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ABSTRACT 
 
 
 

 Sperm competition is a pervasive mode of sexual selection across the 

phyla that have crucial implications in microevolutionary and macroevolutionary 

processes. Furthermore, females can bias the selection of sperm from one male 

over another in a process known as cryptic female choice. While sperm 

competition has been the subject of intense experimental research, very little is 

known about the molecular pathways and cellular mechanisms that regulate 

these processes. Insight into the molecular pathways regulating sperm 

competition and cryptic female choice are likely to have a high impact in the field 

of evolutionary biology since so little is currently known.  

The nematode C. elegans offers many advantages for the study of sperm 

competition. Male sperm exhibit a robust competitive advantage over 

hermaphrodite self sperm, resulting in the almost complete preferential use of 

male sperm. We have identified a gene, comp-1, that regulates several sperm 

behaviors leading to reduced male precedence when competing with both self 

sperm and other male sperm. Critically, mutant males and hermaphrodites have 

normal fertility, suggesting that mutants produce and transfer as many functional 

sperm competent for motility, sensation of guidance cues, and fertilization as do 

wild type. We have shown that the comp-1 sperm behavioral defects are specific 

to competitive contexts as comp-1 sperm are functionally normal when wild type 



 

 

iv 

sperm are absent. Surprisingly, wild type sperm appears to inhibit comp-1 sperm 

by altering the chemical environment of the hermaphrodite, most likely to involve 

prostaglandin signaling. Intercellular communication between the reproductive 

tract and sperm is fundamental for sperm migration, and prostaglandins have 

been previously identified as important for this process. However, this is the first 

time that prostaglandins have been implicated as necessary for sperm 

competition. Furthermore, prostaglandins are a novel mechanism of cryptic 

female choice and add to the field where very little is known about how females 

influence sperm competition. Results from our studies of comp-1 will provide 

insight into the molecular pathways necessary for sperm competition and cryptic 

female choice, which will ultimately broaden our knowledge of the mechanisms of 

evolutionary change. 
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CHAPTER 1 
 
 
 

INTRODUCTION 
 

 
 

Evolutionary Advantages of Polyandry 

Bateman’s principle postulates that for most species, a male’s 

reproductive success is only limited by how many females he can successfully 

inseminate, whereas the number of partners a female has should not have any 

impact on her fecundity (Bateman 1948). This principle, along with several 

explanations of why it might benefit females to have fewer partners, has 

supported the perception that females regularly practice monogamy in many 

species. In general, mating is a costly endeavor that requires high levels of 

energy that the female could use to procure other crucial resources. Moreover, 

there are several risks to both invertebrate and vertebrate females that increase 

with the more mates she takes, such as disease transmission, physical harm 

from the males, infanticide, and reduced life expectancy (Daly 1978; Chapman et 

al. 1995). It seems that mating only to produce offspring would be in the female’s 

best interest. Yet, female promiscuity is regularly practiced in many taxa, 

including, insects, birds, fish, reptiles, and mammals (Birkhead and Moller 1998). 

As a result, the sperm from more than one male is often residing in the female 

reproductive tract, forcing sperm from different ejaculates to compete with each 
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other to successfully fertilize a single set of eggs. While sperm competition has 

largely been viewed as an extension of the contest between males for mates, the 

role of the female in selecting more partners and influencing the pattern of 

paternity is becoming more prominent. 

The premise of sexual selection in most species is that an individual’s 

fitness depends on their ability to spread their genes to future generations. For 

males, it is in their best interests to mate with as many females as they can, 

thereby increasing their chances of successful fertilizations (Birkhead and Moller 

1998). On the other hand, females are limited by the number of viable eggs they 

produce or by the number of young they can nurture at one time (Trivers 1972). 

Once the female’s maximum capacity for fertility and childcare has been met, it is 

proposed that the costs of mating would prohibit the female from mating with 

more males. The advantages of polyandry are much less obvious, but several 

conspicuous behaviors can explain the asset of more male partners. For 

example, males can provide resources to prospective mates, increasing the 

female’s nutrient intake in the form of nuptial gifts such has been observed in 

insects (Gwynne 1984), a benefit to both herself and her young. However, even 

without material benefits from males of mammals, birds, and insects, competitive 

ejaculates can increase the female’s fitness by increasing offspring survival and 

producing fitter offspring (reviewed in (Parker and Birkhead 2013)). A simple 

nongenetic hypothesis explaining the motivation for polyandry is that it ensures 

that females are reaching their maximum fecundity by guarding against low 

sperm stores or poor sperm quality (Sakaluk and Cade 1980; Walker 1980). A 
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female could replenish her sperm stores or hedge against infertility by mating 

with one or two partners. However, these hypotheses do not adequately explain 

the benefit of multiple partners observed in many species. A more profound 

explanation would entail affecting the organism’s fitness at the genetic level, 

thereby falling within the definition of sexual selection.  

 

Offspring quality 

 Attempts to explain polyandry have historically been male centric. A male 

with high-quality sperm outcompetes other male ejaculates to fertilize the oocyte. 

The good-sperm hypothesis suggests that the male’s sperm quality, and thus 

successful competitive ability, correlates well with the quality of their overall 

genetics (Yasui 1997). Thus, a male with high-quality sperm will contribute good 

genetic material, leading to higher quality offspring and thereby indirectly 

benefiting the female. Several field studies have reported correlations between 

female adders with higher number of partners having fewer stillborn young 

(Madsen et al. 1992), consistent with the good-sperm hypothesis. Although the 

good-sperm hypothesis provides a plausible explanation for polyandry, later 

studies found that the increase in hatching was due to genetic compatibility 

between the male and female. Therefore, the responsibility of embryo viability is 

one that is shared between the male and female (Tregenza and Wedell 1998; 

Newcomer et al. 1999; Simmons 2001a). These data alone produce a 

conundrum in that although polyandry overall is favorable to the female and the 

hatching success of her future offspring, sperm competition itself would remain 
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as a process that provides benefits only to the male. However, another study 

demonstrated that sperm competition does result in offspring with faster 

development, a quality likely to be advantageous to the female’s offspring. In light 

of this finding, polyandry likely evolved to produce fitter offspring, at least in early 

development, via sperm competition as observed in the yellow dung fly (Hosken 

et al. 2003). Another reason why females may want to mate with multiple males 

is the genetic diversity hypothesis proposed by evidence using a cricket mating 

system, which posits that females hedge against future environmental 

uncertainties by using sperm with differing genetic backgrounds (Yasui 1997, 

2001).  

 

Genetic compatibility 

  If increased hatching success is due to enhanced genetic compatibility 

between the male and female, there must be a source of genetic incompatibility. 

Generally, this source is the combination of the parental haplotypes producing 

offspring of inferior quality, which can be due to the additive effects of several loci 

or the nonadditive effects of one or two deleterious loci. It is widely accepted that 

the level of the individual’s heterozygosity directly affects their fitness (Brown 

1997; Tregenza and Wedell 2000), either as a result of inbreeding depression 

(Charlesworth and Charlesworth 1987; Keller and Waller 2002) or to increased 

homozygosity advancing the expression of deleterious recessive mutations or 

selfish genetic elements ( Stockley et al. 1993; Pusey and Wolf 1996; Zeh and 

Zeh 1997). As proof of principle, female crickets actively select sperm from 
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nonsibling males when given the choice to avoid inbreeding (Tregenza and 

Wedell 2002).  

One key functional loci whose loss of variation is particularly detrimental to 

offspring is the major histocompatibility complex (MHC). MHC genes encode 

antigen presenting molecules necessary for the organism’s acquired immune 

response (Janeway et al. 1999). Loss of variation in these genes can 

compromise the individual’s ability to fight off disease (Doherty and Zinkernagel 

1975; Penn et al. 2002). Through cryptic female choice, wherein females favor 

sperm from one male over another, sperm from MHC-dissimilar partners are 

more likely to reach the eggs within the reproductive tract of the red jungle fowl 

females than MHC-similar males (Lovlie et al. 2013). These studies provide the 

first evidence that polyandry functions to improve the genetic compatibility of the 

female’s and male’s genetic contributions to the advantage of their offspring.   

 

Female fitness 

 Female polyandry in internally fertilizing species ensures that sperm from 

different ejaculates overlap, which forces sperm from different partners to 

compete. Although sperm competition largely benefits the male’s fitness, there is 

some evidence that sperm competition bolsters the female’s fitness by 

contributing to the early development of offspring. However, these studies are 

limited, leaving sperm competition as an extraneous event to the female’s 

reproductive interests. One could argue, if the attributes affecting sperm’s 

fertilization success are heritable, then the female’s fitness indirectly benefits by 
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producing sons that will more likely have ejaculates with superior sperm 

competitors (Keller and Reeve 1995). Experiments on invertebrates have 

concluded that populations maintained under polygamous conditions have 

increased testes size and sperm number as compared to their monogamous 

counterparts. The most well-described mechanism to increase a male’s 

fertilization success is to increase sperm number and has been observed as a 

key contributor to sperm competition in many species including mammals, 

insects, and roundworms (Hosken and Ward 2001; Pitnick et al. 2001; Simmons 

and Garcia-Gonzalez 2008). In C. elegans, after several generations of intense 

sperm competition, males evolve larger sperm (Murray et al. 2011), a 

characteristic known to contribute to increased sperm competition in this 

particular species and in others (LaMunyon and Ward 1998b). The finding that 

polyandry contributes to male fertilization success is not limited to invertebrates, 

as polygamous house mice also display greater sperm numbers and increased 

swimming performance and therefore greater paternity bias over monogamous 

lines, even after a relatively small period of time of twelve generations (Firman 

and Simmons 2010; Firman 2011; Firman and Simmons 2011). While these 

findings may directly benefit the males, females gain greater fitness through 

producing sons with potential higher reproductive success.  

   

Evolutionary Consequences of Sperm Competition 

At one time, sexual selection was thought to solely rely on precopulatory 

mechanisms, such as attracting mates through vibrant plumage. However, the 
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prevalence of female promiscuity and its important biological outcomes is now 

widely known. A female with more than one male’s ejaculate in her reproductive 

tract means that the male successor can be chosen up to the point of fertilization. 

In a seminal paper (Parker 1970), sperm competition was defined as a 

postcopulatory mode of sexual selection. Sperm competition is a potent mediator 

of sexual selection, the evolutionary process of increasing the gene frequency of 

traits that confer a reproductive advantage. As a likely result of sperm 

competition, the diversity of sperm morphology is unparalleled by any other 

tissue type. Sperm come in in all shapes and sizes and almost every component 

of sperm has been subjected to some form of modification. Of the four main 

components conserved in most sperm among different organisms: the acrosome, 

mitochondria, nucleus, and flagellum, there are examples of sperm lacking each 

one of them (Jamieson et al. 1999). Sperm is not the only reproductive tissue 

that has undergone extensive remodeling. Female reproductive tracts can be 

quite anatomically diverse. Perhaps one the most extreme examples can be 

observed in the Muscovy ducks. In order to avoid fertilization by unwanted male 

mates, females have evolved a corkscrew reproductive tract that twists in the 

opposite direction of the male’s penis. Moreover, the vagina has several “dead 

ends” into which the female can redirect the male’s penis if she deems him an 

inferior partner. This evolutionary adaption has been so successful that only 3% 

of copulations result in fertilization (Brennan et al. 2007; Brennan et al. 2010). 

Similar to precopulatory mechanisms, postcopulatory sexual selection is thought 

to drive the rapid diversification of reproductive characteristics in most taxa 
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(Simmons 2001a). Like the Muscovy ducks’ intriguing genitalia, many species 

display elaborate forms of reproductive morphology and anatomy as a result of 

sexual selection.  

  

Evolution of reproductive proteins 

 Given the complexity and diversity of sperm and reproductive tract 

morphologies and anatomy, it is reasonable to hypothesize that reproductive 

proteins might be evolving at a faster rate than proteins of other tissues. 

Typically, reproductive proteins are those involved with postcopulatory processes 

such as sperm usage, sperm storage, intercellular communication between 

sperm and egg, and fertilization. By comparing gene sequences between closely 

related species of Drosophila, studies have shown that genes necessary for 

sexual reproduction are diverging more quickly than their nonreproductive 

counterparts and on average have a higher amount of amino acid substitutions 

(Vacquier 1998; Singh and Kulathinal 2000). In the case of Drosophila 

melanogaster, the rate of divergence is occurring at twice the rate of other genes 

(Civetta and Singh 1995). In fact, reproductive proteins are one of the larger 

subset of genes that are under positive selection for vertebrates and 

invertebrates alike (Swanson et al. 2001a; Swanson et al. 2001b; Torgerson et 

al. 2002; Swanson et al. 2003), suggesting that their evolutionary change is 

conferring a benefit to the organism. One example of a specific group of proteins 

that are evolving at a rapid pace is the accessory gland proteins (Acp). In male 

Drosophila, species Acps regulate sperm storage and use, and oviposition (Ram 
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and Wolfner 2007). In mammals, the zona pellucida glycoprotein 3 (ZP3), 

necessary for the proper formation of the egg coat and thought to be necessary 

for sperm binding (Wassarman et al. 1999; Swanson et al. 2001b), has 

undergone adaptive selection exactly at the domain necessary for egg-sperm 

binding (Berlin and Smith 2005). The driving force for this rapid selection is 

thought to be due to internal selection via gamete selection by both sperm 

competition and cryptic female choice. Additionally, the interplay between 

genders is thought to contribute to the coevolution of the sexes and to be a major 

promoter to reproductive protein evolution (Swanson and Vacquier 2002; Clark et 

al. 2006b). The functional consequence of rapid reproductive protein divergence 

provides a mechanism sufficient to reproductively isolate populations or closely 

related species. As in the case of ZP3, one could imagine the functional 

consequences of a single amino acid change in the domain necessary for sperm-

egg binding could have drastic effects on the successful fertilization between a 

male and female, thus providing a mode to successfully prohibit the reproductive 

success of a male and female from two populations. 

 

Speciation 

Sperm competition and cryptic female choice is thought to drive the rapid 

diversification of reproductive traits, leading to the hypothesis that in isolated 

populations, it can also drive the formation and maintenance of species 

boundaries (Markow 1997; Parker and Partridge 1998; Eady 2001; Kraaijeveld et 

al. 2011). Several characteristics broadly influence male fertility and sperm 



 

 

 

10 

competition, including male genitalia, seminal fluid composition, sperm traits, and 

female reproductive tract morphology and secretory chemistry (Eberhard 1985; 

Snook 2005; Poiani 2006; Pitnick et al. 2009a; Pitnick et al. 2009b; Leonard and 

Cordoba-Aguilar 2010). The complexity of ejaculate-female interactions, along 

with the seeming coevolution of these interactions and their rapid evolution (Ram 

and Wolfner 2007; Pitnick et al. 2009b), suggest a potential role of these 

interactions in species isolation. However, associating the microevolutionary 

processes of changes in reproductive chemistry or morphology with the broader 

macroevolutionary concept of speciation has been difficult to determine. Studies 

in C. elegans provide some of the best evidence of functional diversification as a 

direct result of sperm competition, wherein sperm increase in size due to intense 

sperm competition (LaMunyon and Ward 1998b). While this confirms that sperm 

competition can cause phenotypic changes in sperm morphology, differences in 

morphology are only correlated with the macroevolutionary process of speciation. 

In order to achieve reproductive isolation, ejaculates of another population or 

species would need to be prevented from fertilizing the oocytes at one of the key 

reproductive events. Such events would either be in the form of blocking sperm 

from being transferred, mislocalizing sperm within or completely ejecting sperm 

from the reproductive tract, or inhibiting fertilization. In an elegant study 

measuring sperm performance between the recently diverged D. mauritiana and 

D. simulans (Manier et al. 2013), it was found that all of the reproductive events 

contributed to conspecific sperm precedence between the two species. 

Additionally, Caenorhabditis nematodes’ interspecies mating caused sperm to 
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inflict male-induced harm, leading to sterility of the hermaphrodite (Ting et al. 

2014). These results support a hypothesis in which sperm competition and 

cryptic female choice can cause the rapid evolution of the ejaculate and female 

reproductive tract so that incompatibilities restrict gene flow between populations 

or species.  

 

Mechanisms of Sperm Competition 

 Since Geoff Parker’s seminal paper in 1970 (Parker 1970), studies of 

sperm competition have revealed many behaviors and traits contributing to one 

male’s fertilization success over another (reviewed in (Wigby and Chapman 

2004b)). Of particular importance in understanding these traits is solving the 

mechanisms by which sperm achieve a competitive advantage. One of the first 

proposed models of how sperm attain fertilization success was the “fair raffle 

system,” in which individual sperm have no competitive superiority over another 

and each male has an equal chance to fertilize the egg. It was hypothesized 

sperm competition was achieved by a numbers game with the probability of each 

male in fertilizing an egg was in relation to the proportion of sperm they 

transferred as compared to the total sperm present (Parker 1990; Parker et al. 

1990). More simply, the male has a greater chance of fertilization success when 

more sperm are successfully transferred. An increase in testes size, an indicator 

of increased sperm production, is one of the most described evolutionary 

responses to sperm competition across species (Birkhead and Moller 1998; 

Simmons 2001a). It is widely expected that in many taxa, sperm production 
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increases with the intensity of sperm competition (Parker and Pizzari 2010). 

However, it has since been demonstrated that precedence was not always 

determined by a numbers game and that the mechanisms determining sperm 

competition were much more complex. In many species, the order of mating can 

determine paternity, such as in insects and birds where generally the second 

male to mate will fertilize the majority of the females eggs, known as last male 

sperm precedence (Parker 1984; Parker et al. 2010). The opposite can occur 

wherein preference is given to the first male (Jones et al. 2002). Male sperm 

compete both offensively and defensively, meaning that previously stored sperm 

must resist removal or inactivation while incoming sperm must displace sperm 

already present. Sperm competition can also be determined by some underlying 

compatibility between the sperm and the female that appears to defy the rules of 

who came first or last. The order of mating or the seemingly randomness 

determining male precedence highlights the variety of mechanisms sperm 

employ to gain precedence, and suggest that there are intrinsic differences 

between ejaculates that give individual sperm a competitive advantage. 

Historically, sperm competition measurements typically have been indirect due to 

the difficulties of discriminating sperm from different ejaculates and observing 

sperm behaviors directly within the selective environment. Particularly elusive are 

the molecular pathways involved in regulating sperm competition. However, 

several advances have been made and we are beginning to understand the 

cellular mechanisms and elucidate the genes necessary for their function in 

sperm competition. 
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Sperm size and velocity 

 In response to sperm competition being ruled by a fair raffle, most male 

animals produce many, tiny sperm. However, some species produce giant 

sperm, such as Drosophila bifurca where sperm length is 20X the size of the total 

body length of the organism producing such sperm (Pitnick et al. 1995). Larger 

sperm are costly to produce both in terms of the sperm themselves and the size 

of the testes that hold them, and in a direct tradeoff model, the male would not 

likely be able to manufacture as many sperm (Immler et al. 2011). In C. elegans 

males, strains with larger sperm produce them at a slower rate (LaMunyon and 

Ward 1998b; Murray et al. 2011). Such a large tradeoff suggests that the larger 

sperm offer a substantially significant advantage. In moths, sperm length 

coevolved as a response to the female’s elongating spermathecal duct, 

suggesting that the longer sperm navigated the longer ducts more efficiently 

(Morrow and Gage 2000). Additionally, it is thought that sperm length determines 

favorable positioning within the reproductive tract of D. melanogaster females 

(Miller and Pitnick 2002). Other explanations for larger sperm include that they 

may resist displacement by other sperm or block access to the site of fertilization 

(Wigby and Chapman 2004a), two mechanisms which would likely confer a 

competitive advantage.  

 Some of the strongest experimental evidence for sperm size conferring an 

advantage comes from the hermaphroditic species, C. elegans. C. elegans is a 

male-hermaphrodite species in which hermaphrodites produce and use their 

stores of self sperm, but can be inseminated by males. After mating, male sperm 
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outcompete self sperm, resulting in the nearly absolute preferential use of male 

sperm (Ward and Carrel 1979; LaMunyon and Ward 1995). In a poorly 

understood process, male sperm displace self sperm from the spermatheca, the 

site of fertilization in C. elegans. While the form and function of male and 

hermaphrodite sperm are almost identical, the size of male sperm is significantly 

larger than that of hermaphrodite sperm, leading many to hypothesize that size 

contributes to the male’s advantage (Nelson et al. 1982; LaMunyon and Ward 

1998a). Supporting the hypothesis that size confers an advantage, AB1 is a C. 

elegans strain that produces larger sperm and when competed against other 

male strains with significantly smaller sperm, paternity is biased towards the AB1 

male (LaMunyon and Ward 1998b; Murray et al. 2011). Larger sperm size is 

thought to be more competitive due to the correlation of faster crawling speeds 

with larger sperm size in vitro. Although it is unclear if size is a selective 

mechanism in C. elegans, there is growing evidence in other organisms that 

supports longer or larger sperm size with faster sperm velocity (Simmons and 

Fitzpatrick 2012) with the idea that larger sperm reach the ova more quickly than 

their rivals (Gomendio and Roldan 1991). Again, there is a correlation between 

species of different taxa with intense sperm competition and larger and faster 

sperm (Gomendio and Roldan 2008; Fitzpatrick et al. 2009; Kleven et al. 2009). 

Even within the ejaculate of one male, there is a higher correspondence between 

longer sperm length and velocity, suggesting that there may be an even stronger 

case for sperm size affecting velocity when accounting for within male variance in 

other species (Fitzpatrick and Baer 2011).  
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Sperm cooperation 

 Sperm cooperation between individual sperm of a given ejaculate in which 

one or more motile cells aggregate to improve velocity is one of the more exciting 

but less understood strategies involved in regulating sperm competition (Fisher 

and Hoekstra 2010; Higginson and Pitnick 2010; Fisher et al. 2014). In some 

cases, physical contact is not even necessary as a concentration of sperm can 

collectively influence each other through hydrodynamic interactions (Yang et al. 

2008). In the Dytiscid water beetle, sperm heads attach to each other and use 

the power of the their two tails combined to propel them towards the egg (Mackie 

and Walker 1974). In yet another example, the sperm of the Gyrinid beetles 

attach themselves through a rod-like structure that facilitates in coordinating 

movement to the sperm storage organs (Mackie and Walker 1974). Aggregates 

of hundreds of sperm have also been found to improve overall motility, such as in 

some fish where larger groups of sperm move faster towards the spermatheca 

than smaller groups (Hayashi 1998). In mammals, sperm of the Norway rat have 

a specialized sperm structure in the shape of a hook that functions to form larger, 

and faster, groups of sperm (Immler et al. 2007).  Presumably, if aggregation 

operated as a mechanism of sperm competition, sperm from the same ejaculate 

would have a form of self recognition. However, there is an absence of evidence 

that these aggregates are limited to the ejaculate of one male and further 

experiments will be necessary to determine if the competitive advantage of these 

aggregations are specific to sperm of one ejaculate. 
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Seminal fluid 

Much of the research on ejaculates has focused on the sperm, neglecting 

the role of seminal fluid in sperm competition. Seminal fluid proteins (Sfps) in 

Drosophila play an important role in male fertility by affecting sperm motility, 

capacitation, storage, fertilization capacity, viability, and female responses (Prout 

and Clark 2000; Poiani 2006; Wong et al. 2008; Wigby et al. 2009a; LaFlamme et 

al. 2012). Seminal vesicle proteins are also known to be crucial for the formation 

of a mating plug in mammals and insects, a temporary structure thought to 

prevent remating by other males and a potential mechanism of sperm 

competition (Simmons 2001b; Ramm et al. 2005). Given the diverse role of Sfps 

in sperm functions, they are expected to play a critical role in sperm competition. 

Sfps compose a substantial amount of the ejaculate and since they are a limited 

resource, it benefits the male to strategically allocate them. Interestingly, in D. 

melanogaster males, more Sfps are transferred in response to the potential level 

of sperm competition and males that can transfer more Sfps have a significant 

competitive advantage (Wigby et al. 2009b). Furthermore, male insects can 

modulate levels of certain Sfp proteins to change the ejaculate composition, and 

it is thought that modulation of seminal fluid is responsible for the increase in 

sperm viability when males perceive higher levels of competition (Simmons et al. 

2007; Sirot et al. 2011). In the case of the domestic chicken, dominant males 

differentially adjust their seminal fluid allocations, resulting in increased sperm 

velocity, when mating to more attractive females (Cornwallis and Birkhead 2007).  

In social insects, ants and bees, seminal fluid of polyandrous groups has 
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been implicated in improving the survival of sperm from one male while 

negatively affecting sperm from other males (Fry and Wilkinson 2004; den Boer 

et al. 2010). Interestingly, secretions from the female’s spermatheca can counter 

this effect through cryptic female choice (den Boer et al. 2010). In the external 

fertilizing fish species, the grass goby, males assume one of two roles: the 

territorial male whose sperm normally does not compete with other males versus 

the sneaker males who almost always parasitize spawning nests (Scaggiante et 

al. 1999). Sperm performance does not differ between the two males in their own 

seminal fluid, however; the velocity of sneaker sperm improves in the seminal 

fluid of the territorial male, while the territorial sperm has reduced performance in 

the seminal fluid of the sneaker male (Locatello et al. 2013). These findings 

support the role of seminal fluid as a detriment to rival male sperm.  

 A major component of seminal fluid is the male accessory gland proteins 

(Acps), a diverse mixture of anything from prohormones to glycoproteins, that 

were first discovered to cause increased egg production and decreased 

receptivity to future mates in D. melangastor females (Manning 1962; Merle 

1968). To date, 133 different Drosophila proteins have been identified that are 

transferred along with sperm (Findlay et al. 2008), representing the importance of 

seminal fluid. In particular, sex peptide (SP) Acp70A was identified and found to 

reduce the females likelihood to remate (Chen et al. 1988), a clever behavioral 

mechanism employed to avoid direct sperm competition. Another Acp, Acp34DE, 

is directly involved in mediating the outcome of sperm competition by affecting 

sperm storage in the female (Neubaum and Wolfner 1999; Tram and Wolfner 
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1999; Chapman et al. 2000). D. melanogaster has a typical insect paternity bias 

that favors the second male to mate with the female, which is thought to occur by 

displacement of the first male’s sperm (Clark et al. 1995; Gilchrist and Partridge 

1995). Interestingly, Acp36DE itself is not displacing sperm since transfer of 

Acp36DE seminal fluid without sperm did not affect the progeny count of the first 

male (Chapman et al. 2000), indicating that seminal fluid is promoting sperm 

behaviors related to displacing other sperm. Acp29AB, a predicted lectin, is 

another Acp that localizes to the female’s sperm storage organs and is 

necessary for maintaining sperm positioning within the sperm storage organs, 

providing a sperm competition advantage (Wong et al. 2008). Acps mediate 

sperm storage by inducing morphological changes in the female’s reproductive 

tract, which may include induction of muscle contractions that assist sperm 

motility towards the spermatheca and seminal receptacle (Heifetz and Wolfner 

2004; Adams and Wolfner 2007). Other Acps, again predicted lectins, involved in 

sperm storage are necessary for the efficient release of sperm from the seminal 

receptacle (Ravi Ram et al. 2005; Avila et al. 2010). These, and other Acps, 

highlight the potential cellular role of sperm adhesion in storage as a mechanism 

of sperm competition. Acps divergence is greater in Drosophila species with 

strong sperm competition (Haerty et al. 2007; Wagstaff and Begun 2007), thus 

suggesting that more Acps are expected to play a role in sperm competition that 

is not yet appreciated by researchers. 
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Sperm-egg interactions 

 Postcopulatory selection can occur at three key events: insemination, 

sperm storage, and fertilization. Although there is no direct evidence of sperm 

being preferentially selected at fertilization, proteins for sperm-egg interactions 

are rapidly diverging and under positive selection (Swanson 2003; Clark et al. 

2006a; Vicens et al. 2014), suggesting that sexual selection may be influencing 

sperm-egg interactions. Potential candidate genes necessary for fertilization that 

may be involved in sperm competition are the Adam, A Disintegrin and 

Metalloprotease, genes in mouse. There are at least 35 ADAMs in mammals, 

approximately half of which are expressed in the testes. The testes-specific 

ADAMs have a higher divergence than somatic-tissue ADAMs and only sperm 

surface proteins display positive selection at the adhesion domain necessary for 

sperm-egg interactions (Civetta 2003; Glassey and Civetta 2004), suggesting 

that these proteins have evolved under sexual selection (Finn and Civetta 2010). 

An alternative explanation for the high divergence and positive selection may be 

the coevolutionary arms race between the sperm quickly gaining entry and the 

female preventing polyspermy, the entry of more than one sperm into the oocyte. 

While ADAMs are necessary for normal fertilization, an exciting possibility is that 

they may also be involved in sperm competition based on preliminary evidence.  

 

Cryptic Female Choice 

Often times, it is thought that the female’s main role in sexual selection is 

choosing a mate. Males have evolved a variety of elaborate secondary sexual 



 

 

 

20 

characteristics that serve no purpose in copulation, but have been selected for 

based on the advantage they confer to the male during courtship. An extreme 

example is the male peacock: the large bright feathers increase their level of 

predation, but are effective in attracting the opposite sex (Petrie et al. 1991). For 

the female, however, this limited role in mate choice can pose several problems. 

In many species, the frequency in which males force themselves on females 

potentially eliminates the female’s preferred mate choice. Another issue is that 

females may potentially select males based on physical characteristics, using 

external traits as a proxy to judge the male’s genetic quality as demonstrated in 

cricket species (Lailvaux et al. 2010). It is quite possible that a male may have all 

the better qualities that a female may desire, yet be too closely related to 

produce superior offspring. Research has shown that females have a further 

degree of control by biasing the postcopulatory outcome of sperm competition 

(Eberhard 1996). Female cryptic choice, the female manipulation of sperm 

selection, can circumvent the male’s control for fertilization success. It also 

provides yet another avenue in determining the quality of the male’s genetic 

contribution. The genetic basis for cryptic female choice is not known although 

several candidate genes in D. melanogaster have been identified that may 

contribute to sperm selection (Giardina et al. 2011). Unraveling the molecular 

basis of cryptic female choice will be challenging since it is difficult to resolve if 

sperm selection is a female-mediated process or due to sperm competition. 
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Female reproductive tract morphology 

Sperm competition between males typically occurs within the female 

reproductive tract and it is thought that the female’s anatomy plays an active role 

in this process. The variety of complex female reproductive morphologies led 

many to hypothesize that it was capable of a discriminatory role in sperm 

selection (Walker 1980; Linley and Simmons 1981). One such example is the 

female dungfly, who has a complicated reproductive morphology including 

multiple spermathecae in which she can separately store sperm from different 

males (Otronen et al. 1997; Ward 1998). Sperm must navigate these long, 

convoluted ducts before reaching the ova (Eberhard 1996). D. melanogaster is 

another promiscuous female species that stores sperm from multiple males for 

periods up to two weeks in either the seminal receptacle or spermathecae 

(Gilbert 1981; Marks et al. 1988). In an experiment using mutant females, 

researchers found that females with three instead of two spermathecae changed 

the pattern of sperm use over time, indicating that female morphology does bias 

sperm fertilization success (Bangham et al. 2003). Additionally, females can 

manipulate paternity by dumping stored sperm after mating with males, a 

process that does not require seminal fluid (Snook and Hosken 2004; Manier et 

al. 2010). In D. simulans, the female can switch between using the sperm from 

the seminal receptacle or the spermatheca depending on the quality of the sperm 

(Lupold et al. 2013). As techniques are developed to observe sperm behaviors 

within the reproductive tract, we will undoubtedly see more ways in which the 

female morphology influences sperm competition. 
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Chemical environment 

 Whether through choice or force, female chickens are one example of 

species that frequently practice polyandry. Commonly, the female prefers mating 

with dominant males, yet they can not avoid copulation with subdominant males. 

However, they can regain control over paternity through cryptic female choice. 

Researchers studied the red jungle fowl, the wild ancestor of the domestic 

chicken, and found that mating with different males produce offspring that are 

more resistant to disease. Females maximize the genetic quality of their offspring 

by biasing fertilization in favor of male sperm that are more genetically different 

from them. Specifically, they favor male sperm that can increase the diversity of 

MHC (Lovlie et al. 2013). Although the mechanism occurs internally in the 

female’s reproductive tract, it is not known how the female influences sperm 

selection. In fact, very little is known about how females regulate their 

reproductive tract environment to influence the outcome of sperm competition.  

 Some of the earliest evidence of females regulating sperm behaviors 

comes from externally fertilizing fish. Along with the release of her eggs, the 

females discharge ovarian fluid that creates a chemical microenvironment 

surrounding the eggs and affects the swimming velocity of male sperm (Urbahc 

et al. 2005; Rosengrave et al. 2009). Modulating swimming velocity is a classic 

mechanism of sperm competition, and in fish it is the prime determinant for 

fertilization success (Gage et al. 2004). Moreover, the ovarian fluid from different 

females differentially affect sperm velocity, trajectory, and longevity from different 

males, suggesting that the variation of ovarian fluid composition could be a form 
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of cryptic female choice selecting male sperm based on their genotype 

(Rosengrave et al. 2008). The internally fertilizing fish, the guppy, is known to 

have polyandrous females unable to distinguish closely related males (Guervara-

Fiore et al. 2010). However, the paternity in natural populations shows a 

tendency towards genetically unrelated males (Johnson et al. 2010). Using 

artificial insemination to control sperm numbers and reduce any copulatory 

behaviors on sperm selection, researchers found that unrelated males were more 

successful at siring offspring when competing against a related male even when 

brood sizes of both males were similar. Considering that ovarian fluid has an 

affect on externally fertilizing fish species, the researchers went on to show that 

ovarian fluid promotes increased swimming velocity of the unrelated versus 

related male (Gasparini and Pilastro 2011). Female frogs also employ a similar 

mechanisms by releasing egg jelly that acts as a chemoattractant and regulates 

the onset of sperm motility and swimming velocity (Simmons et al. 2009). 

Overall, these data support a hypothesis that female organisms are influencing 

sperm competition in favor of genetically unrelated males through chemical 

manipulation of their ovarian fluid that ultimately regulates sperm behaviors. As 

to what might be the determinant in ovarian fluid promoting these behaviors is 

still a mystery, although pH has been implicated in enhancing sperm motility in 

rainbow trout (Wojczak et al. 2007). In another study, conspecific ovarian fluid 

was shown to act as a chemoattractant that increased motility and straightened 

out the sperm’s trajectory. Surprising, not only did conspecific ovarian fluid attract 

more sperm than the heterospecific ovarian fluid, heterospecific ovarian fluid had 
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the same poor chemoattractant properties as water (Yeates et al. 2013). 

Although these studies shed light on the chemical mechanism of cryptic female 

choice in regulating male sperm swimming behaviors through chemoattration, 

nothing is known about the proteins necessary to regulate the chemical 

composition of ovarian fluid. 

 

Coevolution of the Sexes 

Often times, postcopulatory selection is not a function of female bias or 

sperm competition, but rather a result of a male-female interaction via 

coevolution of the two sexes. This interaction can be seen in diving beetles; the 

reproductive tract has undergone extensive changes in shape and size along 

with corresponding divergence of sperm morphology (Higginson et al. 2012). 

One of the best examples of the concept of reproductive coevolution deciding the 

outcome of sperm selection is sperm length and the length of the female seminal 

receptacle in D. melanogaster. Male fertilization success is not determined by the 

overall length of sperm but performance is constrained by an optimal sperm 

length given the length of the seminal receptacle (Miller and Pitnick 2002). 

Another interesting intercommunication process between the two sexes involves 

sex peptide, a component of seminal fluid, as a master transcriptional regulator 

causing the induction of genes in the female related to development, early 

embryogenesis, and behavior (Gioti et al. 2012). However, some of the strategies 

developed by males in response to male-female interactions are antagonistic to 

the female, leading to sexual conflict. In Drosophila, the seminal fluid increases 
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the rate of female ovulation, but perhaps at the cost of the female’s longevity and 

overall lifetime reproductive success (Chapman et al. 1995; Pizzari and Snook 

2003). As such, evolution of reproductive proteins is a complex and sometimes 

intertwined process driven by sexual selection with inputs by the male, female, or 

male-female interaction, or as a result of a sexual conflict arms race where the 

females and males are constantly outmaneuvering the opposite sex. Future 

studies will necessitate careful examination of the contributions of each sex to 

determine which gender is contributing to postcopulatory selection. 
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CHAPTER 2 
 
 
 

COMP-1 PROMOTES COMPETITIVE ADVANTAGE 

 OF NEMATODE SPERM 

 
 

Abstract 

Competition among sperm to fertilize oocytes is a ubiquitous feature of 

sexual reproduction as well as a profoundly important aspect of sexual selection. 

However, little is known about the cellular mechanisms sperm use to gain 

competitive advantage or how these mechanisms are regulated genetically. 

Here, we utilize a forward genetic screen in C. elegans to identify a gene, comp-

1, whose function is specifically required in competitive contexts. We show that 

comp-1 functions in sperm to modulate their migration through and localization 

within the reproductive tract, thereby promoting their access to oocytes. Contrary 

to previously described models, comp-1 mutant sperm show no defects in size or 

velocity, thereby defining a novel pathway for preferential usage. Our results 

indicate not only that sperm functional traits can influence the outcome of sperm 

competition, but also that these traits can be modulated in a context-dependent 

manner depending on the presence of competing sperm.  
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Introduction 

Sexual selection operates at the level of reproductive success to promote 

traits that improve offspring production (Darwin 1871). It thus influences a wide 

array of processes that affect not only the likelihood of mating, but also the 

probability that gametes will interact within a female to form a viable zygote. In 

many species, a female can mate with multiple males, resulting in competition 

between male ejaculates, known as sperm competition (Parker 1970). In 

addition, having multiple mates provides opportunities for a female to influence 

the outcome, known as cryptic female choice (Eberhard 1996). These 

postcopulatory forms of sexual selection have driven the diversification of sperm 

and reproductive tract morphologies as well as the divergence of reproductive 

proteins, and have likely contributed to reproductive isolation and speciation 

(Ritchie 2007; Howard et al. 2008; Manier et al. 2013).  

Sperm competition is a widespread phenomenon that occurs in species 

utilizing a wide range of reproductive strategies, and a variety of different 

patterns of preferential usage, generally referred to as precedence, have been 

observed (Smith 1984; Birkhead and Møller 1992, 1998). For example, in some 

species, the first male to mate may show precedence, while in others, the last 

mate’s sperm may win, and the strength of such defensive and offensive abilities 

varies widely. By their nature, events in the reproductive tract that determine the 

outcome of competition are difficult to study, so in most cases, the mechanistic 

basis for a particular precedence pattern is poorly understood. When sperm 

competition is intense, males often respond by production and transfer of 
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numerous smaller sperm (Gomendio et al. 1998; Simmons 2001). However, in 

some cases, sperm may gain an advantage by modulating functional traits, e.g., 

by increasing migration velocity, promoting retention, or blocking subsequent 

access to the site of fertilization (Wigby and Chapman 2004; Gomendio and 

Roldan 2008; Pizzari and Parker 2009).  

Due to the difficulty of distinguishing sperm from different ejaculates or of 

observing sperm directly within the selective environment, indirect assays have 

often been employed to measure sperm usage. The cell behaviors underlying 

sperm competition have only been investigated in a few species that are 

amenable to such analyses, and little is known about the genetic basis for 

differences in competitive ability among cells. However, in vivo imaging studies 

have recently begun to reveal the cellular mechanisms of sperm behavior in 

competitive contexts, where multiple males have mated with a female 

(e.g.,Civetta 1999; Manier et al. 2010; Marie-Orleach et al. 2014). For example, 

in Drosophila, analyses of genetically labeled fluorescent sperm have revealed 

that stored sperm are highly motile and that modulation of sperm storage, 

release, and ejection by the female contribute strongly to second-male 

precedence in that organism (Manier et al. 2010; Lupold et al. 2012). Some 

genetic loci that affect male reproductive success have recently been identified in 

Drosophila and in mammals (e.g., Fiumera et al. 2005; Sutton et al. 2008; Yeh et 

al. 2012; Civetta and Finn 2014). Specific seminal fluid components have been 

shown to play an important role in male competitive advantage by affecting 

sperm motility and storage, as well as female responses (e.g., Mueller et al. 
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2008; reviewed in (Avila et al. 2011; Simmons and Fitzpatrick 2012)). However, 

very few examples are known of genes that function in sperm to control 

characteristics directly involved in sperm competition. An open question is 

whether genes exist that specifically regulate competition, without affecting core 

sperm functions, or whether competitive advantage is always gained by 

modulating the activity of genes involved in other processes. 

The nematode C. elegans provides a model system to address the cellular 

behaviors and molecular pathways that mediate sperm competition. C. elegans is 

a male-hermaphrodite species in which hermaphrodites produce their own self 

sperm but also can be inseminated by males. In a self-fertilizing context, 

hermaphrodite self sperm reside in the spermathecae, sperm storage organs 

where fertilization occurs, and are used with very high efficiency. Typically, more 

than 99% of sperm go on to fertilize an oocyte (Ward and Carrel 1979). However, 

if mating occurs, male sperm migrate through the uterus to the spermathecae, 

where they encounter and must compete with stored self sperm. Importantly, 

during male-hermaphrodite sperm competition, male sperm are used 

preferentially (Ward and Carrel 1979; LaMunyon and Ward 1995). Male 

precedence is very robust, and many crosses result in male sperm exclusively 

fertilizing oocytes. Simple numerical advantage, seminal fluid factors, and the 

order of introduction into the reproductive tract have been ruled out as potential 

causes (Ward and Carrel 1979; LaMunyon and Ward 1994, 1995). Instead, the 

competitive advantage of C. elegans male sperm has been shown to rely on 

intrinsic differences between male and hermaphrodite sperm cells. While the 
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form of male and hermaphrodite sperm is the same, male sperm are generally 

larger than hermaphrodite sperm (LaMunyon and Ward 1999). Consistent with 

the idea that this is significant, experimental evolution under crossing conditions 

has been shown to lead to increased size (LaMunyon and Ward 2002). Like 

those of other nematodes, C. elegans sperm move by crawling using a 

pseudopod, and this motility is required for precedence (Nelson et al. 1982; 

Singson et al. 1999). Larger sperm crawl faster in vitro (LaMunyon and Ward 

1998), and male sperm displace self sperm from the walls of the spermathecae 

(Ward and Carrel 1979). However, male sperm need not fertilize oocytes to 

outcompete hermaphrodite sperm; mutant males whose sperm are motile, but 

fertilization-defective, block self progeny production even though their sperm 

cannot be used (Singson et al. 1999). These data suggest a model for male 

precedence in which the presence of larger, faster, male sperm leads to the 

exclusion of self sperm from the fertilization process reviewed in (LaMunyon and 

Ward 1998; Ellis and Stanfield 2014). Differences in the migration behaviors of 

male and hermaphrodite sperm could affect the processes of sperm migration 

towards, retention in, or localization within the spermathecae, where there could 

be sites especially favorable for sperm-egg interaction (Han et al. 2009). 

Although many mutants defective for spermatogenesis and/or fertilization have 

been identified in genetic screens, most mutations affect both male and 

hermaphrodite sperm equally and none specifically affect male precedence 

reviewed in (Nishimura and L'Hernault 2010). Thus, the underlying mechanisms, 

in terms of either cellular behaviors or genetic controls, remain unclear.  
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Here, we report the use of a genetic screen in C. elegans to identify a sperm 

competition gene. While sperm lacking comp-1 activity are used efficiently in the 

absence of competition, comp-1 sperm are outcompeted by wild type sperm from 

either hermaphrodites or males, resulting in reduced reproductive success for 

both comp-1 mutant males and the hermaphrodites that mate with them. 

Strikingly, comp-1 sperm are normal in size. However, they show defects in 

sperm motility and storage in vivo, coupled with context-dependent defects in 

pseudopodial extension in vitro. Thus, comp-1 regulates sperm-intrinsic functions 

required to compete both offensively and defensively. These results suggest a 

model in which comp-1 functions in sperm to coordinate environmental signals 

that influence motility related functions required for sperm to compete with one 

another. Our findings provide key insight into the genetic regulation of sperm 

competition and suggest that in C. elegans, sperm gain advantage by modulating 

their motility and storage depending on their competitive milieu. 

 

Results 

Isolation of a C. elegans mutant with defects in male precedence 

We took advantage of the male-hermaphrodite reproductive system and 

robust sperm precedence order of C. elegans to perform a forward genetic 

screen for males with less-competitive sperm. After a wild type male mates with 

and transfers sperm to a hermaphrodite, his sperm rapidly migrate to the 

spermathecae and begin fertilizing oocytes, and in ideal conditions, most crosses 

result in more than 90% cross progeny (Ward and Carrel 1979; LaMunyon and 
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Ward 1995). However, the underlying mating and sperm transfer behaviors are 

variable in efficiency, so that in practice, a wide range of cross progeny 

frequencies are often observed, and some crosses fail altogether (Ward and 

Carrel 1979 and unpublished observations). Thus, for our screen, we developed 

a sperm competition assay, using spe-8; dpy-4 hermaphrodite recipients, that 

allowed us to exclude crosses for which cross progeny numbers were decreased 

due to behavioral defects (Figure 2.1A, Materials and Methods). spe-8 

hermaphrodites are self-sterile due to a defect in the ability to activate their self 

sperm to become motile (L'Hernault et al. 1988). In the absence of mating, they 

produce no offspring. However, if a male mates with and transfers seminal fluid 

to a spe-8 recipient, both the male and self sperm are activated to become motile 

and fertilization-competent, and since male sperm are superior, they fertilize the 

vast majority of oocytes (LaMunyon and Ward 1995). The dpy-4 mutation is 

recessive and allows discrimination of self progeny from cross progeny on the 

basis of the Dumpy phenotype. For our assay, we established mating conditions 

in which most crosses were successful and fewer than five total Dumpy self 

progeny were produced in the vast majority of cases, providing a readily-scored 

cutoff for candidate mutants (data not shown). 

We performed EMS mutagenesis on a male-producing him-5 strain 

(Hodgkin et al. 1979), established lines from individual F2 hermaphrodites, and 

tested F3 males from each line in the sperm competition assay. We identified 

one mutant, me69, which showed reduced male precedence as compared to the 

wild type (Figure 2.1B; Stanfield GM, unpublished data). The percentage of cross 
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progeny that resulted from mating with me69 mutant males was rarely 

comparable to that of wild type crosses. However, me69 mutant hermaphrodites 

produced a normal number of offspring (Figure 2.1C), setting the me69 

phenotype apart from those of previously identified spe mutants, most of which 

were isolated based on reduction of hermaphrodite fertility but usually affect 

sperm production in males as well (Nishimura and L'Hernault 2010). 

While the use of spe-8 recipients was critical for our screen, their immotile 

self spermatids cannot maintain proper positioning within the reproductive tract, 

resulting in mislocalization and gradual loss of the sperm to the external 

environment (L'Hernault et al. 1988). To assess precedence of me69 males in a 

more natural competitive context, we performed crosses to dpy-4 

hermaphrodites, whose sperm localize appropriately to the spermathecae (data 

not shown). We placed individual L4 males and dpy-4 hermaphrodites together 

for 40 hrs and quantified self and cross progeny generated during this time 

period. Under these conditions, most matings with wild type control males 

resulted in at least some cross progeny, and most successful males sired a high 

fraction of offspring (Figure 2.1D). However, matings with me69 males resulted in 

few to no cross progeny during the time frame of this assay. We confirmed that 

me69 males were capable of mating and transferring sperm to these 

hermaphrodites at a high frequency (48-85% of crosses were successful, as 

compared to 74-100% for wild type), so their poor reproductive success was not 

simply due to behavioral defects. Rather, me69 mutant males show 

postcopulatory defects in sperm usage consistent with a defect in male 
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precedence.  

 

The me69 mutation disrupts comp-1, a kinase domain gene 

that functions in sperm 

We used meiotic mapping to localize me69 to a 6.7 Mb interval on 

chromosome I (Davis et al. 2005; Supplementary Tables 2.1, 2.2). Whole-

genome sequencing of the me69 strain revealed a likely candidate for the causal 

mutation as a G to A transition in the coding region of F37E3.3, an 

uncharacterized gene that we have renamed comp-1 for sperm competition 

defective (Figure 2.1E). Based on global expression analyses, comp-1 is 

expressed in the germ line during time periods that coincide with sperm 

production: the L4 larval stage in hermaphrodites and in both L4 and adult males 

(WormBase ; Reinke et al. 2000; Reinke et al. 2004; Ortiz et al. 2014).  

The COMP-1 protein contains divergent SH2 and protein kinase-like 

domains and has been classified within a “unique” subset of C. elegans kinases 

that do not fall clearly within defined families (Manning 2005); it also lacks closely 

related paralogs within the C. elegans genome. It is missing three highly 

conserved core motifs present in active kinases, including the VAIK motif in the N 

lobe, the HRD motif in the catalytic loop, and the DFG motif within the activation 

loop, though it does contain the tripeptide APE motif located within the activation 

segment (Figure 2.2) (Hanks et al. 1988; Hanks and Hunter 1995; Manning et al. 

2002; Nolen et al. 2004; Marchler-Bauer et al. 2011). The absence of these 

features suggest that the protein is unlikely to have catalytic activity. The me69 
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allele is predicted to result in a glycine to arginine change in a residue that is 

conserved in all other orthologs identified to date. COMP-1 orthologs are present 

in other Caenorhabditis species as well as in the parasites H. contortus, A. 

ceylanicum, and N. americanus (WormBase ; Laing et al. 2013; Schwarz et al. 

2013; Tang et al. 2014). Although COMP-1 appears to be absent from more 

distant species (WormBase and unpublished data), it is present in nematodes 

that utilize male-female as well as male-hermaphrodite reproductive modes.  

We obtained a comp-1 deletion allele, gk1149, from the C. elegans 

Deletion Mutant Consortium (Consortium 2012). gk1149 eliminates a large region 

of the coding sequence and is likely a null allele. To test if the me69 and gk1149 

alleles result in a similar male precedence defect, we crossed gk1149 males to 

dpy-4 hermaphrodites and found that gk1149 mutant males indeed showed a 

reduction in male precedence as compared to the wild type (Figure 2.1D). Like 

me69, gk1149 is recessive; crosses with heterozygous gk1149/+ males showed 

a wild type precedence pattern. However, me69/gk1149 heterozygotes had male 

precedence defects, indicating the two mutations failed to complement one 

another. To confirm that loss of comp-1 function is responsible for the male 

precedence defect, we performed rescue experiments. We generated animals 

harboring a Mos-mediated single copy insertion (MosSCI) transgene (Frokjaer-

Jensen et al. 2008; Frokjaer-Jensen et al. 2012) encompassing a 3.9 kb genomic 

fragment surrounding F37E3.3 (Supplementary Tables 2.3, 2.4). This transgene 

rescued the male precedence defect of both me69 and gk1149 males (Figure 

2.3), confirming that comp-1 is the gene affected in these mutants.  
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To test if comp-1 function is required in sperm cells, we generated 

MosSCI transgenes to express it specifically in sperm, using the promoter for the 

peel-1 gene (Seidel et al. 2011). We observed full rescue of the male precedence 

defect in comp-1(gk1149); Ppeel-1::comp-1 males (Figure 2.1F), indicating that 

expression of comp-1 in sperm is indeed sufficient to rescue the male 

precedence defect. Thus, comp-1 acts in sperm to promote their preferential 

usage. 

 

comp-1 activity influences the outcome of male-male 

sperm competition 

Since COMP-1 is highly conserved in both male-hermaphrodite and male-

female species (Figure 2.2), we hypothesized that comp-1 might function in 

male-male sperm competition. In the standard laboratory strain of C. elegans 

(N2), sequential male matings normally show no precedence pattern, i.e., the first 

and second males to transfer sperm are equally likely to sire offspring (Ward and 

Carrel 1979; LaMunyon and Ward 1998). However, sequential matings of males 

from different wild type strains can show preferential sperm usage patterns 

(LaMunyon and Ward 1998; Murray et al. 2011), indicating that differences in 

competitive ability can occur among males in this species. To determine if comp-

1 function influences sperm competition in a male vs. male context, we 

performed sequential matings of wild type and/or comp-1 males to fog-2 mutant 

hermaphrodites, which fail to produce self sperm and are essentially female 

(Schedl and Kimble 1988). To facilitate assignment of paternity, we used strains 
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containing a GFP transgene, mIs11, for either the first or second sets of crosses, 

and scored offspring for the presence or absence of fluorescence. In control 

crosses, in which two wild type males were sequentially mated to 

hermaphrodites, progeny numbers from the first and second male were variable, 

but no consistent bias was observed, other than a weak trend in which non-

mIs11 males seemed to be slightly favored over mIs11-containing males (Figure 

2.4A, Figure 2.5). Similarly, in sequential matings of two comp-1 males, no 

precedence order was observed. However, sequential matings of wild type and 

comp-1 males resulted in strong precedence for the wild type sperm, regardless 

of whether wild type males were the first or second mates. Notably, comp-1 

males showed full fertility in crosses to fog-2 hermaphrodites, which lack their 

own sperm (Figure 2.4B). These data indicate that comp-1 males transfer normal 

numbers of functional sperm, which can be used efficiently when they do not 

need to compete. However, when other sperm are present, comp-1 sperm show 

poor usage. Furthermore, comp-1 sperm are noncompetitive in both defensive 

and offensive contexts, suggesting their usage is unrelated to the order of their 

introduction into the hermaphrodite reproductive tract. Rather, male sperm 

lacking comp-1 function appear to have an intrinsic disadvantage as compared to 

wild type sperm.  
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comp-1 male sperm are not used until hermaphrodite self sperm 

are depleted 

To investigate the importance of comp-1 activity for male reproductive 

success, we sought to determine the nature of the competitive defect of comp-1 

mutant sperm. In particular, we wished to know if comp-1 sperm usage was 

delayed as compared to wild type, or if instead it might be generally reduced. To 

address this, we assayed the long-term kinetics of usage of comp-1 male sperm 

within hermaphrodites. We crossed wild type or comp-1 males to dpy-4 

hermaphrodites for 16 hrs, transferred the recipients at 12 hrs intervals until they 

ceased egg laying, and counted the total number of self and cross progeny at 

each time point. Wild type male sperm usage increased rapidly after mating 

(Figure 2.6A), consistent with previous evidence that male sperm are used 

preferentially over hermaphrodite self sperm (Ward 1977; Ward and Carrel 1979; 

LaMunyon and Ward 1995). However, comp-1 mutant males sired almost no 

progeny until late in the hermaphrodite lifespan (Figure 2.6A, 2.6B). Furthermore, 

while mating with wild type males suppressed usage of self sperm, mating with 

comp-1 males had no effect on self-progeny production (Figure 2.6C). Thus, 

comp-1 males show severe long-term defects in their ability to produce offspring 

after mating, and hermaphrodites that mate with comp-1 males produce a 

decreased number of total offspring (Figure 2.6D). However, although they are 

initially unsuccessful in fertilizing eggs, at least some comp-1 sperm are 

eventually used, indicating that they can remain in the reproductive tract.  

Since hermaphrodites make their entire store of self sperm prior to oocyte 
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production, they gradually run out of self sperm during adulthood. The onset of 

comp-1 sperm usage correlated with the depletion of stored hermaphrodite self 

sperm, suggesting that although comp-1 sperm remained present from matings 

that occurred at an earlier time, they were only used once fewer self sperm were 

present to compete with (Figure 2.6B, 2.6C; compare time points at 52 and 76 

hrs). To test if comp-1 sperm can be used more rapidly when fewer self sperm 

are present, we aged hermaphrodites until they had used up part or all of their 

self sperm reservoir, then crossed them to males and assessed the short-term 

usage of male sperm. In crosses to 12, 24, and 36 hrs post-L4 recipients, which 

retain moderate levels of self sperm (see Figure 2.6E; “No. remaining sperm”), 

the number of offspring sired by comp-1 males increased proportionally to the 

age of the hermaphrodite, but success was always reduced as compared to wild 

type males (Figure 2.6E). However, in crosses performed with 48 hrs post-L4 

hermaphrodites, which have nearly run out of self sperm, comp-1 males 

produced as many offspring as the wild type. Thus, regardless of the length of 

time they have been resident in the reproductive tract, comp-1 sperm are 

unsuccessful specifically in situations where other sperm are present, but can be 

used in the absence of competition. 

 

comp-1 is expressed and functions to promote sperm usage 

in both sexes 

Global expression studies suggested that comp-1 is expressed not only in 

males, but also in hermaphrodites (Reinke et al. 2000; Reinke et al. 2004). We 



 

 

53 

sought to determine if COMP-1 is indeed present in hermaphrodite sperm and if 

it shows any differences in localization as compared to male sperm. We first 

generated transgenic animals carrying a Pcomp-1::GFP::H2B transcriptional 

reporter, in which GFP localizes to the nuclei of comp-1-expressing cells. 

Expression was visible in developing spermatocytes and spermatids in both 

males and hermaphrodites, and we observed no obvious differences in 

abundance between the two sexes (Figure 2.7A-D and data not shown).  

To determine the localization of COMP-1, we generated worm strains 

expressing transgenes that contained the full-length comp-1 coding region fused 

to either mCherry or GFP. Worms carrying the GFP fusion showed rescue of the 

male precedence defect, suggesting that the fluorescent tags did not interfere 

with protein function or localization (Figure 2.8 and data not shown). The COMP-

1 fusion proteins displayed a punctate pattern in the cytoplasm of both 

developing spermatids and mature sperm, where they were restricted to the cell 

body region (Figure 2.7E-F and data not shown). These punctae were visible in 

sperm from both males and hermaphrodites (Figure 2.7 and data not shown). To 

determine whether the COMP-1 protein was localized to a specific subcellular 

location, we performed colabeling experiments with the vital dye Mitotracker, a 

marker of mitochondria, and PEEL-1::GFP, which labels the sperm-specific 

membranous organelles (MOs) (Chen et al. 2000; Seidel et al. 2011). We also 

examined the phosphatase GSP-3/4, which is involved in cytoskeletal dynamics 

and shows polarized localization within the pseudopod (Wu et al. 2011). COMP-1 

did not colocalize with any of these markers of sperm structure or with the sperm 
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nucleus (Figure 2.7E-4P), and its absence from the pseudopod suggests that it is 

not involved directly with cellular locomotion, at least by modulating cytoskeletal 

dynamics.  

The absence of obvious differences between males and hermaphrodites 

in the expression and localization of COMP-1 raised the question of a potential 

role for comp-1 in hermaphrodite self sperm. We thus assayed precedence of 

wild type and comp-1 mutant males in crosses to comp-1 hermaphrodites. 

Matings of wild type males to comp-1 hermaphrodites resulted in even higher 

levels of cross progeny production than those seen in crosses to wild type 

hermaphrodites, consistent with comp-1 hermaphrodite sperm having reduced 

ability to compete (Figure 2.7Q). Interestingly, when comp-1 males were mated 

to comp-1 hermaphrodites, mutant male sperm usage was indistinguishable from 

that of wild type, suggesting that the male precedence order is regained when 

comp-1 sperm compete against each other. These results indicate that comp-1 

functions to promote sperm usage not only in males, but also in hermaphrodites. 

In addition, factors other than comp-1 must influence the outcome of competition, 

as a strong precedence effect can be observed in the absence of its activity in 

both competing populations of sperm.  

 

comp-1 function is not required for sperm development 

One potential explanation for the male precedence defect in comp-1 

mutants was that sperm do not undergo proper spermatogenesis or 

spermiogenesis necessary to mature into functional sperm. Loss of function of 
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spe or fer genes required for spermatogenesis generally leads to hermaphrodite 

self sterility and male infertility, and reduction of gene function can result in partial 

fertility (Kadandale and Singson 2004; Nishimura and L'Hernault 2010). We thus 

examined available markers of sperm morphology to determine if comp-1 sperm 

harbor any general defects. Males and hermaphrodites both produce immotile, 

spherical spermatids that must be activated to become mature, pseudopod 

bearing sperm competent for motility and fertility (Wolf et al. 1978). comp-1 

mutant spermatids and sperm appear grossly normal by light microscopy (Figure 

2.9A,C; Figure 2.9E,G and data not shown). In addition, several markers of 

sperm structures localized appropriately in the comp-1 mutant. As in wild type 

sperm, mitochondria and membranous organelles were restricted to cell bodies 

(Figure 2.9A-H) and the GSP-3/4 phosphatase was polarized within pseudopodia 

(Figure 2.9I-L). The presence of properly polarized sperm structures in mutant 

sperm indicates that comp-1 is not required to complete spermatogenesis, nor is 

it necessary for proper localization of sperm structures in mature sperm cells. 

These findings are consistent with the absence of fertility or sperm usage defects 

in comp-1 animals in the absence of competition. 

 

comp-1 promotes competitive ability independently of cell size 

  In C. elegans, a key factor in conferring male precedence is thought to be 

the differential size of male and hermaphrodite sperm cells. Male sperm are 

generally larger than hermaphrodite sperm, correlating with faster crawling 

speeds in vitro, and growth under conditions with a high risk of sperm 
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competition has been shown to result in increased sperm size (LaMunyon and 

Ward 1998, 2002). Thus, we investigated the possibility that the precedence 

defects of comp-1 males might be due to a reduction in the size of mutant sperm. 

To assay cell size, we measured spermatids, which are spherical, by obtaining a 

cross-sectional area through the center of each cell (LaMunyon and Ward 1998). 

comp-1 mutant spermatids were variable in size, but the average and distribution 

of their sizes were indistinguishable from those of wild type spermatids (Figure 

2.9M). Therefore, we conclude that loss of comp-1 does not reduce competitive 

ability by affecting cell size. Furthermore, C. elegans sperm can achieve 

precedence by a size-independent mechanism. 

 

comp-1 is required for efficient migration to and localization 

within the spermathecae 

In C. elegans, sperm are stored and fertilization occurs within the 

spermathecae (Ward and Carrel 1979). Transferred male sperm must migrate 

through the uterus and into the spermathecae to be eligible to fertilize oocytes, 

and male sperm have been observed to displace hermaphrodite sperm from the 

walls of these structures (Ward and Carrel 1979). We thus examined the ability of 

comp-1 mutant sperm to migrate toward and access the spermathecae. We 

crossed unlabeled hermaphrodites to males either labeled with Mitotracker dye 

(Kubagawa et al. 2006; Stanfield and Villeneuve 2006) or expressing a sperm 

H2B::GFP reporter, and then examined male sperm positioning at different time 

points after transfer to the hermaphrodite reproductive tract. Similar to previously 
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reported analyses of sperm migration (Kubagawa et al. 2006), we divided each 

proximal gonad arm into four regions: zone 1, near the sperm entry point at the 

vulva; zone 2, within the uterus; zone 3, the region near the spermatheca; and 

the spermatheca itself (Figure 2.10A).  

By 1-1.5 hrs after transfer, a majority of wild type male sperm had 

migrated to zone 3 and the spermatheca (Figure 2.10B). Some crosses with 

comp-1 males also showed this pattern. However, in many cases, a large 

percentage of comp-1 sperm remained in zone 1 and/or zone 2, and 

accumulation in zone 3 and the spermatheca was reduced (Figure 2.10C). 

Importantly, wild type and comp-1 sperm were present in similar, high numbers 

(an average of 222.4±78.6 for wild type, n=13; an average of 191.1±63.3 for 

comp-1, n=14), and there was no obvious correlation between the number of 

sperm transferred and their migration efficiency (data not shown). Sperm-specific 

expression of comp-1 rescued the migration defect, confirming that the altered 

migration was due to loss of comp-1 (Figure 2.11). By 12 hrs after transfer, both 

wild type and mutant sperm were rarely found in zones 1 and 2, instead 

localizing to zone 3 and/or the spermatheca (Figure 2.10D; see below). Thus, 

mutant male sperm show a delay in reaching the spermathecal region. However, 

their ability to accumulate near the spermathecae at later time points indicates 

that they are competent to respond to directional cues. 

In addition to this delay in migration, we observed a significant decrease in 

residency of comp-1 sperm within the spermathecae. At 12 hrs after transfer, 

when wild type sperm consistently occupied the spermathecae, very few comp-1 
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sperm localized there, even though they were present in zone 3 (Figure 2.10D). 

Interestingly, by 24 hrs post-mating, mutant male sperm numbers increased 

within the spermathecae and there was little, if any, difference between wild type 

and comp-1 sperm positions (Figure 2.10E). This later time point corresponded 

to 48 hrs post-L4 adult hermaphrodites, in which self sperm numbers are largely 

depleted and comp-1 male sperm start to show increased usage (Figure 2.6B, 

2.6E). Taken together, these results suggest that mutant male sperm are not 

used because they are present at lower numbers in the spermathecae during 

periods when these structures are occupied with large numbers of self sperm. 

Since fertilization can occur only within these structures, this defect is likely the 

primary reason for the reduction in the competitive ability of comp-1 sperm.  

Since comp-1 functions in both male and hermaphrodite sperm, we also 

analyzed self sperm in comp-1 hermaphrodites to assess whether localization 

defects might still be present in a noncompetitive context. We quantified the 

position of sperm in different zones in DAPI-stained 24 hrs adult hermaphrodites. 

In wild type hermaphrodites, most of the sperm resided in zone 3, tightly 

concentrated just outside of the spermathecae (Figure 2.10F and data not 

shown); a smaller number was present within the spermathecae. In comp-1 

hermaphrodites, while the majority of sperm were localized within zone 3, fewer 

sperm resided within the spermathecae as compared to wild type. In addition, 

some comp-1 self sperm were mislocalized to zone 2 and occasionally zone 1. 

Thus, comp-1 hermaphrodite sperm have minor defects in localization and 

spermathecal residency that are similar to those of comp-1 male sperm. 
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However, these defects do not result in reduced fertility.  

 

comp-1 sperm have context-dependent defects in pseudopodial 

extension 

To probe the cellular basis for the localization defects of comp-1 sperm, 

we analyzed their motility using established in vivo and in vitro assays (Geldziler 

et al. 2011). Measured immediately after transfer, the migration velocities of 

comp-1 sperm within the hermaphrodite uterus were indistinguishable from those 

of wild type (Figure 2.12A). Furthermore, migrating comp-1 sperm showed highly 

directional movement through the uterus towards the spermathecae (Figure 

2.12A) and a low reversal frequency, consistent with guided migration (among 

cells analyzed for motility, only 3/28 wild type cells and 1/25 comp-1 cells showed 

one or more reversals during the assay period). The ability of comp-1 sperm to 

migrate rapidly in vivo suggests that basal motility is not affected in the mutant. 

However, the difference between wild type and comp-1 mutant sperm migration 

patterns could be due to aspects of other migratory behaviors, such as the 

amount of time individual sperm spend actively migrating through the 

reproductive tract.  

To further analyze the motility of comp-1 mutant sperm, we dissected 

spermatids, treated them with the known in vitro activators TEA (triethanolamine, 

a weak base) or Pronase (a protease mixture) (Ward et al. 1983; Shakes and 

Ward 1989), and sought to measure the velocities of cells crawling on glass 

slides (Nelson et al. 1982). comp-1 sperm activated in TEA had extended 
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pseudopods and were capable of crawling at speeds similar to those of wild type 

cells (Figure 2.12B-D, Figure 2.13A). comp-1 sperm treated with Pronase 

activated at rates similar to the wild type (Figure 2.13B), based on the presence 

of a pseudopod in the majority of cells. However, the shapes of comp-1 cells 

were markedly different from wild type (Figure 2.12E-F and data not shown). 

Quantification of pseudopod length, using an aspect ratio measurement to 

normalize for variation in cell size (Batchelder et al. 2011), confirmed that 

Pronase-treated comp-1 cells were significantly shorter than either wild type or 

TEA-treated comp-1 cells (Figure 2.12B). Since Pronase-treated comp-1 cells 

contained distinct cell body and pseudopod regions, with normal localization of 

organelles (Figure 2.9, Figure 2.12, and data not shown), it is likely that these 

cells were polarized but failed to extend their pseudopods appropriately. Similar 

to other amoeboid cells, locomotion of nematode sperm depends on protrusion of 

the lamellipodium-like pseudopod, adhesion to substrate, and retraction of the 

cell body (Roberts and Stewart 2000; Bottino et al. 2002). Pseudopod extension 

defects would be expected to result in altered locomotion and/or interactions with 

the hermaphrodite reproductive tract, which in turn should affect migration to and 

occupation of the spermathecae.   

 

Discussion 

Taking advantage of the male-hermaphrodite reproductive system of C. 

elegans and its robust natural male precedence order, we have used a genetic 

screen to identify a sperm competition mutant, comp-1. While mutant sperm are 
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used at normal levels in noncompetitive contexts, they display severe usage 

defects in all competitive contexts. When wild type sperm are present, comp-1 

sperm are largely absent from the spermathecae and thus are virtually excluded 

from opportunities to fertilize oocytes. This usage pattern leads to severe defects 

in male reproductive success for males as well as failure to benefit from 

outcrossing for hermaphrodites. Consistent with their localization defects in vivo, 

comp-1 sperm have in vitro defects in pseudopodial extension that, like their 

usage defects, are dependent on context. Together, these phenotypes suggest a 

cellular role for comp-1 in modulating the response of sperm to their 

environment. To our knowledge, comp-1 is the first gene identified in C. elegans 

to specifically regulate sperm competition and one of few implicated in this 

process in any organism. Its pattern of conservation in related species suggests 

a role in male-male sperm competition outside the male-hermaphrodite mode of 

reproduction used by C. elegans. Our findings demonstrate that functional traits 

can influence the outcome of sperm competition in C. elegans in a manner 

independent of sperm size.  

 

comp-1 and sperm success 

For males, reproductive success depends on several functional behaviors 

of sperm. To fertilize oocytes, sperm must be transferred, become motile, and 

migrate to the site of fertilization in response to guidance signals (Ward and 

Carrel 1979; Kubagawa et al. 2006). Overall fecundity depends on the number of 

sperm that accomplish these behaviors as well as their ability to be stored so as 
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to ensure long-term usage (Murray and Cutter 2011). We have found that comp-

1 sperm are transferred at rates comparable to the wild type, so they achieve 

initial entry into the reproductive tract, but they then show varying defects in the 

ensuing steps (Figure 2.14). Although comp-1 sperm show delays in migration 

toward the spermathecae, at least some sperm migrate rapidly and directionally, 

arguing against a defect in locomotion per se. Large numbers eventually 

accumulate in the spermathecal region, suggesting that they respond to 

directional cues, but they are generally found outside the spermathecal valve. 

Once self-sperm stores are depleted, comp-1 sperm concomitantly gain 

residency in the spermathecae and begin to fertilize oocytes. Since fertilization 

occurs only in these structures, it is likely that this localization defect underlies 

the reduced competitive ability and generally poor reproductive success of comp-

1 males.  

Spermathecal occupancy depends on the balance between the rate of 

entry due to migration and the rate of loss due to displacement by oocytes, which 

rearrange and even expel a subset of stored sperm as they pass through during 

ovulation (Ward 1977; Ward and Carrel 1979). Male sperm could thus increase 

their numbers in the spermathecae either by resisting removal, e.g., by 

increasing adhesion to the spermathecal walls, and/or by migrating quickly back 

into the spermathecae, e.g., by increasing their crawling velocity. Defects in 

pseudopodial extension like those observed in vitro for comp-1 could affect either 

of these processes, allowing wild type sperm to preferentially associate. Future 

studies will be necessary to differentiate between the two models, as well as to 
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characterize the dynamics of sperm behavior in storage.  

A unique feature of the comp-1 phenotype is its dependence on the 

presence of wild type sperm in recipient hermaphrodites. Do comp-1 sperm 

defects occur because wild type sperm behavior is superior, leading to their 

physical displacement, or does the presence of wild type sperm make comp-1 

sperm inferior, through an indirect mechanism such as signaling? In some 

organisms, sperm may cooperate by associating with one another to promote 

fertility or by providing different functions within an ejaculate reviewed in 

(Higginson and Pitnick 2010), but neither cooperative nor detrimental interactions 

between sperm have been described for C. elegans. Some defects in localization 

of comp-1 sperm are observed in the absence of competing cells; a few sperm 

can be found scattered throughout the uterus, though this mislocalization 

apparently does not lead to significant reduction in usage or loss from the 

reproductive tract. These findings are consistent with the migration and 

localization defects we observed in competitive contexts, and they indicate that 

comp-1 defects are not solely induced by the presence of wild type sperm. 

However, we cannot exclude the possibility that sperm-sperm interactions 

influence the outcome of competition between comp-1 and wild type cells.  

Several studies have demonstrated a strong association between 

precedence and cell size in C. elegans (LaMunyon and Ward 1998, 1999; Murray 

et al. 2011). However, loss of comp-1 has no effect on cell size. Furthermore, 

comp-1 activity appears to override the contribution of size, since large comp-1 

male sperm are completely outcompeted by small wild type hermaphrodite 
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sperm.  Interestingly, the normal male precedence order is restored when both 

male and hermaphrodite sperm lack comp-1 function, consistent with the idea 

that the size effect again predominates. Our data thus suggest that multiple 

activities contribute to precedence and can be independently modulated to affect 

sperm competitive ability. We note that a mechanism involving altering the 

activity of COMP-1 is likely to be less costly than production of larger sperm, 

which is associated with a reduced rate of sperm production (LaMunyon and 

Ward 1998; Murray et al. 2011). 

 

The cellular role of COMP-1  

How does COMP-1 function in sperm to alter motility related behaviors? 

For crawling cells, locomotion and interaction with substrate are dependent on 

maintenance of polarity and extension of the lamellipodium, or the pseudopod in 

the case of nematode sperm reviewed in (Lammermann and Sixt 2009; Reig et 

al. 2014). C. elegans sperm are stably polarized, though the shape and size of 

their pseudopods is dynamically regulated (Nelson et al. 1982). Markers of the 

cell body and pseudopod are appropriately localized in comp-1 sperm, 

suggesting polarity is not disrupted. However, treatment with Pronase in vitro, 

which is thought to mimic the endogenous male activator (Smith and Stanfield 

2011), generates activated cells with severely shortened pseudopods. The sperm 

cytoskeleton lacks actin and instead consists of Major Sperm Protein (MSP), 

which generates a network of fibers that drives cell protrusion via its expansion 

and contraction (Italiano et al. 1999; Roberts and Stewart 2012). In the related 
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nematode Ascaris, MSP filament assembly is mediated by MPOP, a pH-

dependent phosphoprotein that is active at the leading edge (LeClaire et al. 

2003) and the soluble proteins MFP1 and MFP2 (Buttery et al. 2003). MSP 

dynamics are also governed in part by the PP1 phosphatase GSP-3/4, which 

localizes to the proximal pseudopod near the cell body (Wu et al. 2011). Since 

COMP-1 localizes to the cell body, it seems unlikely to interact directly with the 

MSP cytoskeleton, but rather might function upstream of locomotion per se. 

COMP-1 contains a protein kinase-like domain, which might suggest a role in 

signal transduction. Like many other reproductive proteins, it represents a 

divergent member of its family, and its primary sequence suggests that it is 

unlikely to be catalytically active. However, in spite of lacking or having reduced 

enzymatic activity, pseudokinases have been shown to play important roles in 

cell signaling via interactions with active kinases or their substrates, scaffolding 

or tethering of signaling complexes, and other mechanisms reviewed in (Reiterer 

et al. 2014). The punctate localization of COMP-1 within the sperm cell body is 

intriguing in this context.  

Our finding that comp-1 sperm have reduced pseudopod lengths in an in 

vitro assay fits with their altered patterns of localization in vivo. However, 

measurements of cell velocity indicate that cells lacking comp-1 are capable of 

wild type crawling speeds and they eventually accumulate near their appropriate 

target. Therefore, it is probable that the cellular defects of comp-1 sperm in vivo 

are less severe than those of Pronase-treated comp-1 sperm, which have 

severely shortened pseudopods and should be nearly incapable of movement 
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(Nelson et al. 1982; LaMunyon and Ward 1999). The comp-1 phenotype is also 

distinct from that caused by lack of prostaglandin cues involved in guidance 

toward oocytes, which leads to a severe reduction in crawling velocity along with 

loss of directionality (Kubagawa et al. 2006; Edmonds et al. 2010). Thus, comp-1 

sperm are capable of directional migration, though some aspect of sensing or 

responding to prostaglandins could be impaired. Alternatively, the altered 

localization of comp-1 sperm could stem from decreased adhesion to the 

substrate, leading to a reduced ability to crawl directionally and/or maintain 

position within the spermathecae. Overall, the context dependence of comp-1 

sperm usage suggests that cellular defects may be limited to a subset of sperm 

cells or may be manifested only some of the time, for example during interaction 

with particular substrates within the reproductive tract. Sperm migrate across a 

variety of tissues including uterine and spermathecal cells and fertilized eggs, 

each of which could be more or less permissive for migration of comp-1 mutant 

cells due to effects on either adhesion or signaling.  

 

comp-1 and reproductive success 

The role of comp-1 in C. elegans is evident by the reduction in 

reproductive success for both sexes in crosses to comp-1 males. Wild type 

males who mate successfully can produce hundreds (up to thousands) of 

offspring (Wegewitz et al. 2008), but comp-1 males produce very few cross 

progeny, and these are delayed until other sperm are no longer available. 

Hermaphrodites mated to wild type males increase their overall progeny 
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production, but this increase is significantly lower in crosses to comp-1 males, 

and few cross progeny are generated. Even in crosses between comp-1 males 

and comp-1 hermaphrodites, where the male precedence order is largely 

restored, males show reduced success as compared to wild type x wild type 

matings. Thus, sperm with comp-1 function should be highly selected for usage 

when competing with sperm without comp-1. In male-female species, we expect 

that comp-1 may have a similar function in improving male reproductive success, 

depending on the rate of polyandry in a given population. 

Although self fertilization allows C. elegans to propagate without the need 

to mate and eliminates the cost of producing males, it also leads to reduced 

genetic variation discussed in (Anderson et al.). The rate of outcrossing in wild 

populations is estimated to be low, yet males exist, suggesting that some 

outcrossing may be selected for, or alternatively, that androdioecy has arisen 

sufficiently recently that the specialized developmental and behavioral 

characteristics of males have not had time to degrade. Selective pressure has 

been shown to increase the rate of outcrossing in C. elegans in several 

experimental schemes (Lopes et al. 2008; Morran et al. 2009a; Morran et al. 

2009b; Anderson et al. 2010). By promoting the preferential usage of male 

sperm, COMP-1 should function to increase the genetic diversity of offspring and 

thus may confer a fitness benefit in situations where adaptation is beneficial 

(Carvalho et al. 2014). 
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Sperm competition in C. elegans 

The outcome of sperm competition depends on the arena in which it 

occurs, which depends on the specialized reproductive biology and anatomy of 

the species in question. In particular, differences in the capacity of the sperm 

storage organ(s), functional characteristics of sperm and seminal fluid, and the 

degree of sperm mixing lead to distinct patterns of sperm usage (Parker and 

Pizzari 2010). In C. elegans, the spermathecae are somewhat limited as storage 

sites, which likely reduces the incentive for males to produce and transfer vast 

numbers of sperm. Instead, the arms race between the sexes leads to males 

producing sperm that are functionally superior. Once male sperm reach the 

spermathecae, they are immediately used even though they lack numerical 

superiority (G.M.S., unpublished data). Interactions between competing 

ejaculates can be divided into offense, the ability to displace previous sperm, and 

defense, the ability to block subsequent sperm. Observations of the processes of 

ovulation, sperm migration, and fertilization in wild type C. elegans, as well as the 

ability of fertilization incompetent sperm to sterilize hermaphrodites, suggest that 

wild type male sperm most likely block the access of self sperm to the site of 

fertilization (Ward and Carrel 1979; Singson et al. 1999). However, they fail to 

block the sperm of another male, as no precedence order is observed in 

sequential wild type matings (Ward and Carrel 1979; LaMunyon and Ward 1998). 

comp-1 male sperm lack the ability to suppress self progeny production, and they 

also show severe defects in male-male competition whether they are the first or a 

subsequent mate. Thus, they appear to totally lack the offensive capabilities of 
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normal sperm and also show defects in defense against new rivals.  

COMP-1 is present in both male-hermaphrodite and male-female species 

of nematodes. Since the male-female reproductive mode is ancestral (Kiontke et 

al. 2004; Cutter et al. 2008), the function of COMP-1 in sperm competition most 

likely originated in male-male competition and has been retained in 

androdioecious species, such as C. elegans, where it remains necessary for both 

male-male and male-hermaphrodite sperm competition. Our results thus 

establish that C. elegans provides a general model to study the molecular 

mechanisms that underlie sperm competition as well as the interplay between the 

cell biology of sperm and the forces of sexual selection. 

 

Materials and Methods 

C. elegans culture and strains 

C. elegans strains were grown at 20°C, except where noted, and fed with 

OP50 E. coli bacteria as previously described (Brenner 1974). All strains were 

derived from the N2 Bristol wild type strain, with the exception of the CB4856 

Hawaiian strain used for mapping. For experiments involving males, him-5 

strains were used as our wild type: him-5(e1490) was used for the genetic screen 

and him-5(ok1896) was present in all other strains from which males were 

obtained (Hodgkin et al. 1979), unless explicitly noted. comp-1(me69) was 

identified in this study and the comp-1(gk1149) allele was generated by the C. 

elegans Deletion Mutant Consortium (Consortium 2012). Other alleles used for 

experiments were spe-8(hc40,hc53) I, mIs11[myo-2::GFP, pes-10::GFP and 
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gut::GFP], ttTi5605 II, oxSi221[Peft-3::GFP] II, unc-119(ed3) III, fem-3(q20gf) IV, 

dpy-4(e1166) IV, cxTi10816 IV, fog-2(q71) V, and him-5(e1490, ok1896) V 

(Wood and the Community of C. elegans Researchers 1988; Maduro and Pilgrim 

1995; Frokjaer-Jensen et al. 2008; Frokjaer-Jensen et al. 2012; Meneely et al. 

2012). 

To generate transgenic strains, Mos-mediated Single Copy Insertion 

(MosSCI) was used to integrate transgenes at the ttTi5605 II and cxTi10816 IV 

loci (Frokjaer-Jensen et al. 2008; Frokjaer-Jensen et al. 2012).  

 

Genetic screen and identification of comp-1 

The me69 mutant was isolated in a screen for males with reduced sperm 

precedence or fertility. him-5(e1490) hermaphrodites were mutagenized using 

ethyl methanesulfonate (EMS) mutagenesis as described in Wood (1988). 

Groups of 7-8 P0 hermaphrodites were allowed to self-fertilize; L4 F1 

hermaphrodites were picked (25 per plate); and individual L4 F2s were used to 

establish lines potentially homozygous for newly induced mutations. To assay 

male precedence, from each viable line, 4-5 L4 males were mated to one spe-

8(hc40); dpy-4 hermaphrodite for approximately 48 hrs, at which time the cross 

was terminated by removing the hermaphrodite. When all progeny reached at 

least the L4 stage, mating plates were examined. If at least 5 Dumpy (self) 

progeny were present, the number of Dumpy (self) and non-Dumpy (cross) 

progeny were counted. Such lines were retested using the same precedence 

assay as before. Approximately 3400 mutagenized lines were tested and 16 lines 
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were recovered as homozygous mutants. Of the 16 lines, six lines had normal 

gonadal and sperm morphology, consistent with a precedence-specific defect. 

The me69 mutant was among those 6 lines.  

To map me69, CB4856 (Hawaiian) males were crossed to me69; him-5 

hermaphrodites, F1 males were crossed back to me69; him-5 hermaphrodites, 

and individual F2 males were tested for the male precedence defect. Each male 

was recovered into lysis buffer and males scoring as mutant were assayed for a 

centrally-located SNP on each chromosome (Wicks et al. 2001). Linkage was 

detected to chromosome I and additional SNPs were scored in individual males 

to narrow me69 to a 6.7 Mb region between WBVar00240399 and 

WBVar00240414 (Tables 2.1, 2.2) (WormBase; Jakubowski and Kornfeld 1999). 

To identify the gene affected in me69, whole genome sequence was obtained 

from the strain isolated in our genetic screen. Of 45 variations in the me69 

region, 24 were consistent with EMS, seven affected coding regions, and only 

one affected a gene (F37E3.3) showing sperm-enriched gene expression.  

 

Molecular biology 

Molecular biology was performed according to standard protocols. The 

Multisite Gateway Three-Fragment Vector Construction Kit (Life Technologies) 

was used to construct donor plasmids. Fragments were then recombined into the 

MosSCI destination vectors pCFJ150 or pCFJ212 (Frokjaer-Jensen et al. 2008; 

Frokjaer-Jensen et al. 2012). For constructs in which two fragments were ligated 

by PCR, fusion PCR was performed as in Hobert (2002). Primers used for 
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generating constructs are listed in Table 2.3 and plasmid construction strategies 

are summarized in Table 2.4.  

 

Fertility and sperm competition assays 

To measure hermaphrodite fertility, L4 hermaphrodites were individually 

placed on a freshly seeded lawn and moved to a new plate every 24 hrs until 

eggs were no longer laid. To measure male fertility, L4 males were crossed in a 

1:1 ratio to L4 fog-2 females for 24 hrs. The males were then removed and the 

females were transferred every 24 hrs until egg laying ceased. Progeny were 

counted after reaching at least the L4 stage. The variability in cross progeny 

number observed in these experiments is typical of this assay and is generally 

attributed to variation in mating, sperm transfer, and/or sperm loss (Murray et al. 

2011).  

To test short-term male precedence, L4 males and spe-8(hc53); dpy-4 or 

dpy-4 L4 hermaphrodites were placed together in a 1:1 ratio onto plates with 

freshly seeded lawns. After 40 hrs, both parents were removed. Upon reaching 

adulthood, offspring were scored as either Dumpy (self) or non-Dumpy (cross) 

progeny and counted. To test long-term male precedence, animals were allowed 

to mate for 16 hrs, hermaphrodites were transferred to fresh plates every 12 hrs, 

and self and cross progeny were scored as described above. To test the effect of 

hermaphrodite age on male precedence, 12, 24, 36, or 48 hrs post-L4 

hermaphrodites were crossed to 24 hrs post-L4 males for 24 hrs, both parents 

were removed, and the number of self and cross progeny were scored as 
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described above. To estimate the number of self sperm remaining in the 

hermaphrodite reproductive tract at each time point, the number of progeny from 

unmated hermaphrodites picked in parallel was counted. 

Male-male competition assays were performed by placing 24 hrs post-L4 

adult males (“first” males) with 24 hrs post-L4 adult fog-2(q71) hermaphrodites 

for 3 hrs in an 8:6 ratio of males to hermaphrodites. The hermaphrodites were 

allowed to recover for 1 hr, and those lacking visible embryos in their uteri were 

removed from the plate. The “second” males, 28 hrs post-L4, were then placed 

with the hermaphrodites and allowed to mate for 3 hrs. Individual hermaphrodites 

were then moved to fresh plates, allowed to lay eggs for 16 hrs, then transferred. 

To distinguish progeny of first and second mates from one another, second-male 

strains harbored an integrated GFP transgene, mIs11; to control for possible 

marker-specific effects, experiments were repeated with the mIs11 strains as first 

males. Progeny generated 0-16 hrs after mating were quantified. Subsequent 

progeny were scored for GFP, and only plates that contained both GFP-positive 

and GFP-negative offspring were included in analyses. 

For all experiments involving measurements of progeny numbers, wild 

type and mutant animals were tested in parallel to control for variations in 

temperature and/or media quality that can affect mating and fertility. Each 

experiment was repeated 2-4 times, and figures show representative results.  
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Microscopy and immunohistochemistry 

To release spermatids, adults were dissected in a drop of sperm medium 

(SM; 50mM HEPES pH7.8, 50mM NaCl, 25mM KCl, 1mM MgSO4, 5mM CaCl2, 

and 10mM dextrose). Virgin 48 hrs post-L4 males grown at 20°C were used. 

Where necessary, spermatids were incubated in SM containing 60mM TEA or 

200µg/ml Pronase to induce activation into motile sperm (Shakes and Ward 

1989). Antibody staining followed a protocol similar to that in Wu (2011). Briefly, 

an equal volume of 4% paraformaldehyde in SM was added to the dissected 

cells. The slides were then incubated in a humid chamber for 5 mins, freeze-

cracked on a metal block placed in liquid nitrogen, incubated in 95% ethanol for 1 

min, and washed with PBST (phosphate-buffered saline pH 7.2, 0.5% Triton X-

100, 1mM EDTA). Antibody incubations were performed for 16 hrs at 4°C with 

rabbit anti-GSP-3/4 (rb1496, 1:500) (Wu et al. 2011) and 1 µg/mL DAPI (4’,6-

diamidino-2-phenylindole) and for 2 hrs at 4°C in goat anti-rabbit AlexaFluor 488- 

or AlexaFluor 568-labeled IgG (Life Technologies) at 1:1000; antibodies were 

diluted and washes were performed in PBST with 1% BSA (bovine serum 

albumin). Slides were mounted with VectaShield (Vector Laboratories). Confocal 

images were acquired using an Olympus FV1000 confocal microscope.  

 

in vivo sperm migration and localization assays 

To analyze localization of male sperm up to 2.5 hrs after transfer, 

Mitotracker Red CMXRos (Life Technologies) was used to label male sperm as 

in Stanfield (2006). To analyze sperm localization more than 2.5 hrs after 
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transfer, virgin 24 hrs post-L4 males carrying the Pcomp-1::GFP::H2B 

transcriptional reporter were mated for 45 mins to 24 hrs post-L4 N2 

hermaphrodites anesthetized in 0.1% tricaine and 0.01% tetramisole (McCarter 

et al. 1997), and males were then removed. At 12 hrs or 24 hrs postmating, 

images of each recipient were captured in multiple focal planes to capture an 

entire gonad arm. Analysis of sperm position was performed as in Edmonds 

(2010). Depending on the experiment, either all GFP-positive male sperm in a 

gonad arm were counted, or those in the focal plane that had the most sperm in 

the spermatheca were counted. To analyze localization of self sperm, 24 hrs 

post-L4 hermaphrodites were fixed with Carnoy’s fixative (Ellis and Horvitz 1986) 

and stained with DAPI at 1µg/mL in M9. Image collection and data analysis were 

performed as for male sperm.  

To measure in vivo velocity, images of migrating cells were collected as in 

Kubagawa (2006) using an AxioImager M1 microscope, Axiocam camera, and 

Axiovision software (Zeiss). Cells within Zone 2 that moved for at least four 

consecutive frames were analyzed using the plugins Manual Tracking and 

Chemotaxis and Migration Tool (Ibidi) in ImageJ (Schneider et al. 2012). 

 

in vitro sperm morphology and function assays 

Sperm were activated in vitro as described previously and DIC (differential 

interference contrast) images were captured every 60 secs for 30 mins (Shakes 

and Ward 1989; Fenker et al. 2014). To quantify activation, sperm were scored 

for the presence of either spikes or a pseudopod at 30 mins after adding 
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Pronase. Nonactivated sperm from control slides lacking activator were used to 

measure spermatid size. Aspect ratio was measured by dividing the total length 

of the pseudopod and cell body by the width of the cell body. The center of the 

cell body was determined by fitting a circle or ellipse around the cell body and 

finding the center of that object. The length was then determined by drawing a 

line from the tip of the pseudopod to an edge of the cell body, with the line 

dissecting the center of the cell body, and the width of the cell was measured by 

drawing a line perpendicular to the length and dissecting the center of the cell 

body. Velocity was measured in TEA-activated sperm that moved for at least 

three consecutive frames. Measurements were obtained using ImageJ 

(Schneider et al. 2012).  
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Figure 2.1. Isolation of the male precedence mutant me69 in a genetic screen. 
(A) Screening assay for mutants with reduced male precedence, showing 
outcomes for mating failure, mating by wild type males, and mating by males with 
less competitive sperm. (B) me69 males have decreased precedence in the 
screen assay. Males were mated to spe-8(hc53); dpy-4 hermaphrodites, and 
offspring were scored as Dumpy (self) or non-Dumpy (cross) progeny. (C) me69 
and gk1149 mutant hermaphrodites have normal self fertility. Total self progeny of 
unmated hermaphrodites were counted. Error bars, 95% confidence intervals; 
P>0.05 (Student’s t test). (D) Mutants for comp-1 have defects in male prece-
dence. Males were mated to dpy-4 hermaphrodites, and offspring were scored 
as Dumpy (self) or non-Dumpy (cross). (E) Schematic of the F37E3.3 gene 
showing the kinase-like domain (green) predicted by the Conserved Domains 
Database (Marchler-Bauer et al., 2011) and the locations of the me69 and 
gk1149 alleles. Boxes, exons; black, coding regions; grey, 5’ and 3’UTRs. (F) 
Expression of the F37E3.3 gene in sperm rescues the comp-1 male precedence 
defect. Male precedence was assayed for comp-1(gk1149); jnSi168[Ppeel::-
comp-1] and control strains as in Figure 2.1D. (B,D,F) Each point represents the 
result of an individual cross; lines indicate medians. ***, p<0.001; **, p<0.01 
(Kolmogorov-Smirnov test; all comparisons are to wild type). In addition to the 
genotypes shown, all males were homozygous (B,C,F) or heterozygous (D) for 
him-5(ok1896), and control strains in (F) harbored oxSi221. 
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Figure 2.2. COMP-1 is highly conserved within the Caenorhabditis genus and 
present in related parasitic species. Alignment of C. elegans COMP-1 with its 
orthologs from other nematode species. Yellow highlighting represents amino 
acids conserved with COMP-1. Bars above the sequence indicate the positions of 
the divergent kinase-like (black) and SH2-like (grey) domains, as predicted in the 
Conserved Domains Database (Marchler-Bauer et al. 2011); an alternate predic-
tion for the kinase-like domain includes amino acids 123-394 (Manning 2005, see 
www.kinase.com). Positions of the me69 and gk1149 alleles are shown in red and 
blue as in Figure 2.1E. Previous annotation (WormBase) of the C. japonica 
comp-1 region predicted two overlapping gene models encoding proteins similar 
to the N and C terminus of COMP-1; our new predicted Cja-COMP-1 fuses 
JA64544 and CJA40432 and maximizes similarity with Ce-COMP-1 and the other 
orthologs. Other accession numbers: Acey_s0303.g1899.t2 (PRJNA231479), 
Cang_2012_03_13_00293.g8644.t2 (PRJNA51225), CBP27128, RP29840, 
Csp5.Scaffold_00675.g14294.tt (PRJNA194557), Csp11.Scaffold630.g17815.ti 
(PRJNA53597), HCOI01934100.t1 (PRJEB506), and NECAME_15795
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Ce-COMP-1        ----MTLVESKHDFEMTEKSMENDDDIKDA-----IFNNVPITFIEAFVLKNPGDFSMSKSLDG--AYYLSIVPGNNKMKKETSR-A  75 
C. briggsae      ----MTLVESKSNVEITKRSMSDDEEIKDA-----LFVNVSIPFIENFVLKNPGDFCVSTNLEG--ILYLSIVAHPNKTKKEGPR-V  75 
C. tropicalis    ----MTLVESKHEFETTKKLIENDRDITES-----MFSNVTIPFIETFVLKNPGDYCVYKTIDG--VTYLSIVAKPNKNKKGTPQ-M  75 
C. remanei       ---MMTLVESKAEFEITKRSMEDESEIKDA-----VFYNVTVPFVETFVLKNPGDFCISRTIDG--AYYLSIAANK-KDKKGEVR-V  76 
C. sp 5          ----MTLVESKSDFQITKKSLEDNEEVEDA-----LFLNVTLPFIESFVFKNPGDFCVSRTLDD--IAYLSIVAHPKKNKKEGPR-I  75 
C. japonica      MTSLFASTQNSLETTVPRPDMFDDFHIENA-----TIFDVTTEFIETFVLQKPGDFCVSQTLKG--QLFLSMLAES---AKDGDR-I  79 
C. angaria       ---------------MASVKNSAEIDEKQM-----IIYDVPLNCIQLFVLQKPGEYCITQSKTDKTMLFLTIMLESEHGELILTRLN  64 
H. contortus     ----MAAVEC-RVTE-RNADAELDADLLTMNINRVSLGNIPEDFI-SFILKKPGDFCISTNSFA--SYVLSIQSDK-------DK-I  77 
A. ceylanicum    ---MLATVASEVAEK-RRADAELDADLLTMNVNKVCLGEIPSDFV-SFILERPGDFCISTNALN--SYVFSIKSDE-------HK-T  79  
 
 
  
Ce-COMP-1        IHLRIDHSENEYAIQGMLFARSQTLEQLVYHLKNDFTDILGGVLDENISMNRLLGLSSTNVHNICKTGKRIKDKKIQSQDFFHLVYT 162 
C. briggsae      INLRIEQSGKEYVIPGLIFARASSMRKLIYQLKNENIDILCGVLDENLSMDCLLGQSSTVMHNIHLTDKLITNQKSLYRDIQTMIYT 162 
C. tropicalis    VHLPIETSKKEVEIKGMLFASAKSIGQLIYQLRHEHIDILSGVLDMKISMNHFLDTNSTVMHNIHWKGNIVKDKMHHFQDVFITIYT 162 
C. remanei       VNLRVDDLEKEVGIPGMMFARADTLPQLIYQLKHENMDILSGVLEEKLTMNRLLGPQVTAMHNILQTGKSVKVQRKLSQDTASPIYI 163 
C. sp 5          INLVIEATGKDVGVPGLIFARAETVGKLIYQLKNENTDILSGVLEEKLSLNRLLGPSSTVMHNIHPTGKLVSNQKMLSVDIDLTIYT 162 
C. japonica      VHLQVRAYDDGYGFRGMLFARGKTLGQLIFQL-HENIDILCGVLEKQLRFAHMMTASSIEVHNIHFEKKVEK-VKVIDRSLHFTKYT 164 
C. angaria       IQKILENDMKLYEIQGIIFSKSSTIHGMINKITSDSINLLSGILEQNIELNKLIINTSLAQNNIYENEIEIRNKIIIANDHKTMTYK 151 
H. contortus     FHLTLENTEDGFRIRSMLFATGTTIGELIYNIRDSSLDVLSGVLGCPVYPRRMIIKDVLGQFRIFEAEHIIS-KKLVNEDSRFKYYE 163 
A. ceylanicum    FHLTLEKLRKGYRIRGMLFATGATIGELIYNIRDSSLDVLSGVLRCRAYPRRLITKEVLPCFRIYSDECIIS-KRLSYEDVDFRYFR 166 
 
 
 
Ce-COMP-1        GEMKFADGKIKKALFEELH--NPTISDLKVFYENLVEGKALAARNLPIRLPIGAILNPP-TLIYEHQENQVGCSLKDFLKNFDTHLD  246 
C. briggsae      GEMKFADGKIKEAIFEQILHCRPGSTDHKVFFEKIVNGKALSNKNLPIRLPIGAILTPP-TLIYEN-KVELGSLLESFLKTRQSELD  245 
C. tropicalis    GEMKFADGKIKEVLFEEIT--SPDKTKYKVFFEKLVNGKALSTKNLPIRLPIGAIINPP-TLIFEQNGTEIGCSLEHFLKFNYIDLD 245 
C. remanei       GEMKFSDGKIKEGVFEEFPGGGQNPTELKTFFEKLVNSKSLRGKNLPIRIPIGAIMNPP-TLIYENNKLEVGCNLEDFLFFHQNRLD 245 
C. sp 5          GEMKFADGKIKEALFEQITHPDMSISERKVLFEVNHIAKSSDSSSD---LPIGAILSPP-TLIYENNKVELGNTLEKFLKNREEQLD 245 
C. japonica      GEMKFADGRVKEAMFEEAK--NVDNEYMEKFFSKMVTVAALIEKHLPVRLPIAAFISPP-TLIYDLQKENSGFPLSYILKHHDNLLD 248 
C. angaria       GEITLFDGTKQEVEIVEPSPAMDS----DDFRKKIFEEFRFKMRQLPVRLPIAAVLSTP-ALMFPAG---KGYNLCYILCNYQHSLD 231 
H. contortus     SQVLMNDT-YTNVLLKGSRR-MSPAEWREQMYDELRVSFVARELHLPMRTVHGILRAENGYVIYDNK---PGCEFSRFLEEYDDKLD 245 
A. ceylanicum    GNIFINQE-FTDVILKENKR-LTDANWKMHMYDELRVSYLAKELHLPVRIIIGLIRANNGYIIYDSN---PGCDFARFMEENGDRMD 249 
N. americanus                                                                                  MEENADRFD   9 
 
 
 
Ce-COMP-1        LAQRIKLCSAAVRILSELHRFDIYHGASKVDNFYV--LGYKNEKTMNYELVFNGASGLLYEGKSDNTVTMVDYDSNAPEVAFTRKLS 331 
C. briggsae      LTQRIKFCSSAVRILSELHQCDIYHGASQMENFYVEFAGFKPKTMKNYELVFSGANGLLIQGKSDNTVHVVDYDSTAPEVAFTRKLT 332 
C. tropicalis    LSQRIKLCSSVVRILSELHHMDIYHGASRIENFYVEQNGNKNSKTKNFELVFNGANGLIFEGITDNTVSIVDYDSNAPEVAFTRKLT 332 
C. remanei       LTQRIKICSSAVRVLSELHHADIYHGASQLEHFYVDFVGFKNEDIKNYELVFNGASGLIREGKSDNSVSVIDYDSTAPEVAFTRKLT 332 
C. sp 5          LTQRIKFCSSAVRILSELHQSDIYHGASQMENFYVEFAGLKPKTMKNYELIFNGANGLLVQGKSDNTVRVVDYDSTAPEVAFTRKLS 332 
C. japonica      LTQRVKLCSSAVRVMSELHQADIFHGALIAKNFFLNFIRI-NDGVKEYELVFNGPSGLLFLGKSDCSVSLIDYDLNAPELAFTRKLT 334 
C. angaria       FVQRIKICSSICRVFSEVLADDFYHGGILAEHFYCQQIDESETGVKTMELMFASADGLVDS-RIEKRTNMIDYDQYAPEVSFTRILN 317 
H. contortus     LGTRIKLCRALASVMSGLYNADIYCGAVKLDNFYAYYVGALPYS--RIQLVFTGGADLTPL-EKTKPIDSGDFSQMAPEVSWTRLLT 329 
A. ceylanicum    CGLKIKLCRALASVMSGLFNADIYCGAVKMENFHVYYVAQRGLR--KRLRKSSLFIFPEQL-SQLRPVESGDFTRMAPEVTWTRILT 333 
N. americanus    CGVKIKICRALASVMSELFNADIYCGTVKMENFFVYYVDAVPCG--QIQIVFAEGRDLTPV-DQLRPVDSGDFTRMAPEVTWTRILT  93 
 
 
 
Ce-COMP-1        KESGVFTLGRLFEQILESEILKSYSEPPQEEPRVLNDMRRLI-------GRATRANPSQRPTMNGIVMLIRELLM---ALPKSTSPI  408 
C. briggsae      KESGVFNLGRLFEQILKPDLIQSYKEESE-EPRALNEMRHLI-------SRTTHPNPTRRPTMHGVVMMIRDILQ---KNTQSTSPI 410 
C. tropicalis    KESGVFNMGRLFEQILKPDLIKAYKDQP--EPRALEEMRHLI-------ARATHPNPSRRPTMHGIIIMIRDVLL---LTPDSSSSV 408 
C. remanei       KESGVFNLGRLFEQILKPDLFKSYSESNEGSPESLTEMRRLI-------SRATHPNPTRRPTMHGIVMMIRDVLL---KAPKSNSHI 412 
C. sp 5          EIDEGFQFGTSFRTDSETRSHQIVQ----GLPGRTSFSQRNASSGCSCNSSESHSHYGSRYSSEGSTVDFS----------NQRRSF 408 
C. japonica      KESGVFNIGRLFEQILKTEILKTYQKNAPEDPPALREMRQMI-------ARATRPNPYHRPTTNGIVMMIRETLK---ILPPSSAPV 408 
C. angaria       RPSGVFNTGKLFARILQPDLVKEEK----SWPGALKAMKVLI-------DKSVRPNPYDRPTIDGMVIMCRHILTLLELSPKSDCKF 393 
H. contortus     PEAGVHSMGLVLRRVLGHLPELPSQDPNAS---LLPRINALI-------SKCLHPRPSERPSMNGIFLELDNAAGSVRHTR------ 393 
A. ceylanicum    PEAGVYSMGLVLRAVLESGVRPSSKDPNFE---MLTRVEALI-------QKCTHSKPSERPSVHGIFIELDAITKHLKQTK------ 395 
N. americanus    PEAGVFSMGLLLREVLEFGPRLSSKDPNFE---LVTRVEALI-------RKCMHSRPSERPSVHGIFIELDSIASFIKQTR------ 164 
 
 
 
Ce-COMP-1        NVVHYDQFQRK------------------------------ 419 
C. briggsae      NIVHFDQFTKN------------------------------ 421 
C. tropicalis    NIVHFNQFSTE------------------------------ 419 
C. remanei       CMVHFDQFTN------------------------------- 422 
C. sp 5          RSIH------------------------------------- 412 
C. japonica      NFVHYDQFAI------------------------------- 418 
C. angaria       NFVHYNHTRSECKPESSAQRPGLSLGLCSSALRECKPQASA  436  
H. contortus     ----QPRWTPI------------------------------ 400 
A. ceylanicum    ----YQFWQPL------------------------------ 402 
N. americanus    ----HHFWQPV------------------------------ 171 
 

!

me69: G389R

gk1149 deletion

SH2-like

kinase-like

88



%
 C

ro
ss

 p
ro

ge
ny

**

wild
type

comp-1
(me69);

Pcomp::COMP-1

ns

comp-1
(me69)

0 

20 

40 

60 

80 

100 
A

Male:

**

X dpy-4Herm:

%
 C

ro
ss

 p
ro

ge
ny

**

wild
type

comp-1
(gk1149);

Pcomp::COMP-1

ns

comp-1
(gk1149)

0 

20 

40 

60 

80 

100 
B

Male:

**

X dpy-4Herm:

%
 C

ro
ss

 p
ro

ge
ny

***

wild
type

comp-1
(gk1149);
Pcomp::

COMP-1::GFP

ns

comp-1
(gk1149)

0 

20 

40 

60 

80 

100 

**

Male:

C

X dpy-4Herm:

Figure 2.3. COMP-1 transgenes rescue the male precedence defects of comp-1 
mutants. (A,B) The jnSi109[Pcomp-1::COMP-1] transgene, which contains a 3.9 
kb region surrounding F37E3.3, rescues the precedence defect of (A) 
comp-1(me69) and (B) comp-1(gk1149) males in crosses to dpy-4 hermaphro-
dites. (C) Expression of COMP-1::GFP rescues the precedence defect. 
comp-1(gk1149); jnSi171[Pcomp-1::COMP-1::GFP] males have a wild type 
precedence pattern in crosses to dpy-4 hermaphrodites. Precedence assays 
were performed as in Figure 2.1D. ***, P<0.001; **, P<0.01; ns, not significant 
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Figure 2.4. The comp-1 mutant has defects in male-male sperm competi-
tion. (A) comp-1 male sperm are outcompeted by wild type male sperm. 
Wild type and/or comp-1(gk1149) males were mated sequentially to fog-2 
hermaphrodites; second-mated males harbored the transgene mIs11(GF-
P+). Offspring were scored for GFP, and the percentage of GFP-positive 
progeny produced 0-16 hrs after second-male mating is shown. (B) comp-1 
mutant males have wild type levels of fertility in the absence of competition. 
Males were crossed to fog-2 hermaphrodites and total progeny were 
counted. (A,B) Individual data points are shown; lines indicate medians. 
*, P<0.05; ***, P<0.001; ns, not significant (Kolmogorov-Smirnov test; 
comparisons are to wild type unless indicated by a line linking the two data 
sets).  
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Figure 2.5. The comp-1 mutant has reduced male 
precedence. comp-1 male sperm are outcompeted 
by wild type male sperm. Wild type and/or 
comp-1(gk1149) males were mated sequentially to 
fog-2 hermaphrodites; first-mated males harbored 
the transgene mIs11(GFP+). Offspring were scored 
for GFP, and the percentage of GFP-positive prog-
eny produced 0-16 hrs after second male mating is 
shown. GFP-marked males show an apparent 
slight disadvantage, which is observed consistently 
but is not statistically significant. Lines indicate 
medians. ***, P<0.001; ns, not significant (Kolmog-
orov-Smirnov test). 
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Figure 2.6. comp-1 male sperm have long-term precedence defects. 
(A) Crosses with comp-1 males result in a low percentage of cross progeny. (B) 
The number of cross progeny sired by comp-1 increases at late time points. (C) 
Crosses with comp-1 males do not suppress production of self progeny. Purple 
line indicates self progeny of unmated hermaphrodites. (D) Crosses with comp-1 
males result in decreased progeny numbers as compared to those with wild type 
males. (A-D) Males were crossed to dpy-4 hermaphrodites for 16 hrs (grey line); 
progeny were collected throughout the recipients’ reproductive lifespans and 
scored as self or cross progeny. All graphs are from a single data set that is 
representative of three repeats. (E) comp-1 male sperm are used at wild type 
levels in crosses to sperm-depleted hermaphrodites. Males were crossed to 
staged dpy-4 recipients for 24 hrs and progeny generated during the mating 
period were scored as self or cross progeny. “No. remaining sperm” indicates the 
number of self sperm present within recipients at each stage, inferred from brood 
counts of unmated dpy-4 hermaphrodites performed in parallel. Data points 
indicate averages; error bars, 95% confidence intervals. **, P<0.01; ***, P<0.001; 
ns, not significant (Kolmogorov-Smirnov test, comparing wild type to each 
comp-1 mutant). 
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Figure 2.7. COMP-1 is expressed and functions in sperm of both males and 
hermaphrodites. (A-D) Images of jnSi118[Pcomp-1::GFP::H2B] adult males (A,B) 
and hermaphrodites (C,D), which express the comp-1 reporter in developing 
sperm. int, intestinal autofluorescence. Scale bar (A-D), 30 μm. (E) Schematic of 
structural organization of spermatozoa. (F-H) COMP-1 does not colocalize with 
GSP-3/4, which is in the pseudopod. Images of jnSi171[COMP-1::GFP] sperma-
tozoa fixed and stained with α-GSP-3/4 antibody (red) and DAPI (blue). Scale 
bar (F-P), 5 μm. (I-L) COMP-1 does not colocalize with mitochondria. Images of 
jnSi171[COMP-1::GFP] spermatozoa stained with Mitotracker. (M-P) COMP-1 
does not colocalize with PEEL-1::GFP, which is at the membranous organelles. 
Images of jnSi143[COMP-1::mCherry]; jnSi177[PEEL-1::GFP] spermatozoa. (Q) 
comp-1 functions in both male and hermaphrodite sperm. Wild type and 
comp-1(gk1149) males were tested against wild type and comp-1(gk1149) 
hermaphrodites in the short-term precedence assay. Lines indicate medians. *, 
P<0.05; ***, P<0.001; ns, not significant, Kolmogorov-Smirnov test. 
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precedence pattern in crosses to dpy-4 hermaphrodites. Precedence assays 
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Figure 2.9. comp-1 sperm have normal organization and size. (A-D) 
Wild type (A,B) and comp-1(gk1149) (C,D) spermatozoa stained for 
mitochondria using Mitotracker. (E-H) Wild type (E,F) and comp-1 
(G,H) spermatozoa expressing PEEL-1::GFP (membranous organ-
elles). (I-L) Wild type (I,J) and comp-1(gk1149) (K,L) spermatozoa 
fixed and stained with α-GSP-3/4 antibody (green). (A-L) Scale bar, 5 
μm. (M) comp-1 male spermatid size is not significantly different from 
wild type. Cross-sectional areas through the center of spermatids were 
measured. Error bars, 95% confidence interval; p=0.41, Student’s t 
test. 
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Figure 2.10. comp-1 male sperm have defects in migration and spermathecal 
accumulation. (A) Schematic of hermaphrodite gonad arm showing zones used 
to quantify sperm position. (B,C) Localization of wild type (B) and 
comp-1(gk1149) (C) Mitotracker-labeled male sperm 1-1.5 hrs after transfer to 
hermaphrodites. Percentage of total male sperm is shown. (D,E) Localization of 
jnSi118[GFP::H2B] male sperm 12 hrs (D) and 24 hrs (E) after transfer to 
hermaphrodites. Percentage of male sperm in the focal plane with maximum 
sperm in the spermatheca is shown. (F) Localization of hermaphrodite self 
sperm in 24 hrs post-L4 unmated hermaphrodites. Animals were stained with 
DAPI to facilitate counting of sperm cells. Percentage of total hermaphrodite 
sperm is shown. Error bars, 95% confidence intervals. *, p<0.05; **, p<0.01; ***, 
p<0.001; Student’s t test.
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dent defects in cell morphology. (A) comp-1(gk1149) sperm can migrate in vivo at 
speeds equivalent to wild type sperm. Mitotracker-labeled males were crossed to 
N2 hermaphrodites and time-lapse images of sperm migrating through zone 2 
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measured using ImageJ. (B-F) comp-1(gk1149) spermatids show reduced pseu-
dopodial extension after activation by Pronase. (B) Quantification of aspect ratios 
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Representative images of wild type (C,E) and comp-1(gk1149) (D,F) sperm 
treated with TEA (C,D) or Pronase (E,F). Error bars, 95% confidence interval; ***, 
P<0.001, Kolmogorov-Smirnov test. Scale bar, 5 μm. 
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Figure 2.13. comp-1 sperm can crawl and be activated in 
vitro. (A) comp-1 sperm can crawl at wild type velocities in 
vitro. Wild type and comp-1(gk1149) spermatids were 
treated with TEA for 30 mins and velocity was obtained 
from time-lapse images collected every 30 secs. As we 
observed a high level of variability among different samples 
for each genotype, the range of observed values is shown 
using a box-and-whiskers plot. For each genotype, n=5-6 
samples, 65-130 cells. (B) comp-1 sperm activate in Pro-
nase. Wild type and comp-1(gk1149) spermatids were 
treated with Pronase for 30 min and scored for activation 
based on the presence or absence of a pseudopod. Error 
bars, 95% confidence intervals.
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Figure 2.14. Model: comp-1 sperm have localization 
defects that result in failure to compete with wild type 
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region of the spermathecae, where they displace 
hermaphrodite self sperm (pink) and preferentially fertilize 
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tract.
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Table 2.1. Linkage of me69 phenotype to genomic position. 

Marker1 Genetic position1 Genomic position2 Haw/+ frequency3 

WBVar00240399 I:0.91 I:6350803 1/16 

WBVar00172772 II:0.12 II:6789208 8/16 

WBVar00067953 III:-0.31 III:8318640 10/16 

WBVar00188750 IV:1 IV:4625317 3/16 

WBVar00240687 V:0.88 V:8177520 9/16 

 
1Wicks SR, Yeh RT, Gish WR, Waterston RH, Plasterk RH (2001) Rapid gene mapping in Caenorhabditis elegans using a 
high density polymorphism map. Nat Genet 28(2):160-4. doi:10.1038/88878 
2Wormbase WS243 (accessed August 30, 2014). 
3me69; him-5 males were crossed to CB4856 Hawaiian hermaphrodites, F1 males were crossed back to me69; him-5 
hermaphrodites, and F2 males were assayed for precedence defects in crosses to spe-8; dpy-4 hermaphrodites. Animals 
scoring as mutant (me69 homozygotes) were scored by PCR and restriction digest for centrally-located SNPs on each 
chromosome (Wormbase release WS243). Animals lacking Hawaiian alleles at all loci tested were considered self 
progeny and excluded from analysis. 
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Table 2.2. Mapping of me69 on chromosome I. F2 males from the cross 
described in Table 2.1 were scored for SNPs across chromosome I. Animals 
were either homozygous Bristol (B/B) or heterozygous for the Hawaiian allele 
(H/B) at each SNP. 

 

No. 
F2s1 

WBVar 
00240 
3942 

WBVar 
00240 
397 

WBVar 
00240 
399 

WBVar 
00155 
231 

WBVar 
00240 
416 

WBVar 
00240 
407 

WBVar 
00159 
097 

WBVar 
00240 
414 

WBVar 
00161 
629 

825026 5482531 6351803 8646304 10614690 11472093 12433167 13066381 1415488
9 

16 B/B    B/B    B/B 

6 H/B    B/B    B/B 

2 H/B B/B B/B B/B B/B B/B B/B H/B H/B 

3 B/B B/B B/B B/B B/B B/B B/B H/B H/B 

1 H/B H/B H/B B/B B/B B/B B/B B/B B/B 

 
1Number of F2 males showing each pattern.  
2SNP designation and genomic position on chromosome I. Wicks SR, Yeh RT, Gish WR, Waterston RH, Plasterk RH 
(2001) Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat Genet 28(2):160-4. 
doi:10.1038/88878; Wormbase WS243, accessed August 30, 2014. 
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CHAPTER 3 
 
 
 

POSTCOPULATORY SELECTION IN CAENORABDHITIS  

ELEGANS 
 
 
 

Abstract 

Sperm competition is the competitive process between two males for 

fertilization and is thought to be a driving force for rapid molecular evolution and 

population divergence. The selective pressures stemming from sperm 

competition have given rise to several adaptions to assist the successful use of 

male sperm and include sperm number, size and length, and sperm storage. 

However, females often influence sperm selection through cryptic female choice, 

but very little is known about the genes or the mechanisms employed in female 

biased sperm competition.  

In C. elegans, male sperm compete with hermaphrodite self sperm, 

resulting in the nearly absolute preferential use of male sperm. Evidence 

indicates that male precedence relies on intrinsic differences between male and 

hermaphrodite sperm and strongly implicates disparities in motility. We 

previously identified a mutant that affects the function of the comp-1 gene, whose 

disruption leads to male precedence and migration defects. Our results suggest 

that the comp-1 defects are dependent on the competitive context and that the 
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hermaphrodite reproductive environment likely plays a role in the aberrant mutant 

sperm migration behaviors. In this study, we have shown that presence of 

hermaphrodite sperm may have an inhibitory effect on male sperm via a sperm-

sensing pathway, involving prostaglandin signaling. Furthermore, this signaling 

pathway is likely derived from the hermaphrodite in response to the presence of 

sperm. Our studies show a complex genetic and cellular interaction between 

male sperm and hermaphrodite reproductive organs. To date, comp-1 is the only 

gene identified that specifically affects sperm competition through cryptic 

hermaphrodite choice. Its characterization likely will reveal a novel mechanism 

for sperm selection as well as the molecular nature of intercellular 

communication between sperm and the reproductive tract. 

 

Introduction 

Polyandry occurs across many phyla, resulting in sperm competition as a 

pervasive, postcopulatory method for natural selection (Birkhead and Moller 

1998). Sperm competition influences the fertilization success of sperm from 

different individuals, affecting which individual will contribute his genes to future 

offspring. Consequently, postcopulatory sexual selection exerts selective 

pressure on reproductive proteins, resulting in diverse sperm and reproductive 

tract morphologies (Swanson et al. 2001; Swanson and Vacquier 2002; Eberhard 

2004; Clark et al. 2006). These changes in reproductive anatomy and function 

can have broader evolutionary implications and have been linked to 

macroevolutionary processes of speciation (Manier et al. 2013). 
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Postinsemination mechanisms in internally fertilizing species have been 

notoriously difficult to study and often results are obtained through indirect 

measurements. While studies of sperm competition have revealed a variety of 

male and female traits that influence sperm function and usage, many of the 

molecular and cellular details of these traits remain unknown. Females may also 

influence the outcome of sperm selection through cryptic female choice. Yet, 

even less is known about the female’s contribution as it is often obscured by 

male-driven processes. Insight into the molecular pathways regulating sperm 

competition and cryptic female choice will have a high impact in the field of 

evolutionary biology as so little is currently known.   

Sperm competition occurs when ejaculates from different males compete 

to fertilize a given set of ova. In order to outcompete another individual’s sperm, 

stored sperm from the first male must resist inactivation or removal. Incoming 

sperm from a second male must usurp the rival sperm already present. Several 

traits in males have evolved to increase fertilization success, including production 

and transfer of numerous smaller sperm in an effort to gain paternity by 

numerical superiority (Gage 1991). However, in some cases, larger sperm may 

have an advantage by increasing migration velocity, promoting retention, or 

blocking subsequent access to the site of fertilization (Wigby and Chapman 

2004). Sperm competition can lead to cryptic female choice as females adapt to 

regain control over which males fertilize their oocytes either through physical or 

chemical means (Bangham et al. 2003; Lovlie et al. 2013; Lupold et al. 2013). 

Drosophila sperm length is one such example where paternity is biased by the 
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female favoring sperm with optimal sperm length (Miller and Pitnick 2002). As a 

result, Drosophila sperm length is thought to have coevolved in response to the 

length of the female’s seminal receptacle. For example, D. bifurca have sperm 

approximately 20X the total body length of males (Pitnick et al. 1995b). 

Ultimately, the fertilization success of sperm is mediated by intrinsic sperm 

morphology or functions, seminal fluid composition, female reproductive 

morphology, and intercellular communication between the chemical environment 

of the female and sperm.  

C. elegans is an ideal model system to study the genetic and cellular 

mechanisms involved in sperm competition and cryptic hermaphrodite (female) 

choice since the ejaculates of different males can be distinguished and observed 

within the transparent reproductive tract. C. elegans is a male-hermaphrodite 

species in which hermaphrodites produce their own self sperm which reside in 

the spermatheca, a sperm storage organ and the site of fertilization (Ward and 

Carrel 1979). If mating occurs, male sperm migrate through the reproductive tract 

to the spermathecae, where they encounter stored self sperm. Thus, male sperm 

must always compete with hermaphrodite sperm; however, male sperm are 

preferentially used by the hermaphrodite for fertilization. The mechanisms 

contributing to male sperm’s competitive advantage are not well understood, but 

previous evidence indicates that male precedence relies on intrinsic differences 

between male and hermaphrodite sperm and requires motility, implicating 

migration behaviors (LaMunyon and Ward 1994, 1995; Singson et al. 1999).  

We identified a gene, comp-1, whose loss results in competition-specific 
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defects in sperm migration, storage, and usage. Additionally, comp-1 was 

observed to regulate sperm-intrinsic functions required to compete both 

offensively and defensively, independent of sperm size. Strikingly, comp-1 sperm 

usage defects are specific to competitive contexts, as comp-1 sperm are 

functionally normal when wild type sperm are absent (Hansen JM, Chapter 2), 

suggesting that comp-1 defects in sperm function may be dependent on changes 

in the hermaphrodite environment in response to the presence of sperm. 

Previous evidence supports a model in which sperm communicate with the 

hermaphrodite reproductive tract to promote induction of intercellular pathways 

necessary for reproductive processes. C. elegans sperm interacts with 

hermaphrodite environment by two known intercellular signaling mechanisms. 

Hermaphrodites release prostaglandins, which promote optimal sperm velocity 

and recruitment to the spermathecae (Kubagawa et al. 2006). In addition, male 

sperm signal to the hermaphrodite via a paracrine hormone, major sperm protein 

(MSP), to stimulate oocyte meiotic maturation, gonadal sheath contractions, and 

ovulation (Miller et al. 2003; Kosinski et al. 2005; Cheng et al. 2008). Sperm also 

promote egg laying via an unknown signaling mechanism (McGovern et al. 

2007). These signals couple costly reproductive processes, such as egg 

production, to the presence of sperm. To date, the effect of these pathways on 

sperm competition has not demonstrated.  

Our results show that the comp-1 defects of migration, spermathecal 

residency, and usage are specific to contexts where wild type sperm are present. 

Furthermore, the inhibitory affect of wild type sperm is not due to a physical 
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interaction with comp-1 sperm, but rather through prostaglandin signaling derived 

from the hermaphrodite and mediated by the presence of wild type sperm. 

Specifically, we propose a model in which comp-1 functions in incoming male 

sperm to respond favorably to prostaglandin signaling triggered by the presence 

of previously established sperm. comp-1 function may have adapted to 

prostaglandin signaling to either improve motility or to overcome it as an 

inhibitory signal. Our studies are the first of their kind to reveal the sophisticated 

molecular interplay between sperm competition and cryptic hermaphrodite 

choice. Results from our studies of comp-1 will provide insight into novel 

mechanisms of sperm competition, cryptic female choice, and coevolution of the 

sexes.  

 

Results 

The presence of wild type sperm inhibit comp-1 sperm function 

Hermaphrodites produce a fixed number of sperm before switching over to 

oocyte production, resulting in a depletion of self sperm stores as the 

hermaphrodite ages (Singson 2001). Although comp-1 male sperm usage 

increases as the hermaphrodite ages, the levels of comp-1 male-sired progeny 

are significantly lower than wild type until a time point that corresponds with a 

severe reduction in self sperm numbers. comp-1 sperm have defects in 

migration, spermathecal storage, and ultimately sperm usage. While comp-1 

male fertility is normal, indicating that sperm function is normal in noncompetitive 

contexts, it is not known if the migration defect persists when self sperm stores 
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are low (Hansen JM, Chapter 2). To examine the effect of various amounts of 

self sperm numbers on comp-1 migration, we tested the migration of 24 hrs wild 

type or comp-1 males mated to hermaphrodite recipients aged 12, 24, 36, or 48 

hrs post L-4. At 2 hrs post-mating, the majority of wild type sperm migrate to an 

area at or near the spermatheca in hermaphrodites aged 12, 24, and 36 hrs, 

indicating that wild type male sperm migrate rapidly towards the spermatheca 

immediately after transfer (Figure 3.1A). In a large percentage of crosses with 

comp-1 males, comp-1 sperm had overall significantly less sperm migrate 

towards the spermatheca than wild type, consistent with the previous result that 

the sperm usage defect persists in hermaphrodites aged up to 36 hrs. 

Interestingly, sperm migration in 48 hrs hermaphrodites is conspicuously 

different. Wild type males mated to a 48 hrs hermaphrodite resulted in only a 

small percentage of animals with sperm migration rates similar to crosses to a 24 

hrs hermaphrodite, suggesting that wild type male sperm do not efficiently 

migrate towards the spermatheca. However, most crosses with comp-1 males 

resulted in the majority of sperm migrating towards the spermatheca within 2 hrs. 

Although wild type sperm usage increases as the hermaphrodite ages, sperm 

migration is at least temporally delayed. Ovulation and egg laying rates markedly 

decrease in older hermaphrodites, suggesting that older hermaphrodites become 

inefficient at relaying the signal necessary for such processes. Perhaps included 

in this deterioration is the signal for rapid wild type sperm migration. Surprisingly, 

comp-1 sperm lack the delay in sperm migration in older hermaphrodites, in 

conjunction with the absence of the sperm usage defect coinciding at a time point 
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in which self sperm stores are depleted and competition between male and self 

sperm ceases. These results suggest that the presence of wild type self sperm 

are inhibiting the effective migration and usage of comp-1 sperm. Since self 

sperm are localized in the spermatheca, away from the location of transferred 

male sperm, the inhibitory effect is likely to be due to signaling rather than a 

physical inhibition of self sperm on comp-1 male sperm.  

To examine the possibility that maternal age contributes to either the 

decrease in wild type or the increase of comp-1 male sperm migration rates, we 

tested migration rates in fog-2 hermaphrodites, whom fail to produce their own 

self sperm (Schedl and Kimble 1988). We found that wild type male sperm 

efficiently migrated towards the spermatheca in fog-2 hermaphrodites (Figure 

3.1B), suggesting that the delay in wild type migration in 48 hrs hermaphrodites 

may be due to maternal age rather than the absence of sperm. However, the 

comp-1 male sperm migration defect was again attenuated in a noncompetitive 

context, leading us to posit that the presence of wild type self sperm were 

responsible for the comp-1 migration defect. Several sperm-sensing pathways 

have been identified that connect the presence of sperm and reproductive 

signaling. Signaling induced by the presence of wild type sperm may be 

detrimental to comp-1 sperm migration and usage, yet promote wild type sperm 

migration. However, as the hermaphrodite ages, she may no longer respond to 

these sperm derived cues, resulting in decreased wild type sperm migration.   

Normal migration and usage of comp-1 male sperm in noncompetitive 

contexts argues that comp-1 sperm are able to gain residency in the 
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spermatheca where fertilization occurs. To directly quantify the number of male 

sperm occupying the spermatheca, we measured individual male sperm 

positioning within the hermaphrodite reproductive tract of one focal plane in fog-2 

hermaphrodites. We divided the hermaphrodite reproductive tract into four zones, 

with zones one through three dividing the uterus. Zone one was most proximal to 

the vulva while zone three was located just outside of the spermatheca. We 

mated 24 hrs males carrying a sperm-specific GFP reporter to 24 hrs 

hermaphrodites and recorded male sperm positioning 6 hrs after mating. 

Normally after mating, the majority of wild type male sperm reside within the 

spermatheca or just outside of the spermatheca in zone three (Hansen JM, data 

not shown). As expected, 6 hrs after mating to the female, wild type sperm were 

mostly located either in zone three or the spermatheca, with a low percentage of 

male sperm residing in zones one and two (Figure 3.1C). Strikingly, comp-1 male 

sperm positioning was not significantly different from wild type sperm, indicating 

that comp-1 defects of migration, spermathecal storage, and sperm usage occur 

only when sufficient numbers of wild type self sperm are present to inhibit normal 

comp-1 behaviors. 

 

Wild type sperm inhibition on comp-1 sperm is likely 

due to signaling 

After mating, male sperm migrate a relatively long distance from the vulva 

towards the spermatheca where self sperm are stored. The migration defect of 

comp-1 sperm occurs in a location uninhabited by self sperm, suggesting that 
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previously stored wild type sperm are able to inhibit incoming comp-1 sperm at a 

distance. We hypothesized that the presence of sperm hinders comp-1 sperm by 

some signaling process that is either directly from sperm or indirectly released 

from the hermaphrodite as a response to the presence of sperm. C. elegans 

sperm are known to release vesicles that contain the hormone major sperm 

protein (MSP), that then bind to receptors on oocytes and on the spermathecal 

sheath (Miller et al. 2003). To test if larger numbers of self sperm, and 

consequently increased release of MSP, has an effect on comp-1 migration, 

spermathecal storage, and usage, we analyzed comp-1 sperm behaviors in spe-

9 hermaphrodites. SPE-9 is a transmembrane protein found on sperm 

pseudopod membranes and functions to form the sperm-oocyte interactions 

necessary for fertilization. spe-9 sperm have normal motility, MSP signaling, and 

localization, but do not fertilize the egg (Singson et al. 1998; Hansen JM, data not 

shown), which leads to the accumulation of larger numbers of self sperm residing 

at or near the spermatheca. Surprisingly, wild type migration in spe-9 recipients 

was severely reduced as compared to their migration in wild type hermaphrodites 

(Figure 3.2A). Contrary to our expectations, the comp-1 migration defect was 

ameliorated in spe-9 hermaphrodites and migration rates resembled those of wild 

type males mated to wild type hermaphrodites. The migration rates of wild type 

and comp-1 sperm in spe-9 recipients were reminiscent of those in older 

hermaphrodites. To further our analysis of comp-1 behavior, we tested if the 

spermathecal storage and usage defects were present in spe-9 recipients. The 

number of cross progeny sired by comp-1 males was statistically 
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indistinguishable from progeny sired by wild type males (Figure 3.2B), indicating 

that comp-1 usage is not affected by the presence of spe-9 self sperm. We might 

expect that if comp-1 sperm usage were normal, sperm would need to be present 

in the spermatheca. We know that comp-1 sperm are normally present in the 

spermatheca at lower numbers than wild type male sperm in wild type 

hermaphrodites, yet they continue to not be used (Hansen JM, Chapter 2). Since 

spe-9 sperm are unable to fertilize the oocyte, even smaller numbers of comp-1 

sperm in the spermatheca would outcompete the mutant self sperm. 

Interestingly, the percentage of comp-1 male sperm positioned within the 

spermatheca is similar to that of wild type (Figure 3.2C), implying that comp-1 

sperm are unaffected by spe-9 self sperm. Together these results suggest that 

MSP signaling from sperm does not account for the defects in comp-1 sperm. 

Therefore, the signal affecting comp-1 sperm behaviors is from another source, 

likely released by the hermaphrodite. Sperm may have an additional role 

involved in promoting an intercellular response from the hermaphrodite, a 

pathway in which the loss spe-9 function is unable to fulfill. Previous evidence 

supports that C. elegans sperm has a signaling pathway independent of MSP 

signaling. egl-32 hermaphrodites have an egg-laying defect which can be 

rescued by the presence of wild type sperm, but not by spe-9 sperm (McGovern 

et al. 2007). The migration results of wild type sperm in spe-9 hermaphrodites 

recipients is consistent with the hypothesis that a signaling pathway exists which 

promotes wild type sperm migration yet inhibits efficient migration of comp-1 

sperm.  
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If egl-32 functions in sperm to induce signaling in the hermaphrodite to 

promote egg laying, we would expect that comp-1 male sperm usage potentially 

might be affected. To test if comp-1 sperm are efficiently used in egl-32 

hermaphrodites, we tested wild type and comp-1 male precedence in wild type 

and egl-32 hermaphrodites. Notably, we found that both wild type and comp-1 

males mated to egl-32 hermaphrodites had reduced male precedence as 

compared to males mated to wild type hermaphrodites (Figure 3.2D). Wild type 

sperm are able to rescue the loss of egl-32 function and thus restore the 

signaling process necessary for egg laying. Despite wild type sperm restoring the 

signaling pathway for egg laying, they were unable to compete effectively against 

egl-32 self sperm. These results provide a condition in which self sperm can 

outperform male sperm. It is unclear if the increased precedence of egl-32 self 

sperm is an intrinsic function or a result of the altered hermaphrodite 

environment.  

 

Prostaglandin signaling is inhibitory to comp-1 migration and usage 

Several mutant strains have been identified in which loss of function 

mutations reduce prostaglandin signaling. These mutant hermaphrodite 

recipients are known to affect sperm migration behaviors including reduced 

velocity, increased reversal frequencies, and reduced directionality (Edmonds et 

al. 2010).  Since prostaglandin signaling is known to promote wild type sperm 

migration, it was a likely candidate signaling pathway that differentially affects 

wild type and comp-1 migration. To determine the effect of prostaglandin 
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signaling on comp-1 sperm migration and usage, we performed the migration 

and male precedence assay with males crossed to fat-2, fat-3, or wild type 

hermaphrodites. fat-2 and fat-3 are necessary to synthesize PGF2α 

prostaglandins and loss of either one is known to reduce prostaglandin signaling 

(Edmonds et al. 2010). Although the migratory behaviors of wild type male sperm 

were shown to be altered in fat-2 and fat-3 hermaphrodites, self sperm are 

localized properly in the fat-2 and fat-3 hermaphrodites (data not shown). fat-2 

and fat-3 hermaphrodites have reduced brood size counts, averaging at 85 and 

125, respectively (Hansen JM, data not shown). Although self sperm numbers 

are lower than wild type, there is a sufficient number of self sperm to inhibit 

incoming comp-1 sperm according to our previous studies. While wild type sperm 

are reported to have reduced velocity in fat-3 hermaphrodites, in most crosses, 

the majority of wild type sperm reached the spermatheca region within 2 hrs after 

transfer (Figure 3.3A). Perhaps the reduction in prostaglandins, and not the 

elimination of the signal, only mildly altered wild type sperm migration. 

Interestingly, the comp-1 migration defect was attenuated in fat-3 hermaphrodite 

recipients, suggesting that the reduction of prostaglandin signaling is sufficient to 

restore proper motility to comp-1 sperm. To test if prostaglandin signaling inhibits 

comp-1 sperm usage, we performed the male precedence assay by mating either 

wild type or comp-1 males to fat-2, fat-3, or wild type hermaphrodites. The 

number of comp-1 cross progeny was statistically indistinguishable from wild type 

progeny numbers (Figure 3.3B). The ability of comp-1 sperm to perform better in 

fat-2 or fat-3 than wild type hermaphrodites suggests that prostaglandin 
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signaling, while promoting wild type sperm migration, is inhibitory to comp-1 

sperm migration and usage. These data reveal that the response of sperm is 

more complex than originally thought and may include both stimulatory and 

inhibitory components. The effect of prostaglandins on cell migration has been 

the subject of extensive studies, and it is known to both promote and limit cell 

migration (He et al. 1986), consistent with our observations that indicate 

prostaglandin signaling can have both a positive and negative effect on sperm 

motility. 

 

Loss of vab-1 inhibits comp-1 in noncompetitive contexts  

Loss of inx-14 and ceh-18 in hermaphrodites disrupts the function of gap 

junctions between the sheath cells and oocytes, resulting in reduced velocity and 

increased reversal rates of male sperm (Kubagawa et al. 2006). Although levels 

of PGF2α isomer are increased in inx-14 mutants, inx-14 is thought to regulate 

F-series prostaglandin by inhibiting synthesis or promoting catabolism (Edmonds 

et al. 2011). inx-14 and ceh-18 functions are additional downstream components 

of the prostaglandin signaling pathway. To examine comp-1 behavior in inx-14 

recipients, we performed male precedence and migration assays. Consistent with 

previous reports, wild type male sperm were unable to efficiently migrate towards 

the spermatheca within 2 hrs after mating (Figure 3.4A). Although wild type 

sperm have similar velocities in fat-3 and inx-14, the reversal rates of wild type 

male sperm are much higher in inx-14 than in fat-3 hermaphrodites (Kubagawa 

et al. 2006; Edmonds et al. 2011). The increase in reversal rate may account for 
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the significant reduction of wild type migration rates in inx-14 hermaphrodite. 

Migration of comp-1 male sperm was also impaired in inx-14; however, the 

migration rates were not significantly different from migration rates of comp-1 

male sperm in wild type hermaphrodites, suggesting that inx-14 recipients have 

no effect on comp-1 male sperm migration. Despite slower migration rates of wild 

type sperm in inx-14 hermaphrodites, male precedence was normal (Figure 

3.4B). Ultimately, the delay in migration of male sperm does not affect its ability 

to compete, even though it indicates impaired motility. Again, comp-1 male 

sperm usage was not affected in inx-14 or ceh-18 hermaphrodites (Figure 3.4C), 

suggesting that inx-14 and ceh-18 has no affect on male precedence of wild type 

or comp-1 sperm.  

MSP signaling to promote oocyte maturation through MAPK activation 

involves several genes, including vab-1 in oocytes and ceh-18 in sheath cells 

(Miller et al. 2003; Whitten and Miller 2007). Although MSP signaling did not 

appear to affect comp-1 function, vab-1 has roles independent of MSP signaling. 

To investigate the role of vab-1 genes in comp-1 male sperm usage, we assayed 

male precedence of wild type and comp-1 males mated to vab-1 hermaphrodites. 

vab-1 hermaphrodites had an average progeny count of 77 at the time of mating, 

suggesting that sperm numbers were low enough that we would expect to see 

both wild type and comp-1 male precedence to increase. While wild type male 

precedence was high, comp-1 male precedence remained low even though self 

sperm numbers were depleted (Figure 3.4D). In order to investigate this result, 

we analyzed the kinetics of cross and self sperm usage. Even though comp-1 
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male precedence is reduced in wild type hermaphrodites, the total progeny count 

was the same regardless of if the hermaphrodite was mated to a wild type or 

comp-1 male (Figure 3.4E). In the case of the vab-1 recipient, total progeny 

counts of the hermaphrodite was reduced when mated to comp-1 males as 

compared to wild type males. By comparing the self versus cross progeny 

production of males mated to vab-1 hermaphrodites, we see that wild type males 

sired many cross progeny while there were relatively few self progeny (Figure 

3.4F). As expected, comp-1 males were unable to suppress self progeny 

production. Yet, even though self sperm numbers were low, the comp-1 sperm 

usage defect persisted. This suggests that the comp-1 sperm are not used even 

in the absence of competition with self sperm. The loss of vab-1 in 

hermaphrodites likely inhibits comp-1 sperm even in noncompetitive contexts. 

 

comp-1 is involved in the sperm-sensing pathway 

 Previously we showed that male precedence of both wild type and comp-1 

males increased when mated to comp-1 hermaphrodites (Hansen JM, Chapter 

2). We would expect that wild type sperm would have a higher male precedence 

since comp-1 self sperm have difficultly gaining residency within the 

spermatheca. However, it is less clear why male precedence is reestablished 

when comp-1 males are mated to comp-1 hermaphrodites. Given that comp-1 

sperm function normally in the absence of a sperm-induced signaling pathway, 

perhaps comp-1 male sperm gain precedence because they are functioning 

normally. In order to test this hypothesis, we tested comp-1 migration in comp-1 
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recipients. We again crossed marked males to wild type or comp-1 

hermaphrodites. Wild type sperm migrated towards the spermatheca of comp-1 

hermaphrodites at rates typical of those established in wild type recipients 

(Figure 3.5A). Surprisingly, in most crosses, the majority of comp-1 male sperm 

migrated towards the spermatheca within the same time frame as that of wild 

type, suggesting that comp-1 male sperm migration defect is attenuated in comp-

1 hermaphrodites. This result supports a model in which comp-1 self sperm are 

unable to induce the signaling pathway that is inhibitory towards incoming comp-

1 sperm.  

 

Discussion 

Our results have shown that previously stored wild type sperm are 

necessary to trigger the comp-1 defects of sperm migration, spermathecal 

residency, and usage. Furthermore, these defects are not caused by the direct 

interaction between wild type and comp-1 sperm, but are rather through a long-

distance signal. We have shown that in addition to the role of prostaglandin 

signaling in sperm motility, this signaling pathway can influence comp-1 sperm 

behaviors necessary for sperm competition with self sperm. From these results, 

we propose a model (Figure 3.6) in which previously stored sperm most likely 

trigger a hermaphrodite-derived signal causing a change in reproductive tract 

chemical environment. One such signal could be prostaglandins, which promote 

wild type migration but are detrimental to comp-1 sperm. comp-1 may function to 

respond favorably to prostaglandins in terms of migration speeds and 
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directionality. Furthermore, comp-1 may be a necessary component in a sperm 

intrinsic pathway and its loss perhaps causes additional defects in sperm 

morphology and ultimately motility. Additionally, vab-1, a gene in the MSP sperm-

sensing pathway, appears to have a separate function that potentially regulates 

incoming sperm. Our studies are the first of their type to show that prostaglandin 

signaling, already known for its role in sperm guidance and reproductive 

processes, is a mechanism of cryptic hermaphrodite choice through differentially 

modulating distinct ejaculates. Moreover, our results identified the only known 

molecular pathway contributing to cryptic hermaphrodite choice. 

  

Absence of sperm and signaling 

 In C. elegans, after mating, male sperm migrate to the site of fertilization 

where they first encounter self sperm. In order to gain precedence, male sperm 

must enter the spermatheca, the normal site of fertilization. C. elegans male 

precedence is gained by male sperm predominately occupying the spermatheca 

and likely by impeding self sperm access to the site of fertilization. Male sperm 

are so effective at inhibiting self sperm from the spermatheca, that after mating to 

males with fertilization defective sperm, the hermaphrodite lays unfertilized 

occytes (Singson et al. 1999). The explanation for C. elegans male precedence 

has predominately been hypothesized to be a consequence of male sperm size, 

and in other species, larger sperm are more competitive (Gomendio and Roldan 

1991; Parker and Begon 1993; Pitnick et al. 1995a; LaMunyon and Ward 1998). 

Larger sperm size is thought to increase the success of fertilization by increasing 
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the velocity of sperm and/or blocking the site of fertilization (Gage et al. 2004). 

However, comp-1 male sperm dramatically, despite being larger, lose their 

competitive advantage to self sperm and fail to suppress self sperm progeny, 

most likely due to an inability to maintain their presence in the spermatheca. 

Surprisingly, male fertility of comp-1 males was normal and suggested that 

comp-1 defects were dependent on the competitive contexts (Hansen JM, 

Chapter 2). 

 Our current results demonstrate that comp-1 migration was normal when 

sperm stores begin to decline, a result that coincides with increased comp-1 

sperm usage as self sperm numbers decrease. Additionally, comp-1 sperm are 

able to access and maintain their positioning within the spermatheca. Thus, we 

observed that by all respects comp-1 sperm retain normal function in non-

competitive contexts. Considering that incoming sperm are localized at a 

relatively long distance away from the spermatheca where self sperm are stored, 

the inhibitory effect of self sperm is most likely due to a signaling process that 

can act over a larger distance. Furthermore, our experiments with spe-9 

hermaphrodites indicate that self sperm residing within the spermatheca is not 

sufficient to block comp-1 male sperm migration or entry into the spermatheca, 

consistent with a hypothesis that the source of the inhibitory effect is not the 

physical presence of self sperm but rather a direct or indirect signal. We 

hypothesize that the source of the migration and spermathecal residency defects 

is a transient, intrinsic change within comp-1 sperm in response to a change in 

the hermaphrodite environment.  
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The hermaphrodite oviduct was once thought of as only a conduit joining 

the uterus and ovaries. However, researchers discovered that the oviduct has a 

much more dynamic function in murine and porcine organisms since the oviduct 

responds to the introduction of gametes by actively transcribing atypical genes 

and producing proteins (Fazeli et al. 2004; Georgiou et al. 2005; Georgiou et al. 

2007). While the cellular function of these proteins has yet to be determined, the 

phenomena highlights the ongoing sperm-oviduct dialogue. In C. elegans, 

intercellular communication between sperm and the hermaphrodite reproductive 

tract has also been described. Sperm send signals in the form of a hormone, 

MSP, to promote meiotic maturation, ovulation, and sheath contractions (Miller et 

al. 2003). Additionally, sperm promote egg laying through an unknown signaling 

pathway that is independent of MSP signaling (McGovern et al. 2007). The 

mechanism by which spe-9 functions has yet to be appreciated; however, loss of 

spe-9 does not affect MSP signaling and its concomitant promotion of meiotic 

maturation (Chatterjee et al. 2005; Kosinski et al. 2005). In an independent 

pathway, spe-9 sperm is unable to provide the necessary signal for egg laying 

(McGovern et al. 2007). The spe-9 sequence encodes a transmembrane protein 

containing EGF-like repeats that is localized to the pseudopod of mature sperm. 

It is thought that spe-9 might be a ligand to an unidentified receptor on the oocyte 

(Singson et al. 1998), thus suggesting that spe-9 may indeed have a role in 

signaling. EM imaging of sperm within the spermatheca display a close 

association of the sperm pseudopod with the spermathecal wall, so much so that 

lipid dyes from the stained male sperm leaches into the wall, consistent with a 
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hypothesis that sperm have close contacts within the spermatheca (Ward and 

Carrel 1979). Since SPE-9 is localized to the pseudopod membrane, its loss 

could also affect its association with the spermathecal wall, raising the possibility 

that spe-9 signaling may be mediated by cell-cell contact. Future studies will 

determine if signaling induced by sperm is dependent on sperm positioning within 

specific locations within the reproductive tract.  

 

Signaling mediates sperm competition and cryptic female choice 

 Prostaglandin signaling is known to regulate sperm motility in several 

organisms, including humans. Although the reduction of prostaglandin signaling 

affects wild type sperm velocity and directionality, it is not sufficient in stopping 

the majority of sperm from reaching the spermatheca within a short period time, 

nor does it inhibit sperm usage (Hansen JM, data not shown). Strikingly, comp-1 

migration and usage is also comparable to wild type levels, indicating that 

prostaglandin signaling is likely to be at least one of the signals involved in 

inhibiting comp-1 function. Although comp-1 can compete with self sperm in the 

fat-3 hermaphrodite, it remains unknown if comp-1 male sperm can compete with 

wild type male sperm in a fat-3 recipient. We would expect that if comp-1 fully 

regained its ability to compete and if the hermaphrodite signaling is regulating 

sperm selection through prostaglandin signaling, comp-1 should be able to 

effectively compete with wild type male sperm in the absence of prostaglandin 

signaling.  
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Prostaglandin signaling also regulates reproductive processes such as 

uterine contractions to aid in delivery (Kotani et al. 2000). Although this role for 

prostaglandin signaling in C. elegans is yet to be determined, prostaglandins 

promote uterine contractions in many vertebrate and invertebrates species. One 

such species, the field cricket, Teleogryllus commodus, has coupled the 

presence of sperm with the synthesis of prostaglandin signaling for the purpose 

of oviposition. Virgin female crickets contain high levels of arachidonic acid, a 

precursor of prostaglandins, which after mating is converted to prostaglandins by 

a male-derived enzyme sufficient for prostaglandin biosynthesis (Loher 1979; 

Loher et al. 1981; Stanley-Samuelson and Loher 1983). Future analysis will be 

needed to demonstrate if prostaglandin signaling occurs as a response to the 

presence of sperm and if it has additional roles in uterine contractions in C. 

elegans. 

If prostaglandin signaling has an essential function for the reproductive 

health of the hermaphrodite, one might conclude that sperm coopted this 

signaling pathway to promote their own usage. Although the reproductive tract is 

known to contribute to sperm selection via cryptic female choice in other 

organisms, an exciting possibility is that sperm and the reproductive tract co-

evolved to mediate this process. We have yet to distinguish if hermaphrodites 

evolved prostaglandin signaling to select different types of sperm, or if the males 

responded to the prostaglandin signaling and coevolved a mechanism to 

enhance their motility in response to the signal. 
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 Several genes that respond to the MSP signaling include inx-14, ceh-18, 

and vab-1, with VAB-1 identified as a known receptor of MSP on oocytes. inx-14 

and ceh-18 activity is elicited by MSP binding an unknown receptor on the 

somatic sheath cells and act in independent, but somewhat redundant, pathways 

in negatively regulating meiotic maturation and oocyte MAPK activation 

(Govindan et al. 2006; Whitten and Miller 2007; Govindan et al. 2009). Loss of 

VAB-1 in adult hermaphrodites does not affect rates of meiotic maturation when 

MSP is present (Miller et al. 2003; Govindan et al. 2006; Cheng et al. 2008), thus 

its role in meiotic maturation is thought to be one of modulation. VAB-1 is 

necessary to downregulate oocyte maturation when hermaphrodites self sperm 

stores begin to decline which requires the ephrin EFN-2 but not MSP (Miller et al. 

2003; Brisbin et al. 2009). We can draw parallels with our own results in which 

the inhibitory signaling in vab-1 hermaphrodites is not turned off as self sperm 

numbers begin to sharply decrease. Our results show that loss of vab-1 inhibition 

on comp-1 sperm usage is independent of inx-14 and ceh-18 activity, consistent 

with vab-1 having separate functions. Our experiment with spe-9 revealed that 

comp-1 defects could be attenuated in the presence of MSP signaling. Likely, the 

role of vab-1 in the comp-1 defects does not involve MSP signaling. Future 

studies will be necessary to determine if loss of the VAB-1 ligand, EFN-2, is 

sufficient to constitutively cause the comp-1 sperm usage and other defects.  
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Materials and Methods 

C. elegans culture and strains  

C. elegans strains were maintained at 20°C, except in the cases where 

experiments used strains with temperature sensitive alleles. Worms were fed 

with OP50 E. coli bacteria as previously described (Brenner 1974). For 

experiments necessitating males, him-5(ok1896) strains were used as our wild 

type with him-5 present in the background of all other male strains (Hodgkin et al. 

1979). All strains were derived from the N2 Bristol wild type strain. Other alleles 

used for experiments were comp-1(gk1149) I, spe-9(hc52ts) I, inx-14(ag17) I, 

egl-32(n155ts) I, vab-1(dx31) II, mIs11[myo-2::GFP, pes-10::GFP and gut::GFP], 

fat-2(wa17) IV, fat-3(wa22) IV, dpy-4(e1166) IV, j118[Pcomp-

1::H2B::GFP::comp-1 3’ region] IV, fog-2(q71) V, him-5(ok1896) V, and ceh-

18(mg17) X (Singson et al. 1998; Winston et al. 2002; Kosinski et al. 2005; 

Kubagawa et al. 2006; McGovern et al. 2007; Edmonds et al. 2011; Meneely et 

al. 2012) and (C. elegans Deletion Mutant Consortium, 2012; Hansen JM, 

unpublished data; Wood and the Community of C. elegans Researchers, 1988). 

 

Sperm competition assays and total progeny counts 

To test male precedence, we mated either wild type or comp-1 males 

marked with a GFP reporter, mIs11[myo-2::GFP, pes-10::GFP and gut::GFP], to 

spe-9(hc52ts), fat-2(wa17), fat-3(wa22), egl-32(n155ts), inx-14(ag17), ceh-

18(mg57), vab-1(dx31), or N2 hermaphrodites. For non-temperature-sensitive 

alleles, we mated 24 hrs post-L4 virgin males to age-matched virgin 



	   129	  

hermaphrodites for 24 hrs. Crosses occurred in a 1:1 ratio on plates with freshly 

seeded lawns. After the 24 hrs period, both males and hermaphrodites were 

removed and progeny were counted. For the temperature sensitive alleles, spe-

9(hc52ts) and egl-32(n155ts), the L1 hermaphrodites of mutants and controls 

were shifted to 25°C. At the L4 stage, hermaphrodites were staged and 

continued being raised for 10 hrs for spe-9(hc52ts) or 16 hrs egl-32(n155ts) at 

25°C before being placed with males at 20°C. In the case of the spe-9(hc52ts) 

male precedence assays, males were 16 hrs post-L4 at the time of mating. Upon 

reaching adulthood, offspring were scored as either GFP-positive (self) or GFP-

negative (cross) progeny and counted. Only plates that contained both GFP-

positive and GFP-negative offspring were included in the analysis. 

To estimate the number of self sperm remaining in the hermaphrodite 

reproductive tract at the point in which the experiment began, unmated, aged-

matched hermaphrodites were picked in parallel with the male precedence 

experiments. These hermaphrodites were transferred every 24 hrs until egg 

laying ceased. All progeny was counted from the time the experiment began.   

In the male precedence and progeny counts assays, wild type and mutant 

animals were tested in parallel to control for variations in experimental conditions. 

Each experiment was repeated two to four times, unless otherwise noted and 

representative results are shown.  
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in vivo sperm migration and localization assays  

To assay sperm positioning of male sperm within the hermaphrodite 

reproductive tract, male sperm was labeled with MitoTracker Red CMXRos (Life 

Technologies) as in (Stanfield and Villeneuve 2006). All 24 hrs post-L4 marked 

virgin males were mated to age-matched virgin hermaphrodites on freshly 

seeded lawns in a 1:1 ratio. Plates were checked every 30 mins for transfer of 

male sperm or to record sperm positioning. The approximate location of sperm in 

both arms of the gonad was recorded. Male sperm positioning was recorded for 

~2-2.5 hrs after mating. For migration assays using the spe-9(hc52ts) 

hermaphrodites, males and hermaphrodites were treated as in the male 

precedence assay before mating.   

To count individual sperm localization 6 hrs after transfer, virgin 24 hrs 

post-L4 males carrying the Pcomp-1::GFP::H2B transcriptional reporter were 

mated for 45 mins to age-matched fog-2(q71) hermaphrodites anesthetized in a 

M9 solution with 0.1% tricaine and 0.01% tetramisole (Kirby et al. 1990). For 

experiments using the temperature-sensitive allele, spe-9(hc52ts), males and 

hermaphrodites were maintained as previously described in the male precedence 

assay protocol. At 6 hrs post-mating, hermaphrodites, in which mating was 

successful, were mounted on 2% agar pads and anesthetized with 12mg/mL of 

levimisole. Images of multiple focal planes of each hermaphrodite were taken. 

The hermaphrodite reproductive tract was divided into zones as in (Edmonds et 

al. 2010) and individual male sperm were counted within these zones. The focal 

plane that had the most sperm in the spermatheca was used for counts.
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Figure 3.1. comp-1 sperm function normally in recipients who lack sperm. (A) 
Wild type male sperm accumulation at the spermathecal region was delayed 
whereas the comp-1 male sperm migration defect was mitigated when mated to 
an older hermaphrodite. Wild type or comp-1(gk1149) males stained with 
Mitotracker were crossed to either dpy-4 hermaphrodites aged 24, 36, or 48 hrs 
post-L4. Sperm positioning within the reproductive tract was measured by eye 
2-2.5 hrs after sperm transfer and categorized as either more than 80%, some, 
or no accumulation of sperm near the spermathecal region. n = 10-14 for each 
genotype with two experimental repeats. (B) comp-1 migration rates were 
normal in fog-2 recipients who lack self sperm. Recipients were fog-2 hermaph-
rodites. (C) jnSi118[GFP::H2B] sperm localization in 6 hrs after male sperm are 
transferred to fog-2 hermaphrodites. Zones are defined in Materials and 
Methods.
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Figure 3.2. comp-1 function is normal in spe-9 hermaphrodite recipients. (A,C) 
comp-1 migration and spermathecal residency defects were attenuated in spe-9 
hermaphrodites. (B) The number of cross progeny of wild type and comp-1
was statistically indistinguishable. ns, not significant. (D) Male sperm usage in 
egl-32 hermaphrodites was suppressed. Males carrying the transgene mIS11(G-
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or prostaglandin signaling is detrimental to comp-1 sperm. 
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CHAPTER 4 
 
 
 

CONCLUSIONS 
 

 
 

Summary of Findings 

Sperm competition and cryptic female choice exerts selective pressure on 

reproductive anatomy and protein function, causing rapid divergence of 

reproductive genes and potentially creating population or species boundaries. 

Despite sperm competition being widely practiced among many taxa, little is 

known regarding the direct interaction between sperm and the reproductive tract 

or between sperm from two different ejaculates. Even less is known about the 

genes regulating these behaviors. Using a genetic screen, we have identified a 

gene, comp-1, that regulates C. elegans sperm competition. comp-1 regulates 

sperm-intrinsic functions required to compete both offensively and defensively, 

independent of sperm size. Furthermore, comp-1 male sperm display similar 

defects when competing with wild type male sperm, suggesting that the comp-1 

defects can be extended to male-male sperm competition. Consistent with this 

idea, comp-1 is conserved in closely related male-female Caenorhabditis 

species. comp-1 is the only gene identified that specifically affects C. elegans 

male precedence, and one of few sperm competition genes overall. Its 
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characterization likely will reveal novel mechanisms for sperm competition and 

cryptic female choice.     

Loss of comp-1 function results in sperm usage, migration, and storage 

defects. Strikingly, the comp-1 sperm defects are attenuated in hermaphrodites 

that lack sperm, suggesting that comp-1 sperm function defects are dependent 

on the presence of sperm. Specifically, comp-1 sperm defects in sperm usage, 

migration, and storage occur only in competitive contexts or when self sperm lack 

the function to sufficiently signal to the hermaphrodite. Our data suggest a model 

in which comp-1 functions in incoming male sperm to overcome inhibitory signals 

generated in the hermaphrodite reproductive tract triggered by the presence of 

previously established sperm.  

Previous research has established several forms of intercellular 

communication between sperm and the hermaphrodite reproductive tract 

necessary for critical events in the reproductive process. In addition, our studies 

have revealed a sophisticated role for the hermaphrodite reproductive tract in 

regulating the migratory behaviors of incoming sperm. comp-1 likely responds to 

hermaphrodite-derived prostaglandin signaling, a conserved pathway known to 

regulate many aspects of fertility, to elicit sperm responses such as changes in 

sperm morphology and migratory behavior that ultimately decide the outcome of 

competition. Our studies are the first of their kind showing the molecular interplay 

between sperm and the female/hermaphrodite reproductive tract that regulates 

competition between sperm.  
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Evolutionary Consequences of COMP-1 

 Hermaphroditism arose multiple times in the Caenorhabditis genus, which 

indicates that the ancestral C. elegans was most likely a male-female species 

(Kiontke et al. 2004). comp-1 is conserved in both male-female and male-

hermaphrodite Caenorhabditis species. Our results show that comp-1 is 

necessary for a competitive advantage in both male-male and male-

hermaphrodite competition. Furthermore, it increases sperm usage of male and 

hermaphrodite sperm in competitive contexts. These results are consistent with 

the hypothesis that comp-1 arose in a male-female species and most likely 

functioned in male-male competition. It is unclear why comp-1 is so highly 

conserved in a male-hermaphrodite species since C. elegans hermaphrodites 

mainly use selfing as the primary mechanism to reproduce and males are 

extremely rare in the population (Hodgkin and Doniach 1997; Barriere and Felix 

2005). comp-1 is dispensable to the hermaphrodite since it does not affect 

hermaphrodite fertility and comp-1 hermaphrodites produce as many progeny as 

wild type hermaphrodites. However, loss of comp-1 in males is detrimental to 

their sperm usage when mated to a hermaphrodite. Although outcrossing in C. 

elegans can be rare, there is evidence to support that a mix mating strategy is 

evolutionary stable (Goodwillie et al. 2005). Certainly, the majority of genes are 

devoted to male-specific processes (Jiang et al. 2001), and male expressed 

genes are highly conserved (Cutter 2005), consistent with the hypothesis that 

male specific genes are being maintained. The rate in which species employ self-

fertilization versus crossing varies, suggesting that partial outcrossing can 
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respond quickly to natural selection (Jain 1976). One explanation of comp-1 

function in C. elegans and other species is that it may prevent inbreeding 

depression, which is particularly important in androdioecious species 

(Charlesworth and Charlesworth 1987). While 90% of experimental inbred lines 

of C. remanei experienced extinction from inbreeding depression, C. elegans 

outcross lines had reduced fitness as compared to the pure lines resulting in 

outbreeding depression (Dolgin et al. 2007). The selfing mode of reproduction 

appears to purge deleterious recessive mutations from the population (Crnokrak 

and Barrett 2002). Thus, another selective advantage must exist for maintaining 

males and competitively superior male sperm. One such advantage could be to 

assure reproductive success in rapidly changing environments and fluctuating 

populations (Weeks et al. 2006). In populations subjected to novel laboratory 

maintenance conditions, including changing temperatures, males are present at 

5 to 40% of the population (Anderson et al. 2010). Males occur from nullo-X 

gametes that occur through the rare event of spontaneous nondisjunction. In the 

laboratory, males can be generated by heat-shock treatment or exposure to 

ethanol (Sulston and Hodgkin 1988; Lyons and Hecht 1997), suggesting that 

males are generated when the hermaphrodite is stressed. Indeed, male 

frequency is much higher in dauer induced populations, where dauer is thought 

to signify current environmental changes (Barriere and Felix 2005). Therefore, 

males in general and comp-1 specifically may serve as a response to promote 

successful facultative outcrossing due to impending environmental changes.  
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COMP-1 in Sperm Competition 

 The role of comp-1 in sperm competition, and thus sexual selection, is 

evident by the severe reduction in male precedence. The dramatic reduction in 

cross progeny production limits the sexual fitness of comp-1 males and 

hermaphrodites by markedly diminishing their genetic contribution to future 

generations. Thus, sperm with comp-1 function would have a superior 

competitive advantage to those without its function. Our results support a model 

in which comp-1 function gives a strong competitive advantage to male sperm 

when competing with male or hermaphrodite sperm without comp-1 function. 

comp-1 is necessary for male-male and male-hermaphrodite sperm competition, 

and thus establishes that male-hermaphrodite sperm competition is an excellent 

proxy to study male-male competition and to screen for additional genes affecting 

sperm competition. 

To fertilize the oocyte, sperm must migrate to the spermatheca, the site of 

fertilization. In order to prevent other sperm from fertilizing the oocyte, sperm 

must either block sperm from another ejaculate from gaining fertilization 

competency or access to the site of fertilization. C. elegans male precedence 

relies on the principle that after mating, predominately male sperm occupy the 

spermatheca. After mating to males with fertilization-defective sperm, the 

hermaphrodite lays unfertilized oocytes (Singson et al. 1999), suggesting that 

self sperm either did not have access to the spermatheca or were unable to 

fertilize the oocyte before male sperm. Our results supports that male sperm 

inhibit self sperm from fertilizing the oocytes since the introduction of male sperm 
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suppresses self sperm usage. However, comp-1 male sperm have lost the ability 

to suppress self sperm progeny production, most likely because male sperm can 

no longer maintain their position within the spermatheca. Thus, comp-1 defects in 

male precedence are likely to be fundamentally due to defects in spermathecal 

residency. Currently, very little is known about the dynamics of sperm behavior 

within the spermatheca. Previous observations indicate that the expulsion of the 

newly fertilized embryo from the spermatheca carrying with it a “cap” of sperm 

encircling the embryo, necessitating the remigration of sperm back to the 

spermatheca (Ward 1977). Spermathecal occupancy by male sperm could be 

governed by two scenarios in which male sperm increase their numbers in the 

spermatheca by resisting removal and migrating quickly back into the 

spermatheca after removal by the embryo. EM imaging of sperm within the 

spermatheca displays a close association of the sperm pseudopod with the 

spermathecal wall so much so that lipid dyes from the stained male sperm 

leaches into the wall, consistent with a hypothesis that sperm have close 

contacts with the wall (Ward and Carrel 1979). Additionally, C. elegans sperm 

are larger in size than self sperm. Theoretical work and previous data suggest 

that larger sperm size is a direct result of sperm competition (Briskie and 

Montgomerie 1992; Parker and Begon 1993; Pitnick et al. 1995). Larger sperm 

size is thought to increase the success of fertilization by increasing the velocity of 

sperm and/or blocking the site of fertilization (Gage et al. 2004). C. elegans male 

sperm are larger than self sperm; however, how size influences male precedence 

in C. elegans is yet to be resolved but may act in a manner similar to sperm of 
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other organisms by blocking access or increasing migration speeds to the sperm 

storage organ. Our results suggest that size alone is not sufficient to determine 

male precedence, since loss of comp-1 overrides any influence that size may 

have. Interestingly, comp-1 male sperm are able to regain male precedence 

when competing with comp-1 self sperm. Several factors are thought to promote 

male precedence, such as larger sperm size and faster crawling speeds. Loss of 

comp-1 in both sexes may cause male sperm to rely on other sperm behaviors to 

increase their competitive advantage, such as size. The necessary experiment to 

determine if size is that factor is to compete comp-1 male sperm of different sizes 

against each other. Since comp-1 has defects in migration, comp-1 sperm may 

not be able to easily gain initial access to the spermatheca or are unable to re-

migrate after removal by the embryo. Alternatively, comp-1 sperm may have an 

additional defect that renders them unable to adhere to the spermathecal wall, 

allowing wild type sperm to preferentially bind and displace comp-1 sperm. 

Future studies will be necessary to differentiate behaviors between wild type and 

comp-1 sperm, specifically within the spermatheca. These studies will determine 

if comp-1 sperm can enter the spermatheca, maintain their position by adhering 

to the spermathecal wall, and quickly remigrate back to the spermatheca when 

removed. Results will discern between different mechanisms that wild type sperm 

may use to gain a competitive advantage over comp-1 sperm.  

Wild type sperm development culminates in the maturation of motile 

sperm competent to crawl with the use of its fully extended pseudopod, essential 

for motility and fertilization (Ward et al. 1981). We reasoned that the reduced 
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aspect ratio of comp-1 sperm directly produces the defects in migration and 

spermathecal residency. The short pseudopod length would certainly lead to 

reduced velocities as well as inhibiting comp-1 sperm from projecting its 

pseudopod into the spermathecal wall. Previous observations revealed that 

fertilization-defective sperm with shortened pseudopods did not associate with 

the spermathecal wall and were relegated to the lumen of the spermatheca, 

where they were quickly washed out by the movement of embryos (Ward et al. 

1981).  Strikingly, defects in aspect ratio were also context-dependent, raising 

the question of whether the in vitro defects coincide with the in vivo defects.  

Such a possibility would suggest that the chemical environment of the 

reproductive tract, influenced by the presence of sperm, regulates sperm 

morphology.     

Another remaining question is the cellular basis that is the cause of the 

comp-1 sperm defects. Interestingly, comp-1 sperm have condition dependent 

defects in aspect ratio; specifically, comp-1 sperm have shorten, misshapened 

pseudopods. C. elegans sperm morphology, as well as other migrating cells, can 

be modulated by several factors, such as mislocalization of proteins or the 

misregulation of cytoskeletal components, such as Major Sperm Protein (MSP) in 

nematodes (Sepsenwol et al. 1989).  However, after examination of several 

sperm structures in comp-1 sperm, sperm proteins were properly localized. Thus, 

it is more likely that the defects in comp-1 sperm morphology stem from the 

failure to fully extend its pseudopod. However, it is not clear if addition of the 

weak base, TEA, provides a hospitable environment or if Pronase induces the 
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defects. Intracellular pH is a known regulator of MSP assembly and disassembly, 

with a higher pH found at the leading edge where new filaments assemble (King 

et al. 1994). In wild type sperm, decreasing the pH in vitro causes MSP assembly 

to slow or halt without affecting the disassembly at the base of the cell (Italiano et 

al. 1999). Since MSP filaments can assemble in a wide range of pH levels, it is 

thought that differences in intracellular pH alters the activity of membrane 

proteins that directly affect MSP assembly (King et al. 1992). The increase in pH 

by the addition of TEA may restore the intracellular pH gradient of comp-1 sperm. 

If so, comp-1 may function to regulate the intracellular pH of sperm. Differences 

in ovarian fluid pH is known to enhance sperm velocity in rainbow trout (Wojczak 

et al. 2007), indicating that pH is known to affect sperm behaviors associated 

with sperm competition. To test if pH regulates comp-1 morphology, an 

experiment in which modifying the pH of the sperm buffer could reveal 

differences in aspect ratio. The results will determine if pH is the factor causing 

the shortened aspect ratios and may also suggest that comp-1 sperm have a 

narrow range of tolerance to environmental pH. More importantly, future 

investigations into the morphology of sperm in vivo will determine if this 

phenomena is biologically important in the hermaphrodite reproductive tract.  

 

COMP-1 in Cryptic Hermaphrodite Choice 

Interestingly, comp-1 male sperm had normal fertility when self sperm 

were not present. Further investigations revealed that comp-1 sperm migrate to 

and accumulate normally within the spermatheca as self sperm stores are 
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depleted. Together, these results suggest that the presence of wild type sperm 

alters comp-1 sperm behaviors. One mechanism of sperm competition in other 

organisms involves sperm directly displacing sperm from another ejaculate from 

the reproductive tract. However, if wild type sperm were inhibiting comp-1 

migration, it would suggest that wild type sperm are suppressing comp-1 sperm 

migration at long distances perhaps by altering the chemical environment of the 

reproductive tract. comp-1 had normal migration in the fertilization defective spe-

9 hermaphrodites, suggesting that the physical presence of sperm themselves is 

not the barrier to comp-1 migration and spermathecal residency. It is known that 

spe-9 is necessary for sperm-egg interactions (Singson et al. 1998); however, 

the cellular mechanism of spe-9 function has not been determined. SPE-9 is a 

transmembrane protein consisting of several EGF-like repeats, a conserved 

domain known to be both a ligand for signaling and involved in cell adhesion 

(Hynes and Zhao 2000; Swindle et al. 2001). From studies suggesting that spe-9 

may function in intercellular communication between the sperm and the 

hermaphrodite (McGovern et al. 2007), we hypothesize that spe-9 sperm may 

lack competency for crucial signaling processes such as the signals affecting 

comp-1 sperm. Again, since spe-9 sperm positioned in the spermatheca lost their 

inhibitory effect on incoming comp-1 sperm migration, spe-9 most likely plays a 

role in signaling. However, cell adhesion is also a cellular process known to be 

very important for sperm storage and competition in other organisms and we 

cannot rule out that sperm adhesion may be another aspect in which spe-9 fails 

to effectively compete with comp-1 sperm for positioning within the spermatheca. 
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An alternative hypothesis is that it is the act of fertilization itself that triggers the 

signal that is so harmful to comp-1 function. Future studies with other fertilization-

defective mutants will be necessary to determine if this is specific to spe-9, or if 

the general process of fertilization is to blame for the comp-1 defects.  

 Perhaps the most exciting result from studies with comp-1 was that the 

comp-1 defects in migration and usage were ameliorated in hermaphrodites with 

reduced prostaglandin signaling. Prostaglandins secreted by the hermaphrodite 

are known to be important for proper wild type sperm velocity and directionality 

(Kubagawa et al. 2006; Edmonds et al. 2010). Our studies have shown that 

prostaglandins are inhibitory to comp-1 function, suggesting that the 

hermaphrodite environment directly regulates sperm behaviors and function. 

These results are the first to establish a specific molecular pathway involved in 

cryptic hermaphrodite choice. Additionally, it provides evidence for a novel 

mechanism of how females may bias sperm selection. We hypothesize that the 

presence of wild type sperm induces prostaglandin signaling which promotes wild 

type sperm migration yet hinders comp-1 sperm. comp-1 may be necessary to 

favorably respond to prostaglandins by promoting cell processes involved in 

motility. To test this model, we will need to show that prostaglandins secreted by 

the hermaphrodite are the cause of the comp-1 defects. Our experiments did not 

rule out that the prostaglandin mutant recipients may have impaired self sperm 

development and therefore, the self sperm were not as competitive. We can 

approach this question in multiple ways, one of which is to inject prostaglandins 

into a fog-2 female to induce the comp-1 defects or to set up male-male 
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competition in the prostaglandin mutant hermaphrodite environment so that wild 

type male sperm are competing with comp-1 male sperm. Additionally, to 

investigate cellular responses to prostaglandins, in vitro experiments can be used 

to determine if prostaglandins affect comp-1 sperm morphology and velocity. It 

will be absolutely necessary to determine if the presence of sperm is triggering 

the release of prostaglandins. There is some evidence that the molecular 

pathway regulating prostaglandin signaling involves genes that respond to MSP 

signaling (Edmonds et al. 2011); however, these genes to do not appear to affect 

comp-1 male precedence. We expect clarification on this result as the research 

group involved in studying the prostaglandin signaling in C. elegans continues 

their exciting studies on the pathways necessary for prostaglandin signaling.   

 Our prostaglandin results provide a link to the actual biochemical change 

in hermaphrodites causing the context-dependent comp-1 defects. Another 

interesting result from our studies is the persistence of the comp-1 defects in 

ephrin receptor, vab-1, mutant hermaphrodites, despite the fact that these 

hermaphrodites may lack enough sperm to promote these defects. We will need 

to first confirm that loss of vab-1 promotes comp-1 defects by repeating our 

migration, sperm usage, and spermathecal residency assays in hermaphrodite 

recipients that completely lack sperm. vab-1 is known to function in 

hermaphrodite reproductive processes in response to MSP signaling (Miller et al. 

2001; Miller et al. 2003). Yet, in our model, MSP is not the sperm signal 

responsible for the changes in hermaphrodite reproductive tract that are so 

inhospitable to comp-1 sperm. vab-1 has several MSP independent functions 
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which includes downregulating oocyte maturation as self sperm run out 

discussed in (Han et al. 2010). Careful studies will be needed to tease out the 

role of vab-1 in comp-1 function.  
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