great potential in the static analysis space. For example, ARCHER

currently classifies each OpenMP region with the binary classification system: race free or

potentially racy. More advanced technique will allow us to move away from the binary

logic. In fact, we plan to crack open each of these potentially racy regions and apply

fine-grained static techniques in order to identify and exclude race-free subregions within

it. Exploiting symmetries in OpenMP’s structured parallelism is another venue we plan

to explore. Adequately defined symmetries will allow ARCHER to target a smaller set of

representative threads and memory space for further overhead reduction.

Clearly, the aforesaid challenges cannot be pursued single-handedly. To enable com-

munal participation (as noted earlier), we have released ARCHER in the public domain [26],

and are looking forward to input from the community.

2.7 Summary
In this chapter we have presented the following contributions:

• The first practice and open-source data race checker for OpenMP programs.

• A precise, accurate, and scalable data race detection tools for real-world HPC appli-

cations.

• An extensive evaluation of ARCHER on a well-known benchmark and a HPC appli-

cation.

24

• The successful result of ARCHER identifying, in a real-world OpenMP HPC applica-

tion, data races that prevented the scientists to correctly port the program to the new

supercomputer Sequoia at the LLNL.

CHAPTER 3

AN OPERATIONAL SEMANTIC BASIS FOR

OPENMP RACE ANALYSIS

This chapter is based on work published on arXiv [55].

In the previous chapter we presented the OpenMP data race checker ARCHER whose

technique, although experimental results showed its precision and accuracy, it suffers

from high memory overhead. In this chapter we address some of the intrinsic limitations

of ARCHER’s technique through the definition of an operational semantics that formally

defines the concurrency structure of OpenMP and enable a more precise and accurate data

race detection analysis.

3.1 Introduction
OpenMP is the de facto standard for on-node parallelism in High Performance Com-

puting. While OpenMP is highly portable and easy to use, it is also error-prone. Data races

are one of the major source of errors in OpenMP based HPC applications. Although many

existing correctness checking tools support programmers in the detection and removal of

data races, these tools rely on static and dynamic analyses that either may not fit well

with the needs of practical OpenMP race checking [10, 9, 56], miss races, or incur high

overheads. Even symbolic analysis methods for OpenMP suffer from these issues [20].

Our past work has successfully adapted static and dynamic analysis to OpenMP and

offered a practical race checker called ARCHER that has caught data races in critical field

applications [23]. However, ARCHER suffers from high memory overheads, and misses

races in many cases due to its exclusive reliance on the happens before model. It is well

known that the races caught under this model depend on the schedule actually played

out. That is, races within alternate schedules may be missed.

Our approach is to follow the lead of those who have exploited structured parallelism

to make race-checking simpler and more efficient, for example for OpenMP [57], Cilk [58],

26

and X10 [59]. We define an operational semantics that models the concurrency structure

of OpenMP programs, exploiting the tool API (OMPT) [28] of modern OpenMP runtimes

to identify every OpenMP event in the execution. Our approach also has the flavor of

combining the exploitation of structured parallelism with lock-set based race checking (see

Section 3.3.5 for our lock handling rules). The result is a more precise and traceable data

race checker based on a clear operational semantics that fits in one page over 10 rules

(Section 3.3.5), supported by some helper functions (Section 3.3.4). We believe that our for-

malization will benefit designers who seek to model new data race detection techniques for

structured parallelism (in particular OpenMP) and those seeking to build and understand

new and existing data race checkers.

Raman et al., in their work in this area [60, 27], propose techniques to exploit the struc-

tured parallelism on parallel programming models such as Cilk and X10, their techniques

currently are focused on async/finish structured parallelism of X10 and Habanero-Java.

This makes their technique not directly applicable to OpenMP at this point. To summarize,

the main contributions of this work are:

• An operational semantics that model the concurrency structure of an OpenMP pro-

gram matching the OMPT events, and an overview of a prototype race checker that

demonstrates how such a semantics can be a workhorse for race checking.

• A set of rules that exploit the OpenMP structured parallelism to identify races.

• An extensible operational semantics that allows future OpenMP constructs to be

captured and analyzed.

The remainder of this chapter is structured as follows: Section 3.2 discusses limitations

of existing techniques that our operational semantics can overcome; Section 3.3 illustrates

the state machine that implements the operational semantics rules, the conventions used to

define the operational semantics rules, how we model the OpenMP constructs in our con-

currency model, and a real example to show the effectiveness of the operational semantics

in identifying data races; Section 3.4 gives some ideas of a possible implementation of the

operational semantics in a real data race detection tool; Section 3.5 concludes the chapter.

27

3.2 Background
In this section we give an overview of the happens-before relation for dynamic data race

detection analysis that underlies existing race detectors [23, 9, 14]. For our purposes, event

a happens before [11] event b (a→ b) if (1) they occur in that order within the same thread,

(2) if a is an unlock and b is a lock, or (3) they are synchronized otherwise (e.g., a is before a

barrier and b happens after the barrier). A data race is a happens-before unordered pair of

events where one event is a write. Vector-clocks [61, 62] and their adaptations [9] typically

help realize happens-before. Happens-before is defined per thread schedule, thus making

happens-before based race detectors miss races when they do not exercise all schedules.

For example, in listing 3.1, we depict a parallel region with two threads. The main thread

initializes a inside the master construct, and both threads write variable a within a critical

section. Because the OpenMP master construct does not enforce an implicit barrier at its

termination point, while thread 0 initializes a, the thread 1 can simultaneously access a

within the critical section, introducing a data race.

Listing 3.1: Data race in OpenMP program that may not manifest at runtime.
int a ;

#pragma omp parallel shared (a) num_threads (2)
{
#pragma omp master

{
a = 0 ;

}
#pragma omp critical

{
a += 1 ;

}
}

In Figure 3.1 we exhibit three different thread interleavings for the program in List-

ing 3.1. In the first two interleavings, the data race on a manifests itself. Indeed in Fig-

ure 3.1a, first thread 2 reads and writes within a synchronization block, while thread 1

performs a nonsynchronized write. As shown in the figure, the nonsynchronized write

from thread 1 can happen anytime, even though thread 2 is accessing a within a critical

section. In Figure 3.1b, first thread 1 performs a nonsynchronized write and thread 2

reads and writes within a synchronization block. In both cases, the two threads access

simultaneously a and the data race detection algorithm shows the absence of happens-

28

Thread 0 Thread 1
acq(L)

r(a)
w(a)
rel(L)

w(a)
acq(L)

r(a)
w(a)
rel(L)

(a) Interleaving 1, no
happens-before (race
detected).

Thread 0 Thread 1
w(a)

acq(L)
r(a)
w(a)
rel(L)

acq(L)
r(a)
w(a)
rel(L)

(b) Interleaving 2, no
happens-before (race
detected).

Thread 0 Thread 1
w(a)

acq(L)
r(a)
w(a)

rel(L)
acq(L)
r(a)
w(a)
rel(L)

(c) Interleaving 3, happens-
before (no race detected).

Figure 3.1: Possible interleavings for program in Listings 3.1. The dashed line indicates
the write operation of Thread 0 can happen simultaneously with the operations of Thread
1. The solid line indicates the happens-before edge between the threads.

before between the threads, catching the data race. On the other hand, in Figure 3.1c

we have the typical situation where happens-before masks a race. Thread 1 executes

both nonsynchronized and synchronized accesses on a before thread 2 performs any other

operation. The release of the lock by thread 1 creates a happens-before edge with the

acquiring of the same lock by thread 2, masking the previous nonsynchronized write by

the first thread.

In our approach, races such as in Figure 3.1 are detected thanks to a global data struc-

ture that maintains relevant memory accesses information performed by the threads, along

with other information such as operation type, thread id, and locks held while making

accesses. At each barrier, the operational semantics verifies the presence of data races,

analyzing all the memory accesses performed by the threads up to that point, ensuring no

data race will be missed (details are in Section 3.3).

A key property of our operational semantics is that it highlights the concurrency struc-

ture created by a particular OpenMP program. If a particular thread forks two different

threads and these threads perform their own accesses, our semantics records these accesses

not in terms of a particular interleaving, but as a pair of accesses at specific positions in the

fork-join structure, together with the mutex locks held when making the access. We exploit

the idea of offset span labels pioneered by Mellor-Crummey [63] to record “positions” within

the concurrency structure. We believe that these mechanisms serve the dual purpose of

29

(1) creating a concurrency representation that is general enough to “hang” on it future

extensions to OpenMP’s concurrency structure, and (2) also efficient enough to support

the creation of a dynamic race detector.

3.3 Operational Semantics
The basic idea behind the operational semantics is to advance a state machine along

the execution of the program in response to OpenMP events, and update the concurrency

structure held in our state representation. Typical events include fork/join events (be-

gin/end of a parallel region), acquiring and releasing of locks that guard critical sections,

loads, stores, etc. The capturing of the OpenMP events is enabled by the new OpenMP

Tools API (OMPT) [28] that modern OpenMP runtime implements to facilitate the devel-

opment of correctness and performance tools. The OMPT interface triggers a callback for

each OpenMP event that happens at runtime so that tools can access important information

including parallel regions creation, threads entering or exiting a critical section, barrier exe-

cutions, etc. The operational semantics rules match the OMPT events to correctly represent

the concurrency structure of the OpenMP program. Each thread maintains a label in terms

of offset-span labels that marks its lineage in the concurrency structure defined by prior

forks and joins. Figure 3.2 illustrates the concurrency structure of the code in Listing 3.2,

where circles represent the starting point of threads, and vertical lines represent traces

of a thread’s execution. Two or more diagonal lines that exit/enter the circles represent

fork/join points in the program.

In our example, master thread 0 creates a parallel region of two threads (thread 1 and 2).

Each thread creates a nested parallel region of a team of two. Because of the SIMD model

followed, all threads in a parallel region execute the operations indicated at the horizontal

tick marks.

Notice how each thread in the diagram has associated an id and a label which consists

of pairs in square brackets. The id identifies the thread in the diagram, while the second

label is the offset-span label. The offset-span label length grows at each fork and shrinks at

each join.

When a thread reaches a fork, it creates a parallel region and a new pair of integers

is added to the offset-span label. The first integer indicates the thread rank (ID) and the

30

0 - [0,1]

1 - [0,1][0,2] 2 - [0,1][1,2]

3 - [0,1][0,2][0,2] 4 - [0,1][0,2][1,2]

7 - [0,1][2,2]

5 - [0,1][1,2][0,2] 6 - [0,1][1,2][1,2]

11 - [0,1][3,2]

12 - [1,1]

8 - [0,1][2,2][0,2] 9 - [0,1][2,2][1,2]

10 - [0,1][4,2]

IBarrier(3)

Barrier(1)
read(x)
write(y)

write(x)
m_acq()

m_rel()

read(y)
m_acq(M1)

m_rel(M1)
IBarrier(4)

Barrier(2)

write(y)
m_acq(M1)

m_rel(M1)

write(x)
m_acq()

m_rel()

IBarrier(6)

FOR-LOOP

IBarrier(7)

R1: race on y

R2: race on y

R3: race on x

IBarrier(5)

Figure 3.2: Structure of the OpenMP program in Listing 3.2.

second one indicates the number of the threads in the team. On the other hand, when

threads join, the last pair of the label is removed and the previous label position is updated.

We do not provide all the details of offset-span label manipulations here (see [63] for that);

however, our semantic rules do include all the relevant details (Section 3.3.2). Mellor-

Crummey has shown that given two threads and their offset-span labels, it is possible to

determine if the two thread accesses are concurrent, and this happens to be the crux of race

checking.

In our example of Figure 3.1, thread 0 creates the first parallel region and the opera-

tional semantics records this event through one of its rules. The same happens for thread

1 and 2 when they create the two nested parallel regions. At this point, each thread starts

the execution of the operations in the program. In both nested parallel regions, the threads

acquire different locks to access the shared variables. This triggers specific operational

semantic rules to record the operations in the history of each thread.

More specifically, in the left parallel region, threads 3 and 4 enter a global critical

section, write on x and exit from the critical section. At the same time, threads 5 and 6

in the nested parallel region on the right acquire a lock on M1, write on y and release

31

Listing 3.2: OpenMP program with nested parallel regions.
#pragma omp parallel shared (x , y) num_threads (2)
{

if (omp_get_thread_num () % 2 == 0) {
// Left-branch of the graph

#pragma omp parallel num_threads (2)
{

#pragma omp critical
{

x = 1 ;
}

#pragma omp barrier
y = x ;

}
#pragma omp parallel num_threads (2)

{
#pragma omp critical (N1)

{
p r i n t f ("Y: %d\n" , y) ;

}
}
} else {

//Right-branch of the graph
#pragma omp parallel num_threads (2)

{
#pragma omp critical (N1)

{
y = y + 1 ;

}
#pragma omp barrier
#pragma omp forg

for (int i = 0 ; i < 1 0 ; i ++) {
#pragma omp critical

{
x = x + 1 ;

}
}

}
}

}

the lock. Also, the loads and stores performed by threads trigger a rule that stores the

information about the memory accesses in a global structure along with the thread id and

the id of the mutexes previously acquired by the thread (if any).

In our example, threads 3 and 4 reach the barrier 1 eventually, while threads 5 and

6 reach barrier 2. When a parallel thread reaches a barrier (either implicit or explicit), it

waits for all the other threads in the team; they then synchronize and proceed with the

execution. The state machine triggers different rules at the barrier to model the thread

32

synchronization–but more importantly to perform the data race detection on the operations

executed up to that point.

The data race detection rule first identifies all possible concurrent threads in the system,

comparing their offset-span labels. Second, it compares, for a given thread, its memory

accesses with the memory accesses of another concurrent thread. If the rule identifies two

memory accesses to a common location, at least one write, and without synchronization

(or different mutex ids), it reports the race.1

Let us suppose the threads 8 and 9 have reached the implicit barrier 4, while the threads

5 and 6 are waiting at the implicit barrier 6. (Notice how threads 3 and 4 already joined into

thread 7 which generated a new nested parallel region with threads 8 and 9. The global

data structure still contains all the operations performed during the program execution up

to those barriers.) All of the threads trigger the data race detection algorithm through one

of the barrier rules. Up to that point, the global structure that collects the memory accesses

contains all the loads and stores executed by the threads and related mutex information

used for the memory accesses. The data race algorithm has all the information to identify

potential data races. As stated previously, the algorithm identifies and compares only the

memory accesses of concurrent threads.

In our example, there are three data races, identified by R1, R2, and R3.

• R1 happens within the same nested parallel region on shared variable y. This hap-

pens because both thread 3 and 4 (that are concurrent) write the shared location

without any synchronization.

• Race R2 manifests between the threads of the two nested different parallel regions.

The involved threads are 3 and 4 from the parallel region on the left, and 5 and 6

from the right parallel region. All the threads are concurrent to each other: threads 5

and 6 write on y through the critical section M1 and they do not race with each other.

However, the concurrent threads 3 and 4 write on the same shared variable without

any synchronization racing with threads 5 and 6.

1While these comparisons can make race-checking inefficient, our implementation in progress splits the
burden into online event logging and offline event analysis that employs parallelism, as elaborated in Sec-
tion 3.4.

33

• R3 is similar to thread R2 but on the shared data x.

• The data race detection algorithm identifies the races by comparing all the memory

accesses in the global structure only for the possible concurrent threads. It is inter-

esting to notice that the algorithm does not report any races on y between threads 3,4

and the threads 8,9. By comparing the offset-span labels, the algorithm recognizes

that threads 3 and 4 have already terminated when threads 8 and 9 start their work,

so they are not deemed concurrent.

We now detail our semantics, presenting each of its component building blocks in separate

sections, followed by our semantic rules themselves.

3.3.1 Predicates and Conventions

We first need to state our conventions. N is the set of natural numbers, {0, 1, 2, . . .}.

x ∈ N can be treated as a set {0, . . . , x − 1} as in set theory. Thus, 0 = {}, 1 = {0},

2 = {0, 1}, 3 = {0, 1, 2}, etc. Whenever we treat a member of N as a number as well as a

set, we’ll make sure to provide a hint. t ∈ TID is a thread identifier for some TID ∈ N.

ADDR ∈N is the range of memory addresses accessed by the threads.

3.3.2 Offset-Span Labels

We showed how the offset-span labels are used to identify whether two threads are

concurrent, and apply the data race detection only in that case. The offset-span label

mechanism was introduced in [63]. An offset-span label, osl for short, labels each thread’s

execution point with a sequence of pairs, marking its lineage in the concurrency struc-

ture defined by prior forks and joins. The domain for the offset-span labels is OSL =

(N×N)N, i.e. each member osl ∈ OSL is a sequence of pairs:

[a1, b1][a2, b2], . . . , [an, bn].

Let us take two offset-span labels osl1, osl2 ∈ OSL, respectively associated to thread

1 and thread 2. These labels are sequential (hence the thread 1 and thread 2 are not

concurrent) when:

34

case 1 ∃P,S(osl1 = P) ∧ (osl2 = PS), where P and S are any non-null sequence of

ordered label pairs.

case 2 ∃P,Sx ,Sy,ox ,oy,s(osl1 = P[ox, s]Sx) ∧ (osl2 = P[oy, s]Sy) ∧ (ox < oy) ∧ (ox mod s =

oy mod s) where P, Sx, and Sy are (possibly null) sequence of ordered pairs.

Otherwise, they are concurrent.

The offset-span label is an important piece of our concurrency model since it gives

precious information regarding whether two given threads can actually race or not. For

further details, please see [63].

3.3.3 System State

The state of the system consists of a global state GS and a set of thread local states TP

(Thread Pool). The total state ts of any system is a pair “Global State, Thread Pool.” A

specific total state ts is:

ts = 〈gs, tp〉

Each total state ts originates from the domain TS, where TS = GS× TP.

Each global state gs is a 4-tuple:

〈bm, m, rw, σ〉

Each global state gs originates from the domain GS, where

GS = BM×M× RW × Σ

where:

• The domain BM = ParRegID 7→ (N×N). Thus, for each bm ∈ BM, we have bm :

ParRegID 7→ (N×N). Given a p ∈ ParRegID, bm returns a pair of natural numbers

(a, b), where a is the “current Barrier Count” and b is the “target Barrier Count.”

When a thread t with offset-span label osl executes a ParBegin(N) instruction, N

threads are created, and an entry 〈osl, (0, N)〉 is added to function bm2. The first

2Recall that functions are single-valued relations, or sets of pairs with unique second component for each
given first component. Thus, {〈osl, (0, N)〉} is a function. We allow functions to evolve, i.e. undefined for
items explicitly added.

35

field a is incremented each time a thread hits a barrier. When the value reaches the

number of threads in the team, it signals that all threads have synchronized at the

barrier and the program can continue its execution.

• “Mutex” m comes from domain M where M = Names 7→ ({−1} ∪ TID). That

is, given a mutex name m ∈ Names, M[m] = −1 means that this mutex is free.

Otherwise, M[m] = t, recording the fact that this mutex is held by the task associated

to thread t. We use the value µ to indicate a mutex that has no name associated. A

mutex with no name is usually the common case in a OpenMP progam and it refers

to any global critical section or lock (e.g. #pragma omp critical).

• Let memory access-type MAT = {R, W} indicates a read or a write operation of a

memory access.

• rw ∈ RW is a tuple (data structure) that maintains all the memory accesses of each

thread in the system. We have RW = TID×OSL×N× ADDR×MAT ×M. Each

memory access performed by thread t is recorded as the tuple

〈tid, osl, bl, addr, mat, mutex〉

where:

– tid ∈ TID is the thread ID;

– osl ∈ OSL is the offset-span label;

– bl ∈N is the barrier label of the last barrier seen by the thread t;

– addr ∈ ADDR is the memory address;

– type ∈ {R, W} records reads or writes;

– mutex is the synchronization state (value of M in GS) at the time of the access;

• σ ∈ Σ is the data state of the system, as described earlier.

36

The local state TP is the thread pool that contains a list of 3-tuples, each one of which

is the local state of a thread:

〈tid, osl, bl〉

The domain TP = 2TID×OSL×N where:

• t ∈ TID is the id of the thread;

• osl ∈ OSL is an offset-span label;

• bl ∈ N is the label of the barrier the thread has witnessed last. We assume that each

barrier instruction is of the form bar(L) where L ∈ N carries the barrier number. A

thread crossing a barrier sets its bl to the value L.

3.3.4 Helper Functions and Predicates

We define some helper functions to support the operational semantics rules. They can

be operators or functions that receive some arguments in input and return a certain result

or state useful for the rule execution. The helper functions are the following:

• as: is used as in Ocaml (it allows a name for a whole structure, as well as helps us

refer to the inner details of the structure).

• most(lst): we define most as a function that returns the same list given in input except

the last element (i.e., in Python lst[:-1]).

• ‖: This operator is used to describe that two different threads are concurrent. In

particular, given two offset-span labels osl1 for thread T1 and osl2 for thread T2, osl1 ‖

osl2 (read osl1 and osl2 are concurrent) means that the threads T1 and T2 may race.

• SpawnChildren(〈ptid, posl, pbl〉, σ, N): Given the parent’s thread id (ptid), offset-span

label (posl) and barrier label (pbl), this function creates a pool of N threads — specifi-

cally, the local states of these threads 〈tid, osl, bl〉. It initializes the offset-span label osl

for each thread created (e.g. at the beginning of a parallel region), by extending posl

with pairs [0, N] through [N− 1, N]. The bl is set to pbl. The threads id are somehow

uniquely generated.

37

• GetChildJoin(tp): returns the single thread-state triple that result from fusing all the

threads in the thread pool tp.

• Concurrent(OSL, t1, t2) is the function that compares the offset-span labels as de-

scribed in Section 3.3.2.

• AddRW(〈tid, osl, bl, addr, mat, m, n〉) adds the access into the rw structure. The record

says “an access by tid with offset-span label osl and barrier label bl is performed at

address addr with memory access type mat, when the mutex state is m.”

• Full(bm, osl): This predicate keeps the count of the number of threads that have

reached a ParEnd(N) (or a Barrier(bid)) construct. In order to count the threads, it

uses the structure bm which is indexed by the ParRegID represented by the offset-

span label osl. In other word, the predicate Full means that other threads have

reached the construct and have incremented the counter in the bm structure. From a

functional language point of view Full would look like:

let F u l l (bm, o s l) =
let (count , N) = bm[o s l]
in (count == N − 1)

• WaitAtBarrier(bid): This predicate is used for the example in Section 3.3.6 to indicate

that a thread already encountered a barrier and it is waiting for the other threads in

the team.

• RaceFail(state, addr, t1, t2): This helper function is used to report the race found on

addr, between thread t1 and thread t2.

3.3.5 Operational Semantics Rules

Now, we explain the rules in Figure 3.3 one by one. While each rule models a different

behavior, all rules update the system state incrementing the program counter to point to

the next instruction.

• Parallel Region Begin: The ParallelBegin rule models the creation of the team of

threads for the encountered parallel region and initializes the offset-span labels for

each thread.

38

ParallelBegin(N)

at(tid, σ, ParBegin(N))∧
tp′ = (tp− {te} ∪ SpawnChildren(〈tid, osl, bl〉, σ, N))∧

bm′ = bm ∪ {〈osl, (0, N)〉} ∧ σ′ = nxt(σ, tid)
〈gs, tp〉 −→ 〈gs′ as 〈bm′, m, rw, σ′〉, tp′〉

(3.1)

ParallelEnd(N)

tp′ ⊆ tp ∧ at(tid, σ, ParEnd(N))∧
σ′ = nxt(σ, tid) ∧ tp′′ = tp− tp′ ∪ GetChildJoin(tp′)

〈gs, tp〉 −→ 〈gs′ as 〈bm, m, rw, σ′〉, tp′′〉
(3.2)

ImplicitTaskBegin()
at(tid, σ, ImplicitTaskBegin()) ∧ σ′ = nxt(σ, tid)

〈gs, tp〉 −→ 〈gs′ as 〈bm, m, rw, σ′〉, tp〉
(3.3)

ImplicitTaskEnd()
at(tid, σ, ImplicitTaskEnd()) ∧ σ′ = nxt(σ, tid)
〈gs, tp〉 −→ 〈gs′ as 〈bm, m, rw, σ′〉, tp〉

(3.4)

LoadStore()

at(tid, σ, LoadStore(addr, mat))∧
rw′ = ADDR− RW(tid, osl, bl, addr, mat, mutex) ∧ σ′ = nxt(σ, tid)

〈gs, tp〉 −→ 〈gs′ as 〈bm, m, rw′, σ′〉, tp〉
(3.5)

AcquireMutex(name)

at(tid, σ, AcquireMutex(name)) ∧m[name] = ∅∧
m′ = m[name→ tid] ∧ σ′ = nxt(σ, tid)
〈gs, tp〉 −→ 〈gs′ as 〈bm, m′, rw, σ′〉, tp〉

(3.6)

ReleaseMutex(name)

at(tid, σ, ReleaseMutex(name)) ∧m[name] = tid∧
m′ = m[name→ ∅] ∧ σ′ = nxt(σ, tid)
〈gs, tp〉 −→ 〈gs′ as 〈bm, m′, rw, σ′〉, tp〉

(3.7)

Barrier(bid)

at(tid, σ, Barrier(bid)) ∧ Full(bm, most(osl))∧
bm′ = bm− {〈osl, ∗〉} ∧ σ′ = nxt(σ, tid)
〈gs, tp〉 −→ 〈gs′ as 〈bm′, m, rw, σ′〉, tp〉

(3.8)

Barrier(bid)

at(tid, σ, Barrier(bid)) ∧ ¬Full(bm, most(osl))∧
bm[most(osl)] as (count, N)∧

te′as(tid, osl, bid) ∧ tp′ = tp− te ∪ {te′}∧
bm′ = bm ∪ {〈osl, (count + 1, N)〉} ∧ σ′ = nxt(σ, tid)

〈gs, tp〉 −→ 〈gs′ as 〈bm′, m, rw, σ′〉, tp′〉
(3.9)

Barrier(bid)

te1 as (tid1, osl1, bl1) ∈ tp ∧ te2 as (tid2, osl2, bl2) ∈ tp ∧ (tid1 6= tid2)∧
Concurrent(osl, tid1, tid2) ∧ i ∈ rw[tid1] ∧ j ∈ rw[tid2]∧

(rw[tid1][i].addr == rw[tid2][j].addr)∧
(rw[tid1][i].mat == W) ∧ (rw[tid2][j].mat == W)∧

(rw[tid1][i].mutex ∩ rw[tid2][j].mutex = ∅)∧
(rw[tid1][i].bl == rw[tid2][j].bl) ∧ (rw[tid1][i].bl ‖ rw[tid2][j].bl)

〈gs, tp〉 → RaceFail(σ, addr, tid1, tid2)
(3.10)

Figure 3.3: OpenMP concurrency operational semantics

39

• Parallel Region End: The ParallelEnd rule models the end of the parallel region.

It terminates the threads in the team except the master thread which resumes its

execution.

• Implicit Task Begin: The ImplicitTaskBegin rule fires when a thread, after its creation,

begins the associated implicit task which performs the work within the parallel re-

gion. This rule is a helper transition to initialize the thread and its implicit task state.

• Implicit Task End: The ImplicitTaskEnd fires when a thread exits the implicit barrier

and the parallel region is terminating. It also resets the thread state.

• Load Store: The LoadStore rule triggers every time a thread performs a read or a write

operation. Its task is to store the information about the current memory accesses of

a thread along with other information such as the current locks held by the task,

offset-span label, and so forth. The information about a load or a store are kept in a

data structure shared among all threads.

• Acquire Mutex: The rule AcquireMutex fires when a thread encounters a synchro-

nization construct, such as a critical section. It stores the id (µ in case of global

critical section) of the synchronization construct into a data structure for the given

thread. All the following memory accesses will be stored with the information that

they happened within the given synchronization region.

• Release Mutex: The rule Release Mutex instead fires when a thread encounter the end

of a critical section or release a lock. It removes, from the thread’s data structure, the

id of the synchronization construct.

• Barrier: The Barrier rules are of extreme importance since they implement the data

race detection algorithm. The first two rules make sure that all threads in a team

reached the barrier and update the information in the global state. Once all threads

have hit the current barrier the third rule triggers and perform the race check. The

data race check consists of searching for memory accesses conflicts between each

given pair of concurrent threads. First, the rule checks if the pair contains two

concurrent threads, either checking if they belong to the same barrier interval or

comparing the offset-span labels. In the event the threads are concurrent, the rule

40

applies the other checks to search for data races. It looks into the loads/stores data

structures for memory accesses with the same address, checks if at least one of them

is a write and they do not have any synchronization regions in common. In case all

these checks are positive the rule triggers a RaceFail event to report the data race.

3.3.6 Operational Semantics Example

In this section we show an application of the operational semantics in an OpenMP

example. We show how each rule is triggered according to the operations performed by

the program. We also provide a transition table to illustrate the system state and how it

changes under the execution of each rule. The example we use is the OpenMP program

shown in Listing 3.1. Initially we have only the main thread, the total state of the system is

therefore the following:

init = 〈gs, tp〉

with:

gs = 〈bm, m, rw, σ〉 ∈ GS

tp = 〈tid, osl, bl〉 ∈ TP

where:

gs = 〈∅, ∅, ∅, σ〉

tp = 〈(0, [0, 1], 0)〉

The Table 3.1 illustrates the transition table of the system for the example in Figure 3.4.

Each thread in the table is represented by its thread id and offset-span label. The row 0 of

the transition table shows the initial state of the system. The first fired rule is ParBegin(2)

(Row 1) when the thread 0 hit the parallel construct. This rule models the beginning of

the parallel region and the creation of the team of threads. In the example, the master

thread creates one more thread to make a team of two. Both threads in the system trigger

the ImplicitTaskBegin rule (Row 2 and 3) to initialize their status (e.g., offset-span labels,

state, barrier counts, etc.). Now the threads start their parallel work. Thread 0 triggers the

LoadStore rule (Row 4) when it accesses the master construct and initializes the variable a.

The rule adds the memory access information inside the rw data structure and points to

the next instruction. In the next instruction, thread 0 acquires the mutex which triggers

41

Table 3.1: State machine transitions for the example in Listing 3.1.
tid - osl rule bm rw tp Next State
0 Init — ∅ ∅ ∅ 〈0, [0, 1], 0〉 ParBegin(2)

1 0− [0, 1] ParBegin(2) [0, 1] = (0, 2) ∅ ∅
〈0, [0, 1][0, 2], 0〉
〈1, [0, 1][1, 2], 0〉

2 0− [0, 1][0, 2] ImplicitTaskBegin() [0, 1] = (0, 2)
[0, 1][0, 2] = (0, 2)

∅ ∅
〈0, [0, 1][0, 2], 0〉
〈1, [0, 1][1, 2], 0〉

3 1− [0, 1][1, 2] ImplicitTaskBegin()
[0, 1] = (0, 2)

[0, 1][0, 2] = (0, 2)
[0, 1][1, 2] = (0, 2)

∅ ∅ 〈1, [0, 1][1, 2], 0〉

4 0− [0, 1][0, 2] LoadStore(x, W)
[0, 1] = (0, 2)

[0, 1][0, 2] = (0, 2)
[0, 1][1, 2] = (0, 2)

∅ 〈0, [0, 1][0, 2], [0, 1][0, 2][0], x, W, ∅〉 〈0, [0, 1][0, 2], 0〉
〈1, [0, 1][1, 2], 0〉 AcquireMutex()

5 — AcquireMutex()
[0, 1] = (0, 2)

[0, 1][0, 2] = (0, 2)
[0, 1][1, 2] = (0, 2)

∅ 〈0, [0, 1][0, 2], [0, 1][0, 2][0], x, W, ∅〉 〈0, [0, 1][0, 2], 0〉
〈1, [0, 1][1, 2], 0〉 LoadStore(x, W)

6 — LoadStore(x, W)
[0, 1] = (0, 2)

[0, 1][0, 2] = (0, 2)
[0, 1][1, 2] = (0, 2)

∅
〈0, [0, 1][0, 2], [0, 1][0, 2][0], x, W, ∅〉
〈0, [0, 1][0, 2], [0, 1][0, 2][0], x, W, µ〉

〈0, [0, 1][0, 2], 0〉
〈1, [0, 1][1, 2], 0〉 ReleaseMutex()

7 — ReleaseMutex()
[0, 1] = (0, 2)

[0, 1][0, 2] = (0, 2)
[0, 1][1, 2] = (0, 2)

∅
〈0, [0, 1][0, 2], [0, 1][0, 2][0], x, W, ∅〉
〈0, [0, 1][0, 2], [0, 1][0, 2][0], x, W, µ〉

〈0, [0, 1][0, 2], 0〉
〈1, [0, 1][1, 2], 0〉 Barrier(1)

8 — Barrier(1)
[0, 1] = (0, 2)

[0, 1][0, 2] = (1, 2)
[0, 1][1, 2] = (2, 2)

∅
〈0, [0, 1][0, 2], [0, 1][0, 2][0], x, W, ∅〉
〈0, [0, 1][0, 2], [0, 1][0, 2][0], x, W, µ〉

〈0, [0, 1][0, 2], 0〉
〈1, [0, 1][1, 2], 0〉

WaitAtBarrier(1)
ImplicitTaskEnd()

9 1− [0, 1][0, 2][0, 2] AcquireMutex()
[0, 1] = (0, 2)

[0, 1][0, 2] = (0, 2)
[0, 1][1, 2] = (0, 2)

∅
〈0, [0, 1][0, 2], [0, 1][0, 2][0], x, W, ∅〉
〈0, [0, 1][0, 2], [0, 1][0, 2][0], x, W, µ〉 〈1, [0, 1][1, 2], 0〉 LoadStore(x, W)

10 — LoadStore(x, W)
[0, 1] = (0, 2)

[0, 1][0, 2] = (0, 2)
[0, 1][1, 2] = (0, 2)

∅
〈0, [0, 1][0, 2], [0, 1][0, 2][0], x, W, ∅〉
〈0, [0, 1][0, 2], [0, 1][0, 2][0], x, W, µ〉
〈1, [0, 1][0, 2], [0, 1][0, 2][0], x, W, µ〉

〈1, [0, 1][1, 2], 0〉 ReleaseMutex()

11 — ReleaseMutex()
[0, 1] = (0, 2)

[0, 1][0, 2] = (0, 2)
[0, 1][1, 2] = (0, 2)

∅
〈0, [0, 1][0, 2], [0, 1][0, 2][0], x, W, ∅〉
〈0, [0, 1][0, 2], [0, 1][0, 2][0], x, W, µ〉
〈1, [0, 1][0, 2], [0, 1][0, 2][0], x, W, µ〉

〈1, [0, 1][1, 2], 0〉 Barrier(1)

12 — Barrier(1)
[0, 1] = (0, 2)

[0, 1][1, 2] = (1, 2)
[0, 1][0, 2] = (2, 2)

∅
〈0, [0, 1][0, 2], [0, 1][0, 2][0], x, W, ∅〉
〈0, [0, 1][0, 2], [0, 1][0, 2][0], x, W, µ〉
〈1, [0, 1][0, 2], [0, 1][0, 2][0], x, W, µ〉

〈1, [0, 1][1, 2], 0〉 RaceFail(σ, x, 0, 1)

13 — ImplicitTaskEnd() ∅ ∅ ∅ 〈1, [0, 1][1, 2], 0〉
14 0 ImplicitTaskEnd() ∅ ∅ ∅ 〈0, [0, 1][0, 2], 0〉 ParEnd(2)
15 — ParEnd(2) ∅ ∅ ∅ 〈0, [1, 1], 0〉

0 - [0,1]

0 - [0,1][0,2] 1 - [0,1][1,2]

0 - [1,1]

IBarrier(1)

write(a)
master_beg()

master_end()
race on a

write(a)
m_acq()

m_rel()

Figure 3.4: Structure of the OpenMP program in Listing 3.1.

42

the AcquireMutex rule (Row 5) and updates the thread state with the synchronization

information. Thread 0 accesses again variable a and the LoadStore rule (Row 6) adds the

new memory access to rw along with the synchronization information acquired by the

previous operation. The thread 0 releases the mutex triggering the ReleaseMutex rule (Row

7) and reaches the implicit barrier at the end of the parallel region. The triggering of the

Barrier rule (Row 7) keeps thread 0 on waiting for thread 1 to reach the barrier.

Thread 1 triggers respectively AcquireMutex, LoadStore, and ReleaseMutex (Row 9, 10,

11), which add a new synchronized memory access into the rw data structure. Now

thread 1 reaches the implicit barrier triggering the Barrier rule (Row 12). The Barrier

rule performs the data race detection which identifies the data race between the nonsyn-

chronized access from thread 0 (〈0, [0, 1][0, 2], [0, 1][0, 2][0], x, W, ∅〉) and the synchronized

access from thread 1 (〈1, [0, 1][0, 2], [0, 1][0, 2][0], x, W, µ〉). The two accesses are performed

by two different threads in the same memory location, both happen in the same barrier

interval (concurrently according to offset-span label), at least one of the operation is a

write, and one of them happens outside the critical section µ. The system reports the race

through the RaceFail helper function.

The execution of the program continues triggering the ImplicitTaskEnd rule (Row 13 and

14) by both threads. Thread 1 terminates immediately, while thread 0 reaches the end of

the parallel region and terminates with the end of the program.

3.3.7 Lowering OpenMP Constructs

Our operational semantics models the concurrency structure of an OpenMP program

that uses a subset of the entire OpenMP specification [57]. We target OpenMP parallel

directives and all related constructs except explicit tasks and target devices that we leave

to future works. Our formalization lowers every OpenMP directive into basic underlying

synchronization structures such as barriers and mutex. In the following paragraphs, we

show how each of these directives can be simplified and modeled by the operational

semantics.

• parallel Construct: The first five rules (3.1–3.4), in Figure 3.3, model the begin/end

of a parallel construct including the creation and destruction of the implicit task

associated to the threads. The threads within the parallel region trigger the other

43

rules based on the work they are performing: accessing shared or private mem-

ory (3.5), acquiring/releasing mutexes (3.6,3.7), synchronizing to an implicit/explicit

barrier (3.8–3.10). The data race detection algorithm performed at the barrier (either

implicit or explicit) catches the potential race(s). The clauses related to the parallel

region constructs do not influence the data race detection. For example, in presence

of the private clause or similar, when the threads access their own private memory,

the memory addresses of the locations are different for each thread, thus no race is

reported.

• worksharing Constructs: The worksharing constructs such as for, section, single, and

workshare are also supported by the operational semantics. These constructs add an

implicit barrier at the end, so the race detection algorithm runs when the thread

synchronizes, identifying any potential race within the barrier interval. In the pres-

ence of a nowait clause, the operational semantics models the specific constructs as

an extension of the parallel work until the next barriers. Let us take the example

in Listing 3.3. The snippet of code shows two consecutive parallel for-loops with

the nowait clause. The clause removes the implicit barrier at the end of the first

parallel loop, introducing a data dependency between the write on a[i] in the first

loop and the read on a[i] and a[i-1] in the second loop. Consequently, all memory

accesses performed by the threads in both loops happen in the same barrier interval.

Only at the end of the second loop, when the threads encounter the implicit barrier,

the state machine triggers the data race detection analysis (Rule 3.10). In detail, the

state machine stores information about the memory locations accessed by the threads

in both loops. Because of the data dependency between the loops, the race check

identifies two common nonsynchronized memory accesses, in the rw data structure,

from two different threads. Since one of the accesses is a write, the operational

semantics reports the data race.

• master and synchronization Constructs: The only synchronization constructs not

supported by the operational semantics are those related to tasking: taskwait and

taskgroup which, as said previously, will be modeled in future work. When a thread

encounters a synchronization directive, a rule logs the synchronization information

for the current thread. Every memory access executed by the thread within a syn-

44

chronization construct is collected in the rw data structure, with the information

that the memory access are protected by a synchronization primitive. The data

race detection, as shown in rule 3.10, uses this information to identify a potential

nonsynchronized access and report the race.

Listing 3.3: Data race on array a because of nowait clause and data dependency between
two for loops.
#pragma omp parallel
{
#pragma omp for nowait

for (i = 0 ; i < N; i ++) {
a [i] = 3 . 0 ∗ i ∗ (i + 1) ; ;

}
#pragma omp for

for (i = 1 ; i < N; i ++) {
b [i] = a [i] − a [i − 1] ;

}
}

3.4 Implementation
The operational semantics is a mathematical model and must clearly be adapted to

real-world implementation settings. We have implemented a preliminary version of such

a tool called SWORD. The main idea behind this tool is to log all OpenMP events and

memory accesses into a file (one such file is created per thread). When the program exe-

cution terminates, an offline data race detection algorithm analyzes the log files to identify

potential data races. The main advantages of this approach are: (1) dramatically reduced

memory overheads compared to other tools (including ARCHER), and (2) parallelizable

offline analysis.

More specifically, SWORD includes a compiler instrumentation pass for the source pro-

gram and two checking phases. The compiler instrumentation inserts in the program, for

each load and store, a call to a SWORD runtime routine that implements the event collection

algorithm. Phase one consists of logging into files every memory access and synchro-

nization operation that each thread executes at runtime. The SWORD runtime intercepts

parallel regions begin/end, synchronization operations (e.g. critical sections, barriers, etc.),

and other OpenMP events through the OMPT interface. This implementation benefits

from our operational semantics directly including events that match OMPT events.

45

During the execution of the program, the SWORD runtime uses a buffer for each thread

to collect the data regarding memory accesses and OpenMP events. When the buffer is

full, SWORD compresses it, dumps it in a log file, and makes it available to collect new

data. The use of data compression in this manner helps reduce memory overheads. Once

the program finishes its execution, the log folder contains a log-file per thread.

The second phase consists of the offline analysis of the logs to identify the data races

that manifested during the program execution. The algorithm identifies the pairs of con-

current threads using the offset-span label mechanism described in Section 3.3.2. The data

race detection algorithm identifies memory conflicts between two concurrent threads. The

algorithm obtains the information about the thread’s memory accesses and synchroniza-

tion operations from the logs, and looks for data races. Since the analysis requires only to

read from the log files, the offline algorithm can be parallelized across multiple cores and

a cluster of nodes to speedup the process.

3.5 Conclusions
In this work, we have presented an operational semantics to model the concurrency

structure of OpenMP and enabling data race detection for structured parallelism. The

operational semantics rules are straightforward and can serve as a valuable reference to

everyday programmers. Also, the example 3.3.6 shows how our approach can identify

data races even in corner cases where other techniques (e.g., those purely based on the

happens-before tracking) can fail. In summary, our work provides a formalization to help

researchers and tool developers to better understand OpenMP concurrency, and help them

reliably and systematically build more precise data race checkers that reduce memory

overheads.

As already described, we are working on a possible implementation of the operational

semantics to support a new data race checker called SWORD. Details of the engineering of

SWORD will be presented in future work.

To the best of our knowledge, our contribution is the first simple operational semantics

to model the concurrency structure of OpenMP at a level that tool-builders care about.

Our semantics is not yet suitable for those interested in issues such as (1) OpenMP’s

weak memory consistency model, (2) OpenMP’s GPU offload features, and (3) OpenMP’s

46

tasking constructs. However, our semantics offers a very appealing starting point for such

extensions.

The operational semantics rules mesh with the OMPT events providing a powerful as

well as standardized instrumentation approach to represent the concurrency structure of

an OpenMP program and enable targeted data race detection. We believe that with this

formalization and the ongoing work we can build precise and accurate data race checkers

that exploit the structured parallelism of parallel programming models such as OpenMP

and its future incarnations.

3.6 Summary
In this chapter we have presented the following contributions:

• An operational semantics that model the concurrency structure of an OpenMP pro-

gram matching the OMPT events.

• An overview of a prototype race checker that demonstrates how such a semantics

can be a workhorse for race checking.

• A set of rules that exploit the OpenMP structured parallelism to identify races.

• An extensible operational semantics that allows future OpenMP constructs to be

captured and analyzed.

CHAPTER 4

SWORD: A BOUNDED MEMORY-OVERHEAD

DETECTOR OF OPENMP DATA RACES IN

PRODUCTION RUNS

In the previous chapter we illustrated an operational semantics to formally define the

concurrency structure of the OpenMP programming model and address the limitations of

existing data race detection techniques. In this chapter we apply the operational semantics

in practice with the implementation of a novel data race checker for large OpenMP appli-

cations, called SWORD. SWORD’s goal is to serve as an instrument to identify data races in

large OpenMP applications where existing techniques and tools fail.

4.1 Introduction
Given the inexorable march toward higher computational efficiencies, many critical

software components are being transitioned to adopt on-node parallelism. The predom-

inant parallel programming model of choice in this endeavor is OpenMP. Even though

OpenMP provides constructs that ease the expression of parallelism, programmers still

introduce egregious data races, resulting in corrupted answers that have seriously im-

pacted critical projects [23, 25, 20]. Such accumulated evidence has raised awareness about

the importance of race detection and elimination in high performance computing (HPC),

and precipitated the creation of well-regarded data race benchmarks [64] that can help the

community further tool development.

Currently, the mainstay for data race detection in HPC is dynamic analysis tools. Static-

analysis-based data race detection tools, while known for their scalability, are unfortu-

nately known also for their high false alarm rates, if they are to be reasonably complete [20,

56, 47, 8, 18]. Despite the practical successes of dynamic tools, there still is a paucity in

terms of those that are effective on OpenMP applications.

There are currently four tools that can help with OpenMP race checking [64]: Hel-

48

grind [65], TSan [12, 66], IntelrInspector XE [67], and ARCHER [23]. While Helgrind and

TSan are well-engineered, mature tools, they are fundamentally designed for low-level

models such as POSIX Threads. It is well-established that they generate false alarms when

they do not recognize OpenMP synchronization semantics [64, 23]. Recently, ARCHER [23]

introduced a technique to make an existing tool like TSan aware of OpenMP synchroniza-

tion semantics, solving the false alarms issues.

The advantages of ARCHER in terms of coverage and the ability to handle large pro-

grams is presented in our previous work [23]. ARCHER is based on happens-before race

checking, and owes its practical success to: (1) a static analysis phase that analyzes and

excludes those statically guaranteed race-free loops from dynamic analysis, and (2) a well-

engineered implementation of happens-before race checking provided by the TSan engine

that employs shadow memory to log memory accesses. Experience shows that ARCHER can

detect many data races in practice, and has helped find the root causes of show-stopper

bugs in many mission-critical projects [23]. Despite these successes, all happens-before

race checkers that employ shadow memory, including those used by ARCHER and TSan,

suffer from three significant drawbacks:

4.1.1 Memory Overhead

These tools log read and write accesses, while assigning to them logical time instances

(e.g., vector clock values or epochs [9]). In such a setup, a data race can be missed unless

all accesses are maintained. Unfortunately, this is practically impossible: there could be

millions of program variables, with many being accessed millions of times. As a compro-

mise, both TSan and hence ARCHER only maintain four1 memory accesses per 8 bytes of

application memory (hereafter called a memory word). Each access record (called a shadow

cell) also occupies one word. Thus, it is clear that the memory consumption quintuples (and

in practice, it goes up 6-fold due to other per-thread overhead). We have observed this

when ARCHER was applied on the AMG2013 benchmark: the 6-fold increase with respect

to total application memory gave us an out-of-memory (OOM) error. There is no easy way

to predict application memory needs, and thus, OOM is a lurking danger even with only

four shadow cells.

1A default setting, but adjustable between 1 and 8.

49

The main contribution of this chapter is a completely new race checker called SWORD

that runs in bounded memory. Specifically, SWORD needs only a fixed 2 megabyte2 per

thread in auxiliary buffers to log traces. In addition, SWORD is exact, while keeping only

four shadow cells is highly inexact—for instance, only four of the massive numbers of

accesses per word are kept by TSan or ARCHER. All this is possible because SWORD does

not employ happens-before race checking. Instead, each thread collects memory accesses

into its own buffer. When this buffer fills up, the data is compressed and written out to

disk. Then an offline synchronization recovery and race analysis phase detects races. This phase

is driven by an operational semantics of OpenMP [55] that determines which accesses are

concurrent.

4.1.2 Shadow-Cell Eviction

Clearly, with only four shadow cells, a fifth access to a memory word must evict one

of the cells. Unfortunately, in HPC applications where the memory access intensity is

high, this results in many missed races, as has been observed while using ARCHER on

real-world applications. SWORD does not suffer from race omissions due to shadow-cell

evictions since it relies on offline checking.

Our initial implementation of offline checking was inefficient for many examples. After

careful optimization, we brought down its runtime from one day to a few seconds! More

specifically, the techniques we use include:

• State-of-the-art self-balancing interval trees for recording and merging traces;

• An efficient realization of Offset-Span Labels [63] for concurrency discovery;

• Constraint solving to detect conflicting accesses through complex strided accesses

and partial word overlaps.

Our trace collection uses OMPT, a tools interface that is expected to be incorporated

into the future OpenMP standard [28]—thus facilitating portability. To limit the applica-

tion slowdown, we collect traces from each thread/core in a completely uncoordinated

fashion: that is, per-thread tracing does not wait for OpenMP barriers to finish. Instead,

2A user-adjustable bound, but we found that 2MB is typically optimal.

50

we comprehensively reconstruct synchronization information during our offline analysis

phase, thanks to operational semantics logic that is directly codified into the OMPT event

interface, and allows us to recover all OpenMP concurrent regions exactly during offline analysis.

4.1.3 Race Masking

A happens-before race checker can mask races when otherwise conflicting accesses are

separated by a happens-before path created as an artifact of the particular schedule (see

Figure 4.1). This form of race masking is reported in prior literature [68, 69]. We have also

experienced ARCHER missing races in this manner. In this work, we instead introduce

an accurate concurrency model on OpenMP’s structural parallelism, thus avoiding such

race masking. This again is a direct advantage accruing from our semantics. SWORD in

fact guarantees completeness of data race checking under the absence of data-dependent

control flows. This guarantee cannot be provided by other OpenMP race checkers based on

happens-before.

To summarize, the contributions of SWORD are as follows:

• Bounded memory (about 3 MB) instead of taking gigabytes of shadow-cell storage.

• Free of race omissions due to shadow-cell evictions.

• No happens-before-induced race masking.

• Software available at https://github.com/PRUNERS/sword.

Thread 0 Thread 1
acquire(L)

read(a)
write(a)

write(a)
release(L)

acquire(L)
read(a)
write(a)

release(L)

(a) No happens-before
(race detected)

Thread 0 Thread 1
write(a)

acquire(L)
read(a)
write(a)

release(L)
acquire(L)

read(a)
write(a)

release(L)

(b) Happens-before
(no race detected)

Figure 4.1: Different interleavings generated by the same program. Dashed lines indicate
that the write operations of Thread 0 can occur simultaneously with the operations of
Thread 1. Solid lines indicate happens-before edges between the threads.

51

4.2 Background
A data race occurs when two concurrent memory accesses (one of which is a write)

target the same memory location. Dynamic race detectors employ the happens-before

relation (typically implemented using vector clocks [61] or variants) to determine whether

two accesses are concurrent. The happens-before relation is a function of a thread schedule.

Figure 4.1 shows two possible interleavings of the same program. In part (a), a race is

caught because of the absence of any happens-before ordering between Thread 0’s write(a)

invocation and Thread 1’s read(a) or write(a) invocation. In part (b), write(a) of Thread 0

is happens-before ordered before both read(a) and write(a) access of Thread 1, causing the

race to be missed. This is one common source of missed races we observe in ARCHER.

Notice that even without any branches in the code, the choice of interleavings decides

whether a race is detected or missed. In SWORD, this sort of race omission does not happen,

as the true concurrency status of two accesses is computed using an operational semantic

model based on offset-span labels.

To further detail shadow-cell eviction mentioned in the previous section, consider the

following example which harbors a race with respect to a[0] because, while multiple threads

read the array location a[0], exactly one threads is arranged to write it without synchroniza-

tion.

int a[N];

#pragma omp parallel for
for(int i = 0; i < N; i++) {

a[i] = a[i] + a[0];
}

Suppose the master thread is the one writing a[0] (assuming it got a head start). ARCHER

may update the shadow cells related to a[0] multiple times, and end up purging the access

record of this write. This is because during the program execution, for each new memory

access, the runtime updates one of the shadow cells randomly, overwriting the previous

access information. Thus, when the other threads start the execution, the ARCHER runtime

does not find any conflicting access on a[0] (all 4 shadow cells hold read accesses) and

therefore misses this race.

52

4.2.1 Operational Semantics for OpenMP Race Checking

Figure 4.2 shows the concurrency structure of an OpenMP program with two nested

parallel regions, whose threads access shared memory locations. The figure depicts OpenMP

barriers, as well as memory accesses and synchronization operations in between. In par-

ticular, a barrier interval is defined to be all the memory accesses and OpenMP operations

that happen between two barriers. For example, barrier interval 3 includes the operations

performed between barriers 1 and 3.

The concept of the barrier interval is important because the threads within the same

barrier interval are concurrent and can race, but two threads separated by a barrier and

belonging to two different barrier intervals cannot race. Whenever a thread-specific access

event or synchronization event is fed to our operational semantic model, its structural-

operational-semantics-based state representation always keeps an updated notion of which

barrier interval a thread is currently living within. For example, the data race R1 happens

within the same barrier interval 3 between thread 3 and 4, since they both write on y with

no synchronization. On the other hand, there is no race between the write on x in barrier

interval 1 by thread 3 and the read on x by thread 4 in barrier interval 3 because those

accesses are indeed separated by a barrier.

0 - [0,1]

1 - [0,1][0,2] 2 - [0,1][1,2]

3 - [0,1][0,2][0,2] 4 - [0,1][0,2][1,2]

7 - [0,1][2,2]

5 - [0,1][1,2][0,2] 6 - [0,1][1,2][1,2]

11 - [0,1][3,2]

12 - [1,1]

8 - [0,1][2,2][0,2] 9 - [0,1][2,2][1,2]

10 - [0,1][4,2]

IBarrier(3)

Barrier(1)
read(x)
write(y)

write(x)
m_acq()

m_rel()

read(y)
m_acq(M1)

m_rel(M1)
IBarrier(4)

Barrier(2)

write(y)
m_acq(M1)

m_rel(M1)

write(x)
m_acq()

m_rel()

IBarrier(6)

FOR-LOOP

IBarrier(7)

R1: race on y

R2: race on y

R3: race on x

IBarrier(5)

Figure 4.2: Structure of an OpenMP program

53

In the case of nested parallelism, two threads that belong to two different barrier in-

tervals can in fact race—for example data races R2 and R3. These two data races happen

because the threads are accessing shared variables (y for R2 and x for R3) from two barrier

intervals that belong to different concurrent parallel regions. Our operational semantics

relies on offset-span labels to identify if two threads can race, so that we can apply the data

race analysis only to concurrent threads.

4.2.2 Offset-Span Labels

An offset-span label tags each thread’s execution point with a sequence of pairs (e.g.,

[0, 1][0, 2][0, 2]), marking its lineage in the concurrency structure defined by prior forks and

joins. By comparing these labels we can determine if two threads are concurrent, thereby

focusing the data race analysis only to potentially racy threads.

The domain for the offset-span labels is OSL = (N×N)N, i.e., each member osl ∈ OSL

is a sequence of pairs [a1, b1][a2, b2], . . . , [an, bn]. A pair consists of offset and span. The

span indicates the number of threads spawned by the fork (e.g., begin of parallel region)

from which the pair is descended. The offset distinguishes the pair among the other pairs

descended from the same parent. For example, let us take the label [0, 1][0, 2][0, 2] from

thread 3 in Figure 4.2. Starting from the end, the pair [0, 2] indicates that the thread has id

0 in a parallel region of two threads; the second pair [0, 2] is the thread’s parent with id 0 in

a parallel region of two threads; the first pair [0, 1] is the predecessor of the thread’s parent

and represents the master thread.

Let us take two offset-span labels osl1, osl2 ∈ OSL associated to thread 1 and thread

2, respectively. These labels are sequential (i.e., thread 1 and thread 2 are not concurrent)

when:

case 1 ∃ P, S . osl1 = P ∧ osl2 = PS, where P and S are non-empty sequences of pairs.

case 2 ∃ P, Sx, Sy, ox, oy, s . osl1 = P[ox, s]Sx ∧ osl2 = P[oy, s]Sy ∧ ox < oy ∧ ox mod s =

oy mod s, where P, Sx, Sy are (possibly empty) sequences of pairs.

Otherwise, the labels are concurrent.

SWORD obtains its completeness because (1) it collects and analyzes every memory

access, and (2) our operational semantics is faithfully followed by our implementation.

For instance, the happens-before based technique can miss data races based on the mutex

54

contention order (Figure 4.1(b)). SWORD’s approach is independent of mutex contention

so long as downstream control-flows are not affected by the mutex acquisition order.

4.3 SWORD Technique and Implementation
4.3.1 Dynamic Analysis

4.3.1.1 Compiler Instrumentation

We implemented SWORD using the LLVM/Clang tool infrastructure [36] (see Figure 4.3).

Our LLVM instrumentation pass instruments all load and store instructions that are exe-

cuted within a parallel region. (We ignore sequential instructions as they cannot race.)

4.3.1.2 Log Collection

At runtime, SWORD collects all the information necessary for the offline data race de-

tection. The collection of logs is fully parallel: every thread concurrently gathers infor-

mation regarding its own memory accesses and OpenMP events. SWORD interacts with

the OpenMP runtime through the OMPT interface to gather all the information regarding

thread creation, parallel region begin/end, and synchronizations points (e.g., barriers,

critical section). Meanwhile, the instrumented parallel loads and stores gather informa-

tion about every parallel memory access (e.g., size, read or write, atomic). Each thread

maintains one log file and one metadata file. The log file contains the information about

memory accesses and OpenMP events, while the metadata file contains the IDs of parallel

regions, offsets into the log file to obtain the data (i.e., memory accesses and OpenMP

events) regarding a specific parallel region, and other information. Table 4.1 details each

thread’s metadata file, which helps the offline analysis identify the concurrency structure.

Each line in the metadata file represents a barrier interval. This information is used by

the offline data race detection algorithm to extract from the log file the chunk of data for a

specific barrier interval.

During the program execution, SWORD collects the memory accesses and OpenMP

OpenMP C/C++ Clang/LLVM Compiler

Sword Instrumentation Pass
▪ Clone functions: sequential

and parallel version
▪ Instrument loads/stores in

parallel version

OpenMP
Source
Code

Dynamic Analysis

BinaryLLVM
IR

OpenMP RT with OMPT Support

SWORD Runtime

Logs

Offline Analysis

Race
Report

Red black-tree
create and compare

Figure 4.3: SWORD tool flow

55

Table 4.1: Example of thread’s metadata file. Each line corresponds to one barrier interval.
Column pid is parallel region ID, ppid is parent parallel region ID, bid is barrier ID, offset
and span define offset-span label, level is level of parallelism, data begin is offset (in bytes)
in the log file of the beginning of the respective data chunk, size is its size.

pid ppid bid offset span level data begin size
0 – 0 0 24 1 0 50,000
0 – 1 0 24 1 50,000 75,000
1 – 0 0 24 1 75,000 10,000

event information into limited-size thread-local storage buffers. Once the buffer is full,

it is compressed and asynchronously written out into log files. We compared several

open-source compression algorithms, namely LZO [70], Snappy [71], and LZ4 [72]. In our

case, they all have similar performance and compression ratios, and we chose LZO since it

was easier to integrate into SWORD.

4.3.1.3 Bounded Dynamic Analysis Overhead

As previously mentioned, during the dynamic analysis each thread maintains a thread-

local storage buffer to collect memory accesses and OpenMP events before writing them

into a file. We fine-tuned the buffer size to minimize cache misses, and we found that

an optimal size for our setup holds 25,000 events, amounting to around 2 MB total. The

SWORD runtime also maintains other information in several thread-local storage variables.

The amount of memory needed by SWORD for all these auxiliary buffers and OMPT is

about 1.3 MB per thread. Given that the memory overhead is bounded and independent

of the characteristics of the analyzed application, we define a formula representing the total

memory overhead of SWORD. Let N be the number of threads, B the memory overhead

introduced by SWORD per thread, and C the memory overhead introduced by the OMPT

interface. Then, the total memory overhead of SWORD is N × (B + C). Our experimental

results show that in our setup the total memory overhead of SWORD is around 3.3 MB per

thread.

4.3.2 Offline Analysis

Offline analysis starts by analyzing the metadata files to identify the concurrency struc-

ture. Once the algorithm has identified all pairs of concurrent barrier intervals and threads,

it obtains information about the memory accesses and OpenMP synchronization oper-

56

ations from the log files. The metadata file contains an offset for each barrier interval

indicating the location of pertinent data in the log files. The size of a single log file can

be dozens of gigabytes, and hence the entire data collection from an application can be of

the order of terabytes. Thus, even without application memory pressure, it is not always

possible to analyze all the data directly in memory. To handle large log files efficiently, we

employ a streaming algorithm [73] approach that reads access information from log files in

small chunks and carries out our analysis.

For each thread, the algorithm builds an interval tree to summarize memory accesses

and to maintain information about OpenMP events. In our implementation, we use an

augmented red-black tree [74] to maintain the interval tree balance and to speed up the

operations of insertion and search. A node in an interval tree contains the range of memory

accesses3 it represents, and auxiliary information such as the operation type (R/W), size

of the access, stride of the interval, program counter, and mutex set. The interval tree

approach allows us to summarize the information about consecutive memory accesses

(e.g., array accesses) in one node. The data race detection is performed by comparing the

interval tree of each thread to the interval trees of other concurrent threads. When a node

in the tree overlaps with a node of another tree there is a potential race.

Figure 4.4 shows an example of two threads accessing an array of structures. Each

thread is accessing a different field of the structure, performing either a read or write,

and there is not overlap in the accesses—hence no data race. During the offline analysis,

SWORD summarizes the accesses of both threads using the two shown intervals. The two

intervals do overlap; however, if we consider the size and the stride of the accesses, they do

not actually have any addresses in common, as the threads are accessing different memory

addresses. Thus a simple overlap check is not sufficient to identify whether two intervals

intersects.

In our offline race detection algorithm, we use all the available interval information

(e.g., count, stride) to check if two intervals have memory addresses in common. For

an interval of thread Ti, we represent all addresses that belong to it with the following

constraint:

3We treat a single access as a range with the same beginning and end.

57

xx y x y x y x yy

10 1314 18 22 26 30 34 38 42 4617 21 25 29 33 37 41 45 49

addresses

struct Coordinate {
 int x;
 int y;
}

Coordinate a[5];

T0 accesses a.x

T1 accesses a.y

Interval Info

[10,42], 4, 8

[14,46], 4, 8

[START, END], SIZE, STRIDE

Figure 4.4: Example of threads that access the same memory interval but do not have
common addresses

∆ · xi + bi + si = a

∧ 0 ≤ xi ≤ ((b− e)/∆) + 1

∧ 0 ≤ si < s,

where a is an address belonging to the interval, b and e are the starting and ending address

of the interval respectively, ∆ is the stride, and s is the size of the memory access. If we

consider the example of Figure 4.4, we can represent all the addresses for intervals of T0

and T1 with these constraints:

T0 : 8 · x0 + 10 + s0 = a
∧ 0 ≤ x0 ≤ 5
∧ 0 ≤ s0 < 4

T1 : 8 · x1 + 14 + s1 = a
∧ 0 ≤ x1 ≤ 5
∧ 0 ≤ s1 < 4

If their conjunction is satisfiable, then the threads are accessing a common address. Fur-

thermore, if at least one of the operations is a write, then a race is reported. In our imple-

mentation, we use integer linear programming to solve the constraints, and in particular

GNU GLPK Version 3.63 (any other solver with similar capabilities could be employed).

The algorithm complexity is O(Nlog(N)) for the interval tree creation with N being

the number of memory accesses: it takes O(log(N)) to insert a node into a tree and this

is done for all N memory accesses. The comparison of two interval trees is O(Mlog(M))

with M being the number of nodes in the tree: each of the M nodes in a tree is compared

to the other trees, which is a binary search with complexity O(log(M)). Note that M ≤ N

58

since the interval tree can summarize multiple access into one interval node.

4.3.2.1 Interval Tree Example

The following example, when executed with two threads, contains a data race in the

array a due to a data dependency:

int a[1000];

#pragma omp parallel for num_threads(2)
for(int i = 1; i < 1000; i++) {

a[i] = a[i - 1];
}

During the dynamic analysis, SWORD generates two log files and two metadata files.

Since the program has only one parallel region and one barrier interval, the metadata files

contain only one line. The offline data race detection algorithm extracts the barrier interval

data using the metadata files, and builds one red-black interval tree per thread.

Figure 4.5 shows the possible interval trees for the two threads executed by the pro-

gram. Each node in the interval tree describes a memory access or a collection of memory

accesses (e.g., array access). In addition, each node has fields to hold information about

the type of operation (read or write), size of the memory access, program counter, and

list of mutexes held for that specific memory access. When the algorithm identifies two

overlapping intervals, as shown in red/underlined in Figure 4.5, it uses the additional

information in nodes to construct the integer linear constraint to check if there is a potential

race. The algorithm also checks whether one of the intervals is a write operation and if the

intersection of the mutex lists are empty. If these two condition are met and the linear

constraint is feasible, a race is reported. In the case of Figure 4.5, the two red/underlined

[335820,335820],1
R,4,4208860

[335820,335820],1
W,4,4208658

[335824,335824],1
W,4,4208639

[335816,335816],1
W,4,4208677

[335820,335820],1
R,4,4208822

[335820,335820],1
W,4,4208884

[335920,335920],1
R,4,4208736

[335812,335812],1
W,4,4208696

[335820,335820],1
R,4,4208926

[335824,335824],1
R,4,4208902

[337888,339884],500
R,4,4208985

[337892,339888],500
W,4,4209028

(a) Interval tree for Thread 0

[183564,183564],1
R,4,4208860

[183564,183564],1
W,4,4208658

[183568,183568],1
W,4,4208639

[183560,183560],1
W,4,4208677

[183564,183564],1
R,4,4208822

[183564,183564],1
W,4,4208884

[183664,183664],1
R,4,4208736

[183556,183556],1
W,4,4208696

[183564,183564],1
R,4,4208926

[183568,183568],1
R,4,4208902

[339888,341880],499
R,4,4208985

[339892,341884],499
W,4,4209028

(b) Interval tree for Thread 1
Figure 4.5: Example interval trees. The red/underlined nodes are the two overlapping
intervals that identify the race. The node’s fields represent, respectively, begin, end of the
interval, count, type of operation, access size, and program counter.

59

intervals are overlapping since they have an address in common. Therefore, SWORD

reports a race at the lines of code associated to the program counter stored by the intervals.

4.3.3 Limitations

Although SWORD supports most of the constructs defined by the OpenMP specifi-

cation, in its current form it cannot analyze programs based on OpenMP tasking. The

main limitation for supporting OpenMP tasking is that the current formulation of the

offset-span label mechanism does not allow to identify whether two threads that executed

two different tasks are concurrent or not. This is critical to avoid false alarms and missed

races. Despite this limitation, programs that employ OpenMP tasking are still rare, thus

SWORD can analyze most of the existing OpenMP applications.

4.4 Experimental Results
We evaluate SWORD on two OpenMP microbenchmark suites and four large real-world

HPC applications. More specifically, we select DataRaceBench [64] and OmpSCR [39]

OpenMP microbenchmarks to show the effectiveness of SWORD in terms of identifying

data races. In addition, we use real-world HPC applications to assess its performance and

memory overhead. We compare SWORD against the state-of-the-art OpenMP data race

checker ARCHER [23].4 In our experiments, we run two configurations of ARCHER: with

default settings and with the “flush shadow” option enabled. The purpose of enabling this

option, which flushes memory between independent parallel regions, is to try to reduce

the memory overhead of ARCHER and to have a more fair comparison with SWORD. We

also use the default setup of 4 shadow cells per ‘line’ (see Section 4.2).

We perform our evaluation on a machine with two 12-core Intel Xeon E5-2695v2 pro-

cessors, 32GB of RAM, and 800GB of SSD storage. The machine runs the TOSS Linux

distribution (kernel version 3.10), which is a customized distribution specifically opti-

mized for HPC clusters. We average the measured runtimes and memory overhead of all

benchmarks across 10 executions, and we vary the number of threads from 8 to 24. In the

experimental results, “baseline” denotes the original benchmark characteristics with data

4We also performed a preliminary comparison with the latest version of IntelrInspector XE. We obtained
results that are very similar to its comparison with ARCHER from our previous work [23]. Hence, we omit a
detailed comparison with IntelrInspector XE from this work.

60

race checking disabled, while “archer” and “archer-low” denote ARCHER in its default

and low memory overhead configuration respectively, and “sword” denotes our SWORD

tool.

4.4.1 DataRaceBench Microbenchmarks

The DataRaceBench microbenchmark suite [64] consists of small OpenMP codes with

and without data races; each ‘racy’ benchmark contains one known data race documented

by the authors. We run every tool on all benchmarks and inspect the outcomes; none of

the tools report false alarms, and they also successfully identified almost all races. All

tools missed the races in benchmarks indirectaccess{1-4}-orig-yes. These data races

do not manifest along all program paths, and given that both SWORD and ARCHER are

dynamic analysis tools that analyze only the executed control flow, they can miss such

races. In benchmarks nowait-orig-yes and privatemissing-orig-yes, SWORD analysis

is more complete and it reports races that ARCHER misses for the reasons discussed in

Section 4.2. These are all read-write data races happening in the same shared variable and

parallel region. Because of multiple reads by the same thread, the shadow cells maintained

by ARCHER are eventually overwritten, and this information loss causes these races to be

missed. SWORD does not suffer from such information loss, and it correctly identifies them.

Note that all tools report an additional unknown race in plusplus-orig-yes, and SWORD

reports an additional unknown race in privatemissing-orig-yes as well. These are not

false alarms, but rather real races that the authors of the benchmarks failed to document;

they will fix this in the next release. Finally, since DataRaceBench benchmarks are small,

the runtime and memory overheads are similar among the tools.

4.4.2 OmpSCR Microbenchmarks

The OmpSCR benchmark suite contains known data races that have been documented

in previous works [39, 23]. Table 4.2 gives the number of data races detected by each tool.

(We again omit race-free benchmarks since we verified that none of the tools report false

alarms.) SWORD not only identifies the same races as ARCHER, but also detects new undoc-

umented races in the following benchmarks: c_md, c_testPath, cpp_qsomp1, cpp_qsomp2,

cpp_qsomp5, and cpp_qsomp6. Our manual inspection confirmed that all these races are

real. ARCHER misses these races for the reasons discussed in the previous sections.

61

Table 4.2: Data races reported in OmpSCR suite
of Reported Data Races

Benchmark archer archer-low sword
c_loopA.badSolution 1 1 1

c_loopB.badSolution1 1 1 1
c_loopB.badSolution2 1 1 1

c_md 1 1 2
c_testPath 2 2 6

cpp_qsomp1 1 1 2
cpp_qsomp2 1 1 2
cpp_qsomp5 1 1 3
cpp_qsomp6 1 1 2

Figure 4.6 gives the geometric mean of the runtime and memory overheads to indicate

the overall tendency of the values, considering the large gaps in execution time and mem-

ory usage among the different benchmarks. The runtime overhead is small for all tools,

while the relative memory overhead is large due to small baseline, but still less than 100

MB for all tools. Also note that the memory overhead of SWORD is constantly around 3.3

MB per thread, as we indicated in Section 4.3. When compared, the runtime and memory

overhead of the SWORD data collection is lower than ARCHER in both configurations. The

plots do not include the runtime and memory overhead of the offline data race detection

8 12 16 20 24

R
un

tim
e

(s
)

threads

10−3

10−2

10−1

100

(a) Runtime overhead

8 12 16 20 24
0

20

40

60

80

M
em

or
y

(M
B

)

threads

(b) Memory overhead

Figure 4.6: Geometric mean of runtime and memory overhead for OmpSCR suite; the
number of threads varies from 8 to 24.

62

algorithm, which may increase the total amount of resources needed by SWORD for a

complete analysis.

Table 4.3 shows the overheads of the offline data race checking with SWORD compared

to the two ARCHER configurations. The runtime overhead depends on the size of log files

and the number of parallel regions the algorithm has to analyze for each benchmark. We

parallelized the offline analysis across a cluster of nodes and the results show that the

offline data race detection can last from a few milliseconds up to a few seconds. However

running the entire offline analysis sequentially for some of the benchmarks can take several

minutes. We omit the memory overhead for the dynamic analysis because it is negligible

given the small size of the benchmarks. While for most of the benchmarks the dynamic

Table 4.3: Overheads on the OmpSCR suite executed with 24 threads, including the
execution time of the parallel offline analysis. Column baseline is the baseline runtime;
archer is the ARCHER runtime; archer-low is the low memory overhead ARCHER config-
uration runtime; DA is the total dynamic analysis runtime including logging; OA is the
offline analysis runtime when executed sequentially; MT (Max Time) is the longest offline
analysis runtime for any parallel region indicating how long parallel analysis runs; #PR
is the number of independent parallel regions to analyze; LS is the amount of storage
required to store the generated log files.

Benchmark baseline(s) archer(s) archer-low(s)
sword

DA(s) OA(s) MT(s) #PR LS
c_fft 0.13 0.81 0.84 0.52 2.09 1.34 2 2.4MB

c_fft6 0.03 0.14 0.15 0.12 0.12 0.12 1 122kB
c_jacobi01 0.9 19.83 20.91 2.57 2.06 1.33 2 51MB
c_jacobi02 0.89 19.64 20.38 2.59 0.63 0.63 1 51MB

c_loopA.badSolution 0.03 0.47 1.59 0.18 3.16 0.35 100 394kB
c_loopA.solution1 0.03 0.65 2.76 0.36 5.88 0.22 200 981kB
c_loopA.solution2 0.03 0.3 0.39 0.27 0.14 0.14 1 452kB
c_loopA.solution3 0.03 0.3 1.43 0.23 2.33 0.17 100 458kB

c_loopB.badSolution1 0.03 0.47 1.62 0.3 3.03 0.14 100 398kB
c_loopB.badSolution2 1.79 4.08 5.26 2.26 3.09 0.15 100 390kB

c_loopB.pipelineSolution 0.03 0.28 0.32 0.25 0.14 0.14 1 462kB
c_lu 0.04 10.5 15.81 0.83 25.35 0.28 499 20MB

c_mandel 0.08 5.06 5.05 0.37 0.1 0.1 1 81kB
c_md 0.47 80.87 84.47 3.65 0.55 0.17 21 1.5MB

c_pi 0.02 0.14 0.17 0.14 0.11 0.11 1 81kB
c_qsort 0.04 0.23 0.33 0.14 0.27 0.12 10 125kB

c_testPath 0.03 0.26 0.33 0.26 0.09 0.09 1 81kB
cpp_qsomp1 1.38 259.9 264.32 5.46 1.76 1.76 1 321MB
cpp_qsomp2 1.38 262.8 263.19 5.39 1.82 1.82 1 303MB
cpp_qsomp5 14.27 41.54 41.51 55.44 16.47 16.47 1 204MB
cpp_qsomp6 1.52 263.51 263.16 5.36 1.93 1.93 1 316MB

Mean 1.1 46.28 47.33 4.13 – – – –
Median 0.04 0.81 2.76 0.37 – – – –

Geometric Mean 0.15 0.81 2.76 0.37 – – – –

63

analysis terminates quickly and does not differ much from ARCHER runtime overhead, for

some of the applications the offline analysis can take a considerably long time.

4.4.3 HPC Benchmarks

We assess the performance and memory overhead of SWORD using four small to large-

size HPC benchmark codes. We use three codes, namely AMG2013, LULESH, and miniFE,

from the CORAL benchmark suite [40], while the fourth code HPCCG is a part of the Man-

tevo project [75]. These codes model scientific problems and simulations, and their size

ranges from tens to hundreds of thousands of lines of code. We also leverage AMG2013 to

evaluate the overheads of the tools with an increasing problem size. AMG2013 is a parallel

algebraic multigrid solver for linear systems arising from problems on unstructured grids.

Therefore, we perform the evaluation using 4 different grid sizes: 103 (AMG2013_10), 203

(AMG2013_20), 303 (AMG2013_30), and 403 (AMG2013_40).

Table 4.4 shows the number of data races detected by each tool. Note that none of the

tools report false alarms. Both tools find one race in HPCCG, which happens in a parallel

region where all threads are writing the same value into a shared variable. While this race

may seem harmless, it in fact results in undefined behavior based on the C/C++ standard,

and compiler optimizations could unpredictably modify the outcome of this program [23,

32]. ARCHER detects 4 known races in smaller-scale AMG2013 runs [23], while it runs out

of memory at large scale. SWORD both completes the analysis at large scale and detects

10 additional races missed by ARCHER. These races happen in the same large parallel

region (around 400 LOC) as the others, and they are all the same type of read-write races.

As before, ARCHER misses them since it maintains only a limited number of previous

Table 4.4: Data races reported in HPC benchmarks. OOM indicates that a tool ran out of
memory during the analysis.

of Reported Data Races
Benchmark archer archer-low sword

miniFE 0 0 0
HPCCG 1 1 1

LULESH 0 0 0
AMG2013_10 4 4 14
AMG2013_20 4 4 14
AMG2013_30 4 4 14
AMG2013_40 OOM OOM 14

64

accesses, while SWORD detects them since it logs every memory access.

Figure 4.7 shows the slowdown and memory overhead of the tools on the HPC bench-

marks. ARCHER in both configurations exhibits a larger slowdown than SWORD as we

are increasing the number of threads. The “archer-low” configuration flushes the shadow

memory in-between independent parallel regions, and the plots show that this slightly

reduces the memory overhead, but it also increases the runtime overhead because of the

additional operations to release memory pages. SWORD, on the other hand, exhibits better

scaling, typically resulting in a faster dynamic analysis than ARCHER, with the exception

of LULESH (see Figure 4.7c). LULESH executes a large number of parallel regions and

barriers that significantly increase the number of I/O operations during the log collection

phase of SWORD. The plots show that the memory overhead of ARCHER depends on the

baseline memory consumption and is around 5–7× of the baseline. On the other hand,

SWORD’s memory overhead is bounded since it depends only on the number of threads (it

is around 3.3 MB per thread) and not the baseline. Figure 4.8 further analyzes this behavior

by varying the problem input size of AMG2013. This clearly illustrates a major advantage

of SWORD: as the baseline memory consumption increases ARCHER runs out of memory,

8 12 16 20 24
0

2

4

6

8

10

12

14

16

18

20

22

S
lo

w
do

w
n

threads

(a) miniFE slowdown

8 12 16 20 24
0

10

20

30

40

50

60

70

80

90

100

110

120

S
lo

w
do

w
n

threads

(b) HPCCG slowdown

8 12 16 20 24
0

10

20

30

40

50

60

70

S
lo

w
do

w
n

threads

(c) LULESH slowdown

8 12 16 20 24
0

10

20

30

40

S
lo

w
do

w
n

threads

(d) AMG2013_30 slowdown

8 12 16 20 24
0

1

2

3

4

M
em

or
y

(G
B

)

threads

(e) miniFE memory overhead

8 12 16 20 24
0

100

200

300

400

500

600

M
em

or
y

(M
B

)

threads

(f) HPCCG memory over-
head

8 12 16 20 24
0

10

20

30

40

50

60

70

80

90

100

110

M
em

or
y

(M
B

)

threads

(g) LULESH memory over-
head

8 12 16 20 24
0

2

4

6

8

10

12

14

16

18

20

22

24

M
em

or
y

(G
B

)

threads

(h) AMG2013_30 memory
overhead

Figure 4.7: Relative slowdown and memory overhead compared to the baseline for HPC
benchmarks

65

AMG2013_10 AMG2013_20 AMG2013_30 AMG2013_40
0

10

20

30
S

lo
w

do
w

n

(a) Runtime overhead

AMG2013_10 AMG2013_20 AMG2013_30 AMG2013_40
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

M
em

or
y

(G
B

)
(b) Memory overhead

Figure 4.8: Runtime and memory overhead on AMG2013 with varying problem size
executed with 24 threads.

while SWORD’s bounded memory overhead allows it to finish its analysis successfully.

As Figure 4.7 and Figure 4.8 indicate, SWORD’s dynamic analysis (log collection) is

typically faster than ARCHER at larger scales. However, we need to take the offline analysis

execution time into account to represent the total runtime overhead of SWORD. Table 4.5

shows the overheads of the tools including the offline analysis of SWORD. The overall

analysis runtime of SWORD for HPCCG, including the offline data race detection process,

is less than 2 minutes if executed sequentially and can be reduced to several seconds if

executed in parallel; the latter is not significantly different from ARCHER. On the other

Table 4.5: Overheads on the HPC benchmarks executed with 24 threads, including the
execution time of the parallel offline analysis. See Table 4.3 for explanation of columns.
OOM indicates that the tool ran out of memory during the analysis.

Benchmark baseline(s) archer(s) archer-low(s)
sword

DA(s) OA(s) MT(s) #PR LS(GB)
miniFE 4.7 101.4 101.6 13.3 8.1 4.3 28 1.1

HPCCG 0.4 10.5 46.3 14.4 84.9 2.3 898 2.8
LULESH 3.9 116.1 115.6 131.7 >24h 40.0 300,000 9.8

AMG2013_10 2.2 19.8 20.1 14.9 811.0 5.4 1,272 2.4
AMG2013_20 7.7 149.1 147.2 115.9 2,116.0 41.0 1,527 20.0
AMG2013_30 23.8 471.4 448.2 418.7 3,153.0 133.2 1,575 57.0
AMG2013_40 57.2 OOM OOM 1,251.4 3,871.0 180.2 2,036 162.0

66

hand, SWORD is about 4 times faster than ARCHER on miniFE. On LULESH, the dynamic

analysis component is comparable for both tools, but the SWORD’s offline analysis takes

more than 24 hours. The reason is that LULESH generates almost 300,000 independent

parallel regions to be analyzed by the offline analysis, which can take a long time, even

with parallelization. For our experiments we used 24 cores, each core generating the

interval-tree of a different thread. While the tree generation cannot be efficiently paral-

lelized since it would require the use of locks, we could significantly reduce this large

offline analysis time by using many more cores for the comparison of the interval trees of

different threads. The most interesting case is AMG, where ARCHER runs out of memory

at large problem sizes and does not complete its analysis, while SWORD is able to collect

all the data at runtime and perform the offline data race detection process. Even though

SWORD’s offline analysis takes about an hour when executed sequentially, it does not take

more than a few minutes when executed in parallel, and the data race detection is more

complete than ARCHER.

4.5 Related Work
Data race detection is a widely studied problem in concurrent program design. A good

survey of general approaches for data race detection can be found in [7]. A number of

different approaches have been taken, including static-analysis [18, 76, 16, 8, 56], dynamic-

analysis [10, 66], and hybrid-analysis [14]. These techniques are not directly applicable to

OpenMP programs, as they fail to consider the internal actions of OpenMP programs and

their runtimes. A complete survey of data race detection methods is beyond the scope of

this work; in this section we focus on works that either address OpenMP race checking, or

are more closely related.

ARCHER [23, 22], to the best of our knowledge, is the only OpenMP data race detector

with enough low runtime overhead that can analyze real-world scientific applications.

However, the main weakness of ARCHER is its memory consumption which can reach

6x the amount of memory needed by the application when not being analyzed by the

tool. Admittedly, ARCHER provides an option to release some of the analysis memory in

between independent parallel regions, reducing the memory overhead over 30%. How-

ever, as we show in Section 4.4, ARCHER’s memory reduction is not enough to target large

67

OpenMP applications that allocate up to 90% of the available memory in each compute

node.

There have been many efforts that make race-checking efficient by exploiting the struc-

tured parallelism found in languages such as Cilk [77], X10 [78], or Habanero Java [27].

These techniques are not directly applicable to OpenMP.

Similarly to SWORD, Wilcox et al. [79] propose an approach to reduce memory overhead

by employing array summarization where array accesses can be summarized into the

same shadow-cell. This approach reduces the memory overhead by about 30% for array-

intensive applications, however it does not overcome the happens-before and shadow-

memory limitations explained in Section 4.2.

4.6 Conclusions
Given the growing importance of OpenMP for harnessing on-node parallelism, data

races in production-scale OpenMP programs present a looming threat to reliable parallel

software design. Today’s happens-before relation based race checkers for OpenMP (no-

tably ARCHER, the best in its class) are highly memory inefficient, needing at least five

times (and in practice, six times) more memory than the application itself. Despite using

this amount of memory, they also miss a significant number of data races due to either

schedule-based race masking or shadow-cell eviction.

In contrast, in our new work embodied in the tool SWORD, the online can be car-

ried out using a memory buffer of under 3 megabytes in size. Traces collected in this

buffer are compressed, and written out, where an offline analysis based on stepping an

operational semantic model takes over. This algorithm is also memory efficient, being

based on novel streaming algorithms and state-of-the-art interval tree data structures to

merge traces and check for races. Overall, SWORD is at least 1,000 times more memory-

efficient than ARCHER, thus virtually guaranteeing the absence of out-of-memory errors.

For instance, we could not finish checking the AMG2013 benchmark at large scale using

ARCHER, while with SWORD it was easily accomplished.

We present extensive experimental results that demonstrate these features of SWORD

as well as its overall superior performance. These experiments were performed on a

recently published OpenMP benchmark suite [64] as well as all previous data race checking

68

benchmarks on which ARCHER was run. These experiments demonstrate that SWORD

quite favorably matches ARCHER even on examples where the memory pressure is not an

issue. SWORD is also sound and complete with respect to data race checking in the absence

of data-dependent control flow variations.

While SWORD’s dynamic analysis is overall faster than ARCHER, its offline data race

analysis can sometimes take a long time, especially at very large scales. This slow-down

can be mitigated through the development of novel parallel algorithms (future work). We

also plan to extend SWORD’s approach to target regions that are offloaded on accelerators,

as well as accommodate tasking.

In conclusion, SWORD is currently the tool of choice for checking large-scale OpenMP

programs: Through systematic control-flow path coverage, users can detect races more

effectively than with available tools, and do not worry about out-of-memory errors even

when checking against their users’ production inputs.

4.7 Summary
In this chapter we have presented the following contributions:

• A formal semantics based data race checker for OpenMP applications.

• A low overhead technique to log all loads and stores of a program and enable data

race analysis.

• An offline data race detection algorithm that guarantee soundness and completeness

for a given input.

• An new OpenMP race checker tool that enables data race analysis for large HPC

applications where current existing techniques and tools fails.

• An evaluation on a suite of 20 OpenMP microbenchmarks and four real-world HPC

applications to indicate the low overhead and effectiveness of the technique.

CHAPTER 5

CONCLUSIONS

This chapter concludes the dissertation. In this work, we presented three contributions

to the area of data race detection and OpenMP program analysis. All three contributions

extended existing techniques or presented novel approaches to improve accuracy and

precision of data race detection while maintaining a low runtime and memory overhead.

Chapter 2 addressed the fact that the state-of-the-art for OpenMP data race detection

lacks usable and open-source data race checkers. Existing OpenMP race checkers miss

races, report false alarms, and often their high runtime and memory overhead makes

them impractical for analyzing large OpenMP applications. We looked into existing static

and dynamic analysis techniques to combine the best of these two approaches to obtain a

lightweight data race checker called ARCHER. ARCHER builds on the well-known compiler

infrastructure Clang/LLVM, it is portable across different operating systems and archi-

tecture and is open-source. Its approach is to apply static analysis methods to identify

race free regions of code and apply a dynamic analysis technique only to the potentially

racy code. The runtime analysis depends on the Clang/LLVM ThreadSanitizer runtime,

which we made able to analyze OpenMP application due to an annotation of the OpenMP

runtime. Results show that ARCHER is more precise and accurate than existing OpenMP

data race detectors, and guarantee low runtime overhead, a critical property to analyze

HPC applications. Early usage has shown successes in identifying data races in real-world

applications that are paramount at the Lawrence Livermore National Laboratory and other

national laboratories across the country.

In Chapter 3 we defined an operational semantics that describes the concurrency struc-

ture of OpenMP and enable a more precise and accurate data race analysis. The operational

semantics provides a set of rules that capture every event of an OpenMP program and

identify races. We show how the semantics improves the data race detection in OpenMP

70

programs by overcoming the limitations of existing techniques such as happens-before.

The set of rule is extensible to allow the analysis of future OpenMP constructs, and expand

the data race analysis on currently unsupported OpenMP features such as tasking and

target devices.

With Chapter 4 we introduced a novel OpenMP data race detection techniques based

on the operational semantics illustrated in Chapter 3. The new technique consists of

logging at runtime all loads, stores and OpenMP events into files. This information is

then analyzed by an offline algorithm which identifies potential data races. We implement

this new technique in a tool called SWORD, which has shown in the experimental results

to be more precise and accurate than existing data race detection approaches based on

happens-before or lockset. The results show that SWORD has almost non existent memory

overhead, a property that allows the tool to check a class of OpenMP HPC applications that

require a large amount of memory and that with other tools, including ARCHER, would

not be possible to analyze because of their high memory overhead.

In these three chapters we demonstrated our thesis that combining the best of existing

techniques, and exploiting the concurrency structure of a programming model such as

OpenMP, we can make data race checking of HPC applications practical.

REFERENCES

[1] “CORAL/Sierra,” https://asc.llnl.gov/coral-info.

[2] “SUMMIT: Scale new heights. discover new solutions.” https://www.olcf.ornl.gov/
wp-content/uploads/2014/11/Summit_FactSheet.pdf.

[3] “Trinity,” http://www.lanl.gov/projects/trinity/.

[4] OpenMP Architecture Review Board, “OpenMP application program interface ver-
sion 4.0,” http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf.

[5] “Computer codes,” https://wci.llnl.gov/simulation/computer-codes.

[6] M. Süss and C. Leopold, “Common mistakes in OpenMP and how to avoid them: A
collection of best practices,” in Proceedings of the 2005 and 2006 International Conference
on OpenMP Shared Memory Parallel Programming, 2008, pp. 312–323.

[7] R. H. B. Netzer and B. P. Miller, “What are race conditions?: Some issues and formal-
izations,” ACM Lett. Program. Lang. Syst., no. 1, pp. 74–88, Mar. 1992.

[8] J. W. Voung, R. Jhala, and S. Lerner, “RELAY: Static race detection on millions of lines
of code,” in ESEC/FSE, 2007, pp. 205–214.

[9] C. Flanagan and S. N. Freund, “FastTrack: Efficient and precise dynamic race detec-
tion,” in PLDI, 2009, pp. 121–133.

[10] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson, “Eraser: A dy-
namic data race detector for multi-threaded programs,” SIGOPS Oper. Syst. Rev., pp.
27–37, Oct. 1997.

[11] L. Lamport, “Time, clocks and the ordering of events in a distributed system,” The
Journal of Supercomputing, Jul. 1978.

[12] K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer: Data race detection in prac-
tice,” in Proceedings of the Workshop on Binary Instrumentation and Applications, ser.
WBIA ’09, 2009, pp. 62–71.

[13] J. Erickson, S. Freund, and M. Musuvathi, “Dynamic analyses for data-race detec-
tion,” in Runtime Verification, Sep. 2012, pp. 1–1.

[14] R. O’Callahan and J.-D. Choi, “Hybrid dynamic data race detection,” SIGPLAN Not.,
pp. 167–178, Jun. 2003.

[15] R. J. Dias, V. Pessanha, and J. M. Lourenço, Precise Detection of Atomicity Violations.
Berlin, Heidelberg: Springer, 2013, pp. 8–23.

[16] M. Naik, A. Aiken, and J. Whaley, “Effective Static Race Detection for Java,” SIGPLAN
Not., vol. 41, no. 6, pp. 308–319, Jun. 2006.

72

[17] C. Flanagan and S. N. Freund, “Type-based race detection for Java,” SIGPLAN Not.,
pp. 219–232, May 2000.

[18] D. Engler and K. Ashcraft, “RacerX: Effective, static detection of race conditions and
deadlocks,” SIGOPS Oper. Syst. Rev., pp. 237–252, Oct. 2003.

[19] J. C. King, “Symbolic execution and program testing,” Commun. ACM, pp. 385–394,
Jul. 1976.

[20] H. Ma, S. R. Diersen, L. Wang, C. Liao, D. Quinlan, and Z. Yang, “Symbolic analysis
of concurrency errors in OpenMP programs,” in International Conference on Parallel
Processing, 2013, pp. 510–516.

[21] G. Li and G. Gopalakrishnan, “Scalable SMT-based verification of GPU kernel func-
tions,” in Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, ser. FSE ’10, 2010, pp. 187–196.

[22] J. Protze, S. Atzeni, D. H. Ahn, M. Schulz, G. Gopalakrishnan, M. S. Müller, I. Laguna,
Z. Rakamarić, and G. L. Lee, “Towards providing low-overhead data race detection
for large OpenMP applications,” in 2014 LLVM Compiler Infrastructure in HPC, Nov.
2014, pp. 40–47.

[23] S. Atzeni, G. Gopalakrishnan, Z. Rakamarić, D. H. Ahn, I. Laguna, M. Schulz, G. L.
Lee, J. Protze, and M. S. Müller, “ARCHER: Effectively spotting data races in large
OpenMP applications,” in IPDPS, 2016, pp. 53–62.

[24] Center for Applied Scientific Computing (CASC) at LLNL, “Hypre,” http://acts.
nersc.gov/hypre/.

[25] O.-K. Ha, I.-B. Kuh, G. M. Tchamgoue, and Y.-K. Jun, “On-the-fly detection of data
races in OpenMP programs,” in PADTAD, 2012, pp. 1–10.

[26] S. Atzeni and J. Protze, “ARCHER, a low overhead data race detector for openmp
programs,” https://github.com/PRUNER/archer, 2016.

[27] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav, “Efficient data race detection
for async-finish parallelism,” in RV, 2010, pp. 368–383.

[28] A. E. Eichenberger, J. Mellor-Crummey, M. Schulz, M. Wong, N. Copty, R. Dietrich,
X. Liu, E. Loh, and D. Lorenz, “OMPT: An OpenMP Tools Application Programming
Interface for Performance Analysis,” in OpenMP in the Era of Low Power Devices and
Accelerators. Berlin, Heidelberg: Springer, Sep. 2013, pp. 171–185.

[29] S. H. Langer, I. Karlin, and M. M. Marinak, “Performance characteristics of HYDRA
– a multi-physics simulation code from LLNL,” in High Performance Computing for
Computational Science – VECPAR 2014, Jun. 2014, pp. 173–181.

[30] Lawrence Livermore National Laboratory, “National Ignition Facility and Photon
Science,” https://lasers.llnl.gov.

[31] ——, “Advanced simulation and computing sequoia,” https://asc.llnl.gov/
computing_resources/sequoia.

73

[32] H.-J. Boehm, “How to miscompile programs with "benign" data races,” in Proceedings
of the 3rd USENIX Conference on Hot Topic in Parallelism, ser. HotPar’11, 2011, pp. 3–3.

[33] K. Kennedy and J. R. Allen, Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2002.

[34] S. S. Muchnick, Advanced Compiler Design and Implementation. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1997.

[35] T. Grosser, A. Groesslinger, and C. Lengauer, “Polly — performing polyhedral op-
timizations on a low-level intermediate representation,” Parallel Processing Letters,
vol. 22, no. 04, p. 1250010, Dec. 2012.

[36] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program
analysis & transformation,” in CGO, 2004, pp. 75–86.

[37] C. Lattner, “LLVM and Clang – advancing compilers and tools,” in Proceeding of the
Free and Open Source Software Developers’ European Meeting, ser. FOSDEM ’11, Feb.
2011.

[38] K. Serebryany and D. Vyukov, “Sanitizer special case list,” http://clang.llvm.org/
docs/SanitizerSpecialCaseList.html.

[39] A. J. Dorta, C. Rodriguez, and F. D. Sande, “The OpenMP source code repository,” in
EMPDP, 2005, pp. 244–250.

[40] “CORAL Benchmark Codes,” https://asc.llnl.gov/CORAL-benchmarks/.

[41] “Intel OpenMP Runtime Library,” https://www.openmprtl.org.

[42] B. Chapman, G. Jost, and R. V. D. Pas, Using OpenMP: portable shared memory par-
allel programming, ser. Scientific and engineering computation. Cambridge, Mas-
sachusetts: The MIT Press, 2007.

[43] J. D. Kelleher, B. M. Namee, and A. D’Arcy, Fundamentals of Machine Learning for
Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. Cambridge,
Massachusetts: The MIT Press, 2015.

[44] Center for Applied Scientific Computing (CASC) at LLNL, “AMG2013,” https://
codesign.llnl.gov/amg2013.php, 2013.

[45] V. E. Henson and U. M. Yang, “BoomerAMG: A parallel algebraic multigrid solver
and preconditioner,” Applied Numerical Mathematics, vol. 41, no. 1, pp. 155–177, Apr.
2002.

[46] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk, “Effective data-race detec-
tion for the kernel,” in Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI ’10, 2010, pp. 151–162.

[47] P. Pratikakis, J. S. Foster, and M. Hicks, “LOCKSMITH: Practical static race detection
for C,” ACM Trans. Program. Lang. Syst., no. 1, pp. 1–55, Jan. 2011.

74

[48] P. Godefroid and N. Nagappan, “Concurrency at Microsoft: An exploratory survey,”
in Workshop on Exploiting Concurrency Efficiently and Correctly (EC2), May 2008.

[49] J. Huang, P. O. Meredith, and G. Rosu, “Maximal sound predictive race detection
with control flow abstraction,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’14, 2014, pp. 337–348.

[50] M. Das, G. Southern, and J. Renau, “Section based program analysis to reduce
overhead of detecting unsynchronized thread communication,” in Proceedings of the
20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’15, 2015, pp. 283–284.

[51] A. Betts, N. Chong, A. F. Donaldson, S. Qadeer, and P. Thomson, “GPUVerify: a
verifier for GPU kernels,” in OOPSLA/SPLASH, 2012, pp. 113–132.

[52] P. Li, G. Li, and G. Gopalakrishnan, “Practical symbolic race checking of GPU pro-
grams,” in SC14: International Conference for High Performance Computing, Networking,
Storage and Analysis, Nov 2014, pp. 179–190.

[53] “Enabling ThreadSanitizer on PPC64(BE/LE) platforms,” http://reviews.llvm.org/
D12841, Dec. 2015.

[54] “CUDA-MEMCHECK Tool,” http://docs.nvidia.com/cuda/cuda-memcheck/
index.html.

[55] S. Atzeni and G. Gopalakrishnan, “An operational semantic basis for openmp race
analysis,” https://arxiv.org/abs/1709.04551, Sep. 2017.

[56] P. Chatarasi, J. Shirako, M. Kong, and V. Sarkar, An Extended Polyhedral Model for
SPMD Programs and Its Use in Static Data Race Detection. Rochester, NY, USA: Springer
International Publishing, 2017, pp. 106–120.

[57] Tim Lewis, “OpenMP Specifications,” http://www.openmp.org/specifications.

[58] Intel, “Intel Cilk Plus,” https://www.cilkplus.org, 1994.

[59] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von
Praun, and V. Sarkar, “X10: An object-oriented approach to non-uniform cluster
computing,” SIGPLAN Not., pp. 519–538, Oct. 2005.

[60] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav, “Scalable and precise dynamic
datarace detection for structured parallelism,” SIGPLAN Not., pp. 531–542, Jun. 2012.

[61] F. Mattern, “Virtual time and global states of distributed systems,” in Parallel and
Distributed Algorithms, 1988, pp. 215–226.

[62] C. J. Fidge, “Timestamps in message-passing systems that preserve the partial order-
ing,” in 11th Australian Computer Science Conference, 1988, pp. 55–66.

[63] J. Mellor-Crummey, “On-the-fly detection of data races for programs with nested
fork-join parallelism,” in Supercomputing, 1991, pp. 24–33.

75

[64] C. Liao, P.-H. Lin, J. Asplund, M. Schordan, and I. Karlin, “Dataracebench: A bench-
mark suite for systematic evaluation of data race detection tools,” in Proceedings of
the International Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’17, 2017, pp. 11:1–11:14.

[65] A. Jannesari, K. Bao, V. Pankratius, and W. F. Tichy, “Helgrind+: An efficient dynamic
race detector,” in 2009 IEEE International Symposium on Parallel Distributed Processing,
May 2009, pp. 1–13.

[66] K. Serebryany and D. Vyukov, “ThreadSanitizer, a data race detector for C/C++ and
Go,” https://github.com/google/sanitizers.

[67] U. Banerjee, B. Bliss, Z. Ma, and P. Petersen, “Unraveling data race detection in the
intel thread checker,” in STMCS, 2006.

[68] J. Huang, C. Zhang, and J. Dolby, “Clap: Recording local executions to reproduce
concurrency failures,” SIGPLAN Not., pp. 141–152, Jun. 2013.

[69] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan, “Sound predictive race
detection in polynomial time,” SIGPLAN Not., pp. 387–400, Jan. 2012.

[70] M. F. Oberhumer, “LZO,” http://www.oberhumer.com/opensource/lzo, 2012.

[71] Google, “Snappy,” https://google.github.io/snappy, 2011.

[72] Y. Collet, “LZ4,” https://lz4.github.io/lz4, 2011.

[73] J. Gama, Knowledge Discovery from Data Streams, 1st ed. London, UK: Chapman &
Hall/CRC, 2010.

[74] R. Bayer, “Symmetric binary b-trees: Data structure and maintenance algorithms,”
Acta Inf., pp. 290–306, Dec. 1972.

[75] “Mantevo,” https://mantevo.org, 2013.

[76] V. Kahlon, Y. Yang, S. Sankaranarayanan, and A. Gupta, “Fast and accurate static
data-race detection for concurrent programs,” in Computer Aided Verification, 2007, pp.
226–239.

[77] G. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F. Stark, “Detecting data
rase in cilk programs that use locks,” in SPAA, 1998, pp. 298–309.

[78] T. Yuki, P. Feautrier, S. V. Rajopadhye, and V. Saraswat, “Checking race freedom of
clocked X10 programs,” CoRR, vol. abs/1311.4305, 2013.

[79] J. R. Wilcox, P. Finch, C. Flanagan, and S. N. Freund, “Array shadow state compres-
sion for precise dynamic race detection,” in ASE, Nov. 2015, pp. 155–165.

