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ABSTRACT 

 

 

The unstable expansion of the polyglutamine (polyQ) tract is a critical factor in the 

pathogenic pathway of at least ten neurodegenerative diseases, including Huntington’s 

disease, spinal and bulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy 

(DRPLA), and seven spinocerebellar ataxias, all of which are termed as polyglutamine 

diseases. One less understood but common feature of polyQ diseases is polyQ protein 

aggregation. This dissertation explores the protein folding, hydrogen bonding, and water 

accessibility changes which are induced by the enlargement of the polyQ tract using 

advanced informatics and computational methods, including protein 3D structure modeling 

and molecular dynamics simulations. This dissertation also demonstrates that these state-

of-the-art computational and informatics methods are powerful tools to provide useful 

insights into protein aggregation in polyQ diseases. 

The enlargement of polyQ segments affects both local and global structures of polyQ 

proteins as well as their water-accessibility, hydrogen bond patterns, and other structural 

characteristics. Results from both isolated polyQ and polyQ segments in the context of 

ataxin-2 and ataxin-3 show that the polyQ tracts increasingly prefer self-interaction as the 

lengths of the tracts increase, indicating an increased tendency toward aggregation among 

larger polyQ tracts. These results provide new insights into possible pathogenic 

mechanisms of polyQ diseases based solely on the increased propensity toward polyQ 

aggregation and suggest that the modulation of solvent-polyQ interaction may be a possible 
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therapeutic strategy for treating polyQ diseases. 

The analysis pipeline designed and used in this study is an effective way to study the 

molecular mechanism of polyQ diseases, and can be generalized to study other diseases 

associated with the protein conformation changes, such as Parkinson’s disease, 

Alzheimer’s disease, and cancer. 
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CHAPTER 1 

 

 

INTRODUCTION AND BACKGROUND 

 

 

The unstable expansion of the cytosine-adenine-guanine (CAG) repeat in the coding 

regions of several genes is associated with at least ten neurodegenerative diseases. These 

diseases are termed polyglutamine (polyQ) diseases as the CAG repeats are translated into 

polyglutamine in the related proteins. Although the genes related to each polyQ disease 

were discovered in the early 20th century the pathogenesis mechanism of these diseases is 

still not well understood. As a result, there is no curative treatment available. The polyQ 

tract expansion is the only common feature shared by the ten polyQ diseases and has long 

been considered a key factor in their pathogenic pathway. The expanded polyQ tract can 

trigger protein misfolding and aggregation which can result in neuron dysfunction. Using 

advanced informatics and computational methods, this dissertation studies the folding, 

hydrogen bonding, and water accessibility properties of the polyQ tract – within and 

without the context of polyQ proteins – to understand, at the molecular level, the 

pathogenesis of expanded polyQ in polyQ diseases.  

 

Polyglutamine Diseases 

 

PolyQ diseases are a family of neurodegenerative disorders associated with the 

expansion of CAG repeats in a specific gene [1, 2], in which the CAG repeats are translated 

into a polyQ tract in the related proteins. To date, at least ten disorders have been described; 
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these diseases are Huntington’s disease (HD) [3], dentatorubral-pallidoluysian atrophy 

(DRPLA) [4], spinal and bulbar muscular atrophy (SBMA) [5], and spinocerebellar ataxias 

(SCA) type 1, 2, 3, 6, 7, 8, 17 [6-9]. The polyQ genes express in both patients and normal 

individuals, but only individuals with a CAG repeat number larger than certain thresholds 

develop the disease [1]. In addition, the CAG repeat expansion in the ATXN8 gene is 

related to SCA8 and the pathogenesis of SCA8 also involves the noncoding gene 

ATXN8OS, with a CTG repeat [10].  

PolyQ diseases are relatively rare, and the prevalence of each disorder can vary with 

geographic location and ethnic background. The estimated prevalence of HD is 2.7 per 

100,000 worldwide. Meta-analysis shows a higher prevalence of HD in Europe, North 

America, and Australia (5.7 per 100,000) than it does in Asia (0.40 per 100,000) [11]. The 

prevalence of SCA, as a whole, is similar to HD and is estimated to be 2-3 per 100,000 

[12], but the frequency can vary with different ethnic groups [13]. SCA3 is the most 

common spinocerebellar ataxia followed by SCA2, SCA1 and SCA8 [12]. 

PolyQ diseases share common pathogenic characteristics despite the different affected 

genes. They are all neurodegenerative diseases characterized by a progressive degeneration 

of neurons [4]. The number of CAG repeats is related to how quickly the diseases progress, 

with longer repeats exhibiting earlier and more severe symptoms than those seen in 

individual with smaller number of repeats. All polyQ diseases, except for SBMA, are 

autosomal dominant inherited diseases, which means one copy of abnormal CAG repeat 

genes in each cell is sufficient to cause the disease. Most polyQ disease patients are 

heterogeneous genotype with only one abnormal copy in the cell [14]. Evidence shows that 

patients with two abnormal copies experience more severe symptoms than those who carry 
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only one mutant copy [15]. SBMA is X-linked because the CAG-repeat gene, Androgen 

Receptor (AR), is located in the X chromosome [5]. In males, who have only one copy of 

the X chromosome, the mutation in this chromosome can cause SBMA. Yet, the specific 

mechanism leading to neuronal dysfunctions related to polyQ diseases are not well 

understood [6].  

PolyQ disease includes a group of neurodegenerative diseases that display clinical and 

neuropathological heterogeneity, but a common feature shared by these disorders is the 

degeneration of a population of neurons in the central nervous system (CNS) [16-18]. The 

group of disorders has a broad impact on a person's functional abilities in motor [13, 18], 

and some subtypes might involve cognitive and psychiatric disorders [13]. For some polyQ 

disease subtypes, the patients may show symptoms of other neurodegenerative diseases, 

such as Parkinson’s diseases [16, 17] and Amyotrophic Lateral Sclerosis (ALS) [19]. 

Ataxia is a predominant clinical feature in SCA patients [18], and speech and swallowing 

are often affected in these patients [18, 20].  

Medical diagnoses of polyQ diseases can be made following the appearance of clinical 

symptoms specific to the diseases. Physical exam, family history, spinal tap, and magnetic 

resonance imaging (MRI) scanning of the brain and spine are usually included in the 

diagnosis procedures. Genetic tests detecting the number of CAG repeats in the defective 

genes can be used to confirm the diagnosis, as similar symptoms are shared among polyQ 

diseases [13]. 

PolyQ diseases are fatal and devastating diseases [21, 22] with no curative and/or 

disease-modifying treatment available [13, 18, 23]. After the onset of the disease, patients’ 

functional abilities gradually worsen over time [24]. The rate of disease progression and 
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the duration of the disease may vary, but the time from disease onset to death is often about 

10 to 30 years [18]. The longer the repeat, the faster the disease progresses [25]. Juvenile 

Huntington’s disease, early-onset form of Huntington’s disease that begins in childhood or 

adolescence, usually results in death within 10 years as the CAG segment in HD gene can 

repeat more than 60 times in these patients [26]. Eventually, patients with polyQ diseases 

need help with daily living activities and care [27, 28]. To date, there are no curative 

treatments for polyQ diseases [13, 18, 23]. Medications are available to help manage the 

symptoms of the disease, but cannot prevent the physical, mental, and behavioral decline 

associated with the conditions [29]. An accurate diagnosis of a specific subtype of polyQ 

disease, especially through a genetic test, can provide great value for making a treatment 

and care plan [30].   

 

Polyglutamine Disease Related Genes and Proteins 

 

The genetic causes of polyQ diseases were discovered in the 1990’s. The expansion of 

CAG repeats in AR genes was identified as a possible cause of SBMA in 1991, making 

SBMA the first genetic disorder identified as part of the polyQ neurodegenerative disease 

group [5]. In 1993, a novel gene with the CAG trinucleotide repeat pattern, later called the 

HTT gene, was discovered within the HD chromosome, and the unstable expansion of 

CAG repeats was linked to Huntington’s disease [3]. In the same year, the CAG repeat 

expansion was discovered in the ATXN1 gene, which was directly related to SCA1 [31]. 

The CAG repeat expansion in six other genes, ATXN3 [6], ATN1 [4], ATXN2 [32], 

CACNA1A [33], ATXN7, and TBP [34], was identified in the 1990s and associated with 

these specific types of neurodegenerative diseases.  

Polyglutamine genes are scattered throughout different locations in the human genome 
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(Table 1.1). Apart from the CAG repeat, they share little in gene size, gene sequence, and 

function, as do the related proteins. In regards to gene size, the huntingtin protein, which 

is associated with Huntington’s disease, can be as long as 3,144 amino acids, whereas the 

ataxin-3 protein and the TATA-box binding protein, which are associated with SCA3 and 

SCA17, respectively, are only around 300 amino acids in length. As regards gene sequence, 

the polyQ tracts lie in different regions of the polyQ proteins, but, in most cases, they are 

located close to the protein terminus. In addition to the differences in gene size and 

sequences, the functions of polyglutamine genes and related proteins also vary. The AR 

gene functions as a steroid-hormone activated transcription factor [35]. Ataxin-1, the 

protein translated from ATXN1, is reported to be involved in transcriptional repression and 

it is a component in the Notch signaling pathway [36]. Ataxin-2, the protein translated from 

ATXN2 gene, is part of the endocytic receptor cycling and affects EGF receptor trafficking 

[37]. Ataxin-3, the protein encoded by ATXN3, contains ubiquitin interaction motifs 

(UIM) and the Josehpin domain, and is involved in de-ubiquitination activity [38]. 

CACNA1A, the gene responsible for SCA6, is involved in voltage-gated calcium channels 

and mediates a number of calcium-dependent processes [39]. The function of huntingtin 

protein is still unclear [40, 41], but evidence shows that normal huntingtin is important for 

neuronal function [42]. Most of the polyQ proteins related to polyQ diseases can bind to a 

wide range of molecules, which bindings have been identified in a great number of studies. 

However, the exact function of the polyQ genes and proteins are still poorly understood.  

 

PolyQ Length Dependent Pathogenesis  

 

The number of CAG/polyQ repeats is a key factor for the progression of polyQ diseases 

[43, 44]. Symptoms occur when the number of consecutive repeats is longer than a critical 
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Table 1.1 Polyglutamine diseases related genes and proteins 

 

 

Disease Gene Locus Longest 

transcript 

Location 

polyQ 

Normal 

repeat 

length 

Pathogenic 

repeat 

length 

SCA1 ATXN1 6p23 815 N-terminus  6-39 41-83 

SCA2 ATXN2 12q24.1 1313 N-terminus 13-31 >=32 

SCA3 ATXN3 14q21 364 C-terminus 12-43 60-89 

SCA6 CACNA1A 19p13 2512 C-terminus <18 20-33 

SCA7 ATXN7 3p21.1-p12 982 N-terminus <19 36-460 

SCA17 TBP 6q27 339 N-terminus 25-42 49-66 

HD HTT 4p16.3 3144 N-terminus 6-34 >40 

DRPLA ATN1 12p13.31 1190 N-terminus 6-35 >48 

SBMA AR Xq12 920 N-terminus < =36 >38 
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value [1, 17] (Table 1.1). Although it varies, the threshold of most of these diseases is 

between 32 to 40 repeats [45], except for SCA6 which has a small threshold of around 20 

repeats [33]. A larger number of repeats is usually associated with an earlier onset of 

symptoms [46]. The expanded CAG segments are unstable [47] which can lead to an 

increase in repeats in successive generations. [48]. This phenomenon is known as genetic 

anticipation, and leads to an increase in disease severity and an early age of onset [48, 12, 

49, 50]. The average age of onset is in the adult years among patients with polyQ diseases 

[49, 39, 51], but individuals with extremely long repeats may show symptoms at very 

young age [49, 39, 51, 48]. For instance, SCA2 patients with 32 or 33 repeats tend to show 

symptoms of SCA2 in late adulthood, whereas patients with more than 45 repeats usually 

have signs and symptoms by their teenage years [18]. 

There are still some unanswered but interesting questions about polyQ length 

dependent features in polyQ disease, such as why do symptoms only occur in patients 

carrying the protein in which the length of polyQ tract is above a threshold and why do 

longer lengths above these thresholds lead to an early age of onset and more severe 

symptoms? Although in vivo experimental studies yield evidence that short-repeated polyQ 

tracts may also aggregate [52], longer polyQ tracts provoke an earlier appearance of disease 

and faster progression [53]. One possible explanation is that the aggregation propensity of 

long polyQ tracts is higher than that of the short ones [53]. Therefore, people with 

short/normal repeats may not display symptoms during their lifetime. In some of the polyQ 

diseases, including Huntington’s disease, SCA1, SCA3, SCA7, SCA17, and SBMA, there 

exists the reduced-penetrance form of polyQ tracts, and individuals carrying the reduced-

penetrance gene allele may or may not be affected. Take Huntington’s disease for example, 
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the smallest repeats related to clinical symptoms is reported to vary from 36 to 40, while 

the upper range of normal repeats is reported from 30 to 39 repeats. The polyQ gene with 

36 to 39 repeats is reported as the reduced-penetrance allele.  

 

Protein Misfolding and Aggregation 

 

The most important feature shared by polyQ proteins is their propensity to form 

oligomers and aggregates. The intranuclear inclusion bodies are found in the affected 

neurons in almost all types of the polyQ diseases [54, 55, 49, 56-60], except for SCA2 [61, 

62] and SCA6 [63], in which the aggregations are found in the cytoplasm. However, the 

molecular mechanisms of polyQ protein aggregation remain unclear [2]. It is also unclear 

if aggregation is a cause of the polyQ diseases or a consequence of them, as neurological 

symptoms may show up before protein aggregation can be detected in several transgenic 

models [64]. Evidence also indicates that large visible inclusions may be protective by 

recruiting and enhancing the degradation of toxic polyQ proteins [65], whilst the oligomers 

or microaggregates might be the toxic formations [66].  

Evidence also indicates that the expanded polyQ tracts alter protein conformation [47], 

which could allow the mutant protein to recruit normal cellular proteins through a series of 

abnormal interactions. Some interactions can be enhanced, whereas others may be lost or 

remain unchanged [47]. For example, in the SCA1 transgenic mice model, ataxin-1 with 

expanded polyQ can alter the transcription of several genes, including genes involved in 

signal transduction and calcium homeostasis [67].  

In addition to the polyQ proteins, other proteins may be included in the aggregation to 

make large inclusions. A variety of glutamine-rich transcriptional regulators are known to 

localize into polyQ inclusions, both in cellular and animal models. Therefore, the 
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aggregation could initiate cellular dysfunction by sequestering the respective proteins, both 

mutant polyQ proteins and other proteins, from their normal localization, causing 

imbalance of proteins in cells, and compromising their functions [2].  

Proteolysis cleavage is confirmed in several polyQ proteins, including ataxin-3 [68], 

huntingtin [69], atrophin-1 [70], and ataxin-7 [71]. These proteins can be degenerated by 

proteases into fragments. As shown in Table 1.1, polyQ repeats are, in general, located in 

either the N-terminus or the C-terminus of polyQ proteins, which location facilitates the 

release of polyQ fragments. Fragments containing polyQ tracts might display misfolded 

structures and cause the micro-aggregation of oligomers [1]. These aggregated oligomers 

may cause the dysfunction of related proteins and show toxicity properties to the cell 

environment, which have a potential role in polyQ disease pathogenesis. 

As aggregation is a hallmark of polyQ disease progression [72], the knowledge of 

aggregation mechanisms, at the molecular level, can provide new avenues to explore 

common therapeutic methods for treating these disorders. Also, as protein misfolding and 

aggregation are common features in other neurodegenerative disorders, such as 

Alzheimer’s disease, Parkinson’s disease, and ALS [73, 74], the knowledge of polyQ 

misfolding and aggregation identified here could also shed light on the pathogenic 

mechanism of other neurodegenerative diseases.  

 

Hydrophobicity and Water Accessibility  

 

Known intrinsic properties that can effect protein aggregation include charge, 

hydrophobic/hydrophilic patterns, and secondary structures [75]. Among these factors, 

hydrophobicity plays a significant role in setting the conditions governing protein 

aggregation [75, 76]. The more hydrophobic a sequence is the more readily it aggregates. 
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As a polar region, polyQ segments have the propensity to aggregate, and in aqueous 

milieus, an individual polyQ peptide prefers collapsed structures that minimize interactions 

with a surrounding solvent [77]. Perutz [78] proposes that expansion of glutamine repeats 

beyond a certain length may lead to a phase change from random coils to hydrogen-bonded 

self-associated confirmations. Consistent with this hypothesis, both experimental and 

computational studies, show that polyQ tracts can change the conformation to hydrogen-

bonded structures during the formation of aggregation [79-83]. However, these hypotheses 

have not been verified by detailed 3D protein structure studies in the context of the full-

length polyQ proteins or by using full atomic explicit solvent molecular dynamics 

simulations. 

 

Conformational Study of PolyQ Containing Proteins 

 

The elongation of the polyQ tract can lead to misfolding of polyQ proteins, which 

affects the normal functions of these proteins [55]. Therefore, a knowledge of protein 

structure changes as the function of the lengthening of the polyQ tract can bring insights 

into the molecular mechanism of pathogenesis in polyQ diseases.  

However, due to the large protein size and aggregation property of polyQ proteins, it 

is difficult to obtain high-quality 3D structures of full-length polyQ proteins through 

experimental studies, such as X-ray and nuclear magnetic resonance spectroscopy (NMR). 

Until now, few 3D structures of polyQ protein are available in the Research Collaboratory 

for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) [84], and none of these 

structures represent full-length polyQ proteins. Even fewer contain the polyQ tract in the 

structures. The only known structures of polyQ protein segments with polyQ tract are the 

crystal structures of N-terminal huntingtin protein with 17 [85] and 36 glutamine repeats 
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[86]. There are several structures of polyQ protein segments with no polyQ tract, such as 

solution structures of the Josephin domain in ataxin-3 [87] and solution structures of the 

UIM domains of ataxin-3 complexed with ubiquitin [88]. With state-of-the-art 

experimental methods, such as circular dichroism (CD) and fluorescence spectroscopy, it 

is possible to measure changes in the surface exposure of polyQ proteins induced by polyQ 

tract expansion[89], but these techniques cannot provide information with enough detail to 

address the structural changes at the residue and atomic levels.  

By resolving the structure of a short polyQ monomer of 15Qs, Perutz puts forward the 

hypothesis that expanded polyQ tracts form misfolded structures which can lead to protein 

aggregation [90]. In Perutz’s theory, the elongated polyQ tract may form a “polar zipper” 

conformation, a structure with β-strands and an extensive hydrogen-bonded network [90]. 

The polar zipper structure is latter interpreted as the cross-beta structure. Perutz’s polyQ 

structure model led to a series of computational studies on the thermodynamic and kinetic 

characters of polyQ tracts. These computational studies yield several plausible structures 

for polyQ tracts [91, 80]. PolyQ with certain structures therefore can initialize the 

aggregation which leads to the formation of amyloid fibrils [53, 92]. Yet, the precise 

mechanism involved in polyQ aggregation is still largely unknown.   

 

Protein 3D Structure Prediction 

 

Protein 3D structure prediction is a set of computational techniques with the capability 

to infer the 3D models of a protein using its amino acid sequence [93]. Protein 3D structure 

prediction plays a critical role in biomedical research, as it is an essential tool to predict 

structures of biomedical molecules for which no experimental structures are yet obtainable. 

This technique is widely used for exploring protein folding and identifying potential 
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protein binding sites that can be used for in silico drug design [94, 95].  

The previous solved structures, or template, can be used in protein structure prediction. 

Based on whether templates are used or not, protein structure prediction methods can be 

divided into two categories: comparative protein modeling and ab initio modeling [96]. In 

comparative protein modeling, templates are used as the starting point. Comparative 

protein modeling can be split into two groups: homology modeling and fold recognition. 

Homology modeling is based on the hypothesis that proteins sharing sequence similarity 

may also share structural similarity. The sequences of templates are the homologies of the 

protein sequence to be predicted (the target). Homology modeling can generate high-

quality models if sequence homologies exist in the template database. However, homology 

modeling is not suitable for proteins for which homological templates are not available. 

Also, protein structures are more conserved in evolution than protein sequences [97], 

therefore proteins with similar structures may not be homologous in sequences [98].  

Fold recognition, also known as threading, is designed to model protein 3D structures 

based on structural similarity. Threading is a technique to match the query protein sequence 

directly on to the known 3D structures [96, 99], which aims to recognize fold similarity 

even when there is no evolutional relationship between the target and the structure 

templates. The threading method differs from the homology modeling as threading is used 

for proteins which do not have solved structures of their homologous proteins, whereas 

homology modeling is used for proteins which have their homologous protein structures 

solved. The protein threading method consists of several general steps: 1) the construction 

of a structure template database, or the selection of structure templates from a protein 

structure database, such as RCSB PDB database; 2) the design of a scoring function to 
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measure the similarity or fitness between the target and the templates; 3) threading 

alignment to align the target sequence with each of the structure templates by optimizing 

the designed scoring function; and 4) the threading prediction. This last step determines 

the most probable structures from the structure pools generated in the previous steps. 

Finally, the structure models are constructed by placing the backbone atoms of the target 

sequence at their aligned backbone positions in the selected structural templates. 

Some preconditions are necessary for the success of fold recognition, such as the 

availability of good structural templates in the template database and the ability to 

recognize good templates. In regard to the former precondition, structure databases, such 

as RCSB PDB, are good repositories for structure templates. In regards to the latter, to date, 

some threading methods, such as threading assembly refinement (TASSER), can 

successfully build high-quality full-length protein models with an average root-mean-

square-deviation (RMSD) of 2.25 Å. I-TASSER is a protein structure prediction package 

which implements the TASSER threading method. It is ranked the first of template-based 

prediction methods in several Critical Assessment of Protein Structure Prediction (CASP) 

competitions [96] and widely recognized as one of the best methods for protein structure 

prediction.  

Although template-based modeling is an essential approach for protein structure 

prediction [100], there are proteins with no sufficient sequence homologies and structural 

analogies. In this situation, the current template-based modeling lack the ability to 

successfully find appropriate templates. Here, the structure prediction has to be done from 

the first principle, or ab initio. The ab initio methods try to predict protein 3D structures 

based on physical laws rather than the previous solved structures. According to the physical 
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laws, molecules adopt conformations where their energy achieves the global minima on 

the potential energy surface. It is difficult to search the global minima of the complex 

potential energy at the all-atom level for large proteins with more than 100 amino acids. 

The conformation sampling needs substantial computational resources, especially for 

proteins with large sizes. This limits the ab initio methods to prediction of proteins with 

relatively small sizes. S. Ołdziej et al. designed a hierarchical physics-based protein 

structure prediction methods which searches the global minima in a united atom force field. 

When compared the predicted structures of a 102-residue target to the native structure, the 

RMSD value is 7.4 Å [101].  

Currently, the boundary between template-based methods and ab initio methods is 

blurred. These two types of methods can be combined to improve prediction performance. 

For example, the Rosetta ab initio protein structure modeling application uses small 

structure segments, usually with the length of 3 or 9 amino acids, to generate initial 

structures [102]. I-TASSER uses the ab initio methods to do the modeling when structural 

templates are not available [96].  

With the improvement of computational capacity, 3D structure prediction algorithms 

can now predict protein structures at the atomic level, leading to practical applications to 

understand pathogenesis at this level of resolution. For example, I-TASSER [96, 93] has 

been successfully applied in structural and functional modeling of proteins related to 

studies of aging, cancer, diabetes, and other diseases [94, 103, 104]. These complementary 

computational studies bring new insights into pathogenesis and potential treatments for 

these diseases. The advances in protein structure prediction are systematically reviewed at 

regular blind tests [105], such as the CASP competition which is a community-wide 
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competition to test state-of-the-art protein structure prediction methods.  

 

Molecular Dynamics Simulation 

 

Molecular dynamics (MD) simulations are computer simulations that intend to model 

the physical movement of atoms and molecules. During the simulation, the atoms and 

molecules interact in the simulation system for a period of time, thus allowing the analysis 

of the atom movement and bonds between the atoms. MD simulation is an excellent tool 

for the study of the thermodynamic and kinetic properties of biomolecules and many 

publications report both their success and limitations [106, 107].  

In MD simulations, mathematical functions are used to describe the potential energy of 

the system particles, the forms and parameters of which are called the force field. “All-

atom” force fields provide parameters for every type of atom in a system. 3D structure 

prediction finds the static structures with the lowest energy, whereas MD simulations can 

reveal the process of the folding and motion of the molecules.  

Using MD simulations, several researches have studied the stability, folding, and 

aggregation properties of polyQ tracts [83, 108-110]. A brief summary of the simulation 

work on polyQ is listed in the “Introduction” section in Chapter 5 of this dissertation. In 

this dissertation, MD simulations are applied to study secondary structure ensemble, water 

accessibility, and other structural propensities of polyQ segments to investigate the 

mechanisms of polyQ protein aggregation.  

  

Specific Aims of This Dissertation  

 

In this dissertation, state-of-the-art informatics and computational simulation 

techniques are used to demonstrate that they can be applied to enhance the understanding 
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of the pathogenesis mechanisms of polyQ diseases. The effects of polyQ enlargement on 

protein folding, conformational stability, and water accessibility of polyQ proteins are 

studied to explore the pathogenesis of polyQ diseases. Three specific aims are addressed 

in this dissertation: 

1) To compare and validate the predicted structures in polyQ disease relevant proteins 

(Chapter 2); 

2) To study the effect of the polyQ lengthening on protein folding, hydrogen bonding, 

and water accessibility of full-length polyQ proteins using protein structure prediction 

methods (Chapter 3 and Chapter 5); 

3) To study the effect of solvation on the folding stability and solvent-polyQ 

interaction of the polyQ segment using atomistic MD models (Chapter 4). 
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Abstract 

 

Background 

 

The expansion of polyglutamine (polyQ) repeats in several unrelated proteins is 

associated with at least ten neurodegenerative diseases. The length of the polyQ regions 

plays an important role in the progression of the diseases. The number of glutamines (Q) 

is inversely related to the onset age of these polyglutamine diseases, and the expansion of 

polyQ repeats has been associated with protein misfolding. However, very little is known 

about the structural changes induced by the expansion of the repeats. Computational 

methods can provide an alternative to determine the structure of these polyQ proteins, but 

it is important to evaluate their performance before large scale prediction work is done.       

 

 

 
a Reprinted with adaption from BMC Bioinformatics, 2014,15 Suppl 7: S11, doi: 

10.1186/1471-2105-15-S7-S11, with permission from Biomedical Central Ltd.. Copyright: 

Wen et al.; licensee BioMed Central Ltd. 2014



26 

 

Results 

 

In this paper, two popular protein structure prediction programs, I-TASSER and 

Rosetta, have been used to predict the structure of the N-terminal fragment of a protein 

associated with Huntington’s disease with 17 glutamines. Results show that both programs 

have the ability to find the native structures, but I-TASSER performs better for the overall 

task. 

 

Conclusions 

 

Both I-TASSER and Rosetta can be used for structure prediction of proteins with polyQ 

repeats. Knowledge of polyQ structure may significantly contribute to development of 

therapeutic strategies for polyQ diseases. 

 

Background  

 

Knowledge of protein structure can be critical for devising therapeutic strategies for 

diseases in which protein dysfunction contributes to pathogenesis. For the polyglutamine 

(polyQ) diseases, pathogenic polyQ expansions typically cause gains of toxic functions 

associated with protein misfolding or aberrant interactions with RNAs or other proteins 

[1]. At least ten neurodegenerative disorders are caused by polyQ expansions, including 

Huntington’s disease (HD), dentatorubral and pallidoluysian atrophy (DRPLA), spinal and 

bulbar muscular atrophy (SBMA), and the polyQ spinocerebellar ataxias [2] (SCA1, 

SCA2, SCA3, SCA6, SCA7, SCA8, and SCA17) [3-5]. The proteins involved in these 

diseases have no significant sequence, compositional or structural homologies [6, 7] and 

numerous studies and observations have established that the length of the polyglutamine 

repeats plays a critical role in the progress and pathogenesis of these diseases [5, 8]. 
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Analysis from patients’ data reveals that the expansion of polyglutamine repeats beyond 

certain pathological threshold causes the disease phenotype (Table 1.1) [9-12]. Also the 

number of the glutamines in the polyglutamine region is inversely correlated with age of 

onset [9, 13-17]. For instance for SCA2, people with 32 or 33 repeats tend to first 

experience symptoms of SCA2 in late adulthood, while people with more than 45 repeats 

usually have symptoms by their teens [2].  

One possible mechanism for these diseases pathology is the assembly of unfolded 

protein monomers into β-sheet amyloid fibers [18]. Both in vivo and in vitro studies have 

shown that the polyQ expansion may lead to protein misfolding [19] and may cause a 

structure transition to form parallel β-helix and β-sheet folds [20]. Protein misfolding and 

aggregation has been shown to depend on the polyQ length and the concentration of the 

protein [21-23]. As shown in [24] the polyQ tract will form β-sheet structures when the 

number of the Qs increases resulting in an increase of the chance of aggregation. Therefore 

the understanding of the effect of the lengthening of the polyQ repeat segment on protein 

folding can provide new insights and perhaps therapies for these diseases. 

Although the association of the lengthening of the polyQ repeats with the related 

polyglutamine diseases has been known for almost 20 years [25, 26], high-resolution 

structural analysis of these proteins in their native context has eluded researchers [27] and 

only very limited experimental information exists. Kim has crystallized multiple structures 

of the N-terminal segment of huntingtin protein with 17 and 36 glutamines repeats [28, 

29], finding that the polyQ regions exhibit conformational flexibility with α-helix, random 

coil, and extended loops [28, 29]. These structures are the only crystal structures of polyQ 

segments available in the RCSB PDB database. Computational modeling can provide 
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valuable insights into this problem [23, 30, 31], but to our knowledge no comprehensive 

studies have been reported comparing the 3D structures predicted for these segments with 

the limited experimental data available.  

The accuracy of the structures obtained using 3D structure prediction programs is 

improving rapidly, and some of the commonly available programs have shown excellent 

performance in the CASP competition [32]. However, all the 3D structure prediction 

programs are trained with a variety of proteins and their performance is usually evaluated 

on a general dataset [33]. There is no literature evidence reporting the performance of these 

programs on proteins containing polyQ tracts. So it is necessary for us to evaluate the 

performance of these programs before we use them to predict the structure of 

polyglutamine disease proteins at large scale. 

In this paper we present our results of the evaluation of the prediction performance of 

two efficient and popular 3D structure prediction programs, I-TASSER and Rosetta, on the 

N-terminal end of huntingtin protein with 17 glutamines (HTT17Q-EX1). 

 

Methods 

 

PolyQ Segments 

 

We searched the RCSB PDB database [34] for structures with more than 10 consecutive 

glutamines in their sequences on November 2012. A total of 11 structures were retrieved, 

including 7 of the first exon of the huntingtin protein with 17 glutamines (HTT17Q-EX1) 

[28] and 4 of the first exon of huntingtin protein with 36 glutamines (HTT36Q-EX1) [29]. 

Figure 2.1(a) shows the sequence construction for the X-Ray diffraction experiment on 

HTT17Q-EX1 which was expressed and crystallized as a maltose-binding (MDP) fusion 

protein [28]. The same methods were used to get the crystal structure of HTT36Q-EX1, 
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Figure 2.1 The sequence construction of HTT17Q-EX1. (a) sequence structure of the PDB 

records; (b) sequence used for structure prediction. 
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but the resolution of the HTT36Q-EX1 is of such poor quality that only HTT17Q-EX1 

structures were used in this study.  

PDB identification numbers of the 7 HTT17Q-EX1 crystal structures used here are 

3IO4 [PDB: 3IO4], 3IO6 [PDB: 3IO6], 3IOT [PDB: 3IOT], 3IOU [PDB: 3IOU], 3IOR 

[PDB: 3IOR], 3IOV [PDB: 3IOV] and 3IOW [PDB: 3IOW]. Each crystal includes a trimer 

of MDP-HTT17Q-EX1, so a total of 21 structures of HTT17Q-EX1 were considered. 

Figure 2.1 (b) shows the sequence of the HTT17Q-EX1 used as the input of the 3D 

structure prediction.   

 

Protein 3D Structure Prediction  

 

Two protein structure prediction programs were used in this study, I-TASSER and 

Rosetta. Both I-TASSER and Rosetta have been used by thousands users and they are 

among the few programs which can handle large proteins with more than 1000 residues 

[35, 36].   

I-TASSER is the 3D structure prediction program based on multiple-threading 

alignments and iterative template fragment assembly simulations [37]. I-TASSER is a fully 

automated method and was used without further modifications, but we have verified that 

none of the templates corresponding to the structures 3IO4 [PDB: 3IO4], 3IO6 [PDB: 

3IO6], 3IOT [PDB: 3IOT], 3IOU [PDB: 3IOU], 3IOR [PDB: 3IOR], 3IOV [PDB: 3IOV] 

and 3IOW [PDB: 3IOW] was included in the knowledge data used in the version of I-

TASSER used here. Rosetta is a flexible software suite for macromolecular modeling, 

which includes tools for structure prediction and design [38]. Rosetta ab initio module was 

used in this study. For Rosetta, the quota protocol fragment picking was used to generate 

3-mers and 9-mers fragments, which took into account the secondary structure predictions 
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by PsiPred [39], Jufo9D Server [40] and SAM-T08 [41] as the quota pools. The weight 

given to the each quota pool was assigned following reference [42] and 200 fragments were 

picked from the total of 700 candidates available from both 3-mers and 9-mers fragments. 

The default parameters were used for Rosetta ab initio modelling with the number of output 

structures set as 5000, the default parameters also were used for Rosetta cluster module.  

We installed I-TASSER Version 2.1 and Rosetta Version 3.4 in a cluster at the Center 

for High Performance Computing (CHPC) of University of Utah, where all computations 

were performed. As a fully automated program, the number of decoys to screen and the 

number of simulation jobs in I-TASSER are fixed, whereas Rosetta is much more flexible 

and users can define the output number of structures and the number of parallel simulation 

jobs, making it much more adaptable to the hardware architecture used. So it is difficult to 

compare the computational cost of the two programs. However, for the modelling tasks 

with the parameters used in our simulation, the total CPU time for I-TASSER to finish one 

HTT17Q-EX1 (60 amino acid residues) prediction was, in average, 24.58 hours using one 

core in a 2.4 GHz dual-core Opteron processor, whereas the average total CPU time for 

Rosetta to finish one HTT17Q-EX1 prediction with 5000 prediction structures was about 

50.91 hours in the same computing environment.  

  

3D Structure Alignment  

 

To assess 3D structure similarity, TM-align was used for structure comparison and 

alignment [43]. The TM-score calculated by TM-align, which lies in (0,1] interval, is 

considered a good measure of the similarity of two structures [44]. A TM-score of less than 

0.17 indicates a random alignment, whereas TM-score greater than 0.5 indicates that the 

two structures are generally in the same fold [44]. 
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Similarity Measurement 

 

Besides the TM-score, exact structure overlap (ESO) and exact structure overlap of 

polyQs (ESOP) were also used to measure the similarity of two structures. The words 

‘exact’ here means the aligned residues are within certain threshold, 5Å in this study, and 

that they are the same residue in the HTT17Q-EX1 sequence. For example, if a serine 

(SER) in the 16th position of the predicted structure of HTT17Q-EX1is aligned, within the 

distance threshold, with the serine (SER) in the 16th position of PDB experimental 

structure, the 16SER-16SER is an exact match. ESO and ESOP is derived from the 

Structure Overlap (SO) which is a standardized score to compare the structure alignments 

and measure the local similarity of two structures [45]. The SO score is calculated as:  

 

                                                      𝑆𝑂 = 100 ×
𝐿(𝐴)

𝑚𝑖𝑛(𝐿𝑚,𝐿𝑒)
                                                          (2.1) 

 

 

where L(A) is the structure alignment length; the Lm and Le are the length of the predicted 

model and the experimental structure, respectively.   

We have modified Equation (1) to meet the aim of more strict structure comparison, 

and get the ESO score:    

 

                                                     𝐸𝑆𝑂 = 100 ×
𝐿(𝐸𝐴)

𝑚𝑖𝑛(𝐿𝑚,𝐿𝑒)
                                             (2.2) 

 

 

where L(EA) is the length of exact match; Lm and Le is the length of predicted model and 

the length of the PDB experimental structure respectively. 

The structure of polyQ region may play a more important role than other positions. In 

this study, the ESOP score is calculated to evaluate the structure similarity of the polyQ 

regions. The ESOP is a special version of ESO, and it is calculated as: 
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                                                  𝐸𝑆𝑂𝑃 = 100 ×
𝐿(𝐸𝐴𝑄)

𝑚𝑖𝑛(𝐿𝑄𝑚,𝐿𝑄𝑒)
                                            (2.3) 

 

 

where L(EAQ) is the length of the exact match of Qs; LQm and LQe are the length of polyQ 

in predicted model and PDB experimental structure respectively. 

 

Secondary Structure Calculation  

 

The secondary structure of the predicted models and the PDB experimental structures 

were calculated using the DSSP algorithm, which is an algorithm to standardize secondary 

structure assignment [46]. Secondary structures assigned by DSSP are 8 conformational 

states, including α-helix, β-bridge, strand, 3-helix, 5-helix, turn, bend, and random coil. 

The results of DSSP are the secondary structures represented by one letter for each 

position. In order to get a better view of the results, “WebLogo 3” [47] was used to plot the 

secondary structure logo at each position. The overall height of the stack indicates the 

secondary structure conservation at that position, and the height of the symbols within the 

stack indicates the relative frequency of each secondary structure type at that position. 

 

3D Structure Visualization 

 

The 3D structure and the 3D structure superposition were visualized in the UCSF 

Chimera software, a free program for molecular graphics and analysis [48]. 

 

Statistic 

 

To depict the data distribution of the parameters calculated here, the (mean value ± 

standard deviation) is listed for data with normal distribution, whereas for data that do not 

follow the normal distribution, the 25% quantile and 75% quantile values are listed.  

The Student t test was applied for data with normal distribution and the Wilcoxon 
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ranked test was performed on other data sets to assess significance. The significant level 

was set at 0.05. All the statistic work was done in the R environment which is a free 

software environment for statistical computing and graphics [49].  

 

Results 

 

Predicted Models 

 

As evidence shows that the polyQ region can adopt different structures [28, 29] in the 

proteins of interest for polyQ diseases, it is not appropriate to seek the ‘best structure’ of 

this region, but it is more appropriate to look for ensembles of structures (generated by 

multiple independent runs) which can show overall trends and represent the variety of 

structures observed by experimental methods. 

Following this reasoning, both Rosetta and I-TASSER were run 10 times using 

different random seeds for each run of 3D structure prediction of the HTT17Q-EX1 

sequence shown in Figure 2.1(b). For each run we kept the five best models, so a total of 

50 I-TASSER models and 50 Rosetta models were retained for analysis.  

Each structure prediction program will return some parameters to estimate the accuracy 

of the models. For I-TASSER, the C-score, which lies in the (-5,2) range, is calculated for 

each model [35]. The C-scores of the best 50 I-TASSER models, listed in Table 2.1, range 

from -2.62 to -4.72.  

The clustering algorithm from Rosetta was used to identify the most frequently sampled 

conformations. For each run we selected the five structures with the lowest energy from 

the structures encountered in the five different clusters in which the number of structures 

was greater than 10 on each. The energies of the total 50 Rosetta structures, listed in Table 

2.2, they range from 16.06 to 20.13.  
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Table 2.1 C-scores for the best I-TASSER models 

 

 

Model # 1 # 2 # 3 # 4 # 5 

Run 1 -2.91 -3.69 -3.33 -3.62 -4.72 

Run 2 -2.84 -3.71 -3.31 -3.5 -4.42 

Run 3 -2.81 -3.76 -3.48 -3.89 -3.74 

Run 4 -2.62 -3.69 -3.32 -3.76 -3.49 

Run 5 -3.02 -3.21 -3.91 -4.11 -3.42 

Run 6 -2.67 -3.76 -3.48 -3.62 -4.37 

Run 7 -2.77 -3.42 -3.96 -3.3 -3.51 

Run 8 -3.09 -3.45 -4.09 -4.22 -4.27 

Run 9 -2.73 -3.61 -3.38 -3.76 -4.42 

Run 10 -2.62 -3.49 -3.75 -4.33 -4.01 

 

 

 

 

Table 2.2 Energy for the best Rosetta models 

 

 

Model # 1 # 2 # 3 # 4 # 5 

Run 1 16.061 16.349 18.609 19.656 19.956 

Run 2 17.881 18.309 18.373 18.386 19.215 

Run 3 16.943 17.598 17.639 18.306 19.436 

Run 4 18.414 18.662 18.691 18.812 19.076 

Run 5 16.74 18.004 18.192 18.3 19.015 

Run 6 18.353 18.388 18.572 18.766 18.96 

Run 7 17.435 18.897 19.571 19.603 19.617 

Run 8 18.128 19.111 19.521 19.643 19.707 

Run 9 17.317 17.586 17.655 17.916 18.69 

Run 10 19.329 19.899 19.928 20.104 20.13 
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Secondary Structure  

 

For better visualization, WebLogo [47] was used to display secondary structure 

patterns. The WebLogo of the secondary structures of the experimental PDB structures and 

the best I-TASSER and Rosetta models are shown in Figure 2.2. For easy description, we 

divided the sequence into three regions: the 17-residue head region including residues 1 to 

17; the polyQ region including residues 18 to 34 and C-terminal region including residues 

35 to 60. As discussed in the original publication for the 21 PDB structures most crystals 

show α-helix in the head region, which is always well resolved, with only a few structures 

showing turns at the beginning and end of the head region. Both the I-TASSER and Rosetta 

best models reproduce the observed trends showing a majority of helix structures in the 

head region, but the I-TASSER structures show better agreement with the experimental 

findings showing a preference for α-helix, while the Rosetta structures show a mix of α-

helix and 3-helix. The secondary structure, for the resolved structures, in the polyQ region 

is more diverse showing a number of structures with α-helix, random coils, and turns. The 

Pro-enriched C-terminal region is dominated, at least for the resolved structures in this 

region, by coil structures. Unfortunately, as depicted in Figure 2.2(a), the number of well 

resolved structures rapidly decreases beyond the head region making comparison with the 

experiments less reliable. None-the-less the overall experimental trends are reproduced by 

both I-TASSER and Rosetta, but it appears that the I-TASSER structures show more loops 

than the experimental data.  

Overall I-TASSER appears to be superior reproducing quite well the stable α-helix 

structure of the N-terminal regions and showing increased diversity of structures in the 

polyQ region and a predominance of coil structures in the C-terminal region.
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Figure 2.2 Secondary structure WebLogo. (a) PDB structures; (b) I-TASSER models; (c) 

Rosetta models. In (a) M represents the number of structures with missing values due to 

lack of resolution in the experimental data. The codes for secondary structure are as 

follows: H: α-helix; B: β-bridge; E: Strand; G: Helix-3; I: Helix-5; T: Turn; S: Bend; C: 

Coil; M: Missing data. 
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Reproducibility of I-TASSER and Rosetta Results  

 

In order to test the sensitivity of I-TASSER and Rosetta with the selection of the seeds 

used in the calculations, we have calculated the structure similarity using the TM-score 

between models obtained using the same prediction program. A total of 1225 TM-scores 

were generated comparing pairwise the best 50 I-TASSER and 50 Rosetta models, 

respectively. 

TM-scores between any two models from I-TASSER range from 0.2781 to 0.7163, 

with an average of 0.4086 and a standard deviation 0.0692. Whereas the TM-scores 

between any two Rosetta models range from 0.2865 to 0.8236, with an average of 0.4979 

and a standard deviation 0.0892. The difference between TM-scores of I-TASSER and 

Rosetta is statistically significant (t-test, p<0.001, Figure 2.3). The number of TM-scores 

greater than 0.5 is two times greater for Rosetta/Rosetta pairs than for I-TASSER/I-

TASSER pairs, i.e., 561 pairs in Rosetta and 126 pairs in I-TASSER have scores larger 

than 0.5.  

When comparing only the best models of each run, the TM-scores range from 0.4539 

to 0.6813 for I-TASSER (Table 2.3) and from 0.2872 to 0.6879 for Rosetta (Table 2.4). 

Therefore the best models of each run from I-TASSER are more similar among themselves 

than those from Rosetta, i.e., 33 pairs of the 45 structure pairs have TM-scores greater than 

0.5 for I-TASSER, whereas for Rosetta, only 18 pairs of best models have TM-scores 

greater than 0.5. 

The sensitivity to the selected random seeds was also evaluated at the run level. 

TM-scores were calculated for the structures of any 5 models in one run compared with 

any 5 models of other runs. The number of pairs with TM-score greater than 0.5 between  
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Figure 2.3 Distribution of the TM-scores of any two models from I-TASSER and Rosetta 

respectively. 
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Table 2.3 TM-scores between the best models from I-TASSER 

 

 

run # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 

# 1 0.48 0.48 0.63 0.48 0.54 0.57 0.49 0.51 0.46 

# 2 
 

0.56 0.54 0.55 0.48 0.54 0.45 0.58 0.46 

# 3 
  

0.54 0.63 0.53 0.51 0.54 0.56 0.51 

# 4 
   

0.50 0.52 0.66 0.49 0.56 0.49 

# 5 
    

0.60 0.51 0.58 0.59 0.54 

# 6 
     

0.51 0.68 0.54 0.49 

# 7 
      

0.50 0.57 0.45 

# 8 
       

0.50 0.52 

# 9 
        

0.50 

 

 

 

Table 2.4 TM-scores between the best models from Rosetta 

 

 

run # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 

# 1 0.30 0.43 0.37 0.42 0.42 0.53 0.40 0.38 0.43 

# 2 
 

0.30 0.34 0.31 0.39 0.28 0.34 0.32 0.38 

# 3 
  

0.52 0.53 0.53 0.65 0.47 0.57 0.50 

# 4 
   

0.48 0.53 0.47 0.68 0.49 0.43 

# 5 
    

0.63 0.52 0.48 0.58 0.61 

# 6 
     

0.52 0.47 0.64 0.59 

# 7 
      

0.41 0.56 0.55 

# 8 
       

0.46 0.42 

# 9 
        

0.60 
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any two experiments is shown in Table 2.5 for I-TASSER and Table 2.6 for Rosetta. For 

I-TASSER, the number of pairs with TM-score greater than 0.5 ranges from 0 to 6. There 

are 6 pairs with TM-scores greater than 0.5 between Run 4 and Run 7, however, no pairs 

with TM-scores greater than 0.5 between Run 1 and Run 8. For Rosetta, the number of 

pairs with TM-score greater than 0.5 at run level ranges from 5 to 20. 20 of 25 pairs are 

with TM-scores greater than 0.5 between Run 3 and Run 7, which is the best. The smallest 

number of pairs for Rosetta is 5, which shows in 3 pairs, Run 1 and Run 6, Run 6 and Run 

8, Run 5 and Run 8.  

These results show that our ensemble approach to predict the structure of proteins 

associated with polyQ diseases appears to be appropriate. Using multiple seeds it is 

possible to obtain an ensemble of structures that show reasonable diversity, but still retain 

the main features. We believe that this approach is quite promising because it can 

incorporate in future analysis the diverse structure of which appears to be an emerging 

observation from the limited experimental data on these proteins. 

 

Validity Evaluation of I-TASSER and Rosetta 

 

As depicted in Figure 2.2(a) not all of the 21 PDB structures have been resolved in the 

polyQ region, which is our main interest. For instance, the longest well resolved polyQ 

region is the B chain of the 3IOW [PDB: 3IOW] structure in which all the 17 Qs structures 

are resolved, whereas for the A chain of the 3IOT [PDB: 3IOT] structure only one Q has 

been resolved. Also, there are numerous gaps in several structures as some of the residues 

are not resolved. Taking this into account and in order to make an accurate comparison 

with the experimental ones in the region of interest, only PDB structures in which at least 

9 (more than half the total number) of consecutive Qs in the polyQ regions show well 



42 

 

 

resolved 

 

 

 

 

 

Table 2.5 Number of pairs with TM-score greater than 0.5  

                       between any two runs of I-TASSER 

 

 

run # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 

# 1 2 3 3 1 3 3 0 5 1 

# 2  2 2 2 2 3 2 2 1 

# 3   3 3 2 3 2 1 4 

# 4    3 2 6 3 5 1 

# 5     3 5 3 2 4 

# 6      4 1 5 2 

# 7       4 5 2 

# 8        3 2 

# 9         2 

 

 

 

Table 2.6 Number of pairs with TM-score greater than 0.5  

                             between any two runs of Rosetta 

 

 

run # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 

# 1 4 6 10 11 8 5 11 12 8 9 

# 2 
 

2 11 8 7 6 13 11 11 10 

# 3 
  

6 15 9 13 20 16 18 16 

# 4 
   

3 9 7 14 13 16 14 

# 5 
    

4 8 15 5 16 15 

# 6 
     

1 8 5 13 9 

# 7 
      

5 15 16 14 

# 8 
       

8 7 13 

# 9 
        

9 17 

#10 
         

6 
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resolved structures were used for the evaluation of the results produced with I-TASSER 

and Rosetta. There are ten PDB structures that meet this criteria: the B chain of 3IO4 [PDB: 

3IO4] (3io4_b), the C chain of 3IO4 [PDB: 3IO4] (3io4_c), the B chain of 3IO6 [PDB: 

3IO6] (3io6_b), the C chain of 3IO6 [PDB: 3IO6] (3io6_c), the C chain of 3IOR [PDB: 

3IOR] (3ior_c), the B chain of 3IOT [PDB: 3IOT] (3iot_b), the C chain of 3IOU [PDB: 

3IOU] (3iou_c), the B chain of 3IOV [PDB: 3IOV] (3iov_b), the C chain of 3IOV [PDB: 

3IOV] (3iov_c), and the B chain of 3IOW [PDB: 3IOW] (3iow_b). The number of 

consecutive Qs in each structure is shown in Table 2.7.    

The best 50 I-TASSER and 50 Rosetta models were compared with these 10 PDB 

structures using the TM-align program. TM-scores, root-mean-square deviation (RMSD), 

aligned number of residues, sequence identity and the structure superposition were 

obtained from TM-align [43]; the number of exact matches and the number of exact 

matched Qs were extracted from the structure alignment and finally the exact structure 

overlap (ESO) and exact structure overlap of Qs (ESOP) were calculated using Equation 

(2.2) and Equation (2.3) given in the methods section. The values of each similarity 

parameter considered here are shown in Table 2.8 along with the p-values assessing the 

significance of the difference between the I-TASSER and Rosetta results. 

The average TM-score of I-TASSER/PDB superposition pairs is 0.50 and the average 

TM-score of Rosetta/PDB pairs is 0.45, reflecting the fact that 253, of the 500, 

I-TASSER/PDB pairs have TM-scores greater than 0.5 while only 87 pairs of the 

Rosetta/PDB pairs have TM-scores greater than 0.5. The average RMSD of 

I-TASSER/PDB pairs (1.53 Å) is also smaller than that of Rosetta/PDB pairs (1.74 Å). 

Other TM-align parameters depicted in Table 2.8 also show that I-TASSER performs better  
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structures 

 

Table 2.7 Numbers of Qs in  

                                               the PDB structures 

 

 

PDB structure Number of Qs 

3io4_b 10 

3io4_c 11 

3io6_b 14 

3io6_c 10 

3ior_c 13 

3iot_b 12 

3iou_c 14 

3iov_b 11 

3iov_c 15 

3iow_b 17 

 

 

 

Table 2.8 Distribution of structure superposition parameters between  

              predicted models and PDB structures  

 

 

 I-TASSER Rosetta p-value 

TM-score 0.50±0.06 0.45±0.06 <0.0001 

RMSD (Å) 1.53±0.34 1.74±0.34 <0.0001 

Aligned number 24.05±2.14 25.56±2.41 <0.0001 

Sequence Identity a (0.30,0.71) (0.38,0.52) <0.0001 

Exact Match (<5.0 Å) a (0,16) (0,0) <0.0001 

Exact Qs Match(<5.0 Å) a (0,1) (0,0) <0.0001 

Total Qs Match(<5.0 Å) a (5,8) (8,11) <0.0001 

Exact Match (other) a (0,0) (0,0) <0.0001 

Exact Qs Match(other) a (0,0) (0,0) <0.0001 

Total Qs Match(other) a (0,1) (0,1) <0.0001 

Exact Match (all) a (6,25) (0,0) <0.0001 

Exact Qs Match (all) a (0,1) (0,0) <0.0001 

Total Qs Match (all) a (6,8) (9,12) <0.0001 

ESOP a (0,9.09) (0,0) <0.0001 

ESO a  (0, 53.13) (0,0) <0.0001 
a The values between brackets represent the value of the property for the best structure 

superposition at the first and third quartile, respectively, of their distributions.  
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than Rosetta in this test. 

The structure overlap scores, ESOP and ESO, for I-TASSER models are also better 

than those for Rosetta models. For instance more than 75% of the Rosetta models have no 

exact match in the polyQ region nor for the entire sequence, whereas the 75% quantile of 

the ESO and ESOP scores for I-TASSER are 53.13 and 9.09, respectively. The statistical 

tests have shown that these differences are significant (Table 2.8). 

Fifty of the I-TASSER/PDB structure superpositions have ESOP values greater than or 

equal to 50, which means that 50 pairs have more than 50% of Qs in the polyQ region with 

exact match. These 50 pairs include 9 of the 10 PDB structures, so 9 of the 10 structures 

have corresponding I-TASSER models with very good matches in the polyQ regions. In 

contrast only 5 of these 10 structures have corresponding Rosetta/PDB structure 

superposition matches when the same criteria are used. 

The best matches between the predicted structures by I-TASSER and Rosetta, 

respectively, and one of the PDB structures considered here are depicted in Figure 2.4. The 

I-TASSER structure best match is with the B chain of 3IO6 [PDB: 3IO6]; the match has a 

TM-score of 0.56 and the ESOP score of 100. The best two matches for Rosetta structures 

show matches with the C chain of 3IOU [PDB: 3IOU] and the B chain of 3IOW [PDB: 

3IOW]. Their TM-scores are 0.5074 and 0.5057, respectively, and the ESOP score of 100. 

 

Discussion  

 

This study evaluated two software tools for predicting, from amino acid sequences, the 

3D structures of the polyQ regions of proteins related to polyglutamine diseases. 

Pathogenic neurodegenerative polyQ proteins were used as a model, for relevance to 

developing structure-specific therapeutics based on normal vs. polyQ expanded protein 
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structures 

 

 

 

 
 

Figure 2.4 Structure superposition of predicted models and PDB structures. Structure 

superposition of predicted models and PDB structures with TM-score>0.5 and ESOP=100. 

(a) I-TASSER third model in the tenth run with 3io6_b; (b) Rosetta forth model in the first 

run with 3iou_c; (c) Rosetta third model in the fifth run with 3iow_b. Tan: PDB structure; 

Sky blue: predicted models. The N-terminal end of each structure is shown on the left.    
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structures. Two highly recognized and efficient 3D structure prediction programs, I-

TASSER and Rosetta, were evaluated to assess their performance for structure prediction 

using segments of the huntingtin protein harboring polyQ repeats. Both I-TASSER and 

Rosetta produced good results. 

When tested for structure stability under changes of the initial random seed, Rosetta 

shows less variability than I-TASSER. This means that if we run Rosetta and I-TASSER 

several times respectively, it is possible that we will get less variance in the results from 

Rosetta than from I-TASSER. Nonetheless, both programs produce a reasonable ensemble 

of structures with sufficient diversity and without extreme deviations. Several studies have 

illustrated that the polyQ repeat regions of these proteins are highly disordered with 

structure flexibility [31], but this has not been quantified experimentally. Therefore it is 

challenging to discriminate among these two approaches using these criteria. In 

consequence we must conclude that both I-TASSER and Rosetta are suitable for the task 

on predicting ensemble structures of protein containing polyQ segments.  

The accuracy of the prediction program is a very important factor that we evaluated 

here. In this study, the structure similarity between the predicted models and the PDB 

experiment structures available was used to evaluate the validity of the prediction 

programs. The root-mean-square deviation (RMSD) score is the most often-used parameter 

to calculate the structure similarity, but a drawback of its use is that a relatively small local 

variation can result in a high RMSD [44]. TM-score weights the close atom pairs stronger 

than the distant matches, and it is more sensitive to the topology fold than the RMSD [44]. 

Besides the global similarity measured by TM-score, more restricted scores on the exact 

match of two structures were also calculated. The exact structure overlap (ESO), derived 
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from the structure overlap (SO) score [45], was introduced and instead of calculating the 

number of aligned pairs it counts the exact match pairs, which not only counts aligned 

residues but also residues that lie in the same positions in both the sequences of predicted 

model and PDB structure. The exact structure overlap of polyQ repeat (ESOP) is the special 

version of ESO, which is used to measure the prediction accuracy in the polyQ region. 

Considering the TM-score, ESO and ESOP together gives a more comprehensive view of 

similarity between the predicted model and the PDB experimental structures from both a 

global and a local aspect. The ESO score and ESOP score can be used for similarity 

comparison tasks, especially if there are regions which play more critical roles than others. 

Rosetta models have a larger number of aligned residues on average than I-TASSER, 

but the average RMSD values and TM-scores are much higher (lower) than that of 

I-TASSER. So when the Rosetta models are aligned with the PDB structures, the distance 

between the models and the experimental structures is large, which is not a good sign for 

good structural matches. On the contrary, I-TASSER models aligned better with PDB 

structures not only with better RMSD and TM-scores, but also better ESO and ESOP 

scores. This can also be seen from the secondary structures patterns. When considering 

specific structure pairs, both I-TASSER and Rosetta have predicted models which can 

match the PDB structures with good global (TM>0.5) and local (ESO>=50 and 

ESOP>=50) structures. So both Rosetta and I-TASSER have the ability to get the native 

models, but for the overall performance, I-TASSER appears to be better than Rosetta.   

As several models are returned by the structure prediction programs, it is important to 

have criteria to select the best models. However, the model with the lowest energy in the 

prediction program may not be the best model for reproducing the polyQ regions. For 



49 

 

 

instance for Rosetta, the two predicted models with TM-score greater than 0.5 and ESOP 

of 100 (Figure 2.4(b) and 4(c)) are not the models with the lowest energy in that Rosetta 

run. This is true also for the I-TASSER model with TM-score greater than 0.5 and ESOP 

of 100 (Figure 2.4(a)). In fact, of the 29 good models which have TM-score greater than 

0.5 and ESOP score greater than 50, only one model is ranked as the best by I-TASSER. 

 

Conclusions  

 

Both I-TASSER and Rosetta can be used for in silico studies of the structures of 

proteins with polyQ repeats related to neurodegenerative diseases. However, I-TASSER 

shows better performance than Rosetta when considering the overall agreement between 

results produced using these two prediction models with the limited experimental results 

available for comparison.  

Both I-TASSER and Rosetta are computationally efficient as both applications can be 

easily parallelized by executing numerous jobs each with a unique random seed.  

In our future studies we will attempt to predict the change of the structure as function 

of the number of Qs in the polyQ repeat segment for all the proteins involved in polyQ 

neurological diseases. Ideally we could use both these two programs to predict structures 

of the polyQ disease related proteins. This could provide a quasi “crowdsourcing” 

mechanism to cross check the results, but may prove computationally too expensive (see 

Methods). Therefore the results presented here suggest that studies should be, at least 

initially, performed using I-TASSER. 
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Abstract 

 

Spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3) are two common 

autosomal-dominant inherited ataxia syndromes, both of which are related to the unstable 

expansion of tri-nucleotide CAG repeats in the coding region of the related ATXN2 and 

ATXN3 genes, respectively. The poly-glutamine (polyQ) tract encoded by the CAG 

repeats has long been recognized as an important factor in disease pathogenesis and 

progress. In this study, using the I-TASSER method for 3D structure prediction, we 

investigated the effect of polyQ tract enlargement on the structure and folding of ataxin-2 

and ataxin-3 proteins. Our results show good agreement with the known experimental 

structures of the Josephin and UIM domains providing credence to the simulation results 

presented here, which show that the enlargement of the polyQ region not only affects the 

local structure of these regions but also affects the structures of functional domains as well 

as the whole protein. The changes observed in the predicted models of the UIM domains 

in ataxin-3 when the polyQ track is enlarged provide new insights into possible pathogenic 

mechanisms. 
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Abstract 

 

Protein misfolding and aggregation is a pathogenic feature shared among at least ten 

polyglutamine (polyQ) neurodegenerative diseases. While solvent-solution interaction is a 

key factor driving protein folding and aggregation, the solvation properties of expanded 

polyQ tracts are not well understood. By using GPU-enabled all-atom molecular dynamics 

simulations of polyQ monomers in an explicit solvent environment, this study shows that 

solvent-polyQ interactions decrease as the lengths of polyQ tracts increase. This study finds 

a predominance of long-distance interactions between residues far apart in polyQ 

sequences in longer polyQ segments, that leads to significant conformational differences. 

This study also indicates that large loops, comprised of parallel β-structures, appear in long 

polyQ tracts and present new aggregation building blocks with aggregation driven by long- 

 

 

 
a Adapted from the manuscript submitted to PLoS One.  
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distance intra-polyQ interactions. Finally, consistent with previous observations using 

coarse-grained simulations, this study demonstrates that there is a gain in the aggregation 

propensity with increased polyQ length, and that this gain is correlated with decreasing 

ability of solvent-polyQ interaction. These results suggest the modulation of solvent-polyQ 

interactions as a possible therapeutic strategy for treating polyQ diseases.  

 

Introduction 

 

The polyglutamine (polyQ) diseases are caused by unstable expansions of CAG repeats 

resulting in proteins with expanded polyQ tracts. The polyQ diseases include Huntington’s 

disease (HD), the spinocerebellar ataxias (SCAs 1, 2, 3, 6, 8, 7, 17), dentatorubral-

pallidoluysian atrophy (DRPLA), and spinal and bulbar muscular atrophy (SBMA) [1-6]. 

Pathogenesis in these diseases is associated with abnormal polyQ protein folding [7-9] and 

resultant neuronal inclusion body formation [10, 8, 11-14]. While polyQ protein folding, 

stability, and aggregation have been well described for the polyQ diseases [15, 16], the 

molecular mechanisms leading to protein misfolding and aggregation, at the atomic level, 

are not well understood. 

Computational simulations, using a variety of approaches, are used by several 

publications to study polyQ aggregation. In order to provide context to the relevance of the 

studies presented here, this section briefly discusses how computational simulations are 

applied in the study of structure and aggregation of polyQ. Laghaei and Mousseau [17] 

performed Replica-Exchange Molecular Dynamics (REMD) simulations of polyQ 

monomers and dimers with 30Q to 50Q repeats in length, with an implicit solvent force 

filed, and observed that polyQ dimers with more than 40 repeats adopt antiparallel β-sheets, 

and triangular and circular β-helical structures. Nakano et al. [18], using the same 
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simulation methods, explored the conformation ensemble of short monomeric polyQ tracts 

with 15 glutamines. They find that Q15 monomers can assume multiple configurations and 

that the formation of oligomers is stabilized by the β-turns and hydrogen bonds between 

the main chains. The same authors performed REMD [19] on short polyQ monomers and 

dimers with lengths ranging from 3Q to 15Q; their results demonstrate that polyQ dimers 

strongly favor the formation of antiparallel β-sheet structures. Chiang et al.[20] studied the 

aggregation of short polyQ segments with 15 residues using REMD with explicit solvent. 

Their results show that polyQ dimers mainly form helix and coil structures when they are 

far apart, but as the interpeptide distance decreases, an inter-peptide β-sheet is formed. 

Zhou et al. [21] studied the early stage of polyQ aggregation using initial β-helical 

structures of various shapes and sizes, which include left-handed circular, right-handed 

rectangular, and left- and right-handed triangular. Their results show that the stability of 

the β-helical structures increases as the number of rungs increases, and that the 3-rung left-

handed triangular and right-handed rectangular β-helical models are stable. Using the all-

atom REMD, Hayre et al. [22] find that the left-handed β-helical conformations are stable 

for polyQ tracts with 61 residues. To explore the stability of α-sheet configuration of 

polyQ, Babin et al. [23] performed Molecular Dynamics (MD) simulations in an explicit 

solvent environment on short polyQ dimers with 8 glutamines and find that the α-sheet 

configuration is a stable, metastable, or at least long-lived secondary structure. Miettinen 

et al.[24] assessed the stability of a 40Q polyQ segment with six different initial 

conformations, including steric zipper, β-nanotube, β-pseudohelix, β-sheetstack, β-sheet, 

and α-helix. Using atomistic MD simulations in explicit solvent, they find that β-hairpin-

based (β-sheet and β-sheetstack) and α-helical conformations are kinetically stable enough 
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to serve as a template to initiate polyQ fibrillation. The same group also studied the stability 

of polyQ dimers with the six initial conformations and finds that β-hairpin-containing 

conformers can form very stable dimers when their side chains are interdigitated, whereas 

dimers of α-helix, steric zipper, β-nanotube, and β-pseudohelix conformers are too short-

lived to initiate aggregation [25]. Using both 2D IR spectroscopy and MD simulation, 

Buchanan et al. determined that stacked β-hairpins are the dominant structure of polyQ 

fibrils [26]. Wang et al. [27] conducted solvent-free multiscale coarse-grained models on 

polyQ segments with lengths ranging from 8Q to 56Q, and find that the degree of 

aggregation increases with the length and concentration of polyQ chain. Deng et al. [28] 

studied the polyQ aggregation on Q32 using solvent-free multiscale coarse-gained MD 

simulations, and their results show that polyQ aggregation is sensitive to concentration and 

temperature changes. Lakhani et al. show that the β-rich region in the exon one of 

huntingtin protein misfolds with increasing polyQ lengths (Q23-Q47) [29]. Similarly, the 

work of Morida et al. finds the presence of a larger population of aggregation-forming 

structures in 40Q polyQ segments than in those below the pathogenesis threshold [30]. 

Stork et al. [31] studied the stability of several types of β-helix of polyQ, polyA, and polyS 

using MD simulations, and find that the water-filled channels inside the β-helix can 

destabilize the β-helix structures. This study demonstrates that protein-solvent interaction 

may compete efficiently with the intramolecular hydrogen bonds, affecting conformation 

stability and aggregation. However, few studies employ full explicit solvent MD 

simulations to evaluate solvent effects on polyQ aggregation as a function of the polyQ 

segment length.  

Although multinanosecond, all-atom and explicit solvent MD simulations can be a 
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powerful means to further study solvent effects on the folding and aggregation properties 

of polyQ proteins, the high computational cost of all-atom and explicit solvent MD has 

been a major deterrence for this type of studies. The use of GPU acceleration hardware for 

MD simulations can efficiently speed up these calculations [32] and makes it possible to 

do atomic MD simulation with an explicit water environment in a reasonable time period 

[33]. Amber, one of the most popular MD programs, is able to use NVIDIA GPUs to 

massively accelerate MD for both implicit [34] and explicit solvent simulations [35, 36] 

with a dramatic performance improvement. Here we report the study of solvent effects on 

solution properties, folding, and aggregation propensity of simple polyQ sequences, which 

can be considered an initial and computable model for the study of solvent effects on the 

aggregation propensity of polyQ disease related proteins at the atomistic level [37]. Of note 

is that, even with the advances provided by the GPU technology, all-atom MD studies of 

full polyQ proteins in explicit solvent are still nonfeasible. Taking advantage of the GPU 

speedups, we are able to perform MD runs of these polyQ models with repeat lengths in 

both the normal and the pathological ranges, using explicit solvent and simulation lengths 

of 105 ns, within reasonable computational wall times.  

In this paper, we report results of 105 ns simulation of polyQ segments of different 

repeat lengths, in the range observed for polyQ diseases, using full atomistic MD 

simulations with explicit solvent. 

 

Methods 

 

The polyQ tract is the only common region observed in the otherwise very dissimilar 

polyQ proteins which are associated with polyglutamine diseases, and in all cases, the 

polyQ expansion causes the disease. The threshold length of the polyQ segment that 
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triggers these diseases is around 35 to 40 residues, except in SCA6 which has a shorter 

threshold of around 19 repeats [38-40]. Therefore, it is of interest to study the solvation 

behavior of polyQ segments shorter than 20 and longer than 40 repeats to find common 

features on how solvent interactions may affect the folding of such diverse set of proteins. 

We performed MD simulations for polyQ monomers with 18 repeats (Q18), 46 repeats 

(Q46) and 32 repeats (Q32). These correspond to lengths below the lowest known disease 

threshold, above the highest known normal threshold and the average repeat length of these 

two, respectively. The extended structure of polyQ was used as the starting structure of the 

MD simulations. In order to avoid complications due to charged termini [41], the polyQ 

sequences were capped with an acetyl group in the N-terminus and a N-methylamide group 

in the C-terminus, i.e., the structures considered here are [acetyl-(Gln)n-N-methylamide], 

where n = 18, 32, and 46 denotes the number of glutamines. xLEaP [42] was used to build 

the initial configurations, and the Amber force field, AMBER ff99SB force field[43], was 

used with a TIP3P water box to provide an explicit simulation of the solvent. A local 

minimization of the polyQ monomers was done in vacuum before the water box was added. 

The TIP3P water was included in a truncated octahedral box added to the polyQ monomer 

with a buffering distance of 9.0 Å between the edges of the box and the polyQ monomer. 

A second minimization was performed on the solvated system using a nonbonded cutoff 

distance of 9 Å to minimize the energy of the whole system. The whole system was then 

heated from 0 K to 310 K and equilibrated for 50 ps, followed by molecular dynamics 

simulations for 105 ns at the temperature of 310K and constant pressure of 1 atm. The 

temperature was maintained through the Berendsen thermostat with a coupling time of 0.1 

ps. Isotropic position scaling was used to maintain the pressure and a relaxation time of 1 
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ps was used. The velocity was updated every 2 fs, and results were recorded every 1 ps.  

For each polyQ monomer, six independent runs were performed and the results 

presented here are the average for these runs. All the MD simulations were done using the 

Amber 14 molecular simulation package [44] which supports a GPU accelerated PMEMD 

module, that implements the Particle Mesh Ewald (PME) method for electrostatics [36]. 

All calculations were performed using the clusters at the Center for High Performance 

Computing (CHPC) at the University of Utah. Each computing node in the cluster has two 

Nvidia 2090 GPUs and 12 Intel Xeon (Westmere X5660) processors. After a preliminary 

study to optimize the efficiency of the GPU-accelerated computing nodes (results not 

shown), we performed one simulation per GPU to obtain the best throughput performance 

with the settings of our cluster.  

The Cpptraj utility in the Amber 14 tool box [44] was used for most of the analysis. 

The MD trajectories were re-imaged back to the primary box, and to speed up the analysis, 

only 1/100 of the frames were processed that is 100 ps per frame in the new trajectory. The 

secondary structure, hydrogen bond, solvent bridge, radius of gyration, and solvent surface 

area were calculated using Cpptraj for each simulation trajectory. The Rg value of the 

polyQ segments was calculated for each frame of the 105 ns and these values were used to 

calculate the exponent factor b in the Rg ~ Nb. The log transform was done on each data 

point, and a linear regression was fit to get the exponent factor b.  

For each polyQ length, the results of six independent simulations were averaged, such 

that all values reported here represent the average values over these six runs. Statistical 

analyses were performed using R [45], figures were plotted with ggplot2 package [46] and 

Gnuplot [47], and VMD was used for trajectory visualization [48]. 
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Results  

 

Overall GPU Performance 

 

The systems considered here, including both polyQ monomer and water solvent (Table 

4.1), are large enough to exhibit excellent scaling when using GPUs. The GPU version of 

the Amber PMEMD module on the GPU furnished nodes provides highly consistent 

speedups, with an average factor of 8.5 times speedup over the CPU times. 

 

Secondary Structure  

 

Our simulations show that polyQ monomers can adopt various secondary structures 

instead of fixed structures during the 105 ns simulations. This is consistent with previous 

results showing that polyQ monomers are disordered [37]. All monomers predominately 

adopt helical structures (Figure 4.1), but the types and proportions of each of the helical 

structures vary among monomers with different repeat lengths. Q18 monomers show the 

highest proportion of helical structures including 3-helix and α-helix, whereas Q32 

monomers adopt the lowest proportion of helical structures on average. It is apparent from 

Figure 4.1 that the number of β-structures, especially parallel ones, increases as the length 

of the polyQ segment increases. This is an important structural change as it has been 

established that parallel β-structures are a precursor for initiating aggregation [49].  

The stability of the β-structures, as a function of time, is also different for monomers 

of different lengths (Figures 4.2-4.4). The simulations show that the parallel β-structures 

in Q46 monomers are very stable and most of them can last for the entire simulations 

(Figure 4.4), whereas in Q18 and Q32 these structures are less stable, occurring only in 

0.1% of the simulation time in Q18 (Figure 4.2) and around 1% of the time for Q32 (Figure 

4.3).



65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1 Comparison of AMBER CPU and GPU performance for 

                   simulations of polyQ monomer in explicit solvent  

                   with different number of repeats. 

 

  
number of atoms CPU Performance 

(ns/day) 

GPU performance 

(ns/day) 

Q46 341,249 0.30±0.01 2.73±0.02 

Q32 134,359 0.86±0.00 7.49±0.04 

Q18 34,407 3.55±0.01 27.75±0.12 
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Figure 4.1 Secondary structure of polyQ fragments of different lengths. A Q18; B Q32; C 

Q46. Colours indicate different types of secondary structures. Blue: parallel β structure; 

Sky blue: antiparallel β structure; Dark green: 3-helix; Green: α-helix; Olive: pi-helix; Dark 

orange: turn; Red: bend; Black: loop. X-axis: residue index; Y-axis: percentage of frames 

in the 105 ns simulations, averaged over the six runs performed here.  
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Figure 4.2 Secondary structure of Q18 monomers at different time frames for each of the 

six independent MD runs performed. X-axis: frame index with each frame representing 

100 ps of simulation; Y-axis: residue index indicating the secondary structure as depicted 

at the right panel.  
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Figure 4.3 Secondary structure of Q32 monomers at different time frames for each of the 

six independent MD runs performed.  X-axis: frame index with each frame representing 

100 ps of simulation; Y-axis: residue index indicating the secondary structure as depicted 

at the right panel.  
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Figure 4.4 Secondary structure of Q46 monomers at different time frames for each of the 

six independent MD runs performed. X-axis: frame index with each frame representing 

100 ps of simulation; Y-axis: residue index indicating the secondary structure as depicted 

at the right panel. 
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Hydrogen Bonding 

 

Hydrogen bonding plays a critical role in polyQ folding and stability [50], therefore 

changes in hydrogen bond patterns with polyQ expansion may be a signal of changes in 

folding and aggregation propensity. Of particular interest is the balance between intra-

polyQ and polyQ-solvent hydrogen bonds. In this study, we term the hydrogen bond as 

intra-polyQ if both donor and acceptor are from glutamine residues, and hydrogen bonds 

between glutamine residues and solvent water molecules are called solvent-polyQ 

hydrogen bonds. As the amide group in the sidechain of a glutamine can provide one 

hydrogen donor (hydrogen in NE2) and two hydrogen acceptors (NE2 and OE1), the intra-

polyQ sidechain hydrogen bonds can be both backbone-sidechain as well as sidechain-

sidechain hydrogen bonds. The hydrogen bonds are identified using the hbond command 

in Cpptraj program in the Amber 14 Toolbox. The distance cut-off is set at 3.5 Å, and the 

angle cut-off is set at 120°. Therefore, there can be more than one water molecule, 

surrounding one glutamine, which meet these criteria. So the number of hydrogen bonds 

reported in this study represents the dynamic count of the number of hydrogen bonds 

detected by Cpptraj over all six simulations.    

Intra-polyQ hydrogen bonds.  Using the procedure described above, the number of 

hydrogen bonds is counted for each individual frame in the 105 ns MD simulation for each 

MD run. The normalized count of hydrogen bonds per 100 Qs, which is the number of 

hydrogen bonds normalized by length of the polyQ segment multiplied by 100, is 

calculated as a measure of the relative ability of polyQ monomers to form hydrogen bonds.  

While longer polyQ monomers adopt more intra-polyQ hydrogen bonds than shorter 

ones (Figure 4.5A, red), the normalized count of intra-polyQ hydrogen bonds per 100 
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Figure 4.5 Intra-polyQ hydrogen bonding. A total number of intra-polyQ hydrogen bonds; 

B sidechain-sidechain hydrogen bonds. Ted: total count of hydrogen bonds; Blue: 

normalized count of hydrogen bonds per 100Qs.  



72 

 

 

glutamines increases as the monomer length increases (Figure 4.5A, blue). There is a linear 

relationship between normalized intra-hydrogen bonds and monomer length (p<0.001, 

r=0.282). 

When considering intra-polyQ hydrogen bonds formed with the glutamine sidechains, 

the number of sidechain-sidechain hydrogen bonds increases with the number of 

glutamines in the polyQ tract (p<0.001, r=0.70) (Figure 4.5B, red). For polyQ monomers 

of the same length, the number of sidechain-sidechain hydrogen bonds is consistent among 

simulations, and independent of the secondary structure (Figure 4.6). When normalized by 

the number of glutamines in the polyQ tract, the normalized count of sidechain-sidechain 

hydrogen bonds per 100Qs also increases with polyQ length (p<0.001, r=0.30) (Figure 

4.5B, blue). The normalized count of hydrogen bonds per 100 Qs formed by glutamine 

sidechains, including both sidechain-sidechain and sidechain-backbone hydrogen bonds, 

are similar in 32 Q and 46Q polyQs, but are fewer in the 18Q polyQ (Figure 4.7).  

At the residue level, all polyQ tracts studied here show some common hydrogen bond 

patterns. The results of this study show that, in all of the repeat lengths studied here, the ith 

residue prefers forming hydrogen bonds with residues in the position of i+2, i+3 or i+4 

(Figure 4.8). We verified that both backbone-backbone and sidechain hydrogen bonds 

contribute to the patterns of i+2, i+3, and i+4, but that the backbone-backbone hydrogen 

bonds contribute more than sidechain ones. Some hydrogen-bonded residue pairs are ‘hot’ 

in all the polyQ segments studied here and this trend is independent of the lengths of the 

polyQ monomers. Residues 1 and 4 show hydrogen bond propensity in 4 out of the 6 MD 

simulation runs of 18Q, 32Q, and 46Q polyQ segments. In addition to these common 

patterns, the intra-polyQ hydrogen bonds also have length-dependent features. The long-
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Figure 4.6 Sidechain hydrogen bond. Red: sidechain-backbone hydrogen bond; Blue: 

sidechain-sidechain hydrogen bond. Shapes indicate different experiments. From left to 

right, Q18, Q32, and Q46. 
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Figure 4.7 Number of intra-polyQ hydrogen bond normalized by the length of polyQ 

monomer. X-axis: the length of polyQ monomer; Y-axis: the number of hydrogen bond. 

Shapes indicate different types of hydrogen bonds.  
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Figure.4.8 Intra-polyQ hydrogen bond among different experiments. A, B, and C represent 

the total intra-polyQ hydrogen bond; D, E, and F represent the backbone-backbone 

hydrogen bond. A and D Q18; B and E Q32; C and F Q46.  
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ranged hydrogen bonds considered here are the ones formed by two glutamines with a 

sequence distance longer than at least half of the length of the polyQ monomer. The 

percentage of long-ranged hydrogen bonds is greater in the longer polyQ tracts than that 

shown in the shorter ones. For example, when considering hydrogen bonds with a time 

frequency greater than 50%, all of the hydrogen bonds in Q18 are short-ranged ones (Figure 

4.9), whereas 4.5% and 10.0% of the hydrogen bonds are long-ranged ones in Q32 and 

Q46, respectively. For Q32, the long-lived hydrogen bond can occur even between 

glutamines that are 15 residues apart in the polyQ sequence, and this distance can extend 

to 30 residues in 46Q polyQ monomers.  

Solvent-polyQ hydrogen bonding.  As expected, the number of solvent-polyQ 

hydrogen bonds, which are calculated using the criteria defined in the above section, 

increases as the length of polyQ monomers increases (Figure 4.10A). The slope of the 

increase is different among different types of hydrogen bonds, with sidechain solvent 

hydrogen bonds increasing the greatest (Figure 4.10A). However, when the total number 

of intra-polyQ hydrogen bond is normalized by the number of repeats in the polyQ 

segment, this normalized number of hydrogen bonds decreases as the polyQ length 

increases (Figure 4.10B), which is the reversed trend from what observed for the 

normalized number of intra-polyQ hydrogen bonds. When classified at the atomic level, 

the number of hydrogen bonds using each atom, shown in Figure 4.11, also increases with 

the length of polyQ (Figure 4.11A), with sidechain O-mediated hydrogen bonds increasing 

the greatest. However, when normalized by the polyQ segment length, the number of 

sidechain O-mediated hydrogen bonds decreases with the polyQ length, as did the 

backbone O-mediated hydrogen bonds (Figure 4.11B). The number of normalized 
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Figure 4.9 Distance distribution of observed hydrogen bonds with more than 50% 

frequency. The normalized distance is calculated as (|acceptor residue index-donor residue 

index|-1)/(number of repeat in polyQ-2). Red: Q18; Green: Q32; Blue: Q46.  
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Figure 4.10 Solvent hydrogen bond count. A total count; B count normalized by polyQ 

length. Shapes indicate different hydrogen bond types.  
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Figure 4.11 Solvent hydrogen bond count at the atomic level. A total count; B count 

normalized by polyQ length. Shapes indicate different types of hydrogen bond donor and 

acceptor. 
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hydrogen bonds formed by other atoms do not change substantially, and are similar among 

polyQs with different lengths (Figure 4.11B).   

Intra-polyQ hydrogen bond vs. solvent-polyQ hydrogen bond.  For each simulation 

time frame, the potential number of intra-polyQ hydrogen bonds and the potential number 

of solvent-polyQ hydrogen bonds are calculated and the values are plotted in Figure 4.12. 

As expected, there is strong positive linear correlation between the total number of 

hydrogen bonds of both types that increases with the length of polyQ tract (Figure 4.12A), 

but the direction of the correlation dramatically changed to a negative relationship when 

considering the normalized count per 100 Qs (Figure 4.12B). This negative relationship is 

a very strong indication that the relative proportion of intra-polyQ hydrogen bonds 

increases in detriment of solvent-polyQ ones for longer repeat (Figure 4.12B). 

 

Solvent Bridges 

 

Water solvent molecules can form bridges with glutamine residues in the polyQ tracts, 

and these bridges can affect folding and structure stability of polyQ tracts. Therefore, it 

may be expected that if polyQ tracts with different lengths have different solvent bridge 

patterns, their folding and structural integrity will also be affected. Figure 4.13 depicts the 

frequency of solvent-bridged glutamine pairs with the normalized residue distances. The 

bridges considered here are the ones that show in more than 100 time frames which 

correspond to at least 10% of the simulation time. We find that the frequencies of 

occurrence, for the observed bridges, range from 1% to 50%. Although the number of long-

ranged bridges is small among all three polyQ lengths considered here (Figure 4.13), 

polyQs with 32Q and 46Q repeats form more long-ranged bridges than the polyQ 

monomers with 18Q repeats. More than 5% of these bridges are long-ranged ones in 32Q 
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Figure 4.12 Number of intra-polyQ hydrogen bonds vs. the number of solvent-polyQ 

hydrogen bond. A total count; B count normalized by number of repeats. The error bars 

are the standard deviation from all the MD simulations for each polyQ length. Red: Q18; 

Green: Q32; Blue: Q46. 
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Figure 4.13 Distance distribution of observed solvent bridges lasting more than 100 frames 

in the simulation. The normalized distance is calculated as (|acceptor residue index-donor 

residue index|-1)/(number of repeat in polyQ-2).  Red: Q18; Green: Q32; Blue: Q46. 
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and 46Q polyQs, whereas only ~1.6% of the bridges are in long range in the 18Q polyQs. 

These results are consistent with the above discussion on the hydrogen bond results, both 

of which show a substantial decrease of solvent interactions and likely, more compact 

structures as the length of the polyQ tracts increases.  

 

Radius of Gyration (Rg) 

 

The Rg is used to describe the compactness of a protein. It is defined as the root mean 

square distance of the collection of atoms from their common center of gravity.  

For flexible polymers, the Rg value is proportional to Nb, where N is the length of the 

polymer [51] and b is characteristic of the solubility of the polymer. A good solvent is 

characterized by an exponent of ~ 0.59, as chain-solvent interactions are preferred, whereas 

a poor solvent has an exponent value of ~ 0.33, as the chain collapses to minimize contact 

with solvent [51] .Using the 105-ns simulation data, we find a value of b = 0.45 for the 

polyQ segments in water solution studied here (Figure 4.14). This indicates that there is a 

tendency to collapse among the polyQ structures as the length of the polyQ segment 

increases. Consistent with the results of previous sections in this paper, the results of Rg 

indicates that longer polyQ segments are less soluble, which is also consistent with an 

increase of their propensity to aggregation as the length of the polyQ increases. 

 

Solvent Accessible Surface Area (SASA) 

 

As expected, the total SASA of polyQ segments studied here increases as the number 

of polyQ length increases (Figure 4.15). Both total backbone and total sidechain SASA 

follow the same trend, but sidechain SASA increases faster than the backbone SASA. 

However, when SASA is normalized by the length of polyQ, this normalized SASA value
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Figure 4.14 Scaling laws for polyQ monomers in water. Black dots are the Rg values of 

each frame, and the red line is the regression line of number of repeat and Rg, both in 

natural log-scale. 
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Figure 4.15 Solvent accessible surface area. A total SASA; B normalized SASA. Red: 

backbone SASA; Green: sidechain SASA; Blue: total SAS 
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decreases with polyQ length (Figure 4.15), which is the same trend from what observed for 

the Rg values. The normalized backbone SASA for all polyQ sequences studied here is on 

average smaller than 20 Å2, therefore it is likely that polyQ backbone may be buried inside 

the structures rather than residing at the surface [52]. These results are also consistent with 

the results of previous sections, all of which indicate that the ability of polyQ monomers 

to interact with the solvent decreases as the length of the polyQ sequence increases.  

 

Discussion 

 

Consistent with the fact that the expansion of polyQ sequence beyond a certain 

threshold, specific for each polyQ disease, triggers pathogenesis [53], numerous 

observations have suggested that the polyQ tract by itself may play a central role in the 

pathogenesis of the ten known polyQ neurodegenerative diseases [13].  

In this study, three different lengths of polyQ segments are considered, Q18, Q32, and 

Q46, to cover normal, intermediate and pathological ranges relevant for most of the polyQ 

diseases. The full atomistic MD simulations with explicit solvent presented here show that 

all polyQ segments mainly form random-coiled structures, which is consistent with 

previous literature studies [20]. But the results in this study also show an increasing 

propensity to form helical and β structures as the number of glutamines increases in the 

polyQ tract. The type of β-structures are different among polyQ monomers of different 

lengths. The β-structures in Q46 are dominated by parallel β-structures, whereas for Q18 

and Q32, the majority are antiparallel β-structures. While Q18 and Q32 polyQ monomers 

can form parallel β-structures, these structures are not stable and cannot last till the end of 

the simulations (Figures 4.2 and 4.3). On the contrary, for Q46 the parallel β-structures, 

once formed, can last to the end of the simulations, which may be a clear evidence of the 
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formation of a proto-structure conducive to aggregation. 

In this study, the MD simulations of polyQ segments in water predict a b scaling factor 

for the Rg of 0.45 indicating that water is not a good solvent for polyQ [54, 51]. Consistent 

with the results of Vitalis et al. [51], this result indicates the decreased preference of 

solvent-polyQ interaction as the number of repeats increases in polyQ monomers. This 

observation is also consistent with all the results, performed here, of the changes in 

hydrogen bond patterns as the lengths of the polyQ sequences increase. 

The results of the normalized SASA also support the idea that the preference of water-

polyQ interaction decreases as the length of polyQ increases. Although the total SASA is 

larger for polyQ monomers with longer repeats, the SASA per residue decreases as the 

repeat number of polyQ tract increases, especially for the sidechain surface area (Figure 

4.15).  

This study also explores the preference of the intra-polyQ vs. solvent-polyQ hydrogen 

bond formation, and the results show that the normalized number of hydrogen bonds per 

residue increases for the former and decreases for the latter type of hydrogen bond, as the 

number of repeats increases (Figure 4.5 and Figure 4.10). Q18, Q32, and Q46 can 

potentially form long-ranged hydrogen bonds. Considering the hydrogen bonds that show 

in more than 50% of the simulation time, in Q18 the majority of them are short-ranged 

ones with residues that are only 2- and 3-residue apart. However, long-ranged hydrogen 

bonds do exist in a larger proportion in Q46 (Figure 4.9). Driven by the long-distance 

interaction, polyQ sequences with longer lengths can fold into more compact structures, 

which also indicates an increasing propensity to avoid solvent interactions.  

All the results presented here consistently point towards an increased propensity to 
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hydrophobicity as the polyQ segments become longer. This raises the hypothesis that the 

pathogenic cause of the polyglutamine diseases may be rooted in the increased 

hydrophobicity of their polyQ tracts, which hydrophobicity, by increasing protein 

aggregation, causes neural degeneration. While results of this study does not provide direct 

evidence of the role which the polyQ segments play in polyglutamine protein aggregation, 

in the neurodegenerative diseases considered here, given the fact that the only common 

element of these diseases is the enlargement of polyQ segments in their associated proteins, 

the results presented here provide impetus to further exploring the hypothesis listed above. 

This study is not without limitations. Only polyQ monomers are studied and the inter-

molecular interactions among polyQ monomers, which can contribute to aggregation [55], 

are not included in this study. Additionally, regions flanking the polyQ tract are not 

considered in this study. Results of our previous study have demonstrated that regions 

flanking polyQ tracts alter polyQ secondary structure models [56], consistent with findings 

that these flanking regions alter aggregation of polyQ proteins [57, 29, 58]. However, with 

the existing study settings, it is easy for us to study the solvation of polyQ tract with the 

sequence context of the polyQ proteins, both monomers and polymers in the future.  

 

Conclusions 

 

This paper studies the effect of solvation on the folding of polyQ segments with repeat 

lengths in the normal, intermediate, and pathological ranges using all-atom molecular 

dynamics simulations with an explicit water solvent environment. In accordance with the 

literature, the results of this study show that polyQ monomers can fold, but are disordered, 

when in water. GPU acceleration has effectively improved computational performance, 

which makes it possible to study the polyQ aggregation in all-atom explicit environment 
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with reasonable time. The simulations show that, as the length of a polyQ monomer 

increases, the water solubility of the polyQ segments decreases, while the propensity to 

form more compact structures with intra-polyQ hydrogen bonds increases. The results of 

this study demonstrate gains in aggregation propensity with increased polyQ lengths that 

correlates with decreasing ability of solvent-polyQ interaction. These results are consistent 

with previous observations using coarse-grained simulations, and suggest that modulation 

of solvent-polyQ interaction may be a possible therapeutic strategy for treating polyQ 

diseases.  

 

References  

 

1. Yazawa I, Nukina N, Hashida H, Goto J, Yamada M, Kanazawa I. Abnormal gene 

product identified in hereditary dentatorubral-pallidoluysian atrophy (DRPLA) brain. Nat 

Genet. 1995;10(1):99-103. 

2. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. Androgen 

receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature. 

1991;352(6330):77-9. 

3. Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S et al. 

CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat 

Genet. 1994;8(3):221-8. 

4. David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G et al. Cloning of the 

SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet. 1997;17(1):65-

70. 

5. Orr HT, Chung MY, Banfi S, Kwiatkowski TJ, Jr., Servadio A, Beaudet AL et al. 

Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat 

Genet. 1993;4(3):221-6. 

6. Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I et 

al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia 

type 2. Nat Genet. 1996;14(3):269-76. 

7. Tobelmann MD, Murphy RM. Location trumps length: polyglutamine-mediated 

changes in folding and aggregation of a host protein. Biophys J. 2011;100(11):2773-82. 

8. Wetzel R. Misfolding and aggregation in Huntington disease and other expanded 



90 

 

 

 

polyglutamine repeat diseases. In: Ramirez-Alvarado M, Kelly JW, Dobson CM, editors. 

Protein misfolding diseases: current and emerging principles and therapies. Hoboken: John 

Wiley & Sons, Inc.; 2010. p. 305-24. 

9. Scarafone N, Pain C, Fratamico A, Gaspard G, Yilmaz N, Filée P et al. Amyloid-

like fibril formation by polyQ proteins: a critical balance between the polyQ length and the 

constraints imposed by the host protein. PLoS One. 2012;7(3):e31253. 

10. Robertson AL, Bottomley SP. Towards the treatment of polyglutamine diseases: 

the modulatory role of protein context. Curr Med Chem. 2010;17(27):3058-68. 

11. Shao J, Diamond MI. Polyglutamine diseases: emerging concepts in pathogenesis 

and therapy. Hum Mol Gen. 2007;16(R2):R115-R23. 

12. Zoghbi HY, Orr HT. Pathogenic mechanisms of a polyglutamine-mediated 

neurodegenerative disease, spinocerebellar ataxia type 1. J Biol Chem. 2009;284(12):7425-

9. 

13. Michalik A, Van Broeckhoven C. Pathogenesis of polyglutamine disorders: 

aggregation revisited. Hum Mol Gen. 2003;12 Spec No 2:R173-86. 

14. Matilla-Duenas A, Sanchez I, Corral-Juan M, Davalos A, Alvarez R, Latorre P. 

Cellular and molecular pathways triggering neurodegeneration in the spinocerebellar 

ataxias. Cerebellum. 2010;9(2):148-66. 

15. Matilla-Duenas A, Ashizawa T, Brice A, Magri S, McFarland KN, Pandolfo M et 

al. Consensus paper: pathological mechanisms underlying neurodegeneration in 

spinocerebellar ataxias. Cerebellum. 2014;13(2):269-302. 

16. Orr HT. Beyond the Qs in the polyglutamine diseases. Genes Dev. 2001;15(8):925-

32. 

17. Laghaei R, Mousseau N. Spontaneous formation of polyglutamine nanotubes with 

molecular dynamics simulations. J Chem Phys. 2010;132(16):165102. 

18. Nakano M, Watanabe H, Rothstein SM, Tanaka S. Comparative characterization of 

short monomeric polyglutamine peptides by replica exchange molecular dynamics 

simulation. J Phys Chem B. 2010;114(20):7056-61. 

19. Nakano M, Ebina K, Tanaka S. Study of the aggregation mechanism of 

polyglutamine peptides using replica exchange molecular dynamics simulations. J Mol 

Model. 2013;19(4):1627-39. 

20. Chiang HL, Chen CJ, Okumura H, Hu CK. Transformation between alpha-helix 

and beta-sheet structures of one and two polyglutamine peptides in explicit water 

molecules by replica-exchange molecular dynamics simulations. J Comput Chem. 

2014;35(19):1430-7. 



91 

 

 

 

21. Zhou ZL, Zhao JH, Liu HL, Wu JW, Liu KT, Chuang CK et al. The possible 

structural models for polyglutamine aggregation: a molecular dynamics simulations study. 

J Biomol Struct Dyn. 2011;28(5):743-58. 

22. Hayre NR, Singh RR, Cox DL. Sequence-dependent stability test of a left-handed 

beta-helix motif. Biophys J. 2012;102(6):1443-52. 

23. Babin V, Roland C, Sagui C. The alpha-sheet: a missing-in-action secondary 

structure? Proteins. 2011;79(3):937-46. 

24. Miettinen M, Knecht V, Monticelli L, Ignatova Z. Assessing polyglutamine 

conformation in the nucleating event by molecular dynamics simulations. J Phys Chem B. 

2012;116(34):10259-65. 

25. Miettinen MS, Monticelli L, Nedumpully-Govindan P, Knecht V, Ignatova Z. 

Stable polyglutamine dimers can contain beta-hairpins with interdigitated side chains-but 

not alpha-helices, beta-nanotubes, beta-pseudohelices, or steric zippers. Biophys J. 

2014;106(8):1721-8. 

26. Buchanan LE, Carr JK, Fluitt AM, Hoganson AJ, Moran SD, de Pablo JJ et al. 

Structural motif of polyglutamine amyloid fibrils discerned with mixed-isotope infrared 

spectroscopy. Proc Natl Acad Sci U S A. 2014;111(16):5796-801. 

27. Wang Y, Voth GA. Molecular dynamics simulations of polyglutamine aggregation 

using solvent-free multiscale coarse-grained models. J Phys Chem B. 2010;114(26):8735-

43. 

28. Deng L, Wang Y, Ou-Yang ZC. Concentration and temperature dependences of 

polyglutamine aggregation by multiscale coarse-graining molecular dynamics simulations. 

J Phys Chem B. 2012. 

29. Lakhani VV, Ding F, Dokholyan NV. Polyglutamine induced misfolding of 

huntingtin exon1 is modulated by the flanking sequences. PLoS Comput Biol. 

2010;6(4):e1000772. 

30. Moradi M, Babin V, Roland C, Sagui C. Are long-range structural correlations 

behind the aggregration phenomena of polyglutamine diseases? PLoS Comput Biol. 

2012;8(4):e1002501. 

31. Stork M, Giese A, Kretzschmar HA, Tavan P. Molecular dynamics simulations 

indicate a possible role of parallel beta-helices in seeded aggregation of poly-Gln. Biophys 

J. 2005;88(4):2442-51. 

32. Friedrichs MS, Eastman P, Vaidyanathan V, Houston M, Legrand S, Beberg AL et 

al. Accelerating molecular dynamic simulation on graphics processing units. J Comput 

Chem. 2009;30(6):864-72. 

33. Harvey MJ, De Fabritiis G. An implementation of the smooth particle mesh ewald 



92 

 

 

 

method on GPU hardware. J Chem Theory Comput. 2009;5(9):2371-7. 

34. Götz AW, Williamson MJ, Xu D, Poole D, Le Grand S, Walker RC. Routine 

microsecond molecular dynamics simulations with AMBER on GPUs. 1. generalized born. 

J Chem Theory Comput. 2012;8(5):1542-55. 

35. Salomon-Ferrer R, Case DA, Walker RC. An overview of the Amber biomolecular 

simulation package. WIREs Comput Mol Sci. 2013;3(2):198-210. 

36. Salomon-Ferrer R, Götz AW, Poole D, Le Grand S, Walker RC. Routine 

microsecond molecular dynamics simulations with AMBER on GPUs. 2. explicit solvent 

particle mesh ewald. J Chem Theory Comput. 2013;9(9):3878-88. 

37. Wetzel R. Physical chemistry of polyglutamine: intriguing tales of a monotonous 

sequence. J Mol Biol. 2012;421(4-5):466-90. 

38. Rub U, Schols L, Paulson H, Auburger G, Kermer P, Jen JC et al. Clinical features, 

neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 

3, 6 and 7. Prog Neurobiol. 2013;104:38-66. 

39. Riley BE, Orr HT. Polyglutamine neurodegenerative diseases and regulation of 

transcription: assembling the puzzle. Genes Dev. 2006;20(16):2183-92. 

40. Mohan RD, Abmayr SM, Workman JL. The expanding role for chromatin and 

transcription in polyglutamine disease. Curr Opin Genet Dev. 2014;26:96-104. 

41. Wang X, Vitalis A, Wyczalkowski MA, Pappu RV. Characterizing the 

conformational ensemble of monomeric polyglutamine. Proteins. 2006;63(2):297-311. 

42. Schafmeister CEAF, Ross WS, Vladimir Romanovski. LEaP. University of 

California, San Francisco. 1995. 

43. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison 

of multiple Amber force fields and development of improved protein backbone parameters. 

Proteins. 2006;65(3):712-25. 

44. Case DA, Berryman JT, Betz RM, Cerutti DS, T.E. Cheatham I, Darden TA et al. 

AMBER 2015. University of California, San Francisco. 2015. 

45. R Development Core Team. R: a language and environment for statistical 

computing. R Foundation for Statistical Computing. 2011. http://www.R-project.org/. 

Accessed 1 Nov 2016.  

46. Wickham H. ggplot2: elegant graphics for data analysis. 2nd ed. New York: 

Springer; 2009. 

47. Racine J. gnuplot 4.0: a portable interactive plotting utility. J Appl Econ. 

2006;21(1):133-41. 



93 

 

 

 

48. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol 

Graph Model. 1996;14(1):33-8. 

49. Jahn TR, Radford SE. Folding versus aggregation: polypeptide conformations on 

competing pathways. Arch Biochem Biophys. 2008;469(1):100-17. 

50. Rhys NH, Dougan L. The emerging role of hydrogen bond interactions in 

polyglutamine structure, stability and association. Soft Matter. 2013;9(8):2359-64. 

51. Vitalis A, Wang X, Pappu RV. Quantitative characterization of intrinsic disorder 

in polyglutamine: insights from analysis based on polymer theories. Biophys J. 

2007;93(6):1923-37. 

52. Tsolis AC, Papandreou NC, Iconomidou VA, Hamodrakas SJ. A Consensus 

Method for the prediction of ‘aggregation-prone’ peptides in globular proteins. PLoS One. 

2013;8(1):e54175. 

53. Ignatova Z, Gierasch LM. Extended polyglutamine tracts cause aggregation and 

structural perturbation of an adjacent beta barrel protein. J Biol Chem. 

2006;281(18):12959-67. 

54. Chan HS, Dill KA. Polymer principles in protein structure and stability. Annu Rev 

Biophys Biophys Chem. 1991;20:447-90. 

55. Mishra R, Thakur AK. Amyloid nanospheres from polyglutamine rich peptides: 

assemblage through an intermolecular salt bridge interaction. Org Biomol Chem. 

2015;13(14):4155-9. 

56. Wen J, Scoles DR, Facelli JC. Effects of the enlargement of polyglutamine 

segments on the structure and folding of ataxin-2 and ataxin-3 proteins. J Biomol Struct 

Dyn. 2016:1-16. 

57. Williamson TE, Vitalis A, Crick SL, Pappu RV. Modulation of polyglutamine 

conformations and dimer formation by the N-terminus of huntingtin. J Mol Biol. 

2010;396(5):1295-309. 

58. Almeida B, Fernandes S, Abreu IA, Macedo-Ribeiro S. Trinucleotide repeats: a 

structural perspective. Front Neurol. 2013;4. 

 

 



 

 

CHAPTER 5 

 

 

HYDROGEN BONDING AND WATER ACCESSIBILITY OF THE 

 

POLYGLUTAMINE REGIONS IN ATAXIN-2 AND ATAXIN-3 

 

AS FUNCTION OF THE POLYQ TRACT LENGTH 

 

 

Abstract 

  

The hydrogen bondin and solvent accessibility of the polyglutamine (polyQ) chain may 

play an important role in polyQ protein aggregation, which has been postulated as a key 

factor in the pathogenesis pathway of at least ten neurodegenerative diseases. In a recent 

paper, using molecular dynamics simulations of isolated polyQ segments in explicit 

solvent, our previous study predicts an increase in aggregation propensity, due to 

increasing intra-polyQ hydrogen bonding capacity, as the length of the polyQ chain 

increases. Here, this study reports the hydrogen bonding and solvent accessibility changes 

of polyQ segments of increasing length, within the sequence-context of full-length ataxin-2 

and ataxin-3 3D structures predicted by I-TASSER. The results of this study show that, as 

the length of the polyQ region increases, there is a corresponding increase of intra-polyQ 

hydrogen bonding propensity. These results are consistent with our previous molecular 

dynamics simulations and support the hypothesis that polyQ hydrogen bonding self-

interactions increase with the lengths of polyQ chains, suggesting this increased self-

interaction capacity as a relevant cause of polyQ enlargement pathogenesis. These results 

also suggest that the modulation of solvent-polyQ interactions may be a possible strategy 
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for the treatment of polyQ diseases.  

 

Introduction  

 

The unstable expansion of the polyglutamine (polyQ) tract is associated with at least 

ten neurodegenerative diseases, including Huntington’s disease [1], dentatorubral-

pallidoluysian atrophy (DRPLA) [2], spinal and bulbar muscular atrophy (SBMA) [3], and 

seven spinocerebellar ataxias (SCA) type 1, 2, 3, 6, 7, 8, and 17 [4-7], all together, known 

as polyglutamine diseases [8]. The proteins underlying these diseases, termed as polyQ 

proteins, vary in sequence and function, whereas polyQ tract is the only common sequence 

element shared by the ten polyQ proteins [9]. The protein conformational misfolding and 

formation of intracellular aggregation are the hallmarks of polyQ diseases [10]. 

Solvent accessibility and hydrogen bonding are important factors for determining 

structural stability and aggregation in polyQ peptides. In a recent paper, using molecular 

dynamics (MD) simulations of isolated polyQ segments in explicit solvent, our previous 

study indicates that, as the length of the polyQ chain increases, there is an increase in 

aggregation propensity in polyQ tracts, due to increasing intra-polyQ hydrogen bonding 

capacity [Chapter 4]. The hydrogen bonding trend, as function of polyQ length, is also 

shown in other simulation studies of individual polyQ segments [11, 12]. Yet, very little is 

known about how these trends of the hydrogen bonding and solvent accessibility, in 

isolated polyQ segments, translate to the situation where the polyQ segment is embedded 

within a polyQ protein. The hydrogen bonding and solvent accessibility capacity of polyQ 

within the polyQ protein is a particularly important issue, as our previous computational 

studies show that the length of the polyQ tract can affect, not only the local, but also the 

global conformation of ataxin-2 and ataxin-3 [13].  
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Here, this study reports the changes in hydrogen bonding and solvent accessibility of 

polyQ segments with increasing polyQ lengths, within the sequence-context of full-length 

ataxin-2 and ataxin-3 proteins, using 3D structures predicted by I-TASSER [13]. Ataxin-2 

and ataxin-3 are selected for this study because they are two of the best characterized polyQ 

containing proteins [14, 15], responsible for SCA2 and SCA3, respectively. 

 

Methods 

 

Protein 3D Structure Prediction  

 

An ensemble of ataxin-2 and ataxin-3 structures, predicted using the I-TASSER protein 

structure prediction package [16], are used for the analysis presented here. Both ataxin-2 

and ataxin-3 with polyQ regions of varying length are studied. For ataxin-2, the number of 

repeats of the polyQ segments considered here are 13, 22, and 31 as normal repeats, and 

32, 37, and 79 as pathogenic ones [17]. For ataxin-3, the normal repeat lengths considered 

are 27 and 36, the intermediate ones are 48 and 56, and the pathogenic ones are 64 and 75 

[18]. Sequences with a given number of glutamine repeats are named P-nQ, where P is 

either ataxin-2 or ataxin-3 and n is the number of repeats. The details of the structure 

prediction procedure and the predicted structures can be found in our previous publication 

[13].  

 

Hydrogen Bond Determination  

 

Hydrogen bond (HB) is inferred using UCFS Chimera [19] FindHBond module with a 

hydrogen donor-acceptor distance cutoff of 3.5 Å. Several types of HBs are identified here: 

HBs formed by residues within the polyQ region are defined as intra-polyQ HBs, whereas 

HBs formed between glutamines in the polyQ region and residues outside the polyQ region 
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are called inter-polyQ HBs. The intra-polyQ HB can be further classified as backbone-

backbone HB, backbone-sidechain HB and sidechain-sidechain HB according to the amide 

groups in glutamine which participate in the hydrogen bond.  

 

Solvent Accessible Surface Area 

 

Solvent-accessible surface area (SASA) is the surface area of a biomolecule that is 

accessible to a solvent, and in this study it is used as a parameter to quantify the solvent 

accessibility of the polyQ peptide. The Dictionary of Protein Secondary Structure (DSSP) 

program [20] is used to calculate the absolute SASA of each residue in the predicted 

structures. The commonly accepted precutoff of 20 Å2 is used to determine whether the 

peptide/protein regions are on the protein surface or not [21]. 

 

Statistical Tests 

 

The Pearson product-moment correlation coefficient test is used with the significant 

level set at 0.05 in this study. All the statistic computing and graphics are generated using 

R [22].  

 

Results 

 

The polyQ regions in both ataxin-2 and ataxin-3 can form both intra-polyQ and inter-

polyQ HBs regardless of the number of repeats in the segment. As the number of glutamine 

repeats increases, the total number of HBs in the polyQ region also increases in both ataxin-

2 and ataxin-3 (Figure 5.1 (a) and (b)). However, when the total count of HBs is normalized 

by the number of glutamines in the polyQ region, this normalized HB count in ataxin-2 

slightly decreases with the number of repeats (Figure 5.1 (c)), whereas in atatxin-3, the 

normalized count of HB does not show any clear trend as the number of repeats increases  
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Figure 5.1 Number of hydrogen bond in polyQ region. (a) absolute count of hydrogen bond 

in ataxin-2; (b) absolute count of hydrogen bond in ataxin-3; (c) normalized count of 

hydrogen bond in ataxin-2; (d) normalized count of hydrogen bond in ataxin-3. Red: total 

number of hydrogen bond in polyQ region; green: number of intra-polyQ hydrogen bond; 

and blue: number of inter-polyQ hydrogen bond. All the data is shown in mean value with 

standard deviation. The lines are for display only.  



99 

 

 

 

(Figure 5.1 (d)). The increase of the count of intra-polyQ hydrogen bond is responsible for 

almost all the increase observed in the total number of HBs, with the inter-polyQ HBs 

count remaining constant. When normalized by the number of repeats in the polyQ region, 

the normalized count of intra-polyQ HBs increases with the number of repeats in both 

ataxin-2 and ataxin-3 (Figure 5.1 (c) and (d)), whereas the normalized count of inter-polyQ 

HBs decreases as the number of repeats increases in both ataxin-2 and ataxin-3 (Figure 5.1 

(c) and (d)).  

The count of sidechain intra-polyQ HBs are similar in ataxin-2 and ataxin-3 for polyQ 

tracts of similar sizes (Figure 5.2). Considering ataxin-2 and ataxin-3 together, when 

normalized - the count of sidechain HBs is divided by the number of glutamines of the 

polyQ region - the number of side-chain HBs per 100 glutamine increases with the number 

of repeats (Figure 5.2 (b), R2=0.425, p<0.001). A further analysis is conducted on the 

origins of the increase of the intra-polyQ HB, and results reveal that all considered 

categories, including backbone-backbone, backbone-sidechain, and sidechain-sidechain, 

contribute equally to the overall propensity of the polyQ segment to form intra-polyQ HBs, 

as the length of the segment increases. These results are a clear indication that as the 

number of repeats increases, the compactness of the polyQ segment increases.  

The absolute SASA of polyQ regions increases with the number of glutamines in the 

polyQ region; when considering all the data from ataxin-2 and ataxin-3 there is a 

correlation between the absolute SASA and the number of glutamines in the polyQ region 

(R2=0.83, p<0.001, (Figure 5.3 (a)). However, when the SASA of polyQ regions is 

normalized by the number of repeats, the normalized SASA per glutamine in ataxin-2 is 

almost independent of the number of repeats (Figure 5.3 (b) red), while for ataxin-3, the 
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Figure 5.2 The number of sidechain intra-polyQ hydrogen bond. (a) absolute count of 

sidechain hydrogen bond; (b) normalized count of sidechain hydrogen bond. Blue: total 

sidechain hydrogen bond; red: sidechain-backbone hydrogen bond; green: sidechain-

sidechain hydrogen bond. All data are shown with mean value and standard deviation. The 

lines are used for display only. Data of ataxin-2 and ataxin-3 are combined together and 

repeat number of 13, 22, 27, 31, 32, 36, 37, 48, 56, 64, 75, and 79 are plotted. 



101 

 

 

 

 

 

 
Figure 5.3 Solvent accessible surface area of polyQ regions in ataxin-2 and ataxin-3. (a) 

total solvent accessible surface area of polyQ regions of ataxin-2 and ataxin-3; (b) 

normalized solvent accessible surface area of ataxin-2 and ataxin-3. Red: ataxin-2; Blue: 

ataxin-3. 
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SASA per glutamine decreases slightly with the number of repeats (Figure 5.3 (b) blue). 

When using a precutoff of 20 Å2 per-residue [21] to estimate the SASA for two water 

molecules, the number of residues in the polyQ region with a SASA value greater than 20 

Å2 shows the same trends as those for the total SASA in the polyQ tract (data not shown). 

Therefore, the calculated SASA properties consistently show that the relative area 

accessible to the solvent cannot increase as fast as the size of the polyQ segment increases. 

These results indicate the increasing compactness of the polyQ segment with increasing 

segment length and is consistent with the observation of the increased tendency to form 

intra-polyQ HBs, found in this study and in our previous study. 

 

Discussion 

 

Hydrogen bonding and solvent-protein interactions are key factors determining protein 

folding, stability, and aggregation. In our previous MD simulation study, the HBs and 

solvent-polyQ interaction of a polyQ monomer are studied in an explicit solvent 

environment. Our previous study finds that as the polyQ length increases, the polyQ tracts 

increasingly prefer self-interactions than solvent-polyQ interactions [Chapter 4]. The 

aforementioned study was restricted to single polyQ segment, therefore question arises, 

how transferable are the MD results to situations in which the polyQ segment is embedded 

in a protein? Unfortunately, MD simulations of entire polyQ disease proteins in explicit 

solvent are unfeasible, therefore this study analyzes the HB and solvent accessibility 

patterns of the 3D structures of polyQ segments within full-length ataxin-2 and ataxin-3, 

from our previous work [13].  

In all 3D structures analyzed here, the total number of HBs observed in the polyQ 

segments increases with the polyQ segment lengths. Regardless of the host protein, the 
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normalized count of intra-polyQ HBs increases with the polyQ length, whereas the 

normalized count of inter-polyQ HBs decreases with the polyQ length. This HB trends are 

consistent with our MD simulation findings, showing that polyQ regions increasingly 

prefer self-interactions as the length of the polyQ segment increases. The solvent 

accessibility properties of the polyQ regions also share common trends, regardless of the 

host proteins. Although the total SASA of polyQ regions increases with the polyQ lengths, 

its normalized values decrease with the polyQ lengths. The SASA properties are consistent 

with both the HB results and SASA results of our previous MD simulations. These results 

strongly suggest that the increase of the length of the polyQ segments leads to an increase 

in the compactness of these segments, which increased compactness is independent of 

protein environment. Moreover, as the structures of the polyQ regions are different for 

ataxin-2 and ataxin-3 – random coil in ataxin-2 and α-helix in ataxin-3 [13] – the increased 

preference to adopt intra-polyQ HBs upon polyQ length enlargement appears to be an 

intrinsic properties of polyQ, which increase does not depend on secondary structure. 

Evidence shows that most of the aggregation-prone structures of polyQ peptides are 

antiparallel β-strands and β-helical structures, which are stabilized by an extensive network 

of HBs between glutamines in the polyQ regions [23-26]. Therefore an increase of intra-

polyQ HBs will increase the probability of the formation of aggregation-prone structures 

in the polyQ segments.  

Using H/D exchange technology, Natalello et al. find that polyQ sidechain HBs are 

strongly involved in the formation of mature amyloid aggregates in ataxin-3-55Q, and the 

formation of sidechain HBs is the hallmark of mature fibrils generated by ataxin-3 with 

expansion polyQ [27]. As shown in this study, the normalized count of sidechain HBs per 
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glutamine in the polyQ segments is positively correlated with the number of repeats in the 

polyQ segments. This correlation provides additional support for our argument that the 

increase of the polyQ length is conducive to polyQ aggregation. Wang et al. indicate [12] 

that glutamine sidechains can compete with water in forming HBs with the glutamine 

backbone, therefore an increase of the propensity of forming sidechain HBs with the 

backbone, as observed here, could decrease the ability to solvate the backbone and 

contribute to aggregation. 

 

Conclusions  

 

Using predicted 3D structures of ataxin-2 and ataxin-3 with polyQ segments of 

increasing length, we are able to study the changes in hydrogen bonding and solvent 

accessibility of polyQ regions within the sequence context of two well characterized polyQ 

proteins. Our results strongly suggest that the HB and solvent accessibility properties of 

the polyQ regions have an intrinsic dependency on the length of the polyQ segment, 

regardless of the protein host. The results presented here are consistent with previous 

studies, including our own molecular dynamics (MD) study on polyQ monomers in explicit 

solvent, and indicate that polyQ regions increasingly prefer self-interactions, which 

consistently can lead to more compact polyQ structures. The results also strongly support 

the notion that the enlargement of the polyQ regions can be the intrinsic force leading to 

self-aggregation of polyQ proteins, making polyQ aggregation the leading mechanisms in 

the pathogenesis pathway of polyQ diseases. The results of this study suggest the 

modulation of solvent-polyQ interaction as a possible therapeutic strategy for the treatment 

of polyQ diseases. 
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CHAPTER 6 

 

 

DISCUSSION AND CONCLUSION 

 

 

Summary of Important Findings 

 

By using computational and informatics methods, this dissertation is able to study the 

structural and folding characteristics of both polyQ proteins and polyQ monomers. The 

results of this dissertation bring insights into the molecular mechanisms of polyQ 

aggregation and the pathogenesis of polyQ diseases. 

Protein 3D structure prediction is a powerful tool for biomedical research. However, it 

is necessary to evaluate the prediction performance of these methods on polyQ proteins 

before large scale predictions are done. In Chapter 2, two of the best-performing protein 

3D structure prediction programs, I-TASSER [1] and Rosetta [2], are tested on their 

prediction performance of the N-terminal huntingtin protein with 17 glutamines (HTT-

17Q). Both I-TASSER and Rosetta perform well at predicting the structure of HTT-17Q 

determined by comparing the predicted models with the X-ray crystal structures of HTT-

17Q [3]. Yet I-TASSER performs better than Rosetta, as the I-TASSER models show better 

agreement on the overall structures of the X-ray structures of HTT-17Q than Rosetta dose 

and I-TASSER models also better represent the diversity of secondary structures in the 

polyQ regions.  

As a next step, I-TASSER is used to predict the 3D structures of ataxin-2 and ataxin-3 

proteins, two of the best representative polyQ proteins. Ataxin-2 and ataxin-3 with polyQ 
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tracts in both normal and pathogenic ranges are studied. In Chapter 3, the structure and 

conformation changes are described as the function of the length of polyQ tract, while the 

water accessibility and hydrogen bonding changes are discussed in Chapter 5.  

I-TASSER models of ataxin-2 and ataxin-3 indicate that the enlargement of the polyQ 

tract can affect not only the local structures of polyQ tracts but also the global structures of 

polyQ proteins. As the lengths of polyQ tracts increase, the proportion of helical structures 

increases in both ataxin-2 and ataxin-3. The elongation of the polyQ tract can also affect 

the structure of functional domains in ataxin-2 and ataxin-3 [4]. For example, the UIM1-2 

domains in ataxin-3 adopt helix-coil-helix structures, which are required for normal 

functions [5]. However, the flexible structures are lost in some of the ataxin-3 models with 

pathogenic polyQ tracts. These results indicate that the polyQ tract can lead to the 

dysfunction of polyQ proteins by changing the structures of their functional domains. Also, 

the changes in both local and global structures suggest that the study of full-length polyQ 

proteins is necessary to get a comprehensive understanding of the pathogenic mechanisms.  

In addition to polyQ proteins, the folding dynamics and the solvent-polyQ interactions 

of polyQ monomers are studied using molecular dynamics (MD) simulation (Chapter 4). 

PolyQ lengths in the normal, intermediate, and pathogenic ranges are studied. Using GPU-

acceleration, it is possible to conduct 105-ns all-atom MD simulations in an explicit solvent 

environment within a reasonable time frame. The MD simulation results show that, as the 

lengths of the polyQ segments increase, the polyQ tracts increasingly prefer adopting intra-

polyQ hydrogen bonds than adopting solvent-polyQ hydrogen bonds. Long-distance 

interactions between residues far apart in polyQ are more predominant in long-polyQ 

segments, and this predominance leads to significant conformational differences. This 
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study demonstrates gains in aggregation propensity with increased polyQ length, and 

suggests that the modulation of solvent-polyQ interaction may be a possible therapeutic 

strategy for the treatment of polyQ diseases.  

Using the full-length 3D structure models of ataxin-2 and ataxin-3 predicted by I-

TASSER, Chapter 5 explores the hydrogen bonding and water accessibility of polyQ tracts 

within the context of the polyQ proteins, similar results are get as those shown in polyQ 

monomers using MD simulations (Chapter 4). The results, from the full-length ataxin-2 

and ataxin-3 structures, show an increased preference in adopting intra-polyQ hydrogen 

bonds as the length of polyQ region increases, whereas the preference to forming inter-

polyQ hydrogen bonds decreases with the length of the polyQ tract. The absolute SASA 

values of polyQ regions increase with the number of glutamine repeats in ataxin-2 and 

ataxin-3, but the normalized SASA values decrease with the polyQ length. These results 

again indicate that, as the length of polyQ increases, the polyQ self-interaction increases 

and the propensity of aggregation increases. 

As a protein involved in RNA processing pathway [6], ataxin-2 is a component of stress 

granules [7] which are dense aggregations composed of proteins and RNAs [8]. The stress 

granules appear when the cell is under stress and it is a mechanism to protect RNAs from 

reacting with harmful compounds. Stress granules exhibit non-membrane liquid properties 

[8]. Recent studies show that the low complexity domains in the stress-granular proteins 

play a role in inducing a liquid phase transition through inter-molecule interactions [9, 10]. 

The predicted 3D structures of ataxin-2 proteins show low complexity, with a structural 

dominance of random coils in this study [4], therefore these flexible conformations could 

be an important structural factor for the normal structures and molecule interaction in stress 
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granules. The structure and solvent accessibility changes in ataxin-2, induced by the 

enlargement of polyQ tract, might also affect the structure and normal function of stress 

granules in several possible ways. The structural changes of the functional domains in 

ataxin-2, induced by the enlargement of polyQ tract, might also change the proteome in the 

stress granules, by altering the protein-protein interactions. This hypothesis is supported 

by the results of Jain et al. which show that ATPase-modulated stress granules contain a 

diverse proteome [11]. The changes of proteome in the stress granules might alter the 

dynamic equilibrium of the ribonucleoprotein in the cell. Jain et al. also find that stress 

granules contain a stable substructure core [11]. The changes of the interaction partners 

might also change the stability and conformation of the core. Also the increase of self-

interaction in polyQ regions might affect the phase transition of stress granules between 

monomer, liquid droplet, and hydrogel states. This is also consistent with the results of 

Murakami et al. that found that mutations in low-complexity domain of FUS gene, a gene 

related with neurodegenerative disease ALS, affect the phase transition of stress granules 

and accelerate transition into fibrillary hydrogens, which will cause neurodegeneration 

[12]. As the increase of self-interaction in polyQ regions could lead to more compact 

structures of polyQ and induce self-aggregation, pathogenic polyQ segments might also 

induce further phase transitions into irreversible fibrillary structures. All these possible 

changes in the function and structure in stress granules might affect the RNA and protein 

microenvironment of the cells and might impair granule functions. Further experimental 

and coarse grain studies are needed to explore the proteome and structures of the stress 

granules in which ataxin-2 with different polyQ lengths are involved.  

The results in structure, hydrogen bonding, and water accessibility together can help us 
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better understand the polyQ length-dependent aggregation pathogenic mechanisms, and 

suggest possible treatment strategies for polyQ diseases.  

 

Contribution to Biomedical Informatics 

 

This study provides an effective informatics solution and workflow to study the 

pathogenic mechanism of polyQ diseases at the protein level, and proves that 

computational and informatics methods are powerful and effective tools to study polyQ 

diseases. Several informatics methods are created or modified from the existing methods, 

providing better analysis and visualization of the results. For example, the WebLogo [13], 

which was originally created for gene/protein sequence comparison, is used as a tool to 

show secondary structure patterns in this study, and provides a powerful tool for secondary 

structure visualization and comparison. Also the structure similarity scores are created for 

a quantitative comparison of the structure similarity in the polyQ regions [3]. 

The computing time and efficiency are critical factors that limit the application of 

computational work in the biomedical field. In this study, some state-of-the-art high 

performance computing technology, such as parallel computing and GPU acceleration, are 

applied to increase the computational efficiency, which makes it possible to generate all 

the structural data within a reasonable time frame. 

The workflow provided by this dissertation can be easily generalized to study other 

protein conformation related diseases, including Parkinson’s disease, Alzheimer's disease, 

and even cancer. At this point, the workflow is successfully applied to study a rare nonsense 

mutation in cutaneous malignant melanoma and the computational explanation of the 

pathogenesis of this mutation is consistent with results from experimental studies (results 

not published). This workflow is also used to annotate oncogene mutations in COSMIC 
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database, and exciting results are found.  
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