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ABSTRACT 
 
 
 

 Upon infecting a host, viruses immediately face restriction by the host immune 

system, including innate and adaptive responses. To mediate efficient replication, viruses 

have evolved a number of mechanisms to subvert and bypass the host immune responses. 

Among the earliest immune protections encountered by viruses are a group of cell-

intrinsic immunity proteins called “restriction factors.” Restriction factors have been 

identified that, if not counteracted, are capable of inhibiting viral replication throughout 

the viral life cycle. One of the primary mechanisms utilized to counteract these 

restrictions is the manipulation of the cellular ubiquitin ligase system to induce the 

directed and specific degradation of these cellular factors. 

In the case of primate lentiviruses (HIVs and SIVs), four proteins (Vif, Vpu, Vpr, 

and Vpx) have been shown to alter the specificity of this cellular degradation machinery 

to target restriction factors. In this study, we explore the molecular interaction between 

the paralogous proteins Vpr (encoded by all primate lentiviruses) and Vpx (encoded by 

HIV-2 and some SIVs), the cellular ubiquitin ligase composed of Cul4-Roc1-DDB1-

DCAF1 and the restriction factors they target for degradation (Mus81 in the case of Vpr 

and SAMHD1 in the case of Vpx). Through mutation of DCAF1, the substrate specificity 

factor for the ubiquitin ligase complex, to which Vpr and Vpx are known to directly 

interact, we show that although they share a high degree of homology, Vpr and Vpx 

interact with DCAF1 differently. In addition, through the generation of chimeric Vpr-
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Vpx proteins, we explore the molecular determinants of Vpr and Vpx substrate 

specificity. To this end, we demonstrate that manipulation of Cul4-DCAF1 substrate 

specificity by Vpr and Vpx is mediated by nonlinear determinants within the respective 

proteins, in contrast to previously proposed models. Finally, we demonstrate that Vpr 

induces the degradation of Mus81 in a manner independent of the induction of G2 arrest, 

in contrast to recent reports.
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CHAPTER 1 
 

INTRODUCTION 
 

Cell Intrinsic Restriction of Viral Replication 

An introduction to cellular restriction and viral countermeasures 

 Immediately following infection, pathogens begin to interact with immune 

effectors of the host, from the canonical cell-mediated immunity of the innate and 

adaptive immune cells, to the more recently identified cell intrinsic immunity mediated 

by cellular restriction factors. Restriction factors are a broad family of proteins involved 

in sensing and inhibiting the replication of intracellular pathogens. In the context of viral 

infections, restriction factors have been identified that act at every stage along replication 

cycles from uncoating (as exemplified by TRIM5 (reviewed in (Luban, 2012)) and 

limiting the supply of vital building blocks necessary for replication (such as the 

regulation of nucleotide availablity by SAMHD1 (reviewed in (Laguette and Benkirane, 

2012; Schaller et al., 2012)), to recognition of genomes by cellular RNA and DNA 

sensors (reviewed in (Jensen and Thomsen, 2012; O'Neill, 2013)) and inhibiting release 

of new virions from infected cells (by BST-2/tetherin (reviewed in (Dubé et al., 2010)) 

(field reviewed in (Duggal and Emerman, 2012)). 

 Efficient replication in the face of this barrage of cellular restrictions has required 

viruses to evolve mechanisms to subvert these host factors. To this end, viruses utilize a 
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number of strategies, including mutating or hiding molecular motifs recognized by innate 

immune sensors. Perhaps the most ingenious strategy utilized to avoid cellular restriction 

is the manipulation of the cellular ubiquitin proteasome system (UPS) by viruses 

(reviewed in (Randow and Lehner, 2009)). The UPS functions as one of several pathways 

utilized by eukaryotes to regulate protein function through the conjugation of any of a 

highly structurally related class of ubiquitin-like proteins. The UPS serves as a dynamic 

and highly regulated network for modulation of cellular protein dynamics (Ravid and 

Hochstrasser, 2008). 

 To this end, a broad array of viruses have been identified to encode proteins that 

modulate the specificity and activity of the UPS in order to facilitate viral replication 

(Table 1.1). Thus far, viral manipulation has primarily been observed to redirect ubiquitin 

ligases towards the degradation of cellular factors that negatively affect viral replication 

(reviewed in (Randow and Lehner, 2009)); however, given the industrious nature of viral 

manipulation of cellular pathways, future studies will no doubt uncover examples of 

alternative affects of viral ubiquitin ligase hijacking. Primate lentiviruses (HIV/SIV) are 

no exception to this ubiquitin ligase modulation. Indeed, primate lentiviruses are known 

to encode four proteins which alter the substrate specificity of cellular ubiquitin ligases 

(Vif, Vpu, Vpr, and Vpx) (reviewed in (Gramberg et al., 2009; Harris et al., 2012). This 

chapter will focus on our understanding of the functions and differences between the 

paralogous lentiviral proteins Vpr and Vpx. 
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Vpr and Vpx: HIV/SIV’s Fraternal Twins  

Vpr the enigma 

 Of the primate lentiviral accessory proteins, the function of Vpr has remained the 

most elusive. Over the three decades since the identification of HIV as the causative 

agent of AIDS, a pleiotropic range of functions has been ascribed to Vpr. Initial reports 

indicated a slower rate of viral replication, in vitro, in viruses lacking Vpr. In addition, 

Vpr has been shown to enhance expression from the viral promoter. These results led to 

the early name: Viral protein regulatory (Vpr)(reviewed in (Guenzel et al., 2014)). Other 

early reports implicated Vpr in mediating nuclear import of the pre-integration complex 

(Heinzinger et al., 1994); however, these observations have been called into doubt and 

have been generally discredited in recent studies of Vpr activity. 

 Perhaps the most investigated aspect of Vpr function is its ability to induce cell 

cycle arrest at the G2/M transition, similar to that observed following DNA damage 

and/or replication stress (Re et al., 1995; Jowett et al., 1995; He et al., 1995; Rogel et al., 

1995)(reviewed in (Andersen et al., 2008)). In 2003, our laboratory determined that Vpr 

induced the activation of the DNA damage sensor ATR and that this activation was 

necessary for Vpr-mediated G2 arrest (Roshal et al., 2003). Subsequent research from our 

lab and others demonstrated Vpr-induced ATR activation mirrored that of DNA 

damaging agents, such as UV irradiation, inducing the phosphorylation RPA32, a protein 

known to “mark” regions of single stranded DNA, as well as downstream mediators 

including Chk1 and Wee1, and the stabilization of Cdk1 (reviewed in (Andersen et al., 

2008)). Interestingly, pulse field gel electrophoresis studies indicated Vpr was not 

inducing double-strand breaks (Lai et al., 2005). In agreement with this observation, 



 

 

4 

expression of Vpr failed to induce the activation of the closely related DNA damage 

sensor ATM or its immediate downstream signaling mediator, Chk2 (Zimmerman et al., 

2004; Lai et al., 2005). 

 While numerous studies had investigated the downstream consequences of Vpr-

induced G2 arrest, it took several years before significant insight into how Vpr was 

activating ATR signaling was achieved. In 1994, Vpr was shown to interact with a 

cellular protein of unknown function, originally named Vpr-Interacting-Protein (RIP or 

VprBP) (ZhaoS et al., 1994). Over a decade later, two groups identified RIP as a member 

of a family of proteins involved in dictating the substrate specificity of the Cullin 4-

DDB1 ubiquitin ligase (DDB1-Cullin 4 Associated Factors, DCAFs) and renamed it 

DCAF1 (Jin et al., 2006; Angers et al., 2006). Soon thereafter, several groups 

demonstrated that induction of G2 arrest by Vpr is dependent on the activity of this 

ubiquitin ligase. Namely, knockdown of components of the ubiquitin ligase or expression 

of Vpr mutants that failed to interact with DCAF1 prevented Vpr induction of G2 arrest 

(Dehart et al., 2007; Le Rouzic et al., 2007; Schröfelbauer et al., 2007; Hrecka et al., 

2007; Wen et al., 2007)(reviewed in (Dehart and Planelles, 2008)). Identifying the 

cellular protein(s) targeted for ubiquitination by Vpr has proven to be difficult. 

 

Vpr and UNG2 

 Perhaps the most studied putative ubiquitination target of Vpr is the Uracil DNA 

Glycosylase (UNG2). In normal cellular physiology, UNG2 serves to repair mis-

incorporated Uracil-deoxyribonuleotide through the catalytic removal of the base from 

the phosphate-sugar backbone, resulting in the generation of an abasic site, which is then 
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repaired via the potentially mutagenic base excision repair (BER) pathway (reviewed in 

(Planelles and Benichou, 2010)). Viral reverse transcription is known to result in the 

incorporation of dUTP into HIV DNA (Kennedy et al., 2011) and it is proposed that 

UNG2-generated abasic sites at these misincorporated uracils may induce hypermutation 

of the viral genome reminiscent of that generated by the APOBEC family of cellular 

restriction factors (reviewed in (Planelles and Benichou, 2010)). 

 Expression of Vpr in cells destabilizes UNG2 in a DCAF1-dependent manner 

(Schröfelbauer et al., 2005). However, this destabilization of UNG2 is not associated with 

the cell cycle phenotype observed during Vpr expression (Selig et al., 1997). Indeed, 

recent reports indicate UNG2 destruction may be a secondary effect of Vpr expression, as 

UNG2 appears to be expressed differentially throughout the cell cycle, with the lowest 

expression levels observed during the G2 phase of the cell cycle (Hagen et al., 2008). 

Intriguingly, the de Noronha lab recently reported UNG2 may itself be an endogenous 

substrate of DCAF1, raising the possibility that a consequence of Vpr manipulation of the 

DCAF1-containing ubiquitin ligase results in a general hyperactivation of the complex 

(Wen et al., 2012). In agreement with this hypothesis, Vpr was observed to induce an 

increased association of DCAF1 with activated Cul4, as measured by the increased 

degree of neddylation of Vpr-associated Cul4 (Hrecka et al., 2007). 

Recent studies, however, have called into question the potential negative 

consequences of UNG2 to viral replication. Selig et al. demonstrated UNG2 is 

incorporated into budding virions in a Vpr-dependent manner (Selig et al., 1997). This 

encapsidation was observed to have a net positive effect on viral infectivity independent 

of UNG2 enzymatic activity (Guenzel et al., 2012). In support of the hypothesis that 
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UNG2 plays a positive role in HIV replication, a siRNA screen of DNA repair proteins 

demonstrated that proteins involved in BER, such as UNG2, but not those of the 

homologous or the nonhomologous end joining pathways, play an important role in viral 

replication (Espeseth et al., 2011). Interestingly, Yan et al. also reported a positive effect 

of incorporation of dUTP into viral reverse transcripts by reducing the rate of 

autointegration of the viral genomes, a replicative dead-end (Yan et al., 2011). Given the 

high concentrations of dUTP in macrophages (Kennedy et al., 2011), the beneficial role 

of UNG2 encapsidation was first observed in HIV infection of macrophages (Chen et al., 

2004). While Chen et al. noted an increased mutation rate in viruses carrying the Vpr 

W54R mutant, which is unable to facilitate UNG2 encapsidation, these viruses were 

severely crippled in their ability to productively infect monocytes-derived macrophages 

(MDMs) from healthy donors (Chen et al., 2004). In addition, Jones et al. noted a HIV-1 

tropism-dependent requirement for UNG2 in viral replication, in which infection by R5 

tropic virus, capable of infecting macrophages, but not X4 tropic virus, was negatively 

affected by UNG2 depletion (Jones et al., 2010). 

 

Vpr and Dicer 

 Though it has previously been shown that HIV infection alters the cellular RNA 

silencing pathways (Yeung et al., 2005), the mechanisms and benefits of this activity 

remained controversial. In 2010, Coley et al. reported a Vpr-dependent reduction of Dicer 

expression in MDMs (Coley et al., 2010); however, it remained unclear if this was a 

direct or indirect effect of Vpr expression in these cells. Subsequently, it was shown that 

this down regulation was mediated by a direct interaction between Vpr and Dicer and 
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dependent on the Cul4-DCAF1 ubiquitin ligase (Casey Klockow et al., 2013). In 

agreement with reports that Dicer depletion does not induce G2 arrest, Klockow et al. 

observe that Vpr-mediated Dicer depletion is not related to the Vpr G2 arrest phenotype 

(Bu et al., 2009; Casey Klockow et al., 2013). Instead, Dicer depletion appears to 

enhance HIV infection of macrophages, though the exact mechanism of this enhancement 

is unclear (Casey Klockow et al., 2013).  

 
 
Vpr and the SLX4-Mus81 Complex 

 Though the induction of cell cycle arrest by Vpr is perhaps the most studied 

aspect of Vpr biology, it has remained the most poorly understood. Recently, Laguette et 

al. reported a putative mechanism for Vpr induction of G2 arrest. By analyzing the serial 

immunoprecipitation of a FLAG/HA-Vpr construct expressed in the monocyte THP-1 

cell line, several members of the SLX4-containing endonuclease complex (SLX4, 

ERCC4, EME1, MUS81, TSPYL1, C20orf94, and ERCC1) were identified by mass 

spectrometry as Vpr interactors (Laguette et al., 2014). Previously, the SLX4 complex 

was identified as a structure-specific endonuclease involved in resolving Holiday 

junctions (reviewed in (Schwartz and Heyer, 2011)). Laguette et al. provide evidence that 

Vpr functions to activate this endonuclease, driving the degradation of HIV reverse 

transcripts. They further show that Vpr expression inhibits the induction of an interferon 

response and that this activity is dependent on SLX4 and Mus81 (Laguette et al., 2014). 

These observations led them to propose a model whereby Vpr activates this endonuclease 

complex to facilitate the degradation of reverse transcripts in order to prevent their 

recognition by cellular DNA sensors such as cGAS (Gao et al., 2013) or IFI-16 
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(Unterholzner et al., 2010). Interestingly, this model closely mirrors observations made in 

regards to the activity of the cytosolic endonuclease TREX1 (Yan et al., 2010). Further, 

Laguette et al. propose this activation to be the biases of the previously reported Vpr-

induced G2 arrest through the inadvertent generation of genomic damage resulting in the 

activation of ATR (Laguette et al., 2014). 

Several observations indicate this activation of the SLX4 complex by Vpr is 

dependent on the manipulation of the Cul4-DCAF1 ubiquitin ligase by Vpr. Specifically, 

wild type (WT) Vpr, but not the DCAF1-interaction-defective Vpr Q65R mutant, is able 

to co-immunoprecipitate SLX4 and Mus81. Additionally, while WT Vpr is able to induce 

poly-ubiquitination of exogenously expressed Mus81, the Vpr Q65R mutant fails to do so 

above background levels. The observations of Laguette et al. point to a unique 

mechanism of UPS manipulation by Vpr in comparison to other viral proteins known to 

modulate the UPS (Table 1). While a slight reduction of Mus81 protein level is observed 

following the expression of Vpr, the activation of the SLX4 does not appear to be 

mediated by the degradation of any of the identified subunits. In fact, depletion of many 

of the SLX4 complex subunits (SLX4, SLX1, EME1, or Mus81) by siRNA inhibit the 

ability of Vpr to induce G2 arrest (Laguette et al., 2014). This is in contrast to previously 

proposed models in which Vpr was hypothesized to induce the aberrant degradation of a 

cellular factor (reviewed in (Andersen et al., 2008)). This model postulates that down 

regulation of this factor would mirror Vpr activity, in contrast to what Laguette et al. 

observed. Additionally, while the manipulation of the UPS by other viral proteins seems 

to generally be directed at overcoming a factor involved in restricting viral replication, 

the Vpr activity reported by Laguette et al. is indirect, inducing the degradation of HIV 
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reverse transcripts to prevent downstream recognition by DNA sensors and the 

subsequent induction of interferon. 

Similar to the recent observations by Wen et al. regarding Vpr-mediated UNG2 

destabilization (Wen et al., 2012), Laguette and colleagues observed interaction of both 

SLX4 and Mus81 with DCAF1 in the absence of Vpr. In addition, Vpr appears to interact 

with the SLX4 complex only in the context of DCAF1 as the Vpr Q65R mutant does not 

interact with either SLX4 or Mus81. The dominant negative Vpr mutant R80A, which 

can interact with DCAF1 but fails to induce G2 arrest, has the ability to interact with 

SLX4 but not Mus81 (Laguette et al., 2014). Taken together, these results point to a 

model whereby Vpr activates the SLX4 complex by hyperactivating the Cul4-DCAF1 

ligase towards an endogenous substrate. 

The observations by Laguette and colleagues raise a number of unresolved 

questions. Vpr is known to be encapsidated within the incoming virion; however, it 

remains unclear if SLX4 complex activation is mediated by incoming or de novo Vpr. 

Although Vpr induced ubiquitination of Mus81, Vpr activation of the SLX4 complex 

activation was also dependent on Plk1 phosphorylation of EME1 (Laguette et al., 2014). 

How Vpr induces this phosphorylation remains unresolved. ATR activation, a hallmark 

of Vpr-induced cell cycle arrest (Roshal et al., 2003), has previously been shown to 

inhibit Plk1 activity (Deming et al., 2002). Additionally, it remains unclear how Vpr 

directs this activity, or if it does, toward unproductive reverse transcription products.  
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Vpx facilitates infection of noncycling cells 

 While several classes of noncycling cells, including resting CD4+ T-cells and 

myeloid lineage cells, are known to express the receptors necessary for HIV-1 infection, 

only modest levels of infection of these cells are observed in vivo. In contrast, HIV-2 and 

many SIVs are known to be capable of efficiently infecting these cells (Reviewed in 

(Yamashita and Emerman, 2006; Ayinde et al., 2010)). Initial studies demonstrated that 

this restriction was at the early stages of reverse transcription and was overcome by HIV-

2/SIVs Vpx, present within the infecting virions. Indeed, providing Vpx in trans could 

dramatically increase the efficiency of HIV-1 infection of myeloid cells in vitro (Kaushik 

et al., 2009). 

 In 2011, two groups independently identified sterile alpha motif domain (SAM) 

and histidine/aspartic acid domain (HD) containing protein 1 (SAMHD1) as the cellular 

factor responsible for mediating this restriction (Hrecka et al., 2007; Laguette et al., 

2011a). Utilizing mass spectrometry, both groups identified SAMHD1 as a myeloid cell-

derived Vpx-specific interacting protein. Both groups were then able to show 

encapsidated Vpx was capable of inducing SAMHD1 degradation in target cells, 

facilitating infection with a lentiviral reporter (HIV-LUC-G in the case of Laguette et al. 

2011, or HIV-GFP in the case of Hrecka et al. 2011). These studies were then able to 

demonstrate that SAMHD1 was sufficient for facilitating restriction of lentiviral infection 

of myeloid cells through siRNA-mediated SAMHD1 depletion. 

 Like its paralog, Vpx had previously been shown to manipulate the Cul4-DCAF1 

ubiquitin ligase (Srivastava et al., 2008). In agreement with the hypothesis that Vpx 

facilitated the degradation of a myeloid restriction factor through manipulation of 
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DCAF1 specificity, Hrecka and colleagues observed Vpx-induced SAMHD1 degradation 

was inhibited following siRNA knockdown of DCAF1. In agreement with this 

observation, virus-like particle (VLP) treatment of restricted cells with Vpx Q76A, a 

mutant that has previously been shown to lack DCAF1 interaction (Srivastava et al., 

2008), failed to facilitate HIV-1 GFP infection (Hrecka et al., 2011).  

 

Mechanism of SAMHD1 restriction 

Previously, SAMHD1 had been identified as one of seven genes (TREX1, 

RNASEH2A, RNASEH2B, RNASEH2C, and SAMHD1 (reviewed in (Crow and 

Livingston, 2008)) and ADAR1 (Rice et al., 2012) and MDA5 (Rice et al., 2014) in 

which polymorphisms have been linked to the rare hereditary condition Aicardi-

Goutières Syndrome (AGS). AGS is a generally early onset inflammatory disorder 

characterized by elevated levels of IFN-α in cerebrospinal fluid in the absence of 

infection (Crow and Livingston, 2008), potentially due to elevated activity of 

transposable elements (reviewed in (Planelles, 2011)). The progression of disease is 

reminiscent of chronic viral infection, and its study has led to important insights into the 

genetic factors involved in control of congenital infection (Crow and Livingston, 2008). 

While the mechanism of SAMHD1 restriction of HIV-1 infection was initially 

unclear, several pieces of evidence indicated an involvement in nucleotide metabolism. 

First, all other AGS loci are known to be involved in nucleotide metabolism (Crow and 

Livingston, 2008; Rice et al., 2012; 2014). Secondly, HD domain-containing proteins 

have largely been identified as phosphohydrolases that target nucleotides (reviewed in 

(Planelles, 2011)). Finally, SAMHD1 mediated restriction to HIV replication during 
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reverse transcription (Srivastava et al., 2008). In the years since the identification of 

SAMHD1 as the myeloid restriction factor, several groups have extensively examined the 

metabolic activities of SAMHD1. Soon after the initial reports on SAMHD1 restriction of 

HIV, Goldstone et al. demonstrated that SAMHD1 is a deoxynucleoside triphosphate 

triphosphohydrolase capable of hydrolyzing all dNTP species to deoxynucleoside and 

inorganic triphosphate (Goldstone et al., 2011). SAMHD1 triphosphohydrolase activity is 

tightly linked to cellular dNTP concentrations through an allosteric dGTP binding pocket 

(Goldstone et al., 2011; Amie et al., 2013b) that facilitates SAMHD1 oligmerization (Ji et 

al., 2013). 

In agreement with the hypothesis that SAMHD1 restricts reverse transcription by 

regulating dNTP levels, Kim and colleagues observed that SAMHD1 expression strongly 

correlated with cellular dNTP concentrations in monocyte-derived macrophages 

(MDMs). Indeed, cell extracts from MDMs treated with Vpx containing VLPs, but not 

control VLPs, were able to facilitate an in vitro HIV RT-based primer extension assay 

(Kim et al., 2012). These observations are in agreement with early reports that the supply 

of exogenous dNTP to resting cell cultures was capable of overcoming their restriction to 

infection (Gao et al., 1993), (Amie et al., 2013a). 

SAMHD1 expression has been shown to correlate well with the permissiveness to 

infection by HIV (Laguette et al., 2011a). In addition to myeloid lineage cells, SAMHD1 

has recently been shown to mediate restriction of primary resting CD4+ T-cells (Baldauf 

et al., 2012). However, a number of nonrestrictive cell types including activated primary 

CD4+ T-cells and several cell lines including THP-1, 293FT, and HeLa are known to 

express measurable levels of SAMHD1. In addition, cycling U937 cells expressing 
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exogenous SAMHD1 were not restrictive to HIV infection. However, following 

differentiation to a noncycling state, following PMA treatment, both THP-1 and U937 

cells became restrictive to infection (White et al., 2013b). These observations indicated 

that SAMHD1 restriction may be regulated posttranslationally. To this end, several 

groups analyzed SAMHD1 for posttranslational modifications by mass spectrometry. 

Phosphorylation of T592 by Cdk1 was determined to negatively regulate SAMHD1 

restriction (White et al., 2013b; Cribier et al., 2013; Welbourn et al., 2013). Interestingly, 

while phosphorylation of T592 negatively affects SAMHD1 restrictive potential, no 

effect was observed on the triphosphohydrolase activity, indicating that enzymatic 

activity and restriction are separable characteristics of SAMHD1 (White et al., 2013b; 

Welbourn et al., 2013).  

 In addition to HIV, recent studies have also shown that SAMHD1 mediates 

restriction of a number of other viruses. SAMHD1 has been shown to restrict a number of 

other retroviruses (including FIV, BIV, EIAV, MLV, MPMV, and HTLV (White et al., 

2013a; Gramberg et al., 2013; Taya et al., 2014)), as well as several DNA viruses 

(Hollenbaugh et al., 2013; Kim et al., 2013). However, depletion of SAMHD1 by 

treatment with Vpx containing VLPs was not able to relieve restriction for all tested 

retroviruses (Gramberg et al., 2013). This is likely due in part to differential [dNTP] 

requirements of the reverse transcriptase enzyme of retroviruses (reviewed in (Amie et 

al., 2013a)). Additional aspects of SAMHD1 biology may play a role in the differential 

restriction of these and other viruses. For example, while the SAM domain is believed to 

be involved in regulating protein-protein interactions (Rice et al., 2009), it is dispensable 

for HIV restriction (White et al., 2013a); however, it is necessary for the control of the 
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endogenous LINE-1 retroelements (Zhao et al., 2013). 

 
 

Evolutionary Perspective on Vpr and Vpx Function 

Evolution of Vpr and Vpx 

 Recently, several groups have analyzed the evolutionary history of Vpr and Vpx. 

Until recently, the evolutionary origin of Vpx function remained contentious. While Vpr 

is common to all primate lentiviruses, SAMHD1 antagonism, and the Vpx gene itself, 

have been acquired and lost over the course of HIV/SIV evolution. By analyzing Vpx and 

Vpr proteins from a broad array of primate lentiviruses for the ability to degrade 

SAMHD1 and overlaying this functionality on a phylogenic tree of the Vpr/Vpx genes, 

Lim et al. demonstrated that SAMHD1 antagonism was acquired by an ancestral Vpr 

preceding the “birth” of Vpx. This neofunctionality appears to have occurred only once, 

at the most recent common ancestor of SIVagm and SIVmus/mon/gsn/syk (Lim et al., 

2011). Two key observations support this hypothesis: 1) the phylogenetically outgrouped 

SIVolc/wrc Vpr does not antagonize SAMHD1. 2) Vpr from SIVagm and 

SIVmus/mon/gsn/syk, which do not encode a Vpx gene, are able to facilitate SAMHD1 

degradation (Lim et al., 2011), as well as mediate G2 arrest (Planelles et al., 1996) 

(Figure 1.1). 

 Analysis of SAMHD1 evolution provides further support to the evolutionary 

history of Vpr and Vpx. By examining the ratio of nonsynonymous to synonymous 

substitution within the SAMHD1 gene across a broad array of primates, three groups 

were able to observe strong, episodic, positive selection of the SAMHD1 gene (Lim et 

al., 2011; Laguette et al., 2011b; Zhang et al., 2012). Both Lim and Laguette 
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demonstrated SAMHD1 to be under strong selective pressure in Old World (Catarrhines) 

but not New World (Platyrrhines) Monkeys (Laguette et al., 2011b; Lim et al., 2011). 

Notably, Lim et al. observed positive selection beginning at the ancestral node giving rise 

to the subfamily Cercopithecinae (which are infected with primate lentiviruses known to 

encode for SAMHD1 antagonism) but not subfamily Colobinae (infected by SIVolc/wrc) 

or Hominoids (infected by SIVcpz/gor/HIV-1)(Lim et al., 2011). In contrast, Laguette et 

al. observed positive selection of SAMHD1 beginning after the split of Old World 

Monkeys from New World Monkeys, earlier than that predicted by Lim et al. and 

continuing through Hominoid evolution (Laguette et al., 2012). These differences are 

most likely due to different primate samplings, as well as different computational 

modeling. Regardless, although the Laguette et al. model would point to an earlier onset 

of SAMHD1 antagonism, it still supports a model whereby SIV acquired this activity 

prior to the “birth” of Vpx. Surprisingly, all three groups observed strong positive 

selection of SAMHD1 along the Hominoid lineage of orangutans. As orangutans are not 

known to be infected by any lentiviruses, and no other retroviruses tested so far are 

known to antagonize SAMHD1, the causative agent of this selection is unclear.  

Interestingly, while HIV-1 and its zoonotic ancestor SIVcpz lack the ability to 

antagonize SAMHD1, the SIVs that gave rise to SIVcpz (SIVmus/mon/gsn and SIVrcm 

(Bailes et al., 2003)) both antagonize the SAMHD1 of their respective hosts, as well as 

human SAMHD1 in the case of SIVmus Vpr (Lim et al., 2011). Phylogenetic analysis 

indicates that SIVcpz lost SAMHD1 following recombination of SIVmus/mon/gsn and 

SIVrcm in which only the monofunctional SIVrcm Vpr was retained (Zhang et al., 2012; 

Etienne et al., 2013). This event was, at least in part, driven by the generation of a novel 
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Vif protein with enhanced hominid APOBEC3 antagonism (Etienne et al., 2013). It is 

tempting to speculate that the loss of SAMHD1 antagonism has, however, resulted in 

other profound changes in the pathology of lentiviral infection. For example, the reduced 

efficiency of myeloid cell infection by HIV-1 may result in reduced innate and 

subsequent adaptive immune activation, facilitating viral replication and pathogenesis. To 

this end, infection of myeloid cells by HIV-2 was recently shown to result in their 

activation through recognition of viral reverse transcripts by the cytosolic DNA sensor 

cyclic GMP-AMP synthase (cGAS); however, as HIV-1 is unable to complete reverse 

transcription, this activation was not observed (Lahaye et al., 2013; Puigdomenech et al., 

2012). Furthermore, infection of humans and mandrills by SAMHD1-antagonizing 

viruses has been observed to result in slower disease progression compared to infection 

with non-SAMHD1 antagonizing viruses (SIVmnd2 and HIV-2 vs SIVmnd1 and HIV-1) 

(Nyamweya et al., 2013; Souquière et al., 2009). Finally, a recently completed 20-year 

longitudinal study of HIV-1/HIV-2 dually infected individuals showed a delayed onset of 

AIDS in dually infected individuals, compared to HIV-1 only infected individuals. 

Furthermore, they observed individuals first infected by HIV-2 showed the longest time 

to onset of AIDS (Esbjörnsson et al., 2012). 

 

The Red Queen’s court 

 Antagonism of host restriction factors by pathogens is hypothesized to induce an 

evolutionary arms race, the Red Queen hypothesis, whereby host evolution away from 

antagonism results in a corresponding evolution by the pathogen to regain the ability to 

antagonize the restriction factor (reviewed in (Duggal and Emerman, 2012)). While 
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several studies have examined molecular determinants of Vpr and Vpx function, the 

evolutionary events leading to the “birth” of Vpx from a bifunctional Vpr, as proposed by 

Lim et al. (Lim et al., 2011), remain unclear. 

Following the identification of SAMHD1 as the Vpx-targeted myeloid restriction 

factor, several groups quickly demonstrated SAMHD1 was under strong evolutionary 

pressure (discussed above) (Lim et al., 2011; Laguette et al., 2011b; Zhang et al., 2012). 

The observation by Lim et al. that SAMHD1 is under positive selection in 

Cercopithecinae, but not New World Monkeys or Hominoids, strongly indicates that 

lentiviral infection has been the main driver of SAMHD1 evolution in primates. 

While Lim and Laguette both computationally identified residues under positive 

selection, those identified by Lim et al. were largely N-terminal, while those identified by 

Laguette et al. localized in the C-terminus (Lim et al., 2011; Laguette et al., 2011b). Both 

groups were able to molecularly verify the importance of these respective regions for 

Vpx antagonism; however, the apparent discrepancy between these two studies is likely 

due to different computational methodologies and Vpx-SAMHD1 species pairs 

molecularly tested. In agreement with Laguette, Ahn and colleagues were able to 

demonstrate that the C-terminus of human SAMHD1 was sufficient to mediate 

interaction with SIVmac Vpx (Ahn et al., 2012). However, a more thorough investigation 

by Fregoso et al. resolved the differences by generating a number of SAMHD1 chimeras, 

in which the N and C-termini of different species’ SAMHD1 were transposed, showing 

that the determinant of SAMHD1 interaction and degradation by Vpx has toggled back 

and forth between the N and C-terminus throughout the period of Vpx antagonism 

(Fregoso et al., 2013). 
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In contrast to the studies regarding Vpx-SAMHD1 co-evolution, little is currently 

known regarding the structural determinants of Vpr-mediated antagonism of the SLX4 

complex. Early studies demonstrated a species-specific ability of Vpr to induce G2 arrest 

(Planelles et al., 1996), indicative of positive selection on the Vpr-targeted factor. It is 

tempting to speculate that it became too difficult for Vpr to maintain concurrent 

evolutionary arms races with two host proteins. In support of this hypothesis, Spragg and 

Emerman recently examined the evolution of the biofunctional SIVagm Vpr and 

SAMHD1 from phenotypically and genetically distinct AGM species. While the four 

AGM species are only evolutionarily separated by 3 million years, each population is 

infected by distinct SIVagm. Even within this relatively short period of evolutionary 

time, Vpr from different SIVagm appear to utilize different interfaces for SAMHD1 

antagonism (Spragg and Emerman, 2013) .  

 

Molecular Insights into the Manipulation of the Cul4-DCAF1 Ligase  

by Vpr and Vpx 

Mechanisms of viral manipulation of ubiquitin ligases 

 Viral manipulation of the cellular ubiquitin ligase system is common across 

viruses from a diverse array of species (see Table 1.1). While the specific ligases 

manipulated and the restriction factors targeted are nearly as diverse as the viruses that 

manipulate them, three general strategies for altering the substrate specificity have been 

observed: 1) displacement of the substrate specificity receptor subunit of the ubiquitin 

ligase complex, as exemplified by the redirection of the Cul5-EloB/C complex towards 

APOBEC3 by Vif (Yu et al., 2003; 2004); 2) mimicry of endogenous substrate by a viral 
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protein, as seen in the case of Vpu manipulation of the Cul1-βTRCP (Margottin et al., 

1998); 3) generation of a new substrate interface, involving interaction of the new 

substrate with both the viral protein and the endogenous substrate receptor, as seen in the 

redirection of the Cul4-DCAF1 ligase towards SAMHD1 by Vpx (Schwefel et al., 2014) 

(Figure 1.2). In addition, there is at least one known virally encoded ubiquitin ligase, the 

ICP0 protein of herpes simplex viruses (Boutell et al., 2002)(field reviewed in (Barry and 

Früh, 2006)) 

 

Differential manipulation of DCAF1 substrate specificity by Vpr and Vpx 

 Alignment of Vpr and Vpx proteins gave early hints to the difference in substrate 

recruitment by the respective proteins. Structural studies of Vpr showed that it formed a 

tight 3 α-helix bundle flanked by unstructured N and C-termini (Morellet et al., 2003). 

Primary sequence alignment of the monofunctional HIV-1 Vpr, bifunctional SIVagm 

Vpr, and SIVmac Vpx show that this helical core is highly conserved among these 

proteins (Figure 1.3, grey boxes). DCAF1 binding was mapped to a short, highly 

conserved leucine-rich motif located in the third α-helix (Figure 1.3, red box) (Le Rouzic 

et al., 2007). Virion encapsidation of Vpr and Vpx was mapped independently to helix 2 

of the respective molecules (Yao et al., 1995; Mahalingam et al., 2001). These 

observations support the importance of this highly conserved helical core and its 

evolutionary conservation among primate lentiviral Vpr and Vpx.  

In contrast, a high degree of divergence is seen between the unstructured termini 

of Vpr and Vpx. Mutational analysis of Vpr identified the C-terminal region to be 

important for Vpr-mediated G2 arrest, and presumably SLX4 complex activation 
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(reviewed in (Morellet et al., 2009)). In support of this hypothesis, expression of Vpr 

S79A or Vpr R80A mutants or a Vpr 1-78 truncation acted in a dominant negative 

manner towards the induction of Vpr G2 arrest. Mutations to the N-terminal unstructured 

region of Vpr generally showed no effect on G2 arrest (reviewed in (Morellet et al., 

2009)); however, the homologous region within Vpx was shown to be necessary for Vpx 

to mediate myeloid cell infection  and SAMHD1 degradation (Gramberg et al., 2010; 

Ahn et al., 2012). Moreover, while substrate interaction of Vpr and Vpx appear to be 

heavily mediated by the C and N-terminus, respectively, several studies indicated these 

interactions are not defined by linear determinants. To this end, Maudet et al. examined 

Vpr for mutants that would fit 3 criteria: 1) inactive for G2 arrest induction, 2) retained 

DCAF1 binding, and 3) located outside the C-terminal tail. Two residues were identified 

matching these requirements, K27, located in the first α-helix, and Y50, located in the 

linker region between α-helix 2 and 3 (Maudet et al., 2011); however, the molecular 

mechanism by which these residues are involved in the induction of G2 arrest will need 

to be elucidated in light of the identification of the SLX4 complex as the Vpr target. 

Interestingly, the linker between the second and third α-helices was previously shown to 

be important for Vpr-UNG2 interaction (Figure 3, yellow box)(Selig et al., 1997). In 

addition, the linker between the second and third α-helix of Vpx was recently shown to 

be involved in the Vpx-SAMHD1 interaction (Figure 3, orange boxes)(Schwefel et al., 

2014).  

Until recently, the exact mechanism by which Vpr and Vpx altered the substrate 

specificity of the Cul4-DCAF1 ubiquitin ligase remained unclear. Direct interaction 

between Vpr/Vpx and the substrate specificity subunit, DCAF1, of the ubiquitin ligase is 
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reminiscent of the endogenous substrate mimicry mechanism observed in the case of 

Vpu-mediated degradation of CD4 and Tetherin (Figure 1.2) (Margottin et al., 1998). 

DCAF1 is a large, 1507 amino acid, multiple domain protein comprised of a N-terminal 

armadillo domain (unknown function), a central LisH domain (involved in the 

dimerization of DCAF1 containing ubiquitin ligases (Ahn et al., 2011)), a WD40 domain 

(common to all DCAFs (Jin et al., 2006), involved in mediating substrate interaction), 

and a C-terminal acidic amino acid rich region (involved in the regulation of DCAF1 

activity (Li et al., 2010))(reviewed in (Nakagawa et al., 2013)). 

In agreement with the hypothesis that Vpr altered the specificity of DCAF1 by 

mimicking endogenous substrate, Le Rouzic et al. demonstrated that Vpr interacted 

directly with the DCAF1 WD40 domain. This interaction was shown to be mediated by 

the leucine rich motif within the third α-helix of Vpr (Figure 1.3, red box) (Le Rouzic et 

al., 2007). The high conservation of this motif in Vpx, as well as in the predicted tertiary 

structure of Vpr and Vpx supported the hypothesis that Vpr and Vpx altered DCAF1 

specificity in a similar manner (reviewed in (Dehart and Planelles, 2008)). 

Through identification of endogenous substrates and inhibitors of DCAF1, 

functional roles of several DCAF1 subdomains have been elucidated. However, direct 

interaction of Vpr and Vpx with the DCAF1 WD40 domain (Le Rouzic et al., 2007; 

Schwefel et al., 2014) has raised the question as to whether DCAF1 merely serves as a 

bridge linking Vpr and/or Vpx to the ubiquitin ligase complex to facilitate substrate 

degradation. Gerard et al. recently demonstrated that expression of the truncation 

minimally able to bind DDB1 (WD40 domain, plus a short region N-terminal to the 

WD40 domain known to mediate DCAF-DDB1 interaction (Li et al., 2009)) was unable 
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to facilitate induction of G2 arrest by Vpr in DCAF1-depleted cells (Gérard et al., 2014). 

In agreement with this observation, we have observed that truncation of any DCAF1 

domain inhibits both Vpr and Vpx function in a dominant negative manner, indicating 

that DCAF1 does not merely serve as a bridge linking Vpr/Vpx to the Cul4 ligase (see 

Chapter 1). 

In 2014, Schwefel et al. solved the crystal structure of a complex involving the 

DCAF1 (WD40 domain), SIVsm Vpx, and the SAMHD1 (C-terminal domain)(Schwefel 

et al., 2014). Similar to the interaction seen between other DCAFs and their substrates 

(Song and Kingston, 2008; Patel et al., 2008)(Reviewed in (Stirnimann et al., 2010)), 

Vpx was observed to interact with the DCAF1-WD40 domain primarily through 

interactions with a shallow groove on the top face of the WD40 domain. In agreement 

with previous observations that mutations to Vpx Q76 abrogate binding to DCAF1 

(Srivastava et al., 2008), this residue was shown to hydrogen bond with DCAF1 N1135 

and W1156. In addition to their role in coordinating Vpx Q76, DCAF1 N1135 and 

W1156 are involved in interactions with a number of residues in the first α-helix of Vpx 

(Schwefel et al., 2014). Through a mutagenic screen of DCAF1, we independently 

identified these residues as being involved in the Vpx interaction, as their mutation 

results in an inability of mutant (N1135A or W1156H) DCAF1 to co-immunoprecipitate 

Vpx (see Chapter 1). Additionally, both DCAF1 mutants acted in a trans dominant 

negative manner in regard to Vpx-mediated SAMHD1 degradation. While Vpr and Vpx 

share high homology in both the first and third α-helix, both DCAF1 N1135A and 

W1156H retain interaction with Vpr. Functional competition assays show Vpr is able to 

inhibit Vpx-mediated SAMHD1 degradation, while the reciprocal is not observed (see 
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Chapter 1). Two, nonmutually exclusive, models could explain the difference observed 

by us in regards to the interaction of DCAF1 with Vpr and Vpx, respectively: 1) higher 

affinity interaction between Vpr and DCAF1, than Vpx and DCAF1; 2) differential 

binding conformations of the Vpr-DCAF1 complex vs. Vpx-DCAF1 complex. Further 

biochemical studies will be necessary to fully distinguish between these two models.  

Perhaps the most surprising observation from the Schwefel and colleagues 

structure is that SAMHD1 recruitment to the Vpx-DCAF1 complex involves direct 

interaction of SAMHD1 with DCAF1. This observation is in contrast to previous models 

of UPS manipulation by viral proteins in which restriction factor recruitment was 

dependent on interaction only with the viral protein (reviewed in (Barry and Früh, 2006)). 

In agreement with Schwefel et al., we observed that mutation of the DCAF1 residue 

D1092 inhibited Vpx-mediated SAMHD1 degradation in a dominant negative manner, 

but does not disrupt the Vpx-DCAF1 interaction (see Chapter 1). In further support of the 

differential modulation of DCAF1 specificity by Vpr and Vpx, while Vpx has been 

shown to interact with SAMHD1 independent of DCAF1 binding (Laguette et al., 

2011a), Vpr Q65R (which is unable to bind DCAF1) did not co-immunoprecipitate with 

members of the recently described G2 arrest target (SLX4 or Mus81)(Laguette et al., 

2014), supporting a model in which Vpr and Vpx modulate DCAF1 specificity by 

different mechanisms. Indeed, current studies show Vpr modulates the activity of DCAF1 

towards endogenous substrates (Wen et al., 2012; Laguette et al., 2014). However, it 

remains unclear if this is a general function of Vpr manipulation of DCAF1, increasing 

the ubiquitination of all endogenous DCAF1 targets, or a more specific redirection of 

DCAF1 towards a limited subset of endogenous substrates. In contrast, Vpx appears to 
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exclude interaction of DCAF1 with at least some endogenous substrates, UNG2 and 

SLX4 complex (Laguette et al., 2014). 

  

Consequences of lentiviral manipulation of the Cul4-DCAF1  

ubiquitin ligase 

 Several studies have made intriguing observations regarding the broader effects of 

Vpr manipulation of the Cul4-DCAF1 ubiquitin ligase. Cullin-based ubiquitin ligase 

activity is dependent on auto-conjugation of a ubiquitin like modifier, NEDD8, to the 

Cullin backbone, resulting in conformational changes which facilitate E2 recruitment and 

ubiquitin transfer to substrate (Saha and Deshaies, 2008; Duda et al., 2008)(reviewed in 

(Soucy et al., 2010; Saifee and Zheng, 2008)). Intriguingly, Hrecka observed that Vpr 

preferentially associates with neddylated Cul4 (Hrecka et al., 2007). While the regulation 

of Cullin neddylation is still not fully understood, recruitment of substrate-bound receptor 

has been shown to, at least in part, promote conjugation of NEDD8 to Cullins (Chew and 

Hagen, 2007). These observations promote the hypothesis that Vpr binding of DCAF1 

may drive assembly of active Cul4-DCAF1 complexes. Several additional lines of 

evidence support this hypothesis. Namely, other viral proteins are known to manipulate 

Cul4 ubiquitin ligase specificity by binding directly to DDB1 (see Table 1.1), resulting in 

the exclusion of DCAFs (Angers et al., 2006). We have observed that Vpr expression 

decreases the ability of one such viral protein, SV5 V-protein, to exclude DCAF1 from 

binding DDB1 (unpublished results). Furthermore, Vpr expression promotes the 

exclusion of other DCAFs (Schröfelbauer et al., 2007). Whether Vpx induces similar 

changes will require further investigation. However, preliminary evidence suggests at 
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least some differences between Vpr and Vpx in regards to Cul4 complex assembly. While 

Vpr has been observed to in result in an increased association of DCAF1 with DDB1, 

Vpx expression does not alter the DCAF1-DDB1 interaction (see Chapter 2). 

 The broader implications of viral manipulation of ubiquitin ligases have remained 

largely unstudied. Most studies into the manipulation of ubiquitin ligases by viral 

proteins have focused on the mechanism by which they interact with and redirect the 

specificity of their partner ligases. How these subversions alter the activity of these 

ligases towards their endogenous targets has been largely ignored. One recent study 

points to large alterations in the activity of the cellular ubiquitin ligase system by Vpr, but 

not other HIV-1 accessory proteins (Arora et al., 2014); however, the implications of this 

observation, especially in the context of in vivo infection, will require further 

investigation. 
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Table 1.1: Viral manipulators of the cellular ubiquitin proteasome system 

Virus Viral 
Protein 

UPS 
Interaction Target Function Reference 

HPV E6 HECT/E6-AP p53 Dysregulation 
of cell cycle 

(Scheffner et al., 
1993) 

Paramyxovirus  
SV5 V Cullin4/DDB1 STAT1,2 Overcome type-1 

interferon responses (Horvath, 2004) 

Hepatitis B HBx Cullin4/DDB1 Unknown 

Apoptosis, DNA 
repair, 

cell cycle, and 
enhanced viral 

replication 

(Sitterlin et al., 2000; 
Leupin et al., 2005) 

 
Vpu Cullin1/β-TrCP1 CD4, Tetherin 

 
Enhance viral release 

 
(Bour et al., 2001; 

Margottin et al., 1998) 

HIV-1 Vif Cullin5/EloginB/C APOBEC3G/F Overcome 
restriction 

(Yu et al., 2003; 
Mehle et al., 2004; 
Sheehy et al., 2003) 

 
 

Vpr Cullin4/DDB1-DCAF1 SLX4 complex 
Prevent recognition of 

viral reverse 
transcripts by DNA 

sensors 

(Dehart et al., 2007; 
Le Rouzic et al., 

2007; Schröfelbauer 
et al., 2007; Hrecka et 

al., 2007; Belzile et 
al., 2007; Wen et al., 

2007) 

HIV-2 Vpx Cullin4/DDB1-DCAF1 SAMHD1 
Overcome restriction 

to reverse 
transcription in 
myeloid cells 

(Srivastava et al., 
2008; Hrecka et al., 

2011; Laguette et al., 
2011a) 

HCMV UL35 Cullin4/DDB1-DCAF1 Unknown 
Induce ATR-

dependent  
cell cycle arrest 

in G2 

(Salsman et al., 
2012) 

Herpes 
 Viruses ICP0 RING Finger E3 PML 

Overcome antiviral 
activity associated 
with PML nuclear 

bodies 
(Boutell et al., 2002) 

Adenoviruses E1B55k/E4 
Orf6 Cullin5/Elongin B/C 

MRE11 
Complex, 

p53 

Prevent recognition of 
viral DNA ends by the 

NHEJ machinery 

(Harada et al., 
2002; Querido et 

al., 2001) 
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Figure 1.1: Overview of Vpr/Vpx phylogeny  
Branch lengths are not depicted to scale. Adapted from (Lim et al., 2011; Laguette et al., 
2011b; Planelles, 2012; Etienne et al., 2013). 
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Figure 1.2: Mechanisms of viral manipulation of cellular ubiquitin ligases 
Three mechanisms of viral manipulation of the UPS have been observed. 1) Through the 
displacement of the substrate specificity subunit of the ubiquitin ligase, the viral protein 
is able to recruit nonnative substrate. This mechanism is exemplified by the primate 
lentiviral proteins Vif manipulation of the Cul5 ubiquitin ligase. Vif has been shown to 
displace the native ligase receptor family, SOCS, through direct interaction with Cul5, as 
well as interactions with the adaptor proteins EloB/C (Yu et al., 2003; 2004). 2) Viral 
mimicry of endogenous ubiquitin ligase substrate. Cul1-SKP1-βTRCP is known to recruit 
substrates through interaction with a phospho-degron. Vpu is known to be 
phosphorylated on S52 and S56, generating a βTRCP phospho-degron motif. This 
substrate mimicry by Vpu facilitates the recruit by it of CD4 and Tetherin to the Cul1 
ubiquitin ligase for ubiquitination and degradation (Margottin et al., 1998). 3) Generation 
of a novel substrate binding interface as recently described by Schwefel et al. Vpx was 
shown to interact with DCAF1, the substrate specificity subunit of the Cul4 ubiquitin 
ligase (Le Rouzic and Benichou, 2005; Srivastava et al., 2008), this binding results in the 
recruitment of SAMHD1 through interactions with both Vpx and DCAF1 (Schwefel et 
al., 2014). 
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 CHAPTER 2  

 

UNDERSTANDING THE MOLECULAR MANIPULATION OF THE CUL4-DDB1-

DCAF1 UBIQUITIN LIGASE BY THE PARALOGOUS LENTIVRIAL  

ACCESSORY PROTEINS VPR AND VPX 

 

Abstract 

 The primate lentiviral proteins Vpr and Vpx are both known to manipulate the 

cellular ubiquitin ligase comprised of Cul4-DDB1-DCAF1 to facilitate viral replication. 

While Vpr is common to all primate lentiviruses, Vpx is encoded only by a limited range 

of SIVs and HIV-2. Although Vpr and Vpx share a high degree of homology, they are 

known to mediate markedly different benefits for viral replication through the 

recruitment of different substrates to the ubiquitin ligase. Here we explore the interaction 

of Vpr and Vpx with the ubiquitin ligase substrate specificity receptor DCAF1. Through 

mutational analysis of DCAF1, we demonstrate that although Vpr and Vpx share a highly 

similar DCAF1 binding motif, they interact with DCAF1 differently. In addition, we 

observe that Vpr function is dominant to Vpx in vitro. 
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Introduction 

Manipulation of the cellular ubiquitin proteasome system (UPS) to degrade 

cellular restriction factors is a common tactic employed across a broad array of virus 

classes. Human Immunodeficiency Virus (HIV) is no exception and encodes three such 

proteins (Vif, Vpu, and Vpr). In addition, some primate lentiviruses (including HIV-2) 

encode the Vpr paralog Vpx. While the mechanism of UPS manipulation and cellular 

targets of Vif and Vpu have been well characterized, the functions of Vpr and Vpx have 

been more difficult to elucidate (reviewed in (Malim and Emerman, 2008)). 

 Vpr is a short, 96aa protein that is highly conserved among primate lentiviruses 

(HIVs and SIVs). Vpr is expressed late during viral replication and is present in virions; 

however, its role within the virion is unknown (Cohen et al., 1990; Müller et al., 2000). 

Its function appears to be highly crucial for HIV infection as no primary isolates have 

been described which lack Vpr (reviewed in (Andersen et al., 2008)). Vpr has been 

shown to induced cell-cycle arrest at the G2/M transition through the activation of the 

DNA damage sensor ataxia telangiectasia and Rad3-related protein (ATR) (Roshal et al., 

2003); however, the significance of cell cycle arrest for the virus is currently unclear 

(reviewed in (Andersen et al., 2008)). 

 In 1994, Vpr was shown to interact with a novel cellular protein, DDB1-Cullin4 

Associated Factor 1 (DCAF1), previous known as RIP/VprBP (Zhao et al., 1994). The 

significance of this interaction remained unclear until several groups identified DCAF1 

as a substrate specificity subunit for the Cullin4-DDB1-based ubiquitin ligase. Following 

this observation, our laboratory and several others proposed a model whereby Vpr hijacks 

the cellular ubiquitin ligase composed of Cullin4-DDB1-DCAF1 (hereafter referred to as 
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Cul4-DCAF1) recruiting an as of yet unidentified cellular target, resulting in its 

polyubiquitination and degradation (Dehart et al., 2007; Le Rouzic et al., 2007; 

Schröfelbauer et al., 2007; Hrecka et al., 2007; Belzile et al., 2007; Wen et al., 2007). 

 In addition to Vpr, some primate lentiviral lineages encode the Vpr paralog Vpx. 

Early studies identified a role for Vpx in the infection of myeloid lineage cells, dendritic 

cells, and macrophages, by overcoming a block present in these cells to viral reverse 

transcription (Yu et al., 1991). Following studies demonstrating that Vpr manipulated 

Cul4-DCAF1, the Skowronski lab demonstrated a similar requirement for Vpx to 

facilitate macrophage infection (Srivastava et al., 2008). In 2011, two groups identified 

SAMHD1 as the cellular protein targeted by Vpx, in the context of Cul4-DCAF1 

(Laguette et al., 2012; Hrecka et al., 2011). 

 While much work has been done to understand the functional role of Vpr and Vpx 

in the context of viral replication, the mechanism by which they redirect the specificity of 

Cul4-DCAF1 has remained unresolved. Thus far, three mechanisms for manipulation of 

proteasomal degradation of cellular proteins have been observed: 1) the encoding of a 

viral E3 ubiquitin ligase, as is the case of the ICP0 protein of herpes viruses (Boutell et 

al., 2002), 2) the replacement of the substrate receptor of a cellular ubiquitin ligase by a 

virally encoded protein, as is the case of protein V from SV5 (Horvath, 2004) and Vif of 

primate lentiviruses (Yu et al., 2003; Mehle et al., 2004; Sheehy et al., 2003), and 3) 

mimicry of endogenous substrate by the viral protein, which ferries a cellular protein to 

be targeted for ubiquitination, as observed in the manipulation of Cul1-βTRCP by HIV-1 

Vpu (Bour et al., 2001; Margottin et al., 1998).  

 In this study, we aim to investigate the manner by which Vpr and Vpx interact 
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with DCAF1, resulting in an alteration of substrate specificity. Using mutational analysis 

of the DCAF1 substrate-binding interface, we propose that although Vpr and Vpx share a 

highly homologous DCAF1 binding motif, Vpr and Vpx interact with the Cul4-DCAF1 

ubiquitin ligase differently. In addition, we observe that Vpr and Vpx functions are 

dependent on DCAF1 WD40 domain residues not directly involved in binding Vpr or 

Vpx. Based on these observations and other recently published results, we propose a 

model whereby Vpr and Vpx recruit substrate in an unusual manner involving direct 

interaction between the virally defined substrate and DCAF1. 

 
 

Materials and Methods 

Cell culture 

Exponentially growing 293FT and HeLa cells were cultured in Dulbecco minimal 

essential medium (DMEM)(Invitrogen, Carlsbad, CA) supplemented with 10% fetal 

bovine serum (FBS) and 1% L-glutamine (Invritogen). 293FT cells were transfected 

using the Calcium Phosphate method, as previously described (Zhu et al., 2001). 36 hr 

posttransfection cells were harvested, washed 2x with Phosphate Buffered Saline (PBS), 

and lysed as described below. HeLa cells were transfected with the FuGene HD 

(Promega, Madison, WI) per manufacturer’s protocol.  

 

Plasmids 

Flag-DCAF1 was purchased from GeneCopeia (Germantown MD). DCAF1 

truncations were made by generating unique restrictions sites where indicated (Figure 

2.1) using Quikchange Lightning site-direct mutagenesis (Agilent Technologies, Santa 
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Clara, CA) per manufacturer’s recommendations. DCAF1 WD40 point mutants were 

generated by site-generated mutagenesis using Quikchange Lightning according to 

manufacturer’s recommendation. Primers were designed utilizing Agilent Technologies 

Quikchange online primer design tool. Myc-huSAMHD1 was purchase from OriGene 

(Rockville, MD). pcDNA3.1 was purchased from Invitrogen. HA-Vpr and HA-Vpx were 

subcloned from pHR-HA-Vpr/Vpx-ires-GFP (Dehart et al., 2007) into pFIN-EF1-GFP-

2a-mCherH-WPRE (a kind gift of Dr. Semple-Rowland)(Verrier et al., 2011) in the place 

of mCherH. 

 

Immunoprecipatations and Western blots 

For immunoprecipation, cells were gentle detached by incubation in PBS and 

pelleted at 13,000rpm for 5 min in a tabletop microcentrifuge. Cells were lysed with Flag 

IP buffer (50 mM Tris HCI, pH 7.4, 15 0mM NaCl, 1 mM EDTA, and 1% TRITON X-

100) in the presence of protease inhibitors (Complete EDTA free tablets; Roche, 

Indianapolis, IN). Lysate protein concentrations were determined by Pierce™ BCA 

(Thermo Scientific, Rockford, IL) and brought to equal protein concentration. Lysates 

were subject to immunoprecipitation using Anti-FLAG® M2 Magnetic Beads (SIGMA-

ALDRICH, St. Louis, MO) in accordance with manufacturer recommendations. Briefly, 

lysates were incubated with beads for 2 hr (at RT) to overnight (at 4ºC). Beads were 

washed 5x with lysis buffer and proteins eluted with 3x-FLAG® Peptide, 100 µg/ml for 1 

hr at RT. Cells used in degradations assays were lysed in SET Buffer (1% SDS, 50 mM 

Tris HCL, pH 7.4, 1 mM EDTA); lysates were thoroughly denatured by boiling for 5 

min. Lysates and immunoprecipation samples were resolved by SDS-PAGE on 4-10% 
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Criteron™ TGX™ gels (Bio Rad, Hercules, CA) per manufacturer’s recommendations 

and transferred to PVDF membrane (EMD Millipore, Billerica, MA). The following 

antibodies were used: FLAG® M2 and β-actin (Sigma Aldrich), HA.11 and 9E11(c-

Myc)(Covance), DDB1 (Abcam). 

 

Lentiviral vectors 

pHR-Vpr-IRES-GFP, pHR-Vpr(R80A)-IRES-GFP, pHR-Vpx293-IRES-GFP, 

and pHR-GFP viruses were produced as previously described (Zimmerman et al., 2004; 

Roshal et al., 2003). Briefly, 293FT cells were transfected as described earlier with 

transfer vector, pCMV ∆8.2∆Vpr packaging plasmid, and pCMV-VSVG envelope 

plasmid at a ratio of 2.5:2.5:1. Supernatants were collected every 24 hr, until the cell 

monolayer died, and cleared of cell debris by centrifugation at ~825x-g for 5 min. Pooled 

supernatant was concentrated by ultracentrifugation at 25,000x-g for 2 hr. Concentrated 

virus was resuspended in DMEM with 10% FBS and 1% L-Glutamine and stored at -

80ºC. HeLa cells were transduced in in presence of 10 µg/ml polybrene overnight. Viral 

titers were determined by GFP expression.  

 

FACS and cell cycle analysis 

HeLa cells were detached by trypsinization and washed in fluorescence-activated 

cell sorting (FACS) buffer (2% FBS and 0.02% Sodium Azide in PBS). For analysis of 

GFP, cells were immediately subject to flow cytometry. Cells for cell cycle analysis were 

pelleted at ~825x-g for 5 min and fixed with 70% ethanol at -20ºC overnight. Fixed cells 

were rehydrated by 2x wash in PBS. DNA content was determined by staining in 50 



 

 

48 

µg/ml propidium iodide in 0.1% Triton X-100 PBS with RNase A for 20 min. Cells were 

analyzed on a BD FACS Canto II flow cytometer using the FACSDiva software (Becton 

Dickinson, Mountain View, CA) and data analyzed using FlowJo (Tree Star Inc, 

Ashland, OR). 

 

Results 

DCAF1 interacts with the Cul4-DDB1 ubiquitin ligase backbone  

through a motif N-terminal to the WD40 domain 

 The modular nature of many cellular ubiquitin ligases allows for the regulated 

targeting and degradation of a diverse array of substrates (Nalepa et al., 2006). In the case 

of the Cul4-based ligases, the core ubiquitin ligase comprised of Cul4-Rbx1-DDB1 has 

been shown to interact with a large number of substrate receptors termed DDB1-Cullin4 

Associated Factors (DCAFs) (Angers et al., 2006; He et al., 2006; Higa et al., 2006; Jin et 

al., 2006). In 2007, our group and several others demonstrated that the HIV accessory 

protein Vpr interacted directly with DCAF1, resulting in a robust cell cycle arrest at the 

G2/M transition (Dehart et al., 2007; Le Rouzic et al., 2007; Schröfelbauer et al., 2007; 

Hrecka et al., 2007; Belzile et al., 2007; Wen et al., 2007). Subsequently, it was shown 

that the HIV-2/SIVagm Vpr paralog Vpx also utilized the same ubiquitin ligase 

(Srivastava et al., 2008). 

Molecular analyses of DCAFs have revealed that most consist primarily of a 

WD40 domain (Higa et al., 2006), a highly conserved β-propeller structure involved in 

mediating protein-protein interactions (Stirnimann et al., 2010). In contrast, the complex 

domain architecture of DCAF1 (comprised of an N-terminal armadillo domain, a central 
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LisH domain, a C-terminal WD40 domain, and a highly acidic C-terminal tail) makes it 

unique among DCAFs (Jin et al., 2006) (Figure 2.1). In order to better determine the 

manner in which Vpr and Vpx manipulate the Cul4-DCAF1 ubiquitin ligase, we 

generated a number of Flag-tagged DCAF1 truncation mutants in which each domain has 

been removed individually or in conjunction with others. In addition, the annotated but 

undescribed DCAF1 isoform 3, which contains a large truncation in the armadillo domain 

generated via alternative splicing, was also tested (Figure 2.1). The ability of these Flag-

DCAF1 truncations to interact with Vpr/Vpx and the Cul4-DDB1 ligase backbone was 

analyzed by co-immunoprecipitation (Co-IP). 

Interaction of Vpr/Vpx with DCAF1 alone would not be expected to facilitate 

their function as ubiquitination of cellular proteins by DCAF1 requires interaction with 

the Cul4-DDB1 ubiquitin ligase backbone. To this end, Flag-DCAF1 truncations were 

analyzed for the presence of DDB1. As expected, full length DCAF1, both isoform 1 and 

isoform 3, were capable of interacting with DDB1 (Figure 2.2, lanes 2 and 3). In 

agreement with previous observations indicating a role of the WD40 domain in DDB1 

interaction (Angers et al., 2006), truncations lacking the WD40 domain lost the ability to 

interact with DDB1 (Figure 2.2, lanes 4, 6-8). Surprisingly, the Flag-DCAF1 WD40 was 

unable to immunoprecipitate DDB1 (Figure 2.2, lane 11). This is in contrast to earlier 

reports in which “WD40” truncations were able to interact with DDB1 (Gérard et al., 

2014; Le Rouzic et al., 2007). Most likely, this discrepancy is due to differences in 

truncation length (residues 1041-1377(Le Rouzic et al., 2007), 1041-1393(Gérard et al., 

2014), and 1073-1396 in this manuscript). Recently, it was demonstrated that interaction 

between DCAFs and DDB1 is facilitated by a cryptic α-helix located N-terminal to the 
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WD40 domain (termed an Hbox) (Li et al., 2009). Gérard et al. recently determined the 

putative DCAF1 Hbox spans 1049-1062, which is absent from our WD40 truncation. In 

agreement with this hypothesis, the minimal truncation we generated of DCAF1 capable 

of interacting with DDB1 was that containing the LisH and WD40 domains (Figure 2.2, 

lane 9). As expected, truncations lacking this region were unable to interact with DDB1. 

Interestingly, the ∆acidic truncation lost the ability to interact with DDB1 (Figure 2.2, 

lane 5). It has recently been shown that the acidic C-terminal tail is involved in regulatory 

function via interaction with the protein Merlin (Li et al., 2010). It is tempting to 

speculate that loss of DDB1 interaction by this truncation is due to regulatory activities 

mediated by the acidic tail. 

 

Mutations of DCAF1 WD40 substrate binding interface disrupt  
Vpx-mediated SAMHD1 degradation 

 In order to determine the molecular mechanism by which the paralogous lentiviral 

accessory proteins Vpr and Vpx manipulate the substrate specificity of DCAF1, we 

generated a number of point mutations to the WD40 domain of DCAF1 (Table 2.1). 

Substrate interaction by DCAFs is believed to be mediated by interaction with this β-

propeller structure. Previous reports have demonstrated that the “top” (by convention) of 

WD40 domains form a shallow groove that mediates interaction with proteins to be 

targeted for degradation (reviewed in (Trievel and Shilatifard, 2009; Stirnimann et al., 

2010)). Using homology modeling between DCAF1 and the most closely related DCAF 

(WDR5) with a known structure (Figure 2.3A)(Schuetz et al., 2006; Song and Kingston, 

2008; Patel et al., 2008), as well an in silico (ModBase) structural prediction of DCAF1’s 

WD40 domain (Pieper et al., 2014)(Figure 2.3B), we generated a series of point 
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mutations which we predicted would fall around this substrate binding region.  

293FT cells were transfected with DCAF1 truncations and point mutants,  

HA-Vpx and Myc-SAMHD1, and screened for the inhibition of Vpx-mediated 

degradation of SAMHD1, its recently described target (Laguette et al., 2011; Hrecka et 

al., 2011). Interestingly, DCAF1 truncations fail to mediate SAMHD1 degradation by 

Vpx (data not shown, and Figure 2.4). Specifically, the minimal truncation generated 

capable of binding DDB1, DCAF1 LisH-WD40, no longer mediated SAMHD1 

degradation, indicating that binding of Vpx to the Cul4 ubiquitin ligase is not sufficient to 

mediate its activity. This observation indicates DCAF1 does not merely serve as a bridge 

by which Vpx brings SAMHD1 to the Cul4 ubiquitin ligase. In addition, several point 

mutants (D1092A, N1135A, and W1156H) were identified that failed to facilitate the 

degradation of SAMHD1 by Vpx (Figure 2.4, lanes 10, 12-13). Analysis of additional 

residues (H1134A and D1256A) to DCAF1 WD40 domain (Figure 2.4, lanes 11 and 14) 

as well as others (data summarized in Table 2.1) show no effect on the SAMHD1 

degradation activity of Vpx, indicating that mutations to this region do not generally 

perturb Vpx function. 

 

DCAF1 WD40 mutations disrupt Vpx binding 

 In order to better understand how these DCAF1 mutations disrupt Vpx function, 

they were analyzed for their ability to interact with Vpx by co-IP. As expected, 

immunoprecipitation of full length Flag-DCAF1 was able to bring down Vpx (Figure 2.5, 

lane 4). Interestingly, in contrast to previous reports regarding the highly related lentiviral 

protein Vpr ((Le Rouzic et al., 2007) and this report), the WD40 domain of DCAF1 was 
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not sufficient to co-IP Vpx (Figure 2.5, lane 5), while the longer truncation containing 

both the LisH and WD40 domains regained this function (Figure 2.5, lane 6), indicating 

that Vpx-DCAF1 interaction may involve residues outside of the WD40 region or may be 

dependent on assembly of the complete ubiquitin ligase machinery. Co-IP analysis of 

DCAF1 WD40 mutants revealed Vpx-mediated SAMHD1 degradation can be inhibited 

without disrupting Vpx binding. While DCAF1 mutations D1092A, N1135A, and 

W1156H all disrupted Vpx-mediated SAMHD1 degradation, only N1135A and W1156H 

(Figure 2.5, lanes 9 and 10) result in a loss of Vpx interaction, explaining their inability 

to mediate SAMHD1 degradation. 

Interestingly, DCAF1 D1092A, which failed to facilitate SAMHD1 degradation, 

retained binding to Vpx (Figure 2.5, lane 7). Based on these results and a recently 

published co-crystal of DCAF1 (WD40, residues 1058-1296)-Vpx-SAMHD1 (C-term) 

(Schwefel et al., 2014) we propose a novel mechanism by which Vpx alters the substrate 

specificity of the DCAF1-containing ubiquitin ligase. In this model, Vpx generates a 

novel substrate binding surface involving Vpx and DCAF1 in the recruitment of 

SAMHD1. 

Co-IP analysis of DCAF1 WD40 mutants revealed Vpx-mediated SAMHD1 

degradation can be inhibited without disrupting Vpx binding. While DCAF1 mutations 

D1092A, N1135A, and W1156H all disrupted Vpx-mediated SAMHD1 degradation, 

only N1135A and W1156H (Figure 2.5, lanes 9 and 10) result in a loss of Vpx 

interaction, explaining their inability to mediate SAMHD1 degradation. Interestingly 

DCAF1 D1092A, which failed to facilitate SAMHD1 degradation, retained binding to 

Vpx (Figure 2.5, lane 7). Based on these results and a recently published co-crystal of 
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DCAF1(WD40, residues 1058-1296)-Vpx-SAMHD(C-term) (Schwefel et al., 2014), we 

propose a novel mechanism by which Vpx alters the substrate specificity of the DCAF1- 

containing ubiquitin ligase. In this model, Vpx generates a novel substrate binding 

surface involving Vpx and DCAF1 in the recruitment of SAMHD1. 

 

Vpr interacts with DCAF1 differently than Vpx 

 While a recently published crystallographic study determined the Vpx-DCAF1 

binding interface, no structural data exist regarding the Vpr-DCAF1 interaction 

(Schwefel et al., 2014). A high degree of homology between Vpr and Vpx led us to 

hypothesize they would interact with DCAF1 in a similar manner. Analogous mutations 

in the third helix of both Vpr (Q65R) and Vpx (Q76R) have been shown to abrogate their 

ability to interact with DCAF1 (Dehart et al., 2007; Le Rouzic et al., 2007; Schröfelbauer 

et al., 2007; Belzile et al., 2007; Srivastava et al., 2008). However, several studies point 

towards different mechanisms of DCAF1 manipulation by Vpr and Vpx. Most striking 

perhaps are the observations regarding interaction of Vpr and Vpx with their respective 

targets. While Vpx and SAMHD1 have been observed to form stable binary complexes 

independent of DCAF1 (Hrecka et al., 2011), Vpr mutants unable to bind DCAF1 were 

not able to interact with the newly identified G2 arrest target(s), SLX4 and Mus81 

(Laguette et al., 2014). 

In order to examine the molecular interaction between DCAF1 and Vpr, DCAF1 

mutations were tested for their ability to interact with Vpr. As expected, Vpr was able to 

co-IP with Flag-DCAF1 (Figure 2.4, lane 4). In agreement with previously published 

observations (Le Rouzic et al., 2007), the DCAF1 WD40 domain was sufficient to 
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mediate Vpr binding (Figure 2.6, lane 5). The longer LisH-WD40 truncation also retained 

Vpr binding (Figure 2.6, lane 6). In contrast to Vpx, both the N1135A and W1156H 

mutants retained Vpr binding (Figure 2.6, lanes 9 and 10).  

Recently, several groups demonstrated Vpr alters Cul4-DCAF1 function by 

enhancing ubiquitination of specific endogenous targets, UNG2 and SLX4 complex 

(Wen et al., 2012; Laguette et al., 2014), raising the possibility that mutations to DCAF1 

WD40 may inhibit Vpr-mediated G2 arrest without abrogating Vpr binding. In order to 

assess the effect of DCAF1 truncations and WD40 mutants on Vpr-mediated G2 arrest, 

HeLa cells were transfect with Vpr in the presence or absence of DCAF1 mutants. 36 hr 

posttransfection cells were harvested and analyzed for G2 arrest by FACS. As expected, 

G2 arrest was observed in cells transfected with Vpr alone or with WT DCAF1. 

Expression of either DCAF1 WD40 or LisH-WD40 was observed to inhibit Vpr-

mediated G2 arrest in a dominant negative manner (Figure 2.7). One possible explanation 

for this effect is that these truncations may serve as molecular sinks for Vpr (capable of 

binding Vpr or Vpr and DDB1, respectively, but not the G2 substrate) reminiscent of the 

previously described effect of DDB1 overexpression (Wen et al., 2007). Surprisingly, 

several DCAF1 WD40 mutants (D1092A, N1135A, W1156H, and D1256A) also 

inhibited the induction of G2 arrest by Vpr. These observations demonstrate Vpr activity 

is more sensitive to DCAF1 WD40 mutations than Vpx. 

 

Vpr Function is dominant to Vpx 

 Discrepancies with regard to DCAF1-mutant binding to Vpr and Vpx may be 

explained by two, nonmutually exclusive, hypotheses: 1) differential binding affinities of 
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Vpr and Vpx to DCAF1 and/or 2) differential binding interfaces in the Vpr-DCAF1 vs 

Vpx-DCAF1 interaction. In order to distinguish between these to hypotheses, we 

examined the functional competition between Vpr and Vpx. To this end, HeLa cells were 

transduced with virus expressing Vpr and either a control virus (GFP), Vpx, or the 

dominant negative Vpr mutant R80A (Dehart et al., 2007). 36 hr posttransduction cell 

cycle profiles were determined for each cell population. As expected, Vpr transduced 

cells arrested in G2 (Figure 2.8). Co-expression of Vpr R80A reduces the percentage of 

cells in the G2 phase in a dose-dependent manner (Figure 2.8C-E). In contrast, expression 

of Vpx had no effect on Vpr-mediated G2 arrest (Figure 2.8F-G). 

In order to determine if Vpr acted in a similar manner, 293FT cells were 

transfected with an HA-Vpx expressing plasmid alone or in the context of HA-Vpr at 2:1 

or 1:1. As expected, Vpx expression resulted in the depletion of SAMHD1 (Figure 2.9, 

lane 1 vs lane 2). In contrast to the inability of Vpx to relieve Vpr-mediated G2 arrest, co-

expression of Vpr robustly inhibited Vpx-induced SAMHD1 degradation (Figure 2.9, 

lanes 3 and 4 vs lane 2). 

 These observations, taken together, support a model in which Vpr and Vpx bind 

DCAF1 in a competitive manner. These observations cannot distinguish whether this 

competition is for a shared binding site, to which Vpr binds more tightly, or binding to an 

allosteric site. However, we favor a model in which Vpr and Vpx utilize a similar binding 

interface on DCAF1 based on the high homology between their third α-helix, known to 

be the major determinant of DCAF1 binding (Le Rouzic et al., 2007; Srivastava et al., 

2008; Schwefel et al., 2014)(reviewed in (Morellet et al., 2009)). In agreement with the 

hypothesis that Vpr has higher affinity for this binding domain, no mutations to the 
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DCAF1 WD40 domain were identified which abrogated Vpr binding (Table 2.1, data not 

shown, and Figure 2.6). 

 

Vpr but not Vpx enhances the DCAF1 interaction with DDB1 

 It has recently been reported that co-IP of some DCAF1 mutants with DDB1 is 

enhanced in the presence of Vpr (Gérard et al., 2014). Examining our own co-IPs, we 

observed a similar phenomenon, whereby Vpr enhanced interaction between WT DCAF1 

and DDB1 (Figure 2.10a, lanes 3 and 4). Based on the observed difference between Vpr 

and Vpx with respect to their interaction with DCAF1, we were curious as to the effect of 

Vpx on the DCAF1-DDB1 interaction. Expression of Vpx had no apparent effect on the 

DCAF1-DDB1 interaction (Figure 2.10b lanes 2 and 4). 

 

Discussion 

 While several studies have examined the molecular determinants on Vpr and Vpx 

for DCAF1 interaction, little is known in regards to the residues in DCAF1 that mediate 

these interactions. In this study, we generated a series of point mutations to the previously 

described Vpr minimal binding domain of DCAF1 (the WD40 domain) (Le Rouzic et al., 

2007) and screened them for their ability to mediate Vpr and Vpx interaction and 

function. Surprisingly, although Vpx and Vpr share a high degree of homology in their 

DCAF1 binding motifs, we observed differential effect of these mutations on their ability 

to facilitate Vpr and Vpx interaction. Two DCAF1 WD40 mutations, N1135A and 

W1156H, were identified which failed to co-IP with Vpx. These residues were recently 

identified as being involved in the coordination of the Vpx Q76 residue, the mutation of 
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which is known to abrogate DCAF1 binding (Srivastava et al., 2008), in a recently 

resolved Vpx-DCAF1(WD40)-SAMHD1 co-crystal (Schwefel et al., 2014). While we 

would expect these residues to coordinate the analogous Vpr Q65, their mutation does not 

abrogate binding with Vpr. 

 This difference may be due in part to different binding affinities of Vpr and Vpx 

for DCAF1. To address this hypothesis, we conducted a functional competition assay 

between Vpr and Vpx. In support of the hypothesis that Vpr binds DCAF1 with higher 

affinity than Vpx, expression of Vpr was able to inhibit the degradation of SAMHD1 by 

Vpx, though the reciprocal relationship was not observed. Furthermore, expression of 

Vpr, but not Vpx, was seen to enhance the interaction between DCAF1 and DDB1. While 

we favor a model in which Vpr binds more tightly to DCAF1 than Vpx, our observations 

do not exclude the possibility that Vpr and Vpx utilize different binding interfaces on 

DCAF1. More thorough biochemical analysis will be necessary to fully distinguish 

between these two possibilities. 

 Recent studies have highlighted the therapeutic potential of targeting HIV-1 

accessory gene function (Stanley et al., 2012; Wei et al., 2014; Nekorchuk et al., 2013; 

Hofmann et al., 2013). While these studies are promising proofs of concept, a more 

thorough understanding of the molecular architecture of the ubiquitin ligases in the 

context of viral manipulation will be necessary to develop more specific pharmacological 

inhibitors. Disruption of Vpr activity is a compelling avenue for future drug development. 

The presence of Vpr among all primate lentiviruses indicate a strong selective pressure 

for Vpr function of viral pathogenesis. Indeed, in vivo studies in a rhesus macaque model 

of AIDS indicated a delayed onset of disease in monkeys infected with Vpr-deficient 
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viruses (Lang et al., 1993; Hoch et al., 1995). In addition, retrospective analysis of a 

vaccine study conducted in chimpanzees in which two animals were challenged with a 

Vpr-deficient HIV revealed reversion of the defective Vpr reading frame in both animals 

(Goh et al., 1998)(Reviewed in (Andersen et al., 2008)). The highly conserved natures of 

the Vpr/Vpx DCAF1 binding motif (Srivastava et al., 2008), as well as that of DCAF1 

(Zhang et al., 2008) present a novel target for future drug development, for which the 

evolutionary cost of resistance mutations by the virus may be too great. 
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Figure 2.1 DCAF1 domain architecture 
Domain architecture of WT DCAF1 (Iso1) and truncations.   
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Figure 2.2: DCAF1 truncations DDB1 co-IP 
293FT cells were transfected with plasmids expressing Flag-DCAF1 or the truncations 
described. Cell lysates were subject to Flag-immunoprecipation and analyzed for the 
presences of DDB1 by Western blot. 

-Flag-DCAF1 WT Ac
id

¨/
LV+

WD
40
-A
cid

WD
40

¨$
UP

/LV
+�
:'

��

$U
P�
,VR
�

$U
P�
:7

¨:
'�
��¨
$F
LG

¨$
FLG

¨:
'�
�

,VR
�

3 4 5 7 8 9 10 11 12 13 14621



 

 

61 

Table 2.1: DCAF1 mutations summary 
DCAF1 Mutations were screened for their ability to facilitate Vpx-mediated SAMHD1 
degradation. Truncation and select point mutants were screened for Vpr function and 
interaction with Vpx/Vpr/DDB1. Blanks represent mutant not tested for that particular 
interaction/function. 

 Function Interaction 
 SAMHD1 Deg G2 Arrest Vpr Vpx DDB1 
Iso1 Yes Yes Yes Yes Yes 
Iso3 No   Yes Yes Yes 
dWD40 No   No Yes No 
dAcid No   No Yes No 
dWD40-dAcid No   No No No 
Arm-Iso1 No   No Yes No 
Arm-Iso3 No   No No No 
Lish-WD40 No No Yes Yes Yes 
dArm No No Yes No Yes 
WD40 No No Yes No No 
WD40-Acid No No Yes No No 
Acid  No    
dLish No No No No No 
D1092A No No Yes Yes Yes 
H1134A Yes Yes Yes Yes Yes 
N1135A No No Yes No Yes 
T1141A Yes    Yes    
T1155A Yes    Yes     
W1156H No No Yes No Yes 
E1178A-D1179A Yes    Yes     
H1180A Yes    Yes     
K1196A Yes    Yes     
N1221A-N1222A Yes    Yes     
R1225A Yes    Yes     
N1226A Yes    Yes     
D1256A Yes No Yes Yes Yes 
K1257A Yes    Yes     
S1263A Yes    Yes     
D1295A Yes    Yes     
Q1296A Yes    Yes     
Q1316A Yes    Yes     
D1320A Yes    Yes     
F1334Y Yes    Yes     
V1350T Yes    Yes     
N1379A Yes    Yes     
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A. 

 

B. 

 
Figure 2.3: DCAF1 mutation strategy 
A) DCAF1 WD40 domain and WDR5 protein sequences were aligned using ClustW2 
(Larkin et al., 2007). WDR5 tertiary structure is indicated below (bold lines – β-sheets, 
narrow lines connect β-sheets which form respective “blades” of the β-propeller. 
Homology is indicated below, asterisks (*) indicate identity, colons (:) and periods (.) 
similarity. Purple arrowheads indicate residues mutated in DCAF1. B) ModBase (Pieper 
et al., 2014) predicted structure of the DCAF1 WD40 domain. Residues mutated in our 
screen are highlighted in purple. 
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Figure 2.4: Analysis of DCAF1 mutations for their ability to facilitate Vpx-mediated 
SAMHD1 degradation  
Cells were transfected with human Myc-SAMHD1, HA-Vpx, and/or Flag-DCAF1 
mutant expression plasmids as indicated. 36 hr posttransfection cells were lysed and 
analyzed for the presence of SAMHD1 by Western blot. 
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Figure 2.5: Analysis of DCAF1 truncations and point mutant ability to interact with Vpx 
293FT cells were transfected with plasmids expressing Flag-DCAF1 mutations and HA-
Vpx as indicated. Cell lysates were subject to Flag-immunoprecipation and analyzed for 
the presences of HA-Vpx by Western blot. 
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Figure 2.6: DCAF1 determinants of Vpr interaction are different than those of Vpx 
293FT cells were transfected with plasmids expressing Flag-DCAF1 mutations and HA-
Vpr as indicated. Cell lysates were subject to Flag-immunoprecipation and analyzed for 
the presences of HA-Vpr by Western blot. 
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Figure 2.7: DCAF1 WD40 mutants inhibit Vpr induced G2 arrest 
HeLa cells were transfected with DCAF1 mutants or empty vector control plasmids and 
Vpr as indicated. 36 hr posttransfection cells were analyzed for cell cycle arrest by 
FACS. 
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Figure 2.8: Vpx fails to compete Vpr mediated G2 arrest 
Cells were transduced with control (GFP) or Vpr expressing virus alone or with Vpx or 
the dominant negative Vpr R80A and analyzed for G2 arrest by FACS. Infection ratios 
were determined by the percent GFP+ cells of Vpr, Vpx, or R80A singly infected cells. 
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Figure 2.9: Vpr functions dominantly to Vpx 
293FT cells were transfected with a HA-Vpx plasmid in the presence or absence of a 
HA-Vpr expression plasmid. All cells were transfected with equal amounts of total 
plasmid DNA by transfection of pcDNA3.1. Cells were lysed 36 hr posttransfection and 
endogenous SAMHD1 levels were analyzed by Western blot. 
 

1 2 3 4



 

 

69 

 
Fi

gu
re

 2
.1

0:
 E

ff
ec

t o
f V

pr
 a

nd
 V

px
 e

xp
re

ss
io

n 
of

 th
e 

D
C

A
F1

-D
D

B
1 

in
te

ra
ct

io
n 

Fl
ag

-D
C

A
F1

 w
as

 im
m

un
op

re
ci

pa
te

d 
in

 th
e 

pr
es

en
ce

 o
r a

bs
en

ce
 o

f V
pr

 (A
) o

r V
px

 (B
) a

nd
 a

na
ly

ze
d 

fo
r t

he
 D

D
B

1 
by

 W
es

te
rn

 
bl

ot
.  

  

Flag-IP Inputs

1
2

3
4

B.

4

Flag-IP Inputs

1
2

3

A
.



 

 

70 

References 

Andersen, J.L., E. Le Rouzic, and V. Planelles. 2008. HIV-1 Vpr: mechanisms of G2 
arrest and apoptosis. Exp Mol Pathol. 85:2–10. doi:10.1016/j.yexmp.2008.03.015. 

Angers, S., T. Li, X. Yi, M.J. MacCoss, R.T. Moon, and N. Zheng. 2006. Molecular 
architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature. 
443:590–593. doi:10.1038/nature05175. 

Belzile, J.-P., G. Duisit, N. Rougeau, J. Mercier, A. Finzi, and E.A. Cohen. 2007. HIV-1 
Vpr-mediated G2 arrest involves the DDB1-CUL4AVPRBP E3 ubiquitin ligase. 
PLoS Pathog. 3:e85. doi:10.1371/journal.ppat.0030085. 

Bour, S., C. Perrin, H. Akari, and K. Strebel. 2001. The human immunodeficiency virus 
type 1 Vpu protein inhibits NF-kappa B activation by interfering with beta TrCP-
mediated degradation of Ikappa B. J Biol Chem. 276:15920–15928. 
doi:10.1074/jbc.M010533200. 

Boutell, C., S. Sadis, and R.D. Everett. 2002. Herpes simplex virus type 1 immediate-
early protein ICP0 and is isolated RING finger domain act as ubiquitin E3 ligases in 
vitro. J Virol. 76:841–850. 

Cohen, E.A., G. Dehni, J.G. Sodroski, and W.A. Haseltine. 1990. Human 
immunodeficiency virus vpr product is a virion-associated regulatory protein. J Virol. 
64:3097–3099. 

Dehart, J.L., E.S. Zimmerman, O. Ardon, C.M.R. Monteiro-Filho, E.R. Argañaraz, and 
V. Planelles. 2007. HIV-1 Vpr activates the G2 checkpoint through manipulation of 
the ubiquitin proteasome system. Virol J. 4:57. doi:10.1186/1743-422X-4-57. 

Gérard, F.C., R. Yang, B. Romani, A. Poisson, J.-P. Belzile, N. Rougeau, and E.A. 
Cohen. 2014. Defining the interactions and role of DCAF1/VPRBP in the DDB1-
Cullin4A E3 ubiquitin ligase complex engaged by HIV-1 Vpr to induce a G2 cell 
cycle arrest. PLoS ONE. 9:e89195. 

Goh, W.C., M.E. Rogel, C.M. Kinsey, S.F. Michael, P.N. Fultz, M.A. Nowak, B.H. 
Hahn, and M. Emerman. 1998. HIV-1 Vpr increases viral expression by 
manipulation of the cell cycle: a mechanism for selection of Vpr in vivo. Nat Med. 
4:65–71. 

He, Y.J., C.M. McCall, J. Hu, Y. Zeng, and Y. Xiong. 2006. DDB1 functions as a linker 
to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev. 
20:2949–2954. doi:10.1101/gad.1483206. 

Higa, L.A., M. Wu, T. Ye, R. Kobayashi, H. Sun, and H. Zhang. 2006. CUL4-DDB1 
ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone 
methylation. Nat Cell Biol. 8:1277–1283. doi:10.1038/ncb1490. 



 

 

71 

Hoch, J., S.M. Lang, M. Weeger, C. Stahl-Hennig, C. Coulibaly, U. Dittmer, G. 
Hunsmann, D. Fuchs, J. Müller, and S. Sopper. 1995. Vpr deletion mutant of simian 
immunodeficiency virus induces AIDS in rhesus monkeys. J Virol. 69:4807–4813. 

Hofmann, H., T.D. Norton, M.L. Schultz, S.B. Polsky, N. Sunseri, and N.R. Landau. 
2013. Inhibition of Cul4A neddylation causes a reversible block to SAMHD1-
mediated restriction of HIV-1. J Virol. doi:10.1128/JVI.02002-13. 

Horvath, C.M. 2004. Silencing STATs: lessons from paramyxovirus interferon evasion. 
Cytokine Growth Factor Rev. 15:117–127. doi:10.1016/j.cytogfr.2004.02.003. 

Hrecka, K., C. Hao, M. Gierszewska, S.K. Swanson, M. Kesik-Brodacka, S. Srivastava, 
L. Florens, M.P. Washburn, and J. Skowronski. 2011. Vpx relieves inhibition of 
HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature. 
474:658–661. doi:10.1038/nature10195. 

Hrecka, K., M. Gierszewska, S. Srivastava, L. Kozaczkiewicz, S.K. Swanson, L. Florens, 
M.P. Washburn, and J. Skowronski. 2007. Lentiviral Vpr usurps Cul4-
DDB1[VprBP] E3 ubiquitin ligase to modulate cell cycle. Proc Natl Acad Sci USA. 
104:11778–11783. doi:10.1073/pnas.0702102104. 

Jin, J., E.E. Arias, J. Chen, J.W. Harper, and J.C. Walter. 2006. A family of diverse Cul4-
Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of 
the replication factor Cdt1. Mol Cell. 23:709–721. doi:10.1016/j.molcel.2006.08.010. 

Laguette, N., B. Sobhian, N. Casartelli, M. Ringeard, C. Chable-Bessia, E. Ségéral, A. 
Yatim, S. Emiliani, O. Schwartz, and M. Benkirane. 2011. SAMHD1 is the dendritic- 
and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature. 
474:654–657. doi:10.1038/nature10117. 

Laguette, N., C. Brégnard, P. Hue, J. Basbous, A. Yatim, M. Larroque, F. Kirchhoff, A. 
Constantinou, B. Sobhian, and M. Benkirane. 2014. Premature activation of the 
SLX4 complex by Vpr promotes G2/M arrest and escape from innate immune 
sensing. Cell. 1–23. doi:10.1016/j.cell.2013.12.011. 

Laguette, N., N. Rahm, B. Sobhian, C. Chable-Bessia, J. Munch, J. Snoeck, D. Sauter, 
W.M. Switzer, W. Heneine, F. Kirchhoff, F. Delsuc, A. Telenti, and M. Benkirane. 
2012. Evolutionary and functional analyses of the interaction between the myeloid 
restriction factor SAMHD1 and the lentiviral Vpx protein. Cell Host Microbe. 
11:205–217. doi:10.1016/j.chom.2012.01.007. 

Lang, S.M., M. Weeger, C. Stahl-Hennig, C. Coulibaly, G. Hunsmann, J. Müller, H. 
Müller-Hermelink, D. Fuchs, H. Wachter, and M.M. Daniel. 1993. Importance of vpr 
for infection of rhesus monkeys with simian immunodeficiency virus. J Virol. 
67:902–912. 

Larkin, M.A., G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, 
F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson, and D.G. 



 

 

72 

Higgins. 2007. Clustal W and Clustal X version 2.0. Bioinformatics. 23:2947–2948. 
doi:10.1093/bioinformatics/btm404. 

Le Rouzic, E., N. Belaïdouni, E. Estrabaud, M. Morel, J.-C. Rain, C. Transy, and F. 
Margottin-Goguet. 2007. HIV1 Vpr arrests the cell cycle by recruiting 
DCAF1/VprBP, a receptor of the Cul4-DDB1 ubiquitin ligase. Cell Cycle. 6:182–
188. 

Li, T., E.I. Robert, P.C. van Breugel, M. Strubin, and N. Zheng. 2009. A promiscuous 
alpha-helical motif anchors viral hijackers and substrate receptors to the CUL4-
DDB1 ubiquitin ligase machinery. Nat Struct Mol Biol. doi:10.1038/nsmb.1719. 

Li, W., L. You, J. Cooper, G. Schiavon, A. Pepe-Caprio, L. Zhou, R. Ishii, M. 
Giovannini, C.O. Hanemann, S.B. Long, H. Erdjument-Bromage, P. Zhou, P. 
Tempst, and F.G. Giancotti. 2010. Merlin/NF2 suppresses tumorigenesis by 
inhibiting the E3 ubiquitin ligase CRL4(DCAF1) in the nucleus. Cell. 140:477–490. 
doi:10.1016/j.cell.2010.01.029. 

Malim, M.H., and M. Emerman. 2008. HIV-1 accessory proteins--ensuring viral survival 
in a hostile environment. Cell Host Microbe. 3:388–398. 
doi:10.1016/j.chom.2008.04.008. 

Margottin, F., S.P. Bour, H. Durand, L. Selig, S. Benichou, V. Richard, D. Thomas, K. 
Strebel, and R. Benarous. 1998. A novel human WD protein, h-beta TrCp, that 
interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an 
F-box motif. Mol Cell. 1:565–574. 

Mehle, A., B. Strack, P. Ancuta, C. Zhang, M. McPike, and D. Gabuzda. 2004. Vif 
overcomes the innate antiviral activity of APOBEC3G by promoting its degradation 
in the ubiquitin-proteasome pathway. J Biol Chem. 279:7792–7798. 
doi:10.1074/jbc.M313093200. 

Morellet, N., B.P. Roques, and S. Bouaziz. 2009. Structure-function relationship of Vpr: 
biological implications. Curr HIV Res. 7:184–210. 

Müller, B., U. Tessmer, U. Schubert, and H.G. Kräusslich. 2000. Human 
immunodeficiency virus type 1 Vpr protein is incorporated into the virion in 
significantly smaller amounts than gag and is phosphorylated in infected cells. J 
Virol. 74:9727–9731. 

Nalepa, G., M. Rolfe, and J.W. Harper. 2006. Drug discovery in the ubiquitin-proteasome 
system. Nat Rev Drug Discov. 5:596–613. doi:10.1038/nrd2056. 

Nekorchuk, M.D., H.J. Sharifi, A.K.M. Furuya, R. Jellinger, and C.M.C. de Noronha. 
2013. HIV relies on neddylation for ubiquitin ligase-mediated functions. 
Retrovirology. 10:138. doi:10.1186/1742-4690-10-138. 

Patel, A., V. Dharmarajan, and M.S. Cosgrove. 2008. Structure of WDR5 bound to mixed 



 

 

73 

lineage leukemia protein-1 peptide. J Biol Chem. 283:32158–32161. 
doi:10.1074/jbc.C800164200. 

Pieper, U., B.M. Webb, G.Q. Dong, D. Schneidman-Duhovny, H. Fan, S.J. Kim, N. 
Khuri, Y.G. Spill, P. Weinkam, M. Hammel, J.A. Tainer, M. Nilges, and A. Sali. 
2014. ModBase, a database of annotated comparative protein structure models and 
associated resources. Nucleic Acids Res. 42:D336–46. doi:10.1093/nar/gkt1144. 

Roshal, M., B. Kim, Y. Zhu, P. Nghiem, and V. Planelles. 2003. Activation of the ATR-
mediated DNA damage response by the HIV-1 viral protein R. J Biol Chem. 
278:25879–25886. doi:10.1074/jbc.M303948200. 

Schröfelbauer, B., Y. Hakata, and N.R. Landau. 2007. HIV-1 Vpr function is mediated by 
interaction with the damage-specific DNA-binding protein DDB1. Proc Natl Acad 
Sci USA. 104:4130–4135. doi:10.1073/pnas.0610167104. 

Schuetz, A., A. Allali-Hassani, F. Martín, P. Loppnau, M. Vedadi, A. Bochkarev, A.N. 
Plotnikov, C.H. Arrowsmith, and J. Min. 2006. Structural basis for molecular 
recognition and presentation of histone H3 by WDR5. EMBO J. 25:4245–4252. 
doi:10.1038/sj.emboj.7601316. 

Schwefel, D., H.C.T. Groom, V.C. Boucherit, E. Christodoulou, P.A. Walker, J.P. Stoye, 
K.N. Bishop, and I.A. Taylor. 2014. Structural basis of lentiviral subversion of a 
cellular protein degradation pathway. Nature. 505:234–238. 
doi:10.1038/nature12815. 

Sheehy, A.M., N.C. Gaddis, and M.H. Malim. 2003. The antiretroviral enzyme 
APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med. 
9:1404–1407. doi:10.1038/nm945. 

Song, J.-J., and R.E. Kingston. 2008. WDR5 interacts with mixed lineage leukemia 
(MLL) protein via the histone H3-binding pocket. J Biol Chem. 283:35258–35264. 
doi:10.1074/jbc.M806900200. 

Srivastava, S., S.K. Swanson, N. Manel, L. Florens, M.P. Washburn, and J. Skowronski. 
2008. Lentiviral Vpx accessory factor targets VprBP/DCAF1 substrate adaptor for 
cullin 4 E3 ubiquitin ligase to enable macrophage infection. PLoS Pathog. 
4:e1000059. doi:10.1371/journal.ppat.1000059. 

Stanley, D.J., K. Bartholomeeusen, D.C. Crosby, D.Y. Kim, E. Kwon, L. Yen, N.C. 
Cartozo, M. Li, S. Jäger, J. Mason-Herr, F. Hayashi, S. Yokoyama, N.J. Krogan, R.S. 
Harris, B.M. Peterlin, and J.D. Gross. 2012. Inhibition of a NEDD8 Cascade Restores 
Restriction of HIV by APOBEC3G. PLoS Pathog. 8:e1003085. 
doi:10.1371/journal.ppat.1003085. 

Stirnimann, C.U., E. Petsalaki, R.B. Russell, and C.W. Müller. 2010. WD40 proteins 
propel cellular networks. Trends Biochem Sci. 35:565–574. 
doi:10.1016/j.tibs.2010.04.003. 



 

 

74 

Trievel, R.C., and A. Shilatifard. 2009. WDR5, a complexed protein. Nat Struct Mol Biol. 
16:678–680. doi:10.1038/nsmb0709-678. 

Verrier, J.D., I. Madorsky, W.E. Coggin, M. Geesey, M. Hochman, E. Walling, D. 
Daroszewski, K.S. Eccles, R. Ludlow, and S.L. Semple-Rowland. 2011. Bicistronic 
lentiviruses containing a viral 2A cleavage sequence reliably co-express two proteins 
and restore vision to an animal model of LCA1. PLoS ONE. 6:e20553. 
doi:10.1371/journal.pone.0020553. 

Wei, W., H. Guo, X. Liu, H. Zhang, L. Qian, K. Luo, R.B. Markham, and X.-F. Yu. 
2014. A first-in-class NAE inhibitor, MLN4924, blocks lentiviral infection in 
myeloid cells by disrupting neddylation-dependent Vpx-mediated SAMHD1 
degradation. J Virol. 88:745–751. doi:10.1128/JVI.02568-13. 

Wen, X., K.M. Duus, T.D. Friedrich, and C.M.C. de Noronha. 2007. The HIV1 protein 
Vpr acts to promote G2 cell cycle arrest by engaging a DDB1 and Cullin4A-
containing ubiquitin ligase complex using VprBP/DCAF1 as an adaptor. J Biol 
Chem. 282:27046–27057. doi:10.1074/jbc.M703955200. 

Wen, X., L. Casey Klockow, M. Nekorchuk, H.J. Sharifi, and C.M.C. de Noronha. 2012. 
The HIV1 protein Vpr acts to enhance constitutive DCAF1-dependent UNG2 
turnover. PLoS ONE. 7:e30939. doi:10.1371/journal.pone.0030939. 

Yu, X., Y. Yu, B. Liu, K. Luo, W. Kong, P. Mao, and X.-F. Yu. 2003. Induction of 
APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. 
Science. 302:1056–1060. doi:10.1126/science.1089591. 

Yu, X.F., Q.C. Yu, M. Essex, and T.H. Lee. 1991. The vpx gene of simian 
immunodeficiency virus facilitates efficient viral replication in fresh lymphocytes 
and macrophage. J Virol. 65:5088–5091. 

Zhang, Y., S. Feng, F. Chen, H. Chen, J. Wang, C. McCall, Y. Xiong, and X.W. Deng. 
2008. Arabidopsis DDB1-CUL4 ASSOCIATED FACTOR1 forms a nuclear E3 
ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant 
developmental processes. Plant Cell. 20:1437–1455. doi:10.1105/tpc.108.058891. 

Zhao, L.J., S. Mukherjee, and O. Narayan. 1994. Biochemical mechanism of HIV-I Vpr 
function. Specific interaction with a cellular protein. J Biol Chem. 269:15577–15582. 

Zhu, Y., H.A. Gelbard, M. Roshal, S. Pursell, B.D. Jamieson, and V. Planelles. 2001. 
Comparison of cell cycle arrest, transactivation, and apoptosis induced by the simian 
immunodeficiency virus SIVagm and human immunodeficiency virus type 1 vpr 
genes. J Virol. 75:3791–3801. doi:10.1128/JVI.75.8.3791-3801.2001. 

Zimmerman, E.S., J. Chen, J.L. Andersen, O. Ardon, J.L. Dehart, J. Blackett, S.K. 
Choudhary, D. Camerini, P. Nghiem, and V. Planelles. 2004. Human 
immunodeficiency virus type 1 Vpr-mediated G2 arrest requires Rad17 and Hus1 and  



 

 

75 

induces nuclear BRCA1 and gamma-H2AX focus formation. Molecular and Cellular 
Biology. 24:9286–9294. doi:10.1128/MCB.24.21.9286-9294.2004. 



 

 
 
 
 
 
 
 CHAPTER 3  

 

ANALYSIS OF THE STRUCTURAL DETERMINANTS OF G2 ARREST AND 

SAMHD1 DEGRADATION BY THE SIV(AGM) VPR 

 

My co-author on this work was Ana Beatriz DePaula-Silva 

 

Abstract 

The HIV-1 accessory protein Vpr is known to induce G2 arrest by manipulating 

the Cul4-DDB1-DCAF1 ubiquitin ligase, inducing the ubiquitination of Mus81. 

Induction of cell cycle arrest by Vpr is conserved among primate lentiviruses. In addition 

to Vpr, a subset of primate lentiviruses encode the Vpr paralog Vpx, which functions to 

enhance myeloid cell infection by inducing the degradation of the restriction factor 

SAMHD1. Interestingly, some Vpr homologs, namely SIVagm Vpr, are bifunctional, 

able to induce G2 arrest and the degradation of SAMHD1. To better understand the 

structure-function relationship between HIV-1 Vpr and SIVagm Vpr, we generated 

several HIV-1 Vpr truncations and chimeras between these two proteins. We tested the 

ability of these chimeric proteins to induce G2 arrest in human cells and degrade 

SAMHD1. From our analyses, we conclude that substitution of the C-terminal 

unstructured region of SIVagm Vpr by the same region of HIV-1 Vpr confers to this 
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chimera the de novo ability to arrest human cells in G2. In addition, while the N-terminal 

domain of SIV Vpx was shown to be important for degradation of SAMHD1, we show 

additional determinants are necessary for this activity. Finally, the ubiquitination target 

for HIV-1 Vpr was recently reported to be Mus81. While we confirm that HIV-1 Vpr 

induces degradation of Mus81 in a proteasome- and Cullin-dependent manner, our results 

indicate that this function is independent of the ability of Vpr to induce G2 arrest. 

 

Introduction 

 The primate lentiviral protein Vpr is conserved among all primate lentiviruses 

(HIV/SIV). Studies of other mammalian lentiviruses have identified Vpr-like genes in 

several evolutionarily distant lentiviruses pointing to an ancient origin for Vpr function 

(R\reviewed in (Gifford, 2012)). Vpr expression of has been shown to induce a pleotropic 

number of effects including increased infection of nondividing cells, involvement in pre-

integration complex nuclear import (Heinzinger et al., 1994), and the manipulation of the 

Cul4-DCAF1 ubiquitin ligase facilitating degradation of UNG2 (Schröfelbauer et al., 

2005) (reviewed in (Andersen et al., 2008)) and induction of G2 cell cycle arrest (Dehart 

et al., 2007; Le Rouzic et al., 2007; Wen et al., 2007; Hrecka et al., 2007; Belzile et al., 

2007; Schröfelbauer et al., 2007) through the activation of the endonuclease SLX4 

complex (Laguette et al., 2014). 

 In addition to Vpr, a subset of primate lentiviruses encode the highly related 

protein, Vpx (Gifford, 2012). Evolutionary studies indicate it arose following a gene 

duplication event in the most recent common ancestor of the SIVs infecting the 

Cercopithecinae tribe Popionini (SIVmnd/mac/smm) (Lim et al., 2011)(reviewed in 
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(Planelles, 2011)). Although Vpr and Vpx share a high degree of structural homology 

(Tristem et al., 1990) they exert functionally distinct roles in viral replication, 

suppression of interferon response (Laguette et al., 2014), and infection of myeloid cells 

by inducing the degradation of SAMHD1 (Laguette et al., 2011; Hrecka et al., 2011) 

(Reviewed in (Laguette and Benkirane, 2012)), respectively. Interestingly, the SIVs 

which infect the five genetically distinct African Green Monkey (AGM) species, 

collectively referred to as SIVagm, encode a single Vpr gene capable of inducing both 

G2 arrest and SAMHD1 degradation (reviewed in (Planelles, 2011)).  

In addition to their distinct functionality, Vpr and Vpx have undergone 

evolutionary arms races (reviewed in (Duggal and Emerman, 2012)), resulting in a 

species-specific ability to antagonize their respective restriction factors. While HIV-1 

Vpr is able to induce cell cycle arrest in cells from several primate species, SIVagm Vpr 

activities (both the induction of cell cycle arrest and the degradation of SAMHD1) are 

known to be restricted to antagonism of the AGM restriction factor homologs (Planelles 

et al., 1996; Lim et al., 2011). 

In this study, we aim to understand the molecular determinants of G2 arrest and 

SAMHD1 degradation, respectively. To this end, we generated a number of HIV-1 Vpr- 

SIVmac Vpx and HIV-1 Vpr – SIVagm Vpr chimeras. While early studies have 

demonstrated the necessity of the unstructured N and C-terminus for SAMHD1 

degradation (Gramberg et al., 2010) and G2 arrest induction (Le Rouzic et al., 2007; 

Morellet et al., 2009), respectively, it remains unclear if additional determinants are 

necessary to mediate these functions.  

Here we demonstrate that simple transposition of Vpr or Vpx unstructured termini 
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onto the reciprocal paralog is not sufficient to confer neofunctionality to the chimeric 

proteins, indicating Vpr and Vpx function are not defined by simple linear determinants. 

In further support of this hypothesis, we observe that the transposition of the SIVagm Vpr 

C-terminus onto HIV-1 Vpr retained the ability to induce G2 arrest in human cells. 

Finally, we explore the link between Vpr G2 arrest and the degradation of the newly 

identified Vpr target Mus81, a subcomponent of the SLX4 complex, recently described as 

being ubiquitinated in a Vpr-dependent manner (Laguette et al., 2014). In contrast, we 

observe Mus81 to be degraded by Vpr in a G2 arrest and DCAF1-independent manner. 

 

Materials and Methods 

Cell culture 

Exponentially growing 293FT and HeLa cells were cultured in Dulbecco minimal 

essential medium (DMEM; Invitrogen, Carlsbad, CA) supplemented with 10% fetal 

bovine serum (FBS) and 1% L-glutamine (Invitrogen). 293FT cells were transfected 

using the Calcium Phosphate method, as previously described (Zhu et al., 2001). 36 hr 

posttransfection, cells were harvested, washed 2x with Phosphate Buffered Saline (PBS), 

and lysed as described below. HeLa cells were transfected with the FuGene HD 

(Promega, Madison, WI) per manufacturer’s protocol. Cells were treated, when indicated, 

with 0.5 µM Epoxomicin (SIGMA-ALDRICH) or 100 nM MLN4924 (MedChem 

Express, Princeton, NJ) for 18 hr. 
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Plasmids 

pFIN-EF1-GFP-2A-mCherry-WPRE vector was kindly provided by Susan L. 

Semple-Rowland. MluI and EcoRV restriction sites were added to this vector by site-

directed mutagenesis using the QuikChange Lightning (Agilent Technologies). HIV-1 

Vpr, SIVagm Vpr, and SIVmac Vpx were PCR amplified with MluI and EcoRV 

restriction sites added to the primer, and cloned into pFIN-EF1-GFP-2A-mCherry-WPRE 

in place of mCherry. Chimeras were generated by PCR and and cloned into pFIN-EF1-

GFP-2A-mCherry-WPRE using MluI and EcoRV restriction sites. cDNA for Mus81 was 

purchased from DNASU (Tempe, AZ). Mus81 was PCR amplified and N-terminus 

tagged with V5 epitope. V5-Mus81 was cloned into pFIN-EF1-GFP-2A-mCherry-WPRE 

in place of GFP using NheI and BspeI restriction sites. A stop codon was added before 

the 2A generating into pFIN-EF1-V5-Mus81. HA-AGM-SAMHD1 was kindly provided 

by M. Emerman. 

 

Immunoprecipitation and Western blots 

For immunoprecipitation, cells were gently detached by incubation in PBS and 

pelleted at 13,000 rpm for 5 min in a tabletop microcentrifuge. Cells were lysed with Flag 

IP buffer (50 mM Tris HCI, pH 7.4, 150 mM NaCl, 1 mM EDTA, and 1% TRITON X-

100) in the presence of protease inhibitors (Complete EDTA free tablets; Roche, 

Indianapolis, IN). Lysate protein concentrations were determined by Pierce™ BCA 

(Thermo Scientific, Rockford, IL) and brought to equal protein concentration. Lysates 

were subject to immunoprecipitation using Anti-FLAG® M2 Magnetic Beads (SIGMA-

ALDRICH, St. Louis, MO) in accordance to manufacturer recommendations. Briefly, 
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lysates were incubated with beads for 2 hr (at RT) to overnight (at 4ºC). Beads were 

washed 5x with lysis buffer and proteins eluted with 3x-FLAG® Peptide, 100 µg/ml for 1 

hr at RT. Cells for degradations assays were lysed in SET Buffer (1% SDS, 50mM Tris 

HCL, pH 7.4, 1mM EDTA); lysates were thoroughly denatured by boiling for 5 min. 

Lysates and immunoprecipitation samples were resolved by SDS-PAGE on 4-10% 

Criteron™ TGX™ gels (Bio Rad, Hercules, CA) per manufacturer’s recommendations 

and transferred to PVDF membrane (EMD Millipore, Billerica, MA). The following 

antibodies were used: FLAG® M2 and β-actin (Sigma Aldrich), HA.11 and 9E11(c-

Myc)(Covance), DDB1 (Abcam) and V5 (Life Technologies, Carlsbad, CA) 

 

Lentiviral vectors 

pFIN GFP-2A-HIV-1 Vpr, pFIN GFP-2A-SIVmac Vpx, pFIN GFP-2A-SIVagm 

Vpr, and pFIN GFP viruses were produced as previously described (Zimmerman et al., 

2004; Roshal et al., 2003). Briefly, 293FT cells were transfected as described earlier with 

transfer vector, pCMV ∆8.2∆Vpr packaging plasmid, and pCMV-VSVG envelope 

plasmid at a ratio of 2.5:2.5:1. Supernatants were collected every 24 hr, until the cell 

monolayer died. Cell debris was cleared by centrifugation at ~825x-g for 5 min. Pooled 

supernatant was concentrated by ultracentrifugation at 25,000x-g for 2 hr. Concentrated 

virus was resuspended in DMEM with 10% FBS and 1% L-Glutamine and stored at -

80ºC. HeLa cells were transduced in the presence of 10µg/ml polybrene overnight. 

Viruses were tittered by GFP expression.  
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FACS and cell cycle analysis 

HeLa cells were detached by trypsinization and washed in fluorescence-activated 

cell sorting (FACS) buffer (2% FBS and 0.02% Sodium Azide in PBS). For analysis of 

GFP+, cells were immediately subject to flow cytometry. Cells for cell cycle analysis 

were pelleted at ~825x-g for 5 min and fixed with 70% ethanol at -20ºC overnight. Fixed 

cells were rehydrated by two washes in PBS. DNA content was determined by staining in 

50µg/ml propidium iodide in 0.1% Triton X-100 PBS with RNase A for 20 min. Cells 

were analyzed on a BD FACS Canto II flow cytometer using the FACSDiva software 

(Becton Dickinson, Mountain View, CA) and data analyzed using FlowJo (Tree Star Inc, 

Ashland, OR). 

 

Results 

HIV-1 Vpr unstructured C-terminus is necessary for the induction of G2 arrest 

It was previously proposed that the C-terminus unstructured region of HIV-1 Vpr 

is required to recruit the G2 arrest targeted protein (Di Marzio et al., 1995)(Reviewed in 

(Morellet et al., 2009)). Furthermore, the point mutant Vpr R80A, although able to 

interact with DCAF1, is unable to induce G2 arrest, resulting in a dominant negative 

phenotype by competing for DCAF1 binding (Dehart et al., 2007; Le Rouzic et al., 2007). 

To directly test for the presence of an essential G2 arrest determinant within the C-

terminus unstructured region of HIV-1 Vpr, we made two truncations in HIV-1 Vpr 

(Vpr1-80 and Vpr1-84) and tested for their ability to induce G2 arrest in human cells. 

HeLa cells were transfected with empty vector, HIV-1 Vpr, HIV-1 Vpr R80A, HIV-1 

Vpr (1-80), or HIV-1 Vpr (1-84). 48 hr posttransfection cell cycle was analyzed by flow 
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cytometry. As shown in Figure 3.1, HIV-1 Vpr, but not HIV-1 Vpr R80A, HIV-1 Vpr (1-

80), nor HIV-1 Vpr (1-84), was able to arrest the cell cycle in G2. 

 

Unstructured termini are not sufficient to facilitate neofunctionality  

of monofuctional Vpr or Vpx 

 A NMR structure of Vpr revealed that it is comprised of a tight three α-helical 

bundle flanked by unstructured N- and C-termini (Morellet et al., 2003). Alignment of 

Vpr and Vpx show high homology between the two proteins within these α-helices 

(Figure 3.2, grey boxes), while the termini are divergent. These observations have led to 

the hypothesis that substrate specificity of Vpr and Vpx is defined by these unstructured 

termini. In agreement with this hypothesis, previous studies indicate that mutations 

disrupt the Vpr-induced G2 arrest cluster in the C-terminal unstructured region of Vpr 

(Morellet et al., 2009). The N-terminus of Vpx has been shown to be necessary for 

recruitment of SAMHD1 for degradation (Gramberg et al., 2010). Interestingly, 

alignment of the bifunctional SIVagm Vpr reveals it to have high homology with Vpx in 

the N-terminus, while its C-terminus (with the exception of a poly-proline stretch shared 

with Vpx) is homologous to that of Vpr. These observations led us to hypothesize that 

transposition of these domains would result in the generation of chimeric proteins capable 

of mediating both SAMHD1 degradation and inducing G2 arrest. In order to test this 

hypothesis, we generated a series of HIV-1 Vpr/SIVagm Vpx chimeras in which the 

unstructured N- and C-termini were transposed between the paralogous proteins (Figure 

3.3). 
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In order to determine if the monofunctional proteins had acquired an additional 

function confeered by grafting the corresponding N or C terminal domains from a 

heterologous protein, resulting in a bifunctional protein capable of both inducing G2 cell 

cycle arrest and SAMHD1 degradation (reminiscent of the bifunctionality observed in 

SIVagm Vpr), HeLa cells were transduced with lentiviruses expressing full length HIV-1 

Vpr, SIVmac Vpx, or chimeric proteins. Transduced cells were analyzed for G2 arrest by 

flow cytometry (Figure 3.4A). As expected, expression of HIV-1 Vpr induced a robust 

accumulation of cells in the G2 phase, while SIVmac Vpx had no effect on the cell cycle 

profile compared to uninfected cells. Transposition of SIVmac Vpx N-terminus onto 

HIV-1 Vpr (X1-22 R16-96) had only modest, if any, effect on the induction of G2 arrest, 

indicating that the Vpr G2 arrest determinants are either not present within the N-terminal 

region, or these residues are conserved within the N-terminus of SIVmac Vpx. 

Transposition of the C-terminus of HIV-1 Vpr onto SIVmac Vpx (X1-88R78-96) did not 

confer G2 arrest functionality to this chimera. These observations indicate that Vpr G2 

arrest determinants are not linear and localized only within the unstructured C-terminal 

region. This is in agreement with previous observations in which mutations to the linker 

region between the second and third α-helix were able to abrogate Vpr-induced G2 arrest 

(reviewed in (Morellet et al., 2009)). Finally, lysates of transduced cells were analyzed 

for the ability of WT or chimeric proteins to induce the degradation of SAMHD1. 

Transposition of the putative functional determinant domain (SIVmac Vpx N-terminus) 

failed to confer SAMHD1 degradation to X1-22 R16-96. In contrast, both WT SIVmac Vpx 

and X1-88R78-96 were able to induce SAMHD1 degradation (Figure 3.4B). 
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Understanding the molecular determinants of species-specific G2 arrest 

 To study the structure-function relationships in HIV-1 Vpr and SIVagm Vpr, a set 

of 6 chimeras were constructed as shown in Figure 3.5. The exchange points for these 

chimeras were designed based on the published NMR structure of HIV-1 Vpr (Morellet et 

al., 2009) and were intended to maintain the predicted secondary structure of the parental 

proteins. In order to address the contribution of the poly-proline domain (PPD), which is 

present at the C-terminus of SIVagm Vpr but not HIV-1 Vpr, we generated a SIVagm 

Vpr truncation without the PRD (ΔP). 

To test whether the chimeras maintained the capacity to fold correctly, we 

verified their ability to interact with the well-established cellular partner, DCAF1. 293FT 

cells were transfected with pCDNA (empty vector control), HIV-1 Vpr, SIVagm Vpr, 

chimeras, or HIV-1 Vpr Q65R that is unable to interact with DCAF1 (Dehart et al., 2007; 

Le Rouzic et al., 2007). 48 hr posttransfection cells were harvested, lysed, and 

immunoprecipitated (IP) with anti-HA antibody. As expected, HIV-1 Vpr and SIVagm 

Vpr were able to Co-IP with DCAF1, while Vpr Q65R was not able to interact with 

DCAF1, as previously reported. All chimeras were able to interact with DCAF1 (data not 

shown), indicating they were capable of properly folding. 

 

The unstructured C-terminal region of HIV-1 Vpr is sufficient to confer  

upon SIVagm Vpr the ability to induce G2 arrest in human cells 

 While HIV-1 Vpr is able to induce cell cycle arrest in human and nonhuman 

primate cells, SIVagm Vpr was observed to only arrest AGM cells (Planelles et al., 

1996). We hypothesized that grafting the C-terminus unstructured region of HIV-1 Vpr 
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onto SIVagm Vpr would confer upon SIVagm Vpr the de novo ability to induce G2 arrest 

in human cells. HeLa cells were transduced with HA-HIV-1 Vpr, HA-SIVagm Vpr, or 

chimera expressing lentiviral vectors. In agreement with this prediction, transposition of 

the C-terminus unstructured region of HIV-1 Vpr onto SIVagm Vpr (chimera 1) 

conferred the ability to induce G2 arrest in human cells (Figure 3.6). Surprisingly, 

transposition of the C-terminus unstructured region of SIVagm onto Vpr HIV-1 Vpr 

(chimera 2) resulted in a chimera that retained the ability to induce cell cycle arrest in 

human cells, although to a lesser degree when compared with HIV-1 Vpr. These results 

indicate that recruitment of the G2 arrest substrate is dependent on residues outside the 

unstructured C-terminus. This is in agreement with previous results which identified 

several residues within the linker region between the second and third α-helices 

(reviewed in (Morellet et al., 2009)). Alignment of HIV-1 Vpr and SIVagm Vpr show a 

high degree of homology between these proteins within this region, as well as within the 

3 α-helices, indicating additional determinants may be present elsewhere within HIV-1 

Vpr and SIVagm Vpr. Surprisingly, transposition of the entire third α-helix alone 

(chimera 6) or with C-terminus of HIV-1 Vpr onto SIVagm Vpr (chimera 5) abrogated 

the ability of this chimera to induce G2 arrest. Whether this is due to an inability to 

recruit G2 arrest substrate or improper folding will require further analysis. 

 

Degradation of agmSAMHD1 by SIVagm Vpr requires the N and  

C-terminal domains of SIVagm Vpr 

In order to determine the domains in SIVagm Vpr that are important to target 

agmSAMHD1 for degradation, we tested whether the chimeras between SIVagm Vpr and 
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HIV-1 Vpr could degrade agmSAMHD1. 293FT cells were co-transfected with HA-

agmSAMHD1 and vectors encoding HA-HIV-1 Vpr, HA-SIVagm Vpr, or chimeras. 36 

hr posttransfection cells were harvested and the expression of exogenous agmSAMHD1 

was analyzed by Western blot. In agreement with previous reports (Lim et al., 2011), 

agmSAMHD1 was degraded by SIVagm Vpr (Figure 3.7, lanes 5) but not by HIV-1 Vpr 

(Figure 3.7 lane 4). The N-terminal domain of SIVmac Vpx was previously suggested to 

be required to overcome SAMHD1 restriction in myeloid cells (Gramberg et al., 2010). 

Therefore, we expected that transfer of the HIV-1 Vpr C-terminal unstructured region 

onto SIVagm Vpr would not affect SAMHD1 degradation. Surprisingly, this chimera was 

unable to facilitate the degradation of agmSAMHD1 (Figure 3.7, lane 5). This result 

indicates that the SIVagm Vpr C-terminus is necessary for the degradation of SAMHD1; 

however, transposition of this domain onto HIV-1 Vpr (chimera 2) did not confer the 

ability to degrade SAMHD1. This suggests that in the context of HIV-1 Vpr, SIVagm 

Vpr C-terminus is not sufficient to induce SAMHD1 degradation (Figure 3.7, lane 6). In 

agreement with our earlier observations of HIV-1 Vpr/SIVmac Vpx chimeras, the N-

terminus of SIVagm Vpr was necessary, but not sufficient for the degradation of 

agmSAMHD1 (Figure 3.7, Lane 4 vs 7 and 8). 

 

HIV-1 Vpr-induced degradation of Mus81 is independent of the 

induction of G2 arrest 

The SLX4 complex was recently identified as the G2 arrest target of HIV-1 Vpr 

(Laguette et al., 2014). In the presence of Vpr, Mus81 is ubiquitinated, contributing to the 

activation of this complex, leading to G2/M arrest. Although Laguette et al. observed a 
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Vpr-dependent ubiquitination of Mus81, they propose a model in which this promotes the 

activation of the SLX4 complex (Laguette et al., 2014)(reviewed in (Cohen, 2014)). This 

is in contrast to earlier models that proposed Vpr-mediated G2 arrest was induced 

through the degradation of a cellular factor (Dehart et al., 2007; Le Rouzic et al., 2007; 

Schröfelbauer et al., 2007; Hrecka et al., 2007; Belzile et al., 2007; Wen et al., 

2007)(reviewed in (Andersen et al., 2006). Based on this difference, we wished to further 

explore the effect of Vpr on Mus81. In agreement with Laguette and colleagues, we 

observe a Vpr-dependent destabilization of Mus 81 (Figure 3.8). 

We then asked whether degradation of Mus81 correlated with the ability of Vpr 

induce G2 arrest. 293FT cells were co-transfected with V5-Mus81 and HIV-1 Vpr, HIV-

1 Vpr R80A, or HIV-1 Vpr Q65R. 48 hr posttransfection cells were lysed and levels of 

Mus81 were analyzed by Western blot. As shown in Figure 3.9, HIV-1 Vpr induced 

degradation of Mus81 (Figure 3.9 compare lanes 3 and 4). Surprisingly, HIV-1 Vpr 

R80A (Figure 3.9 compare lanes 3 and 11) and HIV-1 Vpr Q65R (compare lane 3 and 

15), two mutants that fail to induce G2 arrest, also degrade Mus81. This observation 

indicates that the destabilization of Mus81 is independent of the ability of Vpr to induce 

G2 arrest or manipulate the Cul4-DCAF1 ubiquitin ligase. Interestingly, inhibition of the 

proteasome with epoxomicin, or the more specific inhibition of Cullin-based ubiquitin 

ligases with MLN4924 (Soucy et al., 2009), resulted in the stabilization of Mus81 in the 

presence of HIV-1 Vpr (Figure 3.9, lane 4 vs lanes 7 and 8). These observations 

demonstrate that the destabilization of Mus81 by Vpr is an ubiquitination and Cullin 

family ubiquitin ligase-dependent activity. 

Recently, expression of Vpr has been shown to result in large changes to the 



 

 

89 

cellular ubiquitin ligase pathway (Arora et al., 2014). In order to determine if Mus81 

destabilization was merely due to modulation of the UPS by Vpr, we examined the effect 

of the highly related SIVmac Vpx and SIVagm Vpr on Mus81 stability. To this end, cells 

were transfected with V5-Mus81 and SIVmac Vpx or SIVagm Vpr. In contrast to HIV-1 

Vpr (Figure 3.10, lane 3 vs 4), neither SIVmac Vpx or SIVagm Vpr induced degradation 

of V5-Mus81 (Figure 3.10, lanes 6 and 12, respectively). Taken together, these results 

point to a model whereby Vpr specifically induces the degradation of Mus81 in a Cullin 

ubiquitin ligase-dependent, G2 arrest-independent manner. 

 

Discussion 

 Vpr is a highly conserved accessory protein encoded by all primate lentiviruses 

and found in all primary isolates of HIV-1 (reviewed in (Andersen et al., 2006)). 

Although the exact function of Vpr remains unclear, expression of Vpr is known to 

induce cell cycle arrest at the G2 phase, putatively through the activation of the SLX4 

complex, in order to inhibit induction of an interferon response to viral reverse tanscripts 

(Laguette et al., 2014). In addition to Vpr, some primate lentiviruses are known to encode 

the paralogous Vpx, involved in mediating infection of myeloid cells through the 

degradation of SAMHD1 (Laguette et al., 2011; Hrecka et al., 2011)(Reviewed in 

(Planelles, 2011)). Interestingly, the SIV species that infect AGM encode a Vpr that is 

able to induce G2 arrest and degradation SAMHD1, in a species-specific manner. This 

bifunctional Vpr, as well as evolutionary studies (Lim et al., 2011; Laguette et al., 2012), 

support a model whereby Vpr acquired SAMHD1 antagonism before the “birth” of the 

monofunctional Vpx. While the exact evolutionary event leading to the “birth” of Vpx 
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remains controversial, sustaining antagonism against two cellular proteins may have been 

too evolutionarily difficult (Planelles, 2012). In this study, we examine the structural 

determinants of G2 arrest and SAMHD1 degradation by Vpr and its homologs.  

 Previous studies have demonstrated the necessity of the unstructured N and C-

termini of Vpx and Vpr for their function, respectively (Le Rouzic et al., 2007; Ahn et al., 

2012). While we had hypothesized that transfer of these domains between HIV-1 Vpr and 

SIVmac Vpx would confer neofunctionality on the respective chimeric proteins, we 

observe that the molecular determinants of Vpr G2 arrest and Vpx SAMHD1 degradation 

involve residues outside of these regions. In agreement with this observation, a recently 

resolved crystal structure of DCAF1(WD40)-Vpx-SAMHD1(C-terminal domain) 

demonstrated that residues located within the linker between the second and third α-helix 

of Vpx are involved in the recruitment of SAMHD1 (Schwefel et al., 2014). 

 In order to gain a better understanding of the molecular determinants of G2 arrest 

and SAMHD1 degradation, we generated a second set of chimeras between HIV-1 Vpr 

and the more closely related SIVagm Vpr. In contrast to SIVmac Vpx, SAMHD1 

degradation by SIVagm Vpr was abrogated by transposition of either HIV-1 Vpr N or C-

terminus. This differential requirement of SIVagm Vpr C-terminus for SAMHD1 

degradation may be in part explained by the recently described toggling of the 

determinant on SAMHD1 for lentiviral antagonism (Fregoso et al., 2013). Even within 

the closely related AGM species, the residues on SAMHD1 and SIVagm Vpr that 

mediate their interaction are under strong evolutionary pressure (Spragg and Emerman, 

2013). 

In contrast to SAMHD1 degradation, the species-specific induction of G2 arrest 
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by SIVagm Vpr was more amenable to modulation. Indeed, while WT SIVagm Vpr is 

unable to induce cell cycle arrest in human cells (Planelles et al., 1996), transposition of 

the HIV-1 Vpr C-terminus onto SIVagm Vpr conferred the ability to induce G2 arrest in 

human cells. While the C-terminus of Vpr is known to be necessary for the induction of 

G2 arrest (this work and (Le Rouzic et al., 2007)), the SIVagm Vpr C-terminus is able to 

restore G2 arrest activity of these HIV-1 Vpr truncations. These observations support a 

hypothesis whereby Vpr-mediated G2 arrest is dependent on a nonlinear determinant 

within the protein. This observation indicates that the determinants leading to species-

specific induction of G2 arrest by Vpr are located outside of this region. To fully resolve 

the molecular mechanisms of Vpr activity will require further biochemical analysis.  

 Finally, we examine the connection of G2 arrest with the recently described Vpr 

ubiquitination target, Mus81 (Laguette et al., 2014). In contrast to what Laguette and 

colleagues report, we observe Mus81 degradation to be independent of Vpr induction of 

G2 arrest. Indeed, the G2 arrest defective Vpr mutant, R80A, is able to induce the 

degradation of Mus81. Additionally, this activity appears to be independent of Vpr 

manipulation of the Cul4-DCAF1 ubiquitin ligase as Vpr Q65R, which is unable to 

interact with DCAF1, also induces degradation of Mus81. Finally, we observed that the 

degradation of Mus81 by Vpr is dependent on a Cullin ubiquitin ligase, as the 

neddylation inhibitor MLN4924 inhibits Mus81 degradation by Vpr. Further study will 

be necessary to elucidate the exact mechanism by which Vpr exerts this function. We 

have previously observed Vpr to interact with Cul1 (unpublished results), whether Vpr 

modulates the activity of an additional ubiquitin ligase towards the destabilization of 

Mus81 will be an area of active interest.  
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Figure 3.1 HIV-1 Vpr C-terminal unstructured terminus is necessary  
for the induction of G2 arrest  
HeLa cells were transfected with empty control vector, Vpr or truncations as indicated. 
48hr posttransfection cells were harvested and cell cycle profiles were analyzed by 
FACS. 
 

Figure'3:'G2'arrest'determinant'is'found'in'the'C,terminus'unstructured'region'of'HIV,1Vpr''
'

B:'G2/M'arrest'induced'by'Vpr'but'not'by'Vpr'truncaOons'
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Figure 3.3 Schematic of HIV-1 Vpr/SIVmac Vpx chimeras 
Chimeric Vpr/Vpx proteins were generated through the transposition of Vpr C-terminus 
and Vpx N-terminus as indicated. Proteins are comprised of residues of Vpr or Vpx, 
respectively, as indicated. 
  

HIV-1 Vpr

SIVmac Vpx

HIV-1 Vpr
SIVmac Vpx

DNA

C
el

ls

G2/G1=0.26 G2/G1=7.40 G2/G1=0.28

G2/G1=2.00 G2/G1=0.28



 

 

95 

 
 
A. 

 

B. 

 
Figure 3.4 Cell cycle analysis of HIV-1 Vpr/SIVmac Vpx chimeras 
HeLa cells were transduced with lentiviral vectors expressing WT Vpr/Vpx or chimeras 
as indicated. Viruses were tittered by expression of the reporter protein GFP, percentages 
indicated in parenthesis above histograms. A) G2 arrest compared by ratio of G2/G1 as 
indicated. B) SAMHD1 degradation by HIV-1 Vpr, SIVmac Vpx, and chimeras was 
analyzed by Western blot. 
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Figure 3.5 Schematic of HIV-1 Vpr/SIVagm Vpr chimeras 
Chimeric HIV-1 Vpr/SIVagm Vpr proteins were generated through the transposition of 
regions as indicated. Subscript numbers represent residues of originating protein. Barrels 
represent α-helices based on the Vpr NMR structure (Morellet et al., 2009), and SIVagm 
Vpx sequence homology to Vpr. Lines represent unstructured regions. 
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Figure 3.8 Vpr induces the degradation of Mus81  
293FT cells were transfected with 1.0µg, 0.5µg or 0.1µg of V5-Mus81 and HA-Vpr as 
indicated. 48 hr posttransfection cells were lysed and analyzed for the degradation of 
Mus81 by Western blot. 
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 CHAPTER 4  

 

DISCUSSION 

 

Current Views on Vpr and Vpx Biology 

 In the thirty years since the discovery of HIV as the causative agent of AIDS, 

researchers have intensely investigated the mechanisms of pathogenesis. The ~9kb HIV 

genome encodes 9 genes and 15 proteins. While the major function of nearly all of these 

proteins have been well elucidated over the ensuing decades, the small 96-aa accessory 

protein, Vpr, has remained largely enigmatic (Guenzel et al., 2014). Early studies 

revealed Vpr to be a virion-associated protein involved in infection of nondividing cells 

and enhancement of transcription from the viral promoter (reviewed in (Emerman, 

1996)). Vpr was shown to induce cell cycle arrest at the G2/M transition through the 

activation of the ssDNA damage sensor ATR (Roshal et al., 2003); however, the 

importance of this biology has remained unclear.  

Perhaps the first real clue to the role of Vpr in HIV-1 replication came following 

the determination that it modified the activity of a cellular ubiquitin ligase comprised of 

Cul4-DDB1-DCAF1 (Cul4-DCAF1) (Dehart et al., 2007; Le Rouzic et al., 2007; Wen et 

al., 2007; Hrecka et al., 2007; Schröfelbauer et al., 2007) (reviewed in (Andersen et al., 

2008; Guenzel et al., 2014)). Manipulation of cellular ubiquitin ligases is a mechanism 

common to numerous viruses to induce the degradation of cellular restriction factors 
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(Randow and Lehner, 2009). Indeed, 2 additional HIV accessory proteins, Vif and Vpu 

are known to alter the specificity of the UPS (Collins and Collins, 2014). These 

observations lead to the hypothesis that Vpr was subverting the Cul4-DCAF1 ubiquitin 

ligase to induce the degradation of an as of yet unidentified host protein involved in 

inhibiting HIV replications. Recently, Laguette et al. reported Vpr induced the 

ubiquitination of Mus81, triggering the activation of the SLX4 complex, as the long 

sought after Vpr G2 arrest target (Laguette et al., 2014); however, our results call this 

observation into question. In addition to Vpr, a subset of primate lentiviruses (including 

SIVmac and HIV-2), are known to encode Vpx, a Vpr paralog, thought to have arisen 

following a gene duplication event, necessary for the efficient infection of myeloid cells 

through the Cul4-DCAF1-mediated degradation of SAMHD1 (Laguette et al., 2011; 

Hrecka et al., 2011)(Reviewed in (Planelles, 2011)).  

 

New insights into the differential manipulation of Cul4-DCAF1 

by Vpr and Vpx 

 In this work, we explore the molecular mechanisms by which Vpr and Vpx 

manipulate the Cul4-DCAF1 ubiquitin ligase and exert their function. Vpr and Vpx are 

both known to form a tight 3 α-helical bundle flanked by unstructured N and C-termini 

(Morellet et al., 2009; Schwefel et al., 2014). While a highly conserved motif located in 

the third α-helix has been shown to be necessary for the interaction of Vpr and Vpx with 

DCAF1, little is know about the molecular determinants within DCAF1 that facilitate this 

interaction (Le Rouzic et al., 2007). To this end, we generated a number of DCAF1 

truncations and point mutants in order to define this interaction. Surprisingly, although 
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the residues of Vpr and Vpx involved in DCAF1 are highly homologous we observe 

differential interaction of these viral proteins with DCAF1. Most notably, mutations to 

DCAF1 N1135 and W1156 abrogate Vpx binding, while they had no effect on the 

interaction with Vpr. A recently solved DCAF1(WD40)-Vpx-SAMHD1(Ctd) co-crystal 

identified these residues as being involved in coordinating Vpx Q76, mutation of which 

was previously shown to abrogate Vpx-DCAF1 interaction (Le Rouzic et al., 2007; 

Schwefel et al., 2014). While the exact cause of these differences will require more 

thorough biochemical analysis, based on the high homology and conservation of the 

Vpr/Vpx DCAF1 binding motif, we favor a model in which Vpr binds DCAF1 with 

higher affinity than Vpx. 

 To examine this hypothesis, we tested the effect of Vpr expression on Vpx-

mediated SAMHD1 degradation. In agreement with a model in which Vpr binds DCAF1 

more tightly than Vpx, we observed that Vpr was able to robustly compete Vpx function. 

In contrast, while the dominant negative Vpr R80A mutant was able to inhibit Vpr 

induction of G2 arrest, expression of Vpx had no effect. 

 In addition, we explore the molecular determinants within Vpr and Vpx that 

facilitate the recruitment of their respective targets. Previous studies have identified the N 

and C-terminal unstructured regions of Vpx and Vpr, respectively, for the degradation of 

SAMHD1 and induction of G2 arrest (Ahn et al., 2012; Le Rouzic et al., 2007); however, 

these observations were made in the context of truncations. Interestingly, while Vpr and 

Vpx are known to be “monofunctional” proteins, inducing cell cycle arrest or mediating 

SAMHD1 degradation, a subset of primate lentiviruses (SIVagm) encode a bifunctional 

Vpr capable of facilitating both functions. To further elucidate the molecular 
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determinants of Vpr and Vpx function, we generated a series of chimeric proteins by 

transposing the unstructured regions of HIV-1 Vpr and SIVmac Vpx as wells as between 

HIV-1 Vpr and the bifunctional SIVagm Vpr. These studies revealed additional residues 

outside of the unstructured N and C-termini mediate Vpr and Vpx function. This is in 

agreement with a recently published crystal structure of DCAF1(WD40)-Vpx-

SAMHD1(Ctd), in which residues within the linker region mediate interaction between 

Vpx and SAMHD1 (Schwefel et al., 2014). This observation was further confirmed by 

the loss of agmSAMHD1 degradation ability of all HIV-1 Vpr/SIVagm Vpr chimeras. 

Surprisingly, the species-specific ability to induce G2 arrest appears to have arisen by 

compensatory mutations in both the Vpr α-helical bundle as well as the unstructured C-

terminus. More refined study of the evolution and structure of Vpr will be necessary to 

identify the specific residues involved in mediating Vpr interaction with the G2 arrest 

target. 

 Finally, Laguette and colleagues recently reported the activation of the SLX4 

endonuclease complex, through the ubiquitination of Mus81, by Vpr as the causative 

mechanism of Vpr G2 arrest (Laguette et al., 2014). In contrast to their observations, we 

demonstrate that the G2 arrest-defective Vpr mutants Vpr Q65R and Vpr R80A are both 

capable of inducing degradation of Mus81. To verify that Mus81 degradation is not 

simply an indirect effect of DCAF1 manipulation, we examined the ability of SIVmac 

Vpx and SIVagm Vpr, both capable of binding human DCAF1 but unable to induce G2 

arrest in human cells. Unlike HIV-1 Vpr, neither of these homologs were able to induce 

Mus81 degradation. The exact mechanism by which Vpr causes the destabilization of 

Mus81 remains unclear; however, pharmacological inhibition of the Cullin ubiquitin 
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ligase family with MLN4924 inhibited Vpr-induced Mus81 degradation. The discrepancy 

between the observations of Laguette et al. and our own concerning Vpr-mediated Mus81 

will require further investigation. These studies raise important questions regarding the 

mechanism utilized by HIV to avoid recognition of nucleic acids by cytosolic DNA and 

RNA sensors. 

 

Future Perspectives 

Cul4 ubiquitin ligases and manipulation by other viral proteins 

 In addition to HIV/SIV, several other viruses have been observed to manipulate 

Cul4-based ubiquitin ligases (Table 1.1). While the effect of SV5 V-protein manipulation 

of the Cul4-DDB1 complex has been thoroughly studied (reviewed in (Barry and Früh, 

2006)), the functional role in viral replication of other viral Cul4 manipulators remains 

largely unclear. Perhaps most interesting is the recent observation that the UL35 protein 

of cytomegalovirus triggers G2 arrest by interaction with Cul4-DCAF1, reminiscent of 

Vpr activity. Interestingly, several members of the SLX4 complex (SLX4, ERCC1 and 

ERCC4, but not MUS81 or EME1) were identified as UL35 interactors by mass 

spectrometry (Salsman et al., 2012). Whether UL35 activates the SLX4 complex as Vpr 

does is yet to be resolved; however, this observation lends credence to the hypothesis that 

SLX4 activation may be a strategy utilized by multiple viruses to avoid recognition of 

exogenous nucleic acids and the subsequent induction of an interferon response. 

 In addition to primates, lentiviruses have been identified as infectious agents in a 

large number of mammals including rabbits, horses, cows, and wild and domestic cats. 

Genetic studies have identified Vpr-like genes in a large number of these lentiviruses 
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(reviewed in (Gifford, 2012)). While the study of many of these viruses has generally 

been quite limited, studies in FIV indicate viral-mediated SLX4 complex activation may 

be quite old evolutionarily. While the exact function of FIV Vpr ortholog, OrfA, remains 

unresolved, expression of OrfA has been shown to induce G2 cell cycle arrest (among 

other phenotypes). OrfA protein sequence alignment with Vpr shows a high degree of 

homology between the two proteins. Of particular note, the DCAF1 binding motif of Vpr 

is nearly identical (Gemeniano et al., 2004). Although it is currently unknown if OrfA 

manipulates the UPS in general, or Cul4-DCAF1 specifically, the high conservation of 

DCAF1 (particularly of the WD40 domain) from humans to Arabidopsis (Zhang et al., 

2008) supports the hypothesis that Cul4-DCAF1 manipulation may be common 

throughout lentiviruses. 

 

Targeting accessory gene function as a therapeutic 

 Current antiretroviral therapies have focused on directly targeting viral enzymatic 

function. To date, these strategies have proven to be effective; however, they suffer from 

several drawbacks, even in comparison to antibiotics. Namely, antivirals currently in use 

have suffered from two major drawbacks: 1) modern antivirals are generally effectively 

against very limited ranges of virus (“one drug/one bug”) and 2) high rates of mutations, 

especially in RNA viruses, has been observed to lead to rapid resistance to antivirals 

(reviewed in (Volberding and Deeks, 2010; Lou et al., 2014)). To this end, it has been 

proposed that targeting cellular factors necessary for viral replication may provide an 

avenue for the development of drugs with a broader range and a higher evolutionary 

barrier to escape (reviewed in (Coley et al., 2009; Linero et al., 2012)). 
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 While accessory genes are not required for viral replication in some in vitro 

systems, viruses lacking these genes are severely hindered during in vivo infection 

(reviewed in (Malim and Emerman, 2008; Malim and Bieniasz, 2012)). Manipulation of 

Cullin-based ubiquitin ligases by a large number of viruses (table 1) make identification 

of pharmacological modulators of Cullin activity a compelling putative antiviral target. A 

recently identified small molecule inhibitor of Cullin activation currently in phase I 

clinical trials as a potential cancer therapy, MLN4924 (Soucy et al., 2009; 2010), is a 

compelling proof of concept for the antiviral potential of inhibiting accessory protein 

function.  

Cullin activity is dependent on the autoconjugation of the ubiquitin like modifier 

NEDD8 to the Cullin, facilitating later substrate ubiquitination by inducing 

conformational changes within the Cullin. Cullin neddylation follows an analogous 

pathway to cellular protein ubiquitination, in which NEDD8 is activated in an ATP-

dependent manner by the NEDD8 activating enzyme (NAE) followed by transfer to an 

E2 and finally conjugation to the Cullin (Saha and Deshaies, 2008; Duda et al., 

2008)(reviewed in (Soucy et al., 2010; Saifee and Zheng, 2008)). MLN4924 functions as 

an AMP analogue with high specificity for NAE, inhibiting NEDD8 activation, and 

subsequently specifically inhibits Cullin activity (Soucy et al., 2009). Indeed, the clinical 

effectiveness of UPS inhibition in cancer treatment has already been demonstrated 

following the recent approval of proteasome inhibitor bortezomib (VELCADE) (Soucy et 

al., 2010).  

 To this end, several groups have demonstrated the antiviral potential of Cullin 

inhibition by MLN4924. In 2012, Stanley et al. demonstrated that MLN4924 treatment 
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inhibited Vif-mediated APOBEC3 degradation, mimicking infection of ∆Vif virus, 

allowing for APOBEC3 encapsidation into budding virions and induction of 

hypermutation of the HIV-genome (Stanley et al., 2012b). In addition, MLN4924 has 

been shown to inhibit Vpx-mediated SAMDH1 degradation, resulting in the inhibition of 

myeloid cell infection even in the presence of Vpx (Wei et al., 2013; Hofmann et al., 

2013; Nekorchuk et al., 2013). Finally, inhibition of neddylation appears to inhibit Vpu-

mediated CD4 degradation and Vpr-mediated Mus81 degradation (Chapter 3). It will be 

of great interest to determine if similar effects are observed in the context of viral 

infections in vivo. 

 While MLN4924 serves as a strong proof of concept for the antiviral effects of 

directly targeting cellular proteins, resulting in the inhibition of accessory protein 

function, further research will be necessary before similar therapeutic strategies will be 

effective clinically. While MLN4924 specially targets Cullin based ubiquitin ligases, 

without broadly effecting cellular protein turnover, it has been shown to exert robust 

cytotoxic effects (Soucy et al., 2009). While such cytopathies may be acceptable in 

cancer treatments, for which MLN4924 is in clinical trials, they may be less well 

tolerated in the treatment pathogens, such as HIV. Further insight into the molecular 

architecture of virally hijacked ubiquitin ligases may provide even more specific targets 

for future chemotherapeutic targeting. Indeed, manipulation of Cul5 by Vif provides one 

such example. While two unique NEDD8 E2s have been identified, UBE2F and UBE2M 

(UBC12), Cul5 has been shown to be uniquely, among Cullins, neddylated by UBE2F 

(reviewed in(Soucy et al., 2010)). To this end, Stanley and collogues observed Vif-

mediated APOBEC3 degradation to be UBE2F dependent (Stanley et al., 2012a). 
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Understanding the specific architectural features of ubiquitin ligases manipulated by viral 

proteins holds great promise for the development of future broad range antivirals.  
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