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ABSTRACT 

Engineered materials consisting of nano- or microparticles embedded in a matrix 

material may exhibit unique physical properties that are attributed to the specific type, 

geometry, and spatial pattern of the particles. However, existing techniques for fabricating 

such engineered materials are limited to laboratory scale, specific materials, and/or 2D 

implementations. We employ ultrasound directed self-assembly (DSA), which relies on the 

acoustic radiation force associated with an ultrasound wave field of wavelength 

significantly larger than the particle size, to organize particles of any material type 

dispersed in a fluid medium, into a user-specified pattern over a macroscale area or volume. 

We first derive the dynamics of a single particle in a fluid medium subject to a one-

dimensional standing ultrasound wave field. We analyze the trajectory of the particle, 

driven to either a node or antinode of the ultrasound wave field by the acoustic radiation 

force, and we show that the particle oscillates around the node of the standing wave with 

an amplitude that depends on the ratio of the time-dependent drag forces and the particle 

inertia. We then theoretically derive and experimentally implement a method for single and 

multidimensional ultrasound DSA, which enables manipulating the position of a single 

particle and organizing user-specified patterns of nano- and microparticles dispersed in a 

fluid medium contained within a reservoir lined with ultrasound transducers, respectively. 

In contrast with existing ultrasound DSA techniques, this method works for any user-

specified pattern of particles within a reservoir of arbitrary geometry and ultrasound 

transducer arrangement. Additionally, the method accounts for all ultrasound wave 
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reflections in the reservoir, which allows for straightforward experimental implementation 

of the method. 

Finally, we integrate ultrasound DSA with stereolithography to fabricate engineered 

materials layer-by-layer via stereolithography, where in each layer we organize a user-

specified pattern of particles using ultrasound DSA. This process enables manufacturing 

macroscale 3D materials with a user-specified microstructure consisting of particles of any 

material. We demonstrate 3D printing macroscale multilayer engineered materials 

containing a Bouligand microstructure of nickel-coated carbon fibers. Additionally, we 

fabricate engineered materials containing a pattern of electrically conductive nickel-coated 

carbon fibers, which illustrates the feasibility of 3D printing structures with embedded 

insulated electrical wiring. This process has implications for applications including 

manufacturing of metamaterials, and multifunctional composite materials. 
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NOMENCLATURE 

In this dissertation, an italic symbol (lowercase or uppercase) denotes a scalar, a bold 

lowercase symbol denotes a vector or array, and a bold uppercase symbol denotes a matrix. 

Symbols 

Symbol Units 
Text 

location 
Description 

Particle and fluid medium properties 
cf m/s CH 1 Speed of sound in the fluid medium 
ρf kg/m3 CH 1 Density of the fluid medium 
βf m⋅s2/kg CH 1 Compressibility of the fluid medium 
μf kg/(m⋅s) CH 2 Dynamic viscosity of fluid medium 
cp m/s CH 1-4 Longitudinal speed of sound in the particle 
cτ m/s CH 2 Shear speed of sound in the particle 
ρp kg/m3 CH 1 Density of the particle 
βp m⋅s2/kg CH 1 Compressibility of the particle 
rp m CH 1-4 Particle radius 
m kg CH 2 Particle mass 
Φρ - CH 1,4 Density contrast factor 
Φβ - CH 1,4 Compressibility contrast factor 
Φ - CH 1-3 Acoustic contrast factor 

Reservoir properties and parameters 
Zt kg/(m2⋅s) CH 4 Ultrasound transducer acoustic impedance 
Nt - CH 4 Number of ultrasound transducers 

Z  - CH 4 Impedance ratio /f f tZ c Z  

L m CH 1-5 Reservoir length 
D - CH 4 Reservoir domain 
Nd - CH 4  Number of domain points  
S -  CH 4 Reservoir boundary 
Nb -  CH 4 Number of boundary elements 
ε m CH 4 Length of boundary elements 
o - CH 4 Reservoir origin 
n - CH 1,3,4 Surface normal direction 

v m/s CH 1,3,4 
Ultrasound transducer parameter: the complex harmonic velocity 
of the vibrating ultrasound transducer surface  

v m/s CH 4 
Vector of Nt  ultrasound transducer parameters 

1 2, , ,
t

T

Nv v v   v   
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V m/s CH 3 Ultrasound transducer amplitude V = |v| 
ψ rad CH 3 Ultrasound transducer phase ψ = Arg(v) 

Dimensional and time variables 
x, y, z m CH 1-5 Coordinates with respect to the reservoir origin o 

x m CH 4 
3D point x = [x, y, z]T within the reservoir domain D or on the 
boundary S 

q m CH 4 3D point q = [x, y, z]T on the boundary S 
r, θ m, rad CH 2,3 Polar coordinates 

X m CH 2 
x-direction coordinate with respect to the nearest node of the 
ultrasound wave field 

xs, xs m CH 1-4 Particle position at steady-state 
t s CH 2 Time 

Ultrasound parameters and variables 
ω rad/s CH 1-4 Ultrasound wave field frequency 

λ m CH 1-5 
Ultrasound wave field wavelength in the fluid medium λ = 2πcf 

/ω 
k m-1 CH 1-4 Wave number in the fluid medium k = ω /cf 
T s CH 1,2,4 Period of the ultrasound wave field T = 2π /ω 
φ  m2/s CH 1-4 Velocity potential of an incident ultrasound wave field  
φsc m2/s CH 1-2 Velocity potential of a scattered ultrasound wave field 
φtot m2/s CH 1-2 Total velocity potential field, φtot = φ+ φsc 

φ m2/s CH 3 
Vector of incident velocity potential φ values at Nd domain points 
in the domain D 

P, A, B m CH 4 
The boundary element matrices used to calculate φ in the domain 
D as a function of v along the boundary S 

φ0 m2/s CH 1-3 Velocity potential amplitude 
p kg/(m⋅s2ሻ CH 1 Fluid pressure 
p0 kg/(m⋅s2ሻ CH 1 Pressure amplitude 
u m/s CH 1,2 Fluid velocity vector 
u0 m/s CH 1 Velocity amplitude 

u  m/s CH 2 
1D fluid velocity averaged across the surface of a spherical 
particle 

δp kg/(m⋅s2ሻ CH 1 Radiation pressure 

G(x,q) m2/s CH 4 
Green’s function representing the free-field ultrasound wave 
from a point acoustic source at x, measured at point q 

Particle dynamics terms 
f N CH 1,4 3D acoustic radiation force 

Fr N CH 2  1D acoustic radiation force 
Cr N CH 2 Acoustic radiation force coefficient 

Xdes - CH 3 
The set of desired points defining a user-specified pattern of 
particles 

U N⋅m CH 3 Radiation potential 

U  N⋅m CH 3 Average radiation potential for all points in the desired set Xdes 

Q N⋅s2/m CH 3  Hermitian matrix used to compute U as a function of v 

Q  N⋅s2/m CH 3  Average Hermitian matrix used to compute U as a function of v 
Fd N CH 2  Drag force 
Cs kg/s CH 2 Stokes drag coefficient 
Co kg/m CH 2 Oseen drag coefficient 
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ζ - CH 2 Damping coefficient of a second order dynamical system 
ωn rad/s CH 2 Natural frequency of a second order dynamical system 
Ts s CH 2 Settling time of a second order response 
Mp % CH 2 Percent overshoot of a second order response 
x̃ m CH 2 Amplitude of steady-state oscillations 

K1 - CH 2 
Ratio between the acoustic radiation force and time-independent 
Stokes drag force 

K2 - CH 2 
Ratio between the time-dependent Stokes and Oseen damping 
forces and the particle inertia 

Miscellaneous parameters, variables, and mathematical functions 
θd rad CH 5 Desired alignment direction 
h0 m CH 5 Initial cured resin layer thicknesses 
hf m CH 5 Final cured resin layer thicknesses 

Vapp V CH 5 Applied electrical voltage 
Im A CH 5 Measured electrical current 
i - CH 1-4 Imaginary unit 1i    

H0(·) - CH 4 0th order cylindrical Hankel function of the first kind 
An, Bn, Gn A.U. CH 2 Spherical harmonic coefficients of order n 

jn(·) -  CH 2 nth order spherical Bessel function 
hn(·) - CH 2 nth order spherical Hankel function of the first kind 
Pn(·) - CH 2  nth order Legendre polynomial 
Г(·) - CH 2 Gamma function 
〈·〉 - CH 1-4 Time average over one period T of the ultrasound wave field 

 

Acronyms 

Acronym 
Text 

location 
Description 

1D CH 1-3 One-dimensional 
2D CH 1,4,5 Two-dimensional 
3D CH 5 Three-dimensional 

DNA CH 1 Deoxyribonucleic acid 
DSA CH 1-5 Directed self-assembly 
CT CH 5 Computed tomography 
FFT CH 5 Fast Fourier transformation 
SEM CH 1 Scanning electron microscopy 
SLA CH 1,5 Stereolithography  
UV CH 5 Ultraviolet 
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1.1. Motivation 

Engineered materials consisting of specifically designed patterns of nano- or 

microparticles embedded in a matrix material are of great interest to the science and 

engineering community due to their unique mechanical [1.1], electrical [1.2], thermal [1.3], 

acoustic [1.4], and/or electromagnetic properties [1.5]. These unique properties arise from 

the interaction of the particles with themselves, with the matrix, and with an external field. 

The material type, shape, and geometric configuration of the nano- or microparticles 

embedded in the engineered material then enable tailoring the properties of the material. 

Figure 1.1 shows examples of engineered materials with unique physical properties, 

including a negative optical refraction index achieved by creating a periodic pattern of 

voids in a pair of parallel metallic plates (Fig. 1.1(a)) [1.6], a negative acoustic refraction 

index implemented by a dual layer material with spiral-shaped inclusions (Fig. 

1.1(b)) [1.7], and high tensile mechanical strength obtained by aligning carbon nanotubes 

within a polymer matrix (Fig. 1.1(c)) [1.8].  

Figure 1.1: Engineered materials with unique physical properties. (a) Scanning electron
microscope (SEM) image of a negative-index optical metamaterial consisting of a pair of 
metallic plates with periodic voids [1.6]. (b) Simulated pressure (color) of an ultrasound 
wave field incident to a negative-index acoustic metamaterial with inset images showing a
close-up of the simulated ultrasound wave field (top), and a photograph of the metamaterial
(bottom) [1.7]. (c) SEM image of a composite material consisting of aligned carbon
nanotubes embedded in a polymer matrix, resulting in ultrahigh tensile strength [1.8]. 
Images adapted with permission from the references as indicated: (a) Copyright 2006 the
Optical Society; (b) Copyright 2014 Nature Publishing Group; (c) Copyright 2012 the
Royal Society of Chemistry.  
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Engineered materials with unique physical properties find application in acoustic and 

electromagnetic cloaking [1.4], [1.9] and subwavelength imaging [1.10], [1.11], and 

multifunctional composite materials with tailored mechanical and electrical 

properties [1.8], among other applications. However, implementation of such materials is 

restricted to theoretical and laboratory-scale demonstrations as existing manufacturing 

techniques used to fabricate engineered materials limit the scalability and/or the range of 

achievable patterns of nano- or microparticles.  

1.2. Research objective 

The critical science problem that inhibits mass processing and manufacturing of 

engineered materials with unique physical properties is organizing large quantities of nano- 

or microparticles into user-specified patterns within a matrix material. Several methods 

have been documented in the literature that attempt to address this problem, including 

methods based on electric, flow, and magnetic fields. However, these methods do not 

enable organizing user-specified patterns of particles over a macroscale volume or area, 

which precludes fabricating engineered materials for macroscale engineering applications.  

In contrast, in this dissertation we demonstrate a directed self-assembly (DSA) method 

based on a standing ultrasound wave field to achieve quasi-instantaneous organization of 

large quantities of nano- or microparticles into a macroscale pattern in a liquid resin 

medium, which is subsequently cured via stereolithography (SLA) to 3D print a macroscale 

engineered material with complex 3D geometry and tailored microstructure.  

Thus, the objective of this dissertation is threefold:  

(1) Derive a theoretical model to describe the motion of a single nano- or microparticle 

in a fluid medium, driven by the acoustic radiation force associated with an 
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ultrasound wave field, and characterize the transient and steady-state behavior of 

the particle/fluid system.  

(2) Derive an ultrasound DSA method to manipulate a single nano- or microparticle in 

a fluid medium, and to organize large quantities of nano- or microparticles into 

user-specified patterns in a fluid medium, and experimentally validate the method. 

(3)   Integrate ultrasound DSA with stereolithography additive manufacturing to 3D 

print macroscale polymer matrix engineered materials of complex 3D geometry and 

with a user-specified microstructure. 

1.3. Significance 

Accomplishing the research objective will enable 3D printing of macroscale engineered 

materials consisting of a polymer matrix with a microstructure based on a user-specified 

pattern of particles. The ability to manufacture macroscale engineered materials with a 

specific microstructure will have a significant impact in a broad range of engineering 

applications, including fabricating materials for acoustic and electromagnetic cloaking and 

subwavelength imaging, as well as rapid-manufacturing of devices and materials with high 

mechanical strength and/or embedded electrical wiring, to only name a few. In particular, 

the ability to 3D print devices with high mechanical strength and/or embedded electrical 

wiring has applications in hard-to-reach areas, such as extraterrestrial sites, where 

fabricating and transporting small quantities of parts through traditional means is costly 

and time consuming, and in-situ manufacturing is the preferred approach.  

Additionally, a theoretical understanding of the ultrasound DSA process will lead to 

improved and new processing and sorting technologies in biology, biomedical engineering, 

and process control, where large quantities of nano- or microparticles must be manipulated 
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and organized quasi-instantaneously without physical contact (see Sec.1.5). 

1.4 Background 

1.4.1 Directed self-assembly 

Directed self-assembly (DSA) is defined as the process by which nano- or 

microparticles or other discrete components spontaneously organize due to interactions 

between the components and their environment, driven by internal or external forces [1.12]. 

DSA is typically categorized into templated, template-free, or external field-directed 

techniques [1.13].  

Figure 1.2(a) shows the templated DSA process, which is based on mechanical [1.14] 

or chemical [1.15] modification of the surface of a substrate to create regions of attraction 

that selectively prompt particle deposition on that substrate. Additionally, we distinguish 

between a soft template, where user-specified regions of attraction on the substrate surface 

determine the pattern of particles that is assembled, and a hard template, where the 

geometry of the substrate surface controls the pattern of particles that is assembled [1.16]. 

Figure 1.2(b) shows an example of a soft template that consists of a silicon oxide substrate 

Figure 1.2: Templated directed self-assembly. (a) Process for organizing patterns of 
particles. (b) Soft template consisting of a silicon oxide substrate with chemically
functionalized regions of attraction to prompt deposition of silica nanoparticles in a dot
pattern [1.17]. (c) Hard template consisting of a tobacco mosaic virus substrate, which
attracts gold nanoparticles to deposit in a cylindrical pattern on the virus surface [1.18].
Images adapted with permission from the references as indicated: (b) Copyright 2010 John
Wiley and Sons; (c) Copyright 2003 American Chemical Society. 
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with periodically spaced regions of attraction that prompt silica nanoparticles to deposit on 

the substrate surface in a dot pattern [1.17]. Figure 1.2(c) shows an example of a hard 

template that consists of a tobacco mosaic virus with regions of attraction spread uniformly 

over the virus surface to prompt deposition of gold nanoparticles in a cylindrical 

pattern [1.18]. Because of the intricacy of the manufacturing techniques used to create 

templates, most templated DSA methods limit template sizes to nano- or micrometers. 

Block-copolymer templates have been used to assemble macroscale patterns of 

nanoparticles, but this often requires complex chemical modification to ensure 

compatibility between the block-copolymers and the particles, which limits the practical 

feasibility of the method [1.19], [1.20].  

Figure 1.3(a) illustrates the template-free DSA process, which relies on capping 

molecules that selectively interact with each other and with the particles to create organized 

nano- or microstructures [1.13]. Figure 1.3(b) shows an example of template-free DSA, 

where deoxyribonucleic acid (DNA) capping molecules are utilized to align gold 

nanorods [1.22]. The interactions between the capping molecules and the particles are 

controlled through external stimuli such as light [1.23], temperature [1.21], and acidity-

level [1.24], which allows user-controlled assembling or disbanding of the nano- or 

Figure 1.3: Template-free directed self-assembly. (a) Process for organizing patterns of 
particles [1.21] such as (b) scanning electron microscope image of gold nanorods aligned
using deoxyribonucleic acid (DNA) capping molecules [1.22]. Images adapted with 
permission from the references as indicated: (a) Copyright 2007 American Chemical
Society; (b) Copyright 2001 The Royal Chemical Society. 
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microstructures. However, since selection of the material properties and geometry of the 

capping molecule and particle pair determine the final organized pattern of particles, it is 

not practically feasible to tailor the resulting nano- or microstructure that is assembled.  

Figure 1.4 shows examples of patterns of particles organized via external field DSA 

techniques, which utilize external interactions such as convective forces [1.25], electric 

fields [1.26], magnetic fields [1.27], or standing ultrasound wave fields to organize patterns 

of particles [1.28]–[1.31]. Convective forces in a thin liquid film prompt particles to deposit 

on a substrate in highly concentrated patterns that are controlled by the geometry of the 

particles and/or the substrate. Figure 1.4(a) shows a scanning electron microscope (SEM) 

image (left) and a schematic of a side-view (right) of polystyrene nanospheres organized 

into a close-packed hexagonal configuration along parallel channels machined on the 

surface of a polydimethylsiloxane substrate using convective forces [1.25]. However, the 

pattern of particles that is organized is dependent on the geometry of the particles and the 

surface of the substrate, which inhibits controlling the patterns of particles that are 

assembled [1.25]. Electric and magnetic fields have been used to create nanostructures such 

as gold nanowires (Fig. 1.4(b)) [1.26] and chains of magnetic Janus particles (Fig. 

Figure 1.4: External field directed self-assembly. Patterns of particles organized via 
external field directed self-assembly techniques that employ (a) convective forces [1.25],
and (b) electric [1.26], (c) magnetic [1.27], and (d) ultrasound fields [1.28]. Images adapted 
with permission from the references as indicated: (a) Copyright 2007 American Chemical 
Society; (b) Copyright 2001 AAAS; (c) Copyright 2009 The Royal Chemical Society; (d)
Copyright 2011 AIP Publishing LLC. 
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1.4(c)) [1.27], but these methods are limited to assembling patterns of nanoparticles with 

favorable electric and magnetic properties. Additionally, they require ultrahigh amplitude 

electric or magnetic fields, which limits the scalability of the techniques to cover 

macroscale areas or volumes. Alternatively, ultrasound DSA employs standing ultrasound 

wave fields to assemble particles dispersed in a fluid medium into user-specified patterns, 

such as concentric circular patterns of diamond nanoparticles (Fig. 1.4(d)) [1.28]. Only 

low-amplitude ultrasound waves are needed, thus enabling scalability to cover macroscale 

areas and volumes. In addition, ultrasound DSA works independent of the physical 

properties of the particles [1.28]–[1.31]. 

1.4.2 Ultrasound directed self-assembly  

Ultrasound DSA organizes particles dispersed in a fluid medium into patterns by means 

of the acoustic radiation force generated when a standing ultrasound wave field scatters off 

the particles [1.30]. To understand the ultrasound DSA process, we require a theoretical 

model that relates the ultrasound wave field to the resulting patterns of particles. This 

section explains how ultrasound DSA can be employed to organize patterns of nano- or 

microparticles by first introducing the ultrasound wave field (Sec. 1.4.2.1), ultrasound 

scattering (Sec. 1.4.2.2), and then describing the acoustic radiation force and how it drives 

particles into a pattern (Sec. 1.4.2.3).    

1.4.2.1 Ultrasound wave field 

An ultrasound wave field is defined as an acoustic (pressure) wave field with a 

frequency that exceeds 20 kHz, which is the maximum sound frequency that can be 

registered by humans [1.32]. Such a wave field comprises mechanical vibrations that 

propagate through a compressible solid or fluid medium and results in local regions of 
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compression and rarefaction. Figure 1.5(a) shows the regions of compressed and rarefied 

fluid molecules (not drawn to scale), which are spaced periodically every wavelength λ of 

the ultrasound wave field. Figure 1.5(b) shows the pressure p corresponding to the 

ultrasound wave field in Fig. 1.5(a), where p0 is the pressure amplitude of the ultrasound 

wave field. Figures 1.5(c) and (d) illustrate the difference between traveling ultrasound 

waves (Fig. 1.5(c)), which propagate through the fluid medium as a function of time t, and 

standing ultrasound waves (Fig. 1.5(d)), which oscillate in place, and do not propagate 

through the fluid medium.  

Figure 1.6 shows a 2D reservoir of arbitrary geometry lined with ultrasound transducers 

and filled with a fluid medium, which represents a setup used for ultrasound DSA. We 

apply a sinusoidal voltage to each ultrasound transducer, which causes the ultrasound 

transducer surface to vibrate like a piston source and generate ultrasound waves in the fluid 

medium. The traveling ultrasound waves propagate through the reservoir and reflect off 

the reservoir walls, which results in a standing ultrasound wave field in the fluid medium. 

Figure 1.5: Ultrasound waves in a fluid medium. (a) Regions of compressed and rarefied
fluid molecules (not drawn to scale) are spaced every wavelength λ, which results in (b) a 
sinusoidal pressure p wave in the fluid medium, where p0 is the wave amplitude. (c) A 
traveling ultrasound wave that propagates through the fluid medium as a function of time
t. (d) A standing ultrasound wave field that oscillates in place as a function of t.  
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We calculate the ultrasound wave field φ within the fluid medium of density ρf and 

sound speed cf by solving the Helmholtz equation [1.33] 

2 2 0k    .                                                                 (1.1) 

Here φ is the velocity potential in the fluid medium and k = ω/cf is the wave number of the 

ultrasound wave field with frequency ω. In Eq. (1.1), the Helmholtz equation is derived 

assuming that the ultrasound wave field consists of small amplitude, adiabatic vibrations, 

and that the pressure and density of the fluid medium are proportional [1.32]. These 

assumptions are not strictly valid, but they closely approximate the conditions in common 

ultrasound DSA applications [1.28]–[1.32], [1.34]. At the interface between the fluid 

medium and ultrasound transducers the ultrasound wave in the fluid medium is constrained 

by the impedance boundary condition [1.32] 

ikZ v    n  ,                                                 (1.2) 

where /f f tZ c Z is the impedance mismatch between the fluid medium and the 

ultrasound transducer with acoustic impedance Zt. Additionally, v is the complex harmonic 

Ultrasound 
transducers

Fluid medium Particle

Reservoir

Figure 1.6: Schematic of a 2D reservoir used in ultrasound directed self-assembly 
applications. 
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velocity of the ultrasound transducer as it vibrates in the direction n normal to the 

ultrasound transducer surface. 

To calculate the ultrasound wave field within a reservoir lined with ultrasound 

transducers we simultaneously solve the Helmholtz equation (Eq. (1.1)) within the 

reservoir and the impedance boundary condition (Eq. (1.2)) at the interface between the 

fluid medium and ultrasound transducer surface. In a reservoir with 1D geometry and two 

ultrasound transducers that oppose each other, the ultrasound wave field can be calculated 

analytically (see Ch. 2-3) [1.33]. Alternatively, in most engineering applications with 2D 

or 3D reservoir geometries and large (> 2) numbers of ultrasound transducers (see Ch. 4-

5), the ultrasound wave field within a reservoir is typically computed using numerical 

techniques such as the boundary element method (see Ch. 4) [1.35] or the finite element 

method [1.36]. 

1.4.2.2 Scattering of ultrasound wave fields 

Figure 1.7 shows a particle submerged in a fluid medium and subjected to an incident 

wave field φ that reflects and refracts at the surface of the particle, which generates a 

reflected ultrasound wave field φr in the fluid medium and a transmitted ultrasound wave 

field φtr in the particle. The transmitted ultrasound wave field then propagates through the 

particle to an opposing surface of the particle, where it reflects back into the particle (φ′tr) 

and refracts into the fluid medium (φ″tr). The refracted wave continues to propagate 

through the particle, where it reflects and refracts each time it encounters the particle 

surface. This  results in a scattered ultrasound wave field φsc that consists of the initial 

reflected ultrasound wave field φr and all of the ultrasound wave fields that propagate 

through the particle and refract back into the fluid medium (φ″tr). 
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Scattering of waves has been analyzed for a compressible elastic spherical particle of 

radius rp subject to a plane ultrasound wave field of wavelength λ in an inviscid fluid 

medium [1.37]–[1.39]. In this analysis, the incident φ and scattered ultrasound wave field 

φsc are represented as an infinite-series spherical harmonic expansion (see Ch. 2 for 

details) [1.39], [1.40]. The scattered ultrasound wave field is computed by satisfying the 

boundary conditions at the interface between the spherical particle and the fluid medium, 

where the following conditions hold [1.39]:  

(1) There is no fluid penetration in the spherical particle.  

(2) The shear stress at the surface of the spherical particle is zero.  

(3) The pressure in the fluid medium is equal to the normal stress in the spherical 

particle.  

Three distinct regimes of ultrasound scattering exist, differentiated by the ratio of the 

spherical particle radius rp and the wavelength λ of the incident ultrasound wave: 

(1) Ray regime scattering occurs when the particle radius is significantly larger than 

the wavelength of the ultrasound wave (rp ≫	λ).  

(2) Mie regime scattering occurs when the particle radius is of the same order as the 

Figure 1.7: Ultrasound reflection and refraction off a particle submerged in a fluid medium.
A particle submerged in a fluid medium and subject to an incident ultrasound wave field φ
that reflects and refracts at the particle surface and generates a reflected ultrasound wave
field φr and a transmitted ultrasound wave field φtr, which propagates through the particle 

Fluid medium

Particle

φr

φ φtr

φtr'

φtr''
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wavelength of the ultrasound wave (rp ൎ	λ).  

(3) Rayleigh regime scattering occurs when the particle radius is significantly smaller 

than the wavelength of the ultrasound wave (rp ≪	λ)  [1.38].  

In this dissertation, we attempt to organize patterns of nano- and microparticles in a 

scalable manner. Thus, we utilize low-frequency ultrasound wave fields (ω/2π < 2.0 MHz) 

to mitigate acoustic attenuation, which is proportional to ω2 [1.32], and to preclude 

cavitation, which disrupts the patterns of particles formed with ultrasound DSA [1.41]. 

Hence, this dissertation focuses on ultrasound scattering in the Rayleigh regime. 

Figure 1.8 shows a plane ultrasound wave field φ of wavelength λ propagating in the 

x-direction, incident to a spherical particle of radius rp = λ/1000 (Fig. 1.5(a)), which results 

in a scattered ultrasound wave field φsc (Fig. 1.8(b)) in the Rayleigh regime. The scattered 

ultrasound wave field in Fig. 1.8(b) is shown as polar plot around the spherical particle at 

the origin (x = 0) as a function of the spherical particle angle, where the direction of the 

incident plane ultrasound wave field is indicated by a red arrow. In the Rayleigh regime (rp 

≪	λ), the change in amplitude and phase of the incident ultrasound wave field across the 

surface of the spherical particle is approximately linear (Fig. 1.8(a)). This results in a 

scattered ultrasound wave field with quasi-symmetric amplitude in front of and behind the 

spherical particle (Fig. 1.8(b)). Thus, the spherical harmonic expansion model of the 

ultrasound wave field can be accurately approximated as a monopole-dipole source, which 

greatly simplifies computation of the scattered ultrasound wave field [1.42].  

1.4.2.3 Acoustic radiation force 

The force acting on spherical particle in an ultrasound wave field has been studied 

extensively in the literature [1.42]–[1.48]. When an ultrasound wave field scatters off a  
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spherical particle, momentum is transferred from the ultrasound wave field to the spherical 

particle via radiation pressure applied to the surface of the spherical particle [1.43]. Figure 

1.9 shows a spherical particle in an incident ultrasound wave field φ (color) (not drawn to 

scale), which scatters off of the particle surface resulting in a time-averaged radiation 

pressure δp 2 21

2 f tot f totp  u  across the spherical particle surface (polar plot). Here, 

ptot and utot are the pressure and velocity, respectively, of the total ultrasound wave 

(incident plus scattered), and the angled brackets indicate a time-average over one period 

T = 2π/ω of the ultrasound wave field. The inset image in Fig. 1.9 shows that the radiation 

pressure δp applied over a differential element dSp of the spherical particle surface results 

in a force (black arrows) normal to the spherical particle surface. By summing the forces 

acting across the surface of the spherical particle, we calculate the net acoustic radiation 

force f acting on the spherical particle (red arrow). 

In the Rayleigh regime, the acoustic radiation force acting on an elastic spherical 

Figure 1.8: Rayleigh regime ultrasound scattering off a spherical particle. (a) Incident
ultrasound wave field φ and (b) scattered ultrasound wave field amplitude |φsc| resulting 
from Rayleigh regime ultrasound scattering (rp ൌ λ/1000) for a spherical particle of radius 
rp and ultrasound wave field of wavelength λ. (a) The incident ultrasound wave field φ is 
shown as a function of the normalized distance x/λ from the origin of the spherical particle 
(gray). (b) A polar plot of the normalized amplitude of the scattered ultrasound wave field
φsc is shown as a function of the spherical particle angle, with the direction of the incident 
plane ultrasound wave field indicated by a red arrow. 

(a)

φ
/φ

0
0

1

-1

x/λ
0.0 0.5

(b)

0

π/4

π/2

3π/4

π

5π/4

3π/2

7π/4

0.25 0.75

-0.5

rp



15 
 

particle is calculated using a method first proposed by Gor’kov [1.42]. The method uses a 

monopole-dipole model to approximate the scattered ultrasound wave field (see Sec. 

1.4.2.2), which results in a formulation of the acoustic radiation force as a function of the 

incident ultrasound wave field φ only. Using Gor’kov’s method, the acoustic radiation 

force f is calculated as [1.42], [1.46] 

Uf ,                                                                    (1.3) 

where U is the radiation potential of the incident ultrasound wave field shown as 

2 23 1
2

3p f fU r p        
 

u .                                       (1.4) 

Here, the subscripts p and f refer to the particle and fluid medium, respectively, β = 1/(ρc2) 

is the compressibility of the material with density ρ and sound speed c. Additionally, 〈|p|2〉 

and 〈|u|2〉 are the mean-square fluctuations of the pressure and fluid velocity amplitudes of 

Figure 1.9: Acoustic radiation force acting on a spherical particle in an ultrasound wave 
field. A spherical particle (gray) in an incident plane standing ultrasound wave field φ
(color), which scatters off of the spherical particle surface Sp and results in radiation
pressure δp across the surface. The radiation pressure applied over differential surface 
elements dSp results in forces normal to the spherical particle surface. The sum of these 
surface forces is the acoustic radiation force f acting on the spherical particle. 
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the incident ultrasound wave field φ over one period T of the standing wave. The 

compressibility and density contrast factors are given as 

1
p

f





   , and                                                          (1.5) 

2
p f

p f


 
 


 


,                                                            (1.6)                               

respectively. The acoustic radiation force drives the particles to the steady-state positions 

xs where |f| = 0 and points toward xs in the surrounding region. The acoustic contrast factor 

is given as 

3    ,                                                           (1.7) 

and determines whether the particles are driven to the nodes (Φ > 0) or antinodes (Φ < 0) 

of the standing ultrasound wave field. The steady-state position of the particles corresponds 

to locations where the radiation potential U is locally minimum. Figure 1.10 shows 

Figure 1.10: Patterns of particles organized by a two-dimensional ultrasound wave field. A 
two-dimensional incident standing ultrasound wave field with (a) pressure amplitude |p| 
(color), (b) velocity amplitude |u| (color), and (c)-(d) acoustic radiation force (quiver) that 
drives particles (circles) to the steady-state positions, where the acoustic radiation potential 
U (green) is locally minimum, which corresponds to (c) the nodes or (d) the antinodes of
the incident ultrasound wave field, based on the sign of the acoustic contrast factor Φ. 
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particles (circles) in a 2D standing ultrasound wave with (a) pressure amplitude |p| and (b) 

velocity amplitude |u|, generated by two pairs of ultrasound transducers. Figure 1.10(c) and 

(d) show the acoustic radiation potential U (green) corresponding to the case of Φ > 0 (Fig. 

1.10(c)) and Φ < 0 (Fig. 1.10(d)), which results in acoustic radiation force f (quiver) that 

drives the particles (circles) to the steady-state positions, where U is locally minimum. 

Thus, by controlling the nodes of the standing ultrasound wave, ultrasound directed self-

assembly enables organizing user-specified patterns of particles, or manipulating particles 

throughout the reservoir.  

1.4.3 Ultrasound directed self-assembly applications 

In this dissertation, we focus on utilizing ultrasound DSA as a manufacturing process 

for tailoring the microstructure of engineered materials consisting of user-specified 

patterns of nano- or microparticles embedded in a polymer matrix material. Additionally, 

ultrasound DSA finds application in a wide range of science and engineering applications. 

In this section, we discuss two groups of applications that have been significantly 

benefitted by ultrasound DSA: biomedical devices (Sec. 1.5.1), and process control (Sec. 

1.5.2). However, the list of applications presented in this section is not exhaustive, and new 

applications of ultrasound DSA are pursued by researchers in a broad range of research 

fields.  

1.4.3.1 Biomedical devices 

The biomedical community actively pursues ultrasound DSA for lab-on-a-chip 

applications including cell sorting [1.49], noninvasive bioassays [1.50], and cell-cell 

interaction studies [1.51]. When manipulating cells, it is critical to ensure that the cell is 

not damaged and that the cellular functions are not impeded. In an ultrasound wave field, 
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the cellular damage is caused by heat generation within the ultrasound transducers due to 

dielectric losses [1.52] and within the cell as it absorbs the ultrasound wave field, or due to 

cavitation effects, which create regions of ultrahigh pressure and fluid velocity that result 

in high mechanical stress in the cell [1.53]. Cellular damage can be mitigated by reducing 

the ultrasound wave field amplitude to maintain the temperature at biocompatible levels (< 

40.5 °C for human cells), and the ultrasound wave field frequency to < 2 MHz to inhibit 

cavitation [1.54]. Thus, using moderate ultrasound wave field amplitudes and low 

ultrasound frequencies, cells can be manipulated in a noninvasive manner, which facilitates 

observation of cellular functions and cell-cell interactions. Figure 1.11 shows an 

encapsulated 3D HepG2 cell aggregate suspended in a standing ultrasound wave field 

(frequency 1.5 MHz and pressure amplitude 90 kPa) for (a) 0 days and (b) 3 days [1.55]. 

Comparing Fig. 1.11(b) to Fig. 1.11(a) it is apparent that the cells have grown, indicating 

their viability within the ultrasound wave field. 

 

Figure 1.11: Encapsulated 3D HepG2 cell aggregate suspended in an ultrasound wave 
field. 3D HepG2 cell aggregate after (a) 0 days and (b) 3 days, with living cells indicated
by green die [1.55]. Images adapted with permission from  [1.55]. Copyright 2008 AAAS.
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1.4.3.2 Process control 

The ability to quickly sort, manipulate and/or organize user-specified patterns of nano- 

or microparticles is of great interest for many industrial processes including, bubble [1.56] 

and particle filtration [1.57], [1.58], carbon capture from coal-burning smokestacks [1.59], 

and 3D graphics [1.60]. Figure 1.12 shows an illustration of the filtration process using 

ultrasound DSA. A particle/fluid medium mixture enters the filtration device from the left 

and passes through an ultrasound transducer (red). The ultrasound transducer generates a 

standing ultrasound wave field, which drives the particles to either the node(s) or 

antinode(s) of the wave field, depending on the density Φρ and compressibility contrast 

factors Φβ. Figure 1.12 depicts the case where Φρ and Φβ > 0, which corresponds to particles 

that are denser and less compressible than the fluid medium and, thus, collect at the node 

of the ultrasound wave field. Once the particles are driven to the node of the ultrasound 

wave field, the filtration device separates into multiple channels, where the center channel 

contains a high concentration of particles, and the other channels contain pure fluid 

medium.  

Effective particle filtering is dependent on several limiting factors including the 

Figure 1.12: Particle filtration via ultrasound directed self-assembly. Illustration of the 
process for filtering particles out of a fluid medium via ultrasound directed self-assembly 
to purify the fluid medium and/or concentrate the particles in a dilute particle/fluid medium 
mixture. 
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material properties of the particles and fluid, the particle size, and the frequency and 

amplitude of the ultrasound wave field. From Eqs. (1.3) - (1.6), we find a decrease in the 

acoustic radiation force amplitude for small particle radii rp, or when the particle/fluid 

medium has similar density (ρp ≈ ρf) or compressibility (βp ≈ βf). To mitigate these effects 

and ensure that the particles are driven to the node of the ultrasound wave field, we can 

increase the amplitude and/or frequency of the ultrasound wave field. However, increasing 

the ultrasound wave field amplitude and frequency requires additional power and, thus, 

decreases the economic feasibility of the particle filtering technique [1.59].   

1.5 Dissertation structure 

This dissertation is organized as follows. We first model the dynamics of a spherical 

particle in a standing ultrasound wave field and analyze its motion as it is driven to either 

the node or antinode of the standing ultrasound wave field (Ch. 2). We then implement 

ultrasound DSA to control the positions of the ultrasound wave field nodes and antinodes, 

which enables manipulating particles and organizing them into user-specified patterns in 

1D (Ch. 3) and 2D (Ch. 4). Finally, we integrate ultrasound DSA with SLA as a 

manufacturing process to enable 3D printing macroscale engineered materials consisting 

of a polymer matrix with a user-specified microstructure consisting of a pattern of particles. 
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2.1 Introduction 

In this chapter, we address the first objective of this dissertation by deriving a model 

for the dynamics of a single spherical particle in a fluid medium subject to a one-

dimensional ultrasound wave field. We analyze the transient and steady-state behavior of 

the particle submerged in a fluid medium, driven to the node of a standing ultrasound wave 

field created by two opposing ultrasound transducers. We derive the dynamics of the fluid-

particle system taking into account the acoustic radiation force and the time-dependent and 

time-independent drag force acting on the particle. Using this model, we characterize the 

transient and steady-state behavior of the fluid-particle system as a function of the particle 

and fluid medium properties and the ultrasound transducer operating parameters.  

2.2 Theoretical model 

Figure 2.1 shows a schematic of a one-dimensional (1D) reservoir of length L with 

opposing ultrasound transducers that contains a fluid medium with one particle of radius 

rp, initially located at a node of a standing ultrasound wave field φ(X,t). At t = 0, a step 

input to the ultrasound transducer phases displaces the node over a distance smaller than 

λ/4 [2.1]–[2.3]. This exposes the particle to a non-zero acoustic radiation force, driving it 

Reservoir φ(X,t)

L

Node ParticleUltrasound 
transducer

Fluid

x* θ
X

X=x X=xs=0

Yr

X=x0

Figure 2.1: Schematic of a one-dimensional fluid reservoir. Cross-sectional view of a fluid 
reservoir with two opposing ultrasound transducers, creating a standing acoustic wave 
φ(X,t). The inset image shows a magnified view of the particle located at X = x, with respect 
to the node to which it is driven, located at X = xs. The initial position of the particle X = x0

and the spherical coordinates (r, θ) originating at the center of the particle are defined.  
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from its initial position x0 towards the new steady-state node located at xs, expressed in a 

local Cartesian coordinate system with origin at the node to which the particle is driven (X 

= xs = 0). Hence, the displacement of the particle Δx = |xs –x0|, is identical to the 

displacement of the node. x* indicates the position of the node to which the particle is 

driven, relative to the ultrasound transducer rather than the local coordinate system. The 

inset of Fig. 2.1 shows the particle located at X = x, the initial and final positions of the 

particle, and the spherical coordinate system (r, θ) with origin at the center of the particle. 

The dynamics of the fluid-particle system are expressed as 

( ) ( , ) 0r dmx F x F x t   ,                                                        (2.2) 

where m is the mass and 2 2/x d x dt is the acceleration of the particle. Fr is the acoustic 

radiation force in the x-direction and Fd is the drag force acting on the particle in the x-

direction. To calculate Fr and Fd, we first define the ultrasound wave field in the reservoir. 

The ultrasound wave field incident to the particle for the case of a standing plane ultrasound 

wave field is written in terms of a velocity potential as 

  0( , ) Re i t ikX ikXX t e i e e     ,                                               (2.3)  

where φ0 is the amplitude of the standing ultrasound wave field, ω is the operating 

frequency, and k =2π/λ is the wave number.  Re(·) refers to the real part of Eq. (2.3). 

Defining X = rcosθ + x, with x the location of the particle, Eq. (2.3) is rewritten in the 

spherical particle coordinate system as [2.4] 

   
0

( , , ) Re cosn n n
n

r t A j kr P  




 
  

 
 .                                           (2.4) 
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Here jn(·) is the nth order spherical Bessel function of the first kind, Pn(·) is the nth order 

Legendre polynomial, and  

     1
0 1 2 1

ni t ikx ikx n
nA e e e n i       .                                            (2.5) 

The scattered ultrasound wave field resulting from the interaction between the ultrasound 

wave field and the particle is written as [2.4]–[2.6] 

   
0

( , , ) Re cossc n n n n
n

r t A B h kr P  




 
  

 
 .                                        (2.6) 

Here, hn(·) is the nth order Hankel function of the first kind, and Bn = αn + iσn is the complex 

scattering coefficient calculated from the boundary conditions at the fluid-particle 

interface. The following conditions hold: (i) the fluid pressure is equal to the normal stress 

at the surface of the particle, (ii) no fluid penetration in the particle occurs, and (iii) the 

shear stress is zero at the surface of the particle [2.4], [2.5]. A complete derivation of the 

scattering coefficient Bn is given by Faran [2.4]. The resulting ultrasound wave field in the 

reservoir is the sum of the incident and scattered ultrasound wave field, φtot = φ + φsc. The 

acoustic radiation force Fr acting on the particle in the x-direction is calculated from the 

rate of momentum within a control volume V enclosing the particle, 

 r f
V

F dV
t



 u ,                                                          (2.7) 

where tot u  is the 3D velocity vector of the fluid. Chen et al. showed that for the case 

of a standing plane ultrasound wave field (Eq. (2.3)) the acoustic radiation force acting on 

a spherical particle in the direction of wave propagation (x-direction) is written as [2.5] 
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sin 2r rF C kx  ,                                                              (2.8) 

with  

 2
0 1 1 1

0

4 2 2r f n n n n n n
n

C         


  


     .                                  (2.9) 

Since rp ≪ λ (Rayleigh regime), Eq. (2.9) can be approximated by its low-frequency 

expansion [2.5] 

    3 52
04r f p pC kr O kr     ,                                           (2.10) 

where O(krp)5 represents the fifth and higher order terms. In addition, Westervelt showed 

that a particle in a standing ultrasound wave field is subject to Stokes and Oseen forces, 

i.e., the drag force on the particle caused by velocity difference between the particle surface 

and the surrounding fluid medium, given as [2.7] 

   d s oF C u x C u x u x       .                                               (2.11) 

Here /x dx dt is the particle velocity, Cs = 6πµf rp and Co = 9/4πρf rp
2 are the Stokes and 

Oseen coefficients, respectively, and µf is the dynamic viscosity of the fluid medium. u  is 

the fluid velocity at the particle surface in the X-direction, averaged over [0, ]  , i.e.,  

0

1 1
cos sintot tot

p

u d
r r

  
  

 

  
      

 .                                         (2.12) 

Thus, using φtot = φ+ φsc and Eqs. (2.4) and (2.6) we find that 
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 0( ) Re cosi tu t u e kx ,                                                       (2.13) 

where x is the position of the particle and u0 is the fluid velocity amplitude, i.e., 

         0
0

0

1
Re ' 'n n n p n n p n p n n p

pn

u A G k j kr B h kr j kr B h kr
r








 
      

 
 .   (2.14) 

The prime denotes the first derivative of jn(·) and hn(·) with respect to krp. Gn is defined as 

   

0 , even 

( / 2) ( / 2 1)
, odd ,

( 1) / 2 ! ( 1) / 2 !
n

n

n nG
n

n n


    
  

                                            (2.15) 

where Γ(·) is the Gamma function. Combining Eqs. (2.2) and (2.9) - (2.16) yields the 

dynamics of the fluid-particle system 

   sin 2 0r s omx C kx C u x C u x u x          .                                  (2.16) 

Assuming small fluid velocity amplitude u0 and particle displacement Δx, we linearize Eq. 

(2.16), i.e.,  

22 0n n sx x x C u      ,                                                      (2.17) 

with the damping coefficient / 8s rC kmC  , and the natural frequency 2 /n rkC m  . 

Increasing the amplitude of the standing ultrasound wave field φ0 increases the fluid 

velocity amplitude u0, causing the solution of the linearized system to diverge from that of 

Eq. (2.16), resulting in a nonlinear response. The particle will approach the node and then 

oscillate. The response of the linear system (Eq. (2.17)) can be solved given the initial 

conditions ( 0( 0) , ( 0) 0x t x x t    ) and is a function of Δx. However, no closed-form 
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solution has been documented in the literature describing the response of the nonlinear 

system (Eq. (2.16)). Hence, we numerically simulate the trajectory of a particle while it is 

driven to the node of the standing ultrasound wave field using a second order Runge-Kutta 

scheme.  

Eq. (2.16) shows that the particle trajectory is defined by a time-independent acoustic 

radiation force that drives the particle towards the node, and a time-independent Stokes 

drag force and time-dependent Stokes and Oseen drag forces that resist the particle motion. 

Once the particle reaches the node of the standing ultrasound wave field, the amplitude of 

the radiation force and the average velocity of the particle is zero, causing the time-

independent Stokes drag force to be zero. Thus, the time-dependent Stokes and Oseen drag 

force and the particle inertia dominate the dynamics of the fluid-particle system and the 

particle enters into a stable periodic oscillation with amplitude x̃ around the node. Because 

the time-dependent terms in Eq. (2.16) are oscillatory and quasi-reversible over one period 

T of the standing ultrasound wave field, their effect on the average position of the particle 

over T is negligible, and the average particle position is dictated by the time-independent 

radiation force Fr and time-independent Stokes drag force sC x . We define the 

nondimensional variable K1 as the ratio of the maximum acoustic radiation force that the 

particle can experience, i.e., when it is located halfway between the node and antinode, and 

the maximum possible time-independent Stokes drag force, i.e., the drag force when the 

particle travels at cf. Hence, 

 32
0

1

f p

p f

kr
K

r c

 




 .                                                         (2.18) 
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Adjusting K1 simultaneously changes ωn and ζ as K1~ωn
2 and K1~1/ζ2. In most applications, 

it is necessary for a particle to be stationary at a desired location and to minimize oscillation 

amplitude x̃ around the desired location. To characterize x̃ we define the dimensionless 

variable K2 as the ratio of the time-dependent Stokes and Oseen drag forces and the particle 

inertia for the maximum steady-state particle velocity x u  . Hence, 

0
2 2

f p

p p

kr
K

r

  




 .                                                            (2.19) 

The transient and steady-state response of the system is controlled by altering the forces 

acting on the particle, through adjustment of K1 and K2. The transient response is 

characterized by the settling time Ts and the percent overshoot Mp, whereas the steady-state 

behavior is characterized by the oscillation amplitude x̃ of the particle around the node of 

the standing ultrasound wave field. We define Ts as the time for which the average position 

of the particle over one period of the ultrasound wave field remains within xs ± 0.01Δx, and 

the percent overshoot Mp as the ratio of the maximum particle overshoot beyond x = xs and 

λ. 

2.3 Dynamic response of a spherical particle in an ultrasound  

wave field 

Figures 2.2(a), (b) and (c) show the nondimensional settling time, the percent 

overshoot, and the nondimensional oscillation amplitude, each as a function of K1, for Φ1 

= 0.74, Φ2 = 0.12, and Φ3 = -27.56, which represent a 304 stainless steel, polystyrene, and 

cork particle in water, respectively. The results are shown for Δx = λ/10. However, Ts, Mp, 

and x̃ are almost independent Δx. From Figs. 2.2(a) and (b) we observe that the settling 
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time decreases with increasing K1 in the overdamped region, while Mp remains zero. The 

radiation force is small relative to the time-independent Stokes drag force, causing the 

particle to approach the node slowly, without overshooting it. Increasing K1 either increases 

the magnitude of the acoustic radiation force or reduces the time-independent Stokes drag 

force. This increases the particle velocity as it travels to the node, thus reducing Ts while 

maintaining Mp = 0. Alternatively, in the underdamped region, the magnitude of the 

acoustic radiation force is large compared to the time-independent Stokes drag force which 

causes the particle to overshoot and then oscillate around the node until settling into the 

steady-state periodic oscillation. Increasing K1 and, thus, the acoustic radiation force 

compared to the time-independent Stokes drag force drives the particle further past the 

node, increasing Mp while Ts remains constant. While for a second order linear system Ts 

Figure 2.2: Dynamic characteristics of a spherical particle in an ultrasound wave field. (a) 
Nondimensional settling time, (b) percent overshoot and (c) nondimensional oscillation 
amplitude, as a function of K1, for Φ1 = 0.74, Φ2 = 0.12 and Φ3 = -27.56, and for Δx = λ/10.
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should remain strictly constant in the underdamped region, Fig. 2.2(a) indicates a slight 

decrease in Ts with increasing K1. As K1 increases within the underdamped region, the 

natural frequency of the fluid-particle system ωn approaches the operating frequency ω, 

used to calculate the time averaged particle position. As a result, the time-averaging covers 

a full period of the harmonic response, filtering out the overshoots and undershoots, and 

causing the settling time to decrease. From Fig. 2.2(c) we observe that x̃ increases with K1, 

as expected for a harmonically forced linear system (Eq. (2.17)). As K1 increases, ωn 

increases and approaches the operating frequency ω, which results in resonance as the 

particle absorbs more energy from the oscillating fluid medium. Hence, increasing K1 

results in a faster particle displacement, at the cost of increasing Mp and x̃.  

Figure 2.3 shows typical particle trajectories x(t) for the (a) overdamped, (b) critically 

damped, (c) underdamped, and (d) nonlinear cases, for a 304 stainless steel sphere in water 
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Figure 2.3: Trajectory of a spherical particle in an ultrasound wave field. Typical 
trajectories of a SS304 sphere submerged in water (Φ1 = 0.74) as a function of time, for 
Δx = λ/10 and ω = 2.10·106 rad/s, and for different values of K1, corresponding to different 
response regimes: (a) overdamped, (b) critically damped, (c) underdamped, and (d) 
nonlinear. The solid-line insert shows an enlarged view of the harmonic underdamped 
oscillations as the position settles to the node. The dashed-line insert shows the steady-
state oscillations of amplitude x̃ around the node, with period T. 
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(Φ1 = 0.74), and for Δx = λ/10 and ω = 2.10·106 rad/s. The solid-line inset shows a 

magnified section of the underdamped response, illustrating the harmonic oscillations 

while the average position of the particle approaches the desired node position. The dashed-

line inset shows an enlarged view of the particle trajectory, after it settles into the steady-

state oscillation around the node of the standing ultrasound wave field. We observe the 

steady-state oscillations of the particle due to the oscillating fluid velocity, which applies 

drag force to the particle surface (see Eq. (2.11)). In the dashed-line inset, the response is 

underdamped, and the linear terms in the forcing function dominate, resulting in particle 

oscillations at the operating frequency ω. Alternatively, the nonlinear response, illustrated 

in Fig. 2.3(d) and obtained for high values of K1, consists of steady-state oscillations 

vibrating at multiple frequencies, including  ω and its higher harmonic frequencies. 

Figure 2.4 shows the nondimensional amplitude of the steady-state particle oscillation 

as a function of K2, which is the ratio of the total time-dependent drag force (Stokes and 

Oseen) that drives the particle oscillation, and the particle inertia that resists the oscillation. 

For small values of K2 the fluid-particle system behaves linearly. Increasing K2 increases 
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Figure 2.4: Nondimensional steady-state oscillation amplitude of a spherical particle in an 
ultrasound wave field. Nondimensional steady-state oscillation amplitude as a function of 
K2, for Φ1 = 0.74, Φ2 = 0.12 and Φ3 = -27.56. 
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the amplitude of the standing ultrasound wave field φ0, which in turn increases the 

amplitude of the fluid velocity, thereby increasing the drag force acting on the particle and 

increasing the natural frequency ωn of the system. As ωn approaches the operating 

frequency ω of the standing ultrasound wave field, the system approaches resonance, which 

increases the steady-state oscillation amplitude. Increasing K2 further reduces the 

oscillation amplitude because ωn diverges from ω. For large values of K2, and therefore 

large velocity differences between the particle and surrounding fluid medium, the time-

dependent Oseen drag force dominates the total time-dependent drag force (Eq. (2.10)), 

resulting in nonlinear behavior of the fluid-particle system. Rather than oscillating at a 

single frequency, the particle oscillates at multiple frequencies (Fig. 2.3(d)), the amplitude 

of which increases with increasing K2.  

2.4 Conclusion 

In conclusion, we have analyzed the dynamics of a particle submerged in a fluid 

medium, driven to the node of a standing bulk ultrasound wave field by an acoustic 

radiation force. We have simulated the particle trajectory, and have characterized the 

transient and steady-state behavior of the fluid-particle system, as a function of the particle 

and fluid properties and the operating parameters of the ultrasound transducers. When the 

dynamic behavior of the fluid-particle system is overdamped, the settling time decreases 

and the percent overshoot remains zero, with increasing ratio of acoustic radiation force 

and time-independent Stokes drag force (K1). When the dynamic behavior of the fluid-

particle system is underdamped, the settling time is constant while the percent overshoot 

increases with increasing K1. We find that the particle oscillates around the node of the 

acoustic standing ultrasound wave field. Near the node, the amplitude of these oscillations 
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and the natural frequency of the fluid-particle system ωn are dependent on the ratio of the 

time-dependent Stokes and Oseen damping forces and the particle inertia (K2). For small 

K2, the fluid-particle system behaves linearly, oscillating at the operating frequency ω, and 

resonating as the natural frequency of the system approaches ω. However, for large K2 the 

system behaved nonlinearly, oscillating at multiple frequencies, including the operating 

frequency as well as its higher order harmonics. 
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DIMENSION 

Adapted with permission from J. Greenhall, F. Guevara Vasquez, and B. Raeymaekers, 

“Continuous and unconstrained manipulation of micro-particles using phase-control of 
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3.1 Introduction 
 

In this chapter, we address the second objective of the dissertation by introducing a 

technique for performing ultrasound directed self-assembly (DSA) to manipulate a single 

spherical particle in one dimension. Ultrasound DSA enables manipulating particles into 

user-specified positions and configurations using the acoustic radiation force that is 

associated with a standing ultrasound wave field (see Sec. 1.4.2) [3.1]. In a one-

dimensional (1D) standing ultrasound wave field, the acoustic contrast factor Φ determines 

whether particles accumulate at the nodes (Φ > 0) or antinodes (Φ < 0) of the standing 

ultrasound wave field (see Sec. 1.4.2.3) [3.2]. Controlling the position of the nodes and 

antinodes enables manipulation of particles trapped at the nodes to a predetermined 

location in the fluid reservoir. This is commonly achieved through use of ultrasound 

transducer arrays [3.3]–[3.7]. In this work, we focus on the phase-adjustable ultrasound 

transducer array technique with counter-propagating wave patterns [3.5]–[3.7].  

A common technique for controlling the positions of the ultrasound wave field nodes 

is to remove reflected waves from the reservoir, resulting in an ultrasound wave field φ that 

is comprised of two opposing traveling ultrasound waves φL and φR. Figure 3.1 shows three 

different techniques used to eliminate reflected waves within a 1D reservoir. Courtney et 

al. attached absorbing and backing layers to opposing piezoelectric ultrasound transducers 

to absorb incoming waves and reduce reflections (Fig. 3.1(a)) [3.6], [3.7]. Using the phase 

difference between the two ultrasound transducers, in the absence of reflections, they state 

that particles can be displaced across multiple wavelengths, and experimental data show 

displacement of particles over a half wavelength. This method requires precise 

implementation of the absorbing and backing layers with thicknesses of ta and tb, 
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respectively, to suppress reflected ultrasound waves. Grinenko et al. alleviated this problem 

by backing the ultrasound transducers with a fluid layer and then an acoustically absorbing 

tile (Fig. 3.1(b)) [3.8]. Alternatively, Kozuka et al. employed two ultrasound transducers 

arranged at 150° and operated at 39.6 kHz to generate a standing ultrasound wave field in 

air without reflections (Fig. 3.1(c)) [3.5]. They fixate a 3 mm polystyrene sphere in the 

antinode of the ultrasound wave field, and showed that the sphere moved almost linearly 

with increasing phase difference between the two ultrasound transducers.  

The methods described in the literature to manipulate particles fixated at the nodes of 

an ultrasound wave field are derived under the assumption that no reflected ultrasound 

waves normal to the ultrasound transducer surface exist. This results in a straightforward 

solution of the wave equation, but it also requires removing those reflections in practical 

implementations, either by creating a backing or acoustic absorption layer, or by arranging 

the ultrasound transducers in an inclined orientation. Furthermore, no explicit 

Figure 3.1: 1D ultrasound directed self-assembly techniques based on eliminating all 
reflected ultrasound waves. Reflected ultrasound waves are eliminated through use of (a) 
absorbing and backing layers with precise thicknesses ta and tb, respectively, [3.6] (b) a 
water layer and acoustically absorbing tile [3.8], and (c) angled ultrasound 
transducers [3.5]. Images adapted with permission from the references as indicated: (b)
Copyright 2012 AIP Publishing LLC; (c) Copyright 2007 The Japan Society of Applied
Physics. 
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demonstration seems to exist of manipulating a particle over multiple wavelengths using 

bulk acoustic waves (including reflections). Here, we describe an alternative method, based 

on a solution of the wave equation that incorporates reflected ultrasound waves, thus 

avoiding the need for complex practical implementations. The method requires 

independent adjustment of the phases of two opposing ultrasound transducers, and enables 

unconstrained, continuous manipulation of particles dispersed in a fluid medium over 

multiple wavelengths, in the presence of reflected ultrasound waves. A theoretical analysis 

and experimental validation is presented. 

3.2 Steady-state particle position 

Figure 3.2 shows the cross-section of a fluid reservoir of length L with two opposing 

ultrasound transducers. The ultrasound wave field φ(x,t) generated by the ultrasound 

transducers is described by the one-dimensional (1D) inviscid wave equation [3.9]  

2
2

2
0k

x

 
 


,                                                          (3.1) 

where x is the direction of ultrasound wave propagation and k is the wave number. 

Assuming rigid ultrasound transducer surfaces, the boundary condition at the fluid-

ultrasound transducer interface is derived from the impedance boundary condition (Eq. 

Figure 3.2: Schematic of a one-dimensional fluid reservoir. Cross-sectional view of a fluid 
reservoir with two opposing ultrasound transducers creating a standing ultrasound wave 
field φ(x, t). 
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(1.2)) for rigid ultrasound transducers  0Z   as 

jv n ,                                                            (3.2) 

where n is the unit vector normal to the ultrasound transducer surface (x-direction, see Fig. 

3.2) and vj is the harmonic velocity amplitude of the surface of ultrasound transducer j 

(with j ∈	{1,2}) as it vibrates in the positive x-direction, given as 

1

2

1 1

2 2

at 0

at .
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v V e x

v V e x L




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 

                                                     (3.3) 

V1 and V2 are the velocity amplitudes, and ψ1 and ψ2 are the phases of the oscillating 

ultrasound transducer surfaces. In this paper, V1/V2 = 1. With these boundary conditions, 

the ultrasound wave field as a function of location is calculated as 

       1 2
1 2

1
( )

2 sin
ik x L ik x Li i ikx ikxx V e e e V e e e

k kL
         ,                  (3.4) 

the real part of which is written as 

     1 1 2 2

1
Re ( ) cos cos cos cos

sin
x V k L x V kx

k kL
     .                  (3.5) 

The location of the nodes are computed as Re[φ] = 0, which yields 

  2 2 1 1
1 2

1 1

cos cos cos1
, atan

cos sin

V V kL m
x

k V kL k

   


 
  

 
.                         (3.6) 

Here, m = 0,1,2, …, n, so that all nodal locations are contained between 0 and L. n is the 

number of nodes of the ultrasound wave field between the opposing ultrasound transducers. 
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When k = (2n-1)π/2L, for n ∈	Գ, Eq. (3.6) is reduced to 

    1

2 2
1 2

1 1

1 cos
, atan

cos

n
V m

x
k V k

  


  
  

 
.                                  (3.7) 

Figure 3.3(a) shows the nodal locations (x/λ ∈ [0,3]) of the ultrasound wave field as a 

function of the phases of the opposing ultrasound transducers ψ1 and ψ2 for the case of Eq. 

(3.7), with n = 48. Only even values of m are displayed for clarity. The inset shows a section 

of Fig. 3.3(a) for ψ1, ψ2 ∈ [0, π]. Four example trajectories of a particle trapped in a node 

are indicated with a solid line. Trajectories (i) and (ii)  are obtained by linearly adjusting 

the phase difference between the ultrasound transducers, Δψ = ψ1 -ψ2 (i.e., Δψ (t) follows 

Figure 3.3. Nodal location and ultrasound wave field amplitude as a function of the 
ultrasound transducer phases. (a) Nodal locations of the standing ultrasound wave field, x
= λ, as a function of the ultrasound transducer phases, ψ1 and ψ2 (for even values of m). 
The inset shows the section of the figure boxed with dashed lines. Four example node 
trajectories are shown (solid line); trajectories (i) and (ii) are based on linear adjustments 
of Δψ (t), while trajectories (iii) and (iv) are based on independent adjustments of ψ1 and 
ψ2. (b) Amplitude of the standing ultrasound wave field as a function of ψ1 and ψ2, 
identifying the same trajectories (i)–(iv) shown in (a) (solid lines), and illustrating that for 
certain combinations of ψ1 and ψ2, the amplitude of the standing ultrasound wave field
approaches zero (darker), eliminating the ability to control a particle fixated in a node. 
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a straight line and Δψ (0) = 0). We observe that linear adjustment of Δψ will not result in 

displacement over multiple wavelengths. In contrast, trajectories (iii) and (iv) show that 

through simultaneous and independent adjustment of both ultrasound transducer phases, a 

particle trapped in a node can be displaced over multiple wavelengths. We assume that the 

ultrasound wave field satisfies the Helmholtz equation when the ultrasound transducer 

phases are adjusted, i.e., the transient behavior is neglected. This is an adequate 

approximation if the changes in the ultrasound transducer phases occur over a time scale 

that is significantly larger than the period of the ultrasound wave field, as is the case in our 

experiments. While only four trajectories resulting from specific sequences of the 

ultrasound transducer phases are identified, an infinite number of sequences theoretically 

exists (Fig. 3.3). Practically, however, particles cannot be trapped and manipulated unless 

the amplitude of the ultrasound wave field, φ0 > 0. Figure 3.3 (b) shows the amplitude of 

the standing ultrasound wave field φa as a function of ψ1 and ψ2, normalized with the 

maximum possible ultrasound wave field amplitude φmax for the given reservoir 

dimensions. 

3.3 Experimental particle manipulation 

Figure 3.4 shows a schematic of the experimental apparatus. It consists of a reservoir 

(inner dimensions: 48 × 48 × 8 mm) machined from poly(methyl methacrylate). Two 

ultrasound transducers (PZT type SM411) of dimensions (5 × 45 × 8 mm) and center 

frequency of 740 kHz are mounted on opposing walls of the reservoir. The ultrasound 

transducers are driven by a function generator controlled by a PC. A spherical polystyrene 

(PS) particle of diameter 350 μm is displaced along the x-direction of the reservoir over 
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two wavelengths by applying a sequence of ψ1 and ψ2 to the respective ultrasound 

transducers, as theoretically described by the solid line in the inset of Fig. 3.3 (a) (trajectory 

(iv)). The position of the particle is captured with a CCD camera and its displacement is 

quantified using a particle tracking algorithm. The fluid host medium consists of deionized 

water mixed with sugar to render the particle neutrally buoyant in the fluid and keep it 

away from the reservoir walls. The density and sound speed are ρp = 1062 kg/m3 

(measured), cp = 2400 m/s for the PS particle [3.10] and ρf = 1062 kg/m3 (measured), 

cf = 1497 m/s (determined with time-of-flight measurement) for the fluid and, thus, the 

acoustic contrast factor Φ = 0.609. 

Figure 3.5 shows the experimental results, with (a) the sequence of ultrasound 

transducer phases that result in trajectory (iv) shown in the inset of Fig. 3.3 (a), (b) the 

theoretical (dashed) and experimental (solid) position of a particle trapped in a node of the 

Figure 3.4: Schematic of the experimental setup. Experimental setup consisting of a water 
reservoir with two opposing ultrasound transducers. A spherical polystyrene particle of 
diameter 350 μm is neutrally buoyant in the reservoir. The ultrasound transducer phases 
ψ1 and ψ2 are adjusted by the function generator according to a specified sequence
controlled by a PC, while V1 /V2 = 1. The particle is manipulated along the x-direction of 
the reservoir, and its displacement is captured with a CCD camera. A particle tracking 
algorithm is employed to quantify its position during manipulation.
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ultrasound wave field, as the node is displaced over two wavelengths by adjusting the 

phases as described in (a), and (c) shows a composite image made of snapshots in time of 

the particle as it traverses the two wavelength distance. This demonstrates experimentally 

that a particle can be manipulated over multiple wavelengths, when independently 

adjusting the ultrasound transducer phases. The experiment closely matches the theoretical 

trajectory of a particle trapped in the node of the ultrasound wave field, subject to the 

imposed sequence of ψ1 and ψ2. The slight difference between the theoretical and 

experimental particle displacement is likely the result of minute misalignment of the 

opposing ultrasound transducers, which may alter the standing ultrasound wave field 

pattern due to reflections of the waves from the reservoir walls. Furthermore, inertia and 

viscous drag, not included in the model, prevent the particle from instantaneously tracking 

Figure 3.5: Experimental manipulation of a spherical particle in one dimension.
Comparison of experimental and theoretical results. (a) The sequence of ultrasound
transducer phases ψ1 and ψ2 as a function of time, and (b) the corresponding theoretical
and experimental displacement of a particle trapped in a node of the standing ultrasound
wave field. (c) A composite picture of snapshots in time of the particle as it traverses two
wavelengths λ in the reservoir, demonstrating that the particle can be displaced multiple
wavelengths by independently adjusting the phases of two opposing ultrasound 
transducers. 
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the displacement of the node of the ultrasound wave field, upon changing the ultrasound 

transducer phases. This results in a more continuous displacement of the particle than 

theoretically predicted. 

Figure 3.6(a)-(d) shows the displacements Δx/λ resulting from the four example 

trajectories (i)-(iv) identified in Fig. 3.3, and displays the ultrasound transducer phase 

sequences (left column) along with the corresponding displacements (solid line) and 

ultrasound wave field amplitudes (dashed lines) of the ultrasound wave field (right 

column). In Fig. 3.6 (a), the linear change in Δψ is enabled by adjusting ψ2 and maintaining 

ψ1 constant. The node is displaced up to Δx/λ = 1/4, but further adjustment of ψ2 results in 

Figure 3.6: Particle displacements for different ultrasound transducer phase sequences.
Sequence of ψ1, ψ2 and Δψ = ψ1 – ψ2 for trajectories (i) - (iv) (Fig. 3.3) in the left column, 
with the corresponding displacement of a particle trapped in a node (solid line), and the
amplitude of the ultrasound wave field (dashed line) in the right column. The ultrasound 
wave field amplitude has been normalized with the maximum ultrasound wave field 
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no additional displacement. In Fig. 3.6 (b) the linear change in Δψ is obtained by increasing 

ψ1 and decreasing ψ2 equally by Δψ /2. While a displacement of multiple wavelengths 

appears to be obtained, the phase combinations where the step-wise displacements occur 

correspond to a ultrasound wave field with zero amplitude, making controlled particle 

manipulation impossible. In Fig. 3.6 (c) each phase is adjusted similarly to Fig. 3.6 (b), 

with ψ2 offset by an additional π/2, resulting in Δψ(0) ≠ 0. The nodal displacement is linear 

with respect to time, but the ultrasound wave field amplitude, while almost constant, never 

reaches the maximum possible value. Finally, in Fig. 3.6 (d), each phase is controlled 

independently along the trajectory shown in the inset of Fig. 3.3 (a), and experimentally 

demonstrated in Fig. 3.5. This sequence of phases results in nodal displacements over 

multiple wavelengths, and the ultrasound wave field amplitude is greater than or equal to 

that in the previous example. Note that the time scale of Fig. 3.5 (a) seems different from 

that of Fig. 3.6 (d). However, ψ1 and ψ2 follow the same sequence. Figure 3.6 shows that 

the values of ψ1 and ψ2 are more important than Δψ, and that unconstrained manipulation 

of a particle trapped in a node cannot be achieved through linear adjustment of Δψ, but can 

be realized through independent adjustment of ψ1 and ψ2. The ultrasound wave field 

amplitude of the standing wave depends on ψ1 and ψ2, and displacement of a particle cannot 

occur if the amplitude of the ultrasound wave field is zero. Although we performed this 

analysis for Eq. (3.7) the same methodology can be used for any k ≠ nπ/L (Eq. (3.6)) to 

displace a particle over multiple wavelengths. 

3.4 Conclusion 
 

In conclusion, we have derived a theoretical model for the location of the nodes of a 

ultrasound wave field generated by two opposing ultrasound transducers with independent 
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control of the ultrasound transducer phases. A particle fixated at the node of the ultrasound 

wave field can be precisely displaced over multiple wavelengths, by adjusting the phases 

of the ultrasound transducers independently. As opposed to other methods in the literature, 

the theoretical model takes into account reflections normal to the ultrasound transducer 

surface, removing the need for complicated experimental implementations with, e.g., 

matching layers, backing layers, or offset ultrasound transducers. It is shown that when 

developing a sequence of ultrasound transducer phases to achieve a specific displacement 

trajectory, special consideration must be given to the ultrasound wave field amplitude of 

the standing wave. Using a simple experimental apparatus, it is demonstrated that a particle 

can be displaced over Δx/λ = 2, by applying a sequence of phase settings to both ultrasound 

transducers. Good agreement between the theoretically predicted and experimentally 

measured displacement is observed.   
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4.1 Introduction 

To achieve the second objective of this dissertation, we introduce ultrasound directed 

self-assembly (DSA) for organizing user-specified patterns of nano- or microparticles in 

two dimensions (2D). This requires relating the arrangement and parameters (amplitude 

and phase) of the ultrasound transducers that generate the ultrasound wave field to the 

resulting pattern of particles that is assembled. This translates into two problems: (1) the 

“forward ultrasound DSA problem” entails calculating the pattern of particles resulting 

from user-specified ultrasound transducer parameters, and (2) the “inverse ultrasound DSA 

problem” involves calculating the ultrasound transducer parameters required to assemble 

a user-specified pattern of particles.  

Solving the forward ultrasound DSA problem requires computing the acoustic radiation 

force associated with the ultrasound wave field generated by the ultrasound transducers. 

The resulting pattern of particles is then found as the stable fixed positions xs of the acoustic 

radiation force, i.e., the location(s) where the force is zero and points toward xs in the 

surrounding region [4.1]. The inverse ultrasound DSA problem is solved either directly or 

indirectly. Indirect methods solve the forward ultrasound DSA problem for a range of 

ultrasound transducer parameters to create a “map” that relates patterns of particles to those 

parameters [4.2]–[4.4]. Direct methods have only been derived for a small number of 

specific reservoir and/or pattern geometries [4.5]–[4.7], without providing a universal 

solution to the inverse ultrasound DSA problem. Thus, the objective of this chapter is to 

demonstrate a direct solution methodology to the inverse ultrasound DSA problem for a 

user-specified pattern in a two-dimensional, arbitrary, simple closed reservoir geometry 

and ultrasound transducer arrangement.  
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We relate the user-specified patterns of particles to the ultrasound transducer 

parameters in two steps. First we calculate the ultrasound wave field in an arbitrary shaped 

reservoir lined with ultrasound transducers around its perimeter as a function of the 

ultrasound transducer parameters using the boundary element method based on Green’s 

third identity [4.8], which relates the wave field within a simple closed domain to the 

boundary conditions imposed on the perimeter of that domain. Then, we calculate the 

acoustic radiation force acting on a spherical particle to determine the pattern of particles 

resulting from the ultrasound wave field [4.1]. Finally, we compute the ultrasound 

transducer parameters required to assemble a user-specified pattern of particles by solving 

a constrained nonconvex quadratic optimization problem using eigendecomposition. We 

present a theoretical derivation and experimental validation. We clarify that the method 

presented in this chapter is unrelated to ambisonics [4.9], [4.10] and acoustic 

holography [4.11], where a user-specified acoustic wave field, rather than the stable fixed 

points of the acoustic radiation force, is related to the parameters of acoustic sources 

through unconstrained linear least squares optimization.  

4.2 Forward ultrasound directed self-assembly problem 

Figure 4.1 shows a two-dimensional arbitrary shaped reservoir filled with a fluid 

medium of density ρf and sound speed cf, and with Nt ultrasound transducers of acoustic 

impedance Zt around the perimeter. The inset of Fig. 4.1 illustrates the discretization of the 

domain perimeter S into Nt ≥ Nb boundary elements (black dots) and the domain D into Nd 

domain points (red dots), which may be selected in any arrangement. The jth boundary 

element, identified by its center point qj, is ε(qj) wide and is driven by the ultrasound 
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transducer parameter v(qj), i.e., the complex harmonic velocity (amplitude and phase) of 

the ultrasound transducer surface along its normal direction n(qj), which acts as a piston 

source to create the ultrasound wave field. Additionally, we indicate a test point xl in D 

with respect to the reservoir origin o.  

We use the boundary element method to calculate the ultrasound wave field with 

frequency ω in terms of the time-independent, complex scalar velocity potential , at each 

domain point within D. We note that: (1) φ must satisfy the Helmholtz equation 

2 2( 0)k     in D, where k = ω/cf is the wave number of the ultrasound wave field in 

the fluid medium. (2) The impedance boundary condition / ikZ v    n   must be 

satisfied on S, where /f f tZ c Z is the impedance ratio, accounting for the absorption and 

reflection of the ultrasound wave within the fluid medium as it interacts with the ultrasound 

transducer surface. Arranging all ultrasound transducer parameters v into an Nd ×1 array v, 

Figure 4.1: Schematic of the two-dimensional fluid reservoir. The reservoir has arbitrary 
geometry lined with Nt ultrasound transducers. The inset illustrates the discretization
scheme of the boundary element method used to model the ultrasound directed self-
assembly process, which divides the domain boundary into Nb boundary elements (black 
dots) and the domain into Nb domain points (red dots). Additionally, the inset shows the
width ε(qj) and normal direction n(qj) of the jth boundary element qj. 
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we calculate the ultrasound wave field at all Nd domain points as [4.8] 

φ PWv .                                                             (4.1) 

The matrix W maps each boundary element to its corresponding ultrasound transducer, i.e., 

wjm = 1 if the jth boundary element is contained within the mth ultrasound transducer, 

otherwise wjm = 0. Additionally, each term pij of the matrix P corresponds to the ultrasound 

wave field created at xl by a point source located at qj on S, including all reflections from 

the reservoir walls. We calculate all ljp  terms in matrix form as 

  11
2

ˆˆ 
  P B A I A B .                                                 (4.2) 

I is the identity matrix and we compute each term alj and blj of the matrices A and B as 
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     , ,ij j l j j lb G   q x q q x .                                                  (4.4) 

Here, 1i   , δ(qj, xl) = 0 when qj = xl, otherwise it is 1, and G(qj, xl)  is the Green’s 

function, which represents the free-field ultrasound wave emitted from a point source 

located at qj and measured at location xl, defined as [4.8] 

   0,
4j l j l

i
G H k  q x q x .                                               (4.5) 

0H  is the 0th order Hankel function of the first kind, and |qj - xl| is the distance between 
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points qj and xl. We obtain the matrices Â  and B̂  in Eq. (4.2) analogously to A and B, 

differing only by the selection of the points xl, which lie on S for A and B, and lay in D  

for Â  and B̂ . Thus, using the boundary element method we relate the ultrasound transducer 

parameters to the resulting ultrasound wave field.  

To relate the ultrasound wave field to the pattern of particles, we calculate the acoustic 

radiation force acting on a particle of radius rp, density p , and sound speed pc , dispersed 

in a fluid medium at location xl in D using Eq. (1.3), where the acoustic radiation potential 

Ul at lx is written in vector form as 

H
l lU  v Q v .                                                  (4.6) 

Here, vH is the conjugate transpose of v, and the Hermitian matrix lQ  is calculated as 
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.                  (4.7) 

H
lp  is the lth row of P , and 1f f fc  and 1p p pc   are the compressibility of the fluid 

medium and particle, respectively. From Eq. (4.6), we calculate the obtained pattern of 

particles as the region(s) consisting of points xl, where Ul is locally minimum.  

4.3 Inverse ultrasound directed self-assembly problem 

To achieve assembly of a user-specified pattern of particles consisting of the set of 

desired positions desX , each value lU  corresponding to each position l desXx , must be 
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locally minimum. We relax the requirement of local minimality to obtain an optimization 

problem with a single objective function by minimizing the average value of lU  for all 

points l desXx , which is written as the quadratic function 

HU  v Qv ,                                                        (4.8) 

where the matrix Q  is the average of the matrices lQ  corresponding to each desired 

position l desXx . U  has no lower bound because Q  is indefinite. Physically, this means 

that particles assemble at the desired positions more effectively by increasing the harmonic 

velocity amplitude of the ultrasound transducer surfaces indefinitely ( v ). Practically, 

the function generator that energizes the ultrasound transducers limits the harmonic 

velocity amplitude of the ultrasound transducer surfaces to finite values. Thus, we constrain 

the magnitude v , where   is a real, scalar value representing the maximum harmonic 

velocity of the ultrasound transducer surface that can be achieved with a function generator. 

Hence, we formulate the constrained quadratic optimization problem 

min U, subject to v .                                              (4.9) 

From Eq. (4.9), we calculate the ultrasound transducer parameters v* required to assemble 

a user-specified pattern of particles as the eigenvector corresponding to the smallest 

eigenvalue of Q , where v* has length   [4.12]. Because v* minimizes Ul averaged over 

the desired positions l desXx , it will result in the largest possible acoustic radiation force 

driving the particles to the desired positions, for a given ultrasound transducer magnitude 

v . 
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4.4 Simulated two-dimensional patterns of particles  

We implement the forward and inverse ultrasound DSA techniques by developing a 

scientific tool with user-friendly graphical user interface (GUI). The GUI enables a user to 

specify the material properties, and the frequency and arrangement of ultrasound 

transducers that line a square reservoir. Within the reservoir, the user specifies a pattern of 

particles, and the GUI solves the inverse ultrasound DSA problem (Eq. 4.9) to calculate 

the ultrasound transducer parameters necessary to achieve the user-specified pattern. 

Additional details regarding the GUI can be found in Section 4.8. 

To demonstrate assembly of a complex user-specified pattern of particles, we define 

the University of Utah “U” logo within a square water-filled reservoir with tN = 200 

ultrasound transducers around the perimeter, and compute the ultrasound transducer 

parameters v* required to assemble this pattern using Eq. (4.9). Figure 4.2 shows the 

simulated pattern of particles resulting from the computed ultrasound transducer 

parameters v* (black) and the corresponding acoustic radiation potential (green), together 

with the user-specified “U” pattern (red). We qualitatively observe a close match between 

Figure 4.2: Simulated two-dimensional user-specified pattern of particles. Ultrasound 
directed self-assembly (DSA) of a University of Utah “U” pattern of particles. We compute
the ultrasound transducer parameters v* required to assemble a user-specified “U” pattern 
(red) using the inverse ultrasound DSA method, and then simulate the acoustic radiation 
potential (green) generated by those parameters, which drives particles into the simulated

Umin Umax
Ul

λ
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the user-specified and simulated patterns, except at sharp edges of the pattern. When 

p f   and p f  , the ultrasound DSA technique is limited to creating pattern features 

with finite curvature, and the minimum achievable pattern radius is inversely proportional 

to the frequency of the ultrasound wave. This limitation is easily shown in the case of a 

concentric-circular pattern of particles, which is achieved by generating a standing 

ultrasound wave consisting of a 0th order Bessel function of the first kind. In this standing 

wave, particles are organized into a pattern of concentric circles whose radii correspond to 

the zeros of the Bessel function. The maximum achievable curvature will coincide with the 

circle created at the first zero of the Bessel function, with radius R = 2.4048·cf /ω. Thus, 

we show that the minimum achievable pattern radius is inversely proportional to the 

frequency of the ultrasound wave. Extra features, not part of the user-specified pattern, 

may exist if the optimization (Eq. (4.9)) does not yield an exact match with the user-

specified pattern for the specified ultrasound transducer arrangement, operating frequency 

ω, and reservoir geometry.  

4.5 Experimental two-dimensional patterns of particles  

Figure 4.2 illustrates that the method enables creating complex patterns of particles 

However, the ability to create a complex pattern of particles increases asymptotically with 

an increasing number of ultrasound transducers, and a large number of ultrasound 

transducers is often required. Thus, to validate our model and method, we limit the 

experiments to Nt = 4 and 8 and focus on dot and line patterns of particles, which are 

commonly prescribed patterns in engineering applications [4.13]–[4.18]. Figure 4.3 shows 

a schematic of the experimental procedure. We define a user-specified pattern in a square 
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reservoir filled with water and 80 nm carbon particles, lined with ultrasound transducers 

(PZT type SM112) with center frequency ω/2π = 1.5 MHz. The ultrasound transducer 

parameters 1 2* , , ,
t

T

Nv v v   v   obtained by solving Eq. (4.9) are applied to the  Nt 

ultrasound transducers using a function generator, and we record the assembled pattern of 

particles using a camera, and compare it to the user-specified pattern.  

Figure 4.4 shows two example patterns in a 12.75×12.75 mm square reservoir with tN  

= 4. Feasible patterns for this ultrasound transducer arrangement include lines spaced / 2  

apart, parallel to a reservoir wall (Fig. 4.4(a)), and dots arranged in a square grid formation 

spaced / 2  apart (Fig. 4.4(b)). Additionally, using a 24.75×24.75 mm square reservoir 

with tN  = 8 enables assembly of more complex patterns, such as a curved line pattern (Fig. 

4.5(a)), and a mixed line/dot pattern (Fig. 4.5(b)). Figures 4.4 and 4.5 show the user-

Figure 4.3: Schematic of the two-dimensional experimental apparatus. Experimental 
validation of the inverse ultrasound directed self-assembly (DSA) method is accomplished 
using a square reservoir filled with water and dispersed 80 nm carbon particles. A user-
specified pattern is defined in the model and the ultrasound transducer parameters to obtain 
this pattern are computed using the inverse ultrasound DSA method (Eq. (4.10)). The
ultrasound transducer parameters are then applied to the experimental setup, assembling a 
pattern of particles, which is then compared to the user-specified pattern. 
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specified pattern (red) and experimentally obtained pattern (black) assembled using the 

computed ultrasound transducer parameters. The insets show a magnified view of the user-

specified pattern superimposed on the experimentally obtained patterns. Tables 4S.1 - 4S.6 

in section 4.9 list the calculated ultrasound transducer parameters v*, i.e., the amplitude 

and phase of the harmonic velocity of the ultrasound transducer surface, which correspond 

with the experiments shown in Figs. 4.4 and 4.5, respectively, and show that nontrivial 

ultrasound transducer parameters are required to assemble seemingly intuitive user-

specified patterns of particles. 

4.6 Ultrasound directed self-assembly pattern error 

To quantify the accuracy of the experimentally obtained pattern of particles with 

respect to the user-specified pattern, we calculate the pattern error patE  as the average 

distance between the centers of the user-specified and experimentally obtained pattern 

features (lines or dots), normalized by the nominal pattern spacing λ/2, for lines and dot 

patterns shifted in the x- and y-direction. Fig. 4.6 shows the pattern error as a function of 

the normalized pattern shift distance Δx/λ ∈	[0, 1/2) for line (triangle marker) and dot (dot 

marker) patterns. Tables 4S.5-4S.6 in Section 4.9 list the calculated ultrasound transducer 

parameters v*. The pattern error Epat is less than 16.0% and 16.5% for line and dot patterns, 

respectively, indicating good agreement between the user-specified and experimentally 

assembled patterns of particles. The pattern error results from slight misalignment of the 

ultrasound transducers within the reservoir, and from the ultrasound transducers not 

performing as perfect piston sources, as assumed in the theoretical model. We also note 

that it is possible for the experimentally obtained pattern to contain additional pattern 

features, not part of the user-specified pattern. For instance, it is possible to assemble a  
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Figure 4.4: Experimentally obtained line and dot patterns. User-specified patterns (red) and 
corresponding experimentally obtained patterns (black) assembled with the ultrasound
transducer parameters calculated with the inverse ultrasound directed self-assembly 
method for a (a) line pattern, (b) dot pattern of particles. Tables 4S.1 and 4S.2 in Section 
4.9 list the ultrasound transducer parameters v* to assemble the pattern of particles. 
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Figure 4.5: Experimentally obtained shifted-line and a dot/line combination patterns. User-
specified patterns (red) and corresponding experimentally obtained patterns (black)
assembled with the ultrasound transducer parameters calculated with the inverse
ultrasound directed self-assembly method for a (a) shifted line pattern, (b) mixed line/dot
pattern of particles. Tables 4S.3 and 4S.4 in Section 4.9 list the ultrasound transducer 
parameters v* to assemble the pattern of particles.
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user-specified dot  pattern with spacing λ/2 by producing a line pattern that passes through 

the desired dot locations. In these instances, the pattern error is insufficient to account for 

the additional features, and a more complex scoring algorithm, such as a template matching 

method used in image processing, is desirable [4.19].  

4.7 Conclusion 

We have derived a method of directly solving the inverse ultrasound DSA problem that 

relates a user-specified pattern of nano- or microparticles in a fluid medium contained in 

an arbitrary shaped reservoir, to the operating parameters of any arrangement of ultrasound 

transducers. This method enables using ultrasound DSA to organize user-specified patterns 

of nano- or microparticles in a fluid medium, which accomplishes the second objective of 

this dissertation. This method contrasts with existing indirect methods that require 

Figure 4.6: Experimentally obtained patterns shifted over user-specified distances. User-
specified line and dot patterns (red) are shifted in increments of = 0.0625, and the 
ultrasound transducer parameters necessary to create those patterns are calculated using
the inverse ultrasound directed self-assembly method and applied to the experimental 
setup, which results in the experimentally obtained patterns (black). We calculate the
pattern error Epat between the user-specified and experimentally obtained patterns is as a
function of ,and show images of the user-specified and experimentally obtained line 
and dot patterns for  = {0.000, 0.250, 0.438}. Tables 4S.5 and 4S.6 list the ultrasound 
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calculating complex maps of feasible patterns, and direct methods that only work for a 

limited set of reservoir and/or pattern geometries. In addition, the method accounts for all 

reflected waves, enabling experimental validation without requiring a complex setup with 

matching and backing layers to eliminate reflections. Thus, this method provides a practical 

approach of creating a user-specified pattern of particles using an arrangement of 

ultrasound transducers, in any reservoir geometry. 

4.8 Supplemental software implementation of ultrasound directed  

self-assembly as a scientific tool 

We implement the ultrasound directed self-assembly (DSA) in software as a scientific 

tool with a user-friendly graphical user interface (GUI). The scientific tool enables solving 

either the forward (Sec. 4.2), or the inverse ultrasound DSA problem (Sec. 4.3). Figure 

4S.1 shows images of the GUI as it solves the forward (Fig. 4S.1(a)) and inverse ultrasound 

DSA problem (Fig. 4S.1(b)). In Fig. 4S.1(a), the user defines the parameters (amplitudes 

and phases) of the ultrasound transducers in the right-hand side of the GUI, and then the 

software tool solves the forward ultrasound DSA problem to calculate the resulting pattern 

of particles (cyan) and then display the pattern superimposed on the radiation potential 

(green) in the left-hand side of the GUI. In Fig. 4S.1(b), the user defines the user-specified 

pattern of particles by drawing dots or curves in the reservoir in the left-hand side of the 

GUI using a sketcher. The inverse ultrasound DSA problem is then solved to calculate the 

ultrasound transducer parameters necessary to achieve the user-specified pattern of 

particles. The GUI applies the computed parameters to the ultrasound transducers and 

solves the forward ultrasound DSA problem, to determine and display the actual pattern of 

particles (cyan) with the user-specified pattern of particles (red), superimposed over the  
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Figure 4S.1: Scientific tool and graphical user interface. Images of the scientific tool 
with a user-friendly graphical user interface (GUI) that enables solving (a) the forward 
ultrasound directed self-assembly (DSA) problem to determine the pattern of particles 
(cyan) that result from user-specified ultrasound transducer parameters, and (b) the 
inverse ultrasound DSA problem to calculate the ultrasound transducers necessary to 
achieve a user-specified pattern of particles (red). 



67 
 

ultrasound wave field (green) in the left-hand side of the GUI. The GUI facilitates 

adjustment of the material properties of the particles and fluid medium, and the 

arrangement and operating frequency of the ultrasound transducers lining the square 

reservoir.  

4.9 Supplemental ultrasound transducer parameters  

Table 4S.1: Ultrasound transducer parameters corresponding to Fig. 4.4(a) 

T Amplitude 
[m/s] 

Phase 
[deg.] 

1 0.70 -141.34 
2 0.00 0.00 
3 0.71 -142.96 

4 0.00 0.00 

Table 4S.2: Ultrasound transducer parameters corresponding to Fig. 4.4(b) 

T 
Amplitude 

[m/s] 
Phase 
[deg.] 

1 0.50 180.00
2 0.50 -2.29 
3 0.50 177.70

4 0.50 0.00 

Table 4S.3: Ultrasound transducer parameters corresponding to Fig. 4.5(a) 

T 
Amplitude 

[m/s] 
Phase 
[deg.] 

1 0.69 0.00 
2 0.15 -15.36 
3 0.00 0.00 

4 0.00 0.00 

5 0.69 0.00 

6 0.15 -15.36 
7 0.00 180.00

8 0.00 180.00
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Table 4S.4: Ultrasound transducer parameters corresponding to Fig. 4.5(b) 

T Amplitude 
[m/s] 

Phase 
[deg.] 

1 0.00 180.00 
2 0.49 32.29 
3 0.00 0.00 

4 0.51 32.29 

5 0.51 32.29 
6 0.00 -180.00 
7 0.49 32.29 

8 0.00 0.00 
 

  



T   

Δx      . 

Table 4S.5: Ultrasound transducer parameters corresponding to the line patterns in Fig. 4.6  

 

 

 

1 2 3 4 

Amplitude 
[m/s] 

Phase 
[deg.] 

Amplitude 
[m/s] 

Phase 
[deg.] 

Amplitude 
[m/s] 

Phase 
[deg.] 

Amplitude 
[m/s] 

Phase 
[deg.]

0 0.71 -146.69 0.00 1.52 0.71 -146.69 0.00 0.00 
0.0625 0.71 -130.44 0.00 4.64 0.70 -125.05 0.00 0.00 
0.125 0.75 -155.31 0.00 32.73 0.66 -125.08 0.00 0.00 

0.1875 0.72 170.87 0.00 155.85 0.69 -19.99 0.00 0.00 
0.25 0.71 15.30 0.00 -161.49 0.71 -164.69 0.00 0.00 

0.3125 0.69 -19.99 0.00 155.85 0.72 170.87 0.00 0.00 
0.375 0.66 -125.08 0.00 32.73 0.75 -155.31 0.00 0.00 

0.4375 0.70 -125.05 0.00 4.64 0.71 -130.44 0.00 0.00 
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T   

Δx      . 

Table 4S.6: Ultrasound transducer parameters corresponding to the dot patterns in Fig. 4.6 

 

 

 

1 2 3 4 

Amplitude 
[m/s] 

Phase 
[deg.] 

Amplitude 
[m/s] 

Phase 
[deg.] 

Amplitude 
[m/s] 

Phase 
[deg.] 

Amplitude 
[m/s] 

Phase 
[deg.] 

0 0.50 0.00 0.50 -180.00 0.50 0.00 0.50 180.00
0.0625 0.51 0.00 0.49 -174.16 0.49 5.84 0.51 180.00
0.125 0.53 0.00 0.47 -149.99 0.47 30.00 0.53 180.00

0.1875 0.51 180.00 0.49 168.98 0.49 -11.02 0.51 0.00 
0.25 0.57 -171.99 0.42 0.00 0.42 8.00 0.57 180.00

0.3125 0.49 0.00 0.51 11.02 0.51 -168.98 0.49 180.00
0.375 0.47 0.00 0.53 150.00 0.53 -30.00 0.47 180.00

0.4375 0.49 0.00 0.51 174.16 0.51 -5.84 0.49 180.00
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CHAPTER 5 

3D PRINTING MACROSCALE ENGINEERED MATERIALS  

USING ULTRASOUND DIRECTED SELF-ASSEMBLY  

AND STEREOLITHOGRAPHY 

Adapted from J. Greenhall and B. Raeymaekers, “3D printing macroscale engineered 

materials using ultrasound directed self-assembly and stereolithography,” Adv. Mater. 

Technol. 2 1700122 (2017). Copyright 2017 Wiley-VCH Verlag GmbH & Co. KGaA. 
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5.1.Introduction 

In this chapter we address the third objective of the dissertation by integrating 

ultrasound directed self-assembly (DSA) with stereolithography (SLA) to enable 3D 

printing polymer matrix engineered materials with complex 3D geometry and user-

specified microstructure.  

Manufacturing engineered materials consisting of patterns of nano- or microparticles 

embedded in a matrix material (see Sec. 1.1) has been achieved via three different 

categories of techniques. Subtractive techniques such as focused-ion beam milling enable 

fabricating features with ultrafine resolution (<100 nm). Since each feature must be 

individually created, the technique requires long fabrication times and, thus, limits 

dimensional scalability of the material specimens [5.1], [5.2]. Additive techniques such as 

interference lithography and nanoimprint lithography enable rapid patterning of features 

over large (≤ 1 cm2) areas, but only work for a limited selection of materials and are 

typically restricted to organizing 2D patterns of features, thus constraining the material 

properties that can be tailored [5.2]–[5.4]. Alternatively, DSA techniques including 

templated DSA, template-free DSA, and external field DSA techniques based on electric 

and magnetic fields have been used to organize user-specified patterns of nano- or 

microparticles (see Sec. 1.4.1 for details) [5.5]. However, templated DSA is not 

dimensionally scalable due to template sizes on the order of nanometers or micrometers. 

Template-free DSA techniques only work with a limited selection of patterns of particles, 

which limits the material properties that can be tailored. Electric and magnetic field DSA 

techniques require ultrahigh amplitude fields and require conductive and ferromagnetic 

particles, thus, limiting the scalability and particle material choice. As such, existing 
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manufacturing techniques are constrained by material choice, the patterns of particles or 

features that can be fabricated, long fabrication times, dimensional scalability, and/or 

limited control of the macroscale geometry of the material specimen. 

In contrast, ultrasound DSA employs the acoustic radiation force associated with an 

ultrasound wave field to assemble patterns of particles independent of the particle material 

properties [5.6]. Also, ultrasound DSA is scalable because it does not require a high 

amplitude ultrasound wave field to organize patterns of particles in low-viscosity (bulk and 

shear) fluids [5.7]. Combining ultrasound DSA with photo-curing enables organizing 

patterns of particles within a thin layer of liquid photopolymer resin, which is subsequently 

photo-cured to polymerize the resin and fixate the pattern of particles in place. Only simple 

2D materials have been demonstrated using ultrasound DSA with photo-curing based on a 

laser that traces the desired specimen geometry, which limits implementing the materials 

in engineering applications that require 3D material structures [5.8], [5.9].  

Thus, the objective of this chapter is to demonstrate a manufacturing process to 3D 

print macroscale engineered materials with complex 3D geometry and a tailored 

microstructure based on a user-specified pattern of particles embedded in a polymer matrix 

material. We integrate ultrasound DSA with SLA to 3D print materials in a layer-by-layer 

fashion. In each layer a user-specified 2D pattern enables tailoring the microstructure of 

the engineered material, unrestricted by material choice. 

5.2.Ultrasound directed self-assembly/stereolithography  

manufacturing process 

Figure 5.1 shows a schematic of the ultrasound DSA/SLA manufacturing process. An 

octagonal reservoir with L = 30.0 mm is lined with eight ultrasound transducers (PZT 4, 
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Steminc inc.) around its perimeter, and contains nickel-coated carbon fibers (Conductive 

Composites Company, Heber, UT) of length 100 μm and diameter 10 μm, dispersed via tip 

sonication (Hielscher UP200Ht) in liquid resin (Maker Juice Sub. G+) (Fig. 5.1(a)). We 

use a signal generator (Tektronix AFG3102) and radio-frequency amplifier (ENI A150) to 

energize two opposing ultrasound transducers (marked yellow in Fig. 5.1(a)) with a 25 

VRMS sinusoidal voltage at 1.65 MHz to generate a standing ultrasound wave field within 

the liquid resin. The acoustic radiation force associated with the ultrasound wave field 

drives the nickel-coated carbon fibers to the nodes of the standing ultrasound wave field 

(see Sec. 1.4.2) [5.6], [5.10], which results in a pattern of parallel lines of aligned nickel-

coated carbon fibers spaced a half wavelength (λ/2 = 0.45 mm) apart in the liquid resin. A 

Digital Light Processing projector (ViewSonic PDJ7822HDL) exposes the liquid resin to 

visible/ultraviolet (UV) light through the transparent reservoir floor, which causes the 

liquid resin to cross-link and cure into a layer of thickness h0 that fixates the pattern of 

particles in place [5.11] (inset image in Fig. 5.1(a)). The build plate lowers to hf > h0 above 

the transparent reservoir floor, and additional visible/UV light exposure cures the resin 

layer with thickness hf to adhere it to the build plate (Fig. 5.1(b)). The build plate lifts out 

of the reservoir (Fig. 5.1(c)), and liquid resin replenishes the gap between the cured layer 

and the reservoir floor. We repeat the process shown in Fig. 5.1(a)-(c) to 3D print the 

engineered material layer-by-layer, where each layer contains a user-specified pattern of 

particles to enable tailoring the microstructure of the material (Fig. 5.1(d)) (video of the 

manufacturing process is available upon request). Furthermore, the SLA process allows 

controlling the macroscale geometry of the material.  
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Figure 5.1: Ultrasound directed self-assembly/stereolithography manufacturing process.
(a) The process sequentially employs ultrasound directed self-assembly to organize a user-
specified pattern of aligned nickel-coated carbon fibers in a thin layer of resin contained in 
a reservoir, and (b) cures and (c) lifts the layer of resin to (d) fabricate materials layer-by-
layer via stereolithography. 
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5.3.Single-layer engineered materials with user-specified  

microstructure 

To demonstrate the capability of the ultrasound DSA/SLA manufacturing process for  

fabricating macroscale user-specified patterns within each material layer, we fabricate 8.00 

× 5.00 × 0.45 mm single-layer material specimens containing line patterns of nickel-coated 

carbon fibers with 1.0 weight percent (wt. %), and 9.00 × 9.00 × 0.45 mm material 

specimens with complex user-specified patterns of nickel-coated carbon fibers containing 

with 1.0 wt. %. Figure 5.2(a) shows optical images of single-layer material specimens 

containing line patterns of aligned nickel-coated carbon fibers (length 100 µm, diameter 

10 µm) with user-specified orientation angle θd = 0°, 45°, 90°, and -45°, respectively. Inset 

images indicate the active pair of ultrasound transducers to organize each line pattern in 

yellow. We quantify the alignment of the nickel-coated carbon fibers in each material 

specimen shown in Fig. 5.2(a) using the 2D fast Fourier transform (FFT) to measure 

anisotropy in each of the optical images [5.12] (see Section 5.9 for details). Figure 5.2(b) 

shows the FFT anisotropy as a function of the angle θ, measured with reference to the 

vertical, for each of the material specimens shown in Fig. 5.2(a) with θd = 0° (red diamond 

marker), 45° (green square), 90° (yellow circle), and -45° (blue triangle). We quantify the 

angle at which the FFT is maximum and the full width at half maximum of the FFT 

anisotropy distribution for each single-layer material specimen. The difference between the 

angle at which the FFT is maximum and the user-specified angle is 1.62°, 0.59°, 1.89°, and 

5.54° for θd = 0°, 45°, 90°, and -45°, respectively, indicating excellent alignment of the line 

patterns of nickel-coated carbon fibers in the user-specified direction. The corresponding 

full width at half maximum, which indicates how well the individual nickel-coated carbon 
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fibers are aligned with the angle at which the FFT is maximum, is 2.16°, 5.32°, 8.65°, and 

5.05°, respectively, demonstrating good alignment. Figure 5.2(a) shows regions with 

locally non-straight lines and non-uniform nickel-coated carbon fiber concentrations. 

These defects are due to near-field effects [5.7], acoustic streaming [5.13], and squeeze 

flow of the liquid resin as the build plate is lowered into the reservoir (Fig. 5.1(b)), which 

may displace the nickel-coated carbon fibers and disrupt the resulting patterns within each 

resin layer.  

In addition to simple line patterns, the ultrasound DSA/SLA manufacturing process 

enables organizing complex patterns of particles that cover macroscale areas. We 

accomplish this by fabricating the resin layer in multiple sections, where each section 

Figure 5.2: Single-layer material specimens with user-specified microstructure. (a)
Material specimens containing line patterns of aligned nickel-coated carbon fibers oriented
in user-specified angles θd = 0°, 45°, 90°, and -45°. (b) FFT anisotropy of each material
specimen as a function of the image angle θ. Material specimens containing complex
patterns of aligned nickel-coated carbon fibers organized into (c) octagonal, (d) triangular,
(e) the University of Utah “U-logo” configurations, and the logos of (f) the Army and (g)
NASA. 
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contains a line pattern of particles with a user-specified orientation angle θd. Figure 5.2(c)-

(g) shows optical images of single-layer material specimens with nickel-coated carbon 

fibers organized into complex patterns, including an octagon (Fig. 5.2(c)), triangle (Fig. 

5.2(d)), the University of Utah “U-logo” (Fig. 5.2(e)), and the logos of the Army (Fig. 

5.2(f)) and NASA (Fig. 5.2(g)), both of which have supported distinct aspects of the work 

we document in this dissertation.  

In contrast with existing ultrasound DSA techniques based on phased arrays, which are 

limited to creating pattern features with nonsharp corners due to the ultrasound wave field 

interference patterns (see Sec. 4.4) [5.14], [5.15], the ultrasound DSA/SLA manufacturing 

process enables fabricating sharp features by combining multiple sections. However, Figs. 

5.2(c)-(f) show small gaps (< 350 μm) between neighboring sections. These gaps prevent 

each section from colliding with neighboring sections as the build plate is lowered during 

the manufacturing process (Fig. 5.1(b)).  

5.4.Multilayer engineered materials with user-specified microstructure 

To demonstrate the capability of the ultrasound DSA/SLA manufacturing process for 

fabricating multilayer materials, we fabricate macroscale specimens containing Bouligand 

structures, which are found in biological structures and are known to provide, e.g., 

enhanced mechanical strength and puncture resistance [5.16]. Figure 5.3 shows four-layer 

specimens (8.0 × 5.0 × 1.8 mm) with a Bouligand microstructure consisting of line patterns 

of nickel-coated carbon fibers (1.0 wt. %) aligned in user-specified orientations θd = 0°, 

90°,0°, and 90° (Fig. 5.3(a)), and θd = 0°, 45°, 90°, and -45° (Fig. 5.3(b)) in layers 1-4, 

respectively. Figure 5.3 shows trimetric views of the specimens imaged optically and via 

X-ray computed tomography (see Appendix D for details), and inset images show a top- 
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Figure 5.3: Multilayer engineered materials with user-specified microstructure. 3D 
printed multilayer material specimens containing Bouligand microstructures of
aligned nickel-coated carbon fibers. (a) Four-layer material specimen containing line 
patterns with θd of 0°, 90°, 0°, and 90°, in layers 1-4, respectively. (b) Four-layer 
material specimen containing line patterns with user-specified alignment angles θd

of 0°, 45°, 90°, and -45°, in layers 1-4, respectively. 
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view, where color represents the z-height in the specimen. Furthermore, Fig. 5.3 shows a 

top-view of each individual layer, with inset images indicating the pair of ultrasound 

transducers energized to create the line pattern, indicated in yellow. Imperfections in the 

line patterns occur for the same reasons discussed with single-layer material specimens  

(see Sec. 5.3). Additionally, limited resolution (≥ 10 × 10 × 10 μm voxel size) of the X-ray 

CT imaging may contribute to gaps between fibers or connected regions between lines in 

Fig. 5.3.  

5.5.Engineered materials with tailored electrical conductivity 

To demonstrate the possibilities of this manufacturing technique in the context of 

engineered materials with embedded functionality, we have fabricated a 5.00 × 5.00 × 0.35 

mm single-layer material specimen containing a line pattern of 2.0 wt. % aligned nickel-

coated carbon fibers, which form a percolated network and enable tailoring the electrical 

conductivity of the material. We follow the manufacturing process shown in Fig. 5.1(a) to 

create a pattern of aligned nickel-coated carbon fibers via ultrasound DSA and then expose 

the liquid photopolymer resin to visible/UV light for 8 s to polymerize the resin and fixate 

the pattern of nickel-coated carbon fibers in place. We omit the final curing step shown in 

Fig. 5.1(b)-(d) to ensure that the line pattern of nickel-coated carbon fibers is not fully 

enclosed in resin, which would inhibit electrical resistance measurements. Figure 5.4 

shows the electrical conductivity measurement process. We use a two-probe setup (Fig. 

5.4(a)), where the probes are placed 1.0 mm apart along (1) a single line of nickel-coated 

carbon fibers to measure the “wire resistance” (Fig. 5.4(b)), and (2) on two neighboring 

lines of nickel-coated carbon fibers to measure the “insulator resistance” (Fig. 5.4(c)). We 

use a parameter analyzer (Kiethley 4200) to apply a voltage Vapp sweep from -10 V to 10  
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Figure 5.4: Engineered materials with tailored electrical conductivity. The process for 
measuring the electrical conductivity of engineered materials containing a line pattern of
aligned nickel-coated carbon fibers uses (a) A two-probe setup with microprobes placed 
(b) along the same line of nickel-coated carbon fibers to measure the “wire resistance,” or 
(c) along neighboring lines of nickel-coated carbon fibers to measure the “insulator 
resistance.” (d) The resistance is measured using the slope of the line that best fits the
applied voltage Vapp and measured current Im. (e) A single-layer material specimen 
containing a line pattern of aligned nickel-coated carbon fibers, with the line number 
indicated. (f) Measured wire (blue) and insulator resistances (yellow) for seven lines of
aligned nickel-coated carbon fibers.
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V, in 0.5 V increments, and measure the resulting electrical current Im flowing between the 

probes. We calculate the resistance R = Vapp/Im as the slope of the line that best fits the 

voltage-current data, which is calculated using ordinary least-squares linear regression 

(Fig. 5.4(d)) [5.17]. We limit the current amplitude to |Im| ≤ 100 mA to avoid damaging the 

parameter analyzer and, thus, we remove all data points for which the current measurement 

saturates at Im = ±100 mA to avoid spurious resistance values. We repeat the electrical 

resistance measurements on a representative sample of seven lines of nickel-coated carbon 

fibers near the center of the material specimen to calculate the mean and standard deviation 

of the wire and insulator resistances (Fig. 5.4(e) and (f)). We measure an average wire 

resistance of 59.7 Ω and insulation resistance of 112.7 MΩ, with a standard deviation of 

15.5 Ω and 23.2 MΩ, respectively, showing that the lines of aligned nickel-coated carbon 

fibers are conductive, yet insulated from each another. This example illustrates how the 

ultrasound DSA/SLA manufacturing process enables 3D printing materials with embedded 

insulated electrical wiring, or enables tailoring the conductivity of a material in specific 

directions.  

5.6.Discussion of manufacturing process parameters 

Scalability of the ultrasound DSA/SLA manufacturing process is achieved by enlarging 

the z-height of the ultrasound DSA/SLA apparatus and the reservoir size in the x- and y-

directions. However, enlarging the reservoir incurs additional acoustic attenuation, which 

reduces the amplitude of the acoustic radiation force that assembles the patterns of 

particles [5.6], [5.7]. To mitigate the effects of acoustic attenuation we select a liquid 

photopolymer resin with low viscosity, and increase the input power applied to the 

ultrasound transducers. However, increased input power causes heat generation within the  
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ultrasound transducers, which can potentially damage the reservoir and/or cause boiling in 

the liquid photopolymer resin [5.18]. The ultrasound DSA/SLA manufacturing process 

time is primarily dependent on the curing and nickel-coated carbon fiber/liquid 

photopolymer resin dispensing rates. The curing times required for the initial (Fig. 5.1(a)) 

and final curing steps (Fig. 5.1(b)) depend on the photopolymer resin properties, the layer 

thickness hf, and the weight fraction of carbon fibers, and are on the order of 7 s and 11 s, 

respectively, for the specimens shown in this chapter. In contrast to laser-based photo-

curing processes, the curing time is independent of the x- and y- material dimensions [5.8], 

[5.9].  

5.7.Conclusion 

In conclusion, we have documented a manufacturing process based on integrating 

ultrasound DSA and SLA that, for the first time, enables 3D printing of engineered 

materials with arbitrary macroscale geometry and a user-specified microstructure based on 

a pattern of micro- or nanoparticles embedded in a polymer matrix material. We have 

illustrated the capability of the manufacturing process by 3D printing engineered materials 

containing a user-specified Bouligand microstructure and engineered materials with 

electrically-conductive lines of nickel-coated carbon fibers. In contrast with existing 

manufacturing techniques, the ultrasound DSA/SLA manufacturing process enables 

fabricating engineered materials with both macroscale complex 3D geometries and user-

specified microstructure. Thus, the ultrasound DSA/SLA manufacturing process bridges 

the gap between engineered materials with unique physical properties demonstrated in a 

laboratory setting and macroscale engineering applications. This manufacturing process 

enables a broad range of applications including multifunctional composites, acoustic and 
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electromagnetic cloaking, and subwavelength imaging, among others. 

5.8. Supplemental fast Fourier transform anisotropy quantification 

Figure 5S.1 shows the process used to compute the fast Fourier transform (FFT) 

anisotropy for the material specimens shown in Fig. 5.2(a). We crop the images to the 

4.5 × 4.5 mm region in the center of the image to remove edge effects (Fig. 5S.1(a)) and 

compute the 2D FFT of the image (Fig. 5S.1(b)). We perform a circular projection, wherein 

we sum the squared absolute values of the 2D FFT radially from the center of the 2D FFT 

in each direction to calculate the FFT anisotropy as a function of θ, and we normalize the 

FFT anisotropy so that the integral over –π/2 ≤ θ ≤ π/2 has unit magnitude (Fig. 5S.1(c)).  

5.9. Supplemental x-ray computed tomography details 

To image the Bouligand structures shown in Fig. 5.3 we first use X-ray computed 

tomography (CT) (Varian BIR 150/130) to produce a 3D grayscale model of the material 

specimen, with lighter voxels representing nickel-coated carbon fibers and darker voxels 

representing resin. We threshold the 3D grayscale model to remove voxels with values 

Figure 5S.1: Fast Fourier transform (FFT) anisotropy calculation. (a) A square section is 
cut from the original image and converted to gray scale. (b) The 2D FFT of the image is 
calculated. (c) The FFT anisotropy is calculated as a function of the image angle θ by 
summing |FFT|2 radially from the center of (b), and the maximum and full width at half
maximum are calculated. 
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below 30.0 % of the maximum voxel intensity in the 3D grayscale model to ensure that the 

width of the lines of nickel-coated carbon fibers in the X-ray CT images match those of the 

optical images. Finally, we generate isosurfaces around regions of connected voxels to 

create the X-ray CT images shown in Fig. 5.3. 
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In conclusion, this dissertation demonstrates a theoretical and experimental 

understanding of ultrasound directed self-assembly (DSA) to organize user-specified 

patterns of nano- or microparticles using the acoustic radiation force associated with an 

ultrasound wave field. The ability to manipulate nano- or microparticles and organize them 

into user-specified patterns has significant implications for biology, biomedical devices 

and process control, as well as fabricating engineered materials with unique physical 

properties that result from specific patterns of nano- and microparticles embedded in the 

material. The critical problem inhibiting manufacturing of these engineered materials is the 

ability to organize user-specified patterns of particles in a scalable manner to enable 

utilizing the engineered materials in macroscale engineering applications. In contrast with 

other DSA methods, ultrasound DSA is scalable due to the low ultrasound wave field 

amplitude required organize patterns of nano- or microparticles in a low-viscosity fluid, 

and ultrasound DSA works independent of the material properties of the nano- or 

microparticles.  

We have theoretically derived the dynamic model of a spherical particle in a standing 

ultrasound wave field. Using this model, we observe that the acoustic radiation force drives 

the particle to the nodes or antinodes of the ultrasound wave field, where drag forces 

generated by the oscillating ultrasound wave field cause the particle to perpetually orbit the 

node or antinode. However, by operating at a moderate ultrasound wave field amplitude, 

we observe that the particle is essentially fixated at the node or antinode and, thus, we must 

control the location(s) of the nodes or antinodes to enable using ultrasound DSA to 

manipulate particles and organize them into user-specified patterns. 

We have theoretically derived a method for using ultrasound DSA to manipulate 
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particles and organize them into user-specified patterns in 1D and 2D. In contrast with 

existing ultrasound DSA techniques, this method does not require reflected ultrasound 

waves to be removed from the reservoir, which greatly reduces the complexity of its 

practical implementation. Additionally, the 2D ultrasound DSA method enables organizing 

user-specified patterns of particles in a reservoir with arbitrary 2D geometry and ultrasound 

transducer arrangement, as opposed to existing ultrasound DSA techniques that only work 

for a specific pattern of particles, reservoir geometry and/or ultrasound transducer 

arrangement. However, we observe that the patterns of particles that can be achieved are 

constrained to patterns with nonsharp corners due to the interference patterns of the 

standing ultrasound wave fields, which have finite curvature. To mitigate this limitation, 

future work includes performing frequency optimization, employing ultrasound wave 

fields with multiple frequencies, and using a time-dependent sequence of ultrasound 

transducer parameters to organize complex user-specified patterns of particles. 

Finally, we have integrated ultrasound DSA with stereolithography (SLA) as a 

manufacturing process to enable 3D printing macroscale engineered materials with unique 

physical properties. We demonstrate 3D printing multilayer engineered materials layer-by-

layer, where each layer contains a user-specified pattern of particles. Additionally, we 

employ the ultrasound DSA/SLA manufacturing process to fabricate engineered material 

specimens containing parallel lines of aligned nickel-coated carbon fibers. We measure the 

“wire resistance” along each line of nickel-coated carbon fibers and the “insulator 

resistance” between neighboring lines of nickel-coated carbon fibers, and we observe low 

wire resistances (59.7 Ω average) and high insulator resistances (112.7 MΩ average). This 

demonstrates the feasibility of using the ultrasound DSA/SLA manufacturing process to 
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3D print macroscale structures with embedded electrical wiring. To improve the ultrasound 

DSA/SLA manufacturing process, future work includes interfacing the lines of nickel-

coated carbon fibers with traditional electrical components, such as sensors, 

microcontrollers, and resistors, among others, to facilitate 3D printing structures with 

embedded electrical circuits.  
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