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ABSTRACT 
 
 

Knowledge of physical and chemical properties such as size, diffusivity, 

concentration and stability of an analyte in a sample is critical in science and engineering. 

When working in a small size range (0.1-100 nm), which includes short-chain molecules 

(e.g., ethanol) and nanoparticles, the number of methods that can be used for their 

characterization becomes sparse and each one has its limitation such as accuracy, 

resolution, cost of instrumentation and time needed for sample preparation and analysis 

which introduces more complexity to the problem being solved. This became the 

motivation and focus of the presented work. 

The goal of the conducted research was to explore the available methods as well 

as develop new methods that can be used for characterization of different analytes. The 

first half of the dissertation introduces the use of interfacial tension for estimating 

stability of nanobubbles that can be applied as contrast agents for ultrasound imaging or 

as vehicles for drug delivery. Use of interfacial tension is then shown to be applicable in 

a new setup and conditions to determine the diffusion coefficient and concentration of an 

analyte in any given location. Adsorption of perfluorocarbon vapor to the water surface is 

then explored. 

The second half of the dissertation focuses on characterization of endogenous 

nanovesicles called exosomes. This section continues the first section by presenting a 

novel finding of surface activity of exosomes which provides a potential mechanism of 
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their adsorption to the cell membrane as well as application of dynamic interfacial 

tension for measuring exosome concentration in a sample. This section continues by 

comparing techniques that were previously used by others to determine size and shape of 

exosomes but were not compared to each other either due to unavailability of 

instrumentation or focus of the study being unrelated to size and shape. This study not 

only allowed examining the advantages and disadvantages of each technique but also lead 

to new findings about the biophysical properties of exosomes. This section ends with an 

application of quartz crystal microbalance method for measuring average mass and 

concentration of exosomes in a sample. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

1.1 Motivation 

The motivation for the research presented is the limited amount of available 

methods that can be used to characterize analytes with small size range, more specifically 

nanoparticles and short-chain molecules. This initiated the study of advantages and 

disadvantages of existing methods and development of new methods. 

Merriam-Webster dictionary defines analyte as a “chemical substance that is the 

subject of chemical analysis.” This definition includes analytes that start with the smallest 

0.074 nm bond length molecule of diatomic hydrogen and continue with particles in a 

broad size range. Analyte characterization involves determination of its specific feature 

or property. Properties of an analyte are usually divided into physical and chemical. 

Physical properties include density, viscosity, volume, area, hardness, elasticity, 

absorption – process of atoms, molecules or particles entering the bulk phase which can 

be gas, liquid or solid; and adsorption – adhesion of atoms, molecules or particles from a 

gas, liquid or dissolved solid to a surface. Chemical properties include chemical stability 

in a given environment, toxicity, heat of combustion, enthalpy of formation and others. 

Such properties are of high importance in all areas of science and engineering. For 

example, mass density of proteins is a useful input parameter for determination of their 
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three-dimensional structure using protein crystallography and studies of protein 

oligomers in solution.1 Another example is the importance of knowing polymeric drug-

loaded nanoparticle size for enhancing the ability of the nanoparticle to reach the target 

and the difficulties in determination of particle size distribution in such small scale.2 

Ability to measure indoor turbulent diffusion coefficient of air polluting emissions is 

useful for determining exposures in a closed environment such as naturally ventilated 

residences.3 Colloidal stability is an example of a chemical property that is critical to 

prevent particle aggregation and for instance to ensure optimal drug release.4 More 

examples can be easily provided to show the high importance of knowing physical and 

chemical properties of the analyte in question. 

 This dissertation is focused on the characterization of short-chain molecules, 

nanobubbles and biological nanoparticles. More specifically, introduction of developed 

methods for measuring nanobubble stability, measurement of diffusion coefficient of 

short-chain molecules followed by determination of size, concentration and mass of 

endogenous nanovesicles called exosomes will be covered. The methods introduced here 

can potentially be applied for not only the studied analytes but also expanded to a broader 

range of applications. The background and literature review will be focused on cancer, 

potential application of exosomes for screening and showing limitations of their 

characterization. 

 
1.2 Background and Literature Review 

 
1.2.1 Current Methods for Cancer Diagnosis 

Cancer is defined as a disease where some of the cells in the body begin to divide 

without stopping, causing tumor formation (leukemia being an exception), and spread 
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into other tissues leading to formation of solid tumors in a location away from the 

original tumor.5 These types of tumors that invade nearby tissues are called malignant. 

Tumors that do not spread into or invade nearby tissues are called benign and although 

most of these tumors can be removed and are not considered to be life threating, benign 

brain tumor is a clear exception.5 Cancer that has spread from the location where it 

started to another location in the body is called metastatic cancer. Metastasis usually 

involves numerous steps such as local invasion, intravasation – invasion of cancer cells 

through walls of nearby lymph vessels or blood vessels, circulation – movement through 

lymphatic system and bloodstream, arrest and extravasation, proliferation and 

angiogenesis – growth of new blood vessels. Such metastasis eventually leads to severe 

damage of tissues and organ function and is often fatal. Cancer is a leading cause of 

deaths in the United States (574,743 deaths in 2010), only slightly surpassed by heart 

disease (597,689 deaths in 2010).6 Cancer can arise in many different forms, afflicting all 

types of tissues and organ systems. It is a progressive disease, diagnosed in stages 1-4. 

Stage 4 is the most life-threatening with multiple organ systems infiltrated by cancerous 

cells commonly referred to as “metastasis.” Once this state is reached treatment is less 

effective and the disease is usually terminal. Due to the complexity of metastasis, 

diagnosing a patient at the earliest stage of their cancer is the best solution, but remains 

an elusive challenge. Modern cancer research prioritizes early detection above all other 

mechanisms to fight this disease. Figure 1.1 depicts the trends of cancer incidence and 

mortality rates by gender over the past thirty-five years.7 While the incidence of cancer in 

both male and female continue to grow, there is a clear decrease in mortality rates which 

can be attributed to advances in medicine and technology. These rates will soon plateau 



4 
 

without more sensitive and accurate early diagnostic techniques. There are more than 100 

types of cancer but in this dissertation the focus will only be on two types: breast and 

prostate cancer.  

Breast cancer is currently one of the most studied, contributing 14% of all new 

cancer cases and 6.8% of all cancer deaths.8 Figure 1.2 shows the number of breast 

cancer cases and deaths in the United States collected since 1975. Although there is a 

noticeable decline from 1990 to 2011, the slope of this decline is clearly small. 

Mammography is currently the main imaging technique used for breast cancer screening 

and it is likely the cause of decreasing breast cancer mortality. However, this technique 

was recently found to cause overdiagnosis (i.e., cancer that is asymptomatic and poses no 

threat to a woman’s life) leading to unnecessary treatment also called “overtreatment” 

and bringing adverse effects associated with cancer therapy.9 This technique also can lead 

to false-positive results where mammograms are found to be abnormal while no cancer is 

present and similarly to overdiagnosis leading to overtreatment. Adding ultrasound with 

potential application of nanobubbles for higher resolution and magnetic resonance 

imaging (MRI) in the hope to improve screening was also found to result in more false-

positive findings.10 Finally, a false negative result is the case where breast cancer is 

present but mammograms appear normal. Another disadvantage of mammography can 

also be a potential cause of cancer due to repeated x-ray exposure. Thermography is 

another method that was considered as an alternative to mammography but was 

concluded to be unreliable.11,12 

Prostate cancer is another form of cancer that affects males and contributes 14% 

of all new cancer cases and 5% of all cancer deaths. Figure 1.3 shows the number of 
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prostate cancer cases and deaths in the United States since 1975. Prostate-specific antigen 

(PSA) and digital rectal examination (DRE) are the only two options that were 

considered to be used for diagnosis. Currently there is no sufficient evidence that such 

screening methods reduce prostate cancer mortality. Overtreatment due to these two 

techniques is common and leads to side effects such as erectile dysfunction due to urinary 

incontinence.13,14 Such overtreatment includes aggressive procedures in older men 

considered to be at low risk for progression of the disease.15 There are current 

developments of new methods such as examination of DNA in circulating tumor cells 

(CTCs) in the blood in hope to improve cancer diagnosis and detection of cancer 

recurrence, but it is unlikely to be important in early cancer detection. 

 
1.2.2 Introduction to Exosomes 
 

An ideal cancer screening should be low cost, routine, minimally invasive and 

able to diagnose a patient in the earliest stage where no symptoms are present and 

progression does not take place. The analysis of secretome, totality of secreted organic 

molecules or particles and inorganic elements, in biological fluids has a potential to 

enable such screening. Nanoscale extracellular vesicles commonly referred to as 

exosomes, shedding vesicles, endogenous nanoparticles or extracellular vesicles (EV), is 

a component of cell secretome with significant diagnostic and drug delivery potential. 

They are a type of stable nanovesicle (20-120 nm) that transports molecules and other 

cellular constituents through the bloodstream. They are formed in the late endosomal 

compartment and generated by inward budding of the limiting membrane of 

multivesicular bodies (MVBs). This ensures that membrane-bound proteins originally 

being part of the cell membrane preserve the same orientation and folding on the 



6 
 

exosomal membrane as those on the plasma membrane (Figure 1.4).16,17 The composition 

of exosomes includes a plasma membrane that encapsulates cargo material (including 

nucleic acids and proteins) as well as mRNA, microRNA and DNA originating from the 

parent cell.18–21 Figure 1.5 shows a schematic of an exosome and provides examples of its 

contents.  

Many cell types are known to release exosomes, including epithelial cells, 

mesenchymal cells, lymphocytes, and tumor cells.22,23 They can be isolated from body 

fluids (including blood, urine, and saliva) and cell culture supernatant by several 

methods, including ultracentrifugation,24 solvent precipitation kits such as ExoQuick,25 

size exclusion chromatography,26 immunoaffinity isolation (e.g., magnetic Dynabeads 

and affinity chromatography), “salting-out” procedure and microfluidic techniques.27–29 

The exosomes can be differentiated from other circulating particles (such as small 

vesicles budded directly from the cell surface) by their formation during the MVB 

excretion pathway and the range of their sizes (see Figure 1.4). Because of their unique 

characteristics including their surface decoration and content which is a signature of the 

mother cell, exosomes have the potential to be perfect cancer markers. 

Although our understanding of physiological functions of exosomes is 

incomplete, they have been shown to be important in modulating immune response and 

play a role in short and long-range intercellular signaling.30–32 It has been also shown that 

exosomes carry small noncoding RNAs and the majority of microRNAs (miRNAs) in 

circulation are exosome-bound.33 Therefore, one likely mechanism for cell 

communication is through exosomes fusing with recipient cells and releasing small RNA 

and other molecular content inherited from the cell of origin.34 
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Abundance and composition of exosomal miRNA differ with cell types35,36 and 

between healthy individuals and those with cancer.37–39 Other molecular content inherited 

from a parent, and thus variable with the cell type, includes membrane phospholipids,  

various proteins40 (such as tetraspanins and phospholipases), and saccharide groups found 

on membrane surfaces. For example, it was reported that exosomes released by a HER2-

positive breast cancer cells express a full-length HER2 transmembrane protein 

molecules.41  The relative abundance of different compounds in exosomes may not be 

proportional to the cells that produced them. For example, the exosomes of T, B and 

dendritic immune cells contain only a subset of parent miRNAs.42  

There is evidence that exosomes are actively secreted in response to 

environmental conditions (such as hypoxia and lower pH) and other factors, rather than 

passively shed by cells.43,44 Cargo selectivity that changes the relative abundance of 

molecular compounds in exosomes in response to different factors is another 

manifestation of active secretion. For example, the exosomes of cisplatin-resistant 

ovarian carcinoma cells45 have been shown to contain 2.6-fold more platinum in the 

presence of this drug than cisplatin-sensitive cells. This suggests that drug resistance in 

this case is associated with the selective ability to actively expel cisplatin in exosomes by 

cells that possess this defensive mechanism. Another example of a defensive function of 

exosomes is their contribution to protecting tumor cells by playing a role of decoys for 

monoclonal antibody therapeutics. Specifically, it was suggested that HER2-positive 

exosomes may become targets for Trastuzumab treatment thus limiting the availability of 

this monoclonal antibody to interfere with the HER2/neu receptors of HER2-positive 

breast cells.41 The active secretion may also have an offensive function by which the 
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uptake of tumor exosomes by normal cells leads to a cancerous change in their 

phenotype46 and metastases at distant sites. The exosomal mechanism of intercellular 

signaling may also play a role in modulating immune response by allowing tumor cells to 

evade immune detection and in tumor dormancy. To disrupt offensive functions of tumor 

exosomes, it was suggested that extracorporeal hemofiltration of exosomes out of 

circulation may be an effective adjuvant strategy.47 

 The summarized evidence suggests that the molecular cargo of exosomes is 

parent-cell dependent and actively modulated in response to different factors. It is not 

known if biophysical properties of exosomes are equally variable with the origin, 

environmental, and other factors. Specifically, little is known about the exosome size, 

density, concentration and content as a function of their origin, though preliminary data 

indicate that size is a possible differentiator of tumor exosomes from normal exosomes,48 

an observation similar to one reported by Sharma et al.49 So far there are no reports using 

the size difference of normal and tumor exosomes to fractionate and enrich the sample in 

the exosome population of interest.  

 
1.3 Current Exosome Sizing Methods 

 
 Unlike molecular analysis that can rely on established molecular and 

immunolabeling techniques, the characterization of biophysical properties of exosomes, 

such as their density50 and elasticity,51,52 are often carried out on unique instruments or 

require specialized analytical expertise that is not widely available. Even the 

measurement of the most basic biophysical property, the exosome size distribution, is a 

difficult task.53,54 There are relatively few applicable characterization techniques that can 

be used to size these nanoscale particles. The exosome sizes overlap with other biological 
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particles (e.g., lipoprotein and protein agglomerates at the lower range of sizes and larger 

extracellular microvesicles (MV) and cell debris at the high end of the exosome size 

distribution), which interfere with the exosome sizing55 and produce the results that 

depend on the sample preparation steps. Different techniques estimate sizes based on 

dissimilar physical principles and thus provide method-dependent sizing.  

 The hydrodynamic size of a particle is obtained by first estimating its diffusivity 

in the solution and then calculating its diameter using the Einstein’s theory of diffusion to 

match the observed value. Viscosity and temperature of the solution influence the 

calculations and must be known or measured. If we ignore the contribution of solvation 

layer formed around particles due to changes in hydrogen bonding of water molecules at 

the particle-solvent interface,56,57 the hydrodynamic and geometric sizes will be equal for 

smooth, hard, electrically neutral, spherical particles with zero surface charges. Several of 

these assumptions fail in the case of exosomes, which are elastic particles known to have 

a strongly negatively charge58 and molecularly decorated surface. In an aqueous medium, 

any particle with a surface charge is surrounded by an electrical double layer, sometime 

referred to as ionic atmosphere.59 As the particle moves, the ionic atmosphere moves with 

it, making an apparent particle’s size larger than its physical size. The thickness of the 

ionic atmosphere is approximately equal to the Debye length, which depends on two 

additional properties of the solution – its ionic strength and the dielectric permittivity.  

The molecular decoration of the particle surface is yet another factor with strong 

influence on the diffusivity. Molecular decoration can impede the motion of particles, 

decreasing the apparent diffusivity, thus increasing the estimated hydrodynamic size. To 
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complicate matters further, the surface brush configuration may change with the surface 

concentration of the decorating molecules, the ionic strength of the solution and its pH.59  

In view of the discussed factors, it is clear that the hydrodynamic size of particles 

will always be larger than their geometric size, though the degree of the deviation has not 

yet been explored. The specifics of different analytical techniques may further contribute 

to size differences. The following brief discussion of analytical techniques gives an 

overview of the methods that can be used to estimate the size of exosomes. 

 
1.3.1 Hydrodynamic Size Measurement 
 
 Nanoparticle tracking analysis (NTA)21,60 has emerged as the most widely used 

method for characterizing the size distribution of exosomes. NTA estimates 

hydrodynamic size individually for each particle in the field of view of the instrument. 

The measured particle displacement over time is used to calculate its diffusivity and the 

hydrodynamic particle size that matches the observed mobility is calculated from the 

Stokes-Einstein equation: 

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑟
                                                                (1) 

where 𝑘𝐵 is the Boltzmann’s constant, 𝐷 is the diffusion coefficient, 𝑇 is temperature, 𝜂 

is dynamic viscosity and 𝑟 is the radius of the spherical particle. However, NTA fits a 

model and produces a size distribution based on only 30-100 particle data providing only 

estimations. NTA can also produce an inaccurate size distribution when particles such as 

exosomes, with refractive index close to water or phosphate buffered saline (PBS) are 

being analyzed.61 
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The dynamic light scattering (DLS) is another commonly used method for 

estimating the size distribution of exosomes based on their mobility in the solution. 

Unlike, the NTA that calculates diffusivity individually of each particle, the DLS62 (also 

known as photon correlation spectroscopy) is an ensemble technique that estimates the 

hydrodynamic size distribution of the entire particle population by analyzing the temporal 

variation in the intensity of the scattered light measured at a fixed scattering angle. 

Briefly, because the Brownian motion of larger particles in the solution is relatively slow, 

the corresponding temporal change in the measured intensity of the scattered laser light is 

also slow. On this basis, the particle diffusivity can be estimated and the corresponding 

hydrodynamic diameter found from Stokes-Einstein equation. However, for samples with 

a broad particle size distribution (polydispersed mixture) and mixtures of multiple 

narrowly distributed fractions (multimodal distribution), the interpretation of temporal 

fluctuations in intensity becomes difficult and does not produce accurately resolved size 

histograms. Furthermore, in this situation the DLS results tend to be biased towards 

larger particle sizes because the scattered intensity changes as sixth power of the particle 

diameter. 

Finally, flow cytometry is another laser-based method to determine size where 

particles are carried to the laser intercept in a fluid stream. When particles pass through 

such intercept, they scatter laser light. After collection of the scattered light using lenses, 

a combination of beam splitters and filters direct scattered light to the appropriate 

detector. Scattered light data are then converted to size data. However, it was estimated 

that the minimum detectable exosome size using flow cytometry is 150-190 nm showing 

that this method is not suitable for exosomes sample analysis.63 
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1.3.2 Volumetric Size Measurement   

Exosomes are too small to be characterized by the traditional Coulter counters 

which size particles based on the measurements of ionic current in electrolyte solution 

flowing through a microchannel. With recent advances in fabrication of nanopores,64 

however, the sizing of the exosomes65 and other nanoparticles66 using this technique 

becomes possible. The fluid flow created by ionic current driven by a voltage applied 

across the nanopore (perhaps with the contribution of the pressure driven flow) entrains 

the particles and carries them through the nanopore. The each passing particle partially 

obstructs the pore, causing the decrease in the measured ionic current (thus an alternative 

name of the technique – the resistive pulse measurements, RPM). The magnitude of the 

current reduction depends on the volume of the solution containing freely moving ions 

displaced in the pore by the passing particle. For smooth, hard, electrically neutral 

spheres with undecorated surfaces, the displaced solution is proportion to the 3rd power of 

the particle diameter, d. Several of these conditions might not hold for exosomes. For 

example, the ions within exosome ionic atmosphere are not moving freely, thus 

increasing the exclusion volume of freely moving ions. The molecular decoration of 

exosome surfaces is another factor that may impede ions from freely moving in the 

proximity of exosomes. So far it has been shown that RPM give size distribution close to 

that obtained from NTA.67  This similarity should be carefully judged since the current 

commercially available RPM have the smallest limit to be ~70 nm so it the similarity of 

RPM and NTA can be deceiving. According to qNano training guide, RPM measures the 

geometric size of particles and not hydrodynamic. In addition to its minimum particle 

diameter limit (~70 nm) another limitation of RPM is its small dynamic range. Particles 
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larger than the pore size cannot be sized, while particles smaller than ~1/4 of the pore 

diameter may not create significant reduction in ionic current to be detected. To 

overcome this limitation, multiple nanopores of different sizes may be used after an 

initially broad particle population is first fractionated into appropriately narrow size 

fractions. A recently introduced alternative is to use a tunable pore in an elastic 

membrane, with the size adjustable by stretching.68 However, due to the lowest detectable 

diameter of RPM being 70nm, it is still uncertain if RPM provides the complete spectrum 

of size distribution. This brings a question whether RPM is reliable due to the possibility 

of not including exosomes with size being below the limit of detection. 

 
1.3.3 Geometric Size Measurement of Exosomes 

 
1.3.3.1 Desiccated Samples 

Too small for light microscopy, the direct imaging of exosomes is achieved with 

electron microscopy (EM). The traditional implementations of the EM (scanning electron 

microscopy (SEM) and transmission electron microscopy (TEM)) image samples in 

vacuum and therefore produce images of desiccated exosomes. Prior to imaging, the 

sample must be prepared and handled in a way that avoids crystal formation during 

desiccation, for example, by using an aqueous buffer of a volatile salt (such as 

ammonium acetate). In TEM, electrons transmitted through a thin sample create a two-

dimension projection of 3D samples. If needed, TEM can also be done in tomographic 

mode to obtain a 3D image. The sample area imaged with high-resolution TEM is small. 

Therefore, a large number of TEM images are often needed to robustly characterize the 

exosome size distribution, which makes this technique time consuming and expensive. 
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Perhaps, this is the reason it is not common to see the size distribution of exosomes 

obtained by the TEM, often only a range of particle sizes being reported. 

 Unlike the TEM that captures the cross-sectional projections, the scanning 

microscopy characterizes the surface of the sample by imaging backscattered and 

secondary electrons produced by the interaction of an electron beam with the surface. By 

scanning the beam, a large area of the sample can be imaged, but with a lower resolution 

than achievable with the transmission microscopy. Once acquired, the TEM or SEM 

images may be used to obtain the size distribution of exosomes by manual sizing of the 

visualized nanovesicles or by automated image analysis using software tools, such as 

ImageJ.69 

 
1.3.3.2 Hydrated Samples 

 
 Desiccation of biological samples introduces severe environmental 

transformations, while a change in interfacial forces during desiccation likely alters the 

geometric sizes of exosomes enveloped with an elastic membrane.52 Very few methods 

exist that can be used to characterize geometric sizes of hydrated exosomes, of which the 

cryoTEM70 is the gold standard. Prior to imaging, a thin sample of hydrated exosomes, 

obtained by blotting off the excess solution pipetted on the TEM grid, is plunged into 

liquid ethane. The rapid cooling is needed to obtain the vitrified (amorphous) form of ice, 

which has properties similar to liquid water. The exosomes preserved in their native 

hydrated state are then imaged in high vacuum. The verification increases the tolerance of 

the samples to high-energy electron irradiation needed for high resolution imaging. With 

higher radiation tolerance, the sample can be imaged multiple times at different tilt angles 

and its three-dimensional topography reconstructed using computer tomography.71 A 
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notable disadvantage of the cryoTEM imaging, other than the complexity of the sample 

preparation, is a relatively small number of exosomes in each acquired image. 

Consequently, a larger number of images must be acquired and analyzed to obtain 

statistically significant characterization of the exosome size distribution. Image analysis, 

manual or using software tools, depends on the particle edge detection. The soft 

membrane of the exosome appears as a diffused boundary in cryoTEM images, which 

requires a subjective judgment on the edge location during manual sizing or algorithm 

tuning (e.g., threshold selection) when an automated image analysis is used.  

 Another microscope that can be used to image hydrated samples is the atomic 

force microscope (AFM) mainly consisting of a cantilever with a tip, laser, photodiode 

and detector with feedback electronics. When the cantilever tip is brought close to the 

sample surface, the forces between the tip and the sample cause deflection of the 

cantilever according to Hook’s law.72 Such forces can be due to van der Waals forces, 

chemical bonding, capillary forces, electrostatic forces and others. A laser is used to 

measure the deflection by tracking the reflected laser from the cantilever using an array 

of photodiodes. There are numerous variations of AFM that can be adjusted to the sample 

in question. AFM can be used to image immobilized particles in liquid. Although 

exosomes were previously imaged using AFM, it was mostly done in dry state.73,74 Up to 

now there was only one attempt to characterize exosomes in the liquid by using AFM.75 

 

1.4 Concentration Measurement of Exosomes 
 
 Only a few techniques are currently available for measuring exosome 

concentration. We found that available ELISA assays often give inconsistent results 

because the expression of markers, such as CD63, CD9 and CD81, differs greatly 
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between patient samples. NTA is currently the most widely used approach for measuring 

concentration of exosomes in a given sample. However, a narrow field of view 

implemented in NTA instruments and specific range of particles in that area (only 30 to 

100 particles) recommended by the manufacturer make the NTA concentration 

measurements dependent on the sample preparation steps and the concentration reports 

being based on a relatively small number of particles. In contrast when compared to 

ELISA assay, NTA may overestimate the concentration of exosomes due to presence of 

background particles. Solvent (water or PBS) itself may contain particles that may skew 

the results obtained by the NTA. Use of the Coulter counter, described previously as a 

technique for size measurements, is also a method that can be used to measure particle 

concentration. This technique is based on particle-by-particle counting and makes a 

concentration estimate based on a larger number of particles when compared to NTA 

(500 vs 100). However, the Coulter counter can produce misleading results due to 

aggregates or other large particles inhibiting continuous flow of the exosomes through the 

nanopore. Similar to the NTA method, Coulter is not specific and may include particles 

that are not exosomes in the calculation. The experience with Coulter counter, NTA and 

ELISA exosome concentration measurements done by numerous groups is consistent 

with observations by Duijvesz et al. that counting exosomes in a sample still remains a 

challenge.76 Furthermore, there are currently no verified protocols for standardization of 

serum and other biofluid samples. Without such standardization concentration of 

exosomes from the same individual would change with such factors as hydration level. 
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1.5 Mass/Density Measurement of Exosomes 
 
 Consistent with the view that exosomes play a role in long-range intercellular 

signaling, the exosome weight/density should reflect the amount of encapsulated 

biomolecular cargo that is likely to be different in cancer and normal exosomes. Although 

the density has been shown to be an important biophysical property of cells, essentially 

nothing is known about the difference in densities of normal and tumor exosomes.77 Only 

a few general reports about density of exosomes and exosome-like vesicles can be 

found.50,78,79 The most common method used to estimate exosome density is the sucrose 

gradient method where exosomes are layered on top of a sucrose gradient with density 

ranging 1.12-1.25 and centrifuged for a period of time. Fractions are then collected and 

the sucrose content is measured with a refractometer providing the relative density.80 

Such method requires high gravitation forces and centrifugation time longer than 12 

hours. Since exosomes were shown to be highly time-sensitive, the sucrose gradient 

method can introduce a substantial error that can affect the conclusions obtained from the 

results.81 

 
1.6 Dissertation Overview and Novelty 

 
 It can be seen that characterization on nanoscale is limited to only a few 

techniques which became the motivation of the presented research. The main goal was to 

explore available methods and develop novel methods that can be used to characterize 

short-chain molecules and nanoparticles. More specifically, the dissertation first 

concentrates on expanding the application of the dynamic interfacial tension method for 

characterization of short-chain molecules, nanobubbles and biological nanoparticles. The 

study then continues by comparing the available methods for size and shape 
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determination on nanoscale and presentation of a new method to measure mass and 

concentration of biological nanoparticles. 

 First, application of dynamic interfacial tension will be covered in Chapter 2 

through Chapter 5. Surface tension or interfacial tension of a gas/liquid or liquid/liquid 

system is defined as the excess stress of the surface that is integrated over the interfacial 

zone.83 Surfactants, amphiphiles, lipids and proteins are known to cause a decrease in the 

equilibrium surface tension usually due to minimization of Gibbs free energy with the 

molecular mechanisms including hydrophobic effect, electrostatic attraction and 

stereospecific or other binding.84 This portion of the dissertation focuses on expanding 

the applications of dynamic interfacial tension method. Up to this day surface tension was 

mostly applied to characterize surfactants that are present in the liquid phase. This 

classical problem was first presented by Dr. Milner at the beginning of the 1900s who 

hypothesized that surface tension changes with time due to migration of the surfactant to 

the interface.85 However, to our knowledge there are no studies that look at the effect of 

vapor of one compound on the surface tension of another. Chapter 2 presents the 

application of dynamic surface tension to estimate stability of nanobubbles by exposing 

water and methanol to perfluorocarbon vapors. This study finds a linear relation between 

concentration of perfluorocarbon in the vapor and surface tension of water and methanol 

liquid which was not shown before. Chapter 3 shows application of this relation for 

development of a new method for determination of the diffusion coefficient of short-

chain molecules in the vapor phase. The algorithm of this method can be generalized and 

applied not only to vapor/liquid but also for liquid/liquid systems where diffusion 

coefficients of short-chain molecules, nanobubbles and nanoparticles can be determined. 
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Chapter 4 explores adsorption of perfluorocarbon vapor on the water surface which 

causes a change in surface tension in more detail.  

 As previously discussed, exosome composition includes lipids and proteins that 

are known to be surface active which may cause a change in interfacial tension. Chapter 5 

becomes a continuation of Chapters 2-4 by presenting the finding that exosomes are 

surface active and proposes application of the dynamic interfacial tension technique for 

determination of exosome concentration in a sample. It also provides an insight on the 

mechanism of exosome adsorption to the cell membrane.  

 Characterization of exosomes becomes a challenge due to their size (20-120 nm), 

elasticity and time-sensitivity. The amount of available methods for size measurements is 

sparse and no detailed comparison of these methods is available up to this day. It is 

critical to know the advantages and disadvantages of each method as well as what useful 

information each method is able to provide in order to make reliable and useful 

conclusions from experimental data. Chapter 6 compares methods available today that 

can be used to determine the size and/or shape of exosomes and introduces a new 

protocol for exosome analysis when using atomic force microscopy. 

 In addition to the limited number of methods available for size and shape 

determination of exosomes, there are only a handful of methods able to determine mass 

of exosomes and other nanoparticles which may allow discriminate different populations. 

Quartz crystal microbalance (QCM) is a method that can be used to measure the change 

in mass per unit area by using frequency change of a quartz crystal resonator. The field of 

QCM gained momentum in 1950s when the sensitivity of this method was found to be 

substantial. This method later became a common sensor for mass and viscosity change.82 
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Up to now, to our knowledge, there is no application of this method for determination of 

exosome mass. Chapter 7 will introduce the QCM method and its application for 

exosome characterization. Finally, conclusions and direction of future research will be 

discussed in Chapter 8.   
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Figure 1.1: Cancer incidence and mortality from 1975 to 2010. Figure adapted from.7 
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Figure 1.2: Breast cancer new cases and deaths from 1975 to 2011. Data adapted from.8  
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Figure 1.3: Prostate cancer new cases and deaths from 1975 to 2011. Data adapted from.8  
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Figure 1.4: Schematic shows the hypothesized development of exosomes in a cell an 
excretion to the extracellular space. Figure adapted from.16
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Figure 1.5: Shape, size and composition of exosomes (a) Cryo-TEM image of an 
exosome. (b) Schematic of an exosome. The circular lines forming the circle represent an 
exosome membrane that is adapted from the cell of origin. Adapted from.16
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CHAPTER 4 
 
 

ADSORPTION OF PERFLUOROCARBON 
 

VAPORS TO THE WATER SURFACE 
 
 

4.1 Abstract 
 

Perfluorocarbons (PFCs), e.g., perfluoropentane (PFP), are biocompatible 

compounds having low toxicity and chemical properties that allow them to be used in a 

variety of medical applications. Although a substantial amount of research was done in 

this area, the study of interfacial properties of PFP in aqueous systems has received 

limited attention. Our previous work investigated the influence of PFC vapor on the 

surface tension of water at room temperature. A significant decrease in surface tension of 

water in the presence of PFC vapor and a linear correlation between PFC concentration 

and tension value were found. It is hypothesized that PFP vapor adsorbed to the water 

surface during the experiment. To provide support, quartz crystal microbalance (QCM) 

was used to measure the amount of PFP adsorbed to the water surface. 

 
4.2 Introduction 

 
 Perfluoropentane (PFP) consisting of 5 carbon molecules saturated with fluorine 

is part of the PFC family. Such molecules are considered biologically inert and have 

negligible toxicity.1 PFP also has a unique boiling temperature of 29°C which is below 

normal human body temperature and above room temperature.2 This property 
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provides the ability to form nano/microbubbles in the human body which have useful 

applications. One application is using them as a contrast agent in ultrasonography (Figure 

4.1).3–6 This is due to the substantially higher echogenicity of nano/microbubbles when 

compared to tissue and plasma, mainly caused by the compressibility and density 

difference between the nano/microbubbles and tissue.5 Another application being derived 

from the previous example is controlled drug delivery and allowing the use of 

ultrasonography for monitoring the location of the drug and for controlling the release of 

the drug being transported by the nano/microbubbles.7–9 

 Although PFCs received a lot of interest, very little is known about their 

interfacial properties, especially of PFP and water. This is crucial in predicting the 

stability of nano/microbubbles in the human body which is one of the biggest limitations 

of their use for imaging and controlled drug delivery applications.10 Previous work 

investigated the interface between water and air saturated with PFP vapor.11 Such 

interface presented an inverted model of the interface present between a 

nano/microbubble and blood. A substantial decline in surface tension of water was 

observed when being exposed to PFP vapor. A similar effect was observed when water 

was exposed to perfluorohexane (PFH) vapor. Further investigation provided another 

finding of a linear relation between surface tension of water and PFP or PFH 

concentration in the vapor phase. To our knowledge, such correlation was not reported 

prior to our work. However, another observation was also made when allowing water to 

be exposed to PFP for longer periods of time. In some instances a second droplet (lens) 

would form at the apex of the water drop. This was also observed by Javadi et al. when 

water was exposed to alkane vapors.12 This piqued our interest to take a step forward and 
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investigate this lens formation. We will first introduce the experimental setup, continue 

with the results obtained and discuss with supportive data. 

 
4.3 Experimental Setup 

 
4.3.1 Materials and Tensiometry 

PFP and PFH of research grade were purchased from Fluoromed (Round rock, 

TX). PFP was kept in a refrigerator at 1o C in a sealed container. Sealed containers of 

deionized water and PFH were kept at room temperature (maintained at 20°C). A custom 

pendant-drop tensiometer was used to provide the capability for continuous, near real-

time surface tension measurements.11 Figure 4.2 provides the main steps involved in a 

single surface tension measurement. The apparatus consisted of an air-tight cuvette in 

which a pendant drop of a liquid was introduced. The drop was imaged with a 1024x768 

pixel resolution camera (Imaging Source, Charlotte, NC) fitted to an objective with an 

adjustable optical zoom in the range of 6–24x  magnification. The typical magnification 

was 10x, selected to maximize the number of pixels representing the drop in the camera's 

field of view. A stainless steel syringe needle with a 2 mm diameter was used for 

formation of the droplet in a plastic cuvette (10mm x 10mm x 4.5mm).  

 
4.3.2 Quartz Crystal Microbalance 
 
 A 5 MHz QCM200 (Stanford Research Systems, Inc, Sunnyvale, CA) instrument 

was used for all mass measurements. Specific for 5 MHz frequency, polished quartz 

crystals with 1 inch diameter and titanium/gold electrodes were used for the QCM 

instrument. The RS-232 port was connected to a desktop computer (HP Z400 Work-

station) and LabVIEW stand-alone application was used for data acquisition. The 
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compensation switch of QCM200 was set to hold and ten-turn dial to 8.0 (dry operation 

setting). Prior to introduction of water and perfluorocarbon vapor the frequency of 

oscillation was given 15 minutes to equilibrate.  

 
4.3.3 Procedure 
 
 All experiments were conducted at room temperature (20°C) which was checked 

before and monitored throughout the experiments. The surface tension was measured by 

first injecting 300 μL of PFC and 300 μL of water into individual containers made inside 

the cuvette, closing the cuvette and ensuring no leakage to allow the cuvette eventually 

become saturated with PFC and water vapor. To allow complete saturation of the cuvette 

with PFC and water vapor and avoid condensation due to temperature gradients, 15 

minutes were allowed before the introduction of the pendant drop of water. A pendant 

drop of water was then formed at the end of a stainless steel syringe needle (1.6/2.09 mm 

inside/outside diameter) inside the sealed cuvette and measurements were started and 

monitored in real time by the tensiometer. To minimize any possible condensation above 

the drop, the syringe was inserted such that a minimum amount of stainless still is 

exposed to the vapors inside the cuvette. The volume and surface area of the drop were 

monitored to ensure no evaporation is taking place. Figure 4.3 shows a schematic of the 

experimental procedure. The data were saved and data processing done in Excel. 

 
4.4 Results 

 
 After the formation of the droplet, the surface tension measurements appeared to 

be similar to results obtained in the previous study when the linear relation between the 

concentration of PFC in the vapor phase and surface tension of water was found. Table 
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4.1 provides the results obtained by using the linear relation between PFC concentration 

and surface tension reported previously11 and compared to experiments conducted in this 

study. For a period of time the surface tension experienced only a minor decline (1-2 

mN/m). About 20 minutes after the formation of the pendant drop which was allowed to 

be exposed to air saturated with PFP vapor, the surface tension experienced a more 

drastic decline (Figure 4.4a).  

 A similar phenomenon was seen when the pendant drop of water was exposed to 

air saturated with PFH and water vapor but to a lower extent (Figure 4.5a). During the 

steep decline it was observed that a second drop would begin to grow (Figure 4.6). It can 

be seen that the decline in surface tension is more significant in the case PFP is used yet 

the time required for such second drop formation was similar when comparing PFP and 

PFH vapor. The second drop most likely consisted of the PFC being used in the 

experiment. The surface tension measurements for both PFCs were no longer accurate 

due to the formation of such second drop (lens) at the bottom of the water pendant drop 

leading to an irregular geometry and causing the Young-Laplace equation to fail when 

attempting to fit the theoretical shape. The growth of such lens was also noted from the 

increase in volume of the pendant drop (Figures 4.4b and 4.5b). Such lens would 

continue to grow until reaching a maximum size where the lens would no longer be able 

to stick to the water drop. This can be explained by weak molecular interactions between 

PFCs being used and water drop surface although water on the surface is present at 

higher energy. 
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4.5 Discussion 
 

 Javadi et al observed a similar result when exposing water to hydrocarbons using 

a similar experimental setup.12 However, the study did not take into account several 

important factors that could be involved in the formation of the hydrocarbon lens. One 

effect could be the condensation of hydrocarbons on the metal surface of the syringe and 

movement down to the water droplet simply due to gravity when a thick enough 

hydrocarbon layer formed on the metal surface. Such effect was minimized in our study 

by avoiding the syringe to be exposed to the vapor inside the cuvette. The possibility of 

condensation of PFC vapor on the surface of the syringe was observed when conducting 

an experiment where a clean syringe that was exposed to nitrogen gas prior was inserted 

inside the cuvette and exposed to the PFC vapor. Such experiment was repeated 6 times 

for insurance. Figure 4.7 shows the formation of a PFP layer on the stainless steel surface 

after being exposed for ~30 minutes. This was also confirmed by inserting the syringe at 

a higher temperature (~40⁰ C) to confirm that the formation PFP layer on the metal was 

not due to a temperature gradient leading to condensation. This provided support that 

such formation could be involved in the formation of the lens but was avoided in our 

experimental setup. 

 The second important parameter is the temperature gradient that may be present 

due to the humidity inside the cuvette. If the cuvette was not allowed to become saturated 

with water vapor, this could cause condensation of PFC vapor due to the temperature 

gradient. This was previously investigated and found that 10 minutes is enough time for 

the cuvette to become saturated with water vapor under the experimental conditions being 
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sed by us. This led us to the conclusion that condensation was less likely the reason for 

lens formation. 

 To better understand the formation of the lens, we further investigated the 

interaction between water and PFP vapor. One hypothesis was that although previous 

reports consider PFP and water immiscible there could still be some absorption of PFP 

occurring. To investigate this hypothesis we have conducted experiments by using a 

Fourier Transform Infrared Spectrometer (FT-IR) (Nicolet iS10, Thermo Scientific, 

Waltham, MA). The first setup used is shown in Figure 4.8. Two cuvettes were connected 

by a tube to allow vapor to diffuse from one sealed plastic cuvette to another. After 

injecting 300μL of water to one cuvette, the absorbance was collected and subtracted as a 

background. Then, 500μL of PFP was injected into the second cuvette and absorbance of 

water was made over time. The measurements were done up 3 hours after introduction of 

PFP. The results obtained showed no change in absorbance. 

 For comparison, a second setup was used (Figure 4.9). First, 300μL of water was 

introduced inside the cuvette and absorbance measured. By carefully adding a small 

amount of PFP (~50 μL) on the water surface allowed it to stay above the water due to 

the water surface tension. The absorbance was then measured by using FT-IR 3 hour after 

introduction of PFP. This setup also showed no change in absorbance after adding the 

PFP liquid. Both cases are most likely due to the limit of detection of the FT-IR that is 

dependent on the signal-to-noise ratio. Kabalnov et al. used Ostwald ripening kinetics to 

calculate the solubility of PFP and PFH in water to be 4.0x10−6 mol/L and 

2.7x10−7 mol/L (at 25⁰ C), respectively.13 Such negligible values support the hypothesis 

that FT-IR was simply not able to sense the change in absorbance. To further see if such 
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solubility had any effect on the formation of the lens, we conducted similar experiments 

of monitoring surface tension, surface area and volume by varying the size of the pendant 

drop and estimating the time of the lens formation. For each size of the pendant drop at 

least 5 experiments were conducted for statistical purposes. Figure 4.10 shows the results 

obtained in terms of the average surface area (a) and volume of the droplet (b). Figure 

4.11 provides the average time needed for lens formation with respect to the surface-area-

to-volume ratio. The results show that surface area, volume, or surface-area-to-volume 

ratio does not have a significant effect on the time needed for the lens formation. 

However, it can be seen that there may be a possibility of shorter time that is required to 

saturate a pendant drop with a higher surface-area-to-volume ratio but more accurate 

measurements will be needed. In the future, we are considering investigating the 

geometric effect on the saturation of water with PFCs by modeling the experiments 

conducted in this study. 

This led us to the hypothesis that most likely adsorption of PFP from the gas 

phase to the water surface was taking place. To estimate the amount of PFP being 

adsorbed to the water surface, a quartz crystal microbalance (QCM200, SRS) was used. 

A water bubbler was connected to a chamber by tubing to control humidity and a 

hygrometer placed inside the chamber to monitor humidity (Figure 4.12). QCM200 with 

the QCM cell was placed inside the chamber. The input of the QCM cell was connected 

to the cuvette by a tube which will allow PFP vapor to enter the chamber and output of 

the QCM cell being exposed to the environment of the chamber where humidity is being 

controlled. Initial humidity was measured and was found to be ~25-30% before the 

experiments were conducted. A new 5MHz Quartz Crystal with gold surface was used for 
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the measurement and LabVIEW software used to record the frequency change throughout 

the experiment. The valve of air source was opened and time was allowed for the 

humidifier to raise the humidity inside the chamber. The humidity of 90-95% was 

allowed to be reached and the frequency change is shown in Figure 4.13. To calculate the 

amount of water adsorbed to the gold surface, the Sauerbrey equation was used with the 

sensitivity factor of the crystal being 56.6 
Hz cm2

μg
. The decrease of ~5.5 Hz represents 

mass density of 9.72x10−8 g

cm2and a minimum of 3 monolayers (0.825 nm) of water 

molecules present on the gold surface by assuming the monolayer capacity of 

3.10x10−8 g

cm2.14 This calculation did not take into account the surface roughness of gold 

which will result in a higher amount of monolayers from the calculation. PFP was then 

injected inside the cuvette to allow PFP vapor to enter the QCM cell and caused a further 

decrease in frequency (~12 Hz) (Figure 4.13). This accounted for the 2.12x10−7 g

cm2 

mass density of the adsorbed PFP molecules now adsorbed to the layer of water. 

To confirm the results obtained when using the crystal with the gold surface, a 

modification was done to make the surface more hydrophilic. The gold surface was 

exposed to 0.1mM mercaptododecanoic acid overnight (Figure 4.14). The experimental 

procedure of introducing water and PFP vapor was the same as the one described 

previously. As expected, a substantially higher amount of water vapor adsorbed to the 

mercaptododecanoic acid modified gold surface. This continuing decline was most likely 

due to the carboxylic acid layer causing more water to be adsorbed after saturation of the 

chamber with water vapor. The minimum amount of water that adsorbed was calculated 

to be ~9 monolayers (2.5 nm) with mass density being 2.70x10−7 g

cm2 (Figure 4.15). 
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After the injection of PFP into the cuvette, the frequency declined by an amount close to 

the one presented in Figure 4.13 giving mass density of 2.37x10−7 g

cm2. 

The results of QCM experiments provide support that PFP does in fact adsorb to 

the water surface similar to hydrocarbons as was reported previously by others.12,15 

Although here it appears that the amount of PFP being adsorbed reaches a maximum, it 

must be noted that PFP is not able to stay on the water surface especially on the side of 

the pendant drop due to weak molecular interaction. This weak interaction causes PFP to 

move down the pendant drop of water due to gravity, eventually forming the lens. 

 
4.6 Conclusion 

 
Exposure of the water drop to air saturated with PFP or PFH vapor for long 

periods of time caused a steep decline in surface tension due to the formation of the lens 

at the apex and the Young-Laplace equation was no longer able to fit theoretical shape of 

the drop. Negligible solubility of PFP in water which was seen by FT-IR and confirmed 

by previous research in this area, the molecules were most likely adsorbing to the water 

surface. This hypothesis was confirmed by conducting experiments with QCM. Weak 

molecular interaction between PFP and water caused PFP to form the lens and eventually 

detach from the surface of the water drop. This project provided better understanding of 

PFC/water interface and allows taking a step forward in designing nano/microbubbles 

used for therapeutics with better stability and ability to control drug and gene release for 

medical treatments.   
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Figure 4.1: Angiomyolipoma of a 56-year-old man. (A) Conventional ultrasonography 
showing a hyperechogenic mass with a 2.3 cm diameter located in the left lower kidney. 
(B) Ultrasonography in the same location but with application of nano/microbubbles as 
contrast agent. Figures adapted from.3  
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Figure 4.2: Method used for measurement of dynamic surface tension.  
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Figure 4.3: Experimental procedure used in this study.
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Table 4.1: Surface tension (mN/m) of water in air saturated with perfluorocarbons. 
 

 

 

  

Sample Linear relation Presaturated 
experiment 

PFP 64.0 63.4±0.748 

PFH 65.9 65.0±0.420 
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Figure 4.4: Exposure of pendant drop of water to air saturated with PFP vapor (a) 
Dynamic surface tension (b) Change of volume with time.  
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Figure 4.5: Exposure of pendant drop of water to air saturated with PFH vapor (a) 
Dynamic surface tension (b) Change of volume with time.  
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Figure 4.6: Formation of PFP lens at the apex of the water drop (red arrow).  
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Figure 4.7: Adsorption of PFP vapor on stainless steel surface. (a) Syringe inserted into 
the cuvette saturated with PFP vapor. (b) Accumulation of PFP being adsorbed to the 
stainless steel surface.  

(a) (b) 
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Figure 4.8: First setup used to measure absorption of PFP into water.  
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Figure 4.9: Second setup used to measure absorption of PFP into water.   
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Figure 4.10: The effect of surface area and volume on time of lens formation. (a) Surface 
area of the water pendant drop and the average time until the formation of the PFP lens. 
(b) Volume of the water pendant drop and the average time until formation of the PFP 
lens.  
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Figure 4.11: The effect of surface-area-to-volume-ratio of the pendant drop on the time of 
lens formation.  
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Figure 4.12: QCM setup for estimation of the adsorbed PFP to the water surface.   
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Figure 4.13: Adsorption of water on the gold surface followed by adsorption of PFP on 
the water surface.  
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Figure 4.14: Modification of the gold surface with mercaptododecanoic acid.  
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Figure 4.15: Adsorption of water vapor on the mercaptododecanoic acid modified gold 
surface and adsorption of PFP on the water surface.
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CHAPTER 5 
 
 

SURFACE ACTIVITY OF EXOSOMES 
 
 

5.1 Abstract 
 

Dynamic surface tension (DST) is a method that is widely used for  
 
characterization of surfactants and nanoparticles. However, DST has not been applied to  
 
characterize exosomes. In this chapter, the discovery of surface activity of exosomes is  
 
presented. This finding allows the application of DST for determining concentration and  
 
potentially size of exosomes in a given sample. It also provides the potential mechanism  
 
of exosome adsorption to the cell membrane and release of its content. 

 
 

5.2 Introduction 
 

 Exosomes are membrane-bound nanovesicles found in all biological fluids.1,2 

They contain molecular cargo of nucleic acids, proteins, and other compounds derived 

from the parent cell and are released via an endocytic pathway.2–4 Exosomes have been 

found to be very stable and after their release into circulation serve as messengers for 

short and long-range intercellular signaling by fusing with the target cells and releasing 

their contents.5,6 The stability of these vesicles in the blood, urine, saliva and breast milk 

allows their extraction and characterization which can include their size, concentration, 

content and other properties which can potentially be used for medical diagnostics.7 It has 

already been shown that exosomes contain noncoding RNAs such as microRNAs that
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vary in their abundance in the blood when comparing normal individuals and those with 

cancer.8–10 Cancer cells in vitro were also found to increase the release of exosomes and 

contain microRNAs specific to their environment such as hypoxia and low pH.11 This 

shows that the concentration of exosomes will in the future become a critical parameter 

that will allow differentiation of a normal sample from a sample that is acquired from a 

patient. However, exosome size (20-120nm) greatly limits the techniques that can be used 

for measurements of the particle concentration. ELISA assays are protein specific and 

can only determine the number of exosomes containing a specific marker, such as CD63, 

CD9 or CD81. It was found that such markers are not necessarily present in all 

exosomes12 which can lead to underestimation of exosome concentration in a sample and 

potentially lead to false conclusions. Nanoparticle tracking analysis (NTA) is currently 

the most widely used method for estimation of not only the particle concentration but also 

their size distributions.7,13 However, the narrow field of view that is used to conduct 

measurement using NTA (e.g., Nanosight LM10) permits analysis of only 30-80 particles 

from which the concentration estimation is made. The measurement is based on Stokes-

Einstein equation that assumes the particles to be spherical. In addition, the model does 

not take into account other parameters such as surface decoration as well as ions present 

in the solution that may affect particle diffusivity. Background particles that may be 

present in the sample which are not exosomes may also contribute to deviation from the 

real concentration and size distribution. The tunable resistive pulse sensing (TRPS) 

method which uses pulses of current occurring due to particles passing through a 

nanopore and decreasing the flux of ions is another technique that is available for 

exosome size and concentration measurements.14 The drawback of such a technique is the 
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use of a specific nanopore which allows only a narrow size distribution of particles to 

pass. This does not allow including the particles that are out of the size range for which 

the chosen nanopore can be applied. In addition, some aggregates present in the sample 

can easily cause clogging of the nanopore which will require cleaning and repeating 

measurement of the sample and standard bringing the need for more analysis time. 

Although the amount of particles used to calculate concentration and size distribution is 

larger than NTA (>500 particles), it is still a statistical limitation of TRPS. This shows 

that determining exosome concentration still remains a challenge as pointed out 

previously.15 Such disadvantages provided motivation to develop an alternative method 

for measuring exosome concentration in a given sample.  

Dynamic interfacial tension method is one that is commonly used for estimation 

of concentration and diffusion coefficients of surfactants. The discovery that surface 

tension equilibrium during presence of surface active molecules is in fact not reached 

instantly when interface is formed goes back to 1869 when Dupré presented the surface 

tension of a soap solution with fresh surface tension to be different from the equilibrium 

value.16 This was later noted by Rayleigh studying dynamics of soap solutions by 

applying the oscillating jet method and by Gibbs theory of capillarity;17–19 however it was 

not until the beginning of the 1900s that dynamic surface tension was proposed. Milner 

was able to measure dynamic surface tension and proposed that the interface is formed by 

the diffusion of surfactant from the bulk to the surface.20 Numerous techniques were 

explored to measure the surface tension change with time, such as Langmuir balances and 

electric potentials.21 Some quantitative descriptions of dynamic surface tension were also 

attempted using a diffusion model.22–25 The quantitative model for surfactant adsorption 



83 
 

only by diffusion later contributed by Ward and Tordai became the core for other models 

and is commonly applied today for determination of concentration and diffusion 

coefficient of surface active solutes.26 Recently, the dynamic interfacial tension method 

was applied not only to characterize short chain molecules including solutes that are not 

common surface active solutes27 but also surface active nanoparticles. Gupta and 

Rausseau developed surface-active lipid nanoparticles (SLNs) with 152nm diameter to 

stabilize oil-in-water emulsions.28 They were able to show that the particles were wetted 

by both the aqueous and oil phases and preferentially positioned themselves at the 

interface. Lui et al. presented a preparation method of gold nanoparticles with 

hydrophobic and hydrophilic polymer brushes that migrate to the oil/water interface and 

decreasing the size of oil droplets.29 Bizmark et al. recently studied adsorption-driven 

self-assembly of nanoparticles at fluid interfaces by using synthesized nanoparticles with 

89nm and 42nm in diameter.30 Dynamic surface tension measurement of nanoparticle 

solutions provided a potential of measuring energy of adsorption, adsorption rate constant 

and energy of particle-interface interaction at different amounts of surface coverage. 

Rana et al. studied dynamic interfacial tension of gold nanoparticles with monolayer 

ligand shells as well as nanoparticle-protein complexes and reported the effect of 

ligand/protein hydrophobicity on the interfacial assembly.31 Although the composition of 

exosomes is still being explored, they are known to contain transmembrane proteins and 

complexes such as CD9, CD3, CD81, sodium/potassium-transporting ATPase α-1, α-2 

and α-3,32 LAMP-1/2, MHC33 and others,7,34,35 yet there are currently no reports about the 

potential of their surface activity. In addition to phospholipid membrane of exosomes, 

proteins are well known to be surface active36 which may allow determination of 
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exosome concentration and potentially size in a sample using dynamic surface/interfacial 

tension analysis. In addition, the flexibility of experimental conditions where dynamic 

surface/interfacial tensiometry can be applied may allow modeling of exosome transport, 

their adsorption to the cell surface followed by fusion and release of content. Here we 

present our study of exosome surface activity and its application.  

 
5.3 Proposed Method and Implementation 

 
5.3.1 Cell Line Exosomes 

MDA-MB-231, MCF7 and MCF10a breast cancer cell lines, PC3, PCS, LNCap 

and 22Rv1 human prostate cancer cell lines prior to cell culture were stored in liquid 

nitrogen. For cell culture the cell line was thawed and plated on 150 mm plates. Table 5.1 

provides the media used for each cell line. Once the cells settled down, the media was 

changed (approximately 24 hours after plating). The plate was then split at 1:10 ratio and 

10 plates were cultured. Each plate contained 20 mL of media. Media from 9 of these 

plates (180mL) was harvested and pooled. Media was then split into 30 ml/tube and 

centrifuged at 3000g for 15 minutes. The supernatant was transferred to a new sterile 50 

mL tube for each. Exosomes were isolated by using the ExoQuick TC technique (System 

Bioschiences, Mountain View, CA, USA). In short, 6mL of ExoQuick TC reagent was 

added to each 30 mL supernatant and left for overnight incubation at 4°C. On the next 

day, the mixture was centrifuged at 1500g for 30 minutes at room temperature. After 

centrifugation, the exosomes would appear as a beige pellet. The pellet obtained from 6 

of these 30mL media was resuspended in 1x phosphate buffered saline (PBS) to obtain 

2700 µL of resuspended exosomes. The resuspended exosomes were then separated into 

100 µL aliquots and stored in 1 mL tubes at -80°C until use. 
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5.3.2 Serum Exosomes 
 

Seven 1 mL serum samples obtained from different patients were provided by 

ARUP Laboratories (Salt Lake City, UT, USA) and deidentified according to IRB 

protocol. Exosomes were isolated from serum using an ExoQuick kit (System 

Biosciences, Mountain View, CA) following manufacturer’s instructions. Briefly, serum 

was centrifuged at 3,000g for 15 minutes to remove cells and cell debris. The 

supernatant was transferred to a sterile vessel and 252 L of ExoQuick was added. The 

mixture was refrigerated for 30 minutes and then centrifuged at 1500g for 30 minutes at 

room temperature. After centrifugation, the supernatant was discarded and the exosome 

pellet saved. To spin down the residual ExoQuick solution, the pellet was centrifuged for 

another 5 minutes at 1500g and the supernatant was removed without disturbing the 

pellet. The pellet was then resuspended in 200 l of 1x PBS buffer and stored in a 1 mL 

tube at -80°C until use.  

 
5.3.3 Surface Tension Measurement 
 

Surface tension can be measured using various methods such as Du Nouy-Padday 

pull method,37 bubble pressure,38 sessile39 or pendant drop methods.40 After the exposure 

of the interface to the analyte in question, the interface tension will change with time due 

to the change in its composition as the analyte migrates to the interface. Assuming a 

linear relation between interfacial tension and logarithm of the analyte concentration, the 

concentration of the analyte can be found if surface tension is known. Due to ease and 

reliability of the pendant drop method in finding interfacial tension, we proposed its 

implementation for determination of exosome concentration in a sample. Prior to the 

surface tension measurement, the exosome sample stored at -80°C was thawed at 4°C. 
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When the sample reached the liquid state, it was diluted to appropriate concentration in 

the 1x PBS buffer used for exosome pellet resuspension described above. A pendant drop 

of 24-26 mm3 volume was then created using the diluted exosome sample at the end of a 

stainless steel syringe needle (1.6/2.09 mm inside/outside diameter) placed inside a 

sealed cuvette containing air and maintained at 20°C room temperature in the laboratory 

located ~1470 m above sea level. Measurements of the pendant drop surface tension, 

volume and surface area were then started immediately using a custom real-time 

tensiometer developed by us.27 The surface tension measurement was stopped at least 4 

hours after the formation of the drop. The measurement for each sample was repeated 4 

times. The surface tension change with time data was saved from the start until the end of 

the measurement and analyzed after its completion.  

 
5.3.4 Concentration Measurement  
 

Concentration was determined using Nanosight instrument (model LM10; 

Salisbury, United Kingdom) by illuminating the sample with a 40 mW violet laser (405 

nm wavelength), capturing the light scatted by exosomes with a high-sensitivity sCMOS 

camera (OrcaFlash2.8, Hamamatsu C11440), and analyzing the results using the software 

provided by the manufacture (Nanosight Version 2.3). The minimal expected particle 

size, minimal track length, and blur size were set to Auto, gain set to 1, brightness to 0, 

and detection threshold set to 10 Multi. The viscosity of 1x PBS was assumed to be equal 

to viscosity of water which depends on temperature and was adjusted automatically based 

on the temperature measurements. Temperature of the cell was measured manually and 

remained at 20°C with a maximum of 0.1 degree fluctuation throughout the nanoparticle 

tracking. Viscosity of water at these temperatures is nearly constant and equal to 1cP. 
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Prior to analysis, the exosome samples were diluted to appropriate concentration (e.g., 

1:100 and up to 1:2,000) in 1x PBS and allowed to equilibrate to room temperature 

(20°C). Samples were analyzed within 5 minutes of the initial dilution. Using a 1 mL 

sterile syringe, each sample was injected into the test cell. Approximately 30-100 

particles were observed in the field of view and the typical concentration was 

approximately 4 − 12 × 108 particles/mL for each measurement. A set of 60-second 

videos was recorded for each sample at 19.96 frames per second with 22.98 ms shutter 

speed and camera gain set to 475 and analyzed using NTA software with the described 

settings. Each video consisted of more than 1000 frames and the total of valid particle 

tracks for each 60-second measurement was more than 1200. The video data 

characterizing hydrodynamic mobility of particles in the field of view were analyzed with 

the NTA software which reported the exosome concentration, size distribution, its mode, 

mean and the standard deviation. Each sample was measured at least 3 times.  

 
5.3.5 Environmental Scanning Electron Microscopy (ESEM) 
 

One exosome sample obtained from serum was diluted 1:100 in DI water, 10 l of  
 
the sample placed on the aluminum sample holder and imaging was performed using FEI  
 
Quanta 600 FEG under ESEM mode. Gaseous back-scattered electron detector (GBSD)  
 
was used at magnification in the 40,000-400,000x range at 30kV and temperature of 5- 
 
6°C. 

 
 

5.4 Results and Discussion 
 

 Table 5.2 provides the summary of concentration and size results for exosomes 

isolated from sera and cell lines. The hydrodynamic mode and mean size of exosomes 
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extracted from serum were calculated to be 103 ± 21 nm and 130 ± 26 nm, 

respectively, which were noticed to be smaller than mode and mean size of exosomes 

extracted from cell lines, 130 ± 13 nm and 183 ± 25 nm, respectively. A difference in 

size when comparing normal and cancer exosome populations was previously noted by 

Sharma et al. when comparing exosome dimensions present in saliva of healthy and oral 

cancer donors and reported the patient with oral cancer to contain a larger average size.41 

Baran et al. also reported the size distribution of exosomes coming from gastric cancer 

patients to be very dispersed and it can be observed from their results that the mode is 

considerably larger in these samples.42 The difference in size in our study is seen even 

with presence of two outliers in each group, serum sample (#7) and PCS cell line. In 

addition to size, serum sample #7 also contained a higher concentration of exosomes 

when compared to other samples. Interestingly, after patient’s #7 blood sample was taken 

and analyzed, the patient was considered healthy. The possible cause of this sample to be 

a clear outlier will be further investigated in our future study.  

Surface tension of each sample was measured after conducting a specific dilution. 

Initially, the surface tension appeared to be close to surface tension of 1x PBS (~73 

mN/m) but after a short time the surface tension of all samples used in this study was 

dynamic and varied significantly from sample to sample especially after 4 hours of 

pendant drop formation (Figure 5.1). One serum (#1) and one cell line sample (22Rv1) 

were chosen to also observe the change in surface tension with respect to dilution factors 

(no dilution to 1:1 million dilution) while other samples were analyzed at a set dilution 

factor (1:100 or 1:1000) with each surface tension measurement repeated 4 times. It can 

be seen that the surface tension 4 hours after pendant drop formation and natural 
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logarithm of exosome concentration in the chosen samples analyzed at different dilutions 

overlap well with samples that were independently measured at a set dilution factor 

(Figure 5.2). Interestingly, a linear correlation between surface tension 4 hours after 

pendant drop formation and logarithm of exosome concentration is observed in both 

serum and cell line samples. Error bars in Figure 5.2b show the standard deviation of 

surface tension value after 4 hours of drop formation. This observation is convincing and 

shows that exosomes are surface active and behave as surfactants. Such linear correlation 

is not the same when comparing serum and cell line sample groups. Cell line samples 

appeared to contain other highly surface active impurities present after exosome 

extraction such as proteins that are included in culture media and well known to be 

surface active.36 For example, the dynamic surface tension of the original undiluted 

exosome free culture media used for 22Rv1 was measured to be ~50 mN/m after 4 hours 

while its initial surface tension was measured to be ~65 mN/m. The presence of 

impurities could have introduced the sharp initial decrease in surface tension that is 

shown in Figure 5.3 forming a barrier at the surface and leading to not as large a decrease 

in surface tension at the same exosome concentration when compared to serum samples. 

Exosome size could also contribute to this difference, since the hydrodynamic size of 

exosomes is larger in cell line samples when compared to sera samples and a smaller 

amount of these particles can occupy the surface. To investigate this hypothesis, a 100 

kDa filter (Pall, Port Washington, NY) was used to remove particles below ~10nm from 

one serum sample (#1) and one cell line sample (22Rv1) using a standard protocol. In 

short, 500 µL of the sample was placed into the sample reservoir which was then capped 

and spun at 14,000g for 5 minutes. At the end of spin time, the centrifuge was stopped 
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and reservoir removed. The sample remaining was of ~10-20 µL volume, was 

resuspended in 1x PBS to make the total volume 500 µL and analyzed by using the NTA 

and tensiometer. Figure 5.4 shows the surface tension of the supernatant at each filtration 

step including final filtered exosome samples and Table 5.2 shows the concentration and 

size measurements of the final filtered samples measured by NTA. Sample 22Rv1 

required three repetitions of filtration in order to remove the effect of other surface active 

molecules while the serum sample only underwent one filtration step and showed 

negligible amount of other surface active analytes as can be seen from background 

surface tension measurement (Figure 5.4b). After all filtration steps 22Rv1 exosomes also 

appeared to fit the correlation between surface tension and exosome concentration found 

for the serum samples (Figure 5.2b) supporting the hypothesis that sample impurities 

consisting of surfactants that are <10nm in size were the reason for the deviation between 

serum and cell line results and average size difference of exosomes extracted from cell 

lines and sera having a negligible effect. 

ESEM analysis confirmed the presence of exosomes in close proximity to the 

liquid/air interface (Figure 5.5). The transport of exosomes to the liquid/air interface was 

also observed when using NTA by positioning the interface at the field of view (Figure 

5.6a). Within 1 hour of particle tracking, the interface appeared to stay in the same 

location with evaporation, if occurring, being low. The velocity of exosomes to the 

surface after 1 hour of interface formation was estimated to be 2.12 µm/s and 2.66 µm/s 

corresponding to 3.56 ∙ 10−16 mol m2s⁄  and 3.35 ∙ 10−16 mol m2s⁄  molar flux for serum 

sample #1 and 22Rv1, respectively. Initial velocity of exosomes toward the interface 

appeared to be considerably higher than at later times (Figure 5.6b and c). This is an 
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expected result, since the flux to the surface will slow down as the surface coverage 

increases and concentration gradient decreases. Liquid/liquid interface was also observed 

by using perfluorohexane liquid, a substance that is immiscible in water or 1x PBS, 

instead of air. Although the migration of exosomes toward the interface was more 

difficult to observe as it appeared to occur significantly slower when compared to the 

liquid/air case, estimation for sample #1 and 22Rv1 was made and determined to be 

approximately 0.4 µm/s or 400 nm/s corresponding to 1.05 ∙ 10−16 mol m2s⁄ . The 

difference between liquid/air and liquid/liquid flux to the interface could be contributed 

by a temperature gradient present in liquid/air case due to liquid evaporation although 

visual inspection of the surface led us to conclude that evaporation is negligible as 

mentioned earlier. 

As discussed previously, it was shown by others that solid particles can adsorb at 

gas-liquid and liquid-liquid interfaces favored by thermodynamics and reducing the 

surface or interfacial tension.30 Similarly to surfactants, such particles can stabilize 

“pickering” emulsions.43 Such dependence may affect interpretation of the results 

obtained for exosomes, especially extracted from cell line samples that may vary in their 

surface content. This difference may affect surface tension change and under or 

overestimate exosome concentration; however, large deviations from the linear 

correlation was not observed. Error can also be contributed from NTA which may 

overestimate the concentration due to other particles present in the sample or 

underestimate due to the limits of laser diffraction.  

This novel technique of exosome characterization can also potentially be used to 

approximate the size of exosomes based on their diffusivity obtained from the surface 
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tension dynamics.30,44 To explore this, a classical reversible adsorption model was 

applied. The model contains two processes, Fickian diffusion of the surface active species 

from the bulk to the subsurface (𝑠 < 𝑥 < ∞) and transport from the subsurface to the 

fluid/fluid or fluid/gas interface (0 < 𝑥 < 𝑠). Assuming a one-dimensional model, 

absence of temperature gradients, absence of convection and reaction, having equal body 

forces and assuming a constant diffusion coefficient the general mass transfer equation 

can be simplified and applied for (𝑠 < 𝑥 < ∞): 

𝜕𝑐

𝑑𝑡
= 𝐷

𝑑2𝑐

𝑑𝑥2
                                                              (1) 

with boundary and initial conditions: 

𝑐(𝑥, 0) = 𝑐0                                                               (2) 

𝑐(∞, 𝑡) = 𝑐0                                                              (3) 

𝑐(𝑠, 𝑡) = 𝑐𝑠(𝑡)                                                          (4) 

where 𝑐 is the concentration of the species, 𝑐𝑠 is the subsurface concentration that 

depends on time, 𝑡 is time, 𝐷 is the diffusion coefficient, 𝑥 defines a location in the single 

dimension and 𝑠 the location of the subsurface. The kinetic equation describing 

adsorption, desorption and accumulation of the species at the surface or interface can be 

expressed by 

𝑑𝛤

𝑑𝑡
= 𝑘𝑎𝑔(𝛤)𝑐𝑠 −  𝑘𝑑𝑓(𝛤) =  𝑘𝑎𝑔(𝛤) (𝑐𝑠 −

𝑘𝑑𝑓(𝛤)

𝑘𝑎𝑔(𝛤)
) = 𝑘𝑎𝑔(𝛤)(𝑐𝑠 − 𝑐𝑖)      (5) 

where 𝛤 represents surface concentration, 𝑘𝑎 and 𝑘𝑑 are adsorption and desorption 

constants, 𝑔(𝛤) and 𝑓(𝛤) are functions that account for the effect of 𝛤 on the adsorption 

and desorption rates and finally 𝑐𝑖 represents the concentration of the species at the 
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interface. To take into account temperature, activation energy and constants the reaction 

constant 𝑘𝑎 can be expressed using an Arrhenius equation 

𝑘𝑎 =
𝑣̅

4
exp (−

𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟

𝑘𝐵𝑇
)                                                      (6) 

where 𝑘𝐵is Boltzmann constant, 𝑇 is the temperature , 𝑣̅ is the mean velocity of the 

surfactant molecules towards the interface and 𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟 is the adsorption potential 

barrier.45 Multiplying and dividing the right hand side of equation (6) by 𝑠 (representing 

thickness of the subsurface 0 < 𝑥 < 𝑠) allows representing the adsorption constant in 

terms of the diffusion coefficient by substituting 

𝐷 =  
𝑠𝑣̅

4
                                                                  (7) 

and leading equation (6) to  

𝐷∗ = 𝐷 exp (−
𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟

𝑘𝐵𝑇
)                                                    (8) 

where 𝐷∗ becomes the actual diffusion coefficient when 𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟 = 0.45 Equation (6) can 

now be written as  

𝑘𝑎 =
𝐷

𝑠
 exp (−

𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟

𝑘𝐵𝑇
)                                                   (9) 

Substituting equation (9) into equation (5) and allowing s approach 0, equation (5) can 

now be written as 

𝑑𝛤

𝑑𝑡
= 𝐷 exp (−

𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟

𝑘𝐵𝑇
) 𝑔(𝛤)

(𝑐𝑠 − 𝑐𝑖)

𝑠
=  𝐷∗𝑔(𝛤)

𝑑𝑐

𝑑𝑥
|

𝑥=0+
               (10) 

where 𝐷∗𝑔(𝛤) can be interpreted as the diffusion coefficient of species in the subsurface 

(0 < 𝑥 < 𝑠) and 𝐷 the diffusion coefficient of species from the bulk to the subsurface 

(𝑠 < 𝑥 < ∞). This shows that the diffusion coefficient is constant in the bulk but 
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dependent on adsorption at the interface (x=0). The 𝑑𝑐 𝑑𝑡⁄  equation is now modified to 

make it applicable for not only 𝑑 < 𝑥 < ∞ but also include the subsurface 0 < 𝑥 < ∞.  

𝜕𝑐

𝑑𝑡
= 𝐷𝑎

𝑑2𝑐

𝑑𝑥2
                                                         (11) 

where 

𝐷𝑎 =
𝐷∗2

𝐷
= 𝐷 exp (−2

 𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟

𝑘𝐵𝑇
)                                          (12) 

is introduced as the apparent diffusion coefficient.45 Applying boundary and initial 

conditions 

𝑐(0, 𝑡) =  𝑐𝑖(𝑡)                                                           (13) 

𝑐(𝑥, 0) = 𝑐0                                                                (14) 

𝑐(∞, 𝑡) = 𝑐0                                                               (15) 

and applying 𝑐(𝑥, 𝑡) obtained allows equation (10) to be expressed as  

1

𝑔(𝛤)

𝑑𝛤

𝑑𝑡
= √

𝐷𝑎

𝜋
[

𝑐0

√𝑡
+

1

2
∫

𝑐𝑖(𝜏)

√(𝑡 − 𝜏)3
𝑑𝜏

𝑡

0

]                                (16) 

and in the integrated form expressed as45  

∫
1

𝑔(𝛤)

𝛤

0

𝑑𝜇 = √
𝐷𝑎

𝜋
[2𝑐0√𝑡 − ∫

𝑐𝑖(𝜏)

√(𝑡 − 𝜏)
𝑑𝜏

𝑡

0

]                             (17) 

Relationship between concentration of the surface active species and surface tension can 

be obtained from Gibbs equation that describes thermodynamics of adsorption 

𝛤 = −
1

𝑛𝑅𝑇

𝑑𝛾

𝑑𝑙𝑛(𝑐)
                                                      (18) 

where 𝛾 is the dynamic surface/interfacial tension and n is constant, n=1 used for non-

ionic surfactants and n=2 for 1:1 ionic surfactants. There are also numerous adsorption 
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isotherms that can be used to interpret dynamic surface/interfacial tension but only five 

will be discussed here. 

Henry isotherm can be used for low surface concentrations due to the assumption 

of no interaction between adsorbed monomers and no definition of maximum value of 𝛤 

and is expressed as  

𝛤 = 𝐾𝑐                                                                (19) 

where 𝐾 is the equilibrium adsorption constant. Applying the Gibbs equation the surface 

equation of state can be derived46 

𝛾𝑜 − 𝛾 = 𝑛𝑅𝑇𝛤                                                       (20) 

The Langmuir isotherm is the most commonly used for a nonlinear isotherm and 

based on lattice type model with assumption that every adsorption site on the lattice is the 

same, occupancy of sites does not affect probability of adsorption and no interactions and 

forces between monomers in the lattice is present. The isotherm can be presented as  

𝛤 = 𝛤𝑚𝑎𝑥

𝐾𝑐

1 + 𝐾𝑐
                                                      (21) 

where 𝛤𝑚𝑎𝑥 is the maximum number of sites available on the interface. 

 Freundlich isotherm is an empirical equation which makes enthalpy of adsorption 

to change exponentially with surface coverage.46 The relation is given as 

𝛤 = 𝑘𝑐
1
𝑛                                                              (22) 

where 𝑘 and 𝑛 are constants. 

 Volmer isotherm is another model that takes into account nonideal nonlocalized 

adsorption and finite size of molecules with interaction being estimated using statistical 

mechanics46 and is presented as 
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𝑐 = 𝐾 (
𝛤

𝛤𝑚𝑎𝑥 −  𝛤
) exp (

𝛤

𝛤𝑚𝑎𝑥 −  𝛤
)                                      (23) 

 Finally, Frumkin isotherm can be applied that takes into account solute-solvent 

interactions at nonideal surface and most appropriate for nonionic surfactants. It is 

usually expressed as 

𝑐 =
1

𝐾
 (

𝛤

𝛤𝑚𝑎𝑥 −  𝛤
) exp [−𝐴 (

𝛤

𝛤𝑚𝑎𝑥
)                                       (24) 

In the case where 𝐴 = 0, the equation will be simplified to Langmuir isotherm.46 

Assuming that equilibrium between interface and subsurface is established 

instantaneously and hence the absence of the adsorption potential barrier allows the 

simplification of the model shown above. This assumption was introduced by Ward and 

Tordai47 and allows setting 𝑔(𝛤) = 1 and 𝐷𝑎 = 𝐷 which simplifies equation (17) to  

𝛤 = √
𝐷

𝜋
[2𝑐0√𝑡 − ∫

𝑐𝑖(𝜏)

√(𝑡 − 𝜏)
𝑑𝜏

𝑡

0

]                                     (25) 

Solutions to equation (25) can be obtained only numerically; however, there are 

asymptotic solutions given by Fainerman et al.38 for short time 𝑡 → 0 and long time 

𝑡 → ∞ approximations. As 𝑡 → 0 Ward and Tordai equation can be simplified to 

𝛤 = 2𝑐0√
𝐷0𝑡

𝜋
                                                          (26) 

where 𝐷0 signifies diffusion coefficient determined by using the short time solution. To 

find the right isotherm, the conditions should be taken into account. Assuming that in a 

short time the amount of surfactant at the interface is negligible and minimum interaction 

will be present, Henry isotherm can be applied. Combining equation (26) and (20) gives  
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𝛾𝑜 − 𝛾𝑡→0 = 2𝑛𝑅𝑇𝑐0√
𝐷0𝑡

𝜋
                                               (27) 

 As 𝑡 → ∞, the subsurface concentration will be close to the bulk concentration 

having negligible change with time and equation (25) can be simplified to 

𝛤𝑒𝑞 = √
𝐷∞

𝜋
[2𝑐0√𝑡 − 𝑐𝑖 ∫

1

√(𝑡 − 𝜏)
𝑑𝜏

𝑡

0

] =  √
4𝐷∞𝑡

𝜋
[𝑐0 − 𝑐𝑖] = √

4𝐷∞𝑡

𝜋
∆𝑐         (28) 

where 𝐷∞ signifies diffusion coefficient determined by using the long time solution. The 

Gibbs equation can be used for dilute solutions and written as 

∆𝛾

∆𝑐
= −

𝛤𝑒𝑞𝑛𝑅𝑇

𝑐0
                                                       (29) 

and substituting equation (28) into (29) gives 

∆𝛾

𝛤𝑒𝑞√
𝜋

4𝐷∞𝑡

= −
𝛤𝑒𝑞𝑛𝑅𝑇

𝑐0
                                                 (30) 

Rearranging equation (30) produces 

∆𝛾 = 𝛾 −  𝛾𝑡→∞ =
𝑛𝑅𝑇𝛤𝑒𝑞

2

𝑐0
√

𝜋

4𝐷∞𝑡
                                       (31) 

Estimating 𝛤𝑒𝑞 by using the surface area of the pendant drop and estimation of area 

occupied by the exosomes and combining it with surface/interfacial tension data will 

allow estimation of the diffusion coefficient 𝐷 by using the equations derived by 

Fainerman et al.38 

Figure 5.7 shows an example of clearly a linear correlation between 𝛾 and √𝑡 for 

early time and 𝛾 and 1/√𝑡 for late time surface tension data which confirms that exosome 

adsorption is diffusion-limited and allows application of the two solutions to Ward and 
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Tordai equation.44 An assumption was made in this study that exosomes that are acting as 

surfactants are nonionic and any presence of ionic surfactants can be ignored since a large 

amount of electrolyte is present in the sample allowing to set 𝑛 = 1 in equations (27) and 

(31). To find the longer time solution of Ward and Tordai equation (31) the amount of 

particles at equilibrium at the interface 𝛤𝑒𝑞 needs to be determined. Assuming dense 

hexagonal packing of exosomes at the interface 𝛤𝑒𝑞 can be estimated by 

𝛤𝑒𝑞 =
𝜃𝑚𝑎𝑥

𝑁𝐴𝜋𝑟2
                                                           (32) 

where 𝜃𝑚𝑎𝑥 is the maximum fraction of the pendant drop surface area that exosome can 

occupy, 𝑁𝐴 is Avogadro’s number and 𝑟 is the mode radius of exosome in the analyzed 

sample. For hexagonal packing, 𝜃𝑚𝑎𝑥 ≅ 0.91.  

Table 5.3 shows the diffusion coefficients obtained using the two solutions to 

Ward and Tordai equation described previously. Estimations of diffusion coefficients 

vary drastically when reaching the critical micelle concentration (CMC) point. It can also 

be seen that 𝐷0 is orders of magnitude greater and 𝐷∞ is orders of magnitude smaller than 

the expected diffusion coefficient estimated by the Stokes-Einstein equation showing 

failure of two Ward and Tordai relations (27) and (31) to predict diffusion coefficients. 

Such equations had already been used before for nanoparticles such as cadmium selenide 

(CdSe) nanoparticles with 2.3 and 6 nm diameter and a decrease of 𝐷∞from expected 

diffusion coefficient was noticed when increasing the bulk concentration and was thought 

to be due to energy barrier to adsorption.48 A more substantial deviation of Ward and 

Tordai from Stokes-Einstein prediction was reported when larger surface active 

nanoparticles were analyzed and reported this to be irreversible adsorption.30 
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Calculated 𝐷∞ appears to decrease with increase in bulk exosome concentration 

especially when reaching CMC staying orders of magnitude lower than the expected 

diffusion coefficient and a similar trend was pointed out previously for other 

nanoparticles.48 It can be concluded based on this evidence that there is an energy barrier 

for adsorption. The magnitude of the energy barrier to exosome adsorption can be 

estimated by equation (8) that was touched on previously and which allows to relate 

diffusion coefficient 𝐷 obtained from Stokes-Einstein’s equation with the long time 

diffusion coefficient 𝐷∞ 

𝐷∞ = 𝐷exp (−
∆𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟

𝑘𝐵𝑇
)                                               (33) 

where ∆𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟 represents the potential adsorption barrier.48 Using data reported in 

Table 5.3, ∆𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟 was determined to be 11.7 ± 4.1𝑘𝐵𝑇 for all measurements which is 

interestingly close to values reported for ethyl cellulose30 and tri-n-octylphosphine oxide 

(TOPO)-stabilized cadmium selenide (CdSe) nanoparticles.48 When reaching CMC bulk 

concentration, ~10−7 mol m3⁄ , ∆𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟, which determines the kinetic limit of 

adsorption, becomes larger due to increased occupancy by other exosomes at the 

interface. This was also mentioned by others with a schematic shown in Figure 5.8.49 

 Bizmark et al. investigated phenomena of irreversible adsorption-driven assembly 

of nanoparticles at the interface and this became interest in our study.30 One signature of 

irreversible adsorption is the equilibrium surface/interfacial tension 𝛾𝑒𝑞 that can be 

obtained from intersection of the long time dynamic surface tension data against 𝑡−1/2 to 

be nearly independent of bulk particle concentration. Figure 5.9 clearly shows that in the 

concentration range studied here, there is no significant difference in 𝛾𝑒𝑞 which also 

means that after a long period of time, the surface coverage approaches the maximum of 
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0.91. It also shows that at exosome concentration lower than ~3.4x10−10 mol m3⁄  

exosomes become depleted from the bulk. This brings to the hypothesis that exosome 

adsorption is favored and is irreversible similar to nanoparticles reported previously. A 

different indicator of a reversible adsorption is the energy of adsorption to be on the order 

of thermal fluctuation that is close to 𝑘𝐵𝑇. To estimate adsorption energy, two 

approaches were used. The first approach is the use of equation recently introduced by 

Du et al.50  

∆𝐸𝑎𝑑𝑠 =
𝛾𝑒𝑞 − 𝛾0

𝜃𝑚𝑎𝑥
𝜋𝑟2                                                   (34) 

where ∆𝐸𝑎𝑑𝑠 is the adsorption energy of nanoparticles, 𝜃𝑚𝑎𝑥 is the maximum interface 

coverage being set to 0.91, 𝛾0is the initial surface tension and 𝑟 is the radius of 

nanoparticles. Since exosomes do not have the same size and instead have a size 

distribution, the mode size was used for the calculation. Another approach is a novel 

equation introduced by Bizmark et al. 30 

𝛾 =  𝛾0 − 2𝑁𝐴|∆𝐸𝑎𝑑𝑠|𝑐0√
𝐷𝑡

𝜋
                                           (35) 

which in differential form can be represented as 

𝑑𝛾

𝑑√𝑡
|

𝑡→0

= −2𝑁𝐴|∆𝐸𝑎𝑑𝑠|𝑐0√
𝐷

𝜋
                                          (36) 

where 𝐷 is the Stokes-Einstein diffusion coefficient determined using the mode size of 

exosomes and change of early time dynamic surface tension 𝛾 with respect to √𝑡. The 

average values obtained are presented in Table 5.4 with equation (34) and (36) giving 

9.82𝐸4 𝑘𝐵𝑇 ± 2.89𝐸4 𝑘𝐵𝑇 and 9.65𝐸4 𝑘𝐵𝑇 ± 6.81𝐸4 𝑘𝐵𝑇, respectively. The large 

deviation when using equation (36) is most likely due to the short time change in surface 
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tension being affected by background surface active molecules contributing to higher 

standard deviation than (34). It can be seen that values of ∆𝐸𝑎𝑑𝑠 obtained from both 

methods are orders of magnitude greater than thermal fluctuation and not dependent on 

bulk concentration of exosomes. This high magnitude of adsorption energy leads to 

conclude that adsorption of exosomes to the interface is thermodynamically favored and 

equations (27) and (31) are no longer appropriate for analysis. 

 When adsorption energy is known, it is possible to estimate transient surface 

coverage of nanoparticles at the surface directly from dynamic surface tension data. 

Knowing adsorption energy, equation (34) can now be represented as time dependent 

∆𝐸𝑎𝑑𝑠 =
𝛾(𝑡) − 𝛾0

𝜃(𝑡)
𝜋𝑟2                                                (37) 

where 𝜃(𝑡) is change in surface coverage with time and 𝛾(𝑡) is dynamic surface tension. 

Using equation (37) and ∆𝐸𝑎𝑑𝑠 presented in Table 5.4 the surface coverage of pendant 

drop with respect to time was determined and examples for serum sample #1 and 22Rv1 

are presented in Figure 5.10. Knowledge of the change in surface coverage due to 

irreversible adsorption of nanoparticles now allows estimation of adsorption constant 𝑘𝑎 

by applying an equation introduced previously for late stages of adsorption30,51 

𝜃(𝑡) =  𝜃𝑚𝑎𝑥 −
𝐾𝑙

𝜋𝑟2𝑐0

√
1

𝐷𝑡
                                                (38) 

where 𝐾𝑙 is the long-time expansion coefficient 30  and can be obtained from the slope 

obtained from 𝜃(𝑡) vs 1 √𝑡⁄  plot, while 𝜃𝑚𝑎𝑥 from the intercection with y-axis which is 

equal 0.91 when a sufficient bulk concentration of particles is present. 𝐾𝑙 is known to be 

related to the dimensionless adsorption constant 𝑘𝑎
̅̅ ̅ for spherical particles by30,51 
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𝑘𝑎
̅̅ ̅ =

𝜃𝑚𝑎𝑥
3

2𝐾𝑙
2                                                              (39) 

and the actual adsorption constant obtained by 30 

𝑘𝑎 = 𝑘𝑎
̅̅ ̅ 𝜋𝑟2𝑐0𝐷                                                        (40) 

Table 5.5 shows that 𝑘𝑎 ranges from 10−5 − 10−4 m/s. The outliers showing smaller 

values are mostly due to the sample already containing a large particle concentration on 

the interface which lowers the adsorption constant by orders of magnitude.  

During the early time when the surface concentration of particles is low, the 

adsorption flux of exosomes to the surface can be estimated by  

𝑗|𝑥→0+ = − 𝑐0√
𝐷

𝜋𝑡
                                                      (41) 

and results are provided in Figure 5.6d and e. The change of adsorption flux with time 

from the liquid/air experiment is ~5-7 times larger while liquid/liquid agrees better with 

the flux predicted by the model. This difference can be due to the effect of sample 

evaporation during liquid/air analysis and accuracy of NTA.  

 
5.5 Conclusion 

 
 Exosomes are biological nanoparticles that have received a lot of attention due to 

their potential of being an early stage diagnostic tool for different types of cancer as well 

as highly localized and specific drug delivery. Due to their size and concentration, the 

number of characterization methods is sparse. We have found that exosomes are surface 

active and the interface acts as a sink which would play a critical role in biological 

function. This finding opened a new method for characterization of exosome samples to 

easily determine their concentration in a sample and potentially size. It was also shown 
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that exosomes irreversibly adsorb to the interface due to significantly higher energy 

released after adsorption compared to the mean energy of thermal fluctuation and failure 

of Ward and Tordai approximation. Such a property of adsorption may be also involved 

in exosome binding to the cell membrane. 
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Table 5.1: Medium used for cell line growth. 
 

Cell line LNCap 22Rv1 PC3 PCS MCF7 MCF10a MDA-MB-
231 

Medium RPMI-1650 
Medium 

RPMI-1650 
Medium 

F-12K 
Medium 

SteCM 
Medium 

Eagle’s 
Minimum 
Essential 
Medium 

Mammary 
Epithelial 

Cell Growth 
(MEGM) 

Leibovitz’s 
L15 Medium 

(grown 
without CO2) 
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Table 5.2: Exosome samples analyzed using NTA and surface tension methods. (a) and 
(b) show the results obtained for serum and cell line samples, respectively, by using 
NTA. 
 

(A) Serum 

Sample #1 #1 
filtered #2 #3 #4 #5 #6 #7 

Mode (nm) 112 100 108 93 77 86 106 141 

Mean (nm) 148 165 133 122 91 113 134 172 
SD (nm) 78 97 59 57 40 58 67 72 

NTA Original 
Conc (#/mL) 

4.3E12 
±3.0E11 

3.9E11 
±3.4E10 

9.1E11 
±2.7E11 

9.5E11 
±1.3E11 

4.3E11 
±3.5E10 

6.2E11 
±3.6E10 

2.2E10 
±1.3E9 

2.7E12 
±3.6E11 

ST Original 
Conc (#/mL) 5.7E12 3.9E11 1.0E12 6.4E11 6.7E11 4.0E11 2.3E10 2.25E12 

 
(B)  Cell lines 

Sample 22Rv1 22Rv1 
Filtered LNCap PC3 PCS MCF7 MCF10a MDA-MB 

231 
Mode (nm) 144 147 123 145 112 125 123 139 

Mean (nm) 181 184 150 230 163 175 189 190 
SD (nm) 71 87 58 131 76 92 89 88 

NTA Original 
Conc (#/mL) 

2.6E12 
±2.8E11 

5.4E10 
±2.3E10 

1.3E12 
±1.2E11 

1.2E12 
±1.1E11 

2.2E12 
±1.7E11 

2.8E12 
±2.5E11 

2.0E11 
±1.5E10 

4.6E12 
±4.4E11 

ST Original 
Conc (#/mL) 3.2E12 7.6E10* 1.4E12 9.6E11 3.7E12 4.0E12 1.1E11 3.7E12 

* The correlation between surface tension and exosome concentration found for serum was used for this sample  
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Figure 5.1: Surface tension measurements of samples diluted 1:1000 or 1:100 of serum 
(a) and cell line samples (b). An average of 4 runs (4 hours/run) is shown for each 
sample.  
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Figure 5.2: Correlation of surface tension and exosome concentration in a sample (a) 
Surface tension after 4 hours of pendant drop formation and natural logarithm of the 
exosome concentration (b) Linear dependence of surface tension after 4 hours of pendant 
drop formation with the natural logarithm of exosome concentration.  
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Figure 5.3: Surface active analyte present in a cell line sample with first decrease in 
surface tension due to presence of other surface active analyte besides exosomes.  
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Figure 5.4: Impact of 100 kDa filtration of the sample on surface tension (a) Final 22rv1 
and serum #1 samples after filtrations (b) Supernatants after each filtration step (1 for 
serum and 3 for 22rv1) (c) Comparison of surface tension profile before and after 
filtration of serum sample #1 (d) Comparison of surface tension profile before and after 
filtration of exosomes from 22Rv1 cell line.  
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Figure 5.5: ESEM (vapor/liquid equilibrium) images showing exosomes present near the 
liquid surface.   
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Figure 5.6: Migration of exosomes to the liquid/air interface. White marks show 
exosomes and red lines show tracking path of exosomes in the given frame (a). 
Magnitude of exosome velocity towards the liquid/air interface for serum sample #1 (b) 
and cell line 22Rv1 (c) and exosome adsorption flux to the surface calculated from 
equation (39) and using NTA of exosomes from serum sample #1 (d) and 22rv1 cell line 
(e).   
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Figure 5.7: Examples of results based on raw surface tension data that are used for 
calculating 𝐷0 and 𝐷∞. (a) 

𝑑𝛾

𝑑√𝑡
 and (b) 𝑑𝛾

𝑑(
1

√𝑡
)
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Table 5.3: Calculated 𝐷0 and 𝐷∞ based on Fainerman et al. model.38 
 

Exosome source Concentration 
(mol/m3) 

𝐷0 (x 10−3) 
(𝑚2 𝑠⁄ ) 

𝐷∞(x 10−16) 
(𝑚2/𝑠) ∆𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟/𝑘𝐵𝑇 

  𝐷𝑆𝐸 = 3.83 x 10−12 𝑚2 𝑠⁄   

Serum#1 
(liquid/air) 

1.44E-9 45.8 30.5 7.14 
7.19E-9 0.581 9.77 8.27 
7.19E-8 7.90 0.134 12.6 
7.19E-7 0.897 0.0247 14.3 
7.19E-6 0.0326 0.000647 17.9 

  𝐷𝑆𝐸 = 3.97 x 10−12 𝑚2 𝑠⁄   
Serum #1 (liquid/air) 

filtered 6.54E-10 35.4 226 5.17 

  𝐷𝑆𝐸 = 2.98 x 10−12 𝑚2 𝑠⁄   

22Rv1 
(liquid/air) 

3.37E-9 23.9 0.650 10.7 
6.74E-9 11.3 1.51 9.89 
3.37E-8 27.2 0.344 11.4 
3.37E-7 8.56 0.0102 14.9 
3.37E-6 0.173 0.00144 16.8 

  𝐷𝑆𝐸 = 2.92 x 10−12 𝑚2 𝑠⁄   
22Rv1 (liquid/air) filtered 6.87E-10 32.1 40.7 6.58 

  𝐷𝑆𝐸 = 3.08 x 10−12 𝑚2 𝑠⁄   
MDA-MB-23 
 (liquid/liquid) 1.31E-7 3.13 0.00105 17.2 

  𝐷𝑆𝐸 = 3.48 x 10−12 𝑚2 𝑠⁄   
LNCap 

(liquid/liquid) 4.23E-8 6.47 0.682 10.8 
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Figure 5.8: Schematic adapted from49 showing increase in the energy barrier as surface 
becomes occupied with particles.  
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Figure 5.9: Equilibrium surface tension obtained from intercept of long time surface 
tension change with 𝑡−1/2 (e.g., Figure 7b).  
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Table 5.4: Adsorption energy of exosomes obtained by applying equation (34) and (36) 
for comparison. 

 
Exosome source Concentration 

(mol/m3) 
∆𝐸𝑎𝑑𝑠/𝑘𝐵𝑇 

Equation (34) 
∆𝐸𝑎𝑑𝑠/𝑘𝐵𝑇 

Equation (36) 

Serum #1 (liquid/air) 

1.44E-9 5.61E4 19.4E4 
7.19E-9 6.68E4 2.18E4 
7.19E-8 8.34E4 8.05E4 
7.19E-7 8.98E4 2.71E4 
7.19E-6 9.70E4 0.52E4 

Serum #1 (liquid/air) filtered 6.54E-10 17.8E4 17.0E4 

22Rv1 
(liquid/air) 

3.37E-9 7.43E4 15.9E4 
6.74E-9 10.2E4 10.9E4 
3.37E-8 9.19E4 16.9E4 
3.37E-7 10.9E4 9.50E4 
3.37E-6 10.9E4 1.35E4 

22Rv1 (liquid/air) filtered 6.87E-10 9.81E4 18.3E4 
MDA-MB-231  
(liquid/liquid) 

1.31E-7 11.5E4 5.06E4 

LNCap cell line 
(liquid/liquid) 

4.23E-8 6.29E4 7.28E4 

  



117 
 

 
Figure 5.10: Surface coverage obtained from equation (36) for serum sample #1 (a) and 
22Rv1 cell line (b). The concentration is given in mol m3⁄ .  
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Table 5.5: Long-time expansion coefficient 𝐾𝑙 and exosome adsorption constant 𝑘𝑎. 
 

Exosome source Concentration (mol/m3) 𝐾𝑙 𝑘𝑎  (
𝑚

𝑠
) 

Serum #1 (liquid/air) 

1.44E-9 8.80E-5 5.87E-4 
7.19E-9 4.73E-4 1.86E-4 
7.19E-8 8.16E-4 6.46E-4 
7.19E-7 3.79E-3 2.58E-4 
7.19E-6 2.18E-1 1.16E-6 

Serum #1 (liquid/air) filtered 6.54E-10 5.84E-5 5.07E-5 

22Rv1 
(liquid/air) 

3.37E-9 4.38E-3 1.92E-6 
6.74E-9 2.35E-3 1.07E-5 
3.37E-8 3.83E-3 2.44E-5 
3.37E-7 2.43E-2 6.33E-6 
3.37E-6 1.74E+2 1.22E-12 

22Rv1 (liquid/air) filtered 6.87E-10 4.05E-4 4.60E-5 
MDA-MB-231 
(liquid/liquid) 1.31E-7 6.49E-2 3.08E-7 

LNCap 
(liquid/liquid) 4.23E-8 5.27E-3 1.42E-5 
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CHAPTER 6 
 
 

SIZE AND SHAPE CHARACTERIZATION OF  
 

HYDRATED AND DESICCATED EXOSOMES* 

 
 

6.1 Abstract 
 

Exosomes are nanovesicles secreted by cells into circulation. Their reported sizes 

vary substantially, which likely reflects the difference in utilized isolation techniques, 

cells that secreted them and the methods used in their characterization. We analyzed the 

influence of the last factor on the measured sizes and shapes of hydrated and desiccated 

exosomes isolated from the serum of a pancreatic cancer patient and a healthy control. 

We found that hydrated exosomes are close to spherical nanoparticles with a 

hydrodynamic radius that is substantially larger than the geometric size. For desiccated 

exosomes, it was found that the desiccated shape and sizing are influenced by the manner 

in which drying occurred. Isotropic desiccation in aerosol preserves the near spherical 

shape of the exosomes, while drying on a surface likely distorts their shapes and 

influences sizing results by techniques that require surface fixation prior to analysis.  
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6.2 Introduction 
 

 Cells actively secrete exosomes via an endocytic pathway.1–3 Exosomes are found 

in the extracellular space and all body fluids, including blood, urine, and saliva. The 

molecular content of exosomes is derived from the cells that release them. The frequency 

of release depends on the cell environment, such as the level of dissolved oxygen and 

pH,4,5 and a cell type, with cancer cells known to release a larger number of exosomes. 

They carry small noncoding RNAs, though the number of microRNA (miRNA) 

molecules enveloped inside each exosome may not be high.6 Nevertheless, some reports 

suggest that the majority of miRNAs in the blood are contained within exosomes.7 By 

fusing with recipient cells and releasing their RNA and other cargo,8–11 exosomes are 

thought to play a role in short and long-range intercellular signaling.  

Exosomes can be differentiated from other circulating vesicles by the markers of 

the endosomal pathway and their small size that distinguishes them from other 

microvesicles. Though an important differentiator, the size of exosomes is often reported 

with substantial variability, as illustrated by a sample of published results summarized in 

Table 6.1.  

Several factors likely contribute to a large range in reported sizes, including the 

source of exosomes by the type of body fluid or cell line from which they were isolated. 

The exosome isolation method, which may include ultracentrifugation (UC),12 solvent 

precipitation,13 size exclusion chromatography (SEC),14 immunoaffinity isolation,15 

microfluidic techniques,16 and ultrafiltration17 is another factor in size variability.15,18,19 

The choice of characterization techniques influences the measured size of exosomes, as 

well. While it is recognized that the precise determination of the size distribution of 
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exosomes with any given technique is difficult,20–22 it is often underappreciated that 

different analytical methods estimate sizes based on dissimilar physical principles, which 

produce identical results only in limited cases.  

Sample preparation steps used with different methods, such as sample 

verification, desiccation, or surface fixation, also affect sizing results. The geometric 

shape of exosomes influences size measurements obtained with techniques that determine 

particle sizes from their mobility, such as nanoparticle tracking analysis (NTA), dynamic 

light scattering (DLS), and differential mobility analysis (DMA). The standard practice in 

NTA and DLS is to assume that the shape of exosomes is spherical, contrary to numerous 

reports and reviews23 suggesting that the exosomes have a cup-shaped geometry. 

Therefore, to provide sizing consistency and accuracy by methods that rely on particle 

mobility, the shape of hydrated and desiccated exosomes becomes an important factor 

that must be examined.  

In this paper, we quantify the influence of different analytical techniques on the 

measurements of exosome sizes. By reanalyzing the same samples by different sizing 

techniques we find significant variability in the results that is comparable with the 

variability seen in Table 6.1, where the difference between samples – by biofluids, cell 

lines, and techniques employed in their isolation – is also a contributing factor. We offer 

a model that explains this result and suggests that the difference in exosome sizes 

measured by different techniques may itself be an important characteristic of a sample 

that depends on such biophysical properties of the exosomes as their surface decoration, 

elasticity, and molecular content. 
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6.3 Materials and Methods 
 

6.3.1 Samples and exosome isolation 

Sera samples from a 75-year-old female pancreatic cancer patient with high levels 

of the tumor marker CA19-9 (414 U/mL) and a healthy 42-year-old female seen for 

routine cholesterol testing were used in this study. Both samples were obtained from 

ARUP Laboratories Inc. (Salt Lake City, UT) and deidentified according to IRB protocol. 

Exosomes were isolated from 1mL serum using an ExoQuick kit (System Biosciences, 

Mountain View, CA) following manufacturer’s instructions. Briefly, serum was 

centrifuged at 3,000g for 15 minutes to remove cells and cell debris. The supernatant 

was transferred to a sterile vessel and 252 L of ExoQuick was added. The mixture was 

refrigerated for 30 minutes and then centrifuged at 1500g for 30 minutes at room 

temperature. After centrifugation, the supernatant was discarded and the exosome pellet 

saved. To spin down the residual ExoQuick solution, the pellet was centrifuged for 

another 5 minutes at 1500g and the supernatant was removed without disturbing the 

pellet. The pellet was then re-suspended in 200 l of 2 mM ammonium acetate (AA) 

buffer. The buffer solution was prepared using AA salt (Sigma-Aldrich, St. Louis, MO) 

and DI water (Milli-Q filtration). The exosome size was then characterized by all 

analytical techniques. 

 
6.3.2 Analytical Methods 
 
6.3.2.1 Scanning Electron Microscopy (SEM) 

Prior to SEM imaging, both samples were diluted 1:100 in DI water. A glass slide 

was gently cleaned with nitrogen gas and placed on the specimen stage of the SEM (FEI 

NanoNova 630 High Resolution SEM). Five microliters of each sample were then placed 
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on the glass slide and allowed to dry. The samples were imaged at 0.98 Torr using a low 

vacuum secondary electron detector at magnifications in the 35,000-65,000 range. The 

acquired 1024943 pixel images were analyzed using custom MATLAB software to 

determine the exosome size distribution. The grayscale SEM images were first converted 

into a binary form to define the boundary of each particle. Each exosome in each image 

was approximated by an ellipse that provided the best (in the least squares sense) fit to its 

perimeter. The exosome diameter was calculated by geometrically averaging the lengths 

of major and minor axis (equal for spherical particles) of the fitted ellipse.  

 
6.3.2.2 Electrospray Differential Mobility Analysis (ES-DMA) 
 

DMA has been previously used to size biological particles, including cold 

viruses,24 lipoproteins,25 virus-like particles,26 and other macromolecular assemblies.27,28 

This study is the first to use this technique to characterize exosome sizes. Patient and 

control samples were diluted 1:100 in AA solution and 0.5 mL of the preparation was 

used in the electrospray (ES) aerosol generator (TSI Model 3480; Shoreview, MN) to 

confine individual exosomes inside charged droplets formed by atomizing the suspension 

in the Taylor cone formed at the end of 25 m ID capillary. Pressure-driven flow through 

the capillary was maintained by 26 kPa excess pressure across the capillary. A stream of 

gas consisting of 1.0 L/min of air and 0.2 L/min of carbon dioxide was used to entrain the 

charged droplets and carry them into a bipolar charge neutralizer where they were 

bombarded by α-particles formed by radioactive decay of 210Po. The solvent and volatile 

ammonium acetate salt rapidly evaporated from the entrained droplets, while the 

bombardment by α-particles electrically neutralized most exosomes desiccated in the gas 

phase.29 A fraction of the desiccated exosomes retained a single net positive or negative 
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change (±1 electron charge), while particles with higher charges (±2, ±3,…) occur at an 

increasingly rare frequency.30 For example, after the neutralization, 46.7% of 74 nm 

particles carry an elementary charge of ±1 (26.2% of particle will have an excess and 

20.5% a deficit of a single charge); 1.9% and 3.2% will have a charge of ±2, respectively, 

and a negligible number of higher charged particles; the balance is formed by neutral 

particles.29 

After charge reduction in the neutralizer, the desiccated exosomes were carried by 

flowing gas into the differential mobility analyzer (TSI Model 3080) operated with sheath 

flow of 10 L/min of nitrogen. Inside the DMA, a strong negative electrical potential 

deflects positively charged exosomes towards a collection slit. The exact deflection 

trajectory towards the collection slit depends on electrical and drag forces on the 

particles. The electrical force is constant for a vast majority of attracted exosomes 

because the neutralization process left them with the same charge of +1. Therefore, at a 

given potential only the drag force (which changes linearly with the particle diameter) 

and the particle shape determine which particles pass through the collection slit and are 

counted one-by-one inside the condensation particle counter (CPC; TSI Model 3025A). 

The result is expressed as the average number of particles analyzed per volume of inlet 

gas at a flow rate of 1.0 L/min over 20 seconds. By sweeping the bias potential from 1.7 

to 2.5 kV and assuming that the desiccated exosomes are spherical particles, we 

characterized their size distribution in the range from 20 to 82 nm in 1 nm increments. 

Alternatively, by maintaining a constant potential, a narrow size fraction can be directed 

from the DMA into an electrostatic deposition chamber and deposited on a substrate for 

subsequent analysis.  
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6.3.2.3 Cryo-Transmission Electron Microscopy (Cryo-TEM) 
 

The imaging procedure was described in detail previously.31 Briefly, prior to 

cryo-TEM imaging, the exosome samples were diluted 1:100 in DI water. Approximately 

3.5 L of sample was placed on a holey carbon-coated copper grid. The unstained sample 

was vitrified with the aid of a robotic accessory (FEI Vitrobot, Hillsboro, OR) used to 

plunge freeze the aqueous sample into liquid ethane maintained at the temperature of 

liquid nitrogen. Once vitrified, the samples were stored in liquid nitrogen. Prior to image 

acquisition, the stored samples were transferred to a cryoholder (Gatan 626, Pleasanton, 

CA), which maintained their temperature at approximately −180oC during imaging. The 

20482048-pixel cryo-TEM images were obtained at 200kV using FEI Tecnai F20 

transmission electron microscope (Hillsboro, OR) coupled to a FEI Eagle CCD camera 

and sized using the same MATLAB image analysis algorithm as the one used in SEM 

sizing. Particles were also sized manually using MATLAB Image Processing Toolbox for 

comparison. 

 
6.3.2.4 Dynamic Light Scattering (DLS) 
 

The samples were diluted 1:100,000 in DI water and filtered through 0.2 m 

syringe filters (Corning, Tewksbury, MA). Prior to the measurements, 1 mL of the 

sample preparation was placed into a low volume disposable sizing cuvette for analysis 

and given 5 minutes to reach 25°C. The DLS measurements were performed on a 

Malvern Zetasizer Nano ZS (Worcestershire, UK) at 173° angle which measures particles 

in the 0.3–10,000 nm size range. Water viscosity at 25°C (0.8872 cP) and the refractive 

index of the solution equal to 1.33 were used to interpret the measurements. The 

refractive index for exosomes was set to 1.35. Samples were analyzed in 3 repeats, each 
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consisting of 12 scattering measurements. The obtained data were processed using a 

General Purpose Model implemented in the Zetasizer software to obtain the size 

distribution, its mean and the standard deviation. 

 
6.3.2.5 Nanoparticle Tracking Analysis (NTA) 
 

NTA was performed using Nanosight instrument (model LM10; Salisbury, United 

Kingdom) by illuminating the sample with a 40 mW violet laser (405 nm wavelength), 

capturing the light scatted by exosomes with a high-sensitivity sCMOS camera 

(OrcaFlash2.8, Hamamatsu C11440), and analyzing the results using the software 

provided by the manufacture (Nanosight Version 2.3). The minimal expected particle 

size, minimal track length, and blur size were set to Auto, gain set to 1, brightness to 0, 

and detection threshold set to 10 Multi. The viscosity of DI water depends on temperature 

and was adjusted automatically based on the temperature measurements. Temperature of 

the cell was measured manually and stayed at 20°C with a maximum of 0.1 degree 

fluctuation throughout the nanoparticle tracking. Viscosity of water at these temperatures 

is nearly constant and equal to 1cP. Prior to analysis, the exosome samples were diluted 

1:1,000 in DI water and allowed to equilibrate to room temperature (20°C). Water used in 

dilution was filtered using Nanopure Filtration System (Thermo Scientific Inc, Waltham, 

MA) and stored in a glass container prior to use. Samples were analyzed within 5 minutes 

of the initial dilution. Using a 1 mL sterile syringe, each sample was injected into the test 

cell. Approximately 35 particles were observed in the field of view and the typical 

concentration was approximately 5108 particles/mL for each measurement. A 60-second 

video was recorded for each sample at 20 frames per second with 25.98 millisecond 

shutter speed and camera gain set to 512 and analyzed using NTA software with the 
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described settings. Each video consisted of more than 1000 frames and the total of valid 

particle tracks for each 60-second measurement was ~1200. The video data 

characterizing hydrodynamic mobility of particles in the field of view were analyzed with 

the NTA software which reported the exosome size distribution, its mode, mean and the 

standard deviation. 

 
6.3.2.6 Data Analysis 
 

Size-frequency measurements for a given sample obtained with different 

techniques were converted into the probability density functions (pdf) of particle sizes 

expressed as a histogram. The width of a data bin, ℎ, in each histogram was calculated as 

ℎ = 3.5/𝑛
1

3, where 𝑛 is the number of sized exosomes having diameters in the range 

characterized by the standard deviation . The hypothesis that medians of two 

distributions are different was tested with 95% confidence, assuming that the size 

measurements were normally distributed. The testing was found to be robust to the type 

of the assumed distribution. Specifically, the outcome of the test did not change when the 

assumption of normality was changed to the assumption that size measurements were 

log-normally distributed.  

 
6.4 Results 

 
6.4.1 Hydrodynamic Sizing  

We measured the size distribution of exosomes in solution by nanoparticle 

tracking analysis and dynamic light scattering. For spherical particles, both techniques 

estimate hydrodynamic diameters based on the measurements of particle mobility in 

liquid. The insert in Figure 6.1b is a typical frame of a NTA video sequence of the 
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particle motion captured by the CMOS sensor. The spots in the image are formed by 

scattered laser light collected by a 20 optical objective. The temporal motion of each 

particle is used to estimate its diffusivity; the corresponding hydrodynamic size is found 

from the Stokes-Einstein equation. The results for individual particles are then 

summarized as the size distribution of the particle populations. Figures 6.1a and 6.1b, 

respectively, show the size distributions of exosomes (scaled to represent probability 

density functions, pdf) from a healthy woman control and a woman with pancreatic 

cancer measured by NTA. The mode for the control sample was 136 nm compared to 121 

nm for the sample from the pancreatic cancer patient, while the mean size (plus or minus 

standard deviation, std) for the control sample was 182±79 nm compared to 157±72 nm 

for the pancreatic cancer sample. The exosome concentration in the control sample was 

5.001011 particles/mL and higher (5.411011 particles/mL) in the patient sample. 

The same samples analyzed by DLS gave similarly broad size distributions 

(Figure 6.1c and 6.1d). The mode and mean for the control was 91 and 119±47 nm 

compared to 92 and 130±55 nm for the patient sample.  

 
6.4.2 Geometric Sizing of Hydrated Exosomes by Cryo-TEM 
 

Figures 6.2a and 6.2b show typical cryo-TEM images of exosomes in control and 

pancreatic cancer patient samples, respectively. The imaged particles are unstained, yet 

sufficient contrast was present to identify particle boundaries. Algorithmic image analysis 

identified and sized 106 exosomes derived from the control sample and 212 patient 

exosomes. The exosomes appear as close to circular projections, with mean eccentricities 

equal to 0.334±0.084 and 0.290±0.085 for control and patient exosomes, respectively. 

Algorithmic analysis (illustrated in Figures 6.2 and 6.3) shows that the geometric mean 
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diameters of exosomes derived from the control sample are in the range between 26 and 

129 nm and patient exosomes are in 25-98 nm range. The size distributions for the two 

samples are shown in Figure 6.2c. The average diameter plus or minus the standard 

deviation was found to be 71±24 nm for the control and 55±14 nm for the patient sample 

when using this analysis method. Consistent with the NTA results, the concentration of 

patient exosomes was observed to be higher and their tendency to cluster was notable. 

Visual inspection revealed that a larger number of exosomes was present. The 

undercount during algorithmic analysis occurred because exosomes were on or between 

carbon supports and some were clustered together, especially in the patient sample. White 

arrows in Figure 6.3a indicate particles that were not identified as such by computer 

image analysis. As a comparison with algorithmic quantification presented in Figure 6.3, 

manual sizing of all visually identified exosomes was carried out. Figures 6.3a and 6.3b 

illustrate the process used to manually size the enlarged images of the exosomes with the 

aid of the MATLAB Image Processing Toolbox. In total, 173 control and 355 patient 

exosomes were observed visually. The size distribution based on manual sizing and its 

comparison with the results of computer analysis are given in Figure 6.3c and Table 6.2. 

The tendency of manual sizing to estimate smaller exosome diameters is caused by 

underfocusing in cryo-TEM images, which leads to coronal appearance of exosome 

membranes. Individuals performing manual sizing tend to ignore these coronas when 

estimating the size of exosomes (see Figure 6.3b for examples) and estimate smaller sizes 

than identified by computer analysis (Figure 6.3d). Figure 6.3d shows ellipses that the 

automatic image analysis algorithm fitted to the three exosomes seen in Figure 6.3c, and 

their calculated sizes and eccentricities. For the largest exosomes in Figures 6.3b and 
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6.3d, Figure 6.3e shows the major and minor lengths of the fitted ellipse, the 

corresponding eccentricity, and the diameter calculated as the geometric mean of the two 

lengths. Manual analysis was not robust in identifying major and minor axis; therefore, 

the manual results were reported as a single number for each particle. It was noted that 

manual results varied with the rotation of the image on the computer screen. Despite the 

tendency of manual sizing to produce smaller size values, the comparison of distributions 

in Figures 6.3c shows that, both, algorithmic and manual sizing produce consistent 

results. 

 
6.4.3 Geometric Sizing of Desiccated Exosomes  
 
6.4.3.1 SEM  

A representative SEM image of desiccated exosomes is shown in Figure 6.4a. In 

total, 8 SEM images of the patient and 17 images of a control sample were used to size 

the exosomes.  The histograms in Figure 6.4b show the sizing result obtained from the 

analysis of 24,024 control and 12,298 patient exosomes. The mean (± standard deviation) 

sizes were found to be 52±21 and 50±18 nm for the control and patient samples, 

respectively.  

Image analysis of these desiccated samples revealed dependence of exosome sizes 

on their spatial location within the perimeter of the dried sample. This can be seen in 

Figure 6.4c, which shows the particle size segregation, from larger to smaller, as we 

move diagonally away from the upper left corner of the image. Quantification of this 

change given in Figure 6.4d shows a rather significant change in exosome sizes in the 

four areas of the image. In the top left corner, the exosome sizes are in the range from 50 

to 80 nm and decrease to the predominant sizes of 20-50 nm as we move towards bottom 
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right area of the image. Such size segregation of exosomes as a result of drying has not 

been previously reported. It is likely related to the coffee ring effect32 known to occur 

when a suspension of particles dries on a surface. For the case of micrometer particles, 

the deposition pattern depends on capillary flow in the drying drop32 and roughness of the 

surface on which desiccation occurs.33 Deposition also depends on several characteristics 

of the particles themselves – their size, shape,34 surface activity and the presence of other 

surface-active compounds in the solution.35 These same factors likely influence the 

deposition of exosomes during surface desiccation of the sample. The observed coffee 

ring phenomenon with size segregation suggests that, to avoid bias in characterizing the 

concentration and sizes of surface-deposited exosomes with techniques like SEM, TEM 

and AFM, the entire area of the dried sample should be imaged and analyzed. 

 
6.4.3.2 DMA  
 

The ES-DMA sizing results are shown in Figure 6.5. Particles with diameters less 

than 20 nm were observed but were attributed to the contribution of macromolecules, 

such as globular proteins, lipids, lipoproteins, and agglomerates (dimers, higher order 

oligomers, etc.) thereof.36 For this reason, only particles larger than 20 nm were 

considered to be exosomes in the DMA results. This decision is supported by cryo-TEM 

and SEM results that show that very few exosomes smaller than 20 nm are present. An 

even more direct justification is provided by TEM imaging of DMA-deposited exosomes 

in Figure 6.6. The exosomes desiccated inside the DMA were deposited on a carbon grid 

and imaged by conventional TEM. The purpose of this experiment was to confirm that: a) 

Aerosol-desiccated exosomes are larger than 20 nm, thus justifying the 20 nm cutoff of 
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the DMA size distribution and b) Isotropic drying largely preserves innate spherical 

shape of exosomes. 

Exosomes were isolated from the serum of a 66-year-old male pancreatic cancer 

patient (concentration of the CA19-9 tumor marker equal 234U/mL) using the ExoQuick 

kit, as described previously. The isolated exosomes in ammonium acetate buffer were 

electrosprayed, dried, and partially neutralized to a predominant ±1 elemental charge per 

particle. They were then entrained by the gas flow of 30 L/min and a positively charged 

fraction corresponding to ~ 30 nm diameters was deflected into a collection slit in the 

electrode maintained at electrostatic potential equal to −1,531 V. A 1.0 L/min sample 

flow of particles collected through the collection slit were sent into an electrostatic 

deposition apparatus (Figure 6.8C) where they were deposited on a TEM grid placed on 

the electrode maintained at −10 kV voltage. A sample of imaging results is shown in 

Figure 6.6. Predominantly circular projections of exosomes are preserved after electro-

spraying and airborne desiccation (mean eccentricity of 194 exosomes visualized by 

TEM after their deposition through the DMA was 0.420±0.175), as would be expected 

for near spherical particles randomly deposited on the surface from the gas phase. Figure 

6.7 shows eccentricities for all exosomes observed in TEM images. It also shows that 

their sizes remained above 20 nm. Smaller than 20 nm particles seen in DMA 

measurements do not clearly appear on TEM images, which is consistent with a lower 

density of biomolecular complexes. The surface concentration of deposited exosomes 

was relatively low, with only few TEM images showing three or more particles per 

image. The size distribution with 20 nm cutoff seen in Figure 6.5 is based on the 

condensation particle count of 5.50106 particles from the patient sample and 6.22106 
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particles derived from the control. The average diameter of control and patient particles 

was 37±12 and 40±12 nm, respectively.  

 
6.5 Discussion 

 
6.5.1 Influence of Exosome Isolation Method  

Exosome sizes overlap with other biological particles.37 Specifically, lipoprotein 

and protein agglomerates overlap with exosomes in the lower range of size distribution, 

while larger extracellular microvesicles and cell debris interfere with exosome sizing at 

the high end of their sizes. Therefore, the exosome isolation method has an influence on 

the population of the isolated particles and thus affects the sizing results. 

Exosome isolation is not a standardized procedure and the benefits of different 

alternatives are hotly debated. Differential ultracentrifugation remains the most widely 

used approach, followed by gradient ultracentrifugation and precipitation techniques,38 

like ExoQuick employed by us. Numerous studies have been conducted to reveal the 

influence of the isolation methods on the population of the isolated exosomes and the 

contamination of the isolated samples by soluble proteins, molecular complexes, and 

extracellular vesicles other than exosomes.15,18,19,38,39,40 For example, Van Deun et al.38 

used three different isolation methods – UC, gradient centrifugation, and ExoQuick – to 

isolate exosomes produced by MCF7 breast cancer cell line transfected to stimulate 

exosomal production. They found that isolation used has an effect on proteomic and 

nucleic content of the sample, as well as the concentration and size distribution of 

isolated particles. They concluded that certain gradient fractions obtained with iodixanol-

based gradient UC produce exosome samples most enriched in CD63 and other exosomal 

marker proteins, lowest contamination by extravehicular proteins, and distinct mRNA 
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profile. However, it is not clear if the same narrow density fraction contain exosomes 

produced by different cell lines and whether the exosome-rich density band remains 

narrow in more complicated cases of heterogeneous exosomes secreted by many different 

types of cells and contained in biological fluids. A recent result shows that most 

individual exosomes do not carry biologically significant numbers of miRNAs,6 which 

suggests nonuniform distribution of nucleic material across the population and varying 

density between exosomes. This is further supported by Jeppesen et al.40 that found 

different exosome subpopulations characterized by variable sedimentation characteristics. 

Reliance on protein biomarkers to verify quality of exosome isolation has also been 

questioned because not all exosomes express such marker proteins as PDCD6IP, 

TSG101, CD9, CD63, and others.41 For exosomes secreted by RBL-2H3 cells, it was 

reported that only 47%, 32%, and 21% of exosomes contain CD63, MHC II, and CD81 

markers, respectively.42 As another example of variability in proteins biomarkers, Bobrie 

et al.43 reported evidence of heterogeneous vesicle populations and different proportions 

of CD63, CD9 and Mfge8 markers in exosomes isolated in sucrose gradients at 

“classical” densities of ~1.15 g/ml. To confirm this we conducted CD63 measurements in 

the two studied patient sample by using an ExoELISA kit (System Biosciences, Mountain 

View, CA). In short, the exosome samples were diluted 1:2 in the exosome binding 

buffer and incubated at room temperature for 10 minutes. Exosome protein samples and 

50 µL of prepared protein standards were placed in a micro-titer plate and allowed to 

incubate at 37°C for 2 hours. After incubation, the plate was inverted to empty all 

contents and washed 3 times with 100 μL 1x wash buffer. To each well, 50 µL of the 

exosome specific CD63 antibody was then added and incubated at room temperature for 
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1 hour with shaking. The plate was then washed 3 times with 100 μL of 1x wash buffer, 

and 50 µL of exosome validated secondary antibody was added to each well and 

incubated at room temperature for 1 hours with shaking. The plate was then washed 3 

times with 100 µL of the wash buffer and 50 µL of super-sensitive tetramethylbenzidine 

(TMB) ELISA substrate added and allowed to incubate at room temperature for 30 

minutes with shaking. To fix the endpoint for the assay 50 µL of stop buffer was added 

and CD63 quantification done by using a spectrophotometric plate reader (Synergy HT, 

BioTek, Winooski, VT) at 450 nm absorbance. It was determined that only 17% and 21% 

of exosomes expressed CD63 on the surface in the normal and cancer sample, 

respectively. This confirms that CD63 is not the best exosome marker. 

ExoQuick was compared with exosome isolation by ultracentrifugation in the 

study of Caradec et al.39 It was concluded that ExoQuick provides an efficient and 

reproducible method for exosome isolation for quantitative studies, whereas UC does not. 

They reported that for sera samples both methods isolate exosomes equivalently 

expressing several exosomal markers but UC preparations were strongly contaminated by 

proteins (albumin and IgG). Rekker et al.18 examined UC and ExoQuick isolation of 

exosomes for the purposes of miRNA profiling. They concluded that both methods are 

suitable for use with sera samples, but noted that the exosomal miRNA profile is slightly 

affected by the isolation method.  

 While the influence of isolation techniques has not been investigated in the 

current study, literature reports indicate that it is an important factor contributing to the 

reported size variability of exosomes. The source of the exosomes, by biological fluids or 
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cell lines, was also not examined, but is likely a contributing factor to the variability seen 

in Table 6.1 and other studies.  

 
6.5.2 Exosomes are Spherical Bioparticles 
 

In the vitrified state, the properties of the exosomes are similar to those observed 

at biological conditions. Cryo-TEM images are formed by electrons transmitted through 

vitrified sample (Figures 6.8A) and give two-dimensional projections of three-

dimensional exosomes in their native hydrated state. Our results show that these 

projections are close to circular for both patient and control exosomes (mean 

eccentricities equal to 0.290±0.085 and 0.334±0.084, respectively). This finding is 

consistent only with a near spherical shape of exosomes. It contradicts common claims 

that exosomes have a “cup shape”23 (as illustrated in Figure 6.8D) reported based on 

electron microscopy imaging of desiccated samples12,44,45,46 and atomic force microscopy 

of both hydrated and desiccated exosomes.47–49 Our finding is supported by prior cryo-

TEM results that report round morphology50 of exosomes released by hepatocytes, 

spheroid shape51 of human mesenchymal stem cell exosomes, and naturally spherical52 

exosomes secreted by prion-infected cells. The cup shaped morphology of exosomes was 

questioned before. For example, van der Pol et al.53 noted that “identification of 

exosomes based on their cup-shaped morphology after negative staining and visualization 

by TEM seems questionable.” Our results confirm this suspicion. We furthermore 

suggest a mechanism that explains this artifact by nonuniformity of capillary forces 

during surface desiccation, as discussed below.  

 The conclusion that the innate shape of exosomes is spherical should be taken into 

account when sizing is performed by techniques that produce shape dependent results.  
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For example, because particle mobility in a liquid or electrical field is shape dependent, 

exosome sizing by NTA, DLS (Figure 6.8B), or DMA (Figure 6.8C) should account for 

their shape as being spherical, as we have done in this work. Furthermore, the shape 

distortion away from spherical at the sample preparation step – for example, due to 

electrostatic forces used to immobilize exosomes on a charged substrate prior to AFM 

characterization or surface desiccation prior to EM imaging – will likely affect the 

measured sizes and require correction for such distortion. 

 
6.5.3 Exosome Sizing Is Method Specific  

 

Of the three factors contributing to size variability – the difference in exosome 

sources, isolation techniques, and sizing methods – only the latter was present in this 

study. Nevertheless, as illustrated by the summary of the sizing results in Figure 6.9 and 

Table 6.3, the difference in sizing techniques alone introduces variability consistent with 

what was observed when all three factors were present (Table 6.1). Specifically, the 

obtained average size by NTA falls within the range reported by others for sample 

isolated from different sources;17,54,55 the average sizes obtained by the SEM and cryo-

TEM imaging are also consistent with prior observations which report average sizes in 

the 40-60 nm range17,48,55 when electron microscopy was used to size exosomes. Sizing 

by the DMA gives the average size of exosomes at approximately 40 nm, which is the 

smallest average size found with any technique. The difference in sizing results by 

different techniques provides an important insight into biophysical properties of 

exosomes, the understanding of which requires a closer look at physical principles 

employed in exosome sizing. 
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6.5.4 Measurements of Hydrodynamic Sizes 
 

Nanoparticle tracking analysis17,54 (which has emerged as the most widely used 

method for characterizing the size distribution and the concentration of exosomes) and 

dynamic light scattering both estimate hydrodynamic (liquid mobility) size of particles 

(Figure 6.8B). The hydrodynamic size is obtained by first estimating particle diffusivity 

in the solution and then calculating the corresponding particle diameter to match the 

observations. NTA estimates diffusivity separately for each particle in the field of view of 

the instrument by measuring particle displacement over time. Unlike the NTA, dynamic 

light scattering56 – another commonly used exosome sizing method – is an ensemble 

technique that estimates the hydrodynamic size distribution of the entire particle 

population by analyzing the temporal variation in the intensity of the scattered light 

measured at a fixed scattering angle. If we ignore the contribution of a solvation layer 

formed around particles due to changes in hydrogen bonding of water molecules at the 

particle-solvent interface,57,58 the hydrodynamic and geometric sizes will be equal for 

smooth, hard, electrically neutral, spherical particles with zero surface charges. Several of 

these assumptions fail in the case of exosomes, which are elastic particles known to have 

a negative surface charge44 and have a membrane with conjugated macromolecules. In an 

aqueous solution, any particle with a surface charge is surrounded by an electrical double 

layer, sometime referred to as an ionic atmosphere.59 As the particle moves, the ionic 

atmosphere moves with it, making a particle’s apparent size larger than its physical size. 

The thickness of the ionic atmosphere is approximately equal to the Debye length, which 

depends on ionic strength and dielectric permittivity of the solution. 
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Surface-conjugated macromolecules also exert strong influence on particle 

diffusivity. To complicate matters further, the configuration of such surface decoration 

(e.g., its lateral extension)  may change with the concentration of surface ligands, ionic 

strength of the solution, its pH and, the type of parent cells that secreted the exosomes.60  

 
6.5.5 Geometric Sizing of Exosomes  
 
6.5.5.1 Desiccated Samples 

Too small for light microscopy, exosomes can be directly imaged by electron 

microscopy. The traditional EM (scanning and transmission) characterizes samples in 

vacuum after exosomes are desiccated on a surface. Exosomes desiccated in the gas 

phase may be characterized based on their electrical mobility inside differential mobility 

analyzers. Drying, either on a surface or in a gas phase, introduces severe environmental 

transformation of biological samples. Figure 6.8C and 6.8D illustrates that a change in 

interfacial forces during desiccation likely alters the shape and size of exosomes 

measured by EM, AFM, and DMA. As discussed below, these changes depend on 

whether the desiccation occurred on the surface or in the gas phase. 

 
6.5.5.2 Hydrated Samples 
 

Few options exist to characterize geometric sizes of hydrated exosomes, of which 

cryo-TEM61 is the gold standard. Prior to imaging, a thin sample of hydrated exosomes is 

pipetted on the TEM grid and blotted to remove excess liquid. The sample is then 

plunged into liquid ethane to impose rapid cooling needed to obtain the vitrified 

(amorphous) form of ice, which has properties similar to liquid water.61 In addition to the 

complexity of sample preparation, another notable disadvantage of the cryo-TEM 
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imaging is a relatively small number of exosomes seen in each acquired image. 

Consequently, the number of exosomes used to characterize the size distribution is small 

and only the range of their sizes is often reported in the literature (Table 6.1).  

Atomic force microscopy can be used to visualize the three-dimensional 

topography of hydrated biological particles. Prior to imaging in the solution, the particles 

must be immobilized on a substrate, by either tethering to a functionalized surface, 

trapping in a filter, or by electrostatic attraction to a charged surface. The negatively 

charged exosomal membrane makes electrostatic surface fixation particularly convenient. 

Note, however, that the same electrostatic forces that immobilize exosomes on the 

surface likely distort their spherical shape.  

 
6.5.5.3 Hydrodynamic Size of Exosomes Is Substantially  
 
Larger than their Geometric Size 
 

In view of the discussed differences, it is expected that the hydrodynamic size of 

exosomes will always be larger than their geometric size. The degree to which the 

measured hydrodynamic size exceeds their geometric size is, however, surprising. With 

reference to Figure 6.9 and Table 6.3, we see that the mean hydrodynamic diameter 

measured by NTA and DLS is in the range between 119 and 182 nm for both patient and 

control samples, compared to 37–71 nm range of average geometric sizes of hydrated and 

desiccated exosomes. Under the conditions of our experiments, the formation of the 

electric double layer alone cannot explain this very large difference. The factor most 

likely responsible for substantially larger hydrodynamic size of exosomes observed by us 

is their membrane-conjugated macromolecular decoration, which may include 

transmembrane and tethered proteins; lipids; and saccharides, as well as functional and 
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self-assembled surface-active compounds present in biological fluids and cell growth 

medium. We observed faint excess density around some exosomes (Figure 6.2d, arrows) 

that suggests the presence of such molecular decoration on the surface of these particles. 

The interaction of surface molecules and complexes with a biofluid or buffer impedes the 

mobility of exosomes, which increases their hydrodynamic size to the extent consistent 

with our observations. A similarly large increase in a hydrodynamic size due to surface 

decoration was observed after PEGylation of gold nanoparticles,62 which increased their 

hydrodynamic diameters to 75±33 and 122±50 nm from the initial 38 and 89 nm 

geometric diameters, respectively. To test this hypothesis exosomes were isolated from 

MCF7 breast cancer cell line by using ExoQuick-TC. The isolated exosomes were 

resuspended in 1x PBS and kept at -80°C until analysis. To remove proteins from the 

exosome membrane half of the sample volume was exposed to proteinase K enzyme that 

preferentially breaks down proteins in locations of hydrophobic, aliphatic and aromatic 

amino acids. In short, 10µL of proteinase K was added to 30µL of MCF7 exosomes 

resuspended in 1x PBS and incubated for 1 hour at 37°C. The sample was then spun at 

15,700g at 4°C for 1 hour. The pellet was then resuspended in 30 µL of 1x PBS and 

supernatant saved. The samples were then analyzed using NTA on the same day by 

conducting five 60 second measurements per sample. Mode and mean exosome size in 

the original MCF7 sample were measured to be 86 ± 3 nm and 110 ± 6 nm respectively 

(Figure 6.11) while mode and mean size of exosomes in the MCF7 sample exposed to 

proteinase K were measured to be 59 ± 1 nm and 65 ± 2 nm, respectively. The 

hydrodynamic size clearly decreased when exosomes were shaved from membrane 

proteins and became closer to geometric exosome size discussed earlier. This allows us to 
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conclude that membrane proteins, although present, are difficult to identify during 

cryoTEM analysis while they clearly contribute to exosome mobility and hydrodynamic 

size. The contribution of membrane proteins was not investigated further. 

 
6.5.5.4 Effect of Aerosol and Surface Desiccation on  
 
Exosome Shape and Size 
 

Differential mobility analysis characterizes exosome sizes after they were rapidly 

desiccated while suspended in gas. The drying front in an airborne exosome progresses 

isotropically in the exosome’s radial direction, as illustrated in Figure 6.8C. This balances 

the capillary forces during desiccation and minimizes shape distortion of desiccated 

exosomes away from their hydrated spherical shape. To confirm that isotropic drying 

largely preserves innate spherical shape of hydrated exosomes, the aerosol-desiccated 

exosomes were imaged by conventional TEM (Figure 6.6). Though some exosomes 

showed signs of shape distortion after experiencing electrospray atomization, aerosol-

desiccation, and surface impact with the deposition surface, Figure 6.7 indicates that they 

maintain close to circular two-dimensional TEM projections (mean eccentricity equal 

0.420±0.175), as would be expected if close to spherical shape was maintained.  

Surface desiccation, unlike aerosol drying, proceeds with a nonisotropic front. 

This leads to unbalanced capillary forces that likely distort the shape of desiccated 

exosomes to produce the often observed cup shape of surface-desiccated exosomes, as 

conceptualized in Figure 6.8D. Two symptoms of shape distortion were observed. First, 

as Table 6.3 shows, the eccentricity of surface desiccated control (patient) exosomes 

increased to 0.493±0.313 (0.540±0.260) from 0.334±0.084 (0.290±0.085) for hydrated 

exosomes observed by cryo-TEM. The second observation is that, when spherical shape 
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is distorted by desiccation on the surface, the two-dimensional projection of SEM-imaged 

exosomes would be expected to be larger than the diameter of spherical aerosol-

desiccated exosomes. This is exactly what we see in Figures 6.9 and 6.10, which show 

with 95% statistical confidence that diameters of aerosol-desiccated exosomes, measured 

by DMA, are smaller than the SEM size measurements of surface-desiccated exosomes.  

 
6.5.5.5 Effect of Osmolarity on Exosome Sizes 
 

Several analytical techniques employed by us require that the concentration of 

solute in the exosome suspension is low. This, for example, is necessary to avoid crystal 

and precipitate formation that affect SEM imaging and DMA characterization. To 

maintain consistency, solution of low osmolarity was also used with other sizing 

techniques, even when not required. Lower osmolarity of the solution in which exosomes 

are suspended, in our case osmolarity being ~0 mOsm/kg, compared to their luminal 

osmolarity (~280-300 mOsmol/kg) creates an osmotic pressure acting to cause swelling 

of exosomes (hypotonic condition). This pressure may eventually be relieved after the 

osmolarity is equilibrated by the transport of water and solutes across the membrane. 

Such equilibration is expected to be rapid due to the small size of the exosomes but may 

cause exosome lysis due to the large osmotic pressure. 

To investigate if the transient change in the pressure across the exosomal 

membrane leads to a permanent change in their sizes, we isolated exosomes from serum 

of a 66-year-old male pancreatic cancer patient (sample 280) and a supernatant of the 

MCF7 breast cancer cell line grown in exosome-free medium (Figure 6.12). The isolation 

of serum exosomes was carried out using the ExoQuick kit, as described before, while the 

cell line exosomes were isolated using a specialized kit, ExoQuick-TC. The equal 
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aliquots of the isolated exosomes were suspended in DI water and PBS; their 

concentration and sizes were then characterized by the NTA. Table 6.4 shows that, within 

experimental error, the concentration of exosomes was unaffected by suspension in either 

PBS or DI water. We can therefore conclude that exosomes are not lysed by osmosis after 

their suspension in DI water. Lysis might not occur due to high curvature of the exosome 

membrane which may allow ions to freely diffuse out under the hypotonic condition 

although stress-induced pore formation, leakage and eventual ionic equilibrium inside 

and outside of the vesicle may also be contributing to exosome stability but further 

investigation will be needed.63–65 Inspection of sizing results given in Table 6.4 and 

Figure 6.12 suggests that, within standard error of the experiments, low osmolarity and 

potential equilibration still leads to small swelling of the exosomes. Noting that transport 

of inorganic ions is a regulated process in semipermeable plasma membranes, the 

observed change may be explained by an incomplete equilibration of ionic concentration 

across the membrane, which would lead to a net transport of water and, thus, swelling. 

However, the observed size change is small relative to sizing differences introduced by 

different analytical techniques and was not further investigated in this study.  

 
6.5.5.6 Application of AFM for Hydrated and Desiccated  
 
Exosome Sizing 
 
 As mentioned previously there are only a few methods capable of imaging 

nanoparticles in both hydrated and desiccated state with good enough resolution. The 

current gold standard that is able to do so is cryo-TEM and TEM for hydrated and 

desiccated sizing, respectively. Another available method is ESEM (Environmental 

Scanning Electron Microscopy) which can be used to keep the particle hydrated 
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providing hydrated size and SEM providing size of the desiccated particles. There are 

numerous disadvantages of each of these methods due to complexity of sample 

preparation and image acquisition as well as lower resolution. For example, ESEM 

cannot provide good enough resolution below 100 nm and sample preparation is 

complex. In addition, both TEM and SEM are only able to measure the desiccated size of 

particles when they dry on the surface which leads to nonuniform desiccation (Figure 

6.8D) as well as difficulty in identifying the particles due to other debris. Finally, the 

provided methods are time consuming and expensive. 

 AFM is an alternative method having high potential for exosome characterization. 

Although several authors reported AFM application for exosome characterization,48,66,67 

no reliable protocol was found for sample preparation and imaging, especially for 

exosomes in the liquid. This motivated us to develop a simple yet reliable protocol for 

exosome imaging. 

 Exosomes were previously shown to have a negative zeta potential which allows 

us to conclude that the surface is negatively charged and is most likely due to the 

phospholipid membrane.55 To confirm this, a zeta potential was measured by us using 

Malvern Zetasizer Nano ZS (Worcestershire, UK) in 1x PBS and an average of -20mV 

was obtained for samples used in this study. Presence of this charge can allow fixation of 

exosomes on a given surface which is mandatory for AFM imaging. To take advantage of 

this feature the surface should be positively charged and have insignificant roughness for 

high resolution imaging. Freshly cleaved mica naturally provides a smooth (<0.3 nm 

roughness) negatively charged surface.68,69 To modify the surface charge, 100μL of 

10mM NiCl2 (Sigma-Aldrich, St. Louis, MO) prepared in DI water was pipetted on the 
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freshly cleaved 10mm diameter mica (Ted Pella Inc, Redding, CA) surface and allowed 

to stay at room temperature for 10 seconds (Figure 6.13). A 10mM NiCl2 solution was 

then pipetted from mica, the surface cleaned with DI water 3 times and then gently dried 

with nitrogen gas. Exosomes analyzed were extracted from an MCF7 cell line by using 

ExoQuick-TC and serum from a 47-year-old healthy female patient who was following 

up for routine cholesterol testing by using ExoQuick. Exosomes were resuspended in 

100μL of 1x PBS, diluted 1:25 in DI water and 100μL of the diluted sample pipetted on 

the freshly prepared mica. The samples were then placed in a petri dish which was then 

sealed and stored at 4°C for 18 hours to allow exosomes to adsorb to the modified mica 

surface. The unadsorbed exosomes were then removed by a pipette and mica cleaned 

with DI water 3 times while keeping the surface hydrated. To image in liquid 40μL of 1x 

PBS was then pipetted on mica or gently dried with nitrogen gas to image in air. AFM of 

was done using Nanoscope V controller. Imaging exosomes in the liquid was done using 

a triangular cantilever with 175 μm length, 22 μm width, 0.07 N/m spring constant and 20 

nm tip radius while imaging in air was done using a rectangular cantilever with 125 μm 

length, 40 μm width, 42 N/m spring constant and 8 nm tip radius (Bruker, Billerica, MA). 

The mica surface with 5x5 μm area was then imaged with scan rate set to 0.8 Hz for both 

liquid and air samples. Acquired images were then analyzed by using NanoScope 

Analysis 1.4 software (Bruker, Billerica, MA).  

 Figure 6.14 shows an example of data acquired by using AFM. Images containing 

a total of 1097 and 602 MCF7 exosomes were obtained and analyzed in 1x PBS and air 

respectively and compared to 205 (in 1x PBS) and 501 (in air) serum exosomes. Table 

6.5 shows the average diameter and height for each sample type and it can be seen that 
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these values agree with sizes previously obtained by others (Figure 6.1).49,70 Exosomes 

which are elastic most likely deviate from a spherical shape (discussed in Section 6.5.2) 

primarily due to strong electrostatic forces they experience from the interaction of their 

negative surface charge with the positive charge of the modified mica surface. Estimating 

the geometry of exosomes to be half of an ellipsoid allows determining the diameter of a 

sphere occupying the same volume. Table 6.5 shows that the average spherical exosome 

diameter is close to the geometric size reported by others (Table 6.1) and earlier reported 

by us in this study and substantially smaller than the hydrodynamic size determined by 

using NTA method for exosomes coming from the MCF7 cell line which also supports 

the results discussed previously for the serum samples. To support this trend, TEM and 

TRPS were done for this cell line. Figure 6.15 shows an example of a TEM image of 

MCF7 cell line exosomes after negative staining. Exosomes can be identified by circular 

shaped particles seen in the image. After manual analysis of TEM images using ImageJ 

software provided by National Institute of Health (NIH), 132 exosomes were sized and 

the average diameter determined to be 34 nm with 7 nm standard deviation. These values 

appear to be close to spherical size estimated when using AFM data (Table 6.5). Tunable 

resistive pulse sensing was done on the MCF7 sample diluted 1:50 in 1x PBS by using 

qNano instrument with NP150 pore (Izon Science Ltd, Oxford, United Kingdom). The 

pore was stretched to the 48mm mark and applied voltage was set to 0.24 V which 

produced an average current of 110 nA. The mean size was determined to be 140 nm 

with SD = 33.5 and mode of 115 ± 4.3 nm (Figure 6.16) after analysis of 506 particles 

which is close to NTA results for this cell line shown in Table 6.4 although it was noted 

that TRPS was unable to count particles below ~70 nm so the result was inconclusive. 
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According to AFM results, the average size of desiccated exosomes is smaller 

than the average size of hydrated exosomes obtained from serum of a healthy female, 

while nearly no change in size is seen for the MCF7 cell line exosomes. These results 

may be due to the difference in membrane composition and fluidity when comparing 

exosomes obtained from the MCF7 cell line and serum. This may also be caused by a 

larger amount of cargo (e.g., miRNA and DNA) the MCF7 exosomes may contain when 

compared to the exosomes obtained from a healthy female, which are capable of 

undergoing a significant “shrinkage” when dried. This hypothesis will be studied in the 

future on a larger scale to obtain reliable statistics. 

 
6.6 Conclusions 

 
We examined the shape and size of sera exosomes in their hydrated state and after 

desiccation. We found that sizing results for the same sample change significantly when 

different analytical techniques are used to size the exosomes. The size variability between 

different methods is significant and consistent with the variability in sizes reported in 

literature for the cases when the types of cells that secreted the exosomes, the body fluids 

from which they were isolated, and exosome isolation methods were also the contributing 

factors. This conclusion places further emphasis on the need to standardize the size 

quantification techniques and improve our understanding of biophysical properties of 

exosomes responsible for the difference in sizing results obtained with different methods.  

Our results indicate that the innate shape of hydrated exosomes is spherical, 

which implies that the commonly reported “cup shape” of exosomes is an artifact of the 

sample preparation steps, such as desiccation and surface fixation. Though there is a 

broad agreement that sample preparation and fixation steps may be responsible for 
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commonly observed “cup-shaped” morphology, this paper appears to be the first report 

that provides a mechanistic explanation of this artifact, and quantifies its influence on the 

reported exosomes sizes. 

We report a large difference in hydrodynamic and geometric sizes of exosomes 

and attribute it to the presence of membrane-conjugated macromolecules that impede 

their hydrodynamic mobility. The difference between geometric and hydrodynamic sizes 

may therefore be useful in analyzing the conjugation of macromolecules to the surface of 

exosomes.  

The method-dependence of exosome sizing extends beyond the differences in 

hydrodynamic and hydrated geometric sizes. For desiccated samples, we found that 

exosome sizing is influenced by the manner in which the drying occurs. We also found 

that isotropic drying during aerosol desiccation preserves the near spherical shape of the 

exosomes, while drying on a surface likely distorts their shapes and influences sizing 

results by electron microscopy, atomic force microscopy, and other techniques that 

require fixation on the surface for analysis. In addition, we have shown that osmolarity 

difference between the extracellular space and internal fluid of exosomes has no 

significant effect on their size and concentration, showing their stability under such 

conditions.  
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Table 6.1: Variability of exosome diameters by sizes measured and the source of 
exosomes. 
 

Size measured Method Exosome source Reported size (nm) 

Geometric 

Hydrated 

Cryo-TEM 

Biofluid/ 
Cell type 

Plasma10 Range: 40-200 
Rat hepatocytes50 Mean=57 std=23 

Cell culture 
MLP-2950 Mean=40.9 std=11.2 
THP-110 Range: 30-60 
Dictyostelium71 Range: 50-150 

FF-TEM Biofluid/ 
Cell type Erythrocytes72 Range: 50-300 

Liquid cell 
AFM 

Biofluid/ 
Cell type 

Saliva48 Control Mean=67.4 std=2.9 
Oral cancer Mean=98.3 std=4.6 

Malaria infected red blood 
cells11 

Mean=70.6 std=3.92 

MDA-MB-231 cells70 Range: 110-561 
Saliva47 Lateral: 120 Height: 4 

Desiccated 

SEM Cell Culture HEK-293T, ECFC, MSC55 Range: 30-50 

TEM 

Biofluid/ 
Cell type 

Urine22 Mode=45 Range:20-440 
Placental vesicles73 Range: 20-60 
Serum74 Range: 30-100 

Cell culture B16-F1075 Range: 50-100 
Swan-7176 Range: 95-118 

AFM Cell culture 

P1277 Images with no size 
quantification 

MDA-MB-231 cells70 Mean = 38 std = 9 
U8749 Lateral=89 Height = 4 
U25149 Lateral=81 Height = 4 
SKMEL49 Lateral=79 Height = 4 
NHA49 Lateral=71 Height = 4 

 Mean Mode std 

Hydrodynamic 

NTA 

Biofluid/ 
Cell type 

Serum17 126 111 46 
Serum54 - 131.3 - 
Plasma54 - 134.3 - 
Placental vesicles73 250 Range: 40-600 
Erythrocytes72 - 135 - 

Urine78 

Female - 134 54 
Female - 131 51 
Male - 172 72 
Male - 144 54 

Cell culture 

HEK-293T55 116 - 27 
HEK-293T54 - 118 - 
ECFC55 113 - 15 
MSC55 107 - 19 

DLS 

Biofluid/ 
Cell type 

Buffy coat79 - 54 - 

Erythrocytes72 Mode: 123 on-line SEC 
Mode: 141 off-line 

Cell culture 

HEK-293T55 - 212 168 
ECFC55 - 226 157 
MSC55 - 208 162 
B16-F1075 - 74 - 
Swan7176 - 165 - 

 Mean Mode std 

Volumetric Coulter Biofluid/ 
Cell type 

Serum74 120 - - 
Uterine fluid and dissociated 
mucus80 100 - - 

Erythrocytes72 135 - - 
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Figure 6.1: Distribution of hydrodynamic sizes (control and patient) measured by 
nanoparticle tracking (a,b) and dynamic light scattering (c,d). 
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Figure 6.2: Vitrified exosomes in cryo-TEM images were isolated from the control (a) 
and pancreatic patient (b) samples. The web-like features in panels (a) and (b) are the 
carbon-support film. Note that exosomes are found on the carbon support or between 
supports (inside the "holes"). Two clustered groups of exosomes can be seen in the lower 
right quadrant of panel (b). The exosome size distribution in (c) is based on computer 
analysis of 106 control and 212 patient exosomes. Exosomes at the highest obtained 
resolution are shown in (d). Arrows show faint, extra density surrounding some particles, 
which suggests the presence of macromolecules conjugated to their surface. 
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Figure 6.3: Manual sizing of exosomes observed in cryo-TEM images was carried out to 
validate algorithmic sizing. Exosomes in panel (a) were isolated from the patient sample.  
White arrows indicate particles counted manually but ignored by computer image 
analysis because of clustering or location on the carbon support film. Panel (b) illustrates 
the process used to size exosomes manually. The exosome size distributions in (c) 
compare the results of manual and algorithmic sizing of exosomes for control and patient 
samples. Panel (d) shows three ellipses fitted by the computer sizing algorithm to 
exosomes seen in (b). The diameters determined by the sizing algorithm are equal to the 
geometric mean of major and minor lengths of the fitted ellipses. These two lengths are 
shown in (e) for the largest exosome in panel (d). The second number inside exosomes in 
panels (d) and (e) is the eccentricity of each ellipse calculated by the sizing algorithm.  
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Figure 6.4: SEM results of exosome samples (a) Typical SEM image of desiccated 
exosomes. (b) The exosome size distribution is based on image analysis of 24,024 and 
12,298 exosomes derived from control and patient samples, respectively. Panel (c) shows 
that the concentration with which the exosomes are deposited on the surface is 
nonuniform and resembles the coffee ring. We also observe that during the desiccation of 
the sample, the average size of deposited exosomes may change with spatial position. 
With reference to four areas in panel (c) delineated by diagonal lines, we see that the 
largest size is observed in the top left corner of the image and decreases towards its 
bottom right corner. This size segregation is quantified in panel (d).  
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Table 6.2: Manual and computer sizing of exosomes imaged by cryo-TEM (in nm).  
 

 
Control  Patient 

Manual Computer Manual Computer 

Mean ± standard deviation 58.0±29.2 70.6±23.5 44.5±16.8 54.9±13.5 

Median 54.6 68.4 44.7 54.9 
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Figure 6.5: Results of the DMA sizing. Diameter less than 20 nm is excluded. 
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Figure 6.6: TEM images of exosomes desiccated in the aerosol and deposited from the 
gas phase on the TEM grid.  In total, 194 exosomes were imaged. A bimodal particle size 
distribution (not shown) has peaks at ~30.0 nm and 42.4 nm corresponding to the +1 and 
+2 charge states, which have equal gas-phase electrical mobility within the DMA.  
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Figure 6.7: Size and eccentricity of DMA-deposited exosomes determined by computer 
analysis of TEM images.  
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Figure 6.8: Size and shape of hydrated and desiccated exosomes and comparison of 
methods we used to characterize them. (A) Cryo-TEM images give two-dimensional 
projections of exosomes’ geometry in their hydrated state. Close to circular projections 
indicate that exosomes are spherical particles. The diameter of the projections 
characterizes their size in hydrated spherical state. (B) NTA and DLS characterize the 
mobility of exosomes in the solution and estimate their hydrodynamic sizes, which were 
found to be substantially larger than their geometric sizes. (C) Electrospray with charge 
reduction generates desiccated nanoparticles primarily charged to ±1 or 0. A uniform 
drying front during aerosol desiccation preserves an approximately spherical shape of the 
exosomes. DMA separates particles based on their charge-to-size ratio. With 
predominantly identical +1 change of attracted particles, the separation is based on 
particles sizes. CPC counts particles one-by-one. Instead of directing particles for 
counting, particles of a selected size can be deposited on a substrate. (D) SEM is used to 
image exosomes desiccated on a surface. Surface desiccation proceeds with non-uniform 
drying front, which likely leads to a shape distortion and the formation of previously 
observed cup-shaped particles.  
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Figure 6.9: Summary of sizing result for control and patient samples by different 
methods. The box contains data between first (𝑞1) and third (𝑞3) quantiles; red line 
inside the box marks second quantile (median). The notch on the box is used to establish 
if size medians are significantly different. Assuming normal distribution, non-
overlapping notches imply that true medians are different with 95% confidence. 
Comparison of medians is reasonably robust for other distributions and was tested to 
produce the same statistical conclusion under the assumption of log-normally distributed 
measurements of exosome sizes. Whiskers encompass data points larger than (2.5𝑞3 −
1.5𝑞1) and smaller than (2.5𝑞1 − 1.5𝑞3); all data points outside this range are marked 
with +.  
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Table 6.3: Size characterization of patient and control exosomes. 
 

Size Measured Method Source Size, nm Eccentricity 
Mean±Std Mean±Std Median 25%–75% 

G
eo

m
et

ri
c 

Hydrated Cryo-TEM 
Control 71±24 68 51–87 0.334±0.084 

Patient 55±14 55 44–65 0.290±0.085 

Surface desiccated SEM 
Control 52±21 46 36–64 0.493±0.313 

Patient 50±18 48 36–61 0.540±0.260 

Desiccated in aerosol DMA 
Control 37±12 35 27–44 – 

Patient 40±12 38 30–47 – 

Hydrodynamic 

NTA 
Control 182±79 158 126–227 – 

Patient 157±72 140 104–193 – 

DLS 
Control 119±47 112 83–148 – 

Patient 130±55 121 88–163 – 
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Figure 6.10: Size comparison of exosomes desiccated in aerosol and on the surface. 
Smaller DMA sizes reflect near spherical shape of exosomes uniformly desiccated in the 
gas phase. Surface drying prior to SEM imaging creates non-uniform drying front, which 
causes shape distortion (Figure 8D), and a larger diameter of the area occupied by surface 
desiccated exosomes.   
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Figure 6.11: Size distribution comparison of exosomes extracted from MCF7 cell line in 
their original state and after exposed to proteinase K.  
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Figure 6.12: Comparison of NTA size results of exosomes diluted in PBS or DI water (a) 
NTA sizing of serum exosomes suspended in DI water and PBS. (b) NTA sizing of 
MCF7 cell line in DI water and PBS. The results are shown after equal dilution in the 
indicated liquid.  
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Table 6.4: NTA sizing of MCF7 exosomes in the solutions of low and physiological 
osmolarity. All size measurements give exosome diameter in nm, ± standard error.  
 

 

Serum exosomes MCF7 exosomes 

In DI water  In PBS In DI water  In PBS 

Concentration (#/mL1012 ± standard error) 4.27±0.14 3.97±0.15 3.32±0.35 3.05±0.18 

Mean 179.9±1.7 157.8±1.3 177.3±11.2 151.3±1.9 

Mode 137.1±7.1 127.5±4.7 127.4±7.7 117.5±3.6 

Standard deviation of size distribution (relative to mean) 72.3±1.0 63±1.4 81.7±2.9 63.7±2.5 

10th percentile 106.3±0.7 94.3±1.0 98.8±7 86±0.1 

50th percentile 152.8±2.2 135.5±1.0 147±11.3 129.0±2.0 

90th percentile 276.7±5.9 225.9±3.5 286.5±16.2 230.1±5.9 
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Figure 6.13: Schematic of the method used for AFM imaging. (a) Steps needed for 
imaging an exosome sample in air. (b) Steps needed for imaging an exosome sample in 
liquid.  
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Figure 6.14: Morphology of exosomes in 1x PBS adsorbed to modified mica surface. (a) 
size (5x5 µm scan) (b) phase (5x5 µm scan) (c) 3 dimensional shape (d) section of an 
acquired image.
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Table 6.5: AFM results presented in terms of exosome diameter, height and diameter of 
the approximating spherical shape. All measurements give size in nm ± standard error.  
 

 Exosome sample source 
 Serum (1x PBS) Serum (air) MCF7 (1x PBS) MCF7 (air) 
Diameter 99±41 78±26 80±24 89±38 
Height  3±1 2±1 6±3 5±1 
Estimated sphere diameter 31 24 34 34 
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Figure 6.15: TEM image of a negatively stained MCF7 sample.  
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Figure 6.16: Size of exosome determined using tunable resistive pulse sensing (TRPS). 
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CHAPTER 7 
 
 

DETERMINATION OF EXOSOME CONCENTRATION AND  
 

MASS BASED ON QUARTZ CRYSTAL MICROBALANCE 
 
 

7.1 Abstract 
 

Exosomes are endogenous nanoparticles secreted by cells into blood circulation.  

Characterizing their properties, especially concentration and mass, is difficult and limited 

only to a few methods. Here we introduce a new method taking advantage of quartz 

crystal microbalance (QCM) that can be used for quantifying exosomes and provide 

measure of exosome mass. The method presented is simple and inexpensive, using a 

QCM instrument and software for data analysis. We apply this method for exosomes 

secreted by cell lines modeling breast and prostate cancer. Limitations of this method will 

also be presented. 

 
7.2 Introduction 

 
 Exosomes are stable membrane-bound nanoparticles (20-120nm) that are released 

into the circulation by many cell types, including cancer cells.1,2 These small vesicles are 

produced by inward budding of the late endosomal membrane of the multivesicular 

bodies (MVBs)3, and contain membrane and cargo (nucleic acids and proteins) derived 

from the cell of origin.4,5 Although the physiological function(s) of exosomes are not well 
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understood, they have been shown to be important in immune response and may play a 

role in short and long-range intercellular signaling.6,7 A potential mechanism for this cell 

communication is through exosomes fusing with target cells and releasing their contents. 

It is known that exosomes carry small noncoding RNAs, including microRNAs 

(miRNAs) that vary in abundance in the blood between normal individuals and those 

with cancer.8–10 Also, it has been shown that relevant cancer miRNAs are enriched in the 

serum exosome pellet.11 Furthermore, breast cancer cells in vitro increase their release of 

exosomes and contain miRNAs specific to their environment (e.g., hypoxia).12 Taken 

together, we can make a reasonable assumption that different tumor subtypes (aggressive 

vs. indolent) will release exosomes with different biophysical properties and different 

amounts of small RNAs. Such difference in content may affect the mass of exosomes – 

knowledge of which will be useful for differentiating those secreted by cancerous cells 

from those secreted by normal cells. However, at this time there are only a few methods 

that can estimate concentration and density or mass of exosomes. The most common 

method for density measurement is a sucrose gradient, where exosomes are layered on 

top of a sucrose gradient with set density range and centrifuged for a period of time. 

Fractions are then collected and sucrose gradient is measured.13 Also, the only available 

methods for measuring concentration are the nanoparticle tracking analysis (NTA), 

ELISA and tunable resistive pulse sensing (TRPS) requiring expensive instrumentation or 

kits. 

 The QCM method started with a thorough investigation done by Jacques and 

Pierre Curie in 1880, and later quartz piezoelectricity pioneered by Raleigh in 1885.14–16 

QCM is made of a thin, perfectly cut quartz disk with electrodes plated on it. Applying 
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external electrical potential to the piezoelectric material produces internal mechanical 

stress. A resonant oscillation is achieved by using a quartz crystal in the oscillation circuit 

where the electric and mechanical oscillations are near the fundamental frequency of the 

crystal.14 The change in the frequency was found to be directly proportional to the mass 

change on the crystal, described by the Sauerbrey equation that was developed by Günter 

Sauerbrey in 1959: 

∆𝑓 = −𝐶𝑓∆𝑚                                                             (1) 

where ∆𝑓 is change in frequency, ∆𝑚 is change in mass per unit area and 𝐶𝑓 is the 

sensitivity factor of the crystal.17 This method includes a broad range of applications such 

as gas phase detection,18 immunosensors,19 DNA biosensors20 and deposition.14,21 

However, to our knowledge, no one has applied QCM for measuring concentration and 

mass of exosomes as well as other extracellular vesicles (EV). This report will introduce 

the QCM for exosome sample analysis and application for exosomes isolated from 

specific cell lines. 

 
7.3 Proposed Method and Implementation 

 
The method for estimating concentration of exosomes and mass will consist of 

two main steps. First, the mass of a sample containing only 106 − 1010 exosomes will be 

measured using an instrument that will allow working with small sample volumes. The 

second step is determination, if unknown, of the number of exosomes and size in the 

sample. Combining information about concentration and mass change will allow 

estimating the exosome concentration and average exosome mass. 

QCM will be used for the first step of the method due to its high sensitivity to 

mass change. A small volume (5μL) of the sample will be pipetted to the center of the 
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quartz crystal and the frequency of oscillation will be recorded including the time before 

the sample is introduced and the time after the solvent (e.g., water) evaporates 

completely, leaving only the particles on the quartz crystal surface. To determine 

exosome concentration and size in a sample, nanoparticle tracking analysis (NTA) 

method will be used although other methods such as surface tensiometry presented in 

Chapter 5 may also be applied. 

 
7.4 Materials and Instrumentation 

 
7.4.1 Cell Line Preparation and Exosome Extraction 

MDA-MB-231, MCF7 and MCF10a breast cancer cell lines, PC3, PCS, LNCap 

and 22Rv1 human prostate cancer cell lines prior to cell culture were stored in liquid 

nitrogen. For cell culture the cell line was thawed and plated on 150 mm plates. Table 7.1 

provides the growth media used for each cell line. Once the cells settled down, the media 

was changed (approximately 24 hours after plating). The plate was then split at 1:10 ratio 

and 10 plates were cultured. Each plate contained 20 mL of media. Media from 9 of these 

plates (180mL) was harvested and pooled. Media was then split into 30 ml/tube and 

centrifuged at 3000g for 15 minutes. Each supernatant was then transferred to a new 

sterile 50 mL tube. Exosomes were isolated by using the ExoQuick TC technique 

(System Bioschiences, Mountain View, CA, USA). In short, 6mL of ExoQuick TC 

reagent was added to each 30 mL supernatant and left for overnight incubation at 4°C. On 

the next day, the mixture was centrifuged at 1500g for 30 minutes at room temperature. 

After centrifugation, the exosomes would appear as a beige pellet. The obtained pellet 

was resuspended in 2mM ammonium acetate (AA). The resuspended exosomes were then 

separated into 100 µL aliquots and stored in 1 mL tubes at -80°C until use. 
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7.4.2 Scanning Electron Microscopy (SEM) 

Prior to SEM imaging, the PC3 exosomes sample was diluted 1:10 in 2mM AA. 

A glass slide was gently cleaned with nitrogen gas and placed on the specimen stage of 

the SEM (FEI NanoNova 630 High Resolution SEM). Five microliters of the sample was 

then placed on the glass slide and allowed to dry at room temperature and pressure. The 

sample was then imaged at 0.98 Torr using a low vacuum secondary electron detector at 

magnifications in the 15,000-55,000 range. The acquired 1024943 pixel images were 

then observed using MATLAB software (MathWorks, Natick, MA).  

 
7.4.3 Concentration and Size Measurement 
 

Concentration was determined using the Nanosight instrument (model LM10; 

Salisbury, United Kingdom) by illuminating the sample with a 40 mW violet laser (405 

nm wavelength), capturing the light scatted by exosomes with a high-sensitivity sCMOS 

camera (OrcaFlash2.8, Hamamatsu C11440), and analyzing the results using the software 

provided by the manufacturer (Nanosight Version 2.3). The minimal track length was set 

to auto, and blur size was set to 1 pass, gain set to 1, brightness to 12, and detection 

threshold set to 5. The viscosity of 2mM AA was assumed to be equal to viscosity of 

water which depends on temperature and was adjusted automatically based on the 

temperature measurements. Temperature of the cell was measured manually and 

remained at 20°C with a maximum of 0.1 degree fluctuation throughout the nanoparticle 

tracking. Viscosity of water at these temperatures is nearly constant and equal to 1cP. 

Prior to analysis, the exosome samples were diluted to appropriate concentration (e.g., 

1:100 and 1:1,000) in 2mM AA and allowed to equilibrate to room temperature (20°C). 

Samples were analyzed within 5 minutes of the initial dilution. Using a 1mL sterile 
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syringe, each sample was injected into the test cell. Approximately 30-100 particles were 

observed in the field of view and the typical concentration was approximately 1 − 10 ×

108 particles/mL for each measurement. Five 60-second videos were recorded for each 

sample at 24.99 frames per second with 11.25 millisecond shutter speed and analyzed 

using NTA software with the described settings. Each video consisted of more than 1400 

frames and the total of completed particle tracks for each 60-second video was more than 

20,000. The video data characterizing hydrodynamic mobility of particles in the field of 

view were analyzed with the NTA software which reported the exosome concentration, 

size distribution, its mode, mean and the standard deviation. Each sample was measured 

once using five videos with updated sample volume in the NTA cell. 

 
7.4.4 Centrifugal Field Flow Fractionation 
 

CF2000 (Postnova, Salt Lake City, UT) was used for fractionating the MCF7 

sample. A solution consisting of 2mM ammonium acetate with 0.0025% w/v Tween 20 

was used as the channel fluid. The flow rate was set to 1 ml/min and rotation speed to 

4900rpm. The relaxation time was set to 7 minutes and detection set to record at 219nm 

wavelength. Injection of 10uL of the original MCF7 sample with no dilution into CF2000 

injection port was then done. The first fraction of MCF7 was collected at 1.5 minutes 

after relaxation and collection finished at 4 minutes. All other fractions were collected 

approximately every minute leading to a total of 9 fractions. 

 
7.4.5 Quartz Crystal Microbalance 
 
 A 5 MHz QCM200 (Stanford Research Systems, Inc, Sunnyvale, CA) instrument 

was used for mass measurements. Specific for 5 MHz frequency, polished quartz crystals 
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with 1 inch diameter and titanium/gold electrodes were used for the QCM instrument. 

The RS-232 port was connected to a desktop computer (HP Z400 Work-station) and 

LabVIEW stand-alone application was used for data acquisition. The compensation 

switch of QCM200 was set to hold and ten-turn dial to 8.0 (dry operation setting). Prior 

to an experiment the frequency of oscillation was given 15 minutes to equilibrate.  

 
7.5 Results 

 
 The concentration and hydrodynamic size distribution of exosomes in solution 

were analyzed by nanoparticle tracking analysis. Figure 7.1 and Table 7.1 show the size 

distribution and concentration of exosomes from each cell line as well as mode and mean 

with standard deviation. Figure 7.2a shows an example frequency change due to 

introduction of a 5μL sessile drop containing exosomes. During the initial evaporation of 

the sessile drop, no significant change in frequency was observed. However, after a 

longer time (~1,500 seconds) there was a distinct drop in frequency. This is due to the 

negative correlation between mass per unit area and decreasing surface area of the drop 

over time. After complete evaporation of the solvent, the frequency would clearly reach a 

steady state. The steady state values appeared consistent from run to run with a maximum 

of 5% error. 

Figure 7.2b shows an image of a dry sample obtained using an optical 

microscope. This image was processed using a custom MATLAB code to find the initial 

boundary of the sessile drop. To determine the location of exosomes and how they were 

distributed after complete evaporation of the solvent, the procedure was repeated using a 

glass slide on which the sessile drop was placed and allowed to dry. SEM images were 

then obtained from the bottom to the top edge of the dry sample. It was observed that 
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exosomes are present at the edge of the sample (Figure 7.2c). Aggregated particles or 

ammonium acetate crystals were also observed (Figure 7.2c and d) but they were not 

present in all locations. Nonuniform particle concentration in multiple locations was 

noticed (Figure 7.2d, e and f), as well as some locations where no particles were present. 

This asymmetry can be due to the roughness of the glass slide as well as size difference 

of the particles, leading to the coffee ring effect.22 Overall the exosomes appeared to be 

distributed throughout the entire area initially occupied by the sessile drop which was 

concluded based on observing all SEM images obtained from the bottom edge to the top 

edge of the dry sample. This observation allowed us to assume an even exosome 

distribution in the area initially occupied by the solvent. Therefore, by converting the 

frequency given by the QCM to mass per unit area (using the Sauerbrey equation), one 

can calculate the mass of the sample because the area is known. This assumption 

appeared to be relevant and Sauerbrey equation applicable, since the effect of dry sample 

relative to the dry quartz surface is analyzed. Figure 7.3 shows a linear correlation 

between frequency change and exosome number present in the volume used. The (0,0) 

intercept was expected when no background particles or contaminants were present, but 

in this case it is not observed due to the presence of residue that was independently 

measured to contribute ~15-20 Hz decrease in frequency. This linear relation now allows 

one to measure exosome concentration in a sample. 

Exosomes in this study are considered to be spherical, which is a good assumption 

as it was previously shown by us (Chapter 6) and others.23–25 The average volume 

occupied by each exosome was estimated by using mode size data obtained by NTA and 

determined to be 8.39 ± 2.3 x 10−22 m3. Combining mass data obtained from QCM with 
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exosome number obtained from NTA, the average mass for each particle in all cell lines 

was determined to be 3.24 femtograms (fg) with 0.37 fg standard deviation (Table 7.3). 

The QCM and NTA result leads to an unrealistic density estimate of exosomes, 

3.43 g mL⁄ , if mode size from each cell line is applied while the average density is 

expected to be ~1.25 g/mL as reported by others.13,26–28 On the other hand, the use of 

mean size of exosomes from all cell lines (183 nm) instead of mode size leads to volume 

of 3.72 ± 2.5 x 10−21 m3 and gives a density estimation closer to the one expected, 1.30 

g/mL. Third-order sensitivity of exosome volume estimation to exosome diameter has a 

substantial impact on the density result. Density estimation method by applying the 

complete size distribution data along with mass obtained using QCM will be further 

investigated in the future. 

This technique was also tested by conducting cFFF on 10 μL of undiluted MCF7 

sample. Fractions were collected and analyzed using NTA (Figure 7.4). Out of them, 6 

fractions were chosen for QCM analysis. The presence of Tween 20 contributed 

significantly to the frequency change by a constant value of ~285 Hz; data was adjusted 

accordingly. Figure 7.5 shows the results obtained from QCM and it can be clearly seen 

that mass increases with elution time as expected with cFFF. The average mass of 

exosomes in fractions determined by QCM was calculated to be 1.95±0.59 fg. 

 
7.6 Discussion 

 
Determination of exosome concentration and mass by using the QCM method 

was studied and presented in this work due to the limited number of methods available 

today. The method takes advantage of the high QCM sensitivity to mass change, and the 

correlation of the frequency change to the change in mass per area. Exosome 
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concentration was shown to be easily estimated by the presented correlation. The average 

mass of exosomes in a sample was also determined by applying area that is occupied by 

the sample on the quartz crystal. Although the average mass results for each cell line 

appeared close, there was still some variability. It was shown that exosomes were 

distributed throughout the area occupied by the introduced sessile drop including its 

boundary. However, nonuniformity of the number of exosomes per unit area was clearly 

observed (Figure 7.2d, e and f) on the microscale, which could contribute to error of the 

average mass estimation. 

The standard deviation that was observed for concentration and mass estimation 

can also be due to the error of the 10 μL pipette that was used to manually place the 

sample volume on the quartz crystal. Since this variation in volume will introduce a 

different number of particles for each measurement, the reported mass determined by the 

QCM will vary in proportion to the change in volume. This can be avoided by automating 

introduction of the sample with high precision. The error could also be contributed by the 

area estimation due to the difficulty of accurately defining the boundary of the dry drop. 

A factor that could also contribute to the error of estimation is the presence of 

background particles – surfactants or salts as shown in Figure 7.7. The nonuniformity of 

their distribution and difficulty in reproducing such nonuniformity from run to run will 

make their contribution to frequency change difficult to include in the calculation of mass 

that was of interest. An adjustment had to be made when working with ammonium 

acetate and Tween 20, but because their contribution to frequency change was consistent 

it was more easily accounted for. Like most methods, the presented method has a limit of 



192 
 

detection (LOD). The minimum number of exosomes that QCM200 can measure was 

estimated to be 1.5 x 106 exosomes, when they occupy 7 − 8 mm2 area. 

Shape of exosomes is more complex than standard polystyrene beads or gold 

nanoparticles. It is has been shown that the structure of exosomes is in the form of 

nanovesicles, enclosed by a double membrane having surface decorations with various 

cargo molecules present inside. For instance, it was determined by us (see Chapter 6) that 

the hydrodynamic size of exosomes is substantially larger than geometric size due to 

surface decorations. Such differences bring more complexity for exosome density 

estimation. 

 
7.7 Conclusion 

 
 A novel method for determining concentration and average exosome mass of 

exosomes in a sample was presented. The technique takes advantage of high sensitivity to 

a mass change by QCM. The procedure is simple and involves an exosome sample 

introduced to the surface of the quartz crystal, followed by determination of the 

difference in its frequency before introduction of the sample and after the solvent present 

in the sample evaporates, leaving only exosomes on the surface of the crystal. The QCM 

results were then coupled with concentration of exosomes in the sample which allowed 

determination of their mass. Future work will be focused on introducing an algorithm of 

determining exosome density by using their mass and size.  
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Table 7.1: Medium used for each cell line. 
 

Cell line LNCap 22Rv1 PC3 PCS MCF7 MCF10a MDA-MB-
231 

Medium RPMI-1650 
Medium 

RPMI-1650 
Medium 

F-12K 
Medium 

SteCM 
Medium 

Eagle’s 
Minimum 
Essential 
Medium 

Mammary 
Epithelial Cell 

Growth 
(MEGM) 

Leibovitz’s 
L15 Medium 

(grown 
without CO2) 
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Figure 7.1: Concentration and size distribution obtained using NTA.
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Table 7.2: Size data and original concentration obtained using NTA. 
 

Sample MCF10a MCF7 MDA-MB 
231 LNCap 22Rv1 PC3 PCS 

Mode (nm) 115 117 123 135 106 115 102 

Mean (nm) 205 183 147 251 131 220 146 
SD (nm) 117 84 74 141 63 119 77 

NTA Original 
Conc (#/mL) 

1.81E11 
±1.06E10 

4.01E11 
±7.79E9 

6.31E9 
±3.47E9 

4.99E11 
±4.81E10 

5.72E11 
±3.55E10 

3.66E11 
±1.46E10 

2.23E12 
±1.19E11 
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Figure 7.2: Example of QCM results and images of the analyzed sample (a) QCM data 
for one of the cell line samples repeated after 3 repetitions; (b) an evaporated sessile drop 
with a clearly defined boundary (c) SEM image showing the edge of the dried drop and 
the presence of the PC3 exosomes (d, e and f) SEM images showing nonuniformity of 
PC3 exosomes and presence of aggregates.  
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Figure 7.3: Correlation of frequency change to the number of exosomes.  
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Table 7.3: Exosome mass estimated by QCM combined with NTA. 
 

Sample MCF10a MCF7 MDA-MB 
231 LNCap 22Rv1 PC3 PCS 

Average  
Mass (fg) 3.11 3.29 2.77 3.04 3.97 3.16 3.33 

STD (fg) 0.0895 0.228 0.463 0.174 0.113 0.0764 0.164 
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Figure 7.4: Mode diameter of each MCF7 fraction obtained using cFFF. A-F represent 
fractions used for QCM analysis.  
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Figure 7.5: Centrifugal Field-Flow Fractionation (cFFF) of the MCF7 sample with 
exosome mass estimated by the QCM method.  
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Figure 7.6: Limitations of QCM application for mass and density measurement. (a) 
Nonuniformity of a dry sample (b) Salt crystals after evaporation of the solvent. 
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CHAPTER 8 
 
 

CONCLUSIONS AND FUTURE DIRECTIONS 
 
 

8.1 Conclusions 
 

 The motivation behind this research was to explore existing methods and develop 

new methods to determine physical and chemical properties of analytes, more specifically 

short-chain molecules and biological nanoparticles. This is important since only a handful 

of methods are available to characterize analytes with a size range of only 0.1-100 nm. 

For example, determining the concentration of the biological nanoparticles called 

exosomes in a sample is already a difficult task, and only a few expensive commercial 

instruments are available for such analysis. Estimating the stability or half-life of 

nanobubbles that are used as contrast agents or vehicles for drug delivery in medicine is 

also limited by conventional methods which are time consuming and often inaccurate. 

Having new methods available to do such measurements will allow research in these 

areas to progress.  

To better understand behavior of nanobubbles in liquid (e.g., coalescence), a 

study was conducted by looking at surface tension dynamics when water is exposed to air 

with perfluorocarbon vapors, simulating interface of a single nanobubble and was 

presented in Chapter 2. We found a substantial decrease in surface tension of water when 

perfluoropentane and perfluorohexane vapors are present in air. A similar effect was seen 
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when methanol was used for the pendant drop. For the first time, linear correlations 

between surface tension of a fluid in which perfluorocarbons are immiscible (e.g., 

methanol) and concentration of perfluorocarbons in the gas phase were found. This 

technique can be used to estimate stability of microbubbles in liquid by monitoring 

surface tension and finding surfactants that can decrease surface tension by the requisite 

amount. 

The linear relation found in Chapter 2 was expanded and applied to solve a 

different problem presented in Chapter 3. Determining diffusion coefficients of vapors in 

air is a difficult task, having a limited amount of methods most of which are time 

consuming and expensive. Applying the linear relation between surface tension and 

concentration of the solute in the vapor, presented previously, allows determination of the 

diffusion coefficient of that solute by using the dynamic surface tension data. The 

pendant drop surface tension, which is affected by the change in solute concentration in 

the vapor phase at that location, is used as the complementary fluid (sensor). Although 

such linear relation should only be applied to nearly immiscible fluids, we were able to 

expand the presented method to compounds that are miscible in the complementary fluid 

by accounting for solute absorption. This method can be applied not only to solutes in the 

vapor phase but also in the liquid, such as short-chain molecules and nanoparticles. A 

further investigation of the effect of perfluorocarbon vapor on surface tension of water 

was conducted and the results presented in Chapter 4. Exposure of a pendant drop of 

water to perfluorocarbon vapor for long periods of time led to formation of a lens at the 

water drop apex. To understand this phenomenon further, a set of experiments were 

conducted. It was confirmed that solubility of perfluorocarbons in water is negligible as 
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no signal was observed when using Fourier transform infrared spectroscopy (FT-IR). An 

experiment was then conducted to model a thin layer of water exposed to 

perfluoropentane vapor. We were able to show that perfluoropentane does adsorb to the 

water surface by using a sensitive to mass change quartz crystal microbalance (QCM) 

method. This was not surprising as previous studies reported hydrocarbon adsorption to 

the water surface. Formation of the lens is most likely due to formation of multiple layers 

of perfluoropentane on the water surface which later accumulate at the apex simply due 

to gravity and weak molecular interactions. 

The second half of the dissertation started with a continuation of dynamic surface 

tension application but for biological nanoparticles and their surface activity was studied 

in Chapter 5. Surprisingly, exosomes were found to be surface active, showing a 

significant decrease in surface tension with time. Exosomes appeared to act as surfactants 

and a linear relation between the logarithm of exosome concentration and surface tension 

was found for a specific concentration range. This can be applied for easily measuring the 

concentration of exosomes in a given sample. In addition, it has potential to estimate the 

average size of the particles. Furthermore, we found that exosome adsorption to the 

interface is thermodynamically favored and is irreversible. This finding provides better 

understanding of how exosomes adsorb to a cell’s surface, fuse and release their content 

into the cytoplasm. Development of a microfluidic device that will miniaturize the 

presented method and quickly determine exosome concentration in a sample is 

foreseeable in the future.  

Size determination methods of extracellular vesicles (exosomes) were then 

explored in Chapter 6. Until now, no group has compared the advantages and 
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disadvantages of each existing method, as well as noticed useful information other than 

size that each method can provide. It was found that hydrodynamic size of exosomes is 

substantially larger than geometric size and is the main reason for variability in exosome 

sizes reported by others. Such difference is most likely due to exosome composition that 

includes various surface decorations such as proteins and glycolipids. We were able to 

show this by shaving surface proteins with proteinase K and conducting size 

measurements before and after. Since exosomes are elastic, imaging them dry or wet also 

makes a significant difference in the size distribution results. Even factors such as 

fixation or drying exosomes on a surface instead of analyzing them in the gas phase or 

frozen also impact size and shape results. Finally, it was clearly shown that the natural 

shape of exosomes is spherical and not cup shaped as reported by other authors 

previously. In addition to existing methods, a novel AFM method for imaging exosomes 

was developed and presented. Our results now provide a critical reference on what size 

determination method is the most appropriate for the given study.  

Finally, Chapter 7 was focused on the development of another method that can 

measure concentration and average mass of exosomes. The motivation for this project 

was the availability of only one reliable method, sucrose density gradient, that can 

estimate density of exosomes. Quartz crystal microbalance (QCM) coupled with 

nanoparticle tracking analysis (NTA) was implemented for such measurements. It was 

shown that exosome concentration can be easily determined by simply measuring the 

mass of the sample. The developed method was also applied to determine mass of 

exosome sample fractions obtained using centrifugal field-flow fractionation (cFFF). The 

correlation between mass and elution time was as expected. Such a method can not only 
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be used for exosomes but also to measure the concentration and mass of other types of 

nanoparticles (e.g., gold and polymers). 

 
8.2 Future Directions 

 
 Development of new methods to determine biophysical properties of 

nanoparticles is a difficult but important task in order for areas such as nanotechnology 

and medicine to move forward. Currently, there are only a few methods available to 

characterize molecules and nanosized particles, and each method has significant 

drawbacks. Careful analysis of available methods as well as development of new 

methods presented in Chapters 2-7 contribute to the progression of these fields. However, 

there are still many tasks that must be done in future research: 

1) Develop a method able to quickly and easily determine size and shape of 

exosomes in a liquid; 

2) Miniaturize the surface tension method for monitoring concentration of exosomes 

and determine average size; 

3) Make a more complete and accurate model of microbubbles by inclusion of 

surfactants and scaling down from mm to micro/nanometer scale; 

4) Apply the developed method for measuring diffusion coefficients of solutes in the 

gas phase to molecules and nanoparticles in the liquid phase. 

Accomplishing these tasks will take this from ideas to products. Such products 

(e.g., exosome sensors) will allow progression of other research areas as well as improve 

the fields of medicine and nanotechnology. 
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