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ABSTRACT 

Myasthenia Gravis (MG) is a neuromuscular autoimmune disease primarily 

associated with the presence of antibodies directed toward receptors embedded in the 

motor end-plate at the neuromuscular junction (NMJ). These antibodies cause blockage, 

dysfunction, and degradation of acetylcholine receptors (AChR) leading to muscle 

weakness and fatigability. Three main types of AChR antibodies have been identified and 

are referred to as binding, modulating, and blocking.  

Detection of acetylcholine receptor antibodies through the use of a radio-label has 

become standard procedure in most laboratories. Known drawbacks are associated with 

radioimmunoassay; cost of radioisotopes, hazards to laboratory professionals, and 

manufacture and disposal of radioactive materials have prompted investigation into 

replacement assays.  

In 2009, scientists described a method of detecting AChR modulating antibodies 

using flow cytometric techniques. They utilized fluorescently-labeled molecules to aid in 

the detection of modulated AChR and to confirm the presence of AChR modulating 

antibodies. We postulate that similar techniques could enable the conversion of the AChR 

blocking assay to flow cytometry as well.  

Described here is a high-throughput immunofluorescent flow cytometric assay 

designed for the detection of AChR blocking antibodies. Three-hundred-twenty-four 

sera were tested on both the AChR blocking radio-assay and the new immuno-



fluorescent flow cytometric assay. Analysis of the results revealed a 96.9% 

concordance between the two assay methodologies. Our results indicate that a new 

immunofluorescent flow cytometric AChR blocking antibody assay is not only 

feasible, but clinically comparable in both sensitivity (91%) and specificity (99%) 

when compared to radio-assay.              
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INTRODUCTION 

 Myasthenia Gravis (MG) is a neuromuscular, autoimmune disorder which leads to 

skeletal muscle weakness and fatigability. This muscle fatigability is a distinguishing 

symptom of MG as it is exacerbated after periods of activity and is reduced after periods 

of rest. Another hallmark of this disorder, as in contrast to other neuromuscular disorders 

(i.e., Congenital Myasthenic Syndrome, or Lambert-Eaton Syndrome), is the involvement 

of ocular muscles either during the initial onset of symptoms or sometime during the 

course of the disease (1, 2, 3). 

 Symptoms of MG may appear suddenly or present intermittently. Muscle 

weakness ranges from mild to severe, and the weakness can either be localized, 

particularly when the eye or facial muscles are involved, or generalized, thereby affecting 

many muscle groups. A particularly dangerous clinical presentation of MG involves 

weakness in the muscles responsible for the control of breathing.  

 A life-threatening complication of MG, called myasthenic crisis, is of particular 

concern for patients who already experience respiratory muscle weakness. Myasthenic 

crisis is a paralysis of the respiratory muscles, and patient survival requires that breathing 

be sustained by a mechanical ventilator. Crises may be triggered by emotional stress, 

infection, or even adverse reactions to medication (4). 

The thymus gland is found to be abnormal in roughly 75% of MG patients (5, 6). 

Abnormalities include thymic hypertrophy and thymoma, which is either a benign or 
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malignant tumor of the thymus. Benign tumors may become malignant, and malignant 

thymomas may spread to other tissues or can potentially cause other types of disease.   

This disease is considered rare with a prevalence estimated to be 64-90 cases per 

1,000,000 people. It exhibits bimodal onset peaks, with the peak onset being between the 

ages of 20-30 for women, and, for men, between the ages of 55-60. Aside from these 

peak populations, MG can affect people of all ages, ethnicities, and of either gender (7). 

Genetic predispositions, however, have been noted, and factors such as a personal or 

family history of other autoimmune disorders, or HLA type B8, DR1, and DR3, are 

thought to play a role in the likelihood that an individual may develop this disease (8).  

 Understanding MG and how it is diagnosed require knowledge of the immune 

system, dynamic interactions that occur in the neuromuscular junction, physiology of the 

acetylcholine receptor (AChR), effector mechanisms of MG AChR associated antibodies, 

and laboratory techniques used for antibody detection. 

Immune System Function

 The immune system is comprised of a set of biological structures and 

interdependent processes designed to protect the body against disease. Diverse functions 

of the immune system include pathogen detection, coordinated attack on invading agents 

ranging from viruses to parasites, and the ability to distinguish foreign invaders from the 

organism’s own healthy tissue. 

 The thymus gland is an important component of the immune system and is 

integral in the development of immunity in early life. In infants, a normal thymus gland is 

relatively large, and it continues to grow until puberty. After puberty, this gland begins to 
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atrophy and by adulthood is largely replaced by adipose tissue; nevertheless, effects of 

thymus function are retained through adulthood (9, 10). In MG patients, the thymus gland 

frequently remains large and abnormal (5, 6). 

 The thymus is a specialized gland responsible for the maturation of hematopoietic 

progenitor cells into T-lymphocytes. Commonly known as T-cells, T-lymphocytes are a 

type of white blood cell that is a fundamental component of the adaptive immune system. 

T-lymphocytes can be distinguished from other types of lymphocytes, namely B-cells and 

NK-cells, due to the presence of specialized receptors that are embedded in the T-cell 

membrane (11). 

 T-cell receptors (TCR) are highly diversified, and the large assortment of TCR 

translates into the ability of the immune system to identify and attack a vast array of 

targets. The random nature of gene-segment shuffling in TCR results in the creation of 

antibodies directed toward normal host molecules. In fact, one of the primary functions of 

the thymus is to recognize and inactivate T-cells which have formed to attack normal 

body proteins and healthy tissues. This recognition and elimination process is known as 

central tolerance and is intended to reduce autoimmunity (12). 

Autoimmune disorders are caused by a flaw or defect in this recognition process 

which creates an aberrant immune system. This faulty immune system produces a 

misguided immune response leading to the body’s inability to distinguish between 

foreign invaders and healthy body tissues and may result in an attack on otherwise 

normal proteins, cells, or organs.  

Inappropriate autoimmune responses cause a wide variety of diseases such as 

Systemic Lupus Erythematosus, Rheumatoid Arthritis, Addison’s disease, Celiac disease, 
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and MG. The symptoms of distinct autoimmune conditions are equally diverse and can 

affect any area of the body. MG patients often experience muscle weakness that can be 

attributed to auto-antibodies directed toward the AChR in muscle cells (1, 2, 3). 

Neuromuscular Junction

 The neuromuscular junction (NMJ) is the physiological structure where the 

neuron activates muscle contraction by transmission of excitatory signals (or action 

potentials) from the central nervous system via the neurotransmitter, acetylcholine. The 

two main functional units of the NMJ are the axon terminal of a motor neuron which is 

filled with vesicles containing acetylcholine, and the motor end-plate of the muscle cell 

which expresses AChR in the membrane. The axon terminal and the motor end-plate 

have individual plasma membranes which are separated by a 50 nm gap known as the 

synaptic cleft (13). 

The AChR are ligand-gated ion channels which open when acetylcholine crosses 

the synaptic cleft and binds to them. This binding leads to the production of an 

electrochemical gradient that produces a localized depolarization of the motor end-plate 

leading to muscle contraction.   

 Interference in the transmission of the signal across the synaptic cleft in the NMJ 

can result in a mild to complete loss of muscle function. A signal transmission can be 

blocked or decreased by chemicals found in medications, by toxins (such as α-

Bungarotoxin, a neurotoxin isolated from snake venom), or by the onset of disease states 

such as MG (14). 
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Acetylcholine Receptor

The AChR, an integral membrane protein found on the motor end-plate of muscle 

cells, is a pentameric ligand-gated ion channel. The five subunits are arranged to form a 

central pore which has the ability to open and close with a twisting motion to allow the 

flow of ions through the muscle cell membrane. The AChR can be expressed in an 

embryonic form, where the five subunits are composed of two units of α, and one β, δ, 

and γ subunit, or an adult form composed of two units of α, and one β, δ, and ε subunit 

(15).

 Each of the five subunits is constructed similarly of four distinct domains. Of 

particular interest is the N-termini domain which is located on the extracellular 

membrane surface. Acetylcholine, when present in the synaptic cleft, can bind to the N-

termini of each of the two subunits of α, which results in a conformational change 

causing the subunits to rotate and open the central pore (15). The open pore allows Na+ to 

enter the cell from the synaptic cleft causing depolarization and the generation of an end-

plate potential which signals the muscle to contract. 

 Other molecules, aside from acetylcholine, also have the ability to bind to AChR. 

These other molecules, for example, curare, hexamethonium, and α-Bungarotoxin, bind 

to the N-termini of the α subunit(s) but do not cause the same conformational change 

which opens the pore (13, 14). The binding of these interfering substances disrupts the 

normal action of acetylcholine and blocks the signal in the NMJ thereby obstructing the 

signals for muscle contraction. The muscle weakness, as experienced by MG patients, is 

frequently caused by the presence of autoimmune antibodies which act as interfering 

molecules and bind to the AChR, inhibiting the normal action of acetylcholine (16).
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Acetylcholine Receptor Antibodies

Auto-antibodies with affinity for AChR encompass the majority of MG associated 

antibodies. These antibodies cause blockage, dysfunction, and degradation of AChR 

leading to muscle weakness and fatigability. Three main types of AChR antibodies have 

been identified and are known as binding, modulating, and blocking.  

Each of these three antibodies has a different effector mechanism. The binding 

AChR antibody causes binding and activation of complement at the NMJ. When the 

binding antibody forms a complex with the AChR (antigen), the complex is recognized 

by the complement system which proceeds to attack the receptor and causes permanent 

destruction of AChR (17, 18, 19). 

Modulating AChR antibodies cause accelerated degradation of AChR molecules 

that have been cross-linked by the antibody. This is also referred to as antigenic 

modulation. Cross-linking renders the receptor useless, subsequently, the receptor is 

endocytosed and degraded. The presence of this specific antibody is indicative of a more 

severe form of the disease (19). 

The AChR blocking antibody causes a functional blockage and impairs 

acetylcholine signaling due to antibody binding at the normal ligand binding site on the α

subunit (20). This mechanism of AChR disruption is less common than binding and 

modulating of receptors; however, in rodent studies, the administration of blocking 

antibodies causes an acute and severe form of muscle weakness in the absence of either 

inflammation or necrosis of the NMJ (21). Studies have shown that a correlation exists 

between the level of blocking antibody detected in the patient serum and the severity of 

generalized muscle weakness experienced (18, 19). 
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Diagnosing Myasthenia Gravis

Diagnosing MG can be a difficult task, as the symptoms may be subtle and 

difficult to distinguish from those of other disorders. Clinicians have a variety of tests 

available to aid them in making a diagnosis. The two major categories of diagnostic tools 

available are nonserological type tests, and serological testing.  

Examples of nonserological tests include a thorough physical examination, 

muscle fatigue testing, ice tests, electrodiagnostics, imaging studies, pulmonary function 

evaluations, and administration of the edrophonium test.  

Serological tests to identify the presence of AChR antibodies associated with MG 

symptoms can be performed in the clinical laboratory and include radioimmunoassay 

(RIA) and flow cytometry (22, 23, 24). 

Radioimmunoassay

Most of the MG serological tests are conducted by RIA with the exception of the 

AChR modulating antibody which can also be tested for by flow cytometry at Associated 

Regional and University Pathologists Laboratories (ARUP) in Salt Lake City, UT. The 

general concept behind RIA in its use for detecting AChR antibodies is that the presence 

of an antibody in patient serum can be semiquantitatively detected by adding a known 

quantity of radioactively labeled molecules to AChR after exposing the AChR to patient 

serum (22, 23).  

The radiolabeled molecule and the AChR blocking antibody compete for binding 

sites on the AChR. The radiolabeled molecule can only bind to the receptor site when an 
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antibody, if it is present in the patient serum, has not already bound to it. Therefore, 

radioactivity can only be detected when the antibody is not present in the patient serum.  

 As a first step in performing this assay, human cells that express AChR are grown 

in the laboratory and harvested. The receptors embedded in these cells act as a substitute 

for the receptors found at the motor end-plate of the patient muscle cells. Blood is drawn 

from the patient, and the serum is separated from the red blood cells. Serum from the 

patient is then added to the laboratory-grown cells, and, if the AChR antibodies are 

present in the patient serum, they will normally bind to the receptor site. After allowing 

time for the antibodies to bind, the cells are washed to remove any potentially interfering 

substances from the reaction mixture. 

 After the cells are washed, the receptors will either have antibody bound from the 

patient serum, or they will remain unbound. An iodine-125 radiolabeled molecule is 

subsequently added to the cells which will bind to any open receptor sites. In testing for 

AChR blocking antibodies, the radiolabeled molecule used is α-Bungarotoxin.   

α-Bungarotoxin is a neurotoxin isolated from snake venom and is one of the 

substances that readily binds to the α subunits of the AChR (14). If AChR blocking 

antibodies are present the α-Bungarotoxin will not bind as the receptor site will already 

be occupied. After the addition and incubation of α-Bungarotoxin, the cells are again 

washed, and any unbound substances are removed. 

 The cell preparations are then placed in a gamma counter, and the radioactivity of 

the sample is then detected and measured. The radioactive signal is inversely proportional 

to the quantity of bound antibody; hence, a low radioactive signal indicates the patient 
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has detectable AChR antibodies. Conversely, a high radioactive signal indicates no 

antibodies are bound to the AChR, and the assay result is negative. 

 While RIA testing is fairly sensitive and reliable for the patient, it is unfortunately 

a process that poses a health risk for the personnel who work in the laboratory and who 

are repeatedly exposed to radioactive material.  The environment is also negatively 

impacted by the manufacture and disposal of radioactive waste. With this awareness, 

laboratories are working toward creating other assays to protect their laboratory staff.  

Flow Cytometry

Flow cytometry is a technology that counts and analyzes particles such as cells. 

Multiple physical characteristics of single particles including relative granularity, internal 

complexity, and relative fluorescence intensity are recorded with this instrument. The 

multiparametric analysis of characteristics is conducted by suspending particles in a 

stream of fluid and passing them through a laser-based electronic detection apparatus. 

These instruments can count and analyze thousands of particles per second. 

In 2009, scientists described a method of detecting AChR modulating antibodies 

using flow cytometric techniques (24). They utilized fluorescently-labeled molecules to 

aid in the detection of modulated AChR and to confirm the presence of AChR 

modulating antibodies.  

That publication inspired the development of a flow cytometric assay to replace 

the RIA assay for the detection of AChR modulating antibodies at ARUP (25). This new 

flow cytometric assay went into production in 2012 and has entirely supplanted the RIA 

technique for detection of this specific antibody. 
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We postulate that this development could also support the conversion of the 

AChR blocking antibody assay to flow cytometry as well. This new assay would be 

performed similarly to RIA; however, a fluorescently labeled α-Bungarotoxin would be 

used instead of an iodine-125 radiolabeled α-Bungarotoxin.  The fluorescence, rather than 

the radioactivity, is detected and measured through a flow cell with the use of laser 

technology, eliminating the radioactivity danger imposed by the RIA testing process.



 
 

MATERIALS AND METHODS 

The rhabdomyosarcoma (RD) cells used for this research were obtained from 

American Type Culture Collection, Catalog Number CCL 136 RD (Manasses, VA). The 

DB40 cell line used was, Catalog Number 3601c, Isis (Oxford, UK). The fluorescent 

label for this assay was α-Bungarotoxin Alexa Fluor® 647 Conjugate 500 µg/mL, 

Catalog Number B35450, from Molecular Probes (Grand Island, NY). G-418, 

Geneticin® was added to the cell culture medium for the DB40 cell line only, Catalog 

Number 10131035, from Gibco (Grand Island, NY). 

Other reagents required for this assay were Hank’s Balanced Salt Solution 

(HBSS) without calcium, magnesium, or phenol red, Catalog Number 45000-464, from 

VWR (Radnor, PA), Bovine Serum Albumin (BSA), Fraction V, Catalog Number 

A2153, from Sigma-Aldrich (St. Louis, MO). The Phosphate Buffered Saline (PBS), 

Ethylene-Diaminetetraacetic Acid (EDTA), and Paraformaldehyde 1% in PBS were all 

supplied by ARUP Laboratories Reagent Lab (Salt Lake City, UT). 

Eagles Minimal Essential Medium (EMEM), cell culture reagent, was produced 

by the ARUP Laboratories Reagent Lab and consisted of EMEM supplemented with 

heat-inactivated Fetal Clone III, MEM essential and nonessential amino acids, antibiotics, 

and MEM vitamins. Serum control lots were prepared by ARUP Reagent Lab, Catalog 

Number A-00499, and  included a Negative Control, a Positive-I Control (low positive), 

and a Positive-II Control (high positive). 
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Preparation of Cells

The anchorage-dependent RD cells were grown in T-175 tissue culture flasks in a 

37°C, 5% CO2, 95% humidity incubator using 10% EMEM growth medium. Confluent 

monolayers were observed under a microscope approximately seven days after seeding 

the flasks. The cells were then released from the flask surface by decanting the growth 

medium and adding PBS with EDTA. After 10 minutes of incubation at 37 °C the cells 

were detached and the cell suspension was removed, placed in a 50 mL conical tube, and 

centrifuged for 5 minutes at 1500 xg.  

After centrifugation the cells were re-suspended and counted using a Coulter 

counter and a fraction was introduced back into the T-175 flask to continue serial 

propagation. The remaining cells were suspended in 10% EMEM at a cell suspension of 

1 X 106 cells/mL and were then vortexed and used for the flow cytometric assay. 

The preparation and propagation of DB40 were much the same as that of the RD 

cells. The distinguishing step was the addition of 0.5 mg/mL Geneticin® to the 10% 

EMEM cell medium as DB40 cells are transfected with cDNA which encodes the β, δ, 

and ε subunits of the AChR (26). The DB40 cell line expresses both the embryonic and 

adult forms of AChR, whereas the RD cell line expresses the embryonic form of AChR 

with the γ subunit.  

Control Preparation

 The Negative Control was composed of pooled, normal human serum. The 

Positive-I Control was manufactured by the ARUP Reagent Lab by pooling patient sera 

with low-positive AChR blocking results. The Positive-II Control is made by pooling 
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patient sera with high-positive AChR blocking results. All controls are filtered and 

aliquoted into sterile microcentrifuge tubes and kept at -70°C for long-term storage. 

Thawed controls are stable for one week at 2-8°C.  

 These three control levels are used for quality assurance purposes. The 

expectation is that the Negative Control result should be negative on every run. An 

elevated Negative Control result could signal possible false positive results on a run, and, 

in this event, the samples with positive results would be repeated. Positive-I Control 

results should be in the low positive range, while Positive-II Control results should be in 

the high positive range. Positive control values that fall outside the established range 

would consequently indicate assay performance issues for that run and require repeat 

testing of samples. 

Flow Cytometric Assay Protocol

The flow cytometric AChR blocking antibody assay was performed in a 96 well 

flat-bottom tissue culture plate by adding 100 µL cells suspended at 1 X 106 cells/mL to 

each well. The 96 well plate was gently agitated to evenly distribute the cells across the 

bottom. The plate was placed in a 37°C, 5% CO2, 95% humidity incubator overnight for 

12 to 24 hours to allow for cellular attachment to the plate bottom. 

After this overnight incubation, the preparation for this assay was initiated by first 

bringing all reagents, including HBSS + .5% BSA, control sera, and patient samples to 

room temperature. Then 10 µL of appropriate specimen were added to each well 

following the map as illustrated in the template (Fig. 1). Assay buffer, 10 µL, was added 

to each of the background and maximum stain wells.
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Figure 1. Template of 96 well plate set up. This template maps the location on the 96 well 
flat-bottom tissue culture plate where all controls and samples are to be added. This 
information should also be used when numbering the 12 x 75 mm flow cytometry tubes 
that these samples will be transferred into. 

Background signal (BG) remains unstimulated by patient sera or fluorescent 

labels (Fig. 2). This BG represents the inherent low level fluorescence expressed by the 

cells and is plated in duplicate. The maximum signal (MAX) is stimulated by the 

fluorescent α-Bungarotoxin only and is not exposed to patient serum (Fig. 3). The MAX 

is also plated in duplicate. The BG and MAX geometric means are both used for final 

patient result calculations.  

After adding 10 µL of appropriate specimen to each well as indicated by the 

template, the plate was gently agitated to mix specimens. The plate was incubated for 2 

hours at room temperature. The growth medium was carefully decanted, the plate was 

inverted, and then lightly blotted. Cells anchored to the bottom of the plate were washed 

twice with 200 µL HBSS + .5% BSA assay buffer using a multichannel pipette. The 

buffer was dispensed slowly, high up on the sides of the wells where it ran down the side  
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Figure 2. Flow plot of unstimulated background cells. The gated cell population P1 was 
set to exclude cell fragments and aggregates. The discriminator line was set so that the 
%Parent in P3 was less than 2%. The APC-A Geo Mean, or geometric mean, was 
averaged and the average result of the two BG stains was subtracted from all control and 
patient sample geometric means. If the CV% was high between the geometric mean 
values of both background tubes, borderline samples were repeated.  
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Figure 3. Flow plot of maximum stain cells. The maximum stain cells are stimulated with 
fluorescently labeled α-Bungarotoxin in the absence of patient serum. The geometric 
means of both MAX tubes are averaged and used for the calculation of control and 
patient sample results. A high CV% would indicate QC issues and the possible need for 
repeat testing.  
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of the well and into the bottom. The plate was decanted and blotted and this wash process 

was again repeated. 

Assay buffer, 100 µL per well, was dispensed into all wells. An additional 10 µL 

of assay buffer was added to each of the two BG wells and 10 µL diluted α-Bungarotoxin 

Alexa Fluor® 647 Conjugate was added to each of the remaining wells. The plate was 

incubated for 60 minutes at room temperature in the dark to protect the fluorescent label 

from light. 

Following this incubation the plate was decanted, blotted, and washed two times 

according to the wash protocol as stated above. The cells were then dissociated from the 

96 well plate by adding 100 L 9mM EDTA-PBS and incubating in the dark for 30 

minutes. Using a multichannel pipette, 50 L assay buffer and 50 L 1% para-

formaldehyde in PBS were added to each well. The contents of each well were 

vigorously pipetted in order to dissociate all cells.  

The fixed cell suspension from each well was then transferred to a prelabeled, 12 

x 75 mm flow cytometry tube. The sample preparations were protected from light by 

covering tubes with foil while waiting to be analyzed on the instrument. The tubes were 

then placed on a carousel and analyzed on a BD FACSCanto II cytometer using Diva 

software. 

Fluorescent Measurement and Result Calculation

A background stain was performed with each flow cytometric run to quantify and 

subtract inherent cellular fluorescent signal from all control and patient sample geometric 

means. Maximum staining was obtained by adding only fluorescent label to two wells on 
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the 96 well plate. Both the background and maximum stain geometric means were used 

to calculate specimen results.  

Cell population selection was made so that gate P1 excluded cell fragments and 

aggregates. The P2 gate discriminator line was set on the background so that less than 2% 

of fluorescence across the entire histogram is to the right of the discriminator line starting 

at channel 1 and ending on 10000 on a 1024 channel histogram (Fig. 2). A right shift of 

the peak into P3 indicates the presence of the fluorescent marker (Fig. 3).  

The percent blocking result is defined as the change in proportion of fluorescent 

cells that are observed in the P3 gate relative to the background stain. The average 

geometric mean LFL1 value from the background stain is subtracted from all other LFL1 

geometric mean readings. A high CV% across the two background wells would indicate 

QC issues. The percent blocking result is then calculated as 1 minus the ratio of the 

patient sample and maximum stain geometric means after background subtraction,  

multiplied by 100 to obtain a percentage. The fluorescence detected is inversely related to 

the result. 

Study Cohort

Serum samples from 324 individuals were collected and tested. These samples 

were selected based on three categories including healthy donors, screened RIA AChR 

negatives, and screened RIA AChR positives. The healthy donor population consisted of 

120 self-proclaimed healthy individuals, and sera were collected in accordance with 

University of Utah Institutional Review Board Protocol #7740.  
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The 204 disease population was composed of an RIA AChR blocking negative 

group and an RIA AChR positive group. These samples were submitted to ARUP 

Laboratories for AChR blocking antibody testing, were de-identified and tested in 

accordance with University of Utah Institutional Review Board Protocol #7275.  We did 

not have access to the clinical history in these de-identified positive samples.  



RESULTS 

In this study, we assessed the performance characteristics of the newly designed 

flow cytometry based AChR blocking antibody assay relative to those of the currently 

employed AChR blocking antibody radioimmunoassay. Samples were assayed on both 

the RD cell line and the DB40 cell line for the presence of AChR blocking antibodies.  

Reference Intervals

 Threshold values were determined for both RD and DB40 cell lines on the flow 

cytometric assay. These reference intervals were calculated using Wilcoxon Signed Rank, 

Kruskal-Wallis, and Receiver Operator Curve statistical analyses. The positive threshold 

value for the RD cell line was calculated to be 37%; therefore, a result of greater than or 

equal to 37% is determined to be positive. 

 The positive threshold value for the DB40 Cell line was calculated to be 40%; 

therefore, a result of greater than or equal to 40% is considered to be positive. These 

cutoff values were used for determination of qualitative categorization and subsequent 

comparison with the current RIA assay results. The reportable range for this assay is 0% 

to 100% and any result of <0% is considered to be 0% and any result >100% is 

considered to be 100%. 
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Self-Proclaimed Healthy Donors

One-hundred-twenty self-proclaimed healthy donor sera were tested during this 

assay evaluation. Of the 120 samples, 119 produced negative results on the RD cell line. 

The remaining sample exhibited a low event count possibly due to the presence of an 

interfering substance. A given sample needed to have at least 3000 events recorded in 

order to be considered valid for this evaluation. Upon repeat testing the same 

phenomenon was observed. More testing is required to determine the significance of low 

event counts.  

All 120 self-proclaimed healthy donor samples were negative on the DB40 cell 

line. This cell line did not demonstrate the same issue with low event counts. Results 

from both cell lines agree with other AChR antibody testing and matched expected 

outcomes (Table 1). Low event counts are denoted in the table by LEC, and unknown 

values are noted with a U. 

Radioimmunoassay Blocking Negative Samples

Of the 102 RIA AChR blocking negative samples, one sample tested positive by 

the flow methodology on the RD cells. This patient with the flow positive result also 

tested positive for binding and modulating antibodies and is presumed to have a false 

negative result by RIA.  

All 102 RIA negative patient samples had negative results with the DB40 cell line 

(Table 2). While the DB40 has a better correlation with the RIA blocking results, this cell 

line did not yield a positive result for the one sample, patient ID 2 (Table 2), that was 

positive on the RD cell flow assay and positive by binding and modulating as well. 
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Table 1. Result table for self-proclaimed healthy donor sera. This table summarizes all 
available results for binding, blocking, and modulating AChR antibody testing on 122 
self-proclaimed healthy donors. Gender and age were available for most patients. All 
modulating results were obtained by RIA for this group of patients. 

ID Gender Age 
 Binding                  

(Pos)          
> 0.5nM 

Modulating 
RIA 
(Pos)          

> 26% 

Blocking 
RIA 
(Pos)        

> 25% 

Blocking 
Flow RD 

(Pos)     
> 37% 

Blocking 
Flow DB40 

(Pos)         
> 40% 

1 F 37 0.1 7 6 3 17 
2 M 47 0.0 0 5 11 3 
3 F 44 0.0 0 7 9 9 
4 M 50 0.0 0 8 9 11 
5 M 52 0.0 0 6 12 18 
6 M 60 0.0 3 4 0 9 
7 M 49 0.0 0 5 9 15 
8 M 45 0.0 0 4 4 14 
9 M 48 0.0 2 4 0 20 

10 F 36 0.0 2 0 0 2 
11 M 47 0.0 0 8 5 15 
12 F 56 0.0 0 6 10 19 
13 F 58 0.0 0 2 19 22 
14 M 37 0.0 0 2 15 17 
15 M 66 0.0 7 4 2 15 
16 M 56 0.0 0 2 6 13 
17 F U 0.0 0 8 8 22 
18 F 66 0.0 0 5 19 15 
19 M 58 0.0 0 2 21 18 
20 M 57 0.0 0 2 11 24 
21 M 46 0.1 0 0 7 21 
22 F 59 0.0 0 9 1 16 
23 M 45 0.0 0 5 8 17 
24 M 52 0.0 0 4 0 17 
25 M 50 0.0 0 8 13 17 
26 M 36 0.0 0 5 9 15 
27 M 50 0.0 0 3 18 10 
28 F 35 0.0 11 7 9 20 
29 M 47 0.0 5 3 4 16 
30 F 43 0.0 7 3 2 19 
31 F 43 0.0 11 2 14 17 
32 F 36 0.0 18 2 6 24 
33 M 51 0.0 7 4 7 17 
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Table 1. Continued 

ID Gender Age 
 Binding                  

(Pos)          
> 0.5nM 

Modulating 
RIA 
(Pos)          

> 26% 

Blocking 
RIA 
(Pos)        

> 25% 

Blocking 
Flow RD 

(Pos)     
> 37% 

Blocking 
Flow DB40 

(Pos)         
> 40% 

34 F 57 0.0 0 0 5 18 
35 F 56 0.0 0 0 0 18 
36 M 41 0.0 9 0 8 25 
37 M 48 0.0 0 0 5 18 
38 F 44 0.0 7 0 0 18 
39 M 38 0.0 3 0 0 23 
40 F 49 0.0 29 0 0 26 
41 M 38 0.0 18 0 6 19 
42 M 39 0.2 0 0 9 1 
43 M 49 0.0 0 0 19 23 
44 M 40 0.0 10 0 22 23 
45 F 45 0.0 0 0 3 28 
46 F 55 0.0 0 10 8 19 
47 M 41 0.0 0 13 0 16 
48 M 36 0.1 0 7 2 26 
49 F 39 0.0 0 5 2 21 
50 F 66 0.0 0 5 5 11 
51 F 51 0.1 0 1 11 23 
52 F 46 0.0 0 8 14 20 
53 F 55 0.0 0 1 13 26 
54 M 61 0.0 0 6 2 17 
55 F 46 0.0 0 5 0 21 
56 F 52 0.0 0 0 10 25 
57 M 44 0.5 0 2 6 19 
58 M 35 0.1 0 1 19 15 
59 F 46 0.1 0 0 10 21 
60 F 36 0.0 0 0 0 28 
61 F 58 0.0 0 0 23 16 
62 M 36 0.0 0 0 0 26 
63 M 55 0.0 0 0 18 10 
64 F 52 0.0 0 0 18 29 
65 F 62 0.0 0 0 0 18 
66 M 40 0.0 0 0 5 16 
67 F 64 0.0 0 0 9 24 
68 F 61 0.0 0 14 1 26 
69 F 41 0.0 0 9 0 22 
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Table 1. Continued 

ID Gender Age 
 Binding                  

(Pos)          
> 0.5nM 

Modulating 
RIA 
(Pos)          

> 26% 

Blocking 
RIA 
(Pos)        

> 25% 

Blocking 
Flow RD 

(Pos)     
> 37% 

Blocking 
Flow DB40 

(Pos)         
> 40% 

70 M 56 0.0 0 8 6 15 
71 F 40 0.0 0 15 10 21 
72 F 41 0.0 0 14 13 22 
73 F 38 0.0 0 3 17 22 
74 M 35 0.0 0 8 0 18 
75 F 42 0.0 0 3 11 14 
76 F 41 0.0 0 0 6 29 
77 F 44 0.0 0 3 2 28 
78 M 36 0.0 0 4 0 19 
79 F 56 0.0 0 0 16 23 
80 F 38 0.0 0 0 22 21 
81 F 35 0.1 0 5 5 20 
82 M 54 0.0 0 4 0 22 
83 F 37 0.0 0 0 16 17 
84 M 35 0.0 3 0 20 28 
85 M 42 0.1 0 0 LEC 0 
86 M 38 0.1 3 0 6 23 
87 F 39 0.0 2 0 0 22 
88 M 40 0.0 0 0 18 19 
89 F 39 0.0 3 0 0 20 
90 M 66 0.0 0 0 19 17 
91 M 45 0.0 0 0 15 0 
92 M 42 0.0 0 0 0 3 
93 F 57 0.0 0 0 21 6 
94 M 34 0.0 0 0 8 11 
95 M 51 0.0 0 0 4 4 
96 M 39 0.0 0 0 7 22 
97 F 38 0.1 0 0 11 22 
98 M 53 0.0 0 0 20 24 
99 M 45 0.0 0 5 8 0 

100 F 45 0.0 0 0 21 5 
101 F 44 0.0 0 0 21 17 
102 F 45 0.0 0 0 20 22 
103 M 44 0.2 0 2 8 9 
104 F 44 0.0 0 0 20 3 
105 F 37 0.0 0 0 16 9 
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Table 1. Continued 

ID Gender Age 
 Binding                  

(Pos)          
> 0.5nM 

Modulating 
RIA 
(Pos)          

> 26% 

Blocking 
RIA 
(Pos)        

> 25% 

Blocking 
Flow RD 

(Pos)     
> 37% 

Blocking 
Flow DB40 

(Pos)         
> 40% 

106 F 35 0.0 0 0 15 28 
107 M 47 0.0 0 0 20 4 
108 F 42 0.0 0 0 22 9 
109 F 46 0.0 0 0 20 19 
110 F 38 0.0 0 0 32 25 
111 F 56 0.0 0 0 16 17 
112 M 43 0.0 0 0 13 8 
113 F 49 0.0 0 0 13 18 
114 M 55 0.0 0 0 18 19 
115 M 47 0.0 0 0 19 22 
116 M U 0.0 0 1 20 14 
117 M 39 0.0 0 0 30 26 
118 M 40 0.0 0 5 29 26 
119 M 45 0.0 0 17 17 5 
120 M 47 0.1 0 22 10 13 
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Table 2. Result table for radioimmunoassay blocking negative patient sera. This table 
summarizes all available results for binding, blocking, and modulating AChR antibody 
testing on 102 RIA blocking negative patient samples. Gender and age were available for 
most patients. Modulating results were obtained by RIA or flow cytometry for this group 
of patients based upon available methodology on date of testing. 

ID Gender Age 
 Binding                  

(Pos)           
> 0.5nM

Modulating 
RIA 
(Pos)          

> 26% 

Blocking 
RIA 
(Pos)        

> 25% 

Blocking 
Flow RD 

(Pos)       
> 37% 

Blocking 
Flow DB40 

(Pos)            
> 40% 

1 M 73 5.7 37 9 36 24 
2 F 96 15.7 30 19 48 29 
3 M 63 0.0 0 6 3 7 
4 F 90 0.0 0 0 8 6 
5 F 55 0.0 0 0 14 6 
6 F 63 0.3 6 0 18 3 
7 F 55 0.0 7 0 7 0 
8 M 64 0.0 0 0 16 0 
9 M 68 0.0 0 0 24 0 

10 M 8 0.2 0 0 23 0 
11 F 67 0.0 0 0 25 1 
12 F 73 0.0 0 0 18 0 
13 F 24 0.1 0 0 22 0 
14 F 33 0.0 6 0 14 0 
15 M 78 0.0 6 3 19 1 
16 M 32 0.0 3 0 26 0 
17 F 81 0.0 0 0 24 1 
18 M 62 0.0 4 0 26 0 
19 F 72 0.0 2 0 8 0 
20 F 63 0.1 1 7 26 0 
21 F 72 0.0 2 0 24 0 
22 F 47 0.1 2 4 26 0 
23 F 47 0.0 0 0 0 0 
24 F 28 0.0 0 0 17 0 
25 M 62 0.1 16 0 21 4 
26 M 70 0.0 0 0 35 0 
27 F 7 0.0 0 0 36 0 
28 F 75 0.0 0 0 26 6 
29 F 59 0.0 0 0 22 0 
30 F 20 0.2 0 0 15 7 
31 M 53 0.2 0 1 36 1 
32 M 68 0.1 0 0 15 3 
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Table 2. Continued 

ID Gender Age 
 Binding                  

(Pos)           
> 0.5nM

Modulating 
Flow 
(Pos)          

> 46% 

Blocking 
RIA 
(Pos)        

> 25% 

Blocking 
Flow RD 

(Pos)       
> 37% 

Blocking 
Flow DB40 

(Pos)            
> 40% 

33 M 52 0.0 0 1 5 7 
34 M 81 0.0 9 1 0 6 
35 M 72 0.0 0 1 0 3 
36 F 66 0.0 17 2 0 13 
37 F 17 0.0 5 2 0 9 
38 M 84 0.0 0 13 0 4 
39 M 72 0.0 0 3 0 7 
40 M 60 0.2 2 2 0 3 
41 F 65 0.3 4 4 0 4 
42 F 81 0.0 11 0 0 0 
43 F 83 0.0 0 0 0 8 
44 F 50 0.0 3 0 0 4 
45 F 26 0.0 0 0 0 0 
46 M 61 0.0 0 0 0 5 
47 M 64 0.0 0 0 0 3 
48 F 76 0.0 0 0 0 5 
49 F 61 0.0 0 0 0 8 
50 F 64 0.0 0 0 0 0 
51 M 35 0.0 0 0 0 4 
52 F 58 0.0 8 0 0 16 
53 F 49 0.0 0 0 0 4 
54 M 65 0.0 0 0 0 11 
55 M 66 0.0 0 0 1 7 
56 F 48 0.1 2 0 0 7 
57 F 78 0.0 0 0 0 9 
58 F 22 0.0 7 4 2 6 
59 M 45 0.0 1 4 0 7 
60 F 56 0.0 0 4 0 7 
61 M 65 0.2 0 4 0 19 
62 F 29 0.0 0 0 0 12 
63 F 41 0.2 8 0 0 20 
64 F 66 0.4 0 0 3 9 
65 F 58 0.1 0 0 0 12 
66 F 57 0.0 0 0 0 8 
67 F 47 0.0 8 0 0 10 
68 F 56 0.0 13 5 1 20 
69 F 61 0.0 6 5 0 16 
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Table 2. Continued 
        

ID Gender Age 
 Binding                  

(Pos)           
> 0.5nM

Modulating 
Flow 
(Pos)          

> 46% 

Blocking 
RIA 
(Pos)        

> 25% 

Blocking 
Flow RD 

(Pos)       
> 37% 

Blocking 
Flow DB40 

(Pos)            
> 40% 

70 M 72 0.4 1 5 0 7 
71 M 43 0.0 16 5 0 9 
72 F 67 0.0 6 5 0 17 
73 F 54 0.0 11 5 0 11 
74 F 51 0.1 2 6 0 7 
75 F 33 0.0 4 6 0 18 
76 F 33 0.2 26 6 0 18 
77 F 24 0.4 2 6 0 10 
78 F 67 0.0 16 6 0 19 
79 F 64 0.0 7 6 0 18 
80 F 60 0.1 0 2 1 20 
81 M  73 0.4 6 2 0 12 
82 M  41 0.0 5 2 0 12 
83 F 49 0.0 1 0 0 19 
84 F 44 0.0 8 0 0 25 
85 F 35 0.0 0 0 0 18 
86 M 71 0.0 0 0 0 19 
87 F 70 0.1 4 0 0 11 
88 F 48 0.0 0 0 0 18 
89 M 78 0.1 11 0 0 25 
90 M 34 0.0 0 0 0 13 
91 M 49 0.1 5 0 0 23 
92 F 69 0.4 13 0 9 32 
93 M 60 0.0 6 4 0 15 
94 M 83 0.3 0 0 0 32 
95 M 54 0.1 0 0 0 25 
96 M 68 13.9 14 5 0 30 
97 M 82 0.6 10 0 0 8 
98 F 69 1.0 17 0 3 5 
99 M 52 2.6 30 0 8 20 

100 F 67 1.8 31 5 10 3 
101 F 47 0.2  U 0 21 4 
102 M 59 0  U 4 12 0 
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Radioimmunoassay Blocking Positive Samples

Of the 102 RIA positive samples, 9 tested negative on the RD cell flow assay. 

Two of these nine negative flow AChR blocking sera did not possess detectible levels of 

binding or modulating antibodies, whereas, the remaining 7 tested positive for binding 

antibodies and/or modulating antibodies and were likely false negative samples in the 

flow assay. By establishing an indeterminate interval 4 of these 7 likely false negatives 

would be reported out as indeterminate. The DB40 cell line had a total of 54 out of the 

102 RIA screened positive samples test negative (Table 3).  

During the course of this study, the modulating antibody testing methodology in 

our laboratory changed from RIA to flow cytometry. The reference intervals and assay 

methodologies are noted in both Table 2 and Table 3.   

RD Cell Performance Characteristics

The RD cell flow cytometric blocking assay exhibited a 96.9% overall agreement 

with the RIA blocking assay. When comparing the flow assay to the RIA assay as a gold 

standard, this new flow assay has a 91.1% sensitivity and a 99.0% specificity. When 

comparing the flow assay results to the binding and modulating results in addition to the 

RIA blocking results, this assay has a slightly higher sensitivity at 93% and a specificity 

of 100%.  

This assay exhibits a positive predictive value of 83.2% and a negative predictive 

value of 96.8%. Linear regression analysis of RIA versus flow cytometry for the 

detection of AChR blocking antibodies on the RD cell line confirms a good correlation 

with an R2 value of 0.7254 (Figure 4).  
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Table 3. Result table for radioimmunoassay blocking positive patient sera. This table 
summarizes all available results for binding, blocking, and modulating AChR antibody 
testing on 102 RIA blocking positive patient samples. Gender and age were available for 
most patients. Modulating results were obtained by RIA or flow cytometry for this group 
of patients. 

ID Gender Age 
 Binding                  

(Pos)           
> 0.5nM 

Modulating 
RIA 
(Pos)          

> 26% 

Blocking 
RIA 
(Pos)        

> 25% 

Blocking 
Flow RD 

(Pos)       
> 37% 

Blocking 
Flow DB40 

(Pos)        
> 40% 

1 M 83 7.1 43 37 15 13 
2 F 65 3.3 34 49 57 15 
3 F 74 90.0 32 77 65 38 
4 F 11 1.5 37 55 55 41 
5 M 55 74.0 32 55 68 52 
6 F 75 43.0 37 51 72 66 
7 F 46 36.0 46 40 59 29 
8 F 78 38.0 61 45 66 59 
9 F 48 50.0 51 68 57 47 

10 M 80 25.0 62 81 71 66 
11 M 73 3.9 38 30 41 0 
12 M 58 62.0 58 56 77 66 
13 F 47 5.0 51 68 67 36 
14 M 66 12.3 40 43 56 7 
15 M 57 42.0 36 31 45 55 
16 M 61 12.6 47 59 47 8 
17 M 78 9.1 59 56 54 13 
18 F 44 14.9 54 71 69 27 
19 F 88 45.0 29 32 37 37 
20 F 43 4.3 45 29 61 40 
21 F 90 49.0 61 44 71 47 
22 M 72 1710.0 43 51 55 38 
23 F 58 3.5 15 50 77 57 
24 M 70 10.5 43 59 61 23 
25 F 63 103.0 49 37 65 41 
26 M 72 14.9 32 62 53 15 
27 F 82 21.0 50 61 82 20 
28 M 64 56.0 49 60 76 48 
29 M 66 13.8 49 77 69 38 
30 M 44 42.0 57 72 69 55 
31 M 57 84.0 50 68 79 69 
32 F 85 79.0 75 89 89 93 
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Table 3. Continued 
        

ID Gender Age 
 Binding                  

(Pos)           
> 0.5nM 

Modulating 
Flow 
(Pos)          

> 46% 

Blocking 
RIA 
(Pos)        

> 25% 

Blocking 
Flow RD 

(Pos)       
> 37% 

Blocking 
Flow DB40 

(Pos)        
> 40% 

33 F 28 159.0 88 69 54 12 
34 F 49 9.9 69 70 63 31 
35 M 63 56.0 89 63 57 58 
36 F 79 420.0 97 75 54 36 
37 F 82 81.0 90 68 68 44 
38 F 80 5.6 28 69 14 12 
39 M 58 180.0 92 80 68 69 
40 M 84 10.2 77 62 43 27 
41 F 82 98.0 92 69 75 59 
42 F 54 194.0 85 79 46 34 
43 F 40 19.0 62 69 38 21 
44 F 65 55.0 88 62 62 39 
45 M 77 27.0 75 75 57 25 
46 M 60 18.0 88 74 58 36 
47 F 88 20.0 76 61 50 22 
48 F 81 18.0 81 35 46 26 
49 M 62 89.0 89 60 68 48 
50 M 83 18.0 83 49 48 29 
51 M 62 2.5 72 47 55 25 
52 F 25 98.0 89 47 50 16 
53 F 26 36.0 81 39 69 26 
54 M 57 12.2 82 59 50 41 
55 M 59 2.2 71 32 56 26 
56 F 62 20.0 59 46 37 17 
57 M 66 470.0 56 61 5 13 
58 M 84 4.3 39 33 20 8 
59 M 52 0.2 23 38 23 3 
60 F 69 26.0 89 43 48 38 
61 M 73 106.0 86 38 69 48 
62 F 88 6.3 61 35 38 19 
63 M 41 97.0 96 71 67 58 
64 F 33 1480.0 93 66 58 27 
65 F 74 112.0 88 77 65 61 
66 M 75 117.0 95 77 81 69 
67 F 50 56.0 93 80 71 45 
68 M 68 1.4 53 30 50 8 
69 M 76 61.0 80 61 64 36 
70 M 68 25.0 72 58 40 29 
71 M 53 10.9 72 55 74 77 
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Table 3. Continued 
        

ID Gender Age 
 Binding                  

(Pos)           
> 0.5nM 

Modulating 
Flow 
(Pos)          

> 46% 

Blocking 
RIA 
(Pos)        

> 25% 

Blocking 
Flow RD 

(Pos)       
> 37% 

Blocking 
Flow DB40 

(Pos)        
> 40% 

72 F 66 16.4 81 61 62 28 
73 M 64 66.0 83 56 65 40 
74 F 9 2.1 71 57 46 17 
75 F 65 8.8 83 43 53 22 
76 M 77 14.6 66 52 52 22 
77 M 77 25.0 78 47 64 15 
78 M 70 42.0 87 47 44 30 
79 M 56 24.0 85 47 51 42 
80 M 64 10.6 74 26 40 31 
81 M 63 17.8 81 28 48 26 
82 M 52 0.1 21 27 33 10 
83 F 87 27.0 74 48 44 15 
84 F 66 9.2 64 44 48 14 
85 M 65 21.0 84 59 54 25 
86 F 76 6.5 57 42 56 33 
87 F 76 15.7 65 38 51 38 
88 M 62 54.0 86 39 59 47 
89 F 47 12.5 53 39 30 16 
90 F 60 25.0 51 42 29 22 
91 F 64 85.0 94 69 LEC 41 
92 M 62 2.2 34 26 26 12 
93 M 58 60.0 88 43 59 24 
94 F 76 53.0 81 38 73 55 
95 M 70 51.0 91 74 66 42 
96 M 49 4.3 55 62 53 26 
97 M 56 162.0 91 51 63 52 
98 M 33 63.0 91 48 65 39 
99 M 75 48.0 85 45 59 44 

100 M 78 1.6 63 38 40 14 
101 M 85 15.1 66 35 43 22 
102 F 40 16.5 78 31 44 24 



 

Figure 4. Linear regression RD cell. The linear regression analysis of AChR
RIA versus flow cytometry on the RD cell line indicates good correlation between the 
two assays.  
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Figure 4. Linear regression RD cell. The linear regression analysis of AChR
RIA versus flow cytometry on the RD cell line indicates good correlation between the 

DB40 Cell Performance Characteristics

The DB40 cell flow cytometric blocking assay exhibited a 73.5% overall 

agreement with the RIA blocking assay. When comparing the flow assay to the RIA 

assay as a gold standard, this new flow assay has a 47.1% sensitivity and a 100.0% 

specificity. When comparing the flow assay results to the binding and modulating results 

in addition to the RIA blocking results, the sensitivity and specificity calculations as 

remain the same as stated above. Linear regression analysis of RIA versus flow 

cytometry for the detection of AChR blocking antibodies on the DB40 cell line confirms 

a moderate correlation with an R2 value of 0.5209 (Figure 5).  
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Figure 5. Linear regression DB40 cell. The linear regression analysis of AChR blocking 
by RIA versus flow cytometry on the DB40 cell line indicates mo
between the two assays.  
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by RIA versus flow cytometry on the DB40 cell line indicates moderate correlation 
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DISCUSSION 

 A flow cytometric assay for the detection of AChR blocking antibodies was 

designed and its performance was evaluated and compared to the performance of the RIA 

AChR blocking antibody assay. Two cell lines were selected for this study and 324 

samples were run using both cell lines once the protocol had been established.  

 The RD cell line was selected as this cell line is used for the RIA blocking and 

modulating AChR assays, as well as the flow cytometric modulating assay at ARUP 

Laboratories. This cell line is readily available and fairly inexpensive. The RD cell, 

however, does not express the adult AChR subunit ε, it expresses the embryonic γ

subunit.  

 The DB40 cell line is transfected with not only the adult AChR subunit ε, but also 

the β and δ subunits (26). Although α-Bungarotoxin binds to the α subunit of the AChR, 

cells with both adult and fetal subunits have different electrophysiological, immuno-

logical, and biochemical properties (27, 28, 29). Studies have shown that most MG serum 

binds well to both the adult and fetal form, or perhaps better to the fetal form which is 

present in the adult thymus. However, in some cases, patient sera with low AChR 

antibody titers bind to the adult form with a higher affinity (30). This cell line is 

proprietary making it expensive and more difficult to obtain. 

Evaluation of the performance characteristics of both cell lines on this protocol 

revealed that the RD cell line compared very well with the current RIA AChR blocking 
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antibody assay. The DB40 cell line did not perform as well and would not be considered 

further for the flow assay. A few notable issues were observed with the RD cell line.  

 Seven samples out of the 324 samples selected for this study are assumed to be 

falsely negative by flow cytometery. Repeat testing was conducted on all samples with 

discrepant RIA and flow cytometric results, and were again found to be discrepant. The 

rational for assuming these samples to be falsely negative is due to positive binding 

and/or modulating results on those given patient samples.  

These samples were all prescreened and selected based on RIA results. This 

method of sample selection may have resulted in sampling bias that creates a 

disadvantage for the flow assay when comparing the results to RIA as the gold standard. 

Theoretically, including samples with positive binding and modulating results, that were 

negative by blocking RIA, may have resulted in a different sensitivity and specificity 

calculation. This bias was partially offset by including binding and modulating results in 

the data analysis. 

Access to clinical data for the patients selected for this research would have 

enhanced this study by confirming which patients were in fact myasthenic. Further 

studies are being arranged and will include patient histories in order to examine the 

relationship of clinical presentation and laboratory antibody testing. By testing patient 

samples with known clinical histories, a better measurement of sensitivity and specificity 

can be obtained. 

To address these discrepant sample results in order to bring this assay in to our 

lab, we have established an indeterminate reference interval to catch more of those 
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assumed false negative results. Three levels of reference intervals are now established for 

this flow assay, positive, negative and indeterminate.  

The RD cell line exhibited a phenomenon on two patient samples in which an 

acceptable cell count of > 3000 could not be obtained. Upon repeat testing this issue was 

again observed. The DB40 cell line did not present this problem. The standard was set at 

3000 required events for purposes of consistency and quality for the flow assay, as event 

counts that consistently fall below this threshold indicate poor cell viability. Further 

studies may be conducted to determine the significance of these low event counts and 

evaluate the affected patient results.  

Validation of this novel flow cytometric AChR blocking antibody assay for the 

use in production at ARUP Laboratories required further testing be conducted on this 

new protocol. Analytical specificity was evaluated by running patient samples that tested 

positive for voltage‐gated calcium channel (VGCC) antibodies, voltage‐gated potassium 

channel (VGKC) antibodies, antinuclear antibodies (ANA), or aquaporin‐4 (AQP4) 

antibodies, on the flow cytometric assay to determine if the interference of these other 

antibodies would cause false positive AChR blocking antibody results. No interference 

was noted on any of these antibodies. Interassay and intraassay precision, and carry-over 

studies were also found to be favorable with no outliers upon data analysis. 

The scope of this research was not designed to address a larger issue in the 

context of MG serological diagnostics.  Roughly 15% of generalized myasthenia patients 

and 50-60% of ocular myasthenia patients are referred to as seronegative as they exhibit 

no detectable levels of AChR antibodies (31). Muscle-specific receptor tyrosine kinase 

(MuSK) is also located in the NMJ.  
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Seronegative myasthenia gravis patients test positive for MuSK antibodies in 

approximately 70% of cases (32).  Double-seronegative patients, those who are negative 

for both AChR and MuSK antibodies, often test positive for antibodies to the low-density 

lipoprotein receptor-related protein 4 (LRP4) which has been identified as a receptor that 

is essential for neuromuscular junction formation (33). Striational antibodies are those 

that react with epitopes on the muscle proteins titin, ryanodine receptor, and Kv1.4. 

These antibodies are mainly found in MG patients with thymoma (34).  



 

 

CONCLUSION 

Myasthenia gravis is a well characterized neuromuscular, autoimmune disorder.  

Clinical symptoms of MG are attributed to the presence of autoantibodies that result in 

the failure of synaptic signaling at the NMJ in muscle tissue. Signaling failure may result 

from damaged, absent, or blocked AChR. MG can be difficult to diagnose due to the 

variability of symptoms at disease onset and heterogeneity of patient autoantibody 

profiles. 

The potential for life-threatening complications necessitates the best possible 

laboratory testing to aid in diagnosis. Laboratory tests may be conducted to evaluate the 

presence of binding, modulating, or blocking AChR autoantibodies. A positive test result 

for the presence of AChR antibodies would be indicative of a likely diagnosis of MG as 

AChR antibodies are not observed in a healthy population. 

Historically, laboratories have used radio-labeling as the gold standard method for 

detecting blocking ACHR antibodies as this test has been sensitive and reproducible. 

Several drawbacks, however, including cost associated with radio-labeling, 

environmental and personnel hazards, and the generation of radioactive waste have 

prompted the investigation into newer technologies for a suitable replacement for the 

current laboratory practices. 

An AChR blocking antibody flow cytometric assay was designed, and its 

performance was evaluated in comparison to current laboratory standards. The flow 
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blocking assay was equivalent to the current radioimmunoassay in its ability to detect 

AChR blocking antibodies. While both assays are comparable, the flow assay offers 

advantages over radio-assay including enhanced control of QC, and the use of a 

fluorescent label versus a radio-label which benefits both the laboratory and the 

environment.  

The new flow cytometric assay measures a fluorescent label attached to the AChR 

receptor embedded in the surface of each cell. This distinguishing feature of the flow 

assay provides the opportunity to monitor cell viability and cell counts along with 

measuring fluorescence. These characteristics of the flow cytometric assay allow for 

improved quality control when compared to the radioimmunoassay.  

The 96 well format of the flow assay increases through-put which can potentially 

decrease the turnaround time of generating patient results. Additionally, the 

manufacturing and disposal of radioactive iodine is expensive and not environmentally 

friendly whereas the fluorescent markers utilized in the new assay do not have these 

issues. The laboratory personnel are also not exposed to radioactive substances when 

running the flow assay.    

In summary, this research describes a new fluorescent flow cytometric AChR 

blocking antibody assay which is comparable in both sensitivity and specificity when 

compared to the radioimmunoassay. This assay has a high through-put, is cost effective, 

and is an environmental and personnel friendly test. 
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