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ABSTRACT 

 

Thirty years after the isolation of HIV, despite significant advances in the 

understanding of the mechanisms of viral pathogenesis, a cure remains out of 

sight. Despite the effectiveness of combination antiretroviral therapy (ART) at 

preventing virus replication, a stable, transcriptionally silent viral reservoir within 

resting memory CD4+ T cells persists and hampers HIV elimination. The current 

thinking in the field is that a combination of a hypothetical drug that reactivates 

latent viruses, with current antiretroviral therapy, will be an effective approach 

toward viral eradication.  

Several vaccination regimens and pathogen infections have been shown 

to correlate with a transient increase in the levels of plasma RNA in HIV-1 

infected patients even in the presence of ART. Hence, it is tempting to speculate 

that exposure to microbial products either by vaccination or infection may trigger 

reactivation of latent viruses. Pathogen infections are primarily sensed through 

pattern recognition receptors. Toll-like receptors, the most well investigated 

pattern recognition receptors, are important sentinels of innate host defense. 

These sensors recognize structural patterns from pathogens and induce an 

immune response through downstream signaling cascades that, among others, 

culminate in the activation of NF-kappaB and other transcription factors. Since 

the viral promoter contains two tandem NF-kappaB binding sites, it is possible to 
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speculate that toll-like receptor signaling toward reactivation of latent HIV has 

recently gained impetus. In this dissertation, I review the emerging body of 

literature on the correlation between NF-kappaB signaling, as triggered by toll-

like receptor engagement, and the reactivation of latent HIV-1. Second, I present 

our findings that Pam3CSK4, a toll-like receptor-1/2 agonist, can reactivate latent 

HIV in primary CD4+ T cells in vitro and in cells from aviremic patients. Finally, I 

described the ability of dynasore, a dynamin inhibitor, to activate latent HIV-1 

provirus alone or in synergy with Pam3CSK4, and with well-known latency-

reversing agents, such as SAHA, bryostatin-1 and JQ-1.  

HIV latency is a complex phenomenon controlled by different molecular 

mechanisms. Although several latency-reversing agents have been described in 

the literature, the efficacy of these agents to eliminate the transcriptionally silent 

reservoir in past clinical trials has been limited. Toll-like receptor signaling 

represents a novel tool in our armamentarium against latent HIV, and therefore 

deserves further exploration. Throughout the body of this work, I define two novel 

approaches that could provide us with new therapeutic interventions towards the 

eradication of the latent reservoir and a cure for HIV/AIDS.  
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CHAPTER 1 

 

TARGETING THE LONG-TERM HIV-1 RESERVOIR 

VIA TOLL-LIKE RECEPTOR SIGNALING 
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1.1 Introduction 

HIV-1 infection remains incurable due to the persistence of long-lived 

latently HIV-1-infected T cells that constitute a stable latent viral reservoir [1-3]. 

This reservoir is the main reason why viremia is reestablished when ART is 

interrupted [4-7]. It is well known that the HIV-1 viral reservoir is established 

during the earliest stages of HIV infection, when immune responses against the 

virus are developing [8-10]. Among all T CD4+ subsets, central memory T cells 

(TCM) followed by transitional memory T cells (TTM) are the major reservoirs for 

latent HIV [11, 12]. Quiescent memory CD4+ T cells have a life span of months to 

years.  In average, the half-life of these cells harboring a latent HIV provirus has 

been predicted to be 44 months [1]. The longevity of this pool has been attributed 

to its capacity of self-renewal by antigen-driven and homeostatic proliferation [11, 

13-16]. Elimination of these cells has become a priority towards designing 

therapeutic strategies aimed to eradicate HIV-1 [17-19]. 

Maintenance of silent integrated HIV-1 in the host cell genome at the 

transcriptional level is mainly regulated at two levels. The first level of regulation 

is through chromatin modifications. Epigenetic marks affecting chromatin are 

histone acetylation, histone methylation and DNA methylation. In the case of 

histone acetylation, it has been shown that histone deacetylases (HDACs) 

repress LTR transcription by reducing acetylation of histones [20-22]. Low levels 

of histone acetylation are correlated with a closed chromatin conformation that 

blocks the recruitment of transcription factors [23]. Based on this notion, HDAC 

inhibitors are being studied as potential latency reversing agents (LRA).  Several 
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HDAC inhibitors have been reported to reactivate transcriptionally silent HIV, 

including vorinostat (SAHA), valproic acid, romidepsin and panobinostat [24-30].  

Histone methylation can induce or repress transcription depending on the 

target site [31]. Histone methyltransferases (HMTs), such as Suv39H1 and G9a, 

were found to silence HIV-1 transcription in association with H3K9 methylation of 

histones positioned at the LTR [32-34]. Accordingly, Chaetocin, a fungal 

metabolite and an inhibitor of Suv39H1, has been shown to induce latent HIV-1 

expression in Jurkat T cells [35]. Furthermore, a specific inhibitor of G9a, 

BIX01294, reactivated latent HIV in ACH2 and OM10.1 cell lines [34]. Most 

importantly, both HMT inhibitors induced HIV-1 recovery from resting CD4+ T 

cells isolated from HIV-1 aviremic patients [36].  

DNA methylation has also been implicated in silencing of HIV-1 

transcription [37]. DNA methylation of CpG islands promotes the formation of 

condensed heterochromatin leading to local gene silencing [38]. It has been 

shown that CpG islands flanking the HIV-1 transcription promoter are 

hypermethylated in latently infected Jurkat cells and primary CD4+ T cells [39]. In 

this study, Kauder and collegues showed that Aza-CdR, a cytosine methylation 

inhibitor, reactivated HIV-1 in JLAT cells, a Jurkat model of HIV-1 latency [40]. 

However, another study by Fernandez and Zeichner showed that Aza-CdR 

antagonized the activation of HIV expression by TNF-alpha in JLAT 10.6, ACH2, 

U1 and J1.1 latently infected cell lines [41]. Blazkova and colleagues observed 

that resting CD4+ T cells from ART-suppressed HIV infected patients carry very 

low levels of DNA methylation [42]. These results are in contrast with a previous 
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study which reported high levels of DNA methylation in HIV-1 chronically infected 

Jurkat cells, in in vitro infected primary CD4+ T cells and in memory CD4+ T cells 

from HIV aviremic patients [43]. The issue of whether methylation of the HIV-1 

promoter is required for transcriptional suppression is still controversial, and will 

need further consideration.  

The second level of regulation involves the scarcity of nuclear transcription 

factors in quiescent CD4+ T cells that restrict HIV transcription initiation and 

elongation. Several transcription factors have been associated with HIV 

expression. Among those, NF-κB, NFAT, AP-1 and Sp1 have been shown to 

have a role in reactivating latent viruses [44-48]. In resting CD4+ T cells, both NF-

κB and NFAT are sequestered in the cytoplasm. NF-κB and NFAT translocation 

to the nucleus is regulated via I kappa-B interaction and the 

calcineurin/calmodulin axis, respectively [49, 50]. Nuclear translocation restriction 

of these transcription factors has been proposed to contribute to the latency state 

of HIV [51, 52]. 

Protein kinase C (PKC) activators are a wide group of LRAs that signal 

inducing NF-κB translocation to the nucleus, allowing HIV reactivation [53]. 

Including in this group are: phorbol-12-myristate-13-acetate (PMA), Prostatin, 

Bryostatin-1 and Ingenol. PMA, a T cell activator but a tumor-promoting 

compound, and prostatin, a nontumor-phorbol agent, reactivate HIV expression 

from aviremic patients [54]. Both phorbol esters were found to activate NF-κB 

[55]. Bryostatin-1, which has a different structure from other PKC activators and 

is characterized as an anti-tumor agent, also activates HIV expression [56]. 
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Bryostatin-1 has been shown to induce increasing levels of intracellular HIV-1 

mRNA in an ex vivo viral outgrowth assay [57]. Also, Ingenol, a natural 

compound from Euphorbia plant species and structurally similar to phorbol 

esters, drives NF-κB nuclear translocation through PKC activation. In addition, 

Ingenol derivatives reactivate HIV from latently infected cell lines (ACH2, U1 and 

J1.1), human PBMCs infected with HIV in vitro and CD4+ T cells isolated from 

aviremic HIV infected patients under ART treatment [58, 59].  

A major inducer of NF-κB activation is the family of toll-like receptors 

(TLR). In this review, we discuss how activation of TLR signaling can contribute 

toward HIV-1 reactivation strategies and viral clearance. 

 

1.2 Review 

1.2.1 Overview of the Toll-like receptor family 

Toll-like receptors (TLRs) belong to the family of pattern recognition 

receptors and sense pathogen-associated molecular patterns (PAMPs) of 

bacteria, parasites, fungi and viruses. In addition, TLRs also recognize danger-

associated molecular patterns (DAMPs), such as nuclear or cytosolic cell 

components that are released or mislocalized due to tissue damage [60].  

TLRs are type I transmembrane glycoproteins composed of an 

extracellular leucine-rich-repeat (LRR) motif that mediates ligand recognition, a 

transmembrane domain, and a cytoplasmic Toll/IL-1R (TIR) responsible for 

signaling. To date, 10 and 12 TLR members have been identified in humans and 

in mice, respectively. TLRs-1, -2, -4, -5, -6 and -10 are expressed on the cell 
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surface, while TLRs-3, -7, -8, -9, -11, -12, -13 are found within endosomes. Cell 

surface TLRs interact with microbial cell wall components and intracellular TLRs 

interact with nucleic acids. TLR-2 forms homodimers and also heterodimers with 

TLR-1, TLR-6 and TLR-10, and these complexes recognize a broad variety of 

ligands such as lipoproteins, peptidoglycans, lipotheicoic acids and ligands from 

Listeria. TLR-3 recognizes double-stranded RNA (dsRNA). TLR-4 recognizes 

lipopolysaccharide (LPS), a major component of the outer wall of Gram-negative 

bacteria. TLR-5 recognizes flagellin, a constituent of bacterial flagella. TLR-7 and 

TLR-8 are highly homologous; their ligands are mainly single stranded RNA 

(ssRNA) and imidazoquinoline derivatives. TLR-9 recognizes unmethylated CpG-

DNA [61, 62] (Figure 1.1). TLR-11, TLR-12 and TLR-13 are the mouse-specific 

TLRs. TLR-11 and -12 recognize profiling-like proteins from apicomplexa 

parasites, such as Toxoplasma gondii and Plasmodium falciparum [63, 64]. TLR-

13 interacts with bacterial 23S rRNA [65-67]. TLRs are preferentially expressed 

in immune cell types, such as macrophages, dendritic cells, B cells, T cells, NK 

cells, mast cells, but also detected in fibroblasts and epithelial cells (reviewed in 

[68]).  

 

1.2.2 Stimulation of the TLR pathway 

The signaling cascades downstream of TLR activation are complex. 

Adaptor proteins such as myeloid differentiation primary-response protein 88 

(MyD88), TIR-domain containing adaptor protein (TIRAP, also known as MAL), 

TIR-domain containing adaptor protein inducing IFN-betta (TRIF) and TRIF-
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related adaptor molecule (TRAM) are recruited to the TIR domain after 

interaction with ligands. With the exception of TLR-3, all TLRs signal through the 

MyD88-dependent pathway. TLR-2 and 4 require TIRAP in order to recruit 

MyD88 to start signal transduction, while TLR-5, 7, 8 and 9 initiate signaling 

using uniquely MyD88 [69, 70]. After recruitment of MyD88, a complex is formed 

with IRAK1 and IRAK4. IRAK1 is phosphorylated and associates with TNF 

receptor-associated factor 6  (TRAF6), which activates TAK1. TAK1 activates, by 

phosphorylation, two routes: the IKK-NF-κB pathway and the mitogen-activated 

protein kinases (MAPK) pathway. In the first route, TAK-1 phosphorylates 

IκBalpha/beta. This phosphorylation leads to their degradation through the 

proteasome system and the release of NF-κB, which translocates to the nucleus, 

binds to DNA and initiates transcription. In the second route, TAK1 activates the 

MAPK members ERK, JNK and p38, which lead to activation of transcription 

factor AP-1 [61, 62]. In plasmocytoid dendritic cells (pDCs), TLR-7 and TLR-9 

activates MyD88 signaling that phosphorylates interferon regulatory factors 7 

(IRF7), which regulates expression of IFN-alpha [71] (Figure 1.1). 

The alternative pathway, often called MyD88-independent pathway, is 

mediated via TRIF. TLR-3 interacts directly with TRIF to initiate signaling, while 

TLR-4, when endocytosed, requires the adaptor TRAM to facilitate association 

with TRIF [72, 73]. TRAF6 and TRAF3 are recruited by TRIF. While TRAF6 

engages IKK and MAPK, leading to activation of NF-κB, AP-1 and IRF7, TRAF3 

recruits TBK1/IKK-epsilon complex that activates IRF3, which culminates in IFN-

beta expression [74, 75] (Figure 1.1). 
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1.2.3 Reactivation of the latent HIV-1 provirus 
through TLR signaling 

It has been reported that HIV-1 patients exposed to vaccination regimens 

[76-79] or microbial infections [80-84] have increased HIV-1 RNA plasma levels 

when compared to control individuals. Furthermore, exposure to several 

pathogen-associated molecular patterns (PAMPs) and their corresponding 

microorganisms have been shown to directly transactivate the HIV-1 LTR. For 

example, it has been described that purified protein derivative (PPD) of M. 

tuberculosis increased viral mRNA expression in HIV infected monocytes [85]. 

Furthermore, monocytoid cell lines stimulated with live M. tuberculosis or 

lipomannan (LAM) increased p24 expression by 3-fold and enhanced HIV-1 LTR 

transcription [86]. Additionally, it has been shown that M. tuberculosis PPD from 

H37Ra strain and the mycobacterial major cell wall component ManLAM 

activated transcription of HIV-1 in the CD4+ T cell line Jurkat. Man-LAM-induced 

HIV gene expression was mediated via protein kinases that culminated in NF-κB 

nuclear translocation. Mutations in the NF-κB binding sites in the HIV-1 LTR 

abolished the HIV expression increase driven by PPD [87, 88].  

HIV-1 induction mediated by mycobacteria has been shown to be 

dependent on TLR-2 stimulation. Bhat et al. observed that the M. tuberculosis 

and M. smegmatis proline-proline-glutamic acid protein Rv1168c (PPE17) 

interacts with TLR-2, resulting in activation of NF-κB and HIV-1 transactivation 

[89]. Furthermore, Bafica and collegues crossed an HIV-1 transgenic mouse with 

either TLR-2-deficient or control mice to investigate the role of TLR-2 in the 

activation of HIV-1 expression. Culture filtrate proteins, phosphatidyl-inositol 
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mannoside from M. tuberculosis and the synthetic lipopeptdide Pam3CSK4, 

induced p24 expression in spleen cells from HIV-1 transgenic mouse expressing 

TLR-2. On contrary, p24 induction mediated by the above stimuli was completed 

impaired in spleen cells from TLR-2 deficient mice. Also, induction of HIV-1 by 

mycobacteria in vivo was 2-fold greater in control mice when compared with 

TLR-2-deficient mice [90].  

Our group recently reported that Pam3CSK4, a potent activator of TLR-1/-

2, reactivates latent HIV in an in vitro assay using latently infected primary TCM 

CD4+ cells and in ex vivo assays using resting CD4+ T cells from aviremic 

patients. HIV reactivation through the TLR-1/2 pathway via Pam3CSK4 induces 

phosphorylation of CDK9, it is Tat-dependent and requires NF-κB, AP-1 and 

NFAT transcription factors. Also, Pam3CSK4 reactivates HIV in the absence of 

cell activation and/or proliferation [91]. Reactivation of HIV without global T cell 

activation is desirable as a potential therapy against latent HIV, thus Pam3CSK4 

anti-latency efficacy should be highly considered. 

Gonzalez et al. published that total extracts from Porphyromonas 

gingivalis and Fusobacterium nucleatum, oral bacterial pathogens, induced 

significant HIV-1 promoter activation in latently infected monocytic leukemia cell 

lines (BF24 and THP89GFP). Also, neutralization of TLR-2 in these cells reduced 

HIV transcriptional enhancement by the bacterial extracts. Reactivation of HIV-1 

promoter by F. nucleatum and P. gingivalis was mediated by NF-κB and Sp1 

transcription factors [92].  

Lipopolysaccharide (LPS), the major TLR-4 agonist, has been shown to 
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mediate HIV-1 activation in a chronically infected monocytic cell line [93]. Also, 

LPS induced the LTR promoter in human dermal endothelial cells (HMEC) 

transfected with an HIV-1 luciferase reporter via MyD88/TRAF6/NF-κB signaling 

[94]. It is important to point out that effect of LPS in reactivation of the HIV-1 

promoter has been disputed by others groups [91, 92, 95]. Divergent results 

could be explained by the use of LPS that could be contaminated with other 

PAMPs, like bacterial lipopeptides. Other possible reasons for the discrepancy 

could be variation in the cell type used, the cell culture environment and/or 

disparities in TLR-4 binding affinity to LPS from different bacteria.   

Flagellin, the structural protein in bacterial flagella, has been 

demonstrated to reactivate latent HIV in a T lymphocyte cell line chronically 

infected with HIV (JLAT and Jurkat clone E6-1) and in central memory T cells, 

previously infected with VSV-G pseudotyped NL43. Flagellin achieved this effect 

via TLR-5 stimulation. However, resting CD4+ T cells from aviremic patients, 

when challenged with flagellin, failed to elicit detectable levels of viral gene 

expression [96]. 

 R-848, a TLR-7/-8 agonist, induced p24 expression in latently infected 

monocytic cell lines (U1 and OM10). Interestingly, TLR-7/-8 activation through 

ssRNA and R-848 (a guanosine derivative) interfered with the HIV replication 

cycle in lymphocyte cultures, potentially through the secretion of inhibitory 

soluble factors [97]. Therefore, TLR-7/-8 signaling may have two beneficial 

effects, namely stimulation of latent proviruses and, simultaneously, inhibiting 

viral spread.  
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Finally, DNA from F. nucleatum increased HIV-1 promoter activity through 

TLR-9 signaling [98]. CpG interaction with TLR-9 induced up-regulation of HIV 

p24 in the chronically infected monocytic cell line, U1, and viral gene expression 

in human epithelial kidney cells transfected with a HIV-luciferase reporter [95]. 

Furthermore, Scheller et al., has reported that the TLR-9 agonist, cytosine-

phosphodiester-guanine oligodeoxynucleotide (CpG ODN), reactivated HIV in the 

latently infected cell line ACH2 in an NF-κB-dependent manner [99]. 

 

1.2.4 Modulation of HIV-host immune responses  
by TLR stimulation 

In order to purge the HIV-1 reservoir, reactivation of the latent provirus has 

to be followed by death of the infected cell through viral cytotoxic effects and/or 

host immune responses. It has been recently reported that the histone 

deacetylase (HDAC) inhibitor SAHA, shown to induce HIV expression in latently 

infected CD4+ T cells, failed to reduce the size of the viral reservoir in vitro in 

cells isolated from aviremic patients [100]. In this study, Shan and colleagues 

demonstrated the importance of CTLs to clear the HIV-reservoir, emphasizing 

the necessity to enhance cellular immunity in order to achieve viral control [100]. 

In addition, elite controllers are able to spontaneously control HIV infection, 

mainly explained by their enhanced CD8+ T cells, and still debated natural killer 

(NK), ability in suppressing replication of HIV [101, 102],  

TLR stimulation can enhance CTL responses. For example, stimulation of 

CD8+ T cells and NK anti-tumoral responses is enhanced by the polysaccharide 

krestin, a TLR-2 agonist [103]. Furthermore, murine CD8+ T cell cytotoxic 
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responses were amplified by a TLR-3 ligand, bypassing the requirement for CD4+ 

T cell help [104]. Also, TLR-3, TLR-7 and TLR-9 agonists were shown to 

enhance NK cell activity [105, 106]. 

Several studies have investigated the use of TLR signaling to modulate 

anti-HIV immune responses. The TLR-7/-8 agonist (3M-012, an analog of R-

8480) has been given as vaccine adjuvant in combination with HIV-1 Gag 

antigen to nonhuman primates. The addition of 3M-012 to the Gag vaccine 

substantially enhanced Gag-specific T helper 1 and CD8+ T cell responses 

compared to animals given the Gag protein alone [107]. In addition, PBMCs 

treated with TLR-7/-8 agonists (3M-002 or R-848) undergo activation of CD8+ T 

cells and NK cells, as estimated by the appearance of the surface markers CD69 

and CD107a, respectively [108]. 

A randomized controlled vaccine trial conducted with 95 HIV-infected 

subjects investigated the impact of TLR-9 agonist as an adjuvant for 

pneumococcal vaccine. The trial showed that the TLR-9 agonist, CpG ODN 

enhanced vaccine immunogenicity in the experimental group compared with the 

control group [109]. Post-hoc analyses of the vaccine trial confirmed that patients 

that received TLR-9 ligand as adjuvant expressed more CD107a and 

macrophage inflammatory protein 1β (MIP1β) markers in the CD8+ T cell. In 

addition, a statistically significant reduction in proviral HIV-1 DNA was observed 

in the CpG-recipient HIV group compared with the control group [110]. While 

encouraging, TLR-9 agonist only reduced the latent reservoir in a minimal 

change of 12.6% in proviral load. After 1st and 2nd immunizations, p value was 
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calculated as nonsignificant; after 3rd immunization and total immunization 

change (data summarizing difference of proviral load between placebo and all 

three immunizations together), data showed p values of 0.056 and 0.023, 

respectively. Although this study did not present a dramatic depletion in the latent 

reservoir, the sum of this effect with the stimulation of CTL responses via TLR-9 

agonist drives attention to the use of TLR agonists for clearance of the latent 

reservoir. 

 

1.3 Conclusions 

Toll-like receptors agonists, as proposed in the literature, can activate HIV 

transcription in latently infected cells. Eradication strategies point to the 

elimination of infected cells followed by reactivation as a crucial step. As 

reviewed, several TLR agonists efficiently activate CTLs, being a promising anti-

HIV feature of TLR agonists. Understanding how TLR agonists modulate HIV 

expression and anti-viral immune responses may lead to therapeutic strategies 

toward viral clearance.  
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Figure 1.1: Human toll-like receptors signaling pathways. 
 
TLRs are the sentinels of host defense. The homodimers TLR5, TLR4 and TLR2 
and the heterodimers TLR2-TLR1, TLR2-TLR6 and TLR2-TLR10 bind to their 
specific ligand at the cell surface, whereas TLR3, TLR7, TLR7-TLR8 and TLR9 
localize to the endosomes, where they interact to their ligands. TLR4 following 
microbial detection is endocytosed into the endosome. When TLRs are activated 
by interaction with their ligands, adaptor molecules are recruited to stimulate 
downstream signaling pathways. 
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Abstract

Background: Toll-like receptors (TLRs) are crucial for recognition of pathogen-associated molecular patterns by cells
of the innate immune system. TLRs are present and functional in CD4+ T cells. Memory CD4+ T cells, predominantly
central memory cells (TCM), constitute the main reservoir of latent HIV-1. However, how TLR ligands affect the
quiescence of latent HIV within central memory CD4+ T cells has not been studied.

Results: We evaluated the ability of a broad panel of TLR agonists to reactivate latent HIV-1. The TLR-1/2 agonist
Pam3CSK4 leads to viral reactivation of quiescent HIV in a model of latency based on cultured TCM and in resting CD4+

T cells isolated from aviremic patients. In addition, we investigated the signaling pathway associated with Pam3CSK4
involved in HIV-1 reactivation. We show that the transcription factors NFκB, NFAT and AP-1 cooperate to induce viral
reactivation downstream of TLR-1/2 stimulation. Furthermore, increasing levels of cyclin T1 is not required for
TLR-mediated viral reactivation, but induction of viral expression requires activated pTEFb. Finally, Pam3CSK4 reactivates
latent HIV-1 in the absence of T cell activation or proliferation, in contrast to antigen stimulation.

Conclusions: Our findings suggest that the signaling through TLR-1/2 pathway via Pam3CSK4 or other reagents should
be explored as an anti-latency strategy either alone or in combination with other anti-latency drugs.

Background
The existence of latent reservoirs of HIV-infected cells
constitutes the major impediment towards viral eradica-
tion. Latent infection is associated with undetectable levels
of viral gene expression and appears to be non-cytopathic.
However, upon reactivation, latent viruses enter an active
mode of replication in which they are fully competent for
spread and induction of disease [1-3]. The main latent
reservoir is known to reside within the subset of CD4+

memory T cells [1-5]. The current thinking in the field
is that a combination of agents that disrupt latency
(“anti-latency” drugs), when given with continuous anti-
retroviral therapy (ART), may be an effective approach to-
ward viral eradication [6-8].
Transient bursts or “blips” of HIV-1 replication occur

even in patients whose virus is well suppressed by anti-
retroviral therapy (ART) [9]. The origin of viral “blips” is

not known. Several factors can contribute to these viral
blips, such as selection of drug resistant variants, antigen-
driven target cell activation, vaccination, opportunistic
infections or random variation of test measurements [10].
Interestingly, several vaccination regimens [11-14] and
pathogen infections [15-19] have been shown to transi-
ently increase the levels of plasma RNA in HIV-1 infected
patients even in the presence of ART. Therefore, it is
tempting to speculate that exposure to microbial products
may trigger reactivation of latent viruses and thus influ-
ence the size of the latent reservoir.
Pathogen infections are primarily sensed by the innate

immune system through the interaction of conserved mo-
lecular structures named pathogen-associated molecular
patterns (PAMPs) via host-encoded pattern recognition re-
ceptors (PRRs) [20,21]. PRRs are germline-encoded recep-
tors that recognize several classes of molecules typical of
pathogens, such as proteins, lipids, carbohydrates and nu-
cleic acids [21]. Among PRRs, Toll-like receptors (TLRs)
are the most widely studied. TLR-1, 2, 4, 5, 6 and 10 are
present on the cell surface and recognize PAMPs derived
from bacteria, fungi and protozoa. Whereas, TLR-3, 7,
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8 and 9 are present in endosomal compartments and
recognize mainly nucleic acids derived from bacteria
and viruses [21,22]. TLRs have been detected on cells
of both the innate and adaptive immune system (such us
dendritic cells, macrophages, granulocytes, T cells, B cells,
NK cells and mast cells) as well as endothelial and epithe-
lial cells [23].
However, little is known about whether and how TLR

ligands affect the latent reservoir of HIV infection in
central memory CD4+ T cells. We have analyzed the po-
tential ability of TLR agonists to transactivate the HIV-1
LTR using a previously described method for the gener-
ation of latently infected central memory T cells (TCM)
[24,25]. We demonstrate that Pam3CSK4, a TLR-1/2
agonist, is able to reactivate latent HIV-1 in this in vitro
model and in cells isolated from aviremic patients. This re-
activation is NFκB, NFAT and AP-1-mediated and require
pTEFb activity. This pathway differs from that initiated by
T cell receptor engagement, which was shown to be medi-
ated, in the same latency model, primarily by NFAT [24].
Importantly from the standpoint of therapeutic applica-

tions, Pam3CSK4-induced viral reactivation is achieved in
the absence of T cell activation and proliferation. There-
fore, the signaling pathway activated by Pam3CSK4 ap-
pears to be selective for latent, integrated viruses and
represents an attractive therapeutic target that can be
exploited in eradication strategies.

Results
Pam3CSK4, a TLR-1/2 agonist, reactivates latent HIV-1
in cultured TCM cells
We explored whether TLR agonists could reactivate latent
HIV-1 using cultured TCM as model of latency [24,25]. We
used representative agonists for the different TLR recep-
tors such as triacylated synthetic lipopeptide Pam3CSK4, a
TLR-1/2 agonist; diacylated synthetic lipopeptide (FSL-1),
a known TLR-2/6 agonist; the synthetic analog of double-
stranded RNA (Poly(I:C)), recognized by TLR-3; lipo-
polysaccharide (LPS), the principal component of Gram
negative bacteria that activates TLR-4; flagellin, a potent
stimulator of TLR-5; imiquimod, an analog to guanosine
that specifically activates TLR-7; ssRNA40, a GU-rich
single-stranded RNA oligonucleotide also known as
R-1075, recognized by TLR-7/8 [26] and ODN2006, an
unmethylated CpG dinucleotide and activator of TLR-9.
As shown in Figure 1A, the triacylated lipopeptide and
TLR-1/2 agonist Pam3CSK4 was able to efficiently reacti-
vate latent HIV in latently infected cultured TCM gener-
ated from 5 different donors. No other TLR agonist
tested had activity above background. In order to verify
that the above agonists were biologically active at the
concentrations used, we performed four additional tests.
First, we tested the above TLR agonists in their ability to
reactivate latent HIV-1 in three other models of latency.

Second, we tested their ability to induce IL-8 production
in the promonocytic cell line THP-1 [27]. As shown in
Additional file 1: Figure S1A, Flagellin was able to reacti-
vate latent HIV-1 in the J-Lat clone 10.6 as previously de-
scribed [28]. Even though the TLR-2/6 agonist Pam2CSK4
and the TLR-4 agonist LPS were unable to reactivate
latent HIV-1 in cultured TCM, both were able to induce a
strong IL-8 response in THP-1 cells (Additional file 1:
Figure S1B). The TLR7 agonist imiquimod was able to re-
activate latent HIV-1 in the T cell line ACH2 (Additional
file 1: Figure S1D). Finally, the TLR-9 agonist ODN2006
was able to reactivate latent HIV-1 in the cell lines U1 and
ACH2 (Additional file 1: Figure S1C and D) [29]. Neither
the TLR-3 nor the TLR-8 agonist had activity in any of our
experimental systems. We do not disregard the possibility
that these TLRs may reactivate latent viruses.
TLR-2 recognizes a variety of molecular patterns from

viruses, bacteria, fungi and protozoa [21]. The specificity of
PAMP recognition by TLR-2 is somewhat broad because
TLR-2 can form functional homodimers, as well as hetero-
dimers with TLR-1, TLR-6, TLR-10 or Dectin-1 [30-33].
To test which TLR-2 homo or heterodimers are capable of
reactivating latent viruses in cultured TCM cells, we incu-
bated latently infected cells with ligands for TLR-2 that use
different co-receptors. We tested the synthetic diacylated
lipopeptide Pam2CSK4 and the N-terminal part of the dia-
cylated lipoprotein derived from Mycoplasma salivarium,
FSL-1, both of which have been shown to induce signaling
through a TLR-2/6 complex [34], although some of these
diacylated lipopeptides can also induce signaling in the ab-
sence of TLR-6 [35]. We also tested zymosan, a β-glucan
present in yeast cell wall, which uses the Dectin-1/TLR-2
complex as receptor [33]. Finally, we tested lipoarabi-
domannan of Mycobacterium smegmatis (LAM-MS) and
polysaccharide A of Bacteroides fragilis (PSA). These last
two have been shown to induce signaling mainly through
TLR-2 alone [36,37]. As shown in Figure 1B, the TLR-1/2
agonist Pam3CSK4 was the only TLR-2 agonist able to in-
duce reactivation of latent HIV-1 in cultured TCM. We con-
firmed the activities of all TLR-2 agonists to induce IL-8
production in THP-1 cells (Additional file 2: Figure S2B).
Furthermore, Zymosan behaved as a strong inductor of
HIV-1 expression in the cell line J-LAT 10.6 (Additional
file 2: Figure S2A). Finally, Pam3CSK4, Pam2CSK4 and
Zymosan were able to reactivate latent HIV-1 in the U1
cell line (Additional file 2: Figure S2C). These results sug-
gest that signaling through TLR-2/TLR-1 complexes, but
not other TLR-2-containing complexes, are able to reacti-
vate latent HIV-1 in cultured TCM. Thus, we conclude that
signals that use TLR-2 alone or TLR-2 in combination with
TLR-6 or Dectin-1 are not sufficient to reactivate latent
HIV-1 in cultured TCM.
We next decided to analyze the expression levels of

TLR-1 and TLR-2 in cultured TCM and in ex vivo
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isolated memory CD4+ T cells from healthy donors. As
shown in Figure 1C, we detected surface expression of
both, TLR-1 and TLR-2, in cultured TCM. Also, both
receptors were expressed comparably in the three main
subsets of memory CD4+ T cells, namely TCM, TTM and
TEM (Figure 1D).
To further confirm whether Pam3CSK4 was able to re-

activate latent HIV-1 ex vivo, we performed two different
assays using resting CD4+ T cells from aviremic patients.
In the first one, cells were treated with IL-2, IL-2 plus
Pam3CSK4 or IL-2 plus panobinostat, an HDAC inhibi-
tor that has been shown to reactivate latent HIV-1 [38].
Three days after treatment, intracellular HIV-1 unspliced
mRNA was quantified by RT-PCR. As shown in Figure 1E,
Pam3CSK4 increased the levels of US-RNA over IL-2
treatment control in 2 of the 7 patients compared with
5 of 7 for panobinostat. In one of the patients, neither
Pam3CSK4 nor panobinostat was able to reactivate latent
HIV over IL-2 control (Figure 1E, closed start symbol). In
the second assay, cells from 4 aviremic patients were sub-
jected to the quantitative viral outgrowth assay (Q-VOA)
assay [39,40]. In this case, exposure to Pam3CSK4 allowed
recovery of replication competent virus from resting CD4+

T cells of 2 ART-suppressed patients, although, as is gen-
erally seen with HDAC inhibitors, the frequency of induc-
tion of HIV outgrowth was greater after cells were fully
activated by mitogen (Figure 1F). In the fourth patient, the
frequency of latent infection was very low (less than 1 in-
fected cell in 5 million resting CD4+ T cells), and the activ-
ity of Pam3CSK4 could not be assessed.

Pam3CSK4 induces viral reactivation through the activation
of NFκB, NFAT and AP-1 transcription factors
We decided to investigate the signaling pathway that
leads to viral reactivation mediated by Pam3CSK4 in cul-
tured TCM. First, we analyzed the cis-acting elements in
the viral long-terminal repeat (LTR) required for viral re-
activation induced by Pam3CSK4 and compared them with
those required for αCD3/αCD28. This was accomplished

by generating defective (env-) HIV mutants with nucleotide
substitutions in the binding sites for NFκB/NFAT, Sp1 or
NF-IL6 as previously described [24]. As shown in
Figure 2A, mutation of the three binding sites for Sp1 ab-
rogated viral reactivation mediated by Pam3CSK4 and by
αCD3/αCD28. Mutation of both NFκB binding elements
impaired the reactivation by Pam3CSK4 by 80% on aver-
age. Interestingly, in one of the three donors, mutation of
NFκB binding sites did not disrupt viral reactivation by
αCD3/αCD28. This result suggests that other transcription
factor binding sites may bypass the presence of intact
NFκB/NFAT binding sites in viral reactivation mediated by
αCD3/αCD28, as it has been previously described [41].
When cells were infected with a virus containing mutations
in the NFκB/NFAT and Sp1 binding sites, viral reactivation
induced by both stimuli was also almost completely abro-
gated. As a control, we mutated both NF-IL6 binding sites
and showed that mutation in these cis-acting elements had
almost no effect on viral reactivation driven by Pam3CSK4
and αCD3/αCD28. These results indicate that efficient
Pam3CSK4-induced viral reactivation requires the pres-
ence of intact NFκB/NFAT and/or Sp1 binding sites on
the LTR.
To further characterize the signaling pathway that

leads to viral reactivation induced by Pam3CSK4 in cul-
tured TCM, we used chemical inhibitors of known signal-
ing pathways activated by TLRs. It is known that TLR-1/2
activates NFκB via MyD88 and the subsequent formation
of a complex with IRAK1/IRAK4 and TRAF6. This com-
plex leads to the activation of the IKK complex through
the kinase TAK1 and the phosphorylation and degradation
of IκBα leading to the activation and translocation to the
nucleus of NFκB [22]. To assess the role of NFκB in viral
reactivation induced by Pam3CSK4, we incubated cells
with BAY 11–7082, an inhibitor of IκBα phosphorylation.
As shown in Figure 2B, BAY 11–7082 blocked an average
of 60% of viral reactivation induced by Pam3CSK4. How-
ever, BAY 11–7082 had a minor inhibitory effect (less than
20% inhibition on average) on viral reactivation induced

(See figure on previous page.)
Figure 1 Reactivation of latent HIV-1 through toll-like receptors agonists. (A) Cultured TCM were treated with the toll-like receptors agonists
indicated between parentheses for different TLRs or costimulated with αCD3/αCD28 and assessed for intracellular p24Gag expression by flow
cytometry. Experiments were done in 5 different donors. Each dot represents a different donor and mean and SD are indicated with horizontal
lines. Significance was calculated by 2-tailed paired samples t test analysis (P vales provided). (B) Cultured TCM were treated with different TLR-2
agonists indicated between parentheses or costimulated with αCD3/αCD28 and assessed for intracellular p24Gag expression by flow cytometry.
Experiments were done in 3 donors from A. Significance was calculated by 2-tailed paired samples t test analysis (P vales provided).
(C) Cultured TCM were stained with specific antibodies against TLR-1 and TLR-2 (open black histogram) and analyzed by flow cytometry. Isotype
controls were used as control (closed grey histogram). The percentage of TLR-1 and TLR-2 positive cells is indicated in each panel. (D) Ex vivo
isolated memory CD4+ T cells were stained with specific antibodies against CCR7, CD27, TLR-1 and TLR-2 and analyzed by flow cytometry.
Expression of TLR-1 and TLR-2 was analyzed in each subset of memory CD4+ T cells (open black histogram). Isotype controls were used as control
(closed grey histogram). The percentage of TLR-1 and TLR-2 positive cells in each subset is indicated in each panel. (E) Cells isolated from seven
aviremic patients were treated with Pam3CSK4 or Panobinostat and the levels of HIV-1 US RNA were measured three days later. Each symbol
corresponds to a different patient. Data is represented as fold induction over the IL-2 treatment control (F) Cells isolated from three aviremic
patients were treated with IL-2, Pam3CSK4 or PHA for 24 hours and supernatants were subject to the Q-VOA assay.
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by αCD3/αCD28 (Figure 2B). This result is in agreement
with our previous studies indicating an unexpected lack
of requirement for NFκB toward viral reactivation after
stimulation with αCD3/αCD28 [24]. However, in a sig-
naling pathway other than αCD3/αCD28, we showed that
NFκB was active and required for reactivating latent
viruses in a stimulus-dependent manner in cultured
TCM.

MyD88 activation also leads to the activation of the
MAP kinase cascade, in particular JNK and ERK-1/2,
which leads to the activation of the transcription factor
AP-1. Cooperation between these transcription factors,
NFκB and AP-1, has been shown to transactivate the
HIV-1 LTR in cells lines [42,43]. To investigate the role
of AP-1 in viral reactivation induced by Pam3CSK4, we
incubated the cells with SP600125 or PD98059, known

Figure 2 Pam3CSK4 requires NFAT, AP-1 and NF-κB to induce viral reactivation in cultured TCM. (A) Cultured TCM cells were infected with
wild-type DHIV or with different LTR mutants. 9 days after infection, cells were treated with Pam3CSK4 or costimulated with antibodies to CD3
and CD28 (αCD3/αCD28) for 3 days and assessed for intracellular p24Gag expression by flow cytometry. Percentage of reactivation was
normalized to that of wild-type DHIV for each treatment. Bar graph corresponds to mean and SD of experiments performed with three donors.
(B) Cultured TCM cells were infected with wild-type DHIV and treated with Pam3CSK4 or stimulated with αCD3/αCD28 in the presence of the
indicated inhibitor for the protein or transcription factor indicated and assessed for intracellular p24 Gag expression by flow cytometry. Bar graph
corresponds to mean and SD of experiments performed with four different donors. Significance was calculated by 2-tailed paired samples t test
analysis (* < 0.05, ** < 0.01, *** < 0.001).
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inhibitors of JNK and ERK-1/2 respectively [44,45]. As
shown in Figure 2B, both inhibitors significantly abro-
gated viral reactivation by Pam3CSK4.
We have previously shown that NFAT is required for

viral reactivation mediated by αCD3/αCD28 in cultured
TCM [24]. In agreement with that finding, Cyclosporine
A (CsA), a potent NFAT inhibitor, blocked viral reactiva-
tion induced with αCD3/αCD28 (Figure 2B). Interestingly,
CsA was able to impair viral reactivation mediated by
Pam3CSK4 by 55% on average. These data suggest NFAT
is also required for viral reactivation downstream of
Pam3CSK4.
In an effort to validate the experiments performed with

chemical inhibitors, we investigated whether Pam3CSK4
could induce nuclear translocation of NFκB, NFAT and
AP-1 in cultured TCM in a time-dependent manner. To
that end, we isolated cytoplasmic and nuclear fractions
after stimulating with IL-2 alone (baseline condition),
Pam3CSK4 or αCD3/αCD28. We isolated fractions of cul-
tured TCM that were unstimulated; after 30 minutes
of stimulation; or 3 hours of stimulation. The trans-
location of the different transcription factors was analyzed
by Western-blot. α-tubulin and histone H3 proteins were
used as controls for purity of the fractionation and β-actin
was used as a loading control. As shown in Figure 3A, p50
was detected in the nucleus after 30 minutes of incubation
with Pam3CSK4 (compare lanes 8 and 11) but not with
IL-2 alone (compare lane 8 with 9 and 10) or αCD3/
αCD28 (compare lane 8 with 13 and 14) but decreased
to basal level by 3 hours of stimulation. In the case of
p65, increased nuclear levels could be detected after treat-
ment of the cells with Pam3CSK4 at 30 min and 3 hours
post-reactivation (lanes 11 and 12 compared with lane 8).
Interestingly, both Pam3CSK4 and αCD3/αCD28 induced
the nuclear translocation of NFATc1, which was detectable
at 30 min and 3 hours (Figure 3A, lanes 11 to 14 compared
with lane 8). We also detected a strong nuclear transloca-
tion of NFATc2 when cells were reactivated with αCD3/
αCD28 (lanes 13 and 14 compared with lane 8). Nuclear
translocation of NFATc2 was also detected after treatment
of the cells with Pam3CSK4 but at a much smaller magni-
tude (lanes 11 and 12 compared with lane 8).
We have previously shown that JNK and ERK inhibi-

tors blocked viral reactivation mediated by Pam3CSK4
(Figure 2B). JNK and ERK are involved in the activation re-
spectively of cJun and cFos, components of the transcrip-
tion factor AP-1. As shown in Figure 3B, we detected
nuclear translocation of cJun at 3 hours with either IL-2,
Pam3CSK4 or αCD3/αCD28 stimulation (lanes 10, 12 and
14 compared with lane 8). The levels of nuclear transloca-
tion were slightly higher with Pam3CSK4 than with IL-2
alone (Figure 3B, compare lanes 10 and 12). Surprisingly,
we were unable to detect nuclear translocation of cFos at
any time with either IL-2 or Pam3CSK4 (Figure 3B, lanes 9

to 12). The inability to detect efficient nuclear translocation
of cFos and cJun with Pam3CSK4 may be due to the low
sensitivity of the assay. For this reason, we decided to
analyze whether Pam3CSK4 could activate JNK and ERK.
As shown in Figure 3C, treatment with Pam3CSK4 re-
sulted in increased JNK and ERK phosphorylation (lane 5)
above what was observed with IL-2 alone (lane 2). These
results suggest than Pam3CSK4 can efficiently induce
NFκB and NFAT translocation into the nucleus. Further-
more, Pam3CSK4 induces activation of the JNK and ERK
pathways required for AP-1 activation.

Pam3CSK4 but not other TLR2 agonist triggers intracellular
Ca2+ influx
We found that NFAT was translocated into the nucleus
after challenging cultured TCM with Pam3CSK4. NFAT ac-
tivation is induced after dephosphorylation mediated by the
Ca2+/calmodulin-dependent serine phosphatase calcine-
urin, which is activated after an increase in the levels of
intracellular Ca2+. Therefore, we inferred that NFAT activa-
tion by Pam3CSK4 is a consequence of an increase in the
intracellular levels of Ca2+. To test this idea, cultured TCM

were loaded with Fluo3-AM, a fluorescent indicator of
intracellular Ca2+, and changes in intracellular levels were
measured by flow cytometry. We incubated cells with the
ionophore ionomycin (positive control), or the TLR-2 ago-
nists Pam3CSK4, Pam2CSK4 or LAM-MS. As expected,
ionomycin induced an increase in the intracellular levels of
Ca2+ (Figure 4). When cells were treated with Pam3CSK4,
we observed an increase in the intracellular levels of Ca2+

in a dose dependent manner. However, this increase in cal-
cium levels was not observed after treatment with the non-
HIV reactivating agents Pam2CSK4 or LAM-MS.
Taken together, these data suggest that Pam3CSK4 in-

creases intracellular Ca2+ flux, which is consistent with
NFAT nuclear translocation and its role on HIV-1 reactiva-
tion mediated by Pam3CSK4. Furthermore, the inability of
Pam2CSK4 and LAM-MS to increase intracellular Ca2+

may explain their failure to transactivate the HIV-1 LTR
(Figure 1B).

Pam3CSK4 reactivates HIV-1 in a tat-dependent manner
but in the absence of upregulation of cyclin T1
Tat is a viral transactivator necessary for the HIV-1 pro-
moter to achieve maximal levels of activity. We therefore
examined whether reactivation by Pam3CSK4 is Tat
dependent. Tat recruits the positive transcription elong-
ation factor pTEFb, a protein kinase complex that con-
sists of Cyclin T1 and CDK9, to the TAR (trans acting
response element) RNA located at the 5′ end of viral
transcripts [46]. pTEFb is responsible for hyperphosphor-
ylation of the C-terminal domain of RNA Pol II and evic-
tion of negative elongation factors, which culminates in
transcription activation [47-49]. We used Flavopiridol, a
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Figure 3 Signaling triggered by Pam3CSK4 in cultured TCM. Culture TCM were either left unstimulated (0 h) or stimulated with IL-2,
Pam3CSK4 and αCD3/αCD28 after 30 minutes or 3 hours. Nuclear and cytoplasmic fractions were isolated as indicated in the experimental
procedure section. Proteins were loaded on a SDS-polyacrylamide gel, transferred to a membrane and western-blotted against p50, p65, NFATc1,
NFATc2, α-tubulin, histone H3 and β-actin (A) or against cJun, cFos, histone H3 and β-actin (B). Data is representative of two donors. (C) Culture
TCM were left unstimulated (0 h) or stimulated with IL-2, Pam3CSK4 and αCD3/αCD28 after 30 minutes or 3 hours. Whole cell extracts were
isolated as indicated in the experimental procedure section. Proteins were loaded on a SDS-polyacrylamide gel, transferred to a membrane and
western-blotted against JNK, phospho-JNK, ERK, phospho-ERK and β-actin. Data is representative of two donors.
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selective pTEFb inhibitor, to analyze whether pTEFb was
involved in viral reactivation mediated by Pam3CSK4. As
shown in Figure 5A, flavopiridol blocked viral reactivation
mediated by Pam3CSK4 and by αCD3/αCD28 in a dose
dependent manner (Figure 5A).
Low levels of the pTEFb main components, cyclin T1

and pCDK9, have been proposed to limit the ability of the
LTR to efficiently drive transcription in resting cells [50].
We analyzed whether Pam3CSK4 induced an increase in
the levels of cyclin T1 or in the phosphorylation levels of
CDK9 in cultured TCM. As shown in Figure 5B, levels of
cyclin T1 remained constant when cells were incubated
with IL-2 alone or in the presence of Pam3CSK4 (lanes 1
to 7). In contrast, incubation with αCD3/αCD28 increased
the total levels of cyclin T1 in culture TCM as previously
described (lines 8 to 10) [50]. We then analyzed the
levels of CDK9 and pCDK9. It has been previously
shown that CDK9 exists in two isoforms generated
from two different promoters [51]. Both isoforms can
be found as part of pTEFb complexes [51]. As shown
in Figure 5B, cultured TCM express both isoforms and
the total levels of each isoform of CDK9 (CDK955 and
CDK942 as indicated in Figure 5B) did not change with
any of the treatments. Levels of pCDK955 were drasti-
cally increased when cells were incubated with αCD3/
αCD28 (Compare lanes 1 to 8 and 9). Pam3SCK4 was able
to increase levels of pCDK955 at 12 h when compare with

IL-2 treatment alone (Figure 5B, lines 2 and 5). These re-
sults indicate that Pam3CSK4 reactivates latent HIV in a
pTEFb dependent manner but in the absence of cyclinT1
upregulation.

Pam3CSK4 reactivates latent HIV-1 in the absence of T cell
activation and/or proliferation
We have shown that stimulation through CD3 and CD28
or Pam3CSK4 leads to viral reactivation through the ac-
tivation of different transcription factors. It is well
known that activation through CD3 and CD28 leads to
global T cell activation encompassing release of cytokines
and chemokines, massive T cell proliferation and can lead
to durable T cell depletion in HIV-infected patients [52,53].
To test whether Pam3CSK4 triggers global T cell activation
in cultured TCM, we assessed the induction of CD69 and
CD25. As shown in Figure 6A, Pam3CSK4 failed to induce
up regulation of CD69 when compared with stimulation
with IL-2 alone (baseline condition). As expected, αCD3/
αCD28 stimulation strongly induced up-regulation of the
activation marker. We have previously shown that cultured
TCM and ex vivo isolated TCM show low levels of CD25
protein expression on the surface and the expression is
up-regulated after TCR engagement [54]. As shown in
Figure 6B, Pam3CSK4 did not up-regulate the expression
levels of CD25 when compared with stimulation with IL-2
alone (baseline condition). However, treatment of cultured

Figure 4 Pam3CSK4 triggers intracellular Ca2+ influx. Cultured TCM were loaded with the Ca2+ dye Fluo3-AM and cells were tested for their
ability to increase intracellular calcium levels after treatment with ionomycin, or with increasing concentrations of Pam3CSK4, Pam2CSK4 or LAM-MS by
flow cytometry. The arrows indicate when the stimuli were added. Data is representative of two donors.
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TCM with αCD3/αCD28 led to a dramatic increase in this
activation marker (63 times increased MFI compared with
IL-2 treatment alone).
Using this in vitro model, we have previously shown

that IL-7 plus IL-2 can induce a low degree of viral re-
activation in the presence of cellular proliferation [54].
Cellular proliferation in the absence of viral reactivation has
been proposed as a mechanism for maintenance of the la-
tent reservoir [5,54]. To address whether Pam3CSK4 was

able to induce cellular proliferation, we stained cells with
the cell proliferation dye CPD eFluor647. After staining,
cells were incubated with IL-2 alone, Pam3CSK4 or αCD3/
αCD28 and cellular proliferation and viral reactivation was
measured 3 days later. As shown in Figure 6C, Pam3CSK4
induced viral reactivation in the absence of cellular proli-
feration when compared with our control treatment of IL-2
alone. However, reactivation through CD3 and CD28 led to
massive cellular proliferation as well as viral reactivation

Figure 5 Pam3CSK4 induces viral reactivation in a Tat-dependent manner. (A) Cultured TCM cells were infected with wild-type DHIV and
treated with Pam3CSK4 or stimulated with αCD3/αCD28 in the presence of 50 nM and 100 nM of Flavopiridol and assessed for intracellular p24
Gag expression by flow cytometry. Data is representative of two donors. (B) Culture TCM were either left unstimulated (0 h) or stimulated
with IL-2, Pam3CSK4 and αCD3/αCD28 for 12 h, 24 h or 48 h. Whole cell extracts were isolated as indicated in the experimental procedure
section. Proteins were loaded on a SDS-polyacrylamide gel, transferred to a membrane and western-blotted against CyclinT1, phospho-CDK9,
CDK9, and β-actin. Data is representative of two donors.
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from latency. These results indicate that Pam3CSK4 can
reactivate latent HIV-1 in the absence of T cell activation
or proliferation.

Discussion
In this study, we have found that Pam3CSK4, a TLR-1/2
agonist, is able to reactivate HIV-1 from latency in

primary cultured TCM cells. We have also tested the abi-
lity of Pam3CSK4 to reactivate latent HIV-1 in two
ex vivo models. In this case, Pam3CSK4 is able to reacti-
vate latent HIV-1 in a fraction of the patients. Several
polymorphisms have been described to affect TLR-1/2
signaling [55-57]. It will be interesting to address whether
these polymorphisms are associated with the ability of

Figure 6 Pam3CSK4 induces viral reactivation in the absence of T cell activation or T cell proliferation. Cultured TCM cells were treated with IL-2,
Pam3CSK4 or costimulated with antibodies to CD3 and CD28 (αCD3/αCD28) for 3 days and assessed for the induction of CD69 (A) and CD25 (B) by
flow cytometry (open black histograms). Isotype control was used as control (closed gray histogram). The percentage of CD69 and CD25 positive cells is
indicated in each panel and the mean fluorescence intensity (MFI) is indicated between parentheses for CD25. Data is representative of three donors.
(C) Cultured TCM cells were infected with wild-type DHIV or left uninfected. At 9 days after infection, cells were stained with the cell-proliferation dye CPD
eFluor670. Stained cells were treated with IL-2, Pam3CSK4 or costimulated with antibodies to CD3 and CD28 (αCD3/αCD28) for 3 days and assessed for
intracellular p24Gag expression and CPD eFluor670 staining by flow cytometry. Numbers indicate percentage of cells. Data is representative of three donors.
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Pam3CSK4 to reactivate latent HIV-1 in memory CD4+

T cells.
Several PAMPs and their corresponding microorganisms

have been shown to directly transactivate the HIV-1 LTR.
Live mycobacteria as well as some of their components in-
duce HIV-1 expression in human monocytes, lymphocytes,
or cell lines in vitro [58-62]. This induction has been
shown to be dependent on TLR-2 [62,63]. Flagellin, a
TLR-5 agonist, reactivates latent HIV-1 in the cell line
J-Lat [28]. Furthermore, the TLR-7/8 agonist, R-848, is able
to reactivate latent HIV-1 from myeloid-monocytic cells
lines [64]. Finally, the TLR-9 agonist, CpG oligodeoxynu-
cleotide, has been shown to reactivate latent HIV-1 in the
cell line ACH-2 [29]. In an independent study, performed
while this work was in progress, Dr. Jonathan Karn and
colleagues have found that TLR-5 agonist flagellin leads to
viral reactivation from latency in microglial cells, and that
the TLR-3 and TLR-9 agonist, poly (I:C) and ODN2006 re-
spectively, weakly reactivate latent HIV-1 in a primary cell
model of TH17 cells (manuscript in preparation).
TLR-2 recognizes a wide range of ligands because it

functions in conjunction with other receptors [65]. Thus,
TLR-2 can form heterodimers with TLR-1 or TLR-6.
TLR-1/2 complexes recognize triacylated lipopeptides
whereas TLR-2/6 complexes recognize diacylated lipo-
peptides [34,66]. In addition, TLR-2 has been shown to
cooperate with TLR-10 [32] and with the c-type lectin,
Dectin-1 [33]. We have shown that the triacylated lipo-
peptide Pam3CSK4 is the only TLR-2 agonist tested able
to induce viral reactivation. Interestingly, Pam3CSK4 was
able to induce an increase in intracellular calcium and
subsequent activation of the transcription factor NFAT.
We have shown that, in addition to the canonical pathway
of NFκB and AP1 activation mediated by TLR-1/2, NFAT
activation is also required for viral reactivation. Our result
is in agreement with a published report showing that
Pam3CSK4 stimulates release of Ca2+ from intracellular
stores in lung fibroblast [67] and with several reports
showing activation of NFAT after stimulation of bone
marrow-derived macrophages with Pam3CSK4, zymosan
and other TLR agonists [68,69]. To our knowledge, this is
the first time that it has been reported that Pam3CSK4
can activate NFAT in human primary CD4+ T cells.
We have previously demonstrated that NFAT but not

NFκB plays a major role in viral reactivation through
αCD3/αCD28 in cultured TCM (this report and [24]). On
the other hand, stimulation with the TLR-1/2 agonist
Pam3CSK4 leads to the activation of both NFκB and
NFAT and both transcription factors are involved in viral
reactivation mediated by Pam3CSK4. These results sug-
gest that HIV-1 has evolved to use different transcrip-
tion factors to increase viral transcription and that the
ability of NFAT or NFκB to induce viral transcription is
not determined by the viral LTR but by the stimulus.

It is well known that stimulation through CD3 and
CD28 leads to large-scale T cell activation, release of cy-
tokines and chemokines, massive T cell proliferation and
ultimately leads to profound T cell depletion in humans
[52,53]. However, we show here that Pam3CSK4 is able
to activate the HIV-1 promoter in a NFκB and NFAT-
dependent manner; but it does so in the absence of overt
signs of T cell activation, specifically, CD69, CD25 and T
cell proliferation. We have identified several differences
between the signaling pathways activated by αCD3/
αCD28 and Pam3CSK4 that can account for the differ-
ence in T cell activation. First, αCD3/αCD28 induced a
stronger nuclear translocation of the constitutive NFAT
isoform NFATc2 and a better activation of the transcrip-
tion factor AP-1. Both, AP-1 and NFAT form a quater-
nary complex during T-cell activation [70]. Second,
Pam3CSK4 is a more potent inductor of NFκB relative
to αCD3/αCD28. Third, Pam3CSK4 does not increase
the levels of cyclin T1 and induces low levels of pCDK9
whereas αCD3/αCD28 induce a strong increase of both,
cyclin T1 and pCDK9. These results demonstrate that
viral reactivation and cellular activation can be effectively
decoupled. Also, these differences can have implications
in the search for molecules that efficiently and safely re-
activate latent HIV-1 virus in the absence of massive T
cell activation. We hypothesized that those molecules
that specifically activate NFκB, NFATc1, a weak AP-1
and do not upregulate cyclin T1 will be more desirable as
anti-latency drugs than substances that induce a strong
NFATc2, AP-1, cyclin T1 and pCDK9 responses.

Conclusion
Our results show that Pam3CSK4 has the potential to
reactivate latent HIV-1 in TCM. These findings raise a
series of important questions for further study: can
Pam3CSK4 or other TLR agonists reactivate latent HIV
in other primary cell models; are NFAT, NFκB and AP-1
recruited to the LTR following Pam3CSK4 signaling;
why is the response to Pam3CSK4 heterogeneous in cells
isolated from patients? As agents that can induce the ex-
pression of latent HIV without mediating global T cell
activation are uncommon but highly valuable as poten-
tial drugs to attack the latent HIV reservoir, further
study and testing of Pam3CSK4 and its signaling path-
way is a high priority.
Although PAMPs are normally associated with infec-

tious agents, their ability to enhance immune responses
was documented in the context of cancer therapy a cen-
tury ago, when William Coley used bacterial components
named “Coley’s toxins” to treat cancer patients [71]. Since
then, several TLR agonists have been investigated for the
use in treatment of cancer; viral or bacterial infections; al-
lergy; asthma and autoimmunity (reviewed in [72]). In par-
ticular the triacylated lipopeptide outer surface protein A
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(OspA) of Borrelia burgdorferi, which is a TLR-1/2
agonist, has been previously clinically used as a vaccine
against Lyme disease with minor side effects (reviewed in
[73]). We suggest that triacylated lipopeptides and/or the
TLR-1/2 signaling pathway can be targeted toward future
development of anti-latency strategies, either alone or in
combination with others anti-latency drugs.

Methods
Reagents
The following reagents were obtained through the AIDS
Research and Reference Reagent Program, Division of
AIDS, NIAID: Human rIL-2 from Dr. Maurice Gately,
Hoffman-La Roche Inc. [74]; Monoclonal Antibody to
HIV-1 p24 (AG3.0) from Dr. Jonathan Allan [75]; and
Flavopiridol.

Generation of cultured TCM cells and their latent infection
Naïve CD4+ T cells were isolated via negative selection
from peripheral blood mononuclear cells (PBMC) from
healthy unidentified donors 18 years and older. Written
informed consent was obtained from all donors. These
studies are covered under the IRB #392 protocol ap-
proved by the University of Utah Institutional Review
Board. Cultured TCM were generated and infected as pre-
viously described [24].

Stimulation of cells
2.5×105 cells were left untreated or stimulated for three
days with the PRR agonists or beads coated with αCD3
and αCD28 (1 bead per cell, Dynal/Invitrogen, Carlsbad,
CA). PRR agonists were obtained from Invivogen (San
Diego, CA) and used at the concentration indicated:
Pam3CSK4 (10 μg/ml), Pam2CSK4 (200 ng/ml), FSL-1
(10 μg/ml), Poly (I:C) HMW (10 μg/ml), LPS (10 μg/ml),
flagellin (10 μg/ml), imiquimod (10 μg/ml), ssRNA40
(5 μg/ml), ODN2006 (5 μM), zymosan (200 μg/ml)
and lipoarabinomannan from Mycobacterium smegmatis
(LAM-MS) (10 μg/ml). TLR-2 agonist polysaccharide-A
(PSA) was kindly provided by June Round (Pathology
Department, University of Utah).
For inhibitors studies, cells were pre-incubated with

the indicated inhibitors for 2 hours before stimulation.
The inhibitors used were 1 μg/ml Cyclosporine-A (Sigma-
Aldrich, Saint Louis, MO); 0.8 μM BAY 11-7082 and
50 μM PD98059 (Calbiochem, San Diego, CA); 25 μM
SP600125 (A.G. Scientific Int., San Diego, CA); 50 nM and
100nM Flavopiridol (AIDS Research and Reference Re-
agent Program, Division of AIDS, NIAID).

Ex-vivo HIV-1 RNA reactivation assay
Frozen cells from 7 HIV-infected patients receiving
HAART with plasma viral load <50 copies/ml for at least
6 months and CD4 count of >350 ul-1 were used for the

ex-vivo HIV-1 RNA reactivation assay. A median of
50×106 frozen PBMCs were used to isolate CD4+ T cells
using CD4+ T cell isolation kit (Milteny Biotec). CD4+

T cells were incubated in media containing 10 ug/ml
Pam3CSK4 and 30 IU/ml IL-2, or 1uM Panobinostat
and 30 U/ml IL-2. A background control well was set
up with media supplemented with 30 U/ml IL-2. After
72 hours, total RNA was extracted and cDNA synthe-
sized. Unspliced HIV-1 RNA was quantified by real-time
PCR, using primers and probes previously described [76].
Data were normalized to the expression of the house-
keeping gene Actb (encoding b-actin). Results were
plotted as a fold change induction of HIV-1 RNA ex-
pression between the test well and the background
control well.

Quantitative viral outgrowth assay (Q-VOA)
Outgrowth assays were performed, as described previ-
ously [39]. Briefly, PBMC were obtained by continuous-
flow leukapheresis from HIV-infected volunteers re-
ceiving stable ART with plasma HIV-1 RNA less than
50 copies/ml and a CD4+ T cell count of more than
300 cells/ml. Resting CD4+ T cells were isolated by nega-
tive selection from PBMC and incubated in limiting
dilutions with Pam3CSK4 or IL-2 for 24–48 hours or
maximally stimulated with PHA-L, allogeneic irradiated
PBMC from a sero-negative donor, and rIL-2. Cultures
were fed twice with CD8-depleted PBMC, collected from
a CCR5 high sero-negative donor. Supernatant was col-
lected on days 15 and 19 and HIV p24 Gag antigen was
measured by ELISA. Cultures that maintained an equiva-
lent or greater level of p24 antigen on day 19 as on day
15 were scored as positive. A maximum likelihood method
was used to calculate the infectious unit per million resting
CD4+ T cells.

Flow cytometry analysis
Intracellular p24 Gag expression was analyzed as previ-
ously described [24].
Surface expression was determined using anti-human

CD281-PE (TLR-1, clone GD2.F4, eBioscience, San
Diego, CA), anti-human CD282-PE (TLR-2, clone TL2.1,
eBioscience, San Diego, CA), anti-human CD25-FITC
(Molecular Probes, Eugene, OR), anti-human CD69-FITC
(Molecular Probes, Eugene, OR), anti-human CCR7-APC
(R&D Systems, Minneapolis, MN) and anti-human CD27-
FITC (Molecular Probes, Eugene, OR)
To analyze cell division with Cell Proliferation Dye

eFluor 670 (eBioscience, San Diego, CA), cells were
stained as indicated by the manufacturer.
Flow cytometry was performed with a BD FacsCanto II

flow cytometer using the FACSDiva software (Becton
Dickinson, Mountain View, CA). Data was analyzed with
FlowJo (TreeStar Inc, Ashland, OR).

Novis et al. Retrovirology 2013, 10:119 Page 12 of 15
http://www.retrovirology.com/content/10/1/119



 40 

 
 

Intracellular calcium flux
Cells were loaded using Fluo-3 AM (Molecular Probes,
Eugene, OR) following manufacturer’s protocol and ana-
lyzed by flow cytometry. Cells were left at room temperature
in the dark, for 15 minutes. A 20 seconds baseline was
recorded prior to addition of the stimulus. After addition
of the stimulus cells were vortexed and analysis was
performed during additional 150 seconds. 20 ng/ml of
Ionomycin was used as a positive control.

Western blotting
To analyze phosphorylation, five million cultured TCM

were lysed using a lysis buffer containing 50 mM Tris–HCl
[pH 8], 150 mM NaCl, 1% NP-40, and 0.1% protease and
phosphatase inhibitors (Roche Diagnostics, Indianapolis,
IN) for 30 minutes at 4°C. Lysates were cleared by centrifu-
gation at 12000 rpm for 20 min at 4C.
To analyze nuclear translocation, five million cultured

TCM cells were washed in PBS and incubated with a cell
lysis buffer containing 5 nM PIPES [pH8], 85 mM KCl,
0.5% NP-40 and 0.1% protease and phosphatase inhibi-
tors for 30 min. After incubation, nuclei were pelleted
by centrifugation at 5000 rpm during 20 min at 4°C. Su-
pernatants were collected as cytoplasmic fractions. Nuclei
were washed once with PBS containing 0.1% protease and
phosphatase inhibitors and pelleted by centrifugation at
5000 rpm during 20 min at 4C. Nuclei were lysed with a
buffer containing 50 mM Tris [pH 8.1], 10 nM EDTA, 1%
SDS and 0.1% protease and phosphatase inhibitors and
boiled for 10 min at 100°C. Nuclear extracts were cleared
by centrifugation at 12000 rpm for 10 min at RT.
Proteins were separated on SDS-PAGE electrophoresis.

Western blotting was performed according to the standard
protocols. The following antibodies were used: p50, p65,
NFATc1, NFATc2, cJun, cFos and cyclin-T1 (Santa Cruz
Biotechnology, Santa Cruz, CA); total JNK, pJNK, total
ERK, pERK, total CDK9 and pCDK9 (Cell Signaling,
Danvers, MA); anti-β-actin antibody (Sigma-Aldrich, Saint
Louis, MO); anti-α-tubulin antibody (Santa Cruz Biotech-
nology, Santa Cruz, CA) and anti-histone H3 (Biolegend,
San Diego, CA).
Additional methods provided in Additional file 3.

Additional files

Additional file 1: Figure S1. Effects of TLR agonists in four cellular
models. (A) J-Lat 10.6 cells were treated with the toll-like receptors agonists
indicated between parentheses or PMA and assessed for GFP expression by
flow cytometry. (B) THP-1 cells were treated with the toll-like receptors
agonists indicated between parentheses or PMA and assessed for IL-8
expression by flow cytometry. (C) U1 cells were treated with the toll-like
receptors agonists indicated between parentheses or PMA and assessed for
intracellular p24 expression by flow cytometry. (D) ACH-2 cells were treated
with the toll-like receptors agonists indicated between parentheses or PMA
and assessed for intracellular p24 expression by flow cytometry.

Additional file 2: Figure S2. Effects of TLR-2 agonists in four cellular
models. (A) J-Lat 10.6 cells were treated with the TLR-2 agonists indicated
between parentheses or PMA and assessed for GFP expression by flow
cytometry. (B) THP-1 cells were treated with the TLR-2 agonists indicated
between parentheses or PMA and assessed for IL-8 expression by flow
cytometry. (C) U1 cells were treated with the TLR-2 agonists indicated
between parentheses or PMA and assessed for intracellular p24 expression
by flow cytometry. (D) ACH-2 cells were treated with the TLR-2 agonists
indicated between parentheses or PMA and assessed for intracellular p24
expression by flow cytometry.

Additional file 3: Supplemental Methods.
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ABILITY OF DYNASORE TO REACTIVATE LATENT HIV-1  

SYNERGISTICALLY WITH OTHER KNOWN  
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3.1 Abstract 

Viral persistence during therapy is the major barrier to eradicate HIV-1. 

Reactivation of the viral reservoir followed by viral clearance through cellular 

immunity and/or cytopathic effects has been proposed as a strategy towards a 

cure. Several latency-reversing agents have been developed to date. However, 

the magnitude of HIV expression induced by these single compounds has been 

modest and likely insufficient to purge the latent reservoir. The general thought in 

the field is that a combination of compounds may be more effective to reactivate 

and eliminate all the latent HIV-1 viruses in patients. We report here the ability of 

dynasore to reactivate latent HIV alone and in synergy with known LRAs, such as 

Pam3CSK4, SAHA, bryostatin-1 and JQ-1. Of note, this reactivation is achieved 

independently of the ability of dynasore to inhibit dynamin. 

 

3.2 Introduction 

Combinatory antiretroviral therapy (ART) introduced in the mid-1990s 

reduced mortality and morbidity of HIV patients by suppressing viral loads to 

undetectable levels [1]. However, despite the ability of ART to suppress HIV-1 

replication, a small population of latent but replication-competent viruses persists 

within the CD4+ memory T cell compartment [2-6].  

Several strategies have been proposed towards the elimination of this 

latent reservoir. Among those, the “shock and kill” strategy to reverse HIV-1 

latency is a promising candidate for a global therapy towards HIV-1 eradication. 

This strategy is based on two key steps [7]: First, eliciting transcription of HIV-1 
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genes from latently infected cells with a “shock” mediated by a latency-reversing 

agent (LRA); second, cell death of the reactivated cell through viral cytopathic 

effects or by immune effector mechanisms as CTLs or NK cells. 

HIV latency is a complex phenomenon controlled at different molecular 

levels. Due to its complexity, efficient latent reactivation may require a 

combination of multiple drugs. Combinatorial action of different LRAs has been 

previously described [8-12]. In this study, we demonstrate the ability of dynasore, 

a dynamin inhibitor, to reactivate HIV-1 alone or in synergy with other LRAs, such 

as Pam3CSK4, SAHA, bryostatin-1 and JQ-1 in JLAT. This reactivation is 

independent of dynasore’s ability to inhibit dynamin and it represents a novel 

pathway towards HIV-1 reactivation.  

 

3.3 Results 

3.3.1 Dynasore reactivates HIV-1 in latency 
 cell line models 

We have previously reported that Pam3CSK4, a TLR-2 agonist, can 

reactivate latent HIV-1 in cultured TCM and in cells isolated from aviremic patients 

[13]. In order to further investigate the signaling pathway that leads to viral 

reactivation mediated by triacylated lipopeptides, we engineered the tumoral cell 

line JLAT 10.6 [14] to express TLR-2 on the surface. To that end, we engineered 

the lentiviral vector pFIN-EF1-GFP-2A-mCherry-WPRE [15] to express TLR-2 in 

place of GFP. This reconstructed lentiviral vector encodes a single polyprotein 

consisting of a fusion of TLR-2 and mCherry, whose expression is driven by the 

elongation factor 1 (EF1) promoter (Figure 3.1A). The presence of the 2A protein 
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from porcine teschovirus-1 leads to ribosomal skipping and equimolar production 

of TLR-2 and mCherry [15]. We also constructed a vector that only encodes the 

mCherry protein, as a control. JLAT 10.6 cells were infected with the lentiviral 

vectors, and then mCherry expressing cells were sorted by FACS. Sorted cells 

infected with the lentiviral vector encoding TLR-2 showed over 30 times more 

surface expression of TLR-2 than cells infected with the lentiviral vector 

expressing only mCherry (Figure 3.1A, histograms). Most importantly, this 

modification rendered JLAT sensitive to the TLR-2 agonist Pam3CSK4 in a dose- 

dependent manner (Figure 3.1B). It is known that TLR-1/2 activates NF-κB via 

MyD88 and the subsequent formation of a complex with IRAK1/IRAK4 and 

TRAF6. This complex leads to the activation of the IKK complex through the 

kinase TAK1 and the phosphorylation and degradation of IκBα, leading to the 

activation and nuclear translocation of NF-κB [16]. Moreover, one of the 

mechanisms proposed by which triacylated lipopeptides can activate NF-κB is by 

internalization of TLR-2 to endosomal compartments in a process mediated by 

dynamin [17]. To test whether TLR-2 internalization has a role in viral reactivation 

mediated by Pam3CSK4, JLAT-mCherry or JLAT-TLR2-mCherry were treated 

with the dynamin inhibitor dynasore in the presence or absence of Pam3CSK4. 

As shown in Figure 3.2A, right panel, dynasore not only failed to inhibit 

reactivation by Pam3CSK4, but it induced viral reactivation on its own and 

enhanced the activity of Pam3CSK4. The reactivation effect of dynasore was 

independent of the presence of TLR-2 because it also occurred, to a similar 

degree, in cells not expressing TLR-2. Furthermore, dynasore alone had the 
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ability to reactivate latent HIV-1 in JLAT-mCherry in a dose-dependent manner 

(Figure 3.2B, black bars).  

Because of this unexpected result, we further evaluated whether dynasore 

alone had the ability to reactivate latent HIV-1 in different models of latency. We 

first assessed the activity of this compound in two other JLAT clones (10.6 and 

6.3) [14]. In JLAT 6.3, dynasore induced modest HIV reactivation at 

concentrations ranging from 12.5µM to 100 µM (Figure 3.3A). The maximal 

dynasore activity reached in clone 6.3 was about 16% of the activity of the 

positive control phorbol-myristate-acetate (PMA). In JLAT 10.6, PMA activated 

~75% of the cells and dynasore activated up to ~13%, reaching a plateau at 

12.5µM concentrations (Figure 3.3B). The JLAT clone 5A8 [12] was obtained via 

selection for increased responsiveness to anti-CD3 and anti-CD28 antibodies. 

PMA, in 5A8 cells, induced reactivation of ~33% of the cells. Under dynasore 

treatment, 5A8 cell line expressed GFP in increasing levels up to 100µM of 

dynasore (Figure 3.3C). The 2D10 cell line [18] carries a provirus with a 

hypomorphic mutation in Tat (H13L), which promotes viral entry into latency, still 

allowing HIV transcription to be inducible. The provirus in 2D10 cells can be 

efficiently induced by stimulation with PMA, resulting in ~95% of reactivation. As 

shown in Figure 3.3D, we observed induction of latently infected 2D10 cells by 

stimulation with dynasore in a dose-dependent manner, where 12.5 µM and 25 

µM reactivated ~75% of the cells,  
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These results indicate that dynasore has the ability to reactivate latent 

HIV-1 alone in several transformed cell models of latency and also enhancing the 

effect of Pam3CSK4 in JLAT-TLR2-mCherry cells. 

 

3.3.2 Dynasore synergize with other 
known latency reversing agents 

Due to the ability of dynasore to synergize with Pam3CSK4, we tested 

whether dynasore had also the ability to synergize with other LRAs. To that end, 

we selected three compounds belonging to three different classes of LRAs. First, 

we used suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) 

inhibitor known to reactivate latent HIV-1 in cell lines and in cells isolated from 

aviremic patients [19-22]. Inhibition of HDACs allows histone lysine acetylation in 

nucleosomes positioned at the HIV-1 long terminal repeat (LTR) [23]. As shown 

in Figure 3.4A, SAHA in combination with dynasore triggered 20% of cells to 

express GFP, while in the presence of the solvent DMSO alone, SAHA only 

induced ~6% of GFP expressing cells at 100nM concentration. At lower 

concentrations, SAHA reactivated to a higher degree when combined with 

dynasore. We also tested bryostatin-1, a protein kinase C (PKC) activator that 

targets HIV transcription through the AMP-activated protein kinase (AMPK) 

pathway [24]. Bryostatin-1 activates latent HIV in cell lines, primary CD4+ T cell 

models and patient cell outgrowth assays [24-26]. Dynasore enhanced the 

activity of bryostatin-1 by about 3-fold (Figure 3.4B). Furthermore, we tested the 

small molecule JQ1, an inhibitor of bromodomain. Bromodomain containing 4 

(BRD4) competes with Tat for interaction to P-TEFb at the HIV promoter. JQ1 
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increased HIV-1 transcription in cell line models of HIV latency and virus 

outgrowth from cultured CD4+ T cells [27, 28]. Dynasore enhanced JQ1 

reactivation signal from 2% of cells expressing GFP to 6.5% in the lower JQ1 

concentration, 50nM (Figure 3.4C). 

To evaluate whether dynasore acts synergistically with the above drugs, 

we used the Bliss independence drug interaction analysis [29]. The Bliss model 

is based on probability theory and assumes that when two drugs are 

independent, the expected (FEXP) combinatorial effect should be the sum of the 

two fractional responses minus their product [(FA+FB)-(FA*FB)]. The interaction of 

each combination is described by the difference between the observed and the 

expected response (ΔF=FOBS-FEXP). Bliss independence analysis yields 

synergistic (ΔF > 0), independent (ΔF = 0) or antagonistic (ΔF < 0) combinatorial 

interactions. According to the Bliss model, synergy was found for the combination 

of bryostatin-1 (33nM, 100nM or 330nM) + dynasore (12.5nM), for which the 

observed combined drug effect was 2.4-, 1.8- and 1.7-fold higher, respectively, 

than expected in the absence of synergy. In addition, SAHA was found in 

synergy with dynasore at two concentrations (330nM and 1µM). The 

bromodomain inhibitor JQ1 synergized with dynasore at all three concentrations 

tested. The analysis of combinatorial drug interaction is summarized in Table 3.1. 

 

3.3.3 Dynamins do not participate in reactivation  
of latent HIV 

Dynasore is a noncompetitive inhibitor of dynamin 1, dynamin 2 and 

dynamin–related protein 1 (Drp1), the mitochondrial dynamin. Discovered in a 
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high-throughput screen of ~16,000 compounds, dynasore inhibits GTP hydrolysis 

without interfering with the binding of GTP to dynamin [30].  

Dynamin belongs to the GTPase family and its main function is to excise 

newly formed vesicles during endocytosis [31]. There are three dynamin genes in 

the mammalian genome, which share domain organization but are differentially 

expressed. Dynamin 1 is predominantly expressed in neurons (pre-synapses), 

dynamin 2 is ubiquitous and dynamin 3 is found mostly in testis, brain and lungs 

[32, 33]. Their structure comprises a large GTPase domain (~300 amino acids) 

that binds and hydrolyzes GTP, a middle and a GTPase effector domain (GED) 

involved in oligomerization and increase of GTPase activity, a pleckstrin-

homology (PH) domain that binds to phospholipids therefore important for 

interaction with lipid membranes and a proline-rich domain (PRD) at the carboxy-

terminus that allows interaction with Src-homology-3 (SH3) domain proteins [31] 

(Figure 3.5A). Dynamin-related protein 1 (drp1) lacks the proline-rich domain and 

it is involved in mitochondrial division [34, 35]. 

There is a vast array of published dynamin modulators, which have 

different target domains, mechanisms of action and potencies. In an effort to 

validate the role of dynamin in the reactivation of HIV by dynasore, we tested 

several inhibitors for their ability to reactivate latent HIV-1. We tested the GTPase 

inhibitors Iminodyn-22 and Sertraline hydrochloride [36, 37], the phospholipid 

binding (PH) inhibitors MiTMAB and RTIL-13 [38, 39] and the dual GTPase and 

PH inhibitor Pyrimidyn-7 [40]. None of these inhibitors showed any activity 

towards reactivating latent HIV-1 (Figure 3.5B, C). We also tested Mdivi-1, a 
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selective inhibitor of Drp1 assembly on mitochondria [41]. Mdivi-1 did not induce 

any significant HIV activation in JLAT 10.6 (Figure 3.5D). Finally, we tested the 

dynasore analogue, dyngo 4a. Dyngo 4a inhibits dynamin and endocytosis with 

37-fold higher potency when compared with dynasore [42]. Dyngo 4a showed 

modest but higher activity than dynasore at concentrations below 5µM, but 

plateaued at 2.5% reactivation activity, whereas dynasore’s effect increased 

gradually to reach a plateau at 12% (Figure 3.5E). In summary, as shown in 

Figure 3.5, none of the dynamin inhibitors, other than dynasore, efficiently 

reactivated HIV-1 in JLAT. 

Data shown in Figure 3.5 indicate that dynasore can reactivate latent HIV 

by a mechanism independent of its role against dynamin. To further characterize 

or rule out the role of dynamin in HIV latency, we knockdown dynamin 2, the 

ubiquitously expressed member, and drp1, the mitochondrial fission protein, in 

JLAT cells by nucleofection using siRNAs. Cells nucleofected with siRNA against 

DNM2 or DRP1 reduced dynamin 2 or drp1 expression compared with cells 

nucleofected with siRNA Control (Figure 3.6A).  As depicted in Figure 3.6B, 

knockdown of dynamin 2 and drp1 was not sufficient to induce HIV-1 expression 

in JLAT cells. Finally, neither dynasore nor PMA reactivation was altered by 

dynamin 2 or drp1 knockdown (Figure 3.6C). 

Taken together, these results suggest that the latency reversing effect of 

dynasore utilizes a mechanism that is independent of dynamin inhibition. This 

result is in agreement with previously published data, which showed that 

dynasore has off-target effects [43].  
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3.3.4 Dynasore requires NF-κB, JNK and Calcium  
influx to trigger viral reactivation 

We next addressed the molecular mechanisms by which dynasore 

induces HIV reactivation. Nuclear factors such as NF-κB, NFAT, SP1 and AP1 

have binding sites on the 5’ LTR of HIV and have been shown to be required for 

HIV-1 transcription [44-48]. First we tested the role of NF-κB in viral reactivation 

mediated by dynasore. To that end, we incubated cells with the chemical inhibitor 

of NF-κB, BAY 11-7092 (IκBα phosphorylation inhibitor).  As shown in Figure 

3.7A, BAY 11-7092 (1µM) blocked an average of 40% of viral reactivation 

induced by dynasore. Known LRAs, prostatin, bryostatin and ingenol, antagonize 

HIV latency through PKC-mediated activation of NF-κB [24, 49, 50]. 

Bisindolylmaleimide (BIM) is a global inhibitor of PKC. To assess the potential 

role of PKC, cells were incubated with BIM and then challenged with dynasore or 

PMA.  BIM abrogated HIV reactivation mediated by PMA in a dose-dependent 

manner. In contrast, PKC inhibition did not affect dynasore-induced reactivation. 

Unexpectedly, 5µM concentration of BIM increased viral reactivation in both 

dynasore and DMSO control treated cells (Figure 3.7B).   

Dynasore has been shown to induce JNK phosphorylation in human 

pleural mesothelial cells [51]. JNK phosphorylation activates c-Jun, a member of 

the AP-1 transcription factor (reviewed in [52]). Therefore, we decided to explore 

whether JNK is required for dynasore-induced viral reactivation. To that end, we 

used SP600125, a selective  inhibitor of JNK.  As shown  in  Figure 3.7C, 

SP600125 decreased viral expression induced by dynasore about 36%, while it 

had no effect on PMA-induced viral expression.  
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NFAT is considered an important regulator of HIV transcription [45, 53]. 

Intracellular calcium activates calcineurin, which dephosphorylates NFAT, 

enabling it to translocate to the nucleus. It has been recently reported that 

calcium/calcineurin axis can also activate HIV latently infected T cells through 

NF-κB [12]. Interestingly, the calcium chelator BAPTA-AM was able to reduce 

viral reactivation induced by dynasore while the calcineurin inhibitors (FK506 and 

cyclosporine A) did not have a significant effect (Figure 3.7D and data not 

shown). These data, taken together, suggest that dynasore mediates viral 

reactivation in an NF-κB-dependent manner by a mechanism independent of 

PKC but dependent on the calcium/calcineurin axis. Further studies are required 

to delineate the role of NF-κB in dynasore-mediated reactivation.  

Finally, dynasore but not PMA-mediated viral reactivation was abrogated 

by Rapamycin (Figure 3.7E). Rapamycin is a pharmacological inhibitor of mTOR, 

an important kinase regulator of ribosome biogenesis, protein synthesis and cell 

cycle progression (reviewed in [54]). How mTOR regulates reactivation from 

latency is currently unknown and further experimentation will be needed to 

address the specific role of mTOR in this pathway. 

 

3.4 Conclusion 

A growing number of agents capable of reactivating HIV-1 from latency 

have been described. Clinical trials using latency-reversing agents are ongoing 

and efforts to understand the complex machinery behind efficiently activating 

silent HIV-1 proviruses continue. Reports showing that single agents in vitro are 



	
  

	
  

54	
  

not powerful enough to purge completely the latent viral reservoir [55-57] led to 

increased interest in testing drug combinations. 

Drug combinations are extensively used to treat diseases, such as 

cancer and AIDS, because multiple drugs affect numerous targets, resulting in an 

efficient treatment. Additionally, synergy is designated as the combined action of 

two drugs in a manner that produces a greater effect than the sum of the effects 

of the drugs alone. Our results reveal that dynasore has the ability to reactivate 

latent HIV-1, and this effect is greater when dynasore synergizes with SAHA, 

bryostatin and JQ-1. Dynasore requires NF-κB, JNK and calcium influx to 

activate transcriptionally silent HIV. However, common targets of dynasore, 

dynamin and drp1 are not necessary for proviral reactivation. Further 

investigation of dynasore off-target ability in HIV reactivation could lead us to 

uncovering a novel mechanism for reactivating HIV. 

 

3.5 Materials and Methods 

3.5.1 Cell lines 

2D10 cells were provided by Dr. Jonathan Karn. The 2D10 cells contain a 

HIV-1 genome with GFP inserted in the place of nef and carry the H13L mutation 

in Tat which helps to promote proviral entry into latency but still allows HIV 

transcription [18]. Jurkat cells stably infected with LTR-Tat-IRES-GFP vector (A7) 

and LTR-IRES-GFP (A72) were acquired from the NIH AIDS Reagent Program, 

Division of AIDS, NIAID, NIH. JLat 10.6 and JLat 6.3 cells were provided by Dr. 

Eric Verdin and contain a full-length HIV-1 genome with a frameshift in env that 
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restricts the insert from producing env or nef [14].  JLAT 5A8 were provided by 

Dr. Jonathan Karn and were selected to be responsive to aCD3aCD28. All cell 

lines were cultured in RPMI 1640 with 10% FBS, 1% penicillin-streptomycin and 

1% L-glutamine (Invitrogen). Cell cultures were maintained at 37°C under 5% 

CO2. 

 

3.5.2 Stimulation of cells 

0.3x106 cells were left untreated or treated with DMSO (Fischer Scientific), 

dynasore (Santa Cruz Biotechnology), Pam3CSK4 (Invivogen, San Diego, CA), 

phorbol-myristate-acetate (PMA), SAHA (Sigma-Aldrich, Saint Louis, MO), 

bryostatin (Enzo Life Science, Farmingdale, NY) and JQ1 (Cayman Chemicals, 

Ann Arbor, MI). 

For inhibitors studies, cells were pre-incubated with the indicated inhibitors 

for 2 hours before stimulation. The inhibitors used were BAY11-7082, 

bisindolylmaleimide II (BIM) (Calbiochem, San Diego, CA), Rapamycin from S. 

hygroscopicus (Sigma-Aldrich, Saint Louis, MO), SP600125 (A.G. Scientific Int., 

San Diego, CA), BAPTA-AM (Enzo Life Science, Farmingdale, NY), MiTMAB, 

Midivi-1 (Tocris, Bristol, UK), Iminodyn-22trade, Sertraline hydrochloride, RTIL-

13 and Pyrimidin-7 (Abcam, Cambridge, MA). 

 

3.5.3 Flow cytometry analysis 

GFP and mCherry fluorescence were measured in a BD FACSCanto II 

analyzer and cells were sorted in a BD FACSAria II. TLR-2 surface expression 
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was determined using anti-human CD282-APC and isotype control (Biolegend, 

San Diego, CA) measured in a BD FACSCanto II flow cytometer. Data were 

analyzed using FlowJo (TreeStar Inc, Ashland, OR). 

 

3.5.4 Transfection of siRNAs 

JLAT 10.6 cells were transfected with 200nM siRNA corresponding to the 

DNM2 mRNA, DRP1 or nontargeting control siRNA (siGENOME, Dharmacon) by 

electroporation twice within 24 hours using Amaxa Nucleofector Kit V and 

program C-16 (Amaxa Biosystems). 24 hours after second nucleofection, cells in 

each siRNA condition were collected for flow cytometry analysis and lysed for 

western analysis. 

 

3.5.5 Western blotting 

To analyze gene knockdown, cells were lysed with whole-cell extract 

buffer containing 20mM Tris HCl [ph 6.8], 2% SDS and 1mM EDTA for 15 

minutes at 100oC. Lysates were cleared by centrifugation at 1200 rpm for 10 

minutes at 4oC.  

Proteins were separated on SDS-PAGE electrophoresis. Western blotting 

was performed according to the standard protocols. The following antibodies 

were used: anti-dynamin2 (Abcam, Cambridge, MA), anti-drp1 (Santa Cruz 

Biotechnology, Santa Cruz, CA)  anti-β-actin antibody (Sigma-Aldrich, Sain 

Louis, MO). 
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3.5.6 Drug interaction analysis 

Bliss independence is derived from a probability theory and is used to 

explain the combined effect of two drugs [29] . This model is defined by the 

equation: FEXP=(FA+FB)-(FA*FB), for 0<E<1 and where FEXP is the additive 

expected effect of drugs A and B. The difference between the observed (FOBS = 

percentage of cells expressing GFP after treatment with drug A (FA) or drug B 

(FB) and the expected response (ΔF=FOBS-FEXP) determines the interaction. Bliss 

independence analysis describes synergistic (ΔF > 0), independent (ΔF = 0) or 

antagonistic (ΔF < 0) interactions for each combination of drugs.   
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Figure 3.1: TLR-2 overexpression rendered JLAT highly sensitive to HIV-1 
reactivation mediated by Pam3CSK4. 
 
(A) Lentiviral vector structure diagram. TLR-2 surface expression (black lines) in 
JLAT cells after infection with lentiviral vectors and sorting of mCherry expressing 
cells (JLAT-TLR2-mCherry and JLAT-mCherry). Grey histograms are the isotype 
control. (B) Percentage of GFP expressing cells in JLAT-TLR2-mCherry and 
JLAT-mCherry after incubation with increasing concentrations of Pam3CSK4 and 
PMA. All data analyzed by flow cytometry. MFI = mean fluorescence intensity.  
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Figure 3.2: Dynasore reactivates latent HIV-1 alone and in combination with 
Pam3CSK4. 
 
(A) Reactivation of latent HIV-1 in JLAT-TLR2-mCherry or JLAT-mCherry by 
combinations of Dynasore, Pam3CSK4 and PMA. (B) Percentage analysis of 
GFP expressing and live JLAT 10.6 cells after incubation with solvent DMSO or 
increasing concentrations of dynasore. All data analyzed by flow cytometry. Bar 
graph corresponds to mean and standard deviation of experiments performed in 
triplicates. Significance was calculated by 2-tailed paired samples t test analysis 
(*<0.05, **<0.01, ***<0.001, ns = not significant). 
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Figure 3.3: HIV activation by dynasore and PMA in four cell models of 
latency. 
 
(A) J-LAT 6.3, (B) J-LAT 10.6, (C) 5A8 and (D) 2D10 cell lines were treated with 
increasing concentrations of dynasore and with PMA. % of cells expressing GFP 
expression was assessed by flow cytometry. Bar graph corresponds to mean and 
standard deviation of experiments performed in triplicates. Significance was 
calculated by 2-tailed paired samples t test analysis (*<0.05, **<0.01, ***<0.001, 
ns = not significant). 
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Figure 3.4: Reactivation of latent HIV-1 by treatment with dynasore in 
combination with SAHA, bryostatin and JQ-1. 
 
(A) Effect in HIV-1 reactivation after treatment with increasing concentrations of 
SAHA, (B) bryostatin and (C) JQ1 with solvent or with dynasore (12.5µM) 
assessed by flow cytometry. Bar graph corresponds to mean and standard 
deviation of experiments performed in triplicates. Significance was calculated by 
2-tailed paired samples t test analysis. 
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Figure 3.5: Effects of dynamin-domain inhibitors, drp1 inhibitor and a 
dynasore analog in the reactivation of latent HIV-1. 
 
(A) Domain architecture of dynamin. (B) JLAT 10.6 cells were treated with 
dynasore, GTPase inhibitors, (C) lipid binding pleckstrin-homology (PH) domain 
inhibitor, dual (GTPase and PH domain) inhibitors and (D) drp1 specific inhibitor; 
percentage of cells expressing GFP was assessed by flow cytometry. Untreated 
cells (white bar), PMA (black bar) and DMSO (diagonal hatched bar) data were 
also assessed. (E) Dynasore and dyngo 4a (dynasore analog) effect on HIV 
reactivation in JLAT 10.6 cells was assessed by flow cytometry. Graphic plots 
show percentage of GFP expressing cells over DMSO and relative to PMA. Bar 
graph corresponds to mean and standard deviation of experiments performed in 
triplicates. Significance was calculated by 2-tailed paired samples t test analysis; 
ns = not significant. 
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Figure 3.6: HIV expression is not modified by the knockdown of DNM2 or 
DRP1. 
 
(A) Immunoblot analysis of dynamin-2 (DNM2) and drp1 knockdowns in JLAT 
10.6 cell line. Negative control siRNA and siRNA against DNM2 and DRP1 were 
introduced into JLAT cell by Amaxa nucleofection twice. After 24 hours, cells 
were either lysed for western blot analysis, (B) analyzed by flow cytometry (C) or 
incubated with/out DMSO, dynasore and PMA for 24 hours, and collected for flow 
cytometry analysis. Data are representative of two experiments. 
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Figure 3.7: Characterization of dynasore signaling associated with HIV-1 
reactivation from latency.  
 
(A) 2D10 cells were pre-incubated with increasing concentrations of BAY11-7082, 
(B) BIM, (C) SP600125, (D) BAPTA-AM and (E) Rapamycin for 2h before 
stimulation with/out DMSO, dynasore and PMA. Percentage of GFP expressing 
cells was analyzed by flow cytometry. Bar graph corresponds to mean and 
standard deviation of experiments performed in triplicates. Significance was 
calculated by 2-tailed paired samples t test analysis (*<0.05, **<0.01, ***<0.001, 
ns = not significant). 
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Life expectancy of HIV infected patients has dramatically improved with 

the introduction of antiretroviral therapy (ART). However, ART alone is not able 

to eradicate the virus, which persists dormant within reservoirs [1-3] from where it 

will re-emerge after treatment interruption [4-7]. Currently, there are no available 

therapies that target the latent form of the virus, thus depletion strategies have 

been proposed. It is speculated that reversing the latency state of the virus will 

induce clearance of virus-infected cells through cell cytotoxicity or host immune 

effector responses [8].  

The research presented in this dissertation provides insight into emerging 

strategies to purge the HIV reservoir, specifically in regards to the reactivation of 

transcriptionally silent viruses. 

In Chapter 1, the contribution of toll-like receptor (TLR) agonists toward 

HIV-1 latency eradication is reviewed. First, the two major mechanisms of 

maintenance of latency by quiescent CD4+ T cells are explained. Epigenetic 

markers, such as histone acetylation, histone methylation and DNA methylation, 

are defined and the compounds reported to enable reversing of these 

epigenetics modifications are described. The lack of transcription factors is the 

second main contributor to HIV latency. Several protein kinase C (PKC) 

activators were reported to induce HIV transcription, through activation of the 

transcription factor NF-κB. Furthermore, the TLR-mediated NF-κB signaling 

capacity to perform activation of HIV in latently infected cells is described, in 

addition to an overview of TLR receptors, agonists and signaling pathways. 

Finally, in Chapter 1, a literature review is presented, elucidating the agonists of 
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TLRs capable of HIV reactivation and HIV-host immune responses regulation. 

Chapter 2 consists of a report from our group, in which the TLR-2 agonist, 

Pam3CSK4, was reported as an activator of transcriptionally latent HIV[9]. 

Pam3CSK4 signaling involved in HIV reactivation requires NF-κB, AP-1 and 

NFAT transcription factors, and it depends on Tat protein. In addition, 

Pam3CSK4 triggers phosphorylation of CDK9, in the presence of constant 

concentration of Cyclin T1. Most significantly, Pam3CSK4 reactivates HIV in the 

absence of cell activation and/or proliferation [9].   

 Another important point to mention is that TLR agonists have been 

investigated for the treatment of cancer, allergies, and viral infections and as 

vaccines adjuvants. Several clinical trials with TLR agonists already resulted in 

drugs being FDA approved [10, 11].  

Latency is driven by a multifactor and complex mechanisms. Purging 

therapies targeting multiples targets required for maintenance of the silent 

provirus will likely be more successful than single target approaches. Chapter 3 

unveils a novel activator of HIV, dynasore. Dynasore reactivates HIV in cell line 

models of latency and requires NF-κB, JNK and calcium influx. A synergistic 

effect on reactivation from latency is observed when dynasore is combined with 

known latency-reversing agents, such as Pam3CSK4, SAHA, Bryostatin-1 and 

JQ1. Exploration of dynasore anti-latency effect in clinical research and a more 

detailed investigation of dynasore reactivation signal should be evaluated. 

The content of this dissertation presented two novel mechanisms that 

trigger transcription of the latent HIV provirus (Chapter 2 and 3). A review of the 
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literature about the association between TLR agonists and HIV latency (Chapter 

1) has never been published, which will bring the attention to a greater number of 

researchers. Unraveling new anti-latency compounds and understanding their 

mechanisms of action in reactivation of latent HIV-1 and modulation of cellular 

immunity will likely increase chances to achieve efficient therapeutic strategies.  
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A.1 Abstract 

HIV-1 latently infected cells in vivo can be found in extremely low 

frequencies.  Therefore, in vitro cell culture models have been used extensively 

for the study of HIV-1 latency. Often, these in vitro systems utilize defective 

viruses. Defective viruses are appealing choices as they allow for synchronized 

infections and circumvent the use of antiretrovirals. In addition, replication-

defective viruses cause minimal cytopathicity because they fail to spread and 

usually do not encode env or accessory genes. On the other hand, replication-

competent viruses encode all or most viral genes and better recapitulate the 

nuances of the viral replication cycle.  The study of latency with replication- 

competent viruses requires the use of antiretroviral drugs in culture, and this 

mirrors the use of ART in vivo.  

We describe a model that utilizes cultured central memory CD4+ T cells 

and replication-competent HIV-1. Viral replication is blocked by antiretroviral 

drugs present in the culture medium prior to, during and after viral reactivation. 

This method generates latently infected cells that can be reactivated using 

latency reversing agents in the presence of antiretroviral drugs.  We also 

describe a method for removal of productively infected cells prior to viral 

reactivation, which takes advantage of the down-regulation of CD4 by HIV-1.  

The in vitro HIV-1 latency model described here provides added relevance 

to in vivo latent HIV-1 through the use of replication-competent HIV-1, which is 

suppressed by antiretroviral drugs.  This method is suitable for the study of 
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factors that influence the establishment of latency as well as those required for 

reversing latency. 

 

A.2 Introduction 

The existence of cellular reservoirs where HIV-1 resides in a latent state 

constitutes a formidable barrier towards eradication of viral infection despite the 

ability of combination antiretroviral therapy (ART) to durably suppress viral 

replication and restore the circulating CD4+ T cell population [1-3]. One of the 

major known cellular reservoirs is established in quiescent central memory CD4+ 

T cells [4, 5]. Reactivation of latent viruses followed by killing of the infected cells 

has been proposed as a possible strategy (“shock and kill”) to purge the latent 

reservoir [6]. The interest in discovering signals that will induce latent proviruses 

through the introduction of latency-reversing agents (LRAs) has prompted the 

development of in vitro cellular models for the study of viral latency and 

reactivation from latency [7-19].  

In an effort to recapitulate latency in the CD4+ central memory T cell 

subset (TCM), we developed a latency model [13, 20] in which naïve cells from 

the peripheral blood of healthy donors are activated and polarized in vitro to 

direct differentiation into TCM. In vitro culture of these cells in the presence of IL-2 

leads to the acquisition of a quiescent phenotype [20]. We initially utilized an 

envelope-defective proviral construct, which was pseudotyped with a second 

plasmid encoding a full-length HIV-1 envelope glycoprotein gene. This system 

was designed to circumvent the use of antiretrovirals because the virus was 
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engineered to be replication-defective. However, we have identified two reasons 

that prompted us to explore the use of replication-competent viruses. First, we 

wanted to create an in vitro model that more closely resembles that of the in vivo 

environment in which replication-competent virions with the entire HIV-1 genome 

are present, and in which latency is maintained in the presence of ART. This will 

allow for more accurate predictions of the efficacy of candidate LRAs to support 

future HIV-1 eradication clinical trials. Second, as we recently reported [21], we 

have documented a recombination event between the proviral construct and the 

envelope glycoprotein construct, leading to the production of an unexpected 

replication-competent virus in culture.  

To address these goals, we here describe two unique modifications of a 

previously published latency model [13].  

 

A.3 Results and Discussion 

A.3.1 Infection of cultured TCM cells with HIV-1NL4-3 results  
in latently infected cells that can be reactivated 

In order to characterize the effects of replication-competent HIV-1 and 

ART on the establishment of latent HIV-1 and on reactivation of latently infected 

cells, we developed an in vitro cell culture method based on infection of cultured 

TCM cells with replication-competent viruses. We selected HIV-1NL4-3, an X4-tropic 

virus that encodes a complete HIV-1 genome [22]. We decided to used an X4-

tropic virus due to the lack of CCR5 expression in cultured TCM cells [13]. 

Cultured TCM cells were generated as previously described [13, 20, 23].  Briefly, 

naïve CD4 T cells were activated for three days, and then cultured for an 
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additional four days in medium containing 30 IU/mL of IL-2 to ensure 

maintenance of cell viability. Cells were infected with HIV-1NL4-3 by spinoculation 

at day 7 (Figure A.1) [13, 20, 23]. Following inoculation of the culture with HIV-

1NL4-3, viral spread to uninfected cells was allowed to continue for 6 days. 

Because cell-to-cell transmission of HIV-1 is highly efficient in vitro [24], we 

incorporated a “cell crowding” step into the culture protocol as described in the 

Materials and Methods section. In this method, cells are cultured in round-bottom 

wells, which allow them to be highly concentrated by gravity, in contrast to culture 

in flasks, in which cells are not confined to a small surface area. We estimate, 

based on surface area, that culturing in a round-bottom 96-well plate with a 

density 105 cells/100 mL/well relative to a 25 cm2 culture flask results in an 

increase in number of cells/cm2 of between 15- and 20-fold. To test utility of 

crowding cells, we used HIV-1NL4-3-infected cells from five blood donors, and 

crowded cells between days 10 and 13 (Figure A.1A, protocol B) or cultured the 

cells in standard culture flasks (Figure A.1A, protocol A). Culturing under 

crowded conditions (protocol B) resulted in a 65 +/- 8% increase in the frequency 

of productively infected cells at day 13 (Figure A.1B). However, we also found 

that after continued culturing for an additional 6 days, cells in the crowded 

condition (protocol B) contained 36 +/- 20% fewer viable cells than those cultured 

in standard culture flasks (protocol A; Figure A.2).  

ART was introduced to the cultures, starting at day 13 and maintained for 

the remainder of the experiment. ART consisted of either 1 mM Raltegravir and 

0.5 mM Nelfinavir; or 1 mM Nelfinavir. We assessed the effectiveness of ART 
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treatment to block new infections by using MT2 cells [25], a highly permissive cell 

type to X4-tropic HIV-1, as indicators. Culture supernatants from HIV-1NL4-3 

infected (or uninfected control) cells at day 17 were isolated and incubated with 

fresh MT2 cells, cultured for 48 hours, and then evaluated for intracellular p24 

(ICp24) by flow cytometry. As shown in Figure A.3, supernatants from primary 

cell cultures containing ART did not result in intracellular ICp24 levels that were 

higher than background detection levels (< 0.05% ICp24+ cells) from uninfected 

cell supernatants. In contrast, culture supernatants from ART-negative cultures 

resulted in very high levels (63%) of intracellular ICp24+ MT2 cells.  We, 

therefore, conclude that concentrations of ART in our cultures are sufficient to 

block additional infections. 

To evaluate latent infection in these cultures, we applied strong 

reactivating conditions (aCD3/aCD28 treatment) during days 17 and 18. 

Following this 48 hour treatment, cells were analyzed for ICp24. We compared 

the percentages of ICp24+ cells in the absence of reactivation conditions (IL-2 

alone) with those in the presence of reactivation (IL-2 + aCD3/aCD28). Because 

virus spread was effectively suppressed, we conclude that any increase in the 

frequency of ICp24+ cells after aCD3/aCD28 treatment would be solely due to 

reactivation of latently infected cells and not to viral spread. We found that cells 

that were crowded (protocol B) produced the highest frequency of latently 

infected cells, as evidenced by the 3.8-fold increase in levels of viral reactivation 

(Figure A.1C). Furthermore, the frequency of cells that reactivate latent virus 

following stimulation with aCD3/aCD28 is directly proportional with the frequency 
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of productive infection measured at day 13, and inversely proportional to cell 

viability (data not shown). 

 

A.3.2 Removal of productively infected cells 
using magnetic bead isolation 

HIV-1NL4-3–infected cultures that were not stimulated with aCD3/aCD28 

contained significant numbers of productively infected cells (i.e., ICp24+) in 

addition to latently infected cells. Therefore, the actual number of cells containing 

reactivated viruses should be calculated by subtracting the number of cells that 

were productively infected prior to reactivation from the number of cells that were 

productively infected after reactivation. However, for the purpose of 

characterizing genomic, transcriptional or proteomic features of latently infected 

cells, it would be ideal if productively infected cells could be removed from the 

cultures. To that end, we adopted a previously described magnetic isolation 

method to remove productively infected cells (“P”) [26], based on the ability of 

HIV-1 to down-regulate CD4 [27-29]. We, therefore, isolated cells expressing 

high levels of cell surface CD4, which would contain both uninfected (“U”) and 

latently infected (“L”) cells (Figure A.4A). This procedure rendered a purity of 

98.5 +/- 1.5% of CD4+ICp24(-) cells (Figure A.4B) for a representative donor of 

nine donors. Latently infected cells and uninfected cells constitute the positive 

fraction (UL) binding to the magnetic beads as they express high levels of CD4, 

whereas productively infected cells (“P”) express extremely low levels of CD4 

(Figure A.4A). 
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We then treated cells in the UL fraction with aCD3/aCD28 beads + IL-2 or 

with IL-2 alone (baseline) for 48 hours. After reactivation, cells were collected 

and analyzed for ICp24 expression (Figure A.4C) and cell associated (CA) HIV-1 

RNA (Figure A.4D). Upon stimulation with aCD3/aCD28, ICp24+ cells 

consistently increased relative to IL-2 alone (Figure A.4C).  The increase in the 

protein levels was concomitant with increased levels of cell-associated HIV-1 

RNA (Figure A.4D).  

Viral reactivation with aCD3/aCD28 in the absence of ART led to viral 

spread in the culture (Figure A.5). Levels of ICp24+ cells (Figure A.5A) and cell-

associated HIV-1 RNA (Figure A.5B) increased with aCD3/aCD28 treatment with 

levels that are dramatically higher than that observed for samples cultured in 

ART.  

 

A.3.4 Infection of cultured TCM cells with a replication-competent 
GFP variant of HIV-1NL4-3 results in latently infected 

cells that can be reactivated 

In order to facilitate drug discovery efforts, for which higher cell numbers 

and more rapid assessment of latency reversal is desired, we modified the above 

model as follows. We use the HIV-1NL4-3–derived construct, HIV-1 NLENG1-IRES 

[30], in which the EGFP coding sequence followed by an IRES element were 

inserted between the env and nef genes (Figure A.6A). Cells infected with HIV-1 

NLENG1-IRES were crowded for the entire 6-day viral spread period to 

accommodate slower replication of this virus (Figure A.6B). On day 13, 2 mM 

Raltegravir was added to cultures.  On day 14, cells were treated with IL-2, IL-2 + 
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aCD3/aCD28 beads or IL-2 + PHA for 48 hours and EGFP expression was 

measured by flow cytometry (Figure A.6C). Treatment with aCD3/aCD28 beads 

resulted in increased production of EGFP+ cells in all 9 samples. PHA treatment 

also generated increased production of EGPF+ cells for five out of the nine blood 

donor samples tested. 

 

A.4 Conclusions 

We describe here a primary T cell in vitro model for studying HIV-1 latency 

using replication-competent virus that is suppressed by the addition of ART.  In 

contrast to previous models used for the study of HIV-1 latency that employ 

pseudotyped virions engineered to undergo a single round of replication, this 

assay permits the use HIV-1 that expresses the entire HIV-1 genome.  It is 

unclear whether HIV-1 accessory genes influence the establishment of latency or 

the reactivation of latent proviruses.  However, it is known that upon reactivation, 

HIV-1 accessory genes are predicted to downregulate cell surface markers, such 

as CD4, tetherin, MHC I, NTBA, CCR7 and CD1d, [27-29, 31-35].  Since it is now 

clear that reactivation of latent HIV-1 is not always followed by recognition by 

immune surveillance mechanisms [36], the actions of accessory proteins during 

the process of reactivation must be taken in consideration when testing for CTL 

and NK killing. 

The use of a replication-competent virus allows us to achieve high viral 

titers within our cultures because multiple rounds of replication and infection of 

new cells occur during the six days infection/spread period.  New infections are 
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facilitated during the second half of the infection by crowding the cells, which 

would facilitate cell-to-cell spread of HIV-1 throughout the culture. This condition 

is reminiscent of cell crowding that occurs in lymph nodes. The increase in 

productive infection that we observe is proportional to the number of latently 

infected cells that can be reactivated.  However, we also see a proportional 

decrease in cell viability as a result of increased viral titers. 

To facilitate drug discovery efforts, we describe the use of a replication-

competent HIV-1 that expresses EGFP. Detection of HIV-1 reactivation with this 

virus does not require cell fixation or staining,  but simply direct flow cytometric 

analysis. Therefore, the use of the HIV-1 NLENG1-IRES virus would be ideal for 

medium- or high-throughput screens.  

One disadvantage of using replication-competent viruses for the study of 

latency is that, as observed in our system, there is a background of productively 

infected cells that complicates the study of the latent infections. We show that 

this can be overcome by the removal of CD4(-) cells via magnetic bed isolation. 

The result is a population containing both uninfected and latently infected cells, 

but mostly devoid of productively infected ones. Therefore, studies aimed at 

documenting the presence or absence of transcription factors and co-activators 

at the HIV LTR, as well as studies on the cellular transcription profiles of latently 

infected cells, can be undertaken with minimal contamination from productively 

infected cells. 
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A.5 Methods 

A.5.1 Reagents 

The following reagents were obtained through the AIDS Research and 

Reference Reagent Program, Division of AIDS, NIAID, NIH: Nelfinavir, 

Raltegravir (Cat # 11680) from Merck & Company, Inc., Human rIL-2 from Dr. 

Maurice Gately Hoffman-La Roche Inc [37], HIV-1NL4-3 from Dr. Malcolm Martin 

[22], MT-2 cells from Dr. Douglas Richman [38, 39] and ACH-2 cells from Dr. 

Thomas Folks [7, 40]. HIV-1 NLENG1-IRES was a kind gift from Dr. David Levy 

[30]. The VQA plasmid was a kind gift from Dr. Greg Laird and Dr. Robert 

Siliciano. 

 

A.5.2 Generation of infected cultured TCM cells 

Peripheral blood mononuclear cells (PBMCs) were isolated from healthy 

donors following protocols outlined in IRB #392 (University of Utah Institutional 

Review Board approved). Naïve cells were isolated and cultured TCM cells were 

generated as previously described [13, 20, 23]. HIV-1NL4-3 and HIV-1 NLENG1-

IRES viruses were generated in HEK293FT cells using calcium phosphate 

transfection as previously described [13, 20]. For infection of cultured TCM cells 

with HIV-1NL4-3 or HIV-1 NLENG1-IRES, cells were infected by spinoculation at a 

multiplicity of infection (MOI) of 0.1 as previously described [20]. Prior to infection 

of cells with HIV-1NL4-3, cells were cultured in standard tissue culture flasks. 

Following infection of cells with HIV-1NL4-3, cells were either cultured in standard 

tissue culture flasks at a cell density of 106 cells/mL or in 96-well round bottom 
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plates using a density of 105 cells/100 mL/well. Prior to infection of cells with HIV-

1 NLENG1-IRES, cells were cultured in 96-well flat bottom plates using a density 

of 2 x 105 cells/200 mL/well. After spinoculation, cells were cultured in this same 

condition. 

 

A.5.3 Removal of productively infected cells  
using CD4 positive isolation 

Magnetic isolation of CD4 positive cells was achieved using Dynabeads® 

CD4 positive isolation kit as described by the manufacturer (Life Technologies) 

with the exception that 75 mL of the aCD4 magnetic bead suspension were 

added per 107 cells instead of 25 mL.  

 

A.5.4 Viral reactivation 

1-3x105 cells were left untreated, stimulated with Dynabeads® Human T-

Activator CD3/CD28 (1 bead/cell, Life Technologies, cat. No 111.32D) or 1.2 

mg/mL PHA (Thermo Scientific, cat. No. R30852801) for 48 hours. 

 

A.5.5 Flow cytometry analysis 

For analysis of HIV-1NL4-3 infected cells, samples were first stained with 

cell viability dye (Fixable Viability Dye eFluor® 450, affymetrix, eBioscience, San 

Diego, CA.) at 0.1 mL/1-3x105 cells for 15 minutes at 4oC and then stained, 

intracellularly, with a conjugated ICp24-FITC antibody (KC57, Coulter) as 

previously described [13]. For detection of surface CD4 expression, cells were 

stained with mouse anti-human CD4-APC (clone S3.5, Invitrogen). Flow 
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cytometry was performed with a BD FacsCanto II flow cytometer using the 

FACSDiva acquisition software (Becton Dickinson, Mountain View, CA.). Data 

were analyzed with Flow Jo (TreeStar Inc, Ashland, OR). 

 

A.5.6 Assay for infection of indicator cells 

On day 17, 100 mL aliquots of cell culture supernatants were added to 

400 mL of MT2 cells (2.5 x 105). MT-2 culture ART concentrations were matched 

with those of the inoculating cell culture supernatants.  Cells were centrifuged for 

2 hours at 2900 RPM and at 37oC.  Following spinoculation, MT-2 cells were 

cultured for an additional 48 hours in 500 mL of fresh RPMI. ICp24 was 

measured by flow cytometry.   

 

A.5.7 PCR analysis 

Quantitative polymerase chain reaction (qPCR) for cell-associated HIV-1 

mRNA was carried out according to a recently published protocol [41].  Briefly, 

cultured cells were counted and pelleted by centrifugation.  Aliquots of 105 cells 

underwent RNA extraction and purification using a commercial viral RNA 

isolation kit according to manufacturer’s protocol (Zymo Research).  DNase 

treatment was performed (Quanta Biosciences) followed by cDNA synthesis 

using qScript cDNA Supermix containing oligo-dT primers and random hexamers 

according to manufacturer’s protocol (Quanta Biosciences).  RNA aliquots that 

did not contain reverse transcriptase (no RT controls) were run in parallel for 

every sample.   Real-time quantitative PCR was subsequently performed in 
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triplicate on cDNA and RNA (no RT control) samples using TaqMan Universal 

Master Mix II (Applied Biosystems) on a Roche LC480 Real-Time PCR 

instrument.   Primers and probe used were as follows: forward primer (5’ to 3’) 

CAGATCCTGCATATAAGCAGCTG, reverse primer (5’ to 3’) 

TTTTTTTTTTTTTTTTTTTTTTTTGAAGCAC and probe (5’ to 3’) FAM-

CCTGTACTGGGTCTCTCTGG-BHQ1.  Cycling conditions were as follows: 50°C 

for 2 minutes followed by 95°C for 10 minutes for polymerase activation, followed 

by 45 cycles of 95°C for 15 seconds and 60°C for 1 minute.   Serial 10-fold 

dilutions of a plasmid containing the HIV-1 3’LTR (VQA plasmid; obtained from 

Greg Laird and Robert Siliciano) from 106 to 1 copy per well were amplified in 

triplicate along with unknowns in order to provide a standard curve and quantify 

cell-associated viral mRNA.   
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Figure A.1: Generation of cultured TCM cells latently infected with HIV-1NL4-3 
and reactivation of latent HIV-1. 
(A) Two protocols were investigated for generation of latently infected cultured 
TCM cells using HIV-1NL4-3 (protocols A and B) (B) Intracellular ICp24 was 
measured using flow cytometry to assess levels of productive infection on day 13 
using five samples from four blood donors (Naïve CD4+ cells from Donor 1 were 
used in two separate expermiments) following protocol B.  Each symbol 
represents a different sample.  The mean is represented with a horizontal line.  
Significance was calculated using a 2-tailed paired t test analysis (P values 
provided) (C) HIV-1 infected cell cultures were generated using protocols A (no 
cell crowding) or B (cells were crowded between days 10 and 13) from the same 
blood donors in Figure 1B. Cells were treated with IL-2 alone or IL-2 + 
aCD3/aCD28 on Day 17. Intracellular ICp24 was measured using flow cytometry 
to assess reactivation of latent HIV-1 on Day 19. The mean is represented with a 
horizontal line.  Significance was calculated using a 2-tailed paired t test analysis 
(p values provided)  
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Figure A.2: Comparison of cell viability between two methodologies.  
 
Cultured TCM cells latently infected with HIV-1NL-43 were generated using protocol 
A (uncrowded) or protocol B (crowded). Cell viability was measured using flow 
cytometry.  Each symbol represents a different sample. The mean is represented 
with a horizontal line.  Significance was calculated using a 2-tailed paired t test 
analysis (p value provided). 
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Figure A.3:  Antiretroviral is sufficient to impair viral infections. 
 
Cultured TCM cells from a single blood donor (Donor 6) were latently infected with 
HIV-1NL-43 using protocol B. On day 17, MT2 cells were spinoculated with cell 
culture supernatents in the presence or absence of 1 mM Nelfinavir as indicated.  
After 48 hours in culture, ICp24 was measured using flow cytometry. Significance 
was calculated using a 2-tailed paired t test analysis (p value provided).   
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Figure A.4: Removal of productively infected cells from culture 
 
(A) Cultured TCM cells latently infected with HIV-1NL4-3 were generated using 
protocol B. On day 17 HIV-1 infected cells containing uninfected, productively 
infected and latently infected cells (UPL) were subjected to magnetic isolation 
based on cell-surface CD4 expression.  CD4+ cells contain uninfected and 
latently infected cells (UL) and CD4- cells contain productively infected cells (P).  
The UL fraction was treated with either IL-2 alone or IL-2 + aCD3/aCD28 for 48 
hours. (B) Cells from a single blood donor (Donor 5) were cultured and infected 
with HIV-1NL4-3 following protocol B. On day 17, CD4+ cells were isolated using 
positive magnetic selection. Cells before isolation are denoted UPL and purified 
cells are denoted UL. Cells were stained with a cell viability dye followed by cell-
surface staining with a CD4-APC antibody then stained intracellularly with a p24-
FITC antibody.  Dot plots of the viable fraction are shown.  (C) Fourteen CD4+ 
purified samples were treated with IL-2 alone or IL-2 + aCD3/aCD28 for 48 
hours.  ICp24 was analysed by flow cytometry.  Significance was calculated 
using a 2-tailed paired t test analysis (P values provided). (D) Four CD4+ purified 
samples were treated with IL-2 alone or IL-2 + aCD3/aCD28 for 48 hours. CA 
HIV-1 RNA copies were measured by qPCR in triplicate samples. RNA copies 
were divided by cell number. Mean values are ploted and error bars denote 
standard deviations.  In most measurments, the standard deviation is smaller 
than the size of the symbol.  
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Figure A.5: Viral spread after treatment with aCD3/aCD28 in the absence of 
ART. 
 
Cultured TCM cells from a single blood donor were latently infected with HIV-1NL-43 
using protocol B with the exception that one sample was cultured in the absence 
of ART (1 mM Nelfinavir).  On day 17, cells were treated with IL-2 alone or with 
IL-2 + aCD3/aCD28 as indicated.  (A) After 48 hours, ICp24 was measured using 
flow cytometry. (B) After 48 hours treatment, HIV-1 RNA was measured. 
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Figure A.6: Generation of cultured TCM cells latently infected with HIV-1 
NLENG1-IRES  and reactivation of latent HIV-1. 
 
(A) Plasmid used for the generation of latently infected cells with an EGFP 
reporter. (B) Protocol for generation of cultiured TCM cells latently infected with 
HIV NLENG1-IRES (C) Cells were cultured and infected with HIV-1 NLENG1-
IRES. On day 14, cultures were treated with IL-2 alone or IL-2 + aCD3/aCD28 or 
IL-2 + PHA. EGFP expression was measured using flow cytometry on day 16. 
Significance was calculated using a Wilcoxon matched-pairs signed rank test (p 
values provided) 


	1_TITLE PAGE
	2_COPYRIGHT PAGE
	3_STATEMENT OF DISSERTATION
	4_ABSTRACT
	5_DEDICATION
	6_TABLE OF CONTENTS_1
	6_TABLE OF CONTENTS_2
	7_LIST OF FIGURES
	9_ACKNOWLEDGMENTS copy
	10_CHAPTER1_TLRs and HIV_review_121814
	11_CHAPTER1_FigureLegend
	12_CHAPTER1_FIGURE
	13_CHAPTER 2_TITLEPAGE
	14_CHAPTER 2 _PAPER Jan14
	15_CHAPTER 3_DYNASORE
	16_CHAPTER3_FIGURES
	17_CHAPTER3_NEWTABLE
	18_CHAPTER 4_CONCLUSION
	19_APPENDIX
	20_Appendix_FIGURES

