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ABSTRACT 

 

       Polymeric gene delivery is introducing specific genes to enhance or silence gene 

expression using synthesized polymers which have low immunogenicity and good 

biocompatibility. This dissertations specifically focused on the synthesis and 

characterization of stimuli-responsive polymers for gene delivery. The polymers are 

designed to respond to specific biological stimuli such as redox potential and pH changes.            

       In the first stimuli-responsive polymer, a reducible poly(L-lysine) (RPLL) was 

constructed and mediated gene delivery. Polyplex, polymer/gene complex, 

biocompatibility can be improved by using amino acids as nontoxic building blocks. To 

synthesize an amino-acid-based reducible polymer, a decapeptide composed of lysine and 

cysteine (Cys-Lys8-Cys) has been selected due to primary amines and sulfhydryl 

functional groups, respectively. A reducible polymer introduced with disulfide bonds 

enables control of the rate of biodegradation and decomplexation of polyplex which will 

impact plasmid DNA (pDNA) release. 

       In the second stimuli-responsive polymer, a pH-dependent polymeric-mediated gene 

delivery was conducted via PLL grafted with either mono-L-histidine (PLL-g-mHis) or 

poly(L-histidine) (PLL-g-PHis). The pH-sensitive ionizable groups in histidine were used 

as an endosomolytic agent to construct a pH-sensitive polymeric gene carrier. Two types 

of histidine grafted PLL, PLL-g-mHis and PLL-g-PHis, were synthesized with the same 

number of imidazole groups to compare the effective arrangement of histidine in terms of  



iv 
 

endosomolytic activity and transfection efficiency. 

       A wide range of observations have been made to conclude that a stimuli-sensitive 

property in polymer imparts a rapid response to specific stimulus compared to a non-

sensitive polymer and the improved gene transfer activity shows much promise for gene 

delivery. Since gene carriers have been applied in cancer gene therapy to safely and 

efficiently deliver a therapeutic gene into the target site, these stimuli-sensitive polymers 

will bring efficient translation levels of the therapeutic protein to treat cancer. Therefore, 

it is essential to further investigate the gene expression in vivo applications in an 

engaging and accessible way. 
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CHAPTER 1 

INTRODUCTION 

1.1. Cancer 

       Cancer is the second leading cause of death in the USA.1 The 5-year relative cancer 

survival rate from 2001 to 2007 is 67 % and the survival rate of many other cancers, 

excepting cancers of the lung and pancreas, has improved dramatically due to an increase 

of early diagnosis and better treatments; however, it has been estimated that 25% of all 

deaths will still occur as a result of cancer.1  

       Cancer occurs when normal cells undergo abnormal cell division without the 

regulation of cell growth, and thereby allow cancerous cells to proliferate and grow 

uncontrollably, forming tumors. Development of malignant tumors with the ability to 

metastasize may lead to death if tumor cells travel through the bloodstream and lymph 

system through which they invade other tissues and spread to other sites.2  

        It is important to study the cell of origin and initiation of cancer in order to better 

understand and develop more effective cancer therapies. The cancer stem cell hypothesis 

and the clonal evolution model are two current models that follow a stem cell model, but 

each model has distinctive characteristics. In the cancer stem cells (CSCs) model, the 

origin of a tumor starts with CSCs where a small population of tumor cells that has self-



 

 

renewal capacity and proliferative potential recapitulates the tumors. The CSC hypothesis  

follows a hierarchical organization with CSCs located on the apex of the hierarchy, and 

CSCs generate a tumor.3 Since CSCs are responsible for tumor development, tumor 

recurrence, progression, and metastasis, several cell-surface markers that can identify and 

isolate CSCs from the mixture of tumorigenic and nontumorigenic cancer cells have been 

developed. For examples, CD44+CD24-/low was used as a marker for breast cancer, and 

CD 133 appeared to be a marker for glioblastomar, medulloblastoma, and 

ependymomas.4  

       However, some of the solid tumors appear to be caused by genomic instability, a 

theory supported by the clonal evolution model, in which most proliferating cells have a 

tumorigenic ability that drives tumorigenesis.5 In the clonal evolution model, tumorigenic 

cells and heterogeneity are explained through genetic mutation and epigenetic changes. 

Brocks et al. demonstrated the genetic and epigenetic heterogeneity of multiregions on 

the same tumor by analyzing methylation patterns in prostate cancer, suggesting that the 

aberrant methylation in tumors is associated with the clonal genetic origins of the tumor.6 

Thus far, it is still unclear whether tumors are derived from the CSCs model, the clonal 

evolution model, or a mixture of the two models based on available evidence.   

 

1.2. Tumor Microenvironmental Physiology  

       The tumor microenvironment is different than that of normal tissues in terms of pH, 

oxygen levels, tumor cells energy metabolism, blood vessel formation, interstitial fluid 

flow, and extracellular matrix components. It is important to understand the physiological 

environment of a tumor in order to better understand current treatments and overcome the  

2



 

 

limitations of targeting the tumor.  

       The cellular pH is represented by an Na+/H+ exchanger, and normal tissue maintains 

a higher extracellular pH (pHe) of 7.4,  and a lower intracellular pH (pHi) of 7.2.7, 8 

However, abnormal hydrogen ion regulation in tumor cells make a tumor an acidic 

environment, leading to a reverse pH gradient as compared to normal tissue. Thus, tumor 

pHe is lower than pHi.  In addition, inadequate lymphatic drainage in tumor builds up 

lactic acid which is produced after glycolysis and makes the tumor environment even 

more acidic. The pHe of tumors is below 7, usually hovering around 6.6 – 6.98.8  

       Hypoxia, or low oxygen level, is another well-known characteristics of tumor. The 

oxygen partial pressure (pO2) of a solid tumor is below 20 mmHg which is lower than the 

surrounding normal tissue, where pO2 is around 24 – 66 mmHg. This number decreases 

further as the tumor grows in size.9, 10 The reason for the poor oxygenation of tumors is 

due to abnormal, leaky blood vessels with increased distance from the tumor region to 

vessel that limit enough oxygen supply. It has been reported that poor oxygen levels in 

tumors is also related to tumor aggressiveness and metastasis, leading to poor results after 

chemo and radiotherapy treatments.9 Therefore, many researchers have studied the 

relationship between hypoxia and chemo/radiotherapy, focusing on targeting hypoxia to 

improve the cancer treatment outcomes.   

       Normal tissue obtains a small portion of cellular energy ATP from glycolysis which 

converts glucose to pyruvate, and derives the rest of its energy from mitochondria. 

However, cancer cells’ energy metabolism is different than that of normal tissue. Cancer 

cells maintain a high rate of aerobic glycolysis to generate ATP, also known as the 

Warburg effect.11 This high aerobic glycolysis is associated with the function of hypoxia 

3



 

 

inducible factor 1 (HIF-1). HIF-1 is the main regulator consisting of α and β subunits and 

controlling oxygen delivery. The transcription factor HIF-1 regulates energy production 

by increasing glycolysis and decreasing mitochondria-mediated energy production. Thus, 

the HIF-1 level is activated or overexpressed in cancer cells due to the intratumoral 

hypoxia condition. Furthermore, HIF-1 expression is related to activated oncogenes and 

mutant tumor suppressor. After the expression of activated oncogenes such as Ras, or the 

loss of tumor suppressor genes like PTEN, HIF-1 accumulation in tumor cells was 

observed.12  

       Tumor angiogenesis is one of the hallmarks of cancer.13 As tumor size increases, new 

blood vessel formation is necessary to supply oxygen and nutrients for tumor expansion. 

Vascular structure in tumors is very different than that of normal vessels. Tumor vessels 

are disorganized with lots of branching, and vessel diameter is uneven and dilated. 

Formation of new tumor vessels is influenced by environmental stress on the tumor, 

caused by low oxygen, low pH, and pressure around proliferating cells.13 Tumor cells 

also secrete cytokines and growth factors, especially hypoxic areas release angiogenic 

growth factors such as fibroblast growth factor (FGF) and vascular endothelial growth 

factor (VEGF) to supply oxygen and nutrition to the tumor cells.14 It has been observed 

that VEGF is the dominant angiogenic factor that plays a critical role in regulation during 

blood vessel formation often resulting in dilated, leaky, and more permeable vessels.14 

Thus, anti-angiogenic therapies that suppress angiogenesis by targeting VEGF have been 

studied as a potential approach for cancer treatment.  

       Increased interstitial fluid pressure (IFP) is also observed in many solid tumors.  

While IFP measures about 5-10 mmHg in normal tissues, IFP up to 50 mmHg has been  

4



 

 

reported in solid tumors.15 Such a high IFP is due to the formation of abnormal leaky  

vessels and lymphatic function which in turn create an irregular and bulk flow of fluid.  

As a consequence, increased fluid accumulation in tumor areas with poor drains through 

the lymphatic vasculature causes the interstitial pressure to rise. It eventually causes a 

steep pressure gradient between the tumor and its surrounding tissue, resulting in high 

interstitial fluid flow into the tissue.16, 17 Since high IFP in tumor has been recognized as a 

barrier for effective drug delivery, much research regarding IFP lowering treatments has 

been conducted.   

       Extracellular matrix (ECM) components between tumor and normal tissue are also 

shown to be different. The ECM is composed of proteins, glycoproteins, proteoglycans, 

and polysaccharides.18 It forms the basement membrane which is generally rich in 

fibronectin, laminins, collagen, elastin, and linker proteins that creates a more compact 

structure than that of an interstitial matrix.19 The normal ECM is highly organized and 

controlled by multiple regulatory mechanisms. It plays an important role in cell migration, 

growth factor signaling, and cell-cell communication.18 However, in the case of a tumor 

microenvironment, the ECM is commonly deregulated and highly disorganized. The 

ECM in tumors has a dense cell population and an increased collagen deposition that 

makes the collagen fiber network more complicated.19 As a result, ECM stiffness in 

tumors is stronger than that of the surrounding tissue which affects the cell migration and 

proliferation rate, differentiation, and tumorigenesis.16, 20   
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1.3. Cancer Treatments 

       Chemotherapy, radiation therapy, immunotherapy, and surgery have been widely  

used for cancer treatments.21 Chemotherapy uses a wide range of anticancer drugs such as  

DNA fragmenting/cross-linking agents, intercalating agents, protein synthesis inhibitors, 

topoisomerase poisons, kinase inhibitors, and hormones.22 These anticancer drugs induce 

apoptosis by attacking fast-growing and dividing cancer cells. Chemotherapy is often 

combined with radiation therapy to shrink tumors before the surgery.  

       Radiation therapy destroys localized cancer cells by using high-energy radiation that 

can be subdivided into photon and particle radiation. Photon radiation includes x-rays and 

gamma rays, whereas particle radiation includes electron, proton, neutron, carbon, alpha, 

and beta particles.23 Such different types of radiation damage cancer cells DNA with their 

respective beam energies. Radiation therapy can be also applied along with chemotherapy, 

surgery, and immunotherapy.  

       The strategy of immunotherapy is to make the host’s immune system attack cancer 

cells via monoclonal antibodies (mAbs) and cancer vaccines already known to be major 

immunotherapy treatments used for treating cancer.24 mAbs as therapeutic agents can 

activate or suppress immune response against cancer cells by mediating T lymphocytes, 

dendritic cells, and natural killer cells.24, 25 Cancer vaccines also elicit immune response 

as a defense mechanism from diseases and protect the body by recognizing and fighting 

against cancer cells. There are several types of cancer vaccines that are used in clinical 

trials for treating patients: virus, DNA, peptide, heat shock proteins, dendritic cell, and 

tumor cell-based vaccines.26  

       Despite the advantages of chemotherapy, radiation therapy, and immunotherapy,  
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these treatments face some challenges. Chemotherapy shows toxic effect to normal cells  

and also kills fast-proliferating healthy cells including those in bone marrow, the  

digestive system, and hair follicles.27 In addition, many anticancer drugs used in  

chemotherapy develop drug resistance which may contribute to a low therapeutic index 

and lead to administration of the maximum tolerated dose, often resulting in a non-

specific toxic effect in the body due to the drug insensitivity development. Although 

radiation therapy targets the localized cancer cells, the reactive free radical ions formed 

during radiation can affect and destroy normal cells.21 Common initial side effects of 

radiation therapy include nausea, diarrhea, mucous membrane inflammation, and skin 

redness, and late side effects involve fibrosis, neural and vascular damage, endocrine and 

growth-related effects.28 In the case of immunotherapy, cancer-targeted treatments by 

monoclonal antibodies may also induce autoimmunity, and systemic inflammation.24  

 

1.4. Gene Therapy in Cancer 

       Gene therapy is an attractive approach to treat cancer, in that it introduces specific 

genes to enhance gene expression, and silences or replaces mutated genes to correct 

genetic defects in cancer. Thus, transgenes, an artificial gene, can be effectively delivered 

to target sites to be activated and express the therapeutic genes necessary to slow cancer 

cell growth or lead to cancer cell death. Tumor suppressor genes, stability genes, and 

oncogenes are three types of genes that have been used in cancer gene therapy.29 Table 

1.1. summarizes the therapeutic genes that belong to tumor suppressor genes, stability 

genes, and oncogenes, and their therapeutic function with regard to target tumors.      

       Tumor suppressor genes are involved in cell growth, arrest, and cell death. These     
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Table 1.1. Cancer gene therapy 

 

Gene category Target genes                                            Function Tumor types 

Tumor 

suppressor genes 

p53  Cell growth arrest, 

apoptosis 

Breast, ovary, bladder  30, 31  

 p21 Cell cycle arrest Breast, colon 32 

 Rb  Cell cycle entry 

regulation, apoptosis 

Liver 33  

 PTEN  PI3K pathway negative 

regulator 

(inhibit cell 

proliferation,  growth,  

and cell survival) 

Prostate, bladder 34, 35, 36  

Stability genes BRCA1/2 DNA repair Breast, ovary  37, 38 

 Oncogenes MDM2 p53 inhibition Prostate 39 

 HER2 Cell cycle progression, 

survival, proliferation 

Breast , ovary, gastric 40, 41, 42 

 

 c-kit Cell growth, 

proliferation, survival 

Gastrointestinal stromal 

tumors  43, 44 

 MET Cell proliferation, 

motility 

Lung, breast, colorectal, 

prostate  45-47 

 Ras Cell proliferation, 

survival, differentiation 

Colorectal, pancrease lung, 

thyroid, melanoma, liver, 

kidney  48, 2 

 

Rb: retinoblastoma 

PTEN: phosphatase, tensin homologue, deleted on chromosome 10 

PI3K: phosphatidylinositol 3-kinases  

BRCA1: breast cancer 1 

MDM2: murine double minute 2 

HER2: human epidermal growth factor receptor 2, tyrosine kinase receptor 

c-kit: tyrosine kinase receptor 

MET: tyrosine kinase receptor encoded for hepatocyte growth factor 

Ras: gene involved in kinase signaling pathways 
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genes are mutated in many cancers, and this mutation reduces their normal activity. The  

inactivation of tumor suppressor genes affects the cell number and rate of cell growth  

which can cause cancer.29 p53 is one of the most well-known tumor suppressor proteins, 

playing an important role in cell cycle arrest, DNA repair, and apoptosis, and it has been 

reported to be mutated in many types of human cancer.49 Thus, p53 has been delivered 

via several virus and nonviral vectors, and demonstrated efficient p53 expression, 

apoptosis, and tumor regression.50, 51  

       Stability genes are related to genomic stability, and DNA damage without an 

appropriate response can result in genomic instability and an accumulation of mutations. 

Specifically, BRCA1 is one of the stability genes involved in repairing double strand 

DNA breaks in the presence of BRCA2 and the BARD1 (BRCA1-binding protein). It has 

been demonstrated that chromosome instability and no repairing of damaged DNA were 

observed in the BRCA1 deficient cells.52 Because many cancers have been found to be 

defective with these stability genes, therapies using genes targeting DNA repair have 

been conducted to treat cancer.53, 54         

       Oncogenes are genes with the ability to induce cancer. If proto-oncogenes are 

mutated or too many oncogenes are expressed, it can cause cell growth without control 

and contribute to cancer development. HER2 is a well-known oncogene that is 

overexpressed in aggressive breast cancer and encodes a tyrosine kinase growth factor 

receptor which is involved in cell growth, motility, and differentiation.40, 41 Therefore, 

changes in HER2 levels activate the downstream signaling pathway, PI3K, MAPK, and 

PLCγ, and induce cell proliferation while preventing apoptosis.42 HER2 gene targeting 

therapy has been widely used with chemotherapy, and HER2-specific siRNA has been  
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delivered to treat cancers.55, 56   

       In order to achieve a successful cancer gene therapy, gene vectors are often utilized.  

These are helpful tools for transferring sufficient copies of the necessary therapeutic  

genes to cancer cells to reach the most effective therapeutic gene expression levels. 

Therefore, gene vectors play an important role in gene transfer and gene expression to 

treat cancer. Two main gene vectors for cancer gene therapy, viral and nonviral vectors, 

will be covered in depth in section 1.4.1.  

 

1.4.1. Viral and Nonviral Gene Vectors 

       Viral vectors can efficiently deliver genes to target cells since transferred DNA 

integrates into the host chromosomal DNA. Viruses are composed of viral genes, proteins, 

and in some cases, membrane lipids for enveloped viruses.57 The capsid proteins protect 

viral genomes, and the lipid bilayer membrane protects the capsid. In order to integrate 

into the host genome, viruses must across the cell membrane. Viruses enter the host cell 

via endocytic pathways.58 An enveloped virus penetrates the membrane via fusion; on the 

other hand, a nonenveloped virus enters the cell via nuclear pore formation or membrane 

lysis. The virus, such as influenza virus, is delivered into the endosome, lysosomes, and 

endoplasmic reticulum after penetration, and later moved to the perinuclear regions via 

microtubules. Then the virus binds to the nuclear pore complex, and the viral genome is 

released into the nucleus for replication. Therefore, viruses exhibit highly efficient gene 

delivery and gene expression of the therapeutic gene. 

       Viruses can also carry foreign genes and provide efficient gene delivery and 

expression. However, viral gene therapy has several disadvantages including  
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mutagenicity, cytotoxicity, immunogenicity, and limited loading space. Viral vectors also  

have difficulties in manufacturing and storage.   

       Naked/plasmid DNA is one of the most popular nonviral vector-mediated approaches  

that has been applied in the gene therapy clinical trials. However, the large size of the 

naked genes is susceptible to rapid clearance and nuclease degradation. Moreover, its 

hydrophilicity hampers the crossing of the hydrophobic cell membrane. Thus, naked 

DNA is delivered into target tissues by injection and results in gene expression with 

therapeutic protein production. Specifically, jet injection, electroporation, and gene gun 

methods were applied to deliver naked DNA to improve the gene transfer efficiency. 

These methods deliver DNA directly inside the cell, thus, DNA can avoid membrane 

penetration, intracellular trafficking, and enzymatic degradation. In this way, more DNA 

is delivered to the nucleus and transcribed by transcriptional machinery.    

         Nonviral vectors have been studied and applied to gene therapy due to their overall 

nonimmunogenicity and nontoxicity as compared to viral vectors, and nonviral vectors 

have been divided into two major categories: cationic lipids and polycations. The most 

commonly used cationic lipids include 1,2-dioleoyloxy-3-(trimethylammonio)-propane 

(DOTAP), N[1-(2,3-dioleyloxy) propyl]-N,N,N-trimethylammonium chloride (DOTMA), 

1,2-Dioleyl-3-phosphatidylethanolamine (DOPE), and Dioctadecylamidoglycylspermine 

(DOGS).59 Cationic lipid is composed of charged polar head group and hydrophobic 

carbon chains that form stable complexes with pDNA, called lipoplexes. It has been 

reported that DOTAP is the most popular liposomal transfection reagent that used for 

DNA and siRNA delivery, and DOPE is known as a helper lipid, often mixed with other 

lipids to facilitate cellular uptake, and endosomal escaping of lipoplexes, and to enhance  
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the liposome-mediated gene transfection.60, 61 

       Cationic polymers include poly (L-lysine) (PLL), branched polyethylenimine (bPEI),  

and polyamidoamine dendrimers (PAMAM). PLL was the first polycation used as a gene  

carrier, and bPEI has been considered as the gold standard for the gene delivery system. 

Cationic PAMAM has been also investigated as a gene carrier due to the facile regulation 

of number of functional groups, as well as size and surface charge by producing different 

generation of dendrimers.62 In addition, chitosan, gelatin, dextran, pullulan, and pronectin 

are typical examples of natural polymers which are widely used in gene delivery due to 

their outstanding biocompatibility and degradability.63, 64 

       Cationic lipids and polymers bind to negatively-charged DNA via electrostatic 

interactions to form lipoplexes and polyplexes. Both lipids and polymers can enhance the 

cellular uptake of genes via an endocytosis-mediated uptake. After the gene containing 

nonviral vectors are internalized, the complexes will undergo intracellular trafficking 

pathways. Consequently, endosomal acidification causes membrane fusion, and genes are 

released to the cytosol and delivered to the nucleus in order to be transcribed.     

       Nonviral vectors are easy to prepare and have the ability to carry a large cargo size. 

These vectors are viable for large-scale manufacturing. They show lower 

immunogenicity than viral vectors, thus making them suitable for repeated use. That 

being said, the main disadvantages to their use include their low transfection efficiency 

and transient gene expression. Table 1.2. lists types of viral and nonviral vectors, 

delivered genes, and major drawbacks of each vector type. 
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1.4.2. Clinical Trials 

       Gene carriers used in clinical trials are dominated primarily by viral vectors, with 

only small fractions of nonviral vectors used in gene therapy clinical trials. More 

specifically, viral vector-mediated gene therapy currently occupies almost 70% of the 

clinical trials to treat cancer, inherited monogenic disorders such as cystic fibrosis, and 

infectious disease like HIV.78  

       The first clinical trial was performed and reported in 1990, using a retrovirus to treat 

metastatic melanoma.79 In 1999, adenovirus vector mediated gene therapy resulted in the 

death of a  patient with ornithine transcarbamylase (OTC), and in 2000, three patients 

with X-linked severe combined immunodeficiency (SCID)-XI disease were treated with 

retrovirus mediated gene therapy.57 In 2006, two patients with metastatic melanoma were 

treated using a retrovirus which encoded a T cell receptor and showed sustained levels up 

to 1 year with metastatic lesions regression.78 Among several types of viral vectors, 

adenovirus (23.3%) and retrovirus (19.7%) are the most widely used in gene therapy 

clinical trials.78 However, retrovirus-mediated gene therapy is currently decreasing in use.  

       Nonviral gene therapy is not as widely conducted in clinical trials as viral gene 

therapy, but nonviral vector applications are in progress. Nonviral vectors have less 

safety risks, but they have major limitations with regards to efficiently transferring genes. 

Delivery of naked DNA is the most popular and commonly used nonviral gene therapy in 

clinical trials followed by lipofection and gene gun.78 It has been reported that about 14% 

of the naked DNA injection into a tissue was tested in clinical trials. Lipofection, a lipid- 

mediated DNA transfection, is the second most popular method within nonviral vector 

categories. Lipofection makes up about 9% of all gene therapy clinical trials.        
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       In the 1960s, divinylethermaleic anhydride (DIVEMA), a synthetic polymeric  

anticancer agent, was used in the first clinical trial, and polymer-drug conjugates, micelle,  

and PEGylated proteins were clinically tested in the 1970s.80 Furthermore, cationic lipids  

have been used in clinical trials. For example, DC-Chol/DOPE liposomes, one of the 

cationic lipids, were approved for a clinical trial in 1992.81 In 1994, vascular endothelial 

growth factor (phVEGF) gene transfer driven by a cytomegalovirus (CMV) promoter was 

performed for limb ischemia patients.82  

 

1.4.3. Extracellular Barriers 

       Extracellular barriers are relevant to the efficacy of gene transfer in in vivo 

applications. The salt concentration in blood changes the physicochemical stability of 

complexes and induces aggregations between complexes.83 It has been reported that 

complex interactions with extracellular anionic glycosaminoglycans also affect the gene 

release from the vectors and its efficiency.59, 84 Moreover, negative charged blood 

components like albumin can cause nonspecific interactions of complexes with serum 

proteins, and these unwanted interactions will change the surface charge of the 

complexes which lead to size increase, cellular uptake hindrance, aggregation, and rapid 

clearance by phagocytosis.85 Specifically, rapid clearance via the mononuclear phagocyte 

system (MPS) happens when complexes bind to plasma proteins and are recognized by 

macrophages which are mostly located in liver, spleen, and bone marrow.86  

       Limited levels of gene expression due to the extracellular barriers can be prolonged  

by shielding techniques, also known as PEGylation. PEG shielding on the positive 

surface charge provides steric hindrance and protects against anionic components in 
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blood as well as physical stability in blood for longer circulation. Thus, PEGylated 

complexes increase circulation time in blood and enhance the therapeutic index of the 

complexes as well as the half-life extension. The increase in therapeutic index indicates 

increase of gene efficacy and toxic effect reduction. More specifically, long circulation of 

complexes can reduce the MPS uptake rate and complexes are able to accumulate at 

targeted tumor sites. In addition, long circulating particles are able to accumulate at 

disease sites due to the EPR (enhanced permeability and retention effect) effect. When 

particles are more efficiently delivered in specific target sites, toxicity on the nontarget 

sites can be reduced. Therefore, this will result in the enhancement of the therapeutic 

plasma concentration and AUCs (area under the plasma concentration time curve) of the 

complexes.  

 

1.4.4. Intracellular Barriers 

       Polyplexes or lipoplexes enter the cells via charge mediated interaction with lipid 

bilayer, receptor-mediated endocytosis, or ligand-receptor binding interactions.87  

However, there are several intracellular obstacles that challenge the gene delivery vectors. 

The intracellular barriers include cellular internalization, endosome escape, lysosomal 

trafficking, and nuclear entry. 77, 88         

       It has been reported that physicochemical characteristics of polyplexes such as 

chemical composition of polymer, size, surface charge, and surface chemistry is relevant 

to cellular internalization. 89 Nanoscale particles are internalized faster than micron size 

particles,89 and particles with the positive surface charge are internalized easier than 

neutral or negative charged particles.90, 91 In addition, chemical compositions, which 
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contains amines in the polymers, are easily internalized and number of amines in the 

polymer repeating units affect the cellular internalization, because the positive charge 

from amine groups in polymers increased the charge interactions with the cell surface.92  

Several studies demonstrated that DNA complexes with cationic lipids and polymers are 

internalized by clathrin and caveolae-mediated endocytosis when the particle diameter is 

100-200 nm or smaller than 100 nm, as well as macropinocytosis when the complexes are 

larger than 200 nm.91  

       Rejman et al. have demonstrated the internalization of polyplexes and lipoplexes by 

incubating endocytosis inhibitors and monitored fluorescence colocalization in cells 

using fluorescent labeled PEI and fluorescent dextran that label the lysosomal 

compartment.93 The reported polyplexes uptake is mediated by two pathways which are 

clathrin-mediated and caveolae-mediated endocytosis, whereas the lipoplexes uptake is 

mediated by only the clathrin-mediated endocytosis. Depending on the intracellular 

trafficking pathways, the transfection efficiency was affected. In case of polyplexes, the 

polyplexes internalized by caveolae-mediated endocytosis was more efficient transfection 

than the clathrin-mediated pathway.93  

       However, the cellular internalization of polyplexes and lipoplexes can occur both in 

targeted and nontargeted sites via nonspecific interactions with the cell surface.  

Therefore, some researchers have been used for targeting gene delivery using receptor-

mediated endocytosis for transfection efficiency enhancement. Targeted gene delivery 

focuses on tumors using receptors like folate, transferrin, antibody, and sugars such as 

mannose, glucose, and galactose. Coupling of targeting ligands on the complexes will be 

recognized by a cell surface receptor and leads to cellular uptake. For example, 

17



 

 

 

 

transferrin coupling to PEI enhanced the transfection efficiency up to hundred-fold, 94 

and the folate receptor which is abundantly expressed in human cancers has been used in 

many polymers such as PLL-folate, PEI-folate, and folate-DOPE conjugates. Folate 

receptor-mediated pDNA delivery showed that gene transfer efficiency was highly 

efficient dependent on the folate receptor expression level in the cell and resulted a higher 

gene expression than control polymers without the folate receptor.95 In addition, targeting 

specific cells through sugar conjugations have been studied for gene delivery. 

Conjugation of sugar moieties to polymers and lipids resulted in a better gene expression 

through receptor-mediated endocytosis especially galactose for hepatocyte targeting, and 

mannose for dendritic cells.94, 96  

       Under the process of endocytosis, escaping from endosome is another critical step. 

Polyplexes are sequestered in intracellular vesicles like endosomes, and inefficient 

endosomal escape may lead to lysosomal trafficking and undergo degradation due to the 

presence of degradative enzymes in the acidic vesicles and eventually cause reduction of 

gene transfer efficiency. However, escaping too early from the endosomes can cause a 

problem as well, because the distance far away from the nucleus makes it difficult to 

polyplexes to translocate genes inside the nucleus, and genes that are released in 

cytoplasm can be degraded by nuclease located in cytoplasm.97  Mechanisms of 

endosomal escaping and strategies will be discussed in section 1.5.1.1.  

       After free pDNA or polyplexes escape from the endolysosomes, pDNA must be 

transported and localized into the nucleus. The transport of free pDNA through the 

cytoplasm to the nucleus is also challenging due to the immobility of pDNA in cytoplasm 

hinders efficient pDNA transfer and it can be degraded by cytosolic nucleases.98 Thus, 

18



 

 

 

 

pDNA near the perinuclear region has a high possibility to translocate inside the 

nucleus.97 DNA enters the nucleus during mitosis when the nuclear membrane is  

disrupted or uses specific sequence for active nuclear transport.    

       Nuclear pore complexes (NPC) act as a gate for the nuclear entry. The NPC diameter  

is about 9 nm, and it is composed of four different blocks which include ring subunit,  

column subunit, lumenal subunit, and annular subunit. 99, 100 Small proteins less than 9 

nm in diameter or less than 40 kDa in mass can passively diffuse through the NPC, and 

particles between 9 and 40 nm in diameter of 40 kDa to 60 kDa in mass involve active 

transport.100  

       Generally, polyplexes with the positive surface charge can interact with anionic 

microtubules and transport along the microtubules. Many studies have provided evidence 

that polyplexes conjugated with nuclear localization signal (NLS) or cell penetrating 

peptides (CPPs) can facilitate nuclear entry.101, 102 The NLS is a sorting signal that brings 

nuclear proteins to the nucleus. The signals are consist of one or two short sequences and 

these sequences have many positively charged lysine and arginine residues. CPPs 

efficiently facilitate intracellular delivery of cargoes such as plasmid DNA, 

oligonucleotides, siRNA, peptide nucleic acid, proteins and peptides, and small 

molecules across the plasma membrane and deliver the cargoes to specific organelles 

within the cell.101 Nucleic acids delivery by CPPs provides gene expression regulation 

and it has been used for siRNA, antisense oligonucleotide, and pDNA.101 However, there 

are still limitations for delivering these nucleic acids for high molecular weight and 

negative charges, because they have low cellular trafficking and uptake. 
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1.5. Gene Delivery with Stimuli-responsive Polymers 

       Stimuli-responsive polymers undergo changes of physical or chemical properties of  

the polymers in response to stimuli in the environmental conditions. The stimuli can be  

classified into three different subgroups; chemical, physical, or biological/biochemical  

stimulus. Table. 1.3. summarizes representative stimuli. 

       Stimuli-responsive polymers have been investigated and applied to many areas such 

as biosensors, imaging agents, and drug or gene delivery carriers because of their great 

potential in shape, surface charge, and solubility changes by external or internal stimuli.  

The benefits of using stimuli-responsive polymers have been reported because of their 

specific responses to tumors, the side effect reduction, and reversible changes.103 Among 

all of the stimuli-responsive polymers, the three main types of stimuli-sensitive polymers 

are reviewed in this section which will be pH sensitive polymers, temperature-responsive 

polymers, and biodegradable polymers.       

 

1.5.1. pH-sensitive Polymers 

       The pH conditions of extracellular and intracellular compartments are different. The 

pH of blood is 7.4, and the pH of primary tumors and metastasized tumors is lower than 

the pH of blood and normal tissue. For example, extracellular pH in solid tumors 

becomes acidic and drops to pH 6.5.103, 104 The cellular components such as the early/late 

endosomes, lysosomes, endoplasmic reticulum, cytoplasm, and nucleus have their own  

pH values. For instance, the early endosome has pH 5.5-7, the late endosome has pH 5-

5.5, the lysosome has pH 4-5, and the cytoplasm and nucleus have a pH of 7.2.110, 111 The 

variations in extra/intracellular pHs allow designing of pH-responsive gene delivery     
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Table.1.3. Types of stimuli 

 

Type Example 

Chemical stimulus pH109 

Salts110 

Ionic strength111 

Physical stimulus Magnetic field103 

UV/ visible light109 

Ultrasound104, 107 

Temperature103 

Electric current109 

Biological/Biochemical stimulus Antigen103 

Enzymes103, 107 

Temperature104 

pH changes104 

Redox environment104 
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system and applying for pH targeted therapy.107           

       The pH-sensitive polymers contain ionizable functional groups that respond to pH 

changes.108 The most typical ionizable functional groups used for pH-sensitive polymer                                               

synthesis include carboxylic groups (-COOH), primary amines groups (-NH2), and 

sulfonic groups (-SO3). Table 1.4 summarizes a few of functional groups, representative 

polymers, and its pKa/pKb values.  

       The pH-sensitive behavior of polymers is triggered by protonation-deprotonation 

state of ionizable functional groups. Depending on the difference of environmental pH 

and intrinsic pKa of polymers, the stability of polymers can be changed and can influence 

the interaction with genetic materials. The pKa value of functional groups results in a 

protonated state when pH values becomes lower than pKa, and polymer becomes a 

deprotonated state as pH value becomes higher than pKa. For instance, the primary 

amines in PLL have a pKa value of 10.5 and it becomes protonated at physiological pH 

7.4. Therefore, protonated primary amines and phosphate groups in pDNA form 

polyplexes. bPEI has a high amine density due to the three different types of amine 

groups.  The primary amine groups in bPEI have a pKa value of 9, and secondary and 

tertiary amine groups have a pKa 8 and pKa 6-7, respectively. The primary amines are 

used for gene condensation, while secondary and tertiary amines are served for 

endosomal escaping ability.  

       The ionization of functional groups upon pH changes not only influences the stability  

of polymers but also affects conformation change. Poly(amidoamine) (PAMAM) 

dendrimers are one of the pH-responsive polymers that undergo conformational change 

due to the local polarity changes via primary amines and tertiary amines protonation.112  
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Table 1.4. Polymer functional groups and pKa/pKb 

 

 Functional group Polymer pKa/pKb 

Acid -COOH PAA 

PET 

PMAA 

4.5113 

4.5-5.5114 

5.5115 

 -SO3H PSS 2-3116 

Base -NH2 PLL 

PEI 

 

 

PAMA 

10.5117 

1º amine 9, 

2º amine 8, 

3º amine 6-7118 

7.6119 

-N(CH3)2 PDMAEMA 7.78120 

 

PAA: Poly(acrylic acid), PET: Poly(ethylene terephthalate), PMAA: Poly(methacrylic 

acid), PSS: poly(styrene sulfonate), PLL: Poly (L-lysine), PEI: Polyethylenimine, PAMA: 

Poly(2-aminoethyl methacrylate), PDMAEMA: poly (N, N- dimethylaminoethyl 

methacrylate) 
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At the high pH, primary amines are all protonated and as pH goes down, more amines are 

protonated and produce either a ‘dense core’ or a ‘dense shell’ conformation. Therefore, 

the cationic net surface charge of PAMAM dendrimers is also used as a transfection  

agent which can form stable polyplexes with effective pDNA binding. In addition, 

enhanced binding of pDNA and efficient gene transfection was demonstrated with higher 

generation of dendrimers.121  

         The pH-sensitive polymers have been applied to tumor specific targeting, hypoxic 

disease tissue targeting, and endosomal targeting due to the more acidic pH environments 

as mentioned above.104 Polymers will remain stable until they reach the certain targeted 

pH, and the functional groups in the polymers undergo sharp response to the pH. Further 

approaches of pH-sensitive polymers have been used for pH-triggered DNA release in 

DNA vaccination therapy. Wang et al. reported that pDNA release can be controlled in a 

pH-dependent manner by synthesizing poly(ortho esters) (POEs).122 As pH drops to 5, the 

DNA release was accelerated due to the degradation of ortho-ester bonds in the POEs. 

Moreover, efficient targeted delivery was observed via pH sensitive polymer, whereas 

nonsensitive polymer did not show any pH response and had no effect on tumor mass.122   

 

 

1.5.1.1. Endosomal Targeting Polymers 

 

       The pH-dependent disruptive activity of targeting endosomes is one of the important 

properties for polymeric gene delivery carrier, because poor endosomal escape is one of 

the major intracellular barriers for gene delivery. Moreover, it has been proposed that the 

level of gene expression is relevant to endosomal escaping ability.123 Thus, cationic 

polymers with endosomolytic activity are important to disrupt the endosomal membrane  
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and facilitate endosomal escaping for efficient release of pDNA into the cytoplasm before  

they end up lysosomes and undergo degradation. Some of the endosomolytic polymers  

that have been used for gene delivery are mentioned in Table 1.5.                            

       Inside the cells, endosome and lysosome have relatively low acidic pH. Within the  

acidic endosomal compartments, polymers use different types of membrane-

destabilization mechanism to escape from the endosomes.124 The most popular 

endosomal escaping mechanism is via proton sponge effect. The pH sensitive polymer 

becomes protonated in acidic endosomal pH and leads to the flow of counter ions and 

water inside the vesicles that build up osmotic pressure and subsequently rupture the 

endosomal membrane.107 PEI is one of the examples that supports the endosomal 

escaping mechanism. At physiological pH at 7.4, two thirds of amines are not protonated. 

However, as pH goes down to endosomal pH, the secondary and tertiary amines are 

protonated due to the pKa values, and more amines become protonated at endosomal 

pH.125 Therefore, the powerful proton buffering ability of PEI results in effective 

endosomal release of gene cargos and leads to high transfection efficiency. 

Poly(amidoamine) (PAA) is also reported as a gene carrier with a pH-dependent 

membrane activity which induces a high buffering capacity. Unlike PEI, protonation of 

tertiary amines in PAA structure undergo conformational change and results in 

membrane damage at low pH.126 PAA has been investigated as an endosomolytic 

polymer that has a high transfection capability. Wang’s group reported the synthesis of 

PAAs with different branched architectures and demonstrated a correlation between 

branching and gene transfection ability.127 The transfection studies showed that the level 

of gene transfection efficiency was improved with increase in branched structure due to   

25



 

 

 

 

T
ab

le
 1

.5
. 

E
n
d
o
so

m
o
ly

ti
c 

p
o
ly

m
er

s 
an

d
 t

re
at

m
en

t 
o
u
tc

o
m

es
 

 

C
a
te

g
o
ry

 
E

n
d

o
so

m
o
ly

ti
c 

p
o
ly

m
er

 
N

u
cl

ei
c 

a
ci

d
 t

y
p

e
 

O
u

tc
o
m

e
 

P
o
ly

m
er

 
P

o
ly

( L
-h

is
ti

d
in

e)
-P

E
G

 
p
D

N
A

 
T

h
e 

le
v
el

 o
f 

g
en

e 
ex

p
re

ss
io

n
 w

as
 s

im
il

ar
 t

o
 

P
L

L
/p

D
N

A
, 

b
u
t 

th
e 

c
y
to

to
x

ic
it

y
 w

as
  

si
g
n
if

ic
an

tl
y
 l

o
w

 d
u
e 

to
 t

h
e 

u
n
ch

ar
g
ed

 

p
o
ly

h
is

ti
d
in

e 
at

 p
H

 7
.2

.1
3

3
  

 

 

H
is

ti
d

y
la

te
d
 p

o
ly

( L
-l

y
si

n
e)

 
p
D

N
A

 
G

en
e 

ex
p
re

ss
io

n
 r

ev
ea

le
d
 3

-4
.5

 o
rd

er
 o

f 

m
ag

n
it

u
d
e 

h
ig

h
er

 t
h
an

 t
h

at
 o

f 
P

L
L

/p
D

N
A

.1
3
4
 

P
o
ly

et
h

y
le

n
im

in
e 

(P
E

I)
 

p
D

N
A

 
P

ro
to

n
ab

le
 a

m
in

es
 p

ro
v
id

ed
 a

 s
tr

o
n

g
 p

ro
to

n
 

b
u
ff

er
in

g
 a

t 
ac

id
ic

 p
H

s 
an

d
 w

id
el

y
 u

se
d
 a

s 
 

in
 v

it
ro

 a
n
d
 i

n
 v

iv
o
 g

en
e 

ca
rr

ie
rs

.1
3
5
 

 

P
o
ly

am
id

o
am

in
e 

(P
A

M
A

M
)-

  

h
y
d
ro

x
y
l-

te
rm

in
at

ed
 d

en
d
ri

m
er

 

Q
P

A
M

A
M

-O
H

 d
en

d
ri

m
er

s 

 

si
R

N
A

 
T

h
e 

P
A

M
A

M
 i

n
d
u
ce

d
 a

 p
ro

to
n
 s

p
o
n
g
e 

ef
fe

ct
  

fr
o
m

 t
er

ti
ar

y
 a

m
in

es
 a

n
d
 s

h
o
w

ed
 a

 s
ta

ti
st

ic
al

ly
 

si
g
n
if

ic
an

t 
g
en

e 
k
n
o
ck

d
o

w
n
 e

ff
ic

ie
n
c
y
.1

3
6
  

(P
P

A
A

) 
p
D

N
A

 
E

n
h
an

ce
d
 p

H
-d

ep
en

d
en

t 
h
em

o
ly

si
s 

ac
ti

v
it

y
 

sh
o
w

ed
 a

n
 i

m
p
ro

v
ed

 g
en

e 
ex

p
re

ss
io

n
 e

v
en

 i
n
 

se
ru

m
 c

o
n
d
it

io
n
.1

3
7
  

 

P
o
ly

[N
-(

2
 a

m
in

o
et

h
y
l)

 

m
et

h
ac

ry
la

m
id

e 

tr
if

lu
o
ro

ac
et

at
e]

 (
P

A
E

M
A

) 

p
D

N
A

 
T

h
e 

h
ig

h
es

t 
tr

an
sf

ec
ti

o
n
 e

ff
ic

ie
n

c
y
 w

as
 

re
su

lt
ed

 f
ro

m
  

p
o
ly

m
er

s 
co

n
ta

in
in

g
 m

an
y
 

p
ri

m
ar

y
 a

m
in

o
 g

ro
u
p
s 

w
h
ic

h
 c

an
 i

n
d
u
ce

 a
n
 

ef
fi

ci
en

t 
en

d
o
so

m
al

 r
el

ea
se

.1
3
8
  

 

26



 

 

 

 

T
ab

le
 1

.5
. 

(C
o
n
ti

n
u
ed

) 
 

 

C
a
te

g
o
ry

 

 
E

n
d

o
so

m
o
ly

ti
c 

p
ep

ti
d

e 
 

N
u

cl
ei

c 
a
ci

d
 t

y
p

e
 

O
u

tc
o
m

e
 

 
P

o
ly

(d
im

et
h

y
la

m
in

o
et

h
y
l 

m
et

h
ac

ry
la

te
) 

(p
D

M
A

E
M

A
) 

-

ch
ai

n
 t

ra
n
sf

er
 a

g
en

t 
(C

T
A

) 
 

p
D

M
A

E
M

A
 m

ac
ro

 C
T

A
 

 
 

si
R

N
A

 
E

n
h
an

ce
d
 h

em
o
ly

ti
c 

ac
ti

v
it

y
 a

t 
en

d
o
so

m
al

  

p
H

 r
es

u
lt

ed
 i

n
 a

 s
tr

o
n

g
 g

en
e 

si
le

n
ci

n
g
 

ef
fi

ci
en

c
y
 a

t 
ch

ar
g
e 

ra
ti

o
 8

.1
3
9
  

D
y
n

am
ic

 p
o
ly

co
n
ju

g
at

es
 

si
R

N
A

 
A

 m
em

b
ra

n
e 

ac
ti

v
e 

p
o
ly

m
er

 i
n
d
u
ce

d
 n

ea
rl

y
 

8
0
%

 k
n
o
ck

d
o
w

n
 o

f 
ap

o
B

 m
R

N
A

.1
4
0
  

 

P
o
ly

p
ep

ti
d
e 

C
y
s-

H
is

-L
y
s 6

-H
is

-C
y
s 

  

p
D

N
A

 
H

is
 c

o
n
te

n
t 

to
 2

0
%

 i
n
 p

ep
ti

d
es

 r
es

u
lt

ed
 a

 1
0
 

fo
ld

 t
ra

n
sf

ec
ti

o
n
 e

ff
ic

ie
n

cy
 e

n
h
an

ce
m

en
t 

th
an

 

th
e 

p
ep

ti
d
e 

w
it

h
o
u
t 

H
is

 r
es

id
u
e.

1
4
1
  

 

 

C
y
s-

H
is

3
/6

-L
y
s 3

-H
is

3
/6

-C
y
s 

  

p
D

N
A

 
H

is
 3

 p
ro

d
u
ce

d
 a

 l
o
w

er
 t

ra
n
sf

ec
ti

o
n
 e

ff
ic

ie
n

c
y
 

th
an

 P
E

I/
p
D

N
A

, 
b
u
t 

h
ig

h
er

 H
is

 c
o
n
te

n
t 

 

(H
is

 6
) 

in
d
u
ce

d
 a

 s
u
p
er

io
r 

g
en

e 
ex

p
re

ss
io

n
 

ac
ti

v
it

y
 w

h
ic

h
 w

as
 s

im
il

ar
 t

o
 P

E
I/

p
D

N
A

.1
3
2
  

 

H
5
W

Y
G

 

 

p
D

N
A

 
S

el
ec

ti
v
e 

m
em

b
ra

n
e 

d
es

ta
b
il

iz
in

g
 a

ct
iv

it
y
 a

t 

p
H

 6
.2

 p
ro

v
id

ed
 a

 9
3
, 

2
1

5
, 

an
d
 6

3
0
 f

o
ld

 

tr
an

sf
ec

ti
o
n
 e

ff
ic

ie
n

c
y
 e

n
h
an

ce
m

en
t 

in
  

H
ep

G
2
, 

B
1
6
, 

an
d
 R

b
-1

 c
el

ls
, 

re
sp

ec
ti

v
el

y
.1

3
4
  

 

m
el

li
ti

n
 

p
D

N
A

 
A

 m
em

b
ra

n
e 

d
is

ru
p
ti

o
n
 a

ct
iv

it
y
 o

f 
m

el
it

ti
n
 

fa
ci

li
ta

te
d
 t

h
e 

re
le

as
e 

o
f 

fl
u
o
re

sc
ei

n
-P

E
G

  

an
d
 i

n
cr

ea
se

d
 g

en
e 

ex
p
re

ss
io

n
 u

p
 t

o
 5

-1
2
  

fo
ld

 h
ig

h
er

.1
4
2
  

 

 

27



 

 

 

 

T
ab

le
 1

.5
. 

(C
o
n
ti

n
u
ed

) 
 

 

C
a
te

g
o
ry

 

 
E

n
d

o
so

m
o
ly

ti
c 

p
ep

ti
d

e 
N

u
cl

ei
c 

a
ci

d
 t

y
p

e
 

O
u

tc
o
m

e
 

 
T

at
 s

eq
u
en

ce
 i

n
co

rp
o

ra
ti

n
g
 1

0
 

h
is

ti
d
in

e 
re

si
d
u
e 

(T
at

- 
1
0
H

) 

 

p
D

N
A

 
T

at
-1

0
 H

 p
ro

v
id

ed
 a

 7
0
0

0
 f

o
ld

 h
ig

h
er

 g
en

e 

ex
p
re

ss
io

n
 t

h
an

 t
h
at

 o
f 

T
at

 c
o
n
tr

o
l,

 a
n
d
 

re
su

lt
ed

 i
n
 a

 c
o
m

p
ar

ab
le

 l
ev

el
s 

o
f 

g
en

e 
ac

ti
v
it

y
 

th
an

 t
h
at

 o
f 

P
E

I/
p
D

N
A

.1
4

3
  

G
A

L
A

 

 

si
R

N
A

 
A

 p
H

-s
en

si
ti

v
e 

m
em

b
ra

n
e 

d
is

ru
p
ti

o
n
 a

ct
iv

it
y
 

o
f 

G
A

L
A

 e
n
h

an
ce

d
 a

 l
u
ci

fe
ra

se
 g

en
e 

si
le

n
ci

n
g
 

in
 t

h
e 

H
T

 1
0
8
0
 h

u
m

an
 f

ib
ro

sa
rc

o
m

a 
ce

ll
 

li
n
e.

1
4
4
  

cr
o
ss

-l
in

k
ed

 K
A

L
A

  

cl
-K

A
L

A
 

  

si
R

N
A

 
H

ig
h
er

 g
en

e 
si

le
n

ci
n

g
 e

ff
ic

ie
n
c
y
 w

as
 o

b
se

rv
ed

 

d
u
e 

to
 t

h
e 

m
em

b
ra

n
e 

d
es

ta
b
il

iz
in

g
 a

ct
iv

it
y
 o

f 

cl
-K

A
L

A
 t

h
an

 t
h

at
 o

f 
n
ak

ed
 K

A
L

A
 a

n
d
 P

E
I-

 

m
ed

ia
te

d
 g

en
e 

d
el

iv
er

y
.1

4
5
  

 

28



 

 

 

the increasing number of primary and tertiary amines, leading to enhanced buffering  

ability and pDNA condensation.    

       Another mechanism of endosomal escaping is via pore formation. Huang et al.  

proposed that some peptides bind to the lipid bilayer with a high affinity in the rim of the  

pore. Subsequently, the peptide binding induces an internal membrane tension and pores 

are made under tension in the membrane.128 Melittin is one of the endosomal escape 

agents that inserts into the membrane and destabilizes the membrane by its high 

membrane lytic activity.124 It was shown that melittin covalently linked to PEI is able to 

facilitate not only efficient endosomal escape but also the nuclear homing activity after 

release of polyplexes into the cytoplasm; thus, it leads to significant enhancement of gene 

expression.129  

       Fusion in the endosomal membrane is another mechanism that destabilizes the     

endosomal membrane and facilitates endosomal escaping. GALA and KALA are 

fusogenic amphipathic peptides that undergo a structural transformation upon pH changes. 

GALA (glutamic acid-alanine-leucine-alanine) is a pH-responsive 30 amino acid peptide 

that changes its conformation from a random coil to amphipathic α helix when pH drops 

7 to 5.130 At acidic endosomal pH, peptides become hydrophobic, because the glutamic 

acid residues become protonated and increased hydrophobicity induces the interaction 

with lipid bilayer that eventually causes membrane disruption.107, 131 KALA is a similar 

fusogenic peptide with reduced glutamic acid residues and some alanine residues 

replacement with lysine residues.132 It undergoes a similar conformational transition at 

low pH and shows fusion in the lipid bilayer. These fusogenic peptides have been applied 

to nonviral gene therapy due to the pH-responsive membrane disruptive behavior and 
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endosomal targeting polymers that have been studied in gene delivery application due to 

the presence of a pH-dependent membrane destabilizing activity. Histidinylated 

polymeric carriers are also known as endosomolytic polymers that destabilize the    

endosomal membrane because of the imidazole groups in histidine which respond at 

acidic endosomal pH.146, 147 The imidazole ring of poly(L-histidine) (polyHis) has a pKa 

value of  6~7.147, 148 It is generally hydrophobic and insoluble in aqueous solution at pH 

7.4; however, polyHis becomes hydrophilic and more protonated as the pH lowers below 

7 and enhances its endosomolytic efficacy via proton sponge effect. Since polyHis is not 

positively charged at neutral pH, it is hard to make a complex with pDNA. Thus, several 

researchers have been designed synthesizing polyHis with a polycation PLL. PLL 

coupled with polyHis was designed to deliver more genes into the cytoplasm by 

facilitating endosomal escape that PLL lacks. It was demonstrated that a pH-responsive 

endosomolytic behavior facilitated the release of pDNA from the endosomes and 

significantly enhanced the transfection efficiency more than with pDNA complexed with 

PLL.131, 135 In addition, aminated polyHis was further constructed for gene delivery 

system. It showed a significant reduction of cytotoxicity and a pH-dependent hemolytic 

activity at pH 6, which leads to enhanced delivery of pDNA.147  

       The significant improvement of gene therapy via endosomolytic polymers has been 

demonstrated not only in vitro studies but also in vivo applications of gene delivery. 

Rozema et al. proposed the efficient in vivo siRNA delivery in hepatocytes by using 

dynamic polyconjugates which contain masking agent and ligand.140 Once the complexes 

enter the endosome, the acidic environment inside triggers the polymers to destabilize the 

endosomal membrane and release siRNA from the endosome. Thus, the endosomolytic  
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demonstrated efficient release of polyplexes from endosomal vesicles to the cytoplasm.            

       Histidine containing protonable polycation is one of the intensively investigated  

polymers that provided highly efficient release of siRNA into the cytoplasm and showed  

enhanced knockdown in mice.  

 

1.5.2. Biodegradable Polymers 

       The major benefit of designing and synthesizing biodegradable polymers is a more  

significant reduction of cytotoxicity than that of nondegraded polymers. Polymer and 

pDNA should be dissociated after the complexes are released from the endosomes; thus, 

degradation polymer can be suited as a gene carrier, which is able to release and 

translocate pDNA into the cytosol.149 Biodegradable polymers have been synthesized to 

control release of pDNA upon an intracellular biological stimulus such as redox potential, 

pH, temperature, and enzyme.107, 150 In this section, polymers contain hydrolytic sensitive 

bonds and disulfide bonds will be discussed in detail.  

       Hydrolytically degradable polymers are one of the biodegradable polymers that have 

been linked to polycations and used to control release of nucleic acids from the 

complexes. Hydrolytically sensitive bonds include esters, amides, anhydride, and 

urethanes.150, 151 Among these, esters are a widely used biodegradable bond, and the most 

representative polyesters based polymers for gene delivery systems are poly(lactic-co-

glycolic acid) (PLGA) and poly(β-amino esters) (PBAE). PLGA is an attractive pDNA 

delivery carrier due to its high encapsulation efficiency, and controlled release via 

biocompatible polyesters that degrades by hydrolysis. However, hydrolytic degradation 

of PLGA results in low pH within the PLGA particles which can degrade and damage the  
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DNA.133, 152 Thus, many studies have been conducted to buffer the intraparticle pH and  

improve the pDNA stability by adding an excipient to the PLGA microspheres.152  

       PBAE is also known as pDNA delivery vehicles because the polymers have  

degradable bonds and primary amine end groups that can be protonated and strongly bind  

to pDNA, which form small complexes under physiological condition. PBAE is degraded 

by hydrolysis into bis(β-amino esters) which are nontoxic small byproducts.125 

Interestingly, PBAE degrades more rapidly in basic environments and slowly in acidic 

environments. Lynn et al. studied the degradation kinetics of PBAE in two different pHs 

7.4 and 5.1, and degradation profiles showed that polymers degraded rapidly in pH 7.4 

with half-life less than 2 hr, whereas half-life at pH 5.1 was extended up to 8 hr.153 The 

degradability of PBAE not only significantly reduced the cytotoxicity, but also self-

assembles with pDNA which produce stable nanoparticles and enhanced transfection 

efficiency compared to PEI under certain conditions.  

       Disulfide linked polymers have also been synthesized and applied to gene delivery 

system by taking advantage of reductive microenvironment.103 It has been demonstrated 

in several studies that disulfide linker cleavages induce intracellular disassembly of 

polyplexes and facilitate release of gene from polyplexes. Generally, disulfide bonds 

containing bioreducible polymers are stable in the oxidative extracellular environment 

and degraded in the reductive intracellular environment due to the redox potential 

between the intracellular and extracellular spaces. Many cationic gene carriers containing 

disulfide bonds have been synthesized to minimize toxicity and alter the release rate of 

gene cargo and maximized transfection efficiency. 
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1.5.2.1. Redox Responsive Polymers 

       Cationic polymers have been used to protect gene from enzyme degradation;  

however, high degree of charge density can induce high polymer toxicity and strong  

interaction with pDNA which affects gene expression. Gene transfection efficiency can  

be hindered by tight pDNA binding and high toxicity of polyplexes.154 Thus, the 

literature emphasizes that unpacking of pDNA from polyplexes is a rate-limiting step that 

affects the transfection efficiency.155 The balancing between protection and release of  

pDNA seems a critical step to selectively release gene into the intracellular compartments. 

Thus, polymers should be dissociated to release pDNA at the right time.90, 155         

       Disulfide bonds containing reducible polymers are considered ideal gene carriers 

because of the degradation of the disulfide bonds which can facilitate the unpacking of 

the polyplexes, minimize toxicity, and accelerate elimination from the body.156, 157  

Generally, cysteine residues or polymers which contain sulfhydryl groups allow disulfide 

formation when two of sulfhydryl groups undergo oxidation. Disulfide bonds are able to 

change polymer stability since they have a biodegradable ability under an intracellular 

environment. Intracellular compartments maintain high concentrations of glutathione 

(GSH), 0.5-10 mM, and keep a high reducing environment by NADPH and glutathione 

reductase, whereas GSH concentration is about 2.8 µM.158-160 Among intracellular 

compartments, cytosol has a high reducing potential that can facilitate the cleavage rates 

of the bond and trigger pDNA release mainly in the reducing cytoplasm.161,162 Therefore, 

polyplexes remain stable in extracellular compartments and undergo rapid degradation by 

reduction of disulfide bonds to free thiol in reducing intracellular environments.                                               

       Redox potential across the oxidizing extracellular and reducing intracellular  
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compartment induces thiol-disulfide exchange reaction and it is determined by GSH  

content in cells. However, there are at least 4 fold differences of GSH levels in normal  

and tumor tissue.159 For example, GSH levels in normal breast tissue are 7.2 ± 1.3  

nmol/mg protein. On the contrary MCF7 cells show GSH levels of 55 nmol/mg protein, a 

level more suitable for reducible polymer mediated gene therapy.159 Moreover, cancer 

cells display a high glutathione-S-transferase (GST) activity. The glutathione S- 

transferase (GST) activity in MCF 7 cells show 9.83 ± 0.41 nmol/mg, and other breast 

cancer cell lines such as T47D and MDA-MB-468 show 4.9 nmol/mg and 2.5 nmol/mg, 

respectively.163, 164 Therefore, the high level of GST activity and GSH in cancer cell line  

provides the optimal conditions for reducible polymer in cancer gene therapy applications 

due to degradation of bioreducible polymer, which not only triggers the release of DNA, 

but also reduces cytotoxicity inside cells by preventing accumulation of cationic 

polymers. Bioreducible polymers, cargo type, and outcome are summarized in Table 1.6.  

       Reductive sensitive bioreducible polymers have been applied for gene delivery 

system and tested for gene expression studies in vitro and in vivo. There are several 

methods to construct disulfide bonds in polymers. Disulfide linked polymers have been 

crosslinked in different molecular weights of bPEI using reducible crossing agents such 

as dithiobis(succinimidylpropionate) (DSP) and dimethyl-3,3′-dithiobispropionimidate-

2HCl (DTBP) by many scientists.156 These crosslinking reagents react with primary 

amines in PEI and produce disulfide bonds. However, the data showed that DTBP 

conjugated with PEI demonstrated more enhanced gene expression than that of DSP 

conjugated with PEI, because DTBP conjugates maintains the net charge and induce 

stronger interactions with cell membranes, whereas DSP conjugates lead to elimination                   
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of the positive charges in PEI.156   

       Sun and coworkers have synthesized reducible SS-PEI via Michael addition 

polymerization using cysteine bisacrylamide (CBA). Reactive group in CBA reacts with        

primary amines in PEI to form reducible polymer. The cytotoxicity of disulfide 

containing polymers were significantly lower than 25 kDa PEI,  and polyplexes exposed 

to reducing agents induced efficient release of pDNA. Therefore, in vitro experiments 

showed that the transfection efficiency of SS-PEI was comparable to that of 25 kDa   

PEI.165     

       Furthermore, Kang et al. reported the formation of disulfide linkages in 800 Da bPEI      

 via thiolation with 2-iminothiolane (2-IT) followed by oxidation under DMSO.166 2-IT 

reacts with primary amines in bPEI and produces amidine groups. Once bPEI is 

thioloated with 2-IT, DMSO induces oxidative polymerization and synthesizes reducible 

bPEI. Kang et al. tested efficient degradation of disulfide bonds and the release of gene 

under reducing environment and demonstrated that introduction of disulfide bonds in low 

molecular weight bPEI significantly enhanced the transfection efficiency up to 1200-

1500 fold compared to that of bPEI800/pDNA complexes.166 Thus, the authors 

emphasized the potential use of reducible bPEI as a gene delivery carrier.  

       Bioreducible poly(amidoamines) (PAA) also have been synthesized and studied for  

gene delivery system. Lin and coworkers prepared disulfide linkage polymers via michael 

addition reaction between CBA and 1-(2-aminoethyl) piperazine (AEP) which is  

a tri-functional amine monomer and synthesized p(CBA-AEP).167 p(CBA-AEP) not only   

displayed high buffering capacity, but also formed stable nano-sized complexes.  

However, Lin et al. claimed that low content of CBA (10-20%) was not efficiently         
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released pDNA, whereas higher content of CBA (60%) showed complete release of    

pDNA. Thus, disulfide contents should be optimized to obtain both enhanced levels of 

gene expression and low cell toxicity. In addition, Lin’s group also prepared several SS-                  

PAAs using same methods but various primary amines. Among PAAs, in vitro 

transfection studies showed that reducible polymers made from 4-amino-1-butanol 

(ABOL), and 5-amino-1-pentanol (APOL) displayed the highest levels of gene 

expression because of the relatively high charge density which affected the pDNA 

condensation ability and produced small particle size.154 The dissociation of disulfide 

bonds significantly enhanced the transfection activity even in 5% serum condition.   

       The advantages of a redox triggered dissociation mechanism of reducible polymers 

also showed superior gene expression activity in in vivo studies. Neu et al. constructed 

crosslinked PEI using DSP, and crosslinked PEI/pDNA complexes were delivered via the 

tail vein in Balb/c mice for systemic plasmid delivery.177 As a crosslinking degree 

increased, polyplex stability was enhanced and resulted higher blood levels with longer 

circulation time. More interestingly, the biodistribution data showed that surface 

crosslinked polyplexes significantly enhanced liver accumulation, whereas reduced 

unwanted accumulation in lung. This result might be due to high GSH concentrations in 

liver cells (0.5-11 mM), which favor degradation of disulfide bonds and facilitate pDNA 

release in the liver tissue.178 In a subsequent study, Neu’s group designed crosslinked 

PEI-PEG to improve the polyplexes stability for in vivo studies. 2 μg pCMV-Luc 

plasmids were complexed with the crosslinked PEI-PEG and injected into tail vein for 

pharmacokinetic studies. In case of crosslinked polyplexes, they were able to observe 

enhancement of blood levels up to 60 min after IV injection compared to that of PEI and  
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uncrosslinked PEI-PEG.178 The pharmacokinetic profile demonstrated that surface  

crosslinking of PEI-PEG can be beneficial to gene delivery system due to the efficient  

gene release and high blood levels. 

       Stimuli-sensitive polymers have been vigorously investigated in gene delivery  

system due to the change of polymer network structure upon environmental changes. 

These polymers are designed to change in sharp response to biological stimulus such as 

pH, temperature, and redox microenvironment to overcome intracellular obstacles and  

eventually deliver genetic materials to the target sites.   

       In Chapter 2, a redox-triggered destabilization mechanism was applied in gene 

delivery system via reducible PLL (RPLL). RPLL containing disulfide linkages was 

studied in mimicked reductive intracellular environments to test the correlation between 

disulfide contents and transfection efficiency. Different contents of RPLL regarding gene 

release rates and kinetics were tested in reducing environments, and its transfection 

efficiency was demonstrated compared to that of PLL. Depending on the differences in 

reduction potential, content of the disulfide bonds will affect the release rate of pDNA, 

toxicity, and gene expression. Therefore, this study will focus on optimizing the 

protection and release of pDNA via control of disulfide contents to maximize transfection 

efficiency.  

       In the following Chapter 3, pH-responsive polymers are constructed in two different 

ways based on arrangement of imidazole groups in histidine and studied whether an 

endosomal destabilizing ability from two different polymers can favor efficient gene 

release and lead to enhanced transfection efficiency. Two types of histidine grafted PLLs, 

poly(L-histidine) (PLL-g-PHis) and a mono-L-histidine (PLL-g-mHis), were synthesized 
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and compared in terms of their endosomolytic activity and transfection efficiency. These 

experiments are examined in greater details in Chapter 3. The main goal of constructing 

two different types of PLLs was synthesizing pH-dependent endosomolytic polymers in 

an effective way for efficient gene delivery and expression. Thus, we performed a 

comparison study between PLL-g-PHis and PLL-g-mHis to demonstrate a different pH-

responsive disruptive activity regarding endosomal escape, and hemolytic activity, as 

well as its consequence in rapid release of polyplexes and transfection efficiency.  

       Based on Chapter 2 and 3, a reducible polymer consisting of PHis and PLL will be 

developed as an ultimate gene delivery carrier to overcome intracellular barriers and 

improve gene transfection efficiency. Reducible disulfide bonds into a polymer backbone 

will be cleaved under a cytosolic reduction condition and lead to enhancement of gene 

release from the polyplexes in the cytosol. Moreover, degradable bonds will significantly 

reduce the toxicity in cells. Since imidazole rings in PHis influenced by the degree of 

ionization, it will contribute to enhance gene delivery by providing superior buffering 

capacity in endosomes and facilitating polyplexes escape from the endosomes. The 

details will be discussed in future prospects in Chapter 4. 
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CHAPTER 2 

BIOREDUCIBLE POLYMERS AS A DETERMINING FACTOR FOR 

POLYPLEX DECOMPLEXATION RATE AND TRANSFECTION* 

2.1 Abstract 

       Polyplex formation (complexation) and gene release from the polyplexes 

(decomplexation) are major events in polymeric gene delivery, however the effect of the 

decomplexation rate on transfection has been rarely investigated. This study employed 

mixed polymers of poly(L-lysine) (PLL: MW ~7.4 kDa) and reducible PLL (RPLL) (MW 

~3.75 kDa) to design decomplexation rate-controllable PLL100-xRPLLx/pDNA complexes 

(PRLx polyplexes). The transfection efficiency of a model gene (luciferase) in MCF7 and 

HEK293 cell lines increased with increasing x (RPLL content) in the PRLx polyplexes until 

peaking at x=2.5 and x=10, respectively, at which point transfection efficiency declined 

rapidly. In MCF7 cells, PRL2.5 polyplex produced 3 or 223 times higher gene expression 

than PLL or RPLL polyplexes, respectively. Similarly, the transfection efficiency of PRL10 

polyplex-transfected HEK293 cells was 3.8 or 67 times higher than that of PLL or RPLL 

polyplexes, respectively. The transfection results were not apparently related to the particle 

*Modified with permission from HS Hwang, HC Kang, YH Bae. Biomacromolecules 2013; 14: 548-556.

Copyright © 2013 American Chemical Society. Hwang managed the project, completed all of the

experiments, and analyzed the data. Kang provided key insights into the project and organized the data. Bae

is the PI responsible for the project.



 
 

 

 

size, surface charge, complexation/compactness, cellular uptake, or cytotoxicity of the 

tested polyplexes. However, the decomplexation rate varied by RPLL content in the 

polyplexes, which in turn influenced the gene transfection. The nuclear localization of 

pDNA delivered by PRLx polyplexes showed a similar trend to their transfection 

efficiencies. This study suggests that an optimum decomplexation rate may result in high 

nuclear localization of pDNA and transfection. Understanding in decomplexation and 

intracellular localization of pDNA may help develop more effective polyplexes. 

 

2.2 Introduction 

      Interest in polymeric gene carriers has been steadily increased due to their tailored 

structural characteristics (e.g., charges and architectures) and versatile design components 

endowing required functionalities (e.g., endosomal disruption, cytosolic transport, nuclear 

import, triggering drug release, and biocompatibility).1-4 Such functionalities have been 

thought to overcome various extracellular and intracellular barriers encountered in the gene 

delivery process, anticipating enhanced therapeutic effects of an exogenous gene delivered 

by polymeric carriers. In addition, it is critical for optimal transfection that the 

decomplexation to release genes from the carriers should occur at a right intracellular place 

and the right time.5  

       Our group has discovered that high transfection efficiency can be obtained by tuning 

the pH at which the polyplex is released from the endolysosome and that pH-tunable 

sulfonamide-based oligomers/polymers loaded in polyplexes affected gene expression but 

not gene silencing in gene delivery.6,7 Despite the recognized significance of intracellular 

location and timing of gene, the related investigation is seldom conducted.   
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The release or decomplexation of plasmid DNA (pDNA) from electrostatically driven 

polyplexes is mostly induced by competitive interactions with charged biological 

components, which disrupt the ionic bond that binds the gene to the carrier and protects 

from degradation. For most cationic polyplexes, such as anionic polymers or molecules 

such as glycosaminoglycans in plasma,8-10 RNA in the cytoplasm,11 DNA in the nucleus,12 

heparin,6,13,14 poly(acrylic acid) and sodium dodecyl sulfate in test tubes, it is difficult to 

control the unpacking process of polyplexes under a given extracellular and intracellular 

environment because their concentrations cannot be manipulated by extrinsic factors. 

Longer polycations generally cause stronger attraction with negatively charged genes 

than shorter polycations, resulting in tighter polyplexes.6,14,15 Thus, to facilitate polyanion-

induced decomplexation of polyplexes especially in intracellular environments, degradable 

polymers responding to acidic pHs in the endolysosomes16 or glutathione in the cytoplasm 

and the nucleus14,17,18 have been developed. These polyplexes resulted in improved 

transfection efficiency, but the genes are susceptible to lytic enzymes in the endolysosomes. 

For pDNA, transfection efficiency could be dependent on the distance between its releasing 

site and the nucleus due to its poor mobility19 in intracellular environment. In addition, 

pDNA is deactivated or degraded by cytosolic nucleases, giving pDNA a 60-90 min half-

life in HeLa and COS cells.20 Therefore, it is hypothesized that the intracellular release rate 

of genes affects transfection. 

It has been generally recognized that the low transfection efficiency of poly(L-lysine) 

(PLL) polyplexes is caused by lack of endosomolytic activity of PLL. However, PLL 

polyplexes showed much slower decomplexation rate than poly(cyclooctene-g-oligolysine) 

(i.e., comb-shaped PLL) with nuclear localization signal (NLS), despite the fact that the 
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former had a more nuclear uptake than the latter.21 Nondegradable and degradable PLL 

polymer-based polyplexes also showed molecular weight (MW)-dependent 

decomplexation and transfection efficiency.12,15 For example, when forming linear 

polylysine/pDNA complexes, longer polylysine chains, (180 lysine units, MW 28 kDa) 

showed slower dissociation than shorter polylysine chains, (19 or 36 lysine units, 2.3 kDa 

or 4.4 kDa, respectively) due to the greater positive charge of the longer chains tightly 

binds the pDNA that interferes the release of the genes from the carrier, thus leading to 

increased inhibition of RNA synthesis and lower gene expression.12 However, reducible 

PLL (RPLL)-based polyplexes showed contradictory in vitro transfection results 

depending on their MWs compared with polyplexes prepared by PLL with comparable 

MWs. High MW RPLL (187 kDa) showed more effective transfection than PLL (205 

kDa),21 whereas moderate MW RPLL (65 kDa) showed lower gene transfection efficiency 

than PLL (54 kDa).23 on the basis of these results, it appears that either “too fast” or “too 

slow” release of genes from polyplexes would bring low transfection efficiency.  

This study investigated the effect of the decomplexation rate of pDNA on transfection 

efficiency. Commercial PLL with 7.4 kDa and synthesized reducible PLL (RPLL) with a 

comparable MW were selected. Using the polyplexes formed from a model gene and mixed 

PLL and RPLL, the influence of RPLL content on physicochemical characteristics (e.g., 

size, surface charge, complexation, and decomplexation) and biological characteristics 

(e.g., cellular uptake, cytotoxicity, transfection efficiency, and intracellular localization) 

was studied.  
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2.3. Materials and Methods 

2.3.1. Materials 

       Poly(L-lysine) hydrogen bromide (PLL·HBr; Mw 12 kDa), dimethyl sulfoxide 

(DMSO), 4-(2-hydroxy-ethyl)-1-piperazineethanesulfonic acid (HEPES), 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), D-glucose, cystamine, 

sodium bicarbonate, recombinant human insulin, ethidium bromide (EtBr), 

paraformaldehyde (PFA), deuterium oxide (D2O), dithiothreitol (DTT), heparin sodium 

salt (139 USP units/mg), Hoechst 33342, RPMI-1640 medium, Dulbecco’s phosphate 

buffered saline (DPBS), Dulbecco’s modified eagle’s medium (DMEM), fetal bovine 

serum (FBS) were purchased from Sigma-Aldrich (St. Louis, MO). LysoTracker®Green 

dye and YOYO-1 were received from Invitrogen, Inc. (Carslbard, CA). A pDNA that 

encodes firefly luciferase (gWiz-Luc or pLuc) was bought from Aldevron, Inc. (Fargo, 

ND). A decapeptide (Cys-Lys8-Cys) was synthesized by American Peptide Company 

(Sunnyvale, CA). Luciferase assay kit and GSH-GloTM glutathione assay kit were 

purchased from Promega Corporation (Madison, WI) and BCA protein assay kit was 

bought from Pierce Biotechnology. (Rockford, IL). Cy5-labeled pDNA was prepared by 

using Label IT® nucleic acid labeling kit of Cy5 dye (Mirus Bio LLC; Madison, WI). 

 

2.3.2. Cell Culture 

HEK293 cells (human embryonic kidney cell line) and MCF7 cells (human breast 

adenocarcinoma cell line) were used in this study. HEK293 cells were cultured in DMEM  

supplemented with 10% FBS and D-glucose (4.5 g/L). MCF7 cells were cultured in  

RPMI-1640 supplemented with 10% FBS, D-glucose (2 g/L), and insulin (4 mg/L). The   
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cells were maintained and grown under a humidified air with 5% CO2 at 37 °C.  

    

2.3.3. Synthesis and Characterization of Reducible  

Poly(Cys-Lys8-Cys) (RPLL) 

       As previously reported,21, 23 a decapeptide (Cys-Lys8-Cys) was oxidized to form 

reducible poly(Cys-Lys8-Cys) (RPLL) (Figure 2.1). Cys-Lys8-Cys (50 mg; 40 μmol) was 

dissolved in deionized water (DIW; 1 mL) and then cystamine (0.31 mg; 4 μmol) as a 

chain closer was added into the peptide solution. On adding DMSO (0.33 mL) into the 

solution, oxidative polymerization of the decapeptide was performed to form RPLL at 

room temperature (RT). After 1 day polymerization, the synthesized RPLL was dialyzed 

using a dialysis MWCO of 1 kDa for 2 days and then was lyophilized.  

       As shown in Figure 2.2, the 1H-NMR spectra of RPLL in D2O were characterized 

and confirmed by characteristic peaks at δ 1.32 (–CH-CH2-CH2–), δ 1.57 (–CH-CH2-

CH2–), δ 2.59 (–CH-CH2-NH2), δ 3.1 (–CH2-NH2CH-CO–), δ 3.25 (–S-CH2CH2-NH2), δ 

3.8 (–S-CH2CH2-NH2), δ 4.17 (–NH-CHCH2-CO–), δ 4.3 (–CH2-NH2CH-CO–). To 

estimate repeating units of decapeptide (n), integrated peaks which correspond to 

cysteamine and decapeptide were compared. Based on the relative integration values of 

the peaks, the repeating units of decapeptide were n=3. Thus, the molecular weight of 

polymers estimated by 1H NMR was 3.75 kDa (2 x 75 + 3 x 1200=3750). 

    In vitro cytotoxicity of RPLL was evaluated by MTT-based cell viability as 

previously reported to determine the polymer amount used for cell experiments.6, 13 

HEK293 cells and MCF7 cells were seeded at (2 and 5) ×103 cells per well of a 96-well 

plate, respectively and then were incubated for 24 hr in serum-containing culture medium.  
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Figure 2.1. Synthetic scheme of reducible poly(Cys-Lys8-Cys) (RPLL) 
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Peak 

No. 

No. of 

protons 

Integration 

value 

Peak No. No. of 

protons 

Integration 

value 

a 24 0.54 f 6 0.12 

b 48 1 g 12 0.32 

c 48 1 h 4 0.11 

d 48 1 i 4 0.08 

e 48 1.08    

     

Figure 2.2. 1H-NMR analysis of RPLL in D2O 
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The cells were exposed to RPLL having different concentrations (0-100 μg/mL) for 24 

hr. Then, MTT solution (10 μL; 5 mg/mL) was treated to the cells in the culture medium 

(0.1 mL) for additional 4 hr. After discarding the culture medium, DMSO was added to 

dissolve the formazan crystals which are produced by living cells. Their absorbance was 

measured at 570 nm to estimate the cell viability and was compared with that of PLL as a 

nonreducible counterpart.  

 

2.3.4. Preparation and Physicochemical Characterization of Polyplexes 

As previously reported,6,14,25 a cationic solution having polymers (i.e., PLL and RPLL) 

and an anionic solution containing pDNA were separately prepared by using HEPES buffer 

(20 mM, pH 7.4). Two solutions with an equivalent volume were mixed and then incubated 

for 30 min at RT. The formed polyplexes (20 μL per 1 μg of pDNA) were further evaluated. 

Complexation ratio of polyplexes was expressed based on the N/P ratio using amines (N) 

of polymers and phosphates (P) of pDNA. 

Particle sizes and surface charges of polyplexes were evaluated as previously 

reported.6,14,25 After preparing polyplexes (100 μL; 5 μg pDNA), they were diluted with 

HEPES buffer (20 mM, pH 7.4) and pDNA in the polyplex solution was 2.5 μg/mL. The 

polyplexes were then monitored by using a Zetasizer 3000 (Malvern Instrument, UK) with 

a wavelength of 677 nm and a constant angle of 90° at RT.  

The complexation ability of pDNA with PLL and RPLL was evaluated by a gel 

electrophoresis assay. After loading polyplexes (10 μL; 0.5 μg of pDNA) in 0.8% agarose 

gel having EtBr, the gel was run in 0.5x TBE buffer at a constant voltage (80 V) for 90 

min. A UV illuminator was used to detect whether pDNA was exposed.                   
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Compactness of pDNA was tested by using quenching fluorescent YOYO-1 dye 

intercalated with pDNA in polyplexes. Fluorescent intensity of YOYO-1 in the polyplexes 

was measured at 495 nm (excitation) and 515 nm (emission). Compactness (%) of pDNA 

in polyplexes was calculated as a following equation. 

Compactness of pDNA �%� = �1 −
RFU�������� − RFU !""�#

RFU�$%& − RFU !""�#

� × 100 �%� 

where RFUPolyplex, RFUpDNA, and RFUBuffer are relative fluorescent units (RFU) of 

polyplexes, YOYO-1-intercalated pDNA, and HEPES buffer, respectively. 

       Decomplexation of pDNA from polyplexes was monitored by a gel electrophoresis 

assay in the presence of DTT and/or heparin. Polyplexes were exposed to 150 mM NaCl 

solution supplemented with heparin sodium salt (0-100 μg/mL) and/or DTT (20 mM) for 

1 hr at 37 °C and a final concentration of pDNA was 25 μg/mL. Then the polyplexes were 

run and evaluated in 0.8% agarose gel as previously described in the complexation ability 

of polyplexes. 

In addition, decomplexation kinetics of polyplexes was monitored by a dye-

dequenching technique. The polyplexes with YOYO-1-intercalated pDNA (5 μg/mL) were 

treated with 150 mM NaCl solution having heparin (6.5 μg/mL) and DTT (10 mM) as a 

decomplexation solution (0.2 mL) at RT. Time-dependent decomplexation was evaluated 

by changing RFU of YOYO-1-intercalated pDNA exposed from the polyplexes using a 

plate reader. Free YOYO-1-intercalated pDNA and the decomplexation solution were set 

as 100% RFU and 0% RFU, respectively. 

Decomplexation of pDNA �%� =
RFU�������� − RFU !""�#

RFU�$%& − RFU !""�#

× 100 �%� 
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2.3.5. Biological Characterizations of Polyplexes 

 HEK293 cells and MCF7 cells were seeded at (1 and 5) ×105 cells/well (of a six-well 

plate), respectively, for cellular uptake, in vitro transfection efficiency, and intracellular 

trafficking study, whereas their cell densities were 5×104 HEK293 cells/well and 2.5×105 

MCF7 cells/well (of a 12-well plate) for in vitro cytotoxicity. The seeded cells were 

incubated for 24 hr in serum-containing culture medium and then were used for further 

studies.  

For in vitro transfection study, cells were cultured in a six-well plate and the 

transfection experiments were performed as previously described.14,25,26 One hour before 

the addition of polyplexes, serum-containing culture medium was replaced with serum-free 

and insulin-free transfection medium. After transfecting with polyplexes, the transfected 

cells were incubated for 4 hr. The transfection medium was then replaced with serum-

containing culture medium and the cells were incubated for additional 44 hr. After the 

transfection experiments were completed, the cells transfected with pLuc were rinsed with 

DPBS and then lysed in a reporter lysis buffer. Relative luminescent unit (RLU) and protein 

content of transfected cells were evaluated by luciferase assay kit and BCA protein assay 

kit, respectively.  

To evaluate whether transfection procedure of polyplex is toxic, we evaluated in vitro 

cytotoxicity of polyplexes by MTT-based cell viability, and its experimental procedure 

mostly followed the aforementioned in vitro transfection study except for its cell density 

and pDNA dose (0.5 μg pDNA per well). After completing transfection procedures for 48 

hr, MTT solution (0.1 mL; 5 mg/mL) was added to cells incubated in serum-containing 

culture medium (1 mL) for an additional 4 hr. The in vitro cytotoxicity of the polymer, was 
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evaluated using formazan crystals, which are metabolized by live cells. The formazan 

crystals were dissolved in DMSO and added to the cultured cells; their absorbance was 

subsequently monitored at 570 nm for converting cytotoxicity of polyplexes.  

Cellular uptake of polyplexes was evaluated as previously reported.6,14 Polyplexes 

prepared with YOYO-l-intercalated pDNA (1 μg pDNA per well) were treated to cells. 

After 4 hr of incubation, the cells were detached and fixed with 4% PFA solution. The 

fluorescent polyplex-containing cells were monitored using flow cytometry (FACScan 

Analyzer, Becton–Dickinson; Franklin Lakes, NJ) with a primary argon laser (488 nm) and 

a fluorescence detector (530 ± 15 nm) to detect YOYO-1. Uptake levels of polyplexes in 

the cells were analyzed with a gated population of living 10,000 cells.     

       For intracellular trafficking of polyplexes, MCF7 cells were seeded on a coverglass in 

a six-well plate at 5×105 cells/well. Polyplexes prepared with Cy5-labeled pDNA (1 μg 

pDNA per well) were treated to the cells in serum-free transfection medium. After 3.5 hr 

of transfection, Hoechst 33342 and LysoTracker®Green dye were added to stain the nuclei 

and the acidic vesicles (mostly relevant to late endosomes and lysosomes), respectively. At 

4 hr incubation with polyplexes the cells were rinsed with DPBS and fixed with 4% PFA 

solution for 5 min.  The cells were evaluated using a laser scanning confocal microscope. 

In particular, nuclear localization of Cy5-labeled pDNA was quantified from fluorescence 

(FL) of two regions of interest (ROIs). The first region of fluorescence was obtained from 

the whole cell, indicated as FLcell, and the second region is from the nuclei, FLnuclei. 

Fluorescence intensity of Cy5-labeled pDNA was measured by using Image J software and 

the nuclear localization of Cy5-labeled pDNA was calculated from the following 

equation.26     
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Nuclear Localization of pDNA �%� =
FL0!1��2

FL1���

× 100 �%� 

2.3.6. Evaluation of Intracellular Glutathione Concentration 

       HEK293 cells and MCF7 cells were seeded at 5×103 cells/well and 2.5×104 

cells/well (of a 96-well plate), respectively and were cultured for 1 day. After the culture 

medium was discarded, the cells were rinsed and then were treated by following GSH 

GloTM glutathione assay protocol. 

 

                                            2.3.7. Statistical Analysis 

The statistical significance of the data was evaluated by conducting an one way 

ANOVA and unpaired Student t-test at a confidence level of p<0.05.  

 

2.4. Results and Discussion 

To control the decomplexation rates of pDNA in intracellular environments such as the 

cytoplasm and nucleus, this study designed pDNA complexes using lysine-based 

polycation mixtures comprising nonreducible PLL and RPLL as a decomplexation 

controller of polyplexes. PLL with MW 7.4 kDa (MW 12 kDa of PLL·HBr) and 

synthesized RPLL with a MW of 3.75 kDa were used to minimize MW effects of 

polycations on size and complexation of polyplexes. In (PLL100-xRPLLx)/pDNA complexes, 

(100-x)% and x% of primary amines for complexation with phosphate groups in pDNA 

were from PLL and RPLL, respectively and PRLx polyplexes as code names were used. 

Also, PRLx polyplexes were prepared at a fixed N/P ratio of 5 due to an optimum condition 

for transfection efficiency of PLL/pDNA complexes25 and polyplex formation based on  
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electrophoresis (Figure 2.3). 

 

2.4.1. Effects of RPLL Content (x) in Transfection Efficiency of  

PRLx Polyplexes 

To demonstrate the different responses of PRLx polymers in cancer and noncancerous 

cell lines, MCF7 and HEK 293 cells were selected as cancer and noncancerous cell line, 

respectively. Prior to detailed analyses of various physicochemical and biological 

characteristics of PRLx polyplexes, we first examined whether the presence of RPLL in 

PRLx polyplexes affects their transfection efficiency in MCF7 and HEK293 cells.  

     When we applied PRLx polyplexes to the cells, their transfection efficiencies increased, 

had a peak value at x=2.5 for MCF7 cells and x=10 for HEK293 cells, and then decreased 

with increasing concentration of RPLL compared with that of PRL0 polyplexes (i.e., 

PLL/pDNA complexes) (Figure 2.4). Using MCF7 cells, PRL2.5 and PRL5 polyplexes 

showed three fold and two times higher transfection efficiencies than PRL0 polyplexes, 

respectively and their differences were statistically significant (p=0.017 for PRL2.5 

polyplexes and p=0.036 for PRL5 polyplexes compared with PRL0 polyplexes) by one-way 

ANOVA posthoc test. (Figure 2.4(a)). PRLx polyplex-transfected HEK293 cells produced 

3.8 fold (p=0.042) higher transgene expression using PRL10 polyplexes and 2.9-fold 

(p=0.048) and 2.6 fold (p=0.066) higher transgene expression using PRL5 and PRL7.5 

polyplexes, respectively, compared with PRL0 polyplexes (Figure 2.4(b)).  

       When the transfection efficiencies of PRLx polyplexes in MCF7 cells were normalized 

with that of PRL100 polyplexes (i.e., RPLL/pDNA complexes), PRL0, PRL2.5, and PRL5 

polyplexes, 74, 223, and 151 times higher luciferase expression were observed, 

respectively (Figure 2.5). For HEK293 cells, PRL0, PRL5, PRL7.5, and PRL10 polyplexes  
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Figure 2.3. Condensation of pDNA with either PLL or RPLL in agarose gel 
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Figure 2.4. Transfection efficiencies of PLL100-xRPLLx/pDNA complexes (PRLx 

polyplexes) (at N/P 5, 1 µg of pDNA) in (a) MCF7 cells and (b) HEK293 cells. PLL/pDNA 

and RPLL/pDNA complexes were denominated as PRL0 and PRL100 polyplexes, 

respectively. * means p<0.05 compared with PRL0 polyplex by one-way ANOVA. (Mean 

± SD; n ≥ 4) 
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Figure 2.5. Normalized transfection efficiencies of PLL100-xRPLLx/pDNA complexes 

(PRLx polyplexes) (at N/P 5, 1 µg of pDNA) in MCF7 cells and HEK293 cells. 

PLL/pDNA and RPLL/pDNA complexes were denominated as PRL0 and PRL100 

polyplexes, respectively. Transfection efficiency of PRLx/pDNA complexes were 

normalized by dividing with transfection efficiency of PRL100 complexes. ** p<0.01 vs. 

PRL100 polyplex (Mean ± SD; n ≥ 4)  
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resulted in 23, 67, 60, and 88 times better gene expression than RPL100 polyplexes (Figure 

2.5). The transfection results suggest that RPLL content in PRLx polyplexes influences the 

transfection efficiencies. Neither the fast decomplexation of RPLL/pDNA complexes nor 

the slow decomplexation of PLL/pDNA complexes appear to be optimal for high 

transfection efficiency. It seemed that non-degradable PLL helps to slow decomplexation 

of RPLL-rich PRLx polyplexes compared with RPLL polyplexes and that degradable RPLL 

induces faster decomplexation of PLL-rich PRLx polyplexes than PLL polyplexes. This led 

to efforts to determine how the change in RPLL content affects the physicochemical and 

biological characteristics of PRLx polyplexes. 

 

2.4.2. Effects of RPLL on Particle Size, Surface Charge, and  

Complexation/Compactness  

       The compactness and surface charge of pDNA polyplexes are affected by complexation 

conditions (e.g., dose of polymers, N/P ratios) and polymer characteristics (e.g., 

architectures, charge density, flexibility, hydrophobicity).4  Although the MW of RPLL 

used in this study is similar to that of PLL, the chain structure of RPLL is different from 

that of PLL (Figure 2.1). Thus, it is important to determine whether RPLL causes 

significant changes in particle size, surface charge, and complexation of PRLx polyplexes 

compared with those of PLL polyplexes. 

       The particle size of RPL0 polyplex was ~100 nm in diameter. Particle sizes were 

slightly increased with increasing RPLL content in PRLx polyplexes, growing to about 120 

nm for PRL5 polyplex (p=0.02) and then to around 150 nm (p<0.01) for PRLx 

polyplexes with x=10-50 (Figure 2.6). It might be due to the weaker pDNA complexation   
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Figure 2.6. Particle size and surface charge of PRLx polyplexes (at N/P 5) in HEPES buffer 

(25 mM, pH 7.4). * and ** mean p<0.05 and p<0.01, respectively, compared with PRL0 

polyplex by two-way ANOVA. (Mean ± SD; n = 10) 

 

 

 

 

 

 

 

73



 
 

 

 

of RPLL compared with PLL resulting from the lower charge density of RPLL (157 Da 

per one primary amine) than PLL (129 Da per one primary amine). This conclusion is 

supported by the large particle size (250 nm diameter) of RPL100 polyplex.  

       PRL0 polyplex had a zeta-potential ~40 mV. Introducing RPLL to PRLx polyplexes, 

decreased the surface charge to about 35 mV at x=5 (p=0.53) and then reached a saturated 

value (~20 mV) at x=10-100 (p<0.01) (Figure 2.6). This observation is due to the presence 

of one carboxylic group associated with the cysteine on each decapeptide unit which 

negates the positive charge of the primary amine on the lysine. The presence of free 

carboxylic groups in RPLL provides a possible explanation for the increased particle size 

of PRLx polyplexes with higher RPLL content. 

       Condensation of pDNA in PLL and RPLL polyplexes (N/P 5) prepared in a HEPES 

buffer was confirmed by a gel electrophoresis method in 0.8% agarose gel (Figure 2.3). At 

N/P 5, both cationic polymers completely shielded pDNA on the polyplex surface. In 

addition, the compactness of pDNA in PRLx polyplexes was monitored by tracking 

quenching of YOYO-1-intercalated pDNA. As shown in Figure 2.7, the fluorescent 

intensity of unquenched YOYO-1-intercalated pDNA was set to 0% and complete 

quenching was given a value of 100%. All tested PRLx polyplexes (x=0-100) showed 

above 90% compactness of pDNA. The results indicate that different amounts of RPLL 

did not cause serious difference in the compactness of pDNA in PRLx polyplexes. 

 

2.4.3. Effects of RPLL in Cellular Viability and Cell Uptake 

       The surface charge and particle size of polyplexes influence cellular uptake, which can 

further affect transfection efficiency. Also, excessively high positive surface charges         
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Figure 2.7. Compactness (%) of pDNA in PRLx polyplexes (at N/P 5) prepared in a HEPES 

buffer (25 mM, pH 7.4). (Mean ± SD; n = 3) 
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of polyplexes could damage the cell membrane, resulting in cellular toxicity and leading 

to reduced transfection efficiency. Thus, cellular uptake studies of PRLx polyplexes were 

performed by flow cytometry in MCF7 and HEK293 cells (Figure 2.8), and cytotoxicity of 

PRLx polyplexes was evaluated by MTT-based cell viability assay (Figure 2.9). 

       After forming PRLx polyplexes (x=0-12.5) with YOYO-1-intercalated pDNA, the 

cells were incubated with the polyplexes in serum-free and protein-free transfection 

medium for 4 hr. It was expected that cellular uptake of PRL0 polyplexes would be much 

higher than those of other PRLx polyplexes (x=2.5-12.5) because PRL0 polyplexes had 

much higher positive surface charges than other PRLx polyplexes (x=2.5-12.5). However, 

with both the cells, PRLx polyplexes showed similar uptake regardless of the amount of 

RPLL present (Figure 2.8). The results indicate that different transfection efficiencies of 

PRLx polyplexes (Figure 2.4) might be not caused by the cellular uptakes of PRLx 

polyplexes (Figure 2.8). 

       The cytotoxicity of polycations is influenced by their length, charge, degradability, 

hydrophobicity, and architecture1,4,17,27 and strongly affects the cytotoxicity, and thus 

transfection efficiency, of their polyplexes. PLL∙HBr with MW 12 kDa showed more 

toxicity than RPLL 3.75 kDa in MCF7 and HEK293 cells (Figure 2.10). The IC50 of 

PLL∙HBr was about 80 μg/mL for MCF7 cells and about 65 μg/mL for HEK293 cells. 

RPLL showed negligible cytotoxicity with above 80% cell viability in the tested range of 

polymer (0~100 μg/mL). Different cytotoxicities of PLL and RPLL might result from 

different degradation characteristics in intracellular environments because RPLL is 

degraded much more quickly than RPLL in the cytoplasm and the nucleus. The cytotoxicity 

of PRLx polyplexes during a 48 hr transfection process was evaluated by an                            
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Figure 2.8. Cellular uptake of PRLx polyplexes (at N/P 5) after 4 hr transfection in (a) 

MCF7 and (b) HEK293 cells. The x-axis represents YOYO1 fluorescence from YOYO1-

labeled pDNA in polyplex. Control (red line) was obtained by cells with no treatments.  
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Figure 2.9. Cytotoxicity of PRLx polyplexes (at N/P 5, 0.5 µg of pDNA) detection by MTT 

assay after 48 hr transfection in (a) MCF7 and (b) HEK293 cells. Cells were incubated 

with MTT solution for 4 hr and the absorbance was measured at 490 nm. (Mean ± SD; n = 

6) 
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Figure 2.10. MTT-based dose-dependent cytotoxicity assay of PLL and RPLL (0-100 

μg/mL) in MCF7 and HEK293 cells. The cells were exposed to the polymers for 24 hr in 

the serum-containing medium, incubated with MTT solution for 4 hr and the absorbance 

was measured at 490 nm. (Mean ± SD; n = 6) 
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MTT-based cell viability assay using MCF7 and HEK293 cells. PRL0 and PRL100 

polyplexes had ~88% and almost 100% cell viability against MCF7 cells, respectively. The 

difference might be caused by lower toxicity of RPLL than PLL. However, cell viability 

in the presence of PRLx polyplexes (x=2.5-12.5) differed only negligibly from PRL0 

polyplexes. When applying the polyplexes into HEK293 cells, all tested PRLx polyplexes 

(x=0-100) were nontoxic compared with untreated control cells. Thus, the findings indicate 

that PRLx polyplex-dependent transfection efficiencies (Figure 2.4) were not influenced by 

the toxicity results of PRLx polyplexes. 

 

2.4.4. Effects of RPLL in Decomplexation of pDNA 

       pDNA must be decomplexed from the polyplex within the cell if the encoded protein 

is to be expressed. If pDNA release is too slow or absent, gene expression will hardly occur 

due a lack of accessibility of transcriptional machinery to pDNA.5 Also, if polyplexes 

release pDNA too early, then it may not reach the nucleus due to its limited mobility and 

vulnerability to enzymatic degradation.5,19 Although PLL and RPLL had similar MW, their 

polyplexes caused very different transfection efficiencies. PLL/pDNA complexes (N/P 5) 

showed 74 and 23 times higher luciferase expression than RPLL/pDNA complexes (N/P 

5) in MCF7 and HEK293 cells, respectively (Figure 2.4 and Figure 2.5). With the 

hypothesis of the presence of relationship between the release rate of pDNA from a given 

system and transfection, decomplexation of pDNA from PRLx polyplexes was monitored 

in heparin- and DTT-containing NaCl solution. 

First, PRLx polyplexes (x=0, 5, 10, 20, 50, and 100) were incubated in 150 mM NaCl 

solution with DTT (20 mM) and different concentrations of heparin (0-100 μg/mL) at 37oC 

for 1 hr and then were electrophoresed in 0.8% agarose gel with EtBr. The stronger anionic 
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character of heparin induced the release of weaker anionic pDNA when interacting with 

polyplexes.14 When reducible bonds in a polycation exist, DTT degrades disulfide bonds 

of reducible polymeric backbone. The static interaction strength with pDNA of the 

fragmented polycations becomes weaker, resulting in facilitated pDNA release.14 As 

shown in Figure 2.11, 50 μg/mL of heparin induced pDNA exposure of PRL0 polyplexes 

(i.e., PLL polyplexes) in the loading well and 75 μg/mL of heparin caused complete 

decomplexation of pDNA from PRL0 polyplexes. However, pDNA complexed in PRL100 

polyplexes (i.e., RPLL polyplexes) was exposed at 0 μg/mL and was released at 10 μg/mL 

of heparin. With increasing the amount of RPLL in PRLx polyplexes, the required heparin 

concentration for complete decomplexation of pDNA was decreased. However, pDNA 

release from PRLx polyplexes with x=0-10 is difficult to discern under these experimental 

conditions due to the static analysis of the experiment.  

PRLx polyplexes (x=0-10) were exposed to a weakly reducing decomplexation solution 

(i.e., 150 mM NaCl solution with DTT (10 mM) and of heparin (6.5 μg/mL)) at RT, and 

their pDNA release kinetics were monitored by dequenching of YOYO-1-intercalated 

pDNA. Compared with the decomplexation kinetics of pDNA from PRL0 polyplexes, 

pDNA releases from PRLx polyplexes (x=2.5-10) were slightly accelerated with increasing 

RPLL content (Figure 2.12). These static and dynamic decomplexation results may support 

the transfection efficiency data of PRLx polyplexes and also indicate significance of 

decomplexation optimization regarding release of pDNA from polyplexes. 

Transfection results of PRLx polyplexes (Figure 2.1) showed the highest transfection 

efficiency at a different amount of RPLL in PRLx polyplexes depending on cell type.  

That is, PRL2.5 polyplexes and PRL10 polyplexes showed maximum transfection             
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Figure 2.11. Decomplexation (or pDNA release) of PRLx polyplexes (at N/P 5). After the 

polyplexes with pDNA (25 μg/mL) were exposed to DTT (20 mM) and heparin sodium 

salt (0-100 μg/mL) in 150 mM NaCl aqueous solution at 37oC for 1 hr, the polyplex 

solution was loaded into 0.8% agarose gel and then was electrophoresed at 80 V for 90 

min. 
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Figure 2.12. Decomplexation (or pDNA release) kinetics of PRLx polyplexes (at N/P 5) 

using YOYO-1-labeled pDNA. The polyplexes with pDNA (5 μg/mL) were exposed to 

DTT (10 mM) and heparin (6.5 μg/mL) in 150 mM NaCl aqueous solution (0.2 mL) at RT.  

(n = 3; Mean ± SD). 
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efficiency in MCF7 and HEK293 cells, respectively. This result might be explained by 

different decomplexation rates of PRLx polyplexes which are further influenced by cell-

dependent intracellular glutathione levels, which may accelerate RPLL degradation and 

thus pDNA release. In fact, tumor cells may have about four times more intracellular 

glutathione levels than normal cells,28 and although tumor cell lines are originated from an 

identical organ, intracellular glutathione levels are different.29 Thus, to understand clearly 

why MCF7 cells required a smaller amount of RPLL in PRLx polyplexes to reach 

maximum transfection efficiency than HEK293 cells, we monitored intracellular 

glutathione levels of these two cells were monitored by a GSH-Glo glutathione assay 

protocol. As shown in Figure 2.13, MCF7 and HEK293 cells had 51.7 ± 0.7 nmol/25000 

cells and 4.0 ± 0.1 nmol/5000 cells, respectively. As expected, MCF7 tumor cells 

represented higher glutathione contents in the cells than the noncancerous HEK293 cells. 

When applying the same PRLx polyplexes, lower intracellular glutathione concentrations 

may cause the slower decomplexation rate of PRLx polyplexes. Thus, to achieve a similar 

decomplexation rate of PRLx polyplexes in MCF7 cells, PRLx polyplexes in HEK293 cells 

require higher RPLL contents because higher RPLL contents induce faster decomplexation 

rate of PRLx polyplexes. These factors help to explain why that PRL2.5 polyplexes and 

PRL10 polyplexes reached a maximum transfection efficiency in MCF7 and HEK293 cells, 

respectively.  

       In addition, when PLL with higher MWs than 7.4 kDa (used in this study) is applied 

for PRL polyplexes, RPLL content in the polyplexes should be increased to represent 

similar decomplexation rate of PLL 7.4 kDa-based PRL polyplexes because higher MW 

PLL makes stronger binding affinity with pDNA.                                                                                                                    
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Figure 2.13. Intracellular glutathione levels of MCF7 and HEK293 cells. 5000 cells of 

MCF7 or HEK293 cells were evaluated. ** means p<0.01 compared with HEK293 cells 

by unpaired Student t-test.  (Mean ± SD; n = 3) 
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2.4.5. Effects of RPLL in Intracellular Localization 

After pDNA is internalized into cells, nuclear localization of pDNA is a significant step 

required for transfection to take place. The polyplexes of polylysine having 28 kDa (about 

180 repeating units) delivered pDNA in the nucleus and perinuclear area, whereas 

polylysines with 19 and 36 repeating units (about 2.3 kDa and 4.4 kDa, respectively) 

delivered pDNA in the nucleus.5,12 Lower MW polylysine-mediated polyplexes expressed 

higher transfection efficiency than higher MW polylysine-mediated polyplexes.12 However, 

when using PLL with an intermediate MW (e.g., PLL with MW 7.4 kDa used in this study) 

to form polyplexes, it is unclear whether pDNA is localized only in the nucleus. It is also 

unclear how degradable polymers influence intracellular localization of pDNA. 

       Thus, to understand these significant localization issues of pDNA delivered with 

degradable polycations, we labeled pDNA with Cy5 and stained the nucleus and acidic 

vesicles (i.e., late endosomes and lysosomes) were stained with Hoechst 33342 and 

LysoTracker Green, respectively. As shown in Figure 2.14, all tested PRLx polyplexes-

transfected cells showed similar distributions of acidic vesicles in the cytoplasm based on 

similar fluorescent intensity of LysoTracker Green. The presence of strong acidic vesicles 

was caused by weak endosomolytic function of PLL and RPLL. For intracellular 

distribution of pDNA, it was dependent on RPLL contents in PRLx polyplexes. In PRL0,  

PRL7.5, and PRL10 polyplexes, pDNA was mostly localized in the cytoplasm and little 

pDNA was found in the nucleus. However, it seemed that pDNA in PRL2.5 and PRL5 

polyplexes distributed almost evenly throughout the cytoplasm and the nucleus.  

        To understand clearly the nuclear localization of pDNA in PRLx polyplex-transfected 

MCF7 cells, the fluorescent intensity of pDNA was separately measured in the whole cell 

and in the nucleus (Figure 2.15). When transfecting MCF7 cells with PRL0 polyplexes, 22% 

86



 
 

 

 

 

 

 

Figure 2.14. Intracellular distribution of Cy5-labeled pDNA delivered by PRLx polyplexes 

(at N/P 5) at 4 hr posttransfection in MCF7 cells. 
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Figure 2.15. Nuclear localization of Cy5-labeled pDNA delivered by PRLx polyplexes (at 

N/P 5) at 4 hr posttransfection in MCF7 cells. Nuclear localization was calculated using 

relative fluorescence intensity ratio in cell and the nucleus generated from a z-stack of 

confocal images ** mean p<0.01 compared with PRL0 polyplex by one way ANOVA (n = 

10; Mean ± SD). 
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of pDNA was found in the nucleus and the remaining 78% in the cytoplasm and acidic 

vesicles. Similarly, PRL7.5 and PRL10 polyplexes-transfected MCF7 cells had ~25% of 

pDNA in the nucleus. These PRLx polyplexes (x=0, 7.5, and 10) delivered three to four 

times more pDNA in the cytoplasm and acidic vesicles than in the nucleus, but, as 

estimated in confocal microscope, PRL2.5 and PRL5 polyplexes delivered 40~42% of 

pDNA in the nucleus which is 1.8 to 1.9 times more than that of PRL0 polyplexes. The 

different nuclear localization of pDNA may cause their different transfection efficiencies. 

       Most researches for developing effective polymeric gene carriers have focused on new 

polymers with functionalities that can overcome various extracellular and intracellular 

hurdles during a journey of polyplexes from an administration site to the nucleus as a 

subcellular organelle of interest.1, 2 Although the significance of timely release of pDNA 

in the cytosol or the nucleus in polymeric transfection efficiency is recognized,5 the 

relationship between decomplexation rate, intracellular localization, and transfection 

efficiency of pDNA delivered with polymeric carriers has been widely ignored or not 

investigated.  

       This study has shown that the pDNA contents in the nucleus is influenced by 

decomplexation rates of pDNA from polyplexes, and in turn influences the transfection 

efficiency of the polyplexes. These findings will give greater understanding in polymer-

based gene delivery systems and will help to design effective functionalized polyplexes. 

 

2.5. Conclusion 

        Polyplexes prepared with a mixture of PLL and RPLL were used to understand the 

relationship between decomplexation rate, intracellular localization, and transfection 

efficiency. Although the size and surface charge of PRLx polyplexes were influenced by 
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the RPLL content, these characteristics did not influence cellular uptake of PRLx 

polyplexes. However, the highest transfection efficiency of PRLx polyplexes in this study 

may be caused by an optimal decomplexation rate (faster than that of PLL polyplexes and 

slower than that of RPLL polyplexes) and more nuclear localization of pDNA. These 

findings will help to design decomplexation-tunable polyplexes made of various 

combinations of nondegradable and degradable polymers.   
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CHAPTER 3 

 

ROLE OF POLYMERIC ENDOSOMOLYTIC AGENTS IN GENE TRANSFECTION: 

A COMPARATIVE STUDY OF POLY(L-LYSINE) GRAFTED WITH MONOMERIC 

L-HISTIDINE ANALOGUE AND POLY(L-HISTIDINE)*

3.1 Abstract 

       Endosomal entrapment is one of the main barriers that must be overcome for efficient 

gene expression along with cell internalization, DNA release, and nuclear import. 

Introducing pH-sensitive ionizable groups into the polycationic polymers to increase gene 

transfer efficiency has proven to be a useful method; however, a comparative study of 

introducing equal numbers of ionizable groups in both polymer and monomer forms, has 

not been reported. In this study, we prepared two types of histidine-grafted poly(L-lysine) 

(PLL), a stacking form of poly(L-histidine) (PLL-g-PHis) and a mono- L-histidine (PLL-g-

mHis) with the same number of imidazole groups. PLL-g-PHis and PLL-g-mHis showed 

profound differences in hemolytic activity, cellular uptake, internalization and transfection 

efficiency. Cy3-labeled PLL-g-PHis showed strong fluorescence in the nucleus after 

internalization, and high hemolytic imidazole groups from PHis also provided higher 

*Modified with permission from HS Hwang, J Hu, K Na, YH Bae. Biomacromolecules 2014; 15: 3577-3586.

Copyright © 2014 American Chemical Society. Hwang managed the project, completed part of the

experiments, and analyzed the data. Hu completed part of the experiments, and analyzed the data. Na

provided key insights into the project.  Bae is the PI responsible for the project.



 
 

 
 

gene expression than mHis due to its ability to escape the endosome. mHis or PHis grafting 

reduced the cytotoxicity of PLL and changed the rate of cellular uptake by changing the 

quantity of free ɛ-amines available for gene condensation. The subcellular localization of 

PLL-g-PHis/pDNA measured by YOYO1-pDNA intensity was highest inside the nucleus, 

while the lysotracker, which stains the acidic compartments was lowest among these 

polymers. Thus, the polymeric histidine arrangement demonstrate the ability to escape the 

endosome and trigger rapid release of polyplexes into the cytosol, resulting in a greater 

amount of pDNA available for translocation to the nucleus and enhanced gene expression. 

      

3.2 Introduction 

       Most polymeric gene carriers gain access to target cells via endocytic pathways and 

must escape from the endosomes before they merge with the lysosomes, rich in digestive 

enzymes that degrade the therapeutic genes.1, 2 Polymers synthesized with pH-sensitive 

groups serve as proton sponges and provide endosomolytic ability that helps escape from 

the endosome and significantly enhances the potential of gene delivery.3, 4 The “proton 

sponge effect” underlies a common strategy for endosomal escape in which the high 

buffering capacity of the gene carrier agents, i.e., proton absorption by carrier protonation, 

induces an influx of counterions and water into the endosomes.5-7 The resulting osmotic 

pressure build-up subsequently leads to rupture of the endosomal membrane and releases 

the entrapped components into the cytosol.8, 9 However, the proton sponge effect is still 

under debate, and contradictory reports insist this hypothesis is not the dominant 

mechanism of endosomal escape.10-12 Benjaminsen et al. has argued that polymer 

concentration inside the endosomes is not sufficient to generate the  necessary osmotic 
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gradient to facilitate polyplex escape from the endosomes.13 Many other papers do not rule 

out the proton sponge effect, but have proposed a charge density of polymer that affects 

the interaction with the endosomes and may destabilize the endosomal membrane inducing 

membrane disruption, thinning and erosion to facilitate the polyplexes escaping from the 

endosomes.11, 14  

       Histidine (His) analogues having imidazole group grafted to various polymers 

including PLL15 and gluconic acid16 have become popular materials to deliver pDNA. A 

study conducted by Singh et al. showed that conjugating histidine which has a pKa near 

endosomal pH provided effective buffering for strong endosomolytic activity in the 

endosomal compartments,17 increased endosomal escape,18, 19 and enhanced the 

transfection efficiency and gene expression.20, 21 The protonation state of the imidazole 

group is determined by a lone electron pair of the unprotonated nitrogen atom in the 

imidazole ring of the His analogues, which has a pKa around 7.22 Poly(L-histidine) (PHis), 

known as an effective pH-buffering and endosomal pH targeting agent,23, 24 has been 

developed and applied for more than a decade as a component of pH-sensitive polymeric 

carriers. When introduced into the early endosomes, the micelles containing PHis blocks 

demonstrate strong endosomolytic activity and the ability to produce therapeutic cytosolic 

drug concentrations in a relatively short time period.22, 25, 26 These properties have led us to 

hypothesize that nanocarriers containing PHis blocks result in enhanced gene delivery by 

inducing endosomal swelling via the proton sponge effect and simultaneously interacting 

with and disrupting the lipid bilayer membrane of the endosome and facilitating release of 

the cargo.25, 27, 28  

       Poly(L-lysine) (PLL) was the first polycationic nonviral vector used for gene delivery8  
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numerous variations have been explored for the purpose due to its biodegradability into 

benign products.29 However, the high positive charge density of PLL still causes 

cytotoxicity and prevents the release of plasmid DNA (pDNA) from PLL polyplexes. PLL 

also lacks endosomolytic activity due to the absence of secondary and tertiary amines 

which results inasmuch as a 10-fold low transfection efficiency in vitro,30, 31 than a standard 

branched poly(ethylenimine) (bPEI 25 K) in polymeric gene transfection.32  

       We constructed two histidylated PLLs in this study: PLL modified with monomeric 

histidine analogue (mHis) (PLL-g-mHis) and PLL grafted with short PHis blocks (PLL-g-

PHis) with an equivalent number of imidazole groups in the two architectures. We propose 

that polymers with high positive charge density are capable of binding to the negatively 

charged endosomal membrane. As the membrane swells due to the increased osmotic 

pressure, local stress at the point where the polymer is bound can cause the membrane to 

be disrupted and release the gene cargo into the cytosol. 

      

3.3. Materials and Methods 

3.3.1. Materials 

       Dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF), 4-(2-hydroxy-ethyl)- 

1-piperazine (HEPES), 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide  

(MTT), D-glucose, sodium bicarbonate, recombinant human insulin, ethidium bromide  

(EtBr), heparin sodium salt (139 USP units/mg), paraformaldehyde (PFA), Hoechst       

33342, RPMI 1640 medium, Dulbecco’s phosphate buffered saline (DPBS), Dulbecco’s  

modified Eagle’s medium (DMEM), Poly(L-lysine) hydrogen bromide (PLL·HBr), Cy3- 

NHs, and FITC were purchased from Sigma-Aldrich (St. Louis, MO). LysoTracker-Red  
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dye and YOYO-1 were purchased from Invitrogen (Carslbard, CA). A firefly luciferase  

(gWiz-Luc or pLuc) pDNA was bought from Aldevron (Fargo, ND). Rabbit whole blood 

cells were purchased from Hemostat (Hemostat Laboratories, CA) and dialysis 

membranes were obtained from Spectrum Laboratories, Inc. (Rancho Dominguez, CA). 

Boc-His (DNP, dinitrophenyl)-OH.isopropanol (>99%) was purchased from Bachem.  

 

3.3.2. Synthesis of Boc-Poly (Nim-DNP-histidine), Poly(L-lysine)-graft-  

(PLL-g-PHis) poly(L-histidine), and PLL-graft- 

monomeric L-histidine (PLL-g-mHis) 

     ·Boc-Poly (Nim-DNP-histidine): Before the conjugation with polymers and poly(L-

histidine), DNP protected poly(L-histidine) was first prepared according to our previous 

report.26 Briefly, the PHis block was prepared by a ring-opening polymerization method 

using amine-containing small molecules, N-Boc-1,4 butanediamine, as an initiator, and 

the number average molecular weight (MW) of PHis was determined to be 3.7 kDa by its 

1H-NMR spectrum.  

      ·Poly(L-lysine)-graft-poly(L-histidine)(PLL-g-PHis): Poly(L-lysine) (100 mg), succinic 

anhydride (4.1 mg) and DMAP (10 mg) were first dissolved in 10 mL of anhydrous DMSO. 

After 2 days stirring at 40 oC, the modified poly(L-lysine) was added with NHS (9.4 mg) 

and DCC (17 mg). After 1 day stirring, Boc-Poly (Nim-DNP-histidine) was added into the 

DMSO solution under nitrogen airflow. Then 2-mercaptoethanol (3 mL) was added after 2 

days dropwise into the mixture for overnight stirring. The product was precipitated in ether: 

ethanol (50:50%, V/V) and purified by dialyzing against DMSO for 2 days and DI water 

for 2 days with a dialysis membrane of MWCO 3500 g/mol. The final yellow product was  
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obtained after lyophilization, and the yield of the product was 65%. 

       ·Poly(L-lysine)-graft-mono- L-histidine(PLL-g-mHis): The synthesis of PLL-g-mHis 

is started with 0.5 g poly(L-lysine) and 0.212 g L-histidine. These materials were 

dissolved in 30 mL of DI water, and after adjusting the pH to 5.0, 0.262 g EDC·HCl was 

added to the solution. After stirring the mixture overnight, the solution was dialyzed 

against deionized water for 2 days with at least four changes using dialysis membrane 

(MWCO 6000-8000 g/mol). The final product was collected after lyophilization and the 

yield of the product was 89%. 

 

3.3.3. Characterization of Polymers 

       1H-NMR spectra were recorded on a Varian Unity 400 at 9 T with NaLoRAc Z-spec 

broadband probe for the modified polymers in D2O/DCl mixed solvent with 10 v% DCl 

and chemical shifts were given in parts per million from tetramethylsilane.15  

       The average number of imidazole molecules bound per polylysine was calculated 

according to x= 6×h8.7/hlys× 100%, where x was the percentage of imidazole repeat to 

lysine repeat, h8.7 was the value of the integration of the signal at 8.7 ppm corresponding 

to the proton of histidine, hlys was in the range 1.3-1.9 ppm corresponding to the six 

methylene protons of lysine residues.  

       Gel permeation chromatography (GPC) measurement of the PHis was performed on  

an Agilent 1100 Series high performance liquid chromatography (HPLC) system 

equipped with a TSKgel G3000HHR GPC column equilibrated at 30 °C and a refractive 

index detector. DMF with 10 mM LiBr solution was used as the eluent at a flow rate of 1  

mL/min for PHis before deprotection.26 
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       The buffering capacity of polymers was measured via acid-base titration.33 Polymers  

were dispersed in 150 mM NaCl, and pH of solutions was adjusted to 10 using 1 N 

NaOH. Then the solutions (1 mg/mL, total volume 2 mL) were titrated with 0.1 N HCl to 

monitor the pH changes of the polymer solution. The proton buffering capacity of 

polymers was compared at a pH of 7.4 to 5.1 and calculated using the equation below, 

where ����� is the volume of HCl that used to titrate the pH, C��� is the concentration of 

HCl which was 0.1 N, and � is the mass of the polymer, which was 2 mg.  

Buffering capacity =  

�	
�� � �
��

�
 

       The membrane-disruptive activity of the difference between PLL-g-PHis and PLL-g-

mHis was measured using a red blood cell (RBC) hemolysis assay.34 RBCs were 

harvested by centrifuging whole blood to remove serum and resuspended in 100 mM 

dibasic sodium phosphate at pH 7.4 and 5.5 at 5×108 cells/mL. A total of 200 μL of RBC 

suspension and 800 μL of buffer solution of polymers were mixed at final concentration 

of polymers 50 μg/mL and incubated at 37 0C for 1.5 hr. Buffer only and deionized water 

were used as negative and positive control separately. After centrifuge, lysis was 

determined by measuring the absorbance of the supernatant at 541 nm. The percent  

Hemolysis (%) = 
��������� � ��������

��������� � !���"��
 x 100 

hemolysis was calculated by the above formulation.   

 

3.3.4. Physicochemical Characterization of Polyplexes 

       A solution of cationic polymers and solution of pDNA (20 µL per 1 µg of pDNA) in 

HEPES buffer (20 mM, pH 7.4) were prepared separately and mixed to form polyplexes.  
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After 30 min incubation at RT, the prepared polyplexes were used for further 

experiments. Polyplexes were expressed based on the N/P ratio; the mole ratio of the 

amines (N) of polycation per phosphate group (P) of pDNA.     

       Condensation of DNA (0.5 μg of pDNA) with polymers was monitored using a gel 

electrophoresis assay. Polyplexes with several complexation ratios were loaded into a 

0.8 % agarose gel containing ethidium bromide (EtBr), and a constant voltage (95 V) was 

applied to the polyplex-loaded gel in 0.5xTBE buffer for 40 min. Shielded or exposed 

pDNA from the polyplexes was detected using a UV illuminator. Polyplexes at N/P ratio 

5 were then prepared in 20 mM HEPES buffer at pH 7.4 and 5.5 followed by incubation 

in solutions of various heparin (used as the competing polyanion) concentrations at 37 oC 

for 30 min to monitor the pH-dependent pDNA release. The release of pDNA was 

analyzed in 0.8 % agarose gel containing EtBr (95 V, 40 min). In addition, 

decomplexation of pDNA from polyplexes was monitored by a YOYO 1-intercalated 

pDNA containing heparin. Relative fluorescent units (RFUs) of polyplexes was measured 

using a plate reader at 495 (excitation) and 515 nm (emission). Free YOYO 1-intercalated 

pDNA and the buffer solution were set as 100% and 0%, respectively and pDNA release 

was calculated by the following equation. 30      

                                pDNA release (%) =
01234567589�012:;<<8=

0127>?@�012:;<<8=
× 100 (%)    

       The particle sizes and zeta potential of polyplexes were monitored using a Zetasizer 

Nano ZS (Malvern Instrument, U.K.) at a wavelength of 677 nm and a constant angle of 

90o at RT (25 oC). Polyplexes were diluted in HEPES buffer (20 mM, pH 7.4) with the 

concentration of pDNA set to 2.5 µg/mL.      
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3.3.5. Cells and Cell Culture 

       Hela cells (human cervical carcinoma cell line) were cultured in DMEM supplemented 

with 10% FBS and D-glucose (4.5 g/L). MCF7 cells (human breast adenocarcinoma cell 

line) were cultured in RPMI supplemented with 10% FBS, D-glucose (2 g/L), and insulin 

(4 mg/L). Both cells were grown and maintained under humidified air containing 5% CO2 

at 37 oC.   

 

3.3.6. Biological Characterization of Polymer and Polyplexes 

       To visualize the localization of Cy3 labeled polymers under a confocal microscope, 1 

mL× 2.4 mg/mL DPBS solution of PLL-g-PHis, PLL-g-mHis or PLL was mixed with 40 

μL× 1 mg/mL DMSO solution of Cy3-NHS separately, after stirring overnight, the 

mixtures were dialyzed against DPBS for one day with two changes using dialysis 

membrane (MWCO 3,500 g/mol). The final concentration of polymers in DPBS almost 

kept constant at 2.4 mg/mL. For fluorescence labeling with FITC and Cy3 together, 2 

mL× 1 mg/mL DPBS solution of PLL-g-PHis, PLL-g-mHis or PLL was mixed with 40 

μL× 1 mg/mL DMSO solution of Cy3-NHS and 60 μL× 1mg/mL ethanol solution of 

FITC at the same time, after stirring overnight, the mixtures were dialyzed against DPBS 

for 1 day with two changes using dialysis membrane (MWCO 3,500 g/mol). The final 

concentration of polymers in DPBS almost kept the same as 1 mg/mL.  

       The intracellular pH environments of polymers were monitored using fluorescence  

method, as reported by articles.35, 36 For the construction of pH calibration curve, Hela  

cells were seeded in six-well plates at a density of 2 x 105cells/well and cultured for 24 hr 

before treatment. After treated with FITC+Cy3 labeled PLL-g-PHis and PLL-g-mHis 4 
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hr, the cells were suspended in one of four pH clamping buffers (130 mM KCl, 1 mM 

MgCl2, 15 mM HEPES, and 15 mM MES) with pH adjusted to 5, 5.5, 6 and 7.4. The 

cells containing fluorescent polymers were monitored using flow cytometry. The 

correlation between pH and average Cy3/FITC ratios of pH clamp cells was calibrated. 

Based on the pH calibration curve, the intracellular pH of polymers at different time were 

calculated.  

       To determine the polymer cytotoxicity in vitro, a MTT-based cell viability test was 

performed in 96 well plates as previously reported.33 Hela and MCF7 cells were seeded at 

a density of 2 x 103 and 5 x 103 cells per well and the cells were cultured for 24 hr in 

serum containing culture medium (100 μL of medium per well). Different concentration 

ranges (0 - 100 µg/mL) of polymers were exposed to the cells for 24 hr, then the cells in 

the culture medium of 0.1 mL were treated with MTT solution (5 mg/mL, 10 µL) to 

measure cell survival. After 4 hr incubation, the culture medium was aspirated and 100 μl 

of DMSO was added to dissolve the formazan crystals. The absorbance of the solution 

was monitored at 570 nm using a microplate reader.                

       YOYO1-labeled pDNA was used to monitor cellular uptake of polyplexes. Cells 

were treated with 1μg pDNA (1mg/ml) per well, and 4 hr post-transfection, the cells were 

washed with DPBS, detached and fixed using PFA 4% solution. Analysis was performed 

using a flow cytometry (FACScan Analyzer, Becton−Dickinson; Franklin Lakes, NJ) 

equipped with a primary argon laser (488 nm) and a fluorescence detector (530 ± 15 nm)  

for YOYO-1 detection. The uptake of the polyplexes was analyzed through 10000 gated  

events per sample. 

        In vitro transfection studies were performed in MCF7 and Hela cells, and both cells  
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were seeded in 6-well plates at a density of 5 x 105 cells/well and 1 x 105 cells/well,  

respectively. After 24 hr, the culture medium was replaced with serum-free transfection 

medium 1 hour before the addition of polyplexes. Then the polyplexes (1 µg of pDNA 

per 20 µl) are transfected in cells and incubated for 4 hr, and serum-containing culture 

medium was added in cells and incubated for additional 44 hr. When the transfection 

experiments were completed, the cells were rinsed with DPBS for twice and then lysed in 

a reporter lysis buffer. The relative luminescence unit (RLU) was evaluated by luciferase 

assay kit (Promega), protein content of the transfected cells were monitored by BCA 

protein assay kit (Thermo scientific). Transfection experiments with chloroquine (Sigma 

-Aldrich, 100 μM) were performed as below. The drug was added to the cells 30 min 

prior to polyplexes addition and polyplexes were exposed to media for 3.5 hr, and the 

medium was changed to serum containing DMEM for an additional 44 hr. Then the cells 

were lysed and assayed by luciferase assay kit and BCA protein assay kit for RLU and 

protein content, respectively as described above.  

       For studying the intracellular trafficking of polyplexes, Hela cells were seeded at 1 x 

105 cells/well on sterile cover glasses in a six-well plate. YOYO1- intercalated pDNA 

was used to prepare polyplexes and added to the cells in serum-free media. Hoechest 

33342 and LysoTrackerRed dyes were added 30 min before the incubation termination to 

stain the nuclei and the acidic vesicles. After 4 hr of incubation, the cells were washed 

twice with PBS and fixed with 4% paraformaldehyde in PBS. The cover glasses were 

mounted on the slide glasses with a drop of antifade mounting media. The fixed cells 

were examined under a confocal microscope (FV1000-XY, Olympus) for the detection of 

the YOYO1-labeled pDNA, Hoechest 33342, and LysoTrackerRed. Fluorescence 
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intensity of YOYO1-intercalated pDNA and red lysotracker was quantified by using 

ImageJ software.          

 

3.3.7. Statistical Analysis 

       ANOVA and unpaired Student’s t-test were performed for statistical analysis and p < 

0.01 considered statistically significant.  

 

3.4. Results and Discussion 

3.4.1. Preparation and Characterization of Histidylated PLLs 

       The chemical structures of PLL-g-PHis and PLL-g-mHis polymers are shown in 

Figure 3.1, and the synthetic schemes and 1H-NMR spectra are in Figure 3.1. The 3.7 

kDa PHis with a polydispersity 1.2 was prepared by the same method mentioned in our 

previous paper26 and the GPC curve is provided in Figure 3.2. As reported previously, the 

transfection efficiency of histidylated PLL was optimal with 38±5% of the ɛ-amino  

groups in PLL being substituted with histidyl residues 16 In this study the percentage of 

total imidazole groups per lysine residue (Lys) was set at 30%. 

 

3.4.2. Buffering Capacity of Polymers in the pH Range          

       Endosomal escape via the proton sponge effect requires that gene carriers have a 

high buffering capacity. The buffering capacity of the modified PLL was evaluated as  

shown in Figure 3.3 to investigate the change of buffering capacity of PLL upon either   

mHis or PHis incorporation. As expected, acid base titration revealed that unmodified 

PLL showed the least buffering capacity, whereas introducing imidazole groups         
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(a) PLL-g-PHis 

 

 (b) PLL-g-mHis 

 

 

 

 

Figure 3.1. Synthetic schemes of polymers and 1H-NMR analysis of PLL-g-PHis in D2O. 

Alphabets in the figure represent each proton in the polymer chemical structure which 

corresponds to 1H-NMR peaks. 
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Figure 3.1. (Continued) 
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Figure 3.2. GPC curve of poly(L-histidine) (PHis).  
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Figure 3.3. Acid-base titration curves of PLL and histidine modified PLLs in 150 mM 

NaCl. 
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increased the buffering capacity between lysosomal (pH 5) and cytoplasmic (pH 7.2) pH. 

The buffering capacity of PLL-g-PHis was slightly higher than PLL-g-mHis though both 

had an equivalent number of imidazole groups (Figure 3.4). The higher buffering 

capacity of PLL-g-PHis may be attributed to the short distance between imidazole groups 

in PHis. The imidazole ring in the His residue contains two ionizable nitrogens (Nδ1 and 

Nδ2). The pKa values and the degree of ionization of imidazole rings are influenced by 

neighboring groups, making them tunable to specific environmental conditions.37 

Titration data also suggests that the pKa values of the ionizable groups in mHis and PHis 

are different, which implies that the protonation of the imidazole groups are different 

depending on the connectivity of His residues. Differential protonation behavior may 

result from the different distances between imidazole groups in PLL-g-mHis and PLL-g-

PHis. The distance between imidazole groups in PHis is ~3 Å, whereas, the closest 

distance in PLL-g-mHis is at least 4.5 Å (or even longer), the shorter distance favors 

more rapid proton transfer via a hydrogen bridge.38  Multiple adjacent imidazole rings in 

PHis influence each other and effectively produce an electron rich environment that 

stabilizes positive charges on imidazole groups and allows higher protonation state. 

 

3.4.3. The Hemolysis Activity of Polymers 

       The pH in the late endosomal compartment ranges from 5 to 6 and from 5 to 5.5 in  

the lysosomal compartment.39 The membrane damage should be restricted to endosomal 

vesicles in a pH-dependent manner, avoiding nonspecific membrane disruption. His 

becomes fully protonated in the endosomal pH range, thus providing pH-responsive  

membrane destabilizing activity. Though PLL has been widely used as a gene carrier, it  
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Figure 3.4. Poly(L-lysine)-g-poly(L-histidine) (PLL-g-PHis) and poly(L-lysine)-g-mono- L-

histidine (PLL-g-mHis) chemical structures and comparison of buffering capacity.   
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shows no apparent pH-dependent hemolysis.40  

       The hemolysis activity of PLL and two His grafted polymers was tested with rabbit 

red blood cells at two pHs. As shown in Figure 3.5, PLL at pH 7.4 caused 10% 

hemolysis, which showed less hemolysis than the His containing polymers. In addition, 

there was no significant change in the hemolytic activity of PLL as pH dropped from 7.4 

to 5.5. This explains PLL is absence of pH-dependent hemolysis. On the other hand, the 

hemolytic activity of PLL-g-mHis changed from 18% at pH 7.4 to 42% at pH 5.5, and 

PLL-g-PHis changed from 27% at pH 7.4 to 75% at pH 5.5.  Both histidylated polymers 

contained an equivalent number of imidazole groups showed pH-responsive membrane 

disruption, but PLL-g-PHis caused more hemolysis at pH 5.5 than PLL-g-mHis. Based 

on the hemolysis assay, PLL-g-PHis displayed much higher membrane disruption activity 

at pH 5.5 compared to PLL-g-mHis, making it a potentially better carrier with higher 

endosome disruption property for gene delivery than PLL-g-mHis.  

       The hemolysis activity appears to be dependent on interactions between the cell 

membranes and cationic polymers that results local stress on the membrane. In more 

detail, the hemolytic activity of the polymers is governed by the electrostatic stress force 

applied to the membrane surface as it swells, and the electrostatic forces produced 

between the polymers and cell membranes causes a charge imbalance on the membrane. 

It eventually disrupts the electric fields formed on the RBC membrane to create pores or 

holes leading to osmotic lysis.41-43 The external stress forces that destabilize membrane  

come from the density of electrostatic interactions of protonated polymers per the         

membrane surface area43, and it has been reported that different protonation states of 

polymer affect the disruption of RBCs lipid bilayers.44 The significant difference 
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Figure 3.5.  pH dependence of hemolytic activity of PLL-g-PHis and PLL-g-mHis in pH 

7.4 and pH 5.5. (Data shown are the Mean ± SD; n = 3).  
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in hemolytic activity of PHis and mHis suggests that the strength of the stress force 

induced by PLL-g-PHis per the area of the membrane is stronger than that of mHis 

because the higher charge density on PLL-g-PHis at lower pHs produces stronger 

interactions with the membrane, whereas, the more diffuse imidazole groups in PLL-g-

mHis result in a weaker stress force intensity. Therefore, it is thought that a more 

protonated state of PLL-g-PHis will produce higher electrostatic interactions and induce 

higher stress forces by interacting more strongly with the membrane increasing the 

probability of destabilization and endosomal escape. The observed hemolytic activities of 

pH sensitive polymers show a great potential to disrupt endosomal membranes and aid 

endosomal escape.45 

 

3.4.4. Gel Electrophoresis Study of Polymer/pDNA Complexation 

       A gel retardation assay was performed to investigate the complexation capability of 

PLL and PLL-g-mHis/PLL-g-PHis with pDNA. Polyplexes were prepared at N/P ratios 

ranging from 1 to 8 and loaded in agarose gel (Figure 3.6). Data showed that PLL was 

able to completely condense genes at N/P 1, while PLL-g-mHis and PLL-g-PHis based 

polyplexes did the same at N/P 4 and 2, respectively.  PLL has a high charge density 

from primary ε-amino groups, enabling it to condense the genes at a very low N/P ratio.  

The ε-amino groups are the histidine grafting sites for both PLL-g-mHis and PLL-g-

PHis, resulting in a lower charge density. Grafted histidine may also pose some steric  

hindrance to DNA binding. Therefore, complete gene condensation required more PLL-

g-PHis molecules than PLL and the PLL-g-mHis needed even more molecules to 

condense the same amount of genes since 30 % ɛ-amines in Lys residues are modified        
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Figure 3.6. Gene condensation ability of polymers with pDNA in 0.8% agarose gel at 80 

V for 90 min. 
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with mHis.  

       To determine the binding strength and stability of polyplexes at different pHs, 

polyplexes were incubated with increasing concentrations of heparin, which is a 

competing polyanion with pDNA for the binding to polymers (Figure 3.7(a)). PLL/pDNA 

polyplexes remained stable and showed no pH-dependent change of binding strength. In 

contrast, PLL-g-mHis/pDNA and PLL-g-PHis/pDNA polyplexes in pH 7.4 buffer 

required less heparin to expose pDNA compared to PLL/pDNA polyplexes. At pH 5.5, 

both polyplexes were more resistant to dissociation upon heparin incubation, because the 

more protonated state of the imidazole groups enhances interactions with pDNA and 

forms more stable polyplexes. As shown in Figure 3.7(b), PLL-g-PHis/pDNA polyplexes 

revealed more change in the DNA binding strength as pH drops, indicating that the 

higher degree of protonation is due to the more fully protonated imidazole groups.       

       The results suggest that decomplexation of histidylated polyplexes provides pH-

dependent pDNA release. This will prevent premature pDNA release and effectively 

protect genes against enzymatic (nuclease) degradation.46, 47 Thus, the different binding 

strength between PLL-g-mHis and PLL-g-PHis will influence pDNA release kinetics and 

plays a critical role in determining transfection efficiency after endosomal escape. 

 

3.4.5. Particle Size and Zeta Potential Profiles of Polyplexes 

at Various N/P Ratios 

       PLL-g-PHis formed a micelle at physiological pH because of the amphiphilicity of  

the polymer. The average diameter of PLL-g-PHis in HEPES buffer at pH 7.4 was about  

60 nm (Figure 3.8). The size of micelles increased as the pH dropped and grew sharply at 
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Figure 3.7. pH-dependent pDNA release test using a heparin competition assay. (a) The 

binding strength of the polyplexes (N/P 5) at pH 7.4 and pH 5.5 under heparin incubation 

(b) A quantification of the release of pDNA using a YOYO-1-labeled pDNA at 

increasing concentration of heparin under pH 7.4 and pH 5.5.  (* p<0.01, ** p<0.001; 

Mean ± SD; n = 3)  
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Figure 3.8. The particle size changes of PLL-g-PHis upon pH reduction (Mean ± SD; n = 

10) * indicates p<0.05 compared with particle sizes at pH7.4.   
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pH 4.5 as the micelles became sufficiently protonated to cause dissociation. To 

characterize complexation with pDNA, the particle size and zeta potential were 

monitored at various N/P ratios ranging from 4 to 10 (Figure 3.9).  PLL polyplexes 

showed the smallest particle size (60-90 nm), whereas, PLL-g-mHis and PLL-g-PHis 

were larger (80-120 nm and 70-80 nm, respectively). The size and charge of the 

polyplexes depends on the number of free primary amino groups on the PLL backbone 

which can alter the electrostatic interactions with the genes. Thus, PLL can make a 

compact particle, but this in turn retards the dissociation between PLL and pDNA once 

located inside the cells and leads to low transfection efficiency.48     

 

3.4.6. Cell Viability Analysis Using MTT Assay 

       Grafting His into PLL reduces the cytotoxicity of the polymer as assessed in MCF7 

and Hela cells using an MTT assay (Figure 3.10). The cytotoxicity of PLL was 

significantly higher in both cell lines, but PLL-g-mHis and PLL-g-PHis showed 

negligible cytotoxicity within the tested concentration range.  

       The difference between PLL and PLL grafted with histidine is mainly due to the 

reduced numbers of free ɛ-amines. Since 30 Lys residues are grafted with mHis in PLL-

g-mHis, it has the lowest surface charge and the highest cell viability of the three 

polymers followed by PLL-g- PHis and PLL. This MTT data suggests that the hemolytic 

activity of PLL-g-PHis was induced by a pH sensitive mechanism at pH 5.5 without 

compromising cell viability. Thus, PLL-g-PHis becomes more protonated at lower pH, 

and strongly interacts with the RBCs membrane where it causes membrane disruption.   
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Figure 3.9. Physicochemical characterization of polyplexes. (a) Particle size and (b) zeta 

potential of complexes from PLL, PLL-g-mHis, and PLL-g-PHis with pDNA at different 

ratios (Mean ± SD; n = 10). 
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Figure 3.10. Dose-dependent cytotoxicity of polymers in (a) MCF7 and (b) Hela cells. The 

cells were exposed to the polymers for 24 hr in the serum-containing medium (Mean ± SD; 

n = 6). 
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3.4.7. In vitro Transfection Efficiency Evaluation of Polyplexes 

        The in vitro transfection efficiency of the genes carried by PLL-g-mHis and PLL-g-

PHis was compared to PLL using a luciferase activity in MCF7 (Figure 3.11(a)) and Hela 

cells (Figure 3.11(b)). PLL-g-mHis/pDNA polyplexes in MCF7 cells had lower 

transfection efficiency than PLL up to N/P 8, but the efficiency was enhanced about 2 

fold at N/P 10 with statistical significance (p<0.01); however, 6.5 fold higher gene 

expression was observed with PLL-g-PHis/pDNA than PLL even at N/P 4.  In Hela cells, 

both PLL-g-mHis (statistically not significant) and PLL-g-PHis showed enhanced 

transfection efficiency compared to PLL. mHis modification resulted in a minor 

improvement in luciferase activity without statistical significance (p=0.32), but PHis 

showed up to a tenfold enhancement in transfection efficiency even at the lowest N/P 

ratio (p<0.001). Incorporation of histidine groups enhanced luciferase activity by 

providing buffering capacity in PLL, but the degree to which transfection efficiency 

improves depends on the arrangement of imidazole groups. PLL-g-mHis requires more 

polymer per quantity of gene (higher N/P ratio) than other polymers, because there are 

fewer ɛ-amines available for gene interactions due to the substitution of histidine 

monomers on the PLL backbone. Higher transfection efficiency compared to PLL and 

PLL-g-mHis was observed via PLL-g-PHis, since PHis can provide stronger 

endosomolytic activity during transfection as was demonstrated in the hemolysis assay 

(Figure 3.5). We conclude that given an equivalent number of histidine residues attached 

to PLL for buffering capacity, PHis grafting provided better performance in terms of 

endosomal disruption and transfection efficiency.        

       Since the final transfection efficiency levels are strongly associated with the ability 
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Figure 3.11. Luciferase expression of polyplexes at various N/P ratios in (a) MCF7 and 

(b) Hela cells. * and ** means p<0.01 and p<0.001  vs. PLL polyplexes (Mean ± SD; n ≥ 

4) 
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of polyplexes to escape the endosome, transfection of the polyplexes was evaluated with 

the treatment of chloroquine (CQ) to evaluate the ability of polyplexes to escape from the 

endosomes in Hela cells (Figure 3.12). CQ is a weak base endosomolytic agent that 

mainly accumulates in the late endosome and lysosomes, and causes a reduction of 

protonation. Thus, CQ acts as a proton buffer and enhances the release of genes into the 

cytoplasm.49 As shown in Figure 3.12, the presence of CQ enhanced the transfection 

efficiency of PLL/pDNA polyplexes by bolstering the weak endosomolytic activity of 

PLL. PLL-g-mHis/pDNA transfection activity was slightly boosted by CQ, because it 

was able to escape the endosomes on its own but slowly. On the other hand, the 

preincubation of CQ did not enhance the transfection efficiency of PLL-g-PHis/pDNA. 

We can conclude PLL-g-PHis helps pDNA escapes into the cytoplasm from the early 

endosomes before the gene degradation in the late endosome or lysosomal phases occurs.  

 

3.4.8. Intracellular Localization and pH Environment of the Polymers 

       To investigate the impact of the polymers inside the cell, confocal microscopy and 

flow cytometry were used to track intracellular localization and pH environment of the 

polymers in the cells. As shown in Figure 3.13(a), Cy3 labeled PLL-g-PHis and PLL-g-

mHis yielded discernible localization results after 1.5 hr incubation. After 1.5 hr 

incubation PLL at a concentration of 50 μg/mL killed most of the cells due to high 

polymer toxicity. It was obvious that the Cy3 red from PLL-g-mHis was mostly located 

around the cell nucleus, whereas a higher portion of red fluorescence was found inside of 

the nucleus for PLL-g-PHis. Interestingly, PLL-g-PHis was able to translocate inside the              

nucleus, which is an advantage for gene delivery and gene expression. The fluorescence 
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Figure 3.12. Normalized transfection efficiency of polyplexes in Hela cells (N/P 4). 

Transfections were performed in the absence (-) and presence (+) of Chloroquine. Result 

expressed as Mean ± SD; n ≥ 4, where * p<0.01 and ** p<0.001 compared with (-) CQ.  
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                      (b)      

                                                

                                   

 

Figure 3.13. Polymers treated in Hela cells (a) confocal images of PLL-g-PHis and PLL-

g-mHis at 50 μg/mL after 1.5 hr incubation. Scale bar: 20 μm. (b) Intracellular pH of 

PLL-g-PHis and PLL-g-mHis at 50 μg/mL after 1.5 hr incubation. Data shown are the 

Mean ± SD; n = 3.  
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intensity ratio of pH-sensitive and pH-insensitive dyes is linearly related to the pH 

environment of the labeled polymers. After conjugation with Cy3 (pH-insensitive) and 

FITC (pH-sensitive), flow cytometry data (Figure 3.13(b)) demonstrated that the average 

pH around PLL-g-mHis was pH 6.7, suggesting that most polymer molecules are trapped 

in the early endosomes (pH 5.5-6.5).39 However, the average pH, where PLL-g-PHis 

located was 7.2, implying that the polymer escaped from the endosomal/lysosomal 

compartments and entered into the cytoplasm and nucleus (pH 7.2) after 1.5 hr 

incubation. In more detail, the narrow time points of PLL-g-PHis were monitored to track 

the fluorescence changes over time. As shown in Figure 3.14, after 0.5 hr and 1 hr 

incubation, the fluorescence was located around the cell nucleus, and after 1.5 hr 

incubation, most of the fluorescence translocated into the nucleus. The pH remained 

almost the same for the first 1 hr (pH 6.7~6.8) and slightly changed to 7.2 after 1.5 hr, 

which not only confirmed the endosomal escape of PLL-g-PHis, but also showed the 

exact time point when PLL-g-PHis escapes from the acidic compartment while PLL-g-

mHis was still entrapped. This observation is the evidence of the powerful membrane 

disruption and cell permeability ability of PLL-g- PHis.  

 

3.4.9. Intracellular Localization of pDNA Delivered by Polymers 

       To verify efficient functional transfection by the His grafted PLL, Hela cells were 

treated with the polyplexes carrying YOYO1-pDNA at N/P 4, and the intracellular 

localization of the fluorescently tagged DNA was monitored for each polymer. As shown  

in Figure 3.15(a), the results indicated that the YOYO1-pDNA from PLL polyplexes was 

localized in both the nucleus and cytoplasm, and red lysotracker staining was more    
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Figure 3.14. Confocal images and intracellular pHs of PLL-g-PHis (50 µg/mL) at different 

time points.  Scale bar: 20 μm. (Data shown are the Mean ± SD; n = 3). 
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         (a) 

 

          (b) 

                                    

Figure 3.15. Cellular localization of polyplexes in Hela cells. (a) Confocal images of 

intracell distribution of YOYO1-pDNA delivered by polymers, Scale bar 10 μm. (b)  

Quantification of YOYO1-intercalated pDNA and red lysotracker in the inner-cytoplasm 

was generated from a z-stack of confocal images. Results indicate Mean ± SD; n = 7, 

where * p<0.01 and ** p<0.001 compared with PLL polyplexes.  
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intense in the cells treated with PLL/pDNA than in PLL-g-mHis/pDNA or PLL-g- 

PHis/pDNA. A large amount of green fluorescence was co-localized with red lysotracker, 

which implies that a significant fraction of PLL/pDNA complexes are trapped inside the 

acidic compartments. The lack of proton buffering and endosomal membrane rupturing 

ability prevented the release of polyplexes from the endosome, thus, the localized 

polyplexes in the endosomes are trafficked to the lysosomes and degraded, leading to low 

transfection efficiency.50  

       The intracellular intensity of YOYO1-pDNA (Figure 3.15(b)) delivered by PLL-g-

mHis polyplexes was lower than other polyplexes at 4 hr post-transfection, probably 

because it has the lowest surface charge; however, YOYO1-pDNA was more localized in 

the nucleus than in the cytoplasm, and lower lysotracker intensity was observed in mHis 

grafted PLL than in PLL polyplexes due to the proton buffering capacity that lead to 

greater release of polyplexes from the endosomes.  

       The results support that the endosomolytic activity by mHis grafting plays a more 

important role than cellular uptake in transfection efficiency (Figure 3.16). The 

experiment with PLL-g-PHis polyplexes revealed that significant quantities of YOYO1-

pDNA were translocated inside the nucleus and the polyplexes were barely detected in  

the acidic vesicles of the cell. The cluster of imidazole rings in PLL-g-PHis provided 

even higher endosomolytic activity than PLL-g-mHis which lead to stronger endosomal 

membrane destabilization and favored quick endosomal escape. 
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Figure 3.16. Cellular uptake of polyplexes in Hela cells. Polymers were complexed with 

YOYO1-intercalated pDNA at N/P 4 and mean value of the fluorescence intensity was 

observed after 4 hr incubation. (Data present the Mean ± SD; n = 3).  
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3.5. Conclusion 

       Both mHis and PHis grafting enhanced the buffering capacity of PLL, but despite  

having an equivalent number of imidazole groups, the two polymer architectures have           

different buffering capacity and gene transfection efficiency. More importantly, PLL-g-

PHis containing imidazole rings in polymer form showed significantly stronger 

endosomolytic activity than that from PLL-g-mHis. This difference is due to higher local 

charge density at endosomal pH, which creates a stronger electrostatic stress force and 

interacts to a greater extent with the endosomal membrane (Figure 3.17). This dense ionic 

interactions result in greater local electrostatic stresses on the membrane as the endosome 

swells from the osmotic pressure build-up caused by the imidazole groups buffering 

capacity. The localized stress facilitates membrane destabilizing activity via a 

combination of increased osmotic potential due to the polymer buffering capacity and 

direct interactions with the membrane, as evidenced by improved hemolytic activity of 

PLL-g-PHis. This indicates that the ionization behavior of polymers depends on the 

architecture and may change the local stress intensity on the membrane and significantly 

contribute to endosomal disrupting activity. Thus, we conclude that the pH-sensitive 

polymeric endosomolytic agents (PLL-g-PHis) are more effective in gene transfer than 

monomeric and scattered counter parts (PLL-g-mHis), and results in enhanced 

transfection efficiency. In addition, grafting PHis to the PLL backbone lowered the    

cytotoxicity at the cost of a minimal reduction of free amines in PLL, resulting in slightly 

lowered gene condensation capability and a higher cellular uptake than mHis. Therefore, 

improved endosomal escape resulted in the highest intracellular localization in the 

nucleus as well as effective gene transfection.   
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Figure 3.17. Schematic illustration of a local stress development by interactions between 

the PLL-g-mHis / PLL-g-PHis and the endosomal membrane. 
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CHAPTER 4 

RESULTS, CONCLUSIONS, AND FUTURE PROSPECTS 

4.1. Results and Conclusions 

       Inefficient endosomal escaping and disassembly of polyplexes in the cytoplasm are 

the major intracellular barriers that hinder efficient gene transfer and expression.1 The 

main focus of utilizing stimuli-sensitive polymers was to facilitate efficient gene delivery 

and achieve gene expression enhancement by taking advantages of biological 

environments inside the cells. The difference in pH and redox potential changes the 

complex status and controls the formation or dissociation of complexes by the stimuli-

responsive system.2 Therefore, gene will be released from polyplexes in a stimuli-

responsive manner. Two different approaches of the stimuli-responsive system were 

applied to overcome intracellular barriers by designing polymers that response to specific 

stimuli. Thus, a disulfide-linked reducible polymer, and a pH-sensitive endosomolytic 

polymer were constructed. The first study investigated the effect of the decomplexation 

rate of pDNA on transfection efficiency using reducible PLL (RPLL) as a 

decomplexation controller. In this study, PLL and RPLL were mixed to balance the 

protection and release of genes from the carriers. As expected, RPLL showed negligible 

cytotoxicity in several cell lines compared with nondegradable PLL. Moreover, the  



 
 

presence of RPLL in PLL100-x RPLLx/pDNA complexes (PRLx polyplexes) showed  

different release kinetics in reducing mimicking environments. As RPLL contents 

increase in PRLx polymers, the release rate of gene was getting faster and more genes 

were released even in low concentration of heparin. We were able to observe the 

decomplexation rate varied by RPLL contents, and controlled release of gene from PRLx 

polyplexes was changed upon different amount of RPLL contents. 

       The transfection efficiency data showed that the maximum levels of luciferase 

expression obtained peak value at x=2.5 in MCF7 and x=10 in HEK 293 cells, 

respectively. Interestingly, neither PLL nor RPLL 100% resulted highest transfection 

efficiency. PLL 100% may induce strong interaction with pDNA and result slow release, 

whereas RPLL 100% may cause too fast release of gene before it reaches inside the 

nucleus. The highest transfection efficiency that was obtained at different RPLL contents 

in PRLx polyplexes depends on the cell lines which explains that optimal decomplexation 

rate is different based on intracellular glutathione levels in each cell lines. From the GSH-

Glo glutathione assay, intracellular glutathione levels in MCF7 tumor cells were 10 times 

higher than noncancerous HEK 293 cells. Thus, lower RPLL contents in MCF7 cells 

were able to induce the maximum transfection efficiency because low RPLL contents are 

enough to induce fast decomplexation of polyplexes.  

       From the intracellular localization observation, we were able to demonstrate that 

optimum decomplexation rate not only result high transfection efficiency but also induce 

high nuclear localization of pDNA in MCF7 cells. When an equal amount of Cy5-labeled 

pDNA was transfected via different contents of RPLL, PRL2.5 and PRL5 displayed the 

highest pDNA in the nucleus, whereas other PRLx polyplexes were mostly localized in 
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the cytoplasm. Thus, the different distribution of pDNA localization in the nucleus 

resulted in different levels of transfection efficiency. This study showed that controlling 

the decomplexation rate of gene release from the carriers is an important event that 

determines the fate of gene, and it should happen at a right intracellular place and the 

right time. These observations may provide a better way to design stimuli-sensitive gene 

carriers targeting cancer which can balance the complexation and dissociation of 

polyplexes to efficiently deliver and express more gene upon redox sensitive mechanism 

in tumor cell lines.     

       The second study was focused on synthesis and evaluation of a pH-sensitive 

polymeric gene carrier which has a pH-dependent endosomolytic activity. Imidazole 

groups in histidine were introduced in PLL to favor endosomal escape via imidazole 

protonation in acidic endosomal environments. Two different types of histidylated PLLs 

were designed with equal number of imidazole rings, PLL-g- poly(L-histidine) (PLL-g-

PHis) and PLL-g-mono-L-histidine (PLL-g-mHis), to compare the differences in terms of 

endosomolytic activity, hemolytic activity, and transfection efficiency. Both PLL-g-PHis 

and PLL-g-mHis showed an enhanced buffering capacity compared with unmodified 

PLL, which explains the introduction of pH-sensitive ionizable groups that are protonated 

and endow the proton sponge effect within the endosomal pHs. Although both polymers 

have the same number of imidazole groups, the protonation behavior was different. 

Titration data showed that the imidazole rings’ arrangement in PHis and mHis may 

change the pKa values and ionization degree because of the different distance between 

imidazole groups. Thus, a shorter distance in PHis induces more rapid proton transfer 

through a hydrogen bridge and more protonated than that with mHis.  
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       In the endosomal pH range, the hemolytic activity of both PLL-g-PHis and PLL-g- 

mHis was more advanced than PLL. Although PLL showed no differences in a hemolytic 

activity at pH 7.4 and pH 5.5, PLL-g-mHis displayed 18% and 42% at pH 7.4 and pH 

5.5, respectively. In the case of PLL-g-PHis, the hemolytic activity significantly changed 

from 27% at pH 7.4 to 75% at pH 5.5. Hemolytic activity is produced by local 

electrostatic stress forces induced between polymer and the cell membrane. Thus, the 

density of protonated polymers per the membrane surface area decides the external stress 

forces to destabilize and disrupt the membrane. This hemolytic data demonstrated that 

PLL-g-PHis produced the strongest local stress due to the high charge density that 

induced at lower pH resulted stronger interactions between the membrane and protonated 

polymers. On the other hand, the dispersed imidazole rings in PLL-g-mHis are relatively 

less protonated at low pH which leads to weaker interactions with the membrane and 

induces weaker local stress forces. Thus, a local stress on the cell membrane induced by 

polymers can be a strong indicator of endosomal membrane disruption and endosomal 

escaping ability.     

       Histidylated PLLs also demonstrated enhancement of transfection efficiency which 

showed higher levels of luciferase activity than nonmodified PLL in two different cell 

lines. In MCF7 cells, PLL-g-mHis resulted ~2 times higher transfection efficiency at N/P 

10 and PLL-g-PHis induced ~7 times higher gene expression even at N/P 4. In Hela cells, 

PLL-g-mHis resulted in a minor transfection efficiency enhancement, whereas PLL-g-

PHis showed 10 times enhanced gene expression even at the lowest N/P ratio. Since 

mHis grafting used more Ɛ-amines than PHis, there will be fewer amines available for 

gene interactions; thus, higher N/P ratios of PLL-g-mHis will be required to further   
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enhance transfection efficiency. PLL-g-PHis showed a statistically significant 

enhancement of gene expression in both cell lines. This observation can be explained by 

previous experiments that PHis grafting induced a higher proton buffering and stronger 

endosomolytic activity which leads to enhanced gene expression.    

       The intracellular localization data showed that PLL resulted in pDNA localized in 

both the nucleus and the cytoplasm; the fluorescence from the lysotracker which stains 

inside the acidic compartments was the highest due to the absence of endosomal escaping 

ability. PLL-g-mHis resulted relatively less YOYO1-pDNA intensity inside the cell than 

that of PLL; however, more pDNA was localized in the nucleus and the lysotracker 

intensity was lower because of better endosomolytic activity that facilitate release of 

polyplexes from the endosomes. PLL-g-PHis induced the highest intracellular 

distribution of YOYO-1 labeled pDNA in the nucleus, whereas lysotracker was observed 

the lowest. The different data between PLL-g-mHis and PLL-g-PHis demonstrated that 

the arrangement of histidine in PHis provided a higher endosomolytic activity and rapid 

endosomal escaping of polyplexes which results in more genes available in the nucleus.    

       Therefore, PLL-g-PHis is a pH-sensitive endosomolytic polymer that changes its 

protonation and deprotonation state in a pH-dependent manner to avoid nonspecific 

membrane disruption. PHis conjugations compensate a less Ɛ-amines in PLL than mHis 

which result relatively stronger electrostatic interactions with pDNA and provides a 

stronger proton buffering and endosomolytic activity to promote rapid endosomal release.   
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4.2. Future Prospects 

4.2.1. Potential Candidate Genes 

       Based on the previous observations, polymers that are sensitive to stimulus provided  

benefits in terms of efficient gene delivery and enhanced transfection efficiency.  

Therefore, it is necessary to investigate these stimuli-responsive polymer applications in 

vivo using therapeutic genes. There are several candidate genes that have been used in 

cancer gene therapy which belongs to tumor suppressor genes, stability genes, and 

oncogenes.  Among these therapeutic genes, potential candidate genes are retinoblastoma 

(RB) gene and phosphatase and tensin homolog deleted on chromosome ten (PTEN) 

gene, which belong to tumor suppressor genes.  

       RB gene is known to be a potent negative regulator of cell cycle progression.3 It 

plays an important role in controlling cell proliferation and inhibits the pro-apoptotic 

activity via blocking entry into the cell cycle.4 It has been reported that the RB gene is 

disrupted in 25% of the breast tumor cell lines and loss of RB function is related to cell 

motility enhancement and invasion of breast cancer.5 In addition, above 90% of small cell 

lung carcinoma cases are involved with RB inactivation, and loss of RB function is also 

associated with prostate cancer and liver cancer ~20% and 15~30%, respectively.5  

       RB directly binds to E2F transcription factor and block E2F transcription activity 

which results in inhibition of S-phase entry and cell cycle arrest.3 When RB is 

phosphorylated by cyclin D/E, it allows RB/E2F complex to undergo a conformation 

change followed by E2F dissociation from Rb that makes E2F become active for 

transcription.5 However, RB function is disrupted in tumor cells in a several ways. It has 

been reported that RB/E2F interaction is disturbed by papilloma virus E7, which is a 
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tumor virus oncoprotein that displace E2F and results in RB loss of function.3 In addition, 

overexpression of cyclin D causes RB phosphorylation in an inappropriate way, thus 

deregulating E2F transcription function.3 Therefore, maximized RB gene expression will 

interfere with cell cycle progression and contribute to proliferation rate and tumor 

aggressiveness.  

       PTEN is involved in various cellular progresses like cell proliferation, cell cycle 

progression, cell polarity apoptosis, DNA damage response, and angiogenesis.6 It has 

been also known as a tumor suppressor, because PTEN is the one of the most commonly 

mutated or deleted tumor suppressors in human cancer.6 Lack of PTEN has been reported 

in many cancers that include 66% of glioblastoma, 27% ovarian cancer, 20% prostate 

cancer, 41% colorectal cancer with microsatellite instability, and 17% colorectal cancer 

without microsatellite instability that are involved with reduced PTEN expression.7  

       The important role of PTEN signaling in cancer is that it plays as a major negative 

regulator in the phosphatidylinositol 3 kinase (PI3K) pathway which is involved in a 

tumor development.6-8 When PTEN expression is reduced or inactivated by several 

causes such as reduced mRNA or altered chromatin located at the PTEN promoter, it 

results in inactivation of PTEN and stimulates the PI3K pathway.7 Thus, the PI3K 

pathway drives many cancer-promoting events such as cell survival, and cell 

proliferation. The PTEN network also involves with other signaling pathways such as 

Ras, and p53; thus, they regulate each other in a direct or indirect way.6,8 Therefore, 

therapeutic PTEN expression will regulate PI3K pathway signaling and other signaling 

pathways to suppress tumor cell growth, tumor cell invasion, and metastasis. 
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4.2.2. Potential Gene Carriers for In Vivo  

       The bioreducible polymer and the pH-sensitive endosomolytic polymer showed 

efficient gene delivery and enhanced transfection efficiency in in vitro studies. Disulfide 

bonds in the reducible polymer provided degradability, low toxicity, and controlled gene 

release. Imidazole groups in PHis generated endosomal buffering capacity and induced 

membrane disruption at endosomal pH due to pH sensitivity. Therefore, the potential 

gene carrier for in vivo applications will be designed by employing a combination 

approach from both strategies.  

       The first approach will be designing a polymer composed of PLL-g-PHis and RPLL 

to make PLL-g-PHis100-xRPLLx. It is similar to a prior approach, but PLL-g-PHis is 

mixed with RPLL instead of PLL since PLL has absence of proton buffering within 

endosomal pH range and lack of endosomal escape ability.  

       As shown in Figure 4.1, a disulfide-linked PHis in PLL (PHis-s-s-PLL) will be 

synthesized as an alternative strategy.  In order to synthesize PHis-s-s-PLL, a synthesis 

will be conducted by the following method. First, PHis block will be prepared by a ring-

opening polymerization using an initiator N-Boc-1, 4 butanediamine, which is an amine-

containing small molecule.9 The  molecular weight will be controlled by the feed ratio of 

Boc group to imidazole ring, and the degree of polymerization will be calculated using 

1H NMR. Then 2-mercaptoethanol will be added to deprotect the amine end group, and it 

will react with 3-(2-pyridyldithio) propionic acid N-hydroxysuccinimide ester (SPDP) to 

produce a disulfide linkage. To synthesize PLL-SH, PLL will be reacted with 3-

(acetylthio) propionic acid N-succinimidyl ester (SATP), then finally PHis-SH and PLL-

SH will be mixed in DMSO for oxidative polymerization.  
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Fig. 4.1. The chemical structure of PHis-s-s-PLL 
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       The PHis block will induce rapid release of polyplexes from the endosomal  

compartments, and the formation of disulfide bonds will facilitate pDNA release when 

polymer is exposed to reducing cytosolic environments. Therefore, this carrier system  

will maximize the level of transfection efficiency with minimal toxicity.  

       However, positively charged polyplexes may induce undesirable aggregation and  

toxicity which results in a reduced transfection efficiency. Thus, two approaches will be 

considered to overcome this drawback in in vivo applications. First, PEG incorporation 

can be applied to shield the positively charge surface of polyplexes. The potential 

benefits of PEGylation in vivo studies have been widely investigated and reported. PEG-

modified nanoparticles have been shown to provide many benefits in gene delivery 

system that can reduce rapid renal clearance, escape reticulo-endothelial system (RES), 

provide prolonged circulating half-life in blood, and avoid immune cell recognition.10 In 

addition, it further enhances tumor accumulation and inhibits nonspecific interactions.10 

Therefore, PEGylated polyplexes will not only solve cationic surface problem, but also 

show improved stability in the blood and induce higher in vivo distribution in tumor.  

       Recently, Bae’s group reported the new approach of charge shielding and 

deshielding techniques using mPEG (2 kDa)-block-polysulfadimethoxine (4 kDa) 

(mPEG-b-PSDM) in a mouse xenograft model.9 The electrostatic complexation between 

positively charged micelle and negatively charged mPEG-b-PSDM was used to shield a 

cationic surface charge. mPEG-b-PSDM displays a unique shielding and deshielding 

technique, since PSDM has a pH-sensitive property that is negatively charged at pH7.4, 

but becomes neutral at acidic pH. Thus, the reduction of pH results a dissociation of 

mPEG-b-PSDM from the cationic micelle. The system has been shown to be effective in 
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in vivo experiments. The shielding/deshielding technique showed successful anticancer 

therapeutic efficacy due to the rapid response in acidic tumor pH.9 Therefore, several 

feeding ratios of mPEG-b-PSDM to cationic polyplexes will be tested to optimize the  

particle surface charge and gene expression should be monitored in a tumor bearing  

mouse model.  

 

4.2.3. Sustained Gene Expression 

       Although many polymeric gene carriers have been synthesized to overcome 

intracellular barriers, the major limitation that hampers the successful nonviral gene 

therapy in clinical study is raised from a lack of sustained gene expression.11 There are 

several reasons that cause a short-term gene expression. First, there is loss of the 

transfected cells during replication of the target population. Transgenes that are delivered 

inside the nucleus do not have an ability to replicate; thus, it will be diluted as the cancer 

cells continue to rapidly divide. Second, transgene can be lost by nuclease destruction, 

although genes are safely transfected inside the cells. Third, transgene can be functionally 

inactivated by partitioning to non-nuclear compartments which means genes delivered to 

non-nuclear compartments result in transcription inactivation. And last, inflammatory 

response can be induced by a bacterially derived pDNA transfection and cause reduction 

of gene expression.12,13 Thus, to enhance the efficiency of gene therapy, we have to pay 

attention to not only to overcome delivery issues and but also to find the right gene 

expression cassette for therapeutic genes. 

       The level and duration of gene expression is important to obtain therapeutic levels, 

because short-term gene expression will cause failure for long-term clinical study due to  
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the limitation of reaching therapeutic protein levels for a certain time period. In addition,  

cancer gene therapies are not for one-time treatable diseases and generally require 

sustained expression of therapeutic gene until the treatments diminish the tumor and treat 

cancer.14  

       One strategy that will be considered in future work is designing a CpG free  

plasmid vector. CpGs are cytosine-guanine dinucleotides, and ‘p’ in CpG refers to the 

phosphodiester bond between the cytosine and the guanine. These CpG-rich regions 

occur in approximately 70% of the promoters of genes.15 Plasmid vectors that are used in 

nonviral gene therapy are generally propagated in bacteria that contain unmethylated 

CpG dinucleotides within the pDNA, and the frequency of the CpGs in mammalian DNA 

is suppressed in four fold compared to bacterial DNA.16 Due to the existence of 

differences, immunostimulatory unmethylated CpG sequences in pDNA regions are 

known to cause transient gene expression.  

       CpG motifs are reported as an immune-stimulating agent that have been used as an 

immune therapy. These motifs activate not only innate immunity by NK cells and 

macrophage activation, but also adaptive immune response by B and T cell activation. 

CpG motifs act as a ‘pathogen-associated’ molecular pattern (PAMPs) and are 

recognized by Toll-like receptor (TLR) 9 of dendritic cells (DCs).17  

       Initially, TLR9 is localized at the ER, but it migrates to the endosome upon the 

access of CpG-DNA to the endosomal compartment. Interactions between unmethylated 

CpG motifs within bacterial DNA and the cytosolic Toll/interleukin-1 receptor homology 

(TIR) domain of TLR9 induces dimerization and recruits the MyD 88 adaptor protein, 

which, upon T cell activation, leads to the activation of nuclear factor kB (NF-kB) and 
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activator protein 1 (AP-1).18 Thus, high productions of proinflammatory cytokines 

towards CpG-DNA lead to transfected cells undergoing apoptosis and clearing the cells 

due to an inflammation response.19,20  As a result, sequences in the bacterial backbone 

induce short duration of expression when it is transfected in mammalian cells.   

       In addition, hypermethylation of CpG islands is related to loss of target gene  

transcription. More specifically, within the promoter region, CpG motif is 

hypermethylated due to DNA methyltransferases (DNMTs) that add methyl groups to 

CpGs. Once promoter regions of genes are highly methylated, they will block 

transcriptional factors to bind and initiate transcription. Thus, CpG motifs within the 

bacterial DNA should be avoided before transfection, and elimination of CpG motifs will 

lead to low levels of inflammatory cytokines production and prolonged gene expression.  

       To obtain long-term therapeutic gene expression, therapeutic genes will be excised 

using restriction enzyme sites and inserted into CpG free-luciferase vectors. We will use 

a CpG free pDNA with a human EF1 α promoter which is widely expressed in 

mammalian cells to obtain more powerful DNA expression with reduced immune 

response.21 The subcloned plasmid will be confirmed by gel electrophoresis and 

transformed into bacteria strain Escherichia coli DH5α. Then, each colony will be 

sequenced to obtain plasmids with the right direction. Although we use CpG free plasmid 

vectors, there will be CpG motifs within the therapeutic gene. Thus, after subcloning the 

therapeutic gene into pCpG free, cytosine residues in pDNA should be methylated to 

avoid TLR9 recognition. pCpG free-therapeutic gene will be treated with SssI methylase 

to methylate cytosine residues of CpG dinucleotides. Therefore, effective therapeutic 

gene expression will be obtained by replacing genes with the rational gene vector, and  
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will lead to clinically effective, long duration of expression. 
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APPENDIX 

POLYSACHARRIDE-TAUROCHOLIC ACID CONJUGATES FOR  

DOXORUBICIN ORAL DELIVERY 

A.1. Abstract

        Doxorubicin (DOX) oral delivery has been challenged due to the poor intestinal 

permeability which results in low oral bioavailability. To enhance the Dox permeability, 

our strategy is to conjugate taurocholic acid (TCA) to the anionic polysaccharides and 

design Dox formulation for oral delivery. TCA-linked heparin (H-TCA) and TCA-linked 

chondroitin sulfate (CS-TCA) were constructed to enhance DOX absorption rate mainly 

targeting terminal ileum. Two DOX formulations, DOX/CS-TCA (1:2) and DDP/H-TCA 

(1:1:0.8:2.4) (w/w ratio), were prepared. DOX/CS-TCA and DDP/H-TCA showed a 

particle size of 205 nm and 230 nm, respectively, and were able to reconstitute in DI 

water after freeze-drying. DOX was encapsulated at high loading efficiency and content. 

Moreover, negatively charged DOX-loaded TCA nanoparticles (DOX-TCA-NPs) 

significantly reduced the cytotoxicity compared with free Dox. The in vitro DOX release 

study was investigated at pH 5 and 7.4. The release profile of DOX/CS-TCA showed that 

there was a faster release DOX than that of multiple coated DDP/H-TCA. We studied in

vivo anticancer efficacy of the free DOX and DOX-TCA-NPs in HepG2 xenograft mouse 



 
 

model. Free DOX delivered via both oral and IV administrations were used as a control 

group, and DOX-TCA-NPs were administered orally every 3 days at a dose of 4 mg 

Dox/kg. We observed a significant suppression of tumor growths without a marked 

reduction of body weight in TCA groups. In addition, the biodistribution study 

demonstrated that TCA groups showed more absorption of DOX from the ileum. The 

animal data confirmed TCA coating not only diminished DOX toxicity but also enhanced 

absorption in intestine, especially the ileum section. Therefore, these findings strongly 

provided that enterohepatic circulation of TCA elevated DOX systemic exposure and 

improved DOX plasma levels which lead to oral bioavailability enhancement and tumor 

growth reduction. This indicates promising DOX targeting delivery to cancer cells.    

 

A.2. Introduction 

       Ideal oral formulation of anticancer drugs is determined by solubility, stability, 

dissolution rate, and permeability in the gastrointestinal (GI) tract that affects oral 

bioavailability.1 Thus, the oral dosage form of these drugs should have a rapid dissolution 

rate and absorption rate that can lower half-life and metabolism in the GI tract to 

maximize oral bioavailability. However, oral delivery of anticancer drugs still has 

challenges that limit the use of drugs for cancer treatments. One of the major drawbacks 

that hamper the drug efficacy are barriers in the epithelial lining of gut walls.2   

       DOX is one of the anticancer drugs that have been widely used for lymphomas, 

sarcomas, breast, ovarian, and lung cancer.3 DOX damages DNA by intercalating into the 

bases of DNA which inhibits topoisomerase II enzyme activity and interferes in DNA 

transcription.4 DOX belongs to BCS classification III which has favorable solubility but 
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poor permeability which is responsible for the low oral bioavailability (about 5%) of     

DOX.1, 5, 6 However, the major limitation in clinics is due to cardiotoxicity resulting from 

oxidative stress generation, and other side effects including nephrotoxicity, 

myelosuppresion, and developing multidrug resistance which leads to narrow therapeutic 

index.7, 8 Thus, a new formulation strategy is required to improve its poor intestinal 

permeability and oral bioavailability since the limited intestinal absorption of DOX 

hampers the overall oral bioavailability.9  

       Bile acid transporters have been considered as an attractive therapeutic target for 

drug delivery, because bile acids secreted from the liver are reabsorbed from the terminal 

ileum throughout intestinal epithelial cells and transported back to the liver via the portal 

vein.10 Thus, the high bile acid recycling ratios make the enterohepatic circulation of bile 

acids highly efficient process and benefit the bile acid transporters that are mainly 

expressed in the liver and the terminal ileum.11, 12 Taurocholic acid (TCA) has been 

known to be one of the most abundant bile acids in human and it has been reported that 

TCA in human intestinal fluids is approximately 45%.13, 14 

       TCA has been used as a drug carrier by conjugating to anionic polymer and delivered 

via oral administration. Khatun et al. reported that TCA linked heparin-docetaxel 

conjugates enhanced the drug concentration in plasma 6 times.15 They claimed the TCA 

exposed on the surface of nanoparticles interacted with the bile acid transporters in the 

small intestine and enhanced the intestinal permeability as well as drug bioavailability. In 

the case of DOX itself, the hydrophilic cationic properties of DOX lead to the crossing of 

intestinal epithelium cells mainly via the paracellular pathway.9 However, the TCA 

coating of DOX surface will maximize the intestinal transcellular absorption via Na+-
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dependent apical sodium bile acid transporter (ASBT) mainly in the terminal ileum and 

facilitate DOX transport from terminal ileum to portal vein that enhance DOX into the 

systemic circulation.16  

       Heparin (H) and chondroitin sulfate (CS) were chosen as an anionic polymer 

backbone to conjugate TCA due to its outstanding biocompatibility, high water solubility, 

and biodegradability.17, 18 These polysaccharides are natural polymers that have been 

used as carriers and provided clinical benefits.19 Thus, H-TCA and CS-TCA will coat the 

surface of DOX to increase the stability of DOX in the gastrointestinal (GI) tract and 

protect the DOX-loaded nanoparticles from the GI environment. In addition, H-TCA and 

CS-TCA can form nanoparticles (NPs) with DOX. These NPs will lead to superior oral 

absorption since smaller NPs have shown elevated intestinal absorption compared to 

micron size particles.20 This simple formulation strategy will avoid nonspecific 

adsorption and improve intestinal absorption which leads to DOX oral bioavailability 

improvement. The efficient TCA recycling via enterohepatic circulation could be 

beneficial to anticancer oral chemotherapy targeting liver carcinoma.  

 

A.3. Materials and methods 

A.3.1. Materials 

       Doxorubicin hydrochloride, sheared salmon sperm DNA (Trevigen, MD), Dimethyl 

sulfoxide (DMSO), 4-(2-hydroxy-ethyl)-1-piperazine (HEPES), 3-(4, 5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT), D-glucose, sodium bicarbonate, 

recombinant human insulin, Hoechst 33342, RPMI 1640 medium, Dulbecco’s phosphate 

buffered saline (DPBS), Dulbecco’s modified eagle’s medium (DMEM), carbodiimide 

(EDC), N-hydroxysuccinimide (NHS).   
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A.3.2. Preparation of H-TCA and CS-TCA 

       Heparin- taurocholic acid (H-TCA) was provided by Dr. Lee’s lab and the  

preparation steps are reported in their previous report.15 In brief, 1 mol of TCA sodium 

salt was dissolved in DMF at 0 °C followed by 6 mol of triehtylamine and 5 mol of 4-

nitrophenyl chloroformate (NPC) addition. The reacted solution was then extracted three 

times with ethanol and DI water. A rotary evaporator was used to remove organic solvent 

and samples were freeze-dried to obtain TCA-NPC. 1 mol of TCA-NPC was dissolved in 

DMF with 2 mol of 4-methylomrpholine. Then 100 mol of ethylene diamine was added 

drop by drop and final product was dried to obtain TCA-NH2. To synthesize the TCA 

conjugates to either heparin or chondroitin sulfate (CS), 1 mol of heparin/CS was 

dissolved in DI water first. Then EDC (5 mol) and NHS (5 mol) was added to the 

solution and stirred for 12 hr at RT. A same feed molar ratio of TCA-NH2 was added to 

heparin and chondroitin sulfate to obtain the same coupling amount of TCA. Thus, the 

feed molar ratio of both heparin:TCA and chondroitin sulfate:TCA was 1:4. After 1 day 

of reaction, the solution was placed in MWCO 1000 dialysis membrane and dialyzed 

against water. The final product was lyophilized and confirmed by its 1H-NMR spectrum. 

 

A.3.3. Formation and reconstitution of DOX-loaded nanoparticles 

DOX-loaded nanoparticles were formed via electrostatic interactions between DOX 

and TCA conjugates; CS-TCA and H-TCA. CS-TCA was directly mixed with DOX at 1:2 

(w/w ratio). In the case of H-TCA, Dox was first mixed with sheared DNA (DD) to get 

negative surface charges and mixed with Ɛ-PLL (DDP) to get positively charged surfaces. 

Finally, the particles were mixed with H-TCA (DDP/H-TCA) to get negative surface 
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charges. For each preparation, the solutions were mixed using a vortex and sonicated 10 

sec at 20 amplitude followed by incubation for 30 min at RT. Thus, the final formulation 

of DDP/H-TCA was prepared at 1:1:0.8:2.4 (w/w ratio).  

The formed DOX nanoparticles were further evaluated. Particle sizes and surface 

charges of DOX nanoparticles were evaluated as previously reported.21-23 After preparing 

DOX nanoparticles, they were diluted with HEPES buffer (20 mM, pH 7.4), then the 

hydrodynamic particle size and zeta potential of nanoparticles were monitored by dynamic 

light scattering (DLS) using a Zetasizer 3000 (Malvern Instrument, UK) with a wavelength 

of 677 nm and a constant angle of 90° at RT (25 oC).  

        After freeze-drying the samples, the freeze-dried formulations of nanoparticles were 

reconstituted in DI water and samples were sonicated about 10 sec at 20 amplitude before 

the DLS measurements. For in vivo samples, the lyophilized powder was stored at -20 °C 

until use.  

 

A.3.4. Spectral measurement of DOX encapsulation 

       Ultraviolet–visible (UV-Vis) spectroscopy (SpectraMax, USA) was used to monitor 

the change of absorbance of DOX-loaded nanoparticles. 0.1 mL samples (25 µg of DOX 

per sample) were prepared and diluted in 0.9 mL DI water (total volume 1 mL) and 

loaded in a quartz cuvette for reading. UV–vis absorbance spectra of free DOX displayed 

peaks at 232 and 490 nm, and the spectral changes of Dox loaded nanoparticles is  

compared to peaks of control free DOX. 
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A.3.5. DOX loading and encapsulation efficiency 

       The drug loading content and loading efficiency was measured using UV-Vis  

absorption spectra at 490 nm and calculated based on a standard curve. The percent of 

drug loading and efficiency were calculated using the equation below.   

 

Drug loading (%) = 
������ �	 
�� � ����������� 

������ �	 �����������
 x 100 

Drug Efficiency (%) = 
������ �	 
�� ������ � �����������

������ �	 
�� ����
 x 100 

 

 

 

A.3.6. In vitro DOX release study 

       The DOX release from nanoparticles was examined in pH 7.4 and pH 5 phosphate 

buffer using a dialysis method. 1mL of DOX nanoparticles (250 µg of DOX per sample) 

were prepared and loaded in a dialysis membrane (MWCO 3500 g/mol). The dialysis bag 

was placed in 20 mL of buffer and the buffer was stirred at 130 rpm at 37 oC. 1mL of 

external buffer was taken out at predetermined time points and the same volume of fresh 

buffer was added. The amount of released DOX was calculated by measuring absorbance 

at 490 nm based on a standard curve.         

 

A.3.7. In vitro stability test of DOX NPs 

       The stability of DOX-loaded nanoparticles was tested in three different pHs (pH 1.5, 

5, 7) in 0.1M Tris HCl buffer and the mean diameter of the nanoparticles was monitored 

by dynamic light scattering each day up to 7 days.  
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A.3.8. Cell Culture 

       HepG2 cells (a human hepatoma cell line) were cultured in DMEM supplemented  

with 10% FBS and D-glucose (4.5 g/L). Cells were grown and maintained under  

humidified air containing 5% CO2 at 37 oC.   

 

A.3.9. Cell Viability Test 

       The MTT assay was used to evaluate cell viability of polymers and DOX-loaded 

nanoparticles. HepG2 cells were seeded into a 96-well plate with a cell density 5 x 103 

cells/well in 100 µL media. After 24 hr, different concentration ranges (0.01 - 100 

µg/mL) of DOX and DOX-loaded nanoparticles were exposed to the cells for an 

additional 24 hr. MTT (10 μL; 5 mg/mL) solution was then added and incubated for 4 hr. 

All remaining media was aspirated, and DMSO (100 μL) was added to dissolve the 

formazan crystals produced from living cells with 10 min incubation at 37 °C. The 

absorbance of the cells was measured at 570 nm and their cell viability was calculated.       

 

A.3.10. In vivo therapeutic efficacy test in tumor bearing model 

       HepG2 cells (5 x 106 cells/mL) in 100 µL PBS were injected subcutaneously on the 

back of the mice.  When tumor size reached approximately 100-150 mm3, mice received 

oral administrations of PBS, 4 mg/kg doxorubicin in free or TCA coated NPs form every 

three days. In addition, equal amount of doxorubicin was intravenously administered as a 

control group. Tumors were measured every 3 days with a digital calliper and calculated 

using an equation below.24     

Tumor volume = Length x 
������

�
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A.3.11. Biodistribution 

       The biodistribution study was performed in HepG2 tumor-bearing NOD/SCID mice.  

Liver, kidney, heart, stomach, small intestine including duodenum, jejunum, ileum, and 

tumor were collected and suspended in 70% ethanol with 0.3 N HCl. Then the samples 

were homogenized to extract doxorubicin. Then the samples were refrigerated for 24 hr 

and centrifuged to collect supernatant. 200 µL of the supernatant was loaded in a black 

opaque plate and DOX fluorescence was measured using a plate reader, where the 

wavelengths of excitation and emission were 470 and 590 nm, respectively.25  

 

A.3.12. Statistical analysis 

       Sample size was estimated using one-way ANOVA with a significance level (α) of 

0.05 and a power (1-β) of 0.9. Student's t-test was used to compare two groups and one-

way ANOVA with the bonferroni post-hoc analysis was used to compare three or more 

groups. p < 0.05 was considered statistically significant.  

 

A.4. Results and Discussion 

A.4.1. Preparation and characterization of DOX-loaded nanoparticles 

       The synthesis of heparin- taurocholic acid (H-TCA) is prepared by the same method 

mentioned in the previous paper.15 In brief, the carboxylic groups in heparin were 

coupled with the amine groups of TCA to form an amide bond in the presence of EDC 

and NHS, and chondroitin sulfate-TCA (CS-TCA) were constructed in a similar manner.        

       The feed molar ratio of TCA to heparin and chondroitin sulfate was set to about 4:1 

and the conjugation of TCA in heparin and chondroitin sulfate was confirmed by 1H (Ref 

15 and Fig. A.1). DOX was coated with either CS-TCA or H-TCA via physical  
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(a) 

                    

 (b) 

                     

 

Figure A.1. Representative 1H NMR spectra of (a) Chondroitin Sulfate (CS) and (b) CS-

TCA in D2O.  
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complexation for oral administration. Although H-TCA showed an outstanding result in 

the previous report, CS-TCA was constructed because H-TCA coating to DOX produced 

a large particle size with a wide PDI. Thus, a single coating of CS-TCA was able to 

produce a smaller particle size with a narrow PDI at 1:2 (w/w ratio). In the case of H-

TCA, it required multiple layer-by-layer assemblies to coat H-TCA at the end. Thus, 

sheared DNA was used primarily to coat DOX (DD) and Ɛ-PLL (DDP) was coated after 

to produce positively charged surfaces. Finally, H-TCA (DDP/H-TCA) was coated at 

1:1:0.8:2.4 (w/w ratio).  

       The changes of UV-Vis absorption spectra of free DOX and DOX-loaded 

nanoparticles (DOX-loaded NPs) were monitored. As shown in Fig. A.2, DOX without 

any carriers displayed two main peaks at 232 nm and 490 nm, then DOX loading onto the 

H-TCA and CS-TCA was investigated. When DOX was loaded onto the TCA conjugated 

polysaccharides, there was a significant diminish of two peaks in DOX UV-VIS spectra. 

It is noted that both DDP/H-TCA and DOX/CS-TCA revealed a complete disappearance 

of the two peaks after single coating of CS-TCA or multiple coating for H-TCA which 

indicates the interactions between DOX and H-TCA/CS-TCA. The change of spectra also 

represented a successful loading of DOX in both formulations.  

       The electrostatic interactions between the cationic DOX and the anionic TCA 

conjugates formed DOX-TCA-NPs. Before the RT incubation, the particles were 

sonicated about 10 sec at 20 amplitude and a reduction of particle size with a narrow 

polydispersity index (PDI) was observed. Sonication induces acoustic cavitation which 

creates the shock waves with high forces in the solution. As a consequence, particles are 

colliding into each other and cause breakage of agglomerates that results in an overall  
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Figure A.2. UV-Vis absorption spectra of free DOX and DOX-loaded (25 µg of DOX per 

sample) nanoparticles.  
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Figure A.3. Particle size and zeta potential before and after reconstitution (Data presented 

as Mean ± SD, n = 10) 
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decrease in particle size and PDI.5, 26 The hydrodynamic diameter of DOX/CS-TCA at 

1:2 and DDP/H-TCA at 1:1:0.8:2.4 (w/w ratio) were 200 nm and 230 nm, respectively 

(Fig. A.3). In the case of DDP/H-TCA, the subsequent assembly of the multiple layers 

increased the size. The zeta potential of DOX/CS-TCA was -42.7 mV and -30.2 mV for 

DDP/H-TCA. They were both negatively charged due to the presence of carboxylic 

groups in the polysaccharide backbones.    

       We further evaluated whether these nanoparticles have a possibility of reconstitution 

for long-term storage. After freeze-drying, a powder formulation was reconstituted and 

sonicated about 15 sec at 25 amplitude in DI water. The diameters of the DOX-loaded 

NPs were slightly increased after reconstitution compared to that of samples before 

freeze-drying. The DOX-loaded NPs displayed particle sizes around 201.3 nm for 

DOX/CS-TCA and 312.4 nm for DDP/H-TCA. However, there was no significant change 

in the zeta potentials of the DOX-loaded NPs.  

 

A.4.2. In vitro stability study 

       In vitro stability of DOX-loaded NPs was tested to monitor whether the particles are 

stable in buffers against three different pHs; pH 1.5, pH 5, pH 7 (Fig. A.4(a)). In acidic 

pH 1.5, there was a decrease in particle sizes compared to the particles in higher pHs. 

DOX has a pKa of 7.2-8 which is partially ionized at pH 7.4 by protonation of the amino 

group.27 Thus, DOX is more protonated at lower pHs, and as a consequence, the strong 

electrostatic interactions can be established between DOX and anionic CS-TCA or short 

DNA which contributes to decrease in particle size. The smaller particle size in low pH 

also demonstrated that the DOX-loaded NPs will be stable in stomach pH and protect  
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Figure A.4. The in vitro stability test of DOX-loaded NPs (a) at different pH values and 

(b) long-term storage (Mean ± SD, n = 3) 
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DOX from enzymatic degradation. The DOX/CS-TCA NPs showed that single coated 

nanoparticles were generally more stable and maintained similar sizes over the wide  

range of pH. However, DDP/H-TCA NPs were getting bigger as the pH increased.   

       In addition, the long-term stability of DOX-loaded NPs was evaluated by  

measurement of particle size over a long period of time (up to 7 days) (Fig. A.4(b)). After  

7 days of storage, the DOX/CS-TCA formulation remained stable with a slight change of 

size. In the case of DDP/H-TCA, the particle size was increasing over time. This gradual 

increase in the particle size suggested that multiple coatings are physically instable 

compared to a single coating. Thus, the particle size measurement of DOX-loaded NPs 

showed that a single coating of CS-TCA provided better stability with regards to particle 

size.   

 

A.4.3. DOX loading onto polysaccharide-TCA conjugates and  

in vitro DOX release 

       The loading efficiency and loading content of DOX were investigated by measuring 

the absorbance of DOX-loaded NPs and quantified based on a DOX standard calibration 

curve. The loading efficiency of DOX/CS-TCA and DDP/H-TCA was 61.6% and 77.8%, 

respectively. The multiple layers of DDP/H-TCA exhibited a much more drug loading 

ability and the loading efficiency. The loading content of DOX/CS-TCA and DDP/H-

TCA was determined to be 30.8% and 18.5%, respectively. In both formulations, high 

loading content have been achieved and displayed efficient DOX loading.   

       The release of DOX from the polysaccharide-TCA conjugates was monitored upon 

pH changes and it was demonstrated at pH 7.4 and pH 5. As shown in Fig. A.5(a), a rapid  
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Figure A.5. In vitro DOX release profiles in PBS buffer at (a) pH 7.4 and (b) pH 5. Data 

are presented as Mean ± SD (n = 3)   
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release of DOX within 24 hr was monitored in DOX/CS-TCA NPs at pH 7.4. The release 

of DOX from DDP/H-TCA NPs was much slower and around 50% of DOX was released  

from NPs at 48 hr. In the aspect of released DOX, a single coating induced a much 

quicker release from the NPs. The multiple layer-by-layer assemblies may play as the 

diffusion barrier and delay the DOX release with a slower release rate compared to that 

of DOX with single coating.  

       At pH 5, the release rate of DOX from DOX-loaded NPs was significantly delayed 

(Fig. A.5(b)). DOX/CS-TCA showed around 65% of DOX release at 48 hr and DDP/H-

TCA displayed about 40% Dox release at 48 hr. This observation could be due to the 

high degree of protonation of daunosamine groups in DOX at acidic environment. 

Therefore, DOX-loaded NPs may exhibit a slower release and a higher protonation of 

DOX at pH 5 which corresponds to endolysosomal pH, but accelerated DOX release rate 

at pH 7.4. Since the nucleus is the target site of DOX where pH is 7.4, more DOX will be 

released faster and available to intercalate DNA. This finding indicates that the pH-

controlled DOX release from DOX-loaded NPs.  

 

A.4.4. In vitro cytotoxicity of DOX-loaded NPs 

       To monitor the cytotoxicity of polymers and DOX-loaded NPs, samples were 

transfected in a dose-dependent manner and evaluated by an MTT-based cell viability 

assay using HepG2 cells. The MTT assay of polymers showed that incubations of TCA 

conjugated polymers, CS-TCA and H-TCA, exhibited about 90% and 60% of cell 

viability at 0.01 µg/mL and 100 µg/mL concentration, respectively (Fig. A.6). This 

indicated a negligible cytotoxicity from the polymers.                                                    

170



 
 

        

 

 

             
Polymer Concentration (µµµµg/mL)

0.01 0.1 1 10 100

C
e

ll
 V

ia
b

il
it

y
 (

%
)

0

20

40

60

80

100

CS-TCA

H-TCA

 

 

Figure A.6. Dose-dependent cytotoxicity of CS-TCA and H-TCA in HepG2 cells (Mean 

± SD, n = 6) 
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       Cell viability of the DOX-loaded NPs and free DOX was also investigated in HepG2  

cells after 24, 48, and 72 hr incubation (Fig. A.7). As shown in Fig. A.7(a), free DOX  

showed the highest dose-dependent cytotoxicity due to the cationic properties of DOX  

which are more toxic to cells.  In the case of D/CS-TCA (Fig. A.7(b)) and DDP/H-TCA 

(Fig. A.7(c)), the DOX-loaded NPs showed a relatively low toxicity compared to the one 

with free DOX and the DOX/CS-TCA NPs displayed slightly lower toxicity than the 

DDP/H-TCA. The CS-TCA or H-TCA anionic polymer coating improved DOX-induced 

cytotoxicity and resulted in negligible toxicity to the cell environments; thus, lower cell 

toxicity from DOX-loaded NPs were observed. However, multiple coated NPs showed a 

relatively higher toxicity than single coated NPs due to the three different concentration 

of polymers coated outside the free DOX. 

   

A.4.5. Tumor growth suppression of DOX-TCA-NPs in tumor  

xenograft model 

       To reconstitute at high concentration, the lyophilized powder of DDP/H-TCA was 

reconstituted in DI water just prior to in vivo administration. First, the tumor growth 

inhibition efficacy of TCA conjugated DOX-loaded nanoparticles (DOX-TCA-NPs) was 

investigated in HepG2 xenograft model. 4 mg/kg Dox or an equivalent amount of DOX-

TCA-NPs were prepared and delivered via IV or Oral administration every 3 days up to 

18 days to monitor tumor progression. DOX-loaded NPs without TCA were also tested as 

a nontargeted formulation to evaluate the tumor inhibition efficacy of TCA. Since tumors 

in the PBS group were too aggressive and reached approximately over 10% of 

body weight around day 18, all treatments were terminated and mice were sacrificed at    
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Figure A.7. Cytotoxicity of free DOX and DOX-loaded NPs after 24, 48, and 72 hr 

transfection in HepG2 cells (a) fee DOX, (b) DOX/CS-TCA, and (c) DDP/H-TCA (Mean 

± SD, n = 6) 
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day 18.      

       All the treatment groups showed an increase of tumor volume over time. However,  

there was a significant difference in tumor growth rate and overall tumor volume change.  

As shown in Fig. A.8(a), the tumor volume in DOX IV group showed the most noticeable  

inhibition of tumor growth. However, a greater suppression of tumor growth was      

observed in mice treated with DOX-TCA-NPs compared to that of the other oral control 

groups. The tumor volumes in the DOX-TCA-NPs groups were significantly smaller (p < 

0.05) than the tumor volumes of free oral DOX. The tumors in free oral DOX group 

increased almost 1400% change in volume, whereas the tumors in DDP/H-TCA and 

D/CS-TCA groups displayed only 400% and 600% change in volume, respectively. The 

tumors in D/CS-TCA showed higher tumor volume than the tumors in DDP/H-TCA and 

this result may be caused by the fast release of DOX from D/CS-TCA complexes 

compared to DDP/H-TCA. In contrast, tumors treated with non-TCA groups did not 

result in a significant inhibition of tumor growth and showed no marked change of tumor 

growth compared with the free oral DOX groups. There was no significant difference in 

tumor volume between the free DOX oral group and non-TCA group.  

       The TCA formulations contributed to more efficacious at tumor growth reduction 

compared with mice treated with non-TCA NPs. The effective tumor regression of TCA 

groups suggested strong anti-tumor efficacy of DOX-TCA-NPs against HepG2 xenograft 

models. The tumor burden on day 18 also represented considerable reductions in tumor 

burden in animal group that received the DOX-TCA-NPs as compared to tumor burden in 

free oral DOX (Fig. A.8(b)).                            

       Second, mice body weight was also monitored and measured throughout the          
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Figure A.8. Anti-tumor efficacy of free DOX and DOX-loaded NPs. (a) Relative tumor 

volume (%) (b) Tumor burden (%) (c) Relative body weight (%) of control, IV and orally 

administered free DOX and non-TCA conjugated and TCA conjugated NPs. (* p<0.05, 

(a) vs. DOX_IV, (b) vs. DOX_Oral, Mean ± SEM, n = 6) 
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treatments to assess the toxicity induced from the treatments (Fig. A.8(c)). Both control 

and non-TCA treated groups showed no significant weight loss in the beginning of the 

treatments and weight gain of the mice were observed over time which indicated no 

serious toxicity from the treatments. However, there was some weight loss in DDP/H-

TCA group and the mice showed 5-7% weight loss throughout the course of the 

treatment, but slow weight gain was observed towards the end treatment.  

 

A.4.6. Biodistribution study of DOX in tumor-bearing mice 

       For biodistribution studies, major organs and intestine were collected 4 hr after 

injection (Fig. A.9). We measured DOX concentration in major organs and intestine by 

measuring DOX fluorescence intensity and results are presented as µg DOX per gram of 

tissue. It is worthy to note that a higher concentration of DOX was presented in heart and 

liver tissues after IV injection of free DOX than orally administered groups.  

       The DOX distribution data showed that a highest DOX amount was observed in the 

ileum of samples treated with DOX-TCA-NPs. The DOX content for DOX-TCA-NPs in 

the ileum was around 3-4 fold higher than that for free DOX oral or non-TCA groups. 

DOX accumulation in the ileum is an indication of highly targeted absorption of DOX-

TCA-NPs and demonstrates effective interactions of DOX-TCA-NPs with bile acid 

transporters in the ileum. TCA conjugated carriers have been enhancing drug absorption 

especially in terminal ileum where membrane transporters are existed and this result is 

consistent with previous reports.15, 16  

       Moreover, improved accumulation at tumor sites was also observed. These results 

suggest that bile acid-mediated DOX absorption leads to higher DOX concentration in  
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Figure A.9. Biodistribution of DOX in tumor-bearing mice (Mean ± SEM, n = 3). The 

results are presented as μg of DOX to the amount (g) of tissue.  
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the blood stream. As a consequence, high accumulation in the blood stream may 

contribute to slow tumor progression with superior DOX efficacy in comparison with free  

DOX oral administration.    

 

A.5. Conclusion 

       To facilitate DOX oral delivery, we prepared DOX-loaded-TCA NPs via physical 

complexation. The DOX-TCA-NPs showed no change in nanoparticle stability upon 

freeze-drying which indicated the possibility of long-term storage. TCA coating also 

showed negligible toxicity compared with free DOX as well as high drug loading 

efficiency and pH-dependent DOX release. Most importantly, in vivo results showed that 

the DOX-TCA-NPs delayed tumor growth significantly. Biodistribution study also 

demonstrated improved DOX absorptions for the DOX-TCA-NPs in the ileum of the 

intestine. Overall, TCA formulation showed higher therapeutic efficacy in solid tumor 

than free DOX and non-TCA oral administered groups. This indicates bile acid-mediated 

targeting delivery enhanced therapeutic performance of DOX by utilizing TCA 

transporters and leads to oral absorption enhancement. Thus, the effect of TCA on oral 

administration of DOX has been proved to be an effective carrier for DOX oral delivery. 

In addition, this new formulation system showed a possibility of switching the 

intravenous to oral administration and implicated the promising oral chemotherapy.  
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