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ABSTRACT 

Every year millions of children are born with a birth defect. Birth defects, which 

can be described as abnormalities of structure or function that is present from birth, are 

the leading cause of infant death in developed countries and a significant cause of 

morbidity and economic burden in low- or middle-income countries. This dissertation 

addresses the genetic basis of distal arthrogryposes (DAs), a subgroup of birth defects 

that are characterized by contractures of the distal joints of a limb. 

Based on previous research of our laboratory, we hypothesized that DAs are 

defects of contractile apparatus in fast twitch skeletal myofibers and tested this 

hypothesis in four DA syndromes. We found that mutations of the embryonic myosin 

heavy chain gene cause DA2A and DA2B, whereas a missense mutation of the 

perinatal myosin heavy chain gene is responsible for DA 7. Furthermore, we found 

nlutations in the adult and extraocular nlyosin heavy chain genes in some DA5 patients. 

Furthermore, we noticed some patients with similar findings who do not meet the 

diagnostic criteria of the known DA syndromes. We proposed one of these conditions 

to be named as DAIO, and mapped this condition to the long arm of chromosome 2. 

We named the other condition as the CATSHL syndrome, which we showed to be 

caused by a loss-of-function mutation in the fibroblast growth factor receptor 3 gene. 

The main contribution of this research is to benefit affected individuals and their 

families, since molecular testing can now be offered to them. In addition, through 



further studies leading to a better understanding of nonnal and abnonnal development, 

effective strategies for prevention and treatment of congenital limb malformations can 

be developed. 
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CHAPTER 1 

INTRODUCTION 

Every year more than 8 million children are born with a birth defect. t Also 

known as congenital malformations, birth defects are a global problem. They are the 

leading cause of infant death in developed countries. 1 However, their impact is more 

severe in low- or middle-income countries, since birth defects cause a significant 

morbidity and economic burden. 

Birth defects, in general, can be described as abnormalities of structure or 

function that are present from birth. They mayor may not be clinically obvious at 

birth; sometimes they can be diagnosed only later in life. More than 7000 types of birth 

defects have been identified to date. t The most common birth defects affect the heart, 

the central nervous system and the musculoskeletal system, including the limbs. l 

Congenital limb malformations are the second most frequent structural birth 

defects in humans. 1 The phenotypic spectrum of limb malformations can be very wide, 

ranging from subtle changes in morphology to aberrant patterning or complete absence 

of a limb. Mutations of more than two dozen genes are known to cause these limb 

malformations, underscoring the importance of expression of these genes in the correct 

place at the correct time for proper limb development and differentiation. 



Vertebrate limbs develop from small buds that contain undifferentiated 

mesoderm (mesenchyme) cells.2 These buds differentiate simultaneously with 

outgrowth and eventually form specific limb structures. In human embryos, the first 

sign of a limb is seen at around 28 days, and the major structures of the limbs are fully 

present by the 8th week.2 Despite extensive efforts from researchers in many fields of 

biomedicine, the exact mechanism by which individuallirnb structures are formed in 

proper places and how their growth is regulated is still not clear. 

When a mutation is found to be the cause of a congenital malformation, the 

normal function of the mutated gene can be interpolated based on the observed 

phenotype. Thus, the results of such studies, combined with the accumulating 

knowledge of normal development, might lead to improved patient care including 

better diagnosis, counseling, prevention, and therapeutic options. 

2 

Research presented in this dissertation addresses the genetic basis of a subgroup 

of congenital malformation disorders, the distal arthrogryposes (DA). Distal 

arthrogryposes are a group of autosomal dominant disorders characterized by 

congenital contractures of the distal joints of a limb and limited proximal joint 

involvement, without primary neurological defects affecting the limbs? The extended 

classification of distal arthrogryposes includes 10 different syndromes3 (Table 1.1). In 

this classification, the distinguishing findings observed consistently in individuals 

affected with each syndrome were used to group these conditions, and DAs with more 

similar findings were grouped together. 
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Table 1.1. The revised and extended classification of distal arthrogryposes. 

Name Other names Unique findings Ref. 

DAI Digitoalar dysmorphism Camptodactyl y 4,5 
Clubfoot 
Dislocated hips 

DA2A Freeman-Sheldon S. Severe contractures of facial muscles 6 
Whistling Face S. Scoliosis 
Windmill Vane Hand S. 
Craniocarpotarsal Dystrophy 

DA2B Sheldon-Hall S. Mild contractures of facial muscles 7 

DA3 Gordon S. Cleft palate 5,8,9 
Short stature 

DA4 Scoliosis 5, 10 

DA5 Oculomelic Amyoplasia Ophthalmoplegia 11 
Ptosis 

DA6 Sensorineural hearing loss 12 

DA7 Hecht-Beals S. Trismus 13, 14 
Dutch Kentucky S. Pseudocamptodactyl y 

DA8 Dominant Pterygium S. Multiple pterygia 15 

DA9 Beals-Hecht S. Tall stature 16 
Contractural Arachnodactyly Arachnodactyly 

ears 
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All DA syndromes have autosomal dominant inheritance and show phenotypic 

variability, even within families. Except for individuals with DA4 (OMIM 609128), 

intelligence is not affected in these conditions. Distal arthrogryposis type 1 (DA1, 

OMIM 108120) is the DA group with only distal limb contractures. Other DA 

syndromes have unique findings in addition to distal joint contractures. Contractures of 

the orofacial muscles are characteristic of DA2A (severe, OMIM 193700) and DA2B 

(mild, OMIM 601680). Cleft palate is usually seen in DA3 (OMIM 114300), whereas 

extraocular muscles are affected in DA5 (OMIM 108145). DA6 (OMIM 108200) is 

associated with camptodactyly and sensorineural hearing loss. Individuals affected 

with DA 7 (OMIM 158300) also have camptodactyly; however, it occurs only with 

dorsoflexion of the hands and is hence called 'pseudocamptodactyly'. These patients 

also have difficulty in fully opening their mouth. Individuals affected with DA8 

(OMIM 178110) have mUltiple pterygia involving the neck, knees, elbows, and the 

axilla. Finally, DA9 (OMIM 121050) is characterized by a marfanoid habitus, 

arachnodactyly, "crumpled" ears, and some cardiac abnormalities. 

Previous research attempting to understand the genetic basis of distal 

arthrogryposis syndromes led to the identification of mutations in several families. 

Mutations in the gene encoding fibrillin 2 (FBN2) were shown to cause DA9. I7 

Fibrillin is a major component of the extracellular matrix. Mutations in fibrillin 1 

(FBN]), a member of the same gene family, cause Marfan syndrome, in which heart 

and eye problems as well as arachnodactyly (similar to DA9) occur. IS More recently, a 

mutation affecting the skeletal tropomyosin-beta gene (TPM2) was shown to occur in a 

DAI family,18 and mutations in the genes encoding the fast twitch skeletal muscle 
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isoforms of troponin I (TNNI2) and troponin T (TNNT3) were shown, by our lab, to 

cause some cases of DA2B. 18
,19 

The initial work completed in our lab failed to account for the majority of DA 

cases. However, it led to the hypothesis that DAs are defects of the contractile 

apparatus in fast-twitch skeletal myofibers (Figure 1.1). I have tested this hypothesis 

by utilizing a candidate gene approach to find the molecular genetic basis of several 

DA syndromes. The general approach to these studies included recruiting families with 

these disorders, constructing pedigrees, and evaluating the clinical phenotypes of 

affected individuals. 

troponin T 
troponin C 

Itroponin I 
tropomyosin 

Figure 1.1. Schematic representation of the contractile apparatus in skeletal muscles. 
Tropomyosin and troponin molecules together with the actin polymer form the thin 
filament. The regulatory and essential myosin light chains with the myosin heavy chain 
molecules forn1 the thick filan1ent. 
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Once the patients and families were classified into relevant DA groups, I took a 

functional candidate gene approach to identify the genes, which, when mutated, result 

in the respective DA syndromes. One of the major, and relatively less studied, 

components of the skeletal apparatus is the myosin chains. Myosins are ubiquitous 

motor proteins. They use ATP hydrolysis to convert chemical energy to mechanical 

force. The muscle myosin is a hexanler consisting of two heavy chains and two pairs of 

light chains (essential and regulatory light chains). In humans, six skeletal myosin 

heavy chain genes have been characterized. All skeletal myosin heavy chain genes are 

clustered in the short arm of chromosome 17 (Figure 1.2). Although not very well 

characterized in humans, the spatiotemporal expression pattern and the energy 

utilization and force production behavior of these genes are slightly different.2o MYH3 

expression starts during the embryonic period and is followed by MYH4 and MYH8 

expression in the fetal and perinatal periods, respectively.2o MYHl and MYH2 are 

mainly expressed in adult skeletal muscles, and MYH13 is strongly expressed in 

extraocular muscles.2o Since all DA patients have contractures at the time of birth, I 

focused on the MYH genes that are expressed early in development (i.e., embryonic, 

fetal and perinatal myosin heavy chain genes). 

Figure 1.2. Genomic organization of the skeletal myosin heavy chain genes on the 
short arm of chromosome 17. 
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This dissertation is a collection of studies on four different syndromes. In 

Chapter 2, I present my data showing that mutations of the embryonic myosin heavy 

chain (MYH3) gene cause about 95% of DA2A cases and one-third of DA2B cases. 

These two conditions are caused by different nlutations (except p.T178I found in both 

DA2A and DA2B cases). In general, mutations causing DA2A were localized near the 

ATP binding site of the myosin head, whereas mutations causing DA2B were often on 

the outer parts of the exposed to the surface. The importance of this finding remains to 

be determined. DA2B seems to be more heterogeneous genetically, since mutations in 

TNNI2 and TNNT3 can also cause DA2B, but altogether mutations of these three genes 

account for only half of the cases. 

In Chapter 3, I present my results showing that a missense mutation of the 

perinatal myosin heavy chain (MYH8) gene is responsible for all DA7 cases. 

Moreover, I show that the same missense mutation arose on two genetic backgrounds, 

arguing against a founder effect and suggesting that DA 7 families do not share a recent 

common ancestor. 

Previously it has been suggested that the same missense mutation (p.R674Q) is 

the cause of a variant form of Carney Complex,21 a multiple neoplasia syndrome in 

which affected individuals also have freckles and cardiac myxomas.22 After finding the 

p.R674Q mutation in a family with features of both Carney complex and DA 7, 

Veugelers and colleagues suggested that this mutation causes Carney complex.21 My 

results clearly demonstrate that DA 7 and Carney complex are two unrelated disorders. 

DA7 patients do not have Carney complex findings, and the p.R674Q mutation is not 

the cause of Carney complex. 
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Chapter 4 starts with the description of a new syndrome. We have described this 

condition in a large Utah/Idaho family. Affected individuals have camptodactyly, tall 

stature, and bilateral sensorineural hearing loss; hence we named this condition the 

CATSHL syndrome. Other findings observed in this family include kyphoscoliosis, 

microcephaly, and varying degrees of mental retardation. Originally this condition was 

regarded as a new DA syndrome based on the similarity of limb contractures to other 

DA syndromes. However, following detailed clinical analyses it seems more 

appropriate to classify this condition as a skeletal dysplasia rather than aDA. 

This condition was mapped to the short arm of chromosome 4 before I took over 

the project. Among the genes in the linked region, I decided to screen the coding 

region of FGFR3, based on the similarities of the findings in this family to Fgfr3-null 

mice.23,24 Furthermore, activating mutations of FGFR3 cause short stature syndromes 

such as achondroplasia and hypochondroplasia. 25 Based on homology modeling and 

effects of similar mutations in other receptor tyrosine kinases,26,27 I suggest the 

p.R621H mutation I found in all affected individuals of this family causes decreased 

activation of FGFR3 by affecting the kinase activity of the receptor. 

Since the hypothesis that DAs are caused by defects of the contractile apparatus 

in skeletal muscles was confirmed for three of the DAs I worked with, I tested the same 

hypothesis for DA5. DA5 involves the extraocular muscles, and MYH2 and MYH13 are 

both are expressed in extraocular muscles,20 so I chose these genes as candidates. I had 

access to DNA samples from eight families. I found a missense mutation in MYH2 in 

one patient, causing the substitution of a conserved valine residue with isoleucine 

(p.V970I, Appendix A). In another family, the affected father and son had a p.R1718C 



mutation in MYH2 as well as a p.G763S mutation in MYH 13 (Appendix A). It is not 

clear at the moment if any of these genes is "the DA5" gene or not. However, both 

genes n1ight be at least modifiers of the phenotype, and there might be other 

determinants of DA5. DA5 is transmitted as an autosomal dominant disorder, rather 

than in a complex inheritance pattern. It will therefore be worthwhile to follow up on 

this project since it might lead to the discovery of modifier genes and a new disease 

mechanism. 

9 

The revised classification of DAs left room for new designations and subtypes to 

be filled as novel conditions are discovered. One such condition affecting the plantar 

tendons, hips and elbows has been described recently?8 This condition is transmitted in 

an autosomal dominant fashion, and the affected individuals are of nom1al intelligence. 

We proposed that this condition should be classified as DAI0 (Appendix B). I 

conducted a genome-wide linkage analysis using STR markers and found that the 

condition is linked to a 45 Mb region on chromosome 2 with a maximum LOD score of 

3.96 (0=0.000) with the marker D2S364 (Appendix B). Among the more than 50 genes 

within this region, I chose the genes encoding myosin light chain 1 (MLYl), myosin 

lIIB (MY03B), and caspase 10 (CASP 10) as potential candidate genes based on their 

expression patterns and functions. I sequenced the entire coding regions of these genes 

but did not find a disease-causing mutation. It is possible that this condition might be 

caused by deletions or duplications, or by a mutation in the noncoding (intronic or 

regulatory) regions of one of the genes I screened. However, a mutation of another 

gene in this region is also a possibility. 
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In summary, the gene identification stage is completed for DA2A, DA7 and 

CATSHL syndrome (Table 1.2). The next step for these disorders would be 

characterization of the effects of the normal and mutant alleles of the responsible genes. 

This includes establishing detailed spatiotemporal expression patterns; gene-gene, 

gene-protein, and protein-protein interactions; running biochemical assays on allelic 

series; identifying regulatory mechanisms; and trying to recapitulate these phenotypes 

in animal models. Similar experiments are needed to further understand the 

etiopathogenesis of DA2B and DA5. However, since mutations affecting contractile 

proteins account for only a portion of the individuals affected with these conditions, 

gene identification studies and possibly further characterization of the phenotype 

should be conducted in parallel. Finally, the critical interval for DAI0 needs to be 

further narrowed down. This might be possible through genotyping additional family 

members or by analyzing similar cases. If this is not feasible, SNP-haplotyping might 

be another approach. Alternatively, through a functional and positional candidate gene 

approach, more genes in that region can be sequenced. 

The findings of this research demonstrate that defects of the contractile apparatus 

in skeletal muscles cause congenital contracture syndromes. This suggests that other 

DA syndromes nlight also be caused by defects of other sarcomeric proteins. Hence, 

gene identification studies should be conducted in carefully classified samples of other 

DA syndromes. 
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Table 1.2. The revised and extended classification of distal arthrogryposes. 

Name Known genes Ref. 

DAI Tropomyosin 2 (TPM2) 18 

DA2A Errlbryonic myosin heavy chain (MYH3) this work 

DA2B Troponin 12 (TNNI2) 18 
Troponin T3 (TNNT3) 19 
Embryonic myosin heavy chain (MYH3) this work 

DA3 

DA4 

DA5 Adult skeletal myosin heavy chain 2 (MYH2) this work 
Extraocular myosin heavy chain (MYH 13) this work 

DA6 

DA7 Perinatal myosin heavy chain (MYH8) 21, this work 

DA8 

DA9 Fibrillin 2 (FBN2) 17 

DAI0 

CATSHL Fibroblast growth factor rece:Qtor 3 (FGFR3) this work 
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The main contribution of this research is to benefit affected individuals and their 

families. First, a careful clinical description is vital for better diagnosis, which leads to 

effective management strategies. In addition, the extensive classification facilitates 

gene identification. Second, molecular testing can now be offered to affected 

individuals and their at-risk relatives. Third, through a better understanding of normal 

and abnormal development, effective strategies for prevention and treatment of 

congenital limb malformations can be developed. 

This research created more questions than it answered. From a clinician's 

perspective, phenotypic variability observed in patients with nlutations of the same 

gene remains unexplained. Also, the genetic heterogeneity observed in DA2B and 

DA5 needs to be explored. The role of FGF signaling in muscle and tendon 

development and differentiation is emerging and might provide insights into normal 

and abnormal development of these tissues. On the other hand, the spatiotemporal 

expression patterns and interactions of the proteins mutated in these patients are yet to 

be determined. As new families are reported and additional data become available, 

more disease genes or previously unknown functions of some genes will be discovered. 
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CHAPTER 2 

MUTATIONS IN EMBRYONIC MYOSIN HEAVY CHAIN (MYH3) 

CAUSE FREEMAN-SHELDON SYNDROME AND 

SHELDON-HALL SYNDROME 

The following chapter is a manuscript coauthored by nlyself, Ann Rutherford, 
Frank G. Whitby, Lynn B. Jorde, John C. Carey, and Michael J. Bamshad. This 
article is published in Nature Genetics in 2006 (volume 38, number 5, pages 561-
565). It is presented here with the pennission of the coauthors and the publisher. 
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Mutations in embryonic myosin heavy chain 
(MYH3) cause Freeman-Sheldon syndrome and 
Sheldon -Hall syndrome 
Reha M Toydemirl, Ann Rutherford2, Frank G Whitby.\, Lynn B Jorde!, John C CareyZ & Michael J Bamshad4 

The genetic basis of most conditions characterized by 
congenital contractu res is largely unknown. Here we show that 
mutations in the embryonic myosin heavy chain (MYH3) gene 
cause Freeman·Sheldon syndrome (FSS), one of the most severe 
multiple congenital contracture (that is, arthrogryposis) 
syndromes, and nearly one-third of all cases of Sheldon-Hall 
syndrome (SHS), the most common distal arthrogryposis. 
FSS and SHS mutations affect different myosin residues, 
demonstrating that MYH3 genotype is predictive of phenotype. 
A structure-function analysis shows that nearly all of the MYH3 
mutations are predicted to interfere with myosin's catalytic 
activity. These results add to the growing body of evidence 
showing that congenital contractu res are a shared outcome 
of prenatal defects in myofiber force production. Elucidation 
of the genetic basis of these syndromes redefines congenital 
contractures as unique defects of the sarcomere and provides 
insights about what has heretofore been a poorly understood 
group of disorders. 

~COngenital contractures in children can be divided roughly into two 
categories, isolated congenital contractures (such as clubfoot) and 
multiple congenital conlmctures (that is, arthrogryposis), About I 
in 3,000 children is born with arthrogryposis, and although these 
cases are often sporadic, children ~,ith arthrogryposis are frequently 
found to have an underlying syndrome that is transmitted in a 
mendelian pattern IA The most common inherited arthrogryposis 

Figure 1 C!inical characteristics of FSS and SHS, (a) Children Witll FSS 
have severe contractures of Ihe face resulting In a very small mouth, 
pinched lips and H-shaped dimpling of the chin, (b) In contrast, children 
with SHS have milder facial contractu res that result in deep nasolabial folds 
but do not cause pinched lips or dimpling of the chin, Chl'dren with FSS 
and SHS have similar contractu res of the hands Ie) and feet Id), However, 
calcaneovalgus defects are often present in children with SHS but not FSS. 
In addition, children with FSS frequently develop scoliosis, whereas scoliosis 
IS rare III SHS, Images in band dare reprrnted from ref. 8 with permiSSion 
from the publisher, the American Academy of Pediatrics, 

syndromes primarily affect the joints of the hands and ket, causing 
camptodactyly and clubfeet I Fig. I), and are therefore known ,IS distal 
arthrogryposes, 1() date, ten different distal arthrogryposis syndromes 
have been characterized'. 

FSS is the most severe of the distal arthrogryposes and is relatively 
well known among d.inicians because affected children also have 
stri.king contractures of the orolacial muscles (Fig. laJ5.6. These 
contractures result in down-slanting palpebral fissures, prominent 
nasolabial folds, 'H-shaped' dimpling of the chin, pinched lip, and a 
very small oral orifice that is often only a few millimeters in diameter 
at birth. Hence, FSS is also known as 'whistling face syndrome'? The 
facial contractures of FSS are similar to, albeit more dramatic than, 
those found in children with Sheldon-Hall syndrome (Sl-lS), the most 
common of the distal arthrogryposis syndromes (Fig. Ib), Accord
ingly, it is often difficult, particularly in children, to distinguish 
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etween FSS and SHS, However, an accurate diagnosis is important 
because the natural history of FSS and SHS differ substantially, with 
FSS patients at much higher risk for strabismus, scoliosis and long .. 
term physical disabilitiesS. 

Several years ago, we discovered that some individuals with SHS 
have mutations in either TNN!2 or TNNT3, which encode isofurms uf 
tro ponin I and troponin '1; respectively9,IO These proteins are 
expressed mainly in fast-twitch myoflbers and are part of the multi 
merie troponin-tropomyosin complex of the sarcomere or contractile 
appaJatlls of myofiber.l. No mutations in TIVN!2 or TNNTJ were 
found in individuals with FSS9, However, on the basis of these results 
and the phenotypic overlap among distal arthrogryposis syndromes, 
we hypothesized that distal arthrogryposes are, in general, caused by 
mutations that perturb development andlor function of the sarco
mere, resulting in diminished fetal movement and contractures. 

']0 investigate whether FSS is caused by mutations in one ur more 
genes tiJat encode contractile proteins, we screened 28 FSS probands 
(seven familial and 21 sporadic) for mutations in genes that encode 
myosin heavy chains (MYH), giving priority to genes expressed 
during fetal andior perinatal development (such as MYHl, MYH], 
lvlYH4 and MYH8). [n 20/28 (- 72%) of FSS cases, we found a 
missense mutation in lli/YH3 predicted to cause substitution of Arg672 
with either cysteine (2083(-+ T; n = 8) or histidine (2084G--> A; 
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Figure 2 The spectrum of MYH3 mutations in 
Freeman-Sheldon syndrome (FSS) and Sheldon· 
Hall syndrome (SHS), (a) Schematic illustration 
of the embryonic myosin molecule showing head, 
IQ, coiled coil and tail domains, Mutations 
causing FSS (above) and SHS (below) localize 
mainly to the head domain, (b) An atomic model 
01 the actin-myosin complex, A model of a short 
stretch of F-actin comprising five actin monomers 
is shown as a dark gray ribbon diagram 
surrounded by a sem Itransparent surface, Myosin 
heavy chain, essential light chain (ELC) and 
regulatory light chain (RLC) are shown as blue, 
orange and green ribbons, respect ively. Distal 
arthrogryposis mutations are shown with oversized 
space-filling atoms, drawn at twice normal scale 
for emphasis, with a 2·ft. atomic radius. FSS 
mutations are colored red and SHS mutations 
yellow. FSS mutations R672, E498, Y583 and 
Tll8 are largely buried residues that are 
predicted to participate in formation of the 
nucleotide binding site In the 50-kDa fragment 
groove, SHS mutations lying on the catalyt ic 
domain of the heavy chain are largely exposed to 
the surface but are not predicted to participate in 
direct actin-myosin interactions. FSS mutation 
V825D and SHS mutations K838E and del L841 
are predicted to alter association with the RLC. 
Tl78 is colored red but was identified as both an 
FSS and SHS mutation. 

II = 12; Fig, 2a and Table 1). MYH3 encodes 
the embryonic myosin heavy chain, and 
the Arg672 residue is highly conserved in 
all human myosins and homologs of 
MYH3 studied to date (Supplementary 
Fig, I online l. 

In the six: familial cases of F5S with an 
Arg672 substitution (that is, 6/20), the 
mutated allele segregated anI)· with affected 
individuals (data not shown), and the' sub-

stitution of Arg672 was confirmed to have arisen de 1101'0 in 10114 
sporadic cases in which parental DNA was available for analysis 
(Table I). We did not find either mutation in .100 chromosomes 
from unrelated individuals of similar geographic ancestry. Sequencing 
of the remaining MYH3 exons in these cases uncovered only silent and 
presumably nonpathogenic variants. Furthemlure, the Arg672 residue 
of embryonic myosin heavy chain is paralogous to Arg674 of tbe 
perinatal myusin heavy chain that is encoded by MYH8. Substitution 
of a glutamine at Arg674 of A1YH8 was recently found to cause a distal 
arthrogryposis syndrome called trismus-pseudocamptodactyly (ref. 11 
and R.M.T. and M.J.B., unpublished data). Like FSS, trismus-pseudo
camptodactyly is characterized by contractures of the facial muscles, 
although the mouth is of normal size. These results show that 
substitution of Arg672 in the embryonic myusin heavy chain causes 
FSS. Additionally, genotypic data from fi ve micrusatellites bracketing 
MYH3 (data not shown) showed that no unrelated , affected indivi · 
duals shared a mutant MYH3 haplotype, suggesting that the 
GC dinucleotide of MYH3 at nucleotide positions 2083-2084 is a 
mutational hotspot. 

Of Ihe eight remaining FSS cases without an Arg672 substitution, 
three probands were found to have private de IIOVO (E498G, Y583S) or 
familial (V82SD) missense mutations in MYH3 also predicted to cause 
substitution of highly conserved amino acids (Fig. 2a, Table I and 
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Table 1 MYH3 mutations in Freeman-Sheldon syndrome (FSS) and Sheldon-Hall syndrome 
(SHS) 

a role in ATP hydrolysis, and the groove they 
form has been imphcatcd <IS the binding site 
of several myosin inhibitors l2. One effect of 
disrupting this groove might be to perturh the 
catalytic activity of myosin. V82SD might also 

Sporadic Amino Predicted 

Nucleotide change Exon Famil ial (de novo cases) Total acid cha ge effect 

FSS 

602C 

1562A-->G 

1817A--...C 

2083C ...... T 

2084G A 

2543T -.A 

Number of mutations 

Number of cases studied 

SHS 

602C -> T 
851C T 

944C ->G 

1192G---A 

1618G-+ T 

2375G -. T 

14 

15 

17 

17 

21 

5 

8 

9 

11 

14 

20 

21 

7 

3 (3) 

1 (1) 

1(1) 
3 (3) 

11 (7) 

19 (15) 

2 (2) 

1 (1) 

1 

1 (1 ) 

Tl 781 

E498G 

Y583S 

8 R672C 

12 R672H 

V82 5D 

26 

28 

Tl781 

S26 1F 

S292C 

E375K 

D517Y 

G769V 

K838E 

ATP bind l ga 
Stabi !izat ionb 

ATP bindinga 

ATP bindingil 

ATP binding<t 

RLC interact ion: 

ATP bindi ga 
Stahi llzat iond 

Stabi!izatione 

Act in inleractionf 

SLabil ization!! 

Stabi lization'-

RLC interacti n~ 

change myosin's catalytic activity, albeit by a 
different mechanism, becaus it is located in a 
domain required for binding of calmodulin to 
myosin. Altering the catalrtic activity of myo
sin might impair the ability of the sarcomere 
to generate normal contractile force. 

2581A ... G 

2590_2592de1CTC 

4934A ...... C 

2l del L841 RLC interaction: 

Because children with FSS and SHS have 
similar phenot)1)ic characteristics, we 
screened IvIYH3 for mutations in 38 indepen
dent cases of SHS (12 familial and 26 spora
dic) in whom no mutations in T,\}'1[2 or 
TNNT3 had been found9,1O. 'We found 
MYH3 mutaLions in 5112 (42%) familial 
and 7/26 (27{V< ') sporadic cases, or 12138 
( 32%) of all studied cases (Fig. 2a and 
Table O. Two individuals with SHS (one 
sporadic and one familial case) had a 3-bp 
deletion of MYH3 that is predicted to encode 
a protein lacking Leu841, whereas all of 
the remaining cases had missense mutations 
predicted to affect highly conserved amino 
acid residues (Table 1 and Supplementary 
Fig. 1). Colle:divcly, mutations in Mt'H3, 

33 D1 622A Fil ament formation 

4979C T 33 A1637V Fi lament formation 

Number of mutations 

Number of cases studied 

7 (4) 12 

38 
- - - ----- - --

• hSp.e Supplementary Note onli l1e for detil il'i. 

Supplementary Fig. 1). Three sporadic cases shared a de novo 602C~ 
T mutation predicted to result in either a splicing defect or substitu 
tion of isoleucine for threonine at am.inn acid residue 178 (Fig. 2a and 
Table 1). However, sequencing of MYH3 cDNA from lymphoblasts 
confirmed that splicing is nOrmAll. We did not find any of these 
mutations in 300 chrom0somes from unrelated individuals of similar 
geographic ancestry. 
~ In two iIldiV.iduals with prototypic features of FSS, we did not 
, dentify any pathogenic AIYH3 mntation. In these cases, the 

pathogenic mutation might be located in a noncoding or regulatory 
region of l'v!YH3, or FSS could be caused by an undetected 
!v11'1T3 deletion. FSS might also be genetically heterogeneous. 
Although none of these explanations can be excluded, the first two 
pos,:;ibilities are more likely, as there is no direcr evidence of locus 
heterogeneity in fSS (such as linkage to another region). Overall, 
mutaLions in the coding region of !vlYH3 ac ount [or 26/28 (93%) ()[ 
FSS cases studied herein. 

All of the MYR3 mutations (R672H, R672 , E498G, Y583S and 
T1 78!) that cause FSS, except V825D, lie dose to a groove that is a 
prominent feature of the myosin head (Fig. 2b). This groove lies 
between two parts of the I.arge SO-kDa domain that forms the ATP 
bindi ng site. Exarni nation of the crystal structure of myosin suggf:'st~ 

that the AIYH3 mutations that cause [ SS can be tolerated without 
serious amino acid side-chain sterie clashes or disruption of critical 
eleclrosLalic inleIJ(tions. Therefore, these mutations are predicted not 
to destabiJize the structure of myosin or to promote mis-folding of the 
protein. Illstead, each of these mutations is predicted tu create small, 
local structural changes in myosin that c uld affect the conformation 
of the nucleotid~' hinding site or the myosin domain-domain interac
tions that take r1a\..e surrounding the groove during catalysis (Fig. 2b 
and Supplementary Note online) , These domains are thought to have 

TNNT2 and TNNT3 account for about half 
of aU studied Cd . .,es of SHS. 

None of the SHS patients had the common Arg672 suhstitution 
that causes FSS, and only one mutation (T1781) was shilred betvveen 
FSS and 51 IS cases. Nevertheless, most of the amino acid substitutions 
that cause SHS also localize to the head domain of myosin. However, 
in contrast to substitlltions causing FSS, none of the amino acid 
residues disturbtJ in SHS map to the groove near the ATP binding site 
of myosin. Instt'ad, amino acid substitutions that cau e SHS 1 calize 
primarily to surfaces that we hypothesize interact with other proteins 
of the contractile apparatus such as a(1in and troponin (Fig. 2b). This 
prediction is consistent with the obs ration that mutations in the 
genes that encode actin (A TA l) \ 3,\ 4 and troponin (TN n, 
TN1 T3)9.IO also cause contractures. I Jowever, the contractu r s all sed 
by mutations in ACTA 1 are always accompanied by We'dImess and 
hypotonia, features that exclude the diagnosis of FSS or SH '. 

Two MYH3 mutatiuns (D162 2A, A1637V) Lhat cause HS result 
in amino acid substituLions in the rod domain of myosin that 
might interfere with filament formation. Th refore, disruption of 
either the head or the rod domain of embryonic myosin can au e 
congenital contradures. This result is similar to the situation for 
MYH7 in which mutations in either the head or the rod domain can 
cause cardiomyopathyl 5. 

tvhltations in MYH3 accounted for 38/66 ( "'" 58%) of FSS and SHS 
cases, making lv!YH3 the rna t common cause of heritable congenital 
cuntractures identitied Lo date. 11oreover, lvlYH3 genotype was pre
dic1ive of diagnosis in 33/38 ( ,,--8741'0 ) of cases (that is two F S and 
three SHS ases shared the T1781 substitution,. Given that individuals 
with FSS typically have more severe contracture than individuals with 
SHS, this observation suggests that there i a positive c rrelation 
between genotype and phenutype. However, phenotypic characteris
tics varied widel, among individuals with the sall!e mutation. For 
example, F S cases with the most common Mnn mutation, R672 H, 
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Figure 3 Schematic illustration of the contractile complex of muscle. 
Mutations in genes that encode sarcomeric proteins can cause congenital 
contractures In either distal arthrogryposis syndromes (red) or myopathies 
(purple). 

exhibited facial and limb contractures that varied from mild to severe. 
Therefore, the severity of contractures in individuals "vith MYH3 
mutations is likely to be influenced as well by genetic andlor 
environmental modifiers such as the expression of other myosins or 
the intensity of fetal movements. No phenotypic differences distin
guished SHS cases with mutations in MYH3 from those cases with 
mutations in TNNI2 or TNNT3. 

TI1e mechanism by which mutations in MYH3 cause different 
phenotypes is uncertain. Mutations in other myosin genes expressed 
in striated muscles (cardiac and skeletal muscle) have been associated 
witb even more varied phenotypes (Fig. 3 and SuppJementary Table 1 
online). Most notably, mutations in MYH7, which encodes a myosin 
heavy chain expressed in all striated muscles, cause dilated 15 or 
hypertrophic l6 cardiomyopathy, myosin storage myopathyl7 and 
Laing-type distal myopathyl8. The region of MYH7 in which muta
tions cause cardiomyopathy overlaps vvith those regions containing 
mutations causing skeletal myopathies. Similar to the shared AIYH3 
mutations that can cause either FSS or SHS, the mechanism by which 
MYH7 mutations cause such markedly different disorders remains to 
be detennined. 

In addition to MYH3 and MYH7, mutations in MYH2 have been 
reported to cause contractures in a rare condition called hereditary 
inclusion body myopathy'9. However, mutations in MYH2, like those 
in i\r[YH7, also calise weakness. In contrast, the individuals that we 
studied with mutations in MYH3 do not have weakness, progressive 
contractures or apparent histological abnormalities of skeletal muscle. 
M'tH] is expressed early in fetal development, and its expression 
rapidly declines after birth20,21. It is possible that other myosins might 
be able to compensate for defects in embryonic myosin. In Drosophila 
melanogastel; substitution of embryonic myosin for adult myosin 
results in normal myofiber assembly, but muscle function is impaired 
because the basal ATPase activities of the myosins differ-fetal and 
adult myosins are not functionally equivalent22.23. In humans, MYH3 
expression predominates in myotubes fated to become fast myofibers 
and is gradually replaced by expression of other myosin genes (lvlYH 1, 
MYH2 and MYH4). We speculate that although one or more of these 
myosins might be able to facilitate the development of structurally 
normal skeletal muscle in individuals with MYH3 mutations, the 
function of fetal muscles rich in fast-twitch myofibers is functionaUy 
impaired (causing increased or diminished force production). This 
hypothesis predicts that there is a critical period during fetal devel
opment when functional impairment of skeletal muscles leads to 
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contractures but causes few or no postnatal structural abnormalities 
or functional impailment (that is. weakness) of skeletal muscle. 
Further investigation "",ill be needed to test this hypothesis. 

The function of skeletal muscle depends on the production of force 
by the sarcomere, the fundamental wlit of contraction in all muscle 
ceUs. This force is subsequently propagated to the extracellular matrix 
by multiple filamentous proteins that link the sarcomere to the 
sarcolemma. Many mutations in genes that encode proteins involved 
in torce transmission have been shown to cause muscular dystrophies. 
Our findings demonstrate that defects of sarcomeric proteins are also 
a common cause of congenital contracture syndromes. These 
syndromes are unique myopathies because affected individuals show 
neither weakness nor postnatal muscle damage. This suggests that 
other sarcomeric proteins can compensate for detects of embryonic 
myosin. Manipulating these compensatory mechanisms might provide 
a new means of treating or preventing congenital contracturcs. 

METHODS 
Subjects. All studies were approved by the Institutional Review Board of the 
University l)f Utah. Informed consent was obtained from all participJllts, and 
additional consent was obtained from parents to publish photos of the child:ren 
shown in Figure 1. Cases \ ... 'ere ascertained from a g~neral genetic~ clinic at the 
University of Utah; by direct referral frorn clinical geneticists, orthopedists and 
plastic surgeons in the US, Europe and elsewhere and from th..: FSS Parents 
Support Group. Phenotypic data were collected from a ~df-administered 
questionnaire, review of medical records, phone interview"S and photograph. 
The questiOImaire was designed to solicit infonnation about family history. 
prenatal history, physical characteristics, psychosocial development and med
ical/surgical interventions. 

A referral diagnosis of FSS made b. a clinical geneticist was required for 
inclusion. Subsequently, phenotypic data and photographs were reviewed by 
two of the authors (M.J.B. and J.c.c.) to determine \vhether referred cases met 
diagnostic criteria for FSS. The diagnostic criteria included the presence of two 
or more of the major clinical manifestations of distal arthrogryp()~is plus lhe 
presence of a small pinched mouth, prominent nasolabial folds and H-shaped 
dimpling of the chin8. Major diagnostic criteria of the upper limbs included 
ulnar deviation, camptodactyiy, hypoplastic and/or absent nexion creases andi 
or overriding fingers at birth. Major diagnostic criteria of the lower lin1bs 
included talipes equinovarus, calcaneovalgus defom1ities, a vertical talus ,lOci/or 

metatarsus varus and camptodactyly. Cases not meeting the~e diagnostic 
criteria were excluded. 

Diagnostic criteria for SHS included two or more of the major clinical 
manifestations of distal arthrogryposis plus deep nasolabial folds, a small oral 
opening, webbing of the neck and a small but protuberant chin. [n contrast to 
indivicluals with classical FSS, patients with SHS have a larger oral opening and 
lack an H-shapeJ dimpling of the chin. 

Mutation analysis. We extracted genomic DNA using standard protocols. W 
amplified eJch exon of lvfYH3 llsing HotStarTaq DNA polymerase (Qiagen) 
following manufacturer's recommendations and using primers previously 
reported II . We purified PCR products by treatment with exonuclease I (New 
England Biolabs) and shrimp alkaline phosphal.lse (USB), <lnd \ve seqllen~ed 
products using the dideoxy terminator method on an automatic sequencer 
(ABl 3100). The electropherograms of both forward and reverse strands were 
manually reviewed using Sequencher version 4.1 "Gene Codes) . 

We confirmed the presence of each mutation in each affected individual by 
restriction digestion performed according to the manufacturer's instructions 
(New Enghmd Biolalls; Supplementary Fig. 2 online). vVhen n,:u:)sary, we 
created a restriction enzyme recognition site by targeted mutagenesis. The 
primer sequences used to create such restriction sites are listed in Supplemen
tary Table 2 online. We also used these restriction digests to screen for the 
presence of each putative mutation in a set of 300 chromosomes from 
unaffected incl ividuals matched [or geographic ancestry. 

[n order to analyze if the 602C ~ T mutation alfects splicing, WI<.' isolated 
total RNA from the lymphoblast culture of an individual with the 602C T 
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mutation using the RNeasy Protect Kit (Qiagen) and synthesized cDNA with 
Ornniscript RT Kit (Qiagell) Jollowing the manufacturer's recommendations. 
'vVl' also synthesized cDNA using as a template Rr--.'A from an individual '.vilh 

the R672H substitution (2084G--){\) as a po:-iti"e control. We performed lhe 
([)~A amplification using the primers listed in Supplementary Table 2, 

Structural analysis. We obtained the atomic coordinates of the X-ray crystal 
structure of chicken skeletal muscle myosin (Protein Dilta Sank), which 
consists of a model of the myosin subfragmenH proteolytic fragment, with 
carbon-alpba coordinates only for the myosin light chains24, 5. The Gallus 
gallus myosin amino acid sequence is nearly identical to that of human myosin, 
and aU amino acid residue numbers described here refer to the human 
sequence. \A/e generated fuU atom model-. of the myosin light chains wi.th the 
program IvlAXSPROUr 26 and aligned at.omic coordinates using the molecuJar 
graphics program 0 17. Atomic coordinates of r-·actin were a gift of K. Holmes 
,Max Planck f nstitllt FUr Medi7inische Forschung) and are based on a model of 

the thin filament described previouGI),28. All atomi( model of the actin-myosin 
complex wa." a gift of R. Milligall {Tbe Scripps Research Institute)2<1. We 
generated figures using the molecuJar graphics program Pylv{OL29. 

URis. Online Mendelian Inheritance in Man L found at http://www.ncbi. 
nlm.nih.gov/omirn. The Ensembl Genome Browser web~ite is http://w,vw. 

e n~embl.o rg. Tbe Protein Data Bank is li.Hmd al hltp:!lwww.rcsb.org. The 
PyMOL Molecular Graphics System is av .. 1ilable at http://ww\N.pymol.org. 

Aaes..<;ion codes. Ensembl: AJ'lHl, F.NSGOOOOOJ09061; MYH3, 

ENS(~OO()()OI09063; MYH4, ENS 100000141048; MYHB, ENSGOOOOO] 3020; 
MYH 13, E~SCOOOOOO0678R ; O~l1M : FSS, 193700; SHS, 601680; trismus
pseudocamptodactyJy, 1 :;8300; dilated cardiomyopathy, II :;200; hypertrophic 
cardiomyopathy, 192600; myosin-storage myopathy, 608358; Laing-type distaj 
myopathy, J 6()500; heredi tary inclusion body myopathy, 60:';637 Protein Data 
Bank: chicken skeletal muscle myosin, 2MYS. 

IVote: Stlppl 111 I1 tar), ill 'orlllation is flvn;iable on lire Natll re Genetic website. 
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a Thrl78 Glu498 Tyr583 Arg672 Va1825 
MYH3 QSILI TGESGA HMFVLEQEEY K FSLI HYAGTVD HPHFVRC IIPN RSFMNVKHV~ 

MYHl QSI LITGESGA HMFVI,EQEEY K FS LI HYAGTVD HPHFVRCIIPN RAFMNVKHWPW 
MYH2 QSI LITGESGA HMFVLEQEEYK FALIHYAGVVD HPHFVRC II PN RSFMNVKHWPW 
MYH4 QS ILITGESGA HMFVLg QEEYK FSLVHYAGTVD HPHFVRC II PN RAFt1NVKHWPW 
MYH6 QSIL I TGESGA HMFVLEQEEYK FSLIHYAGTVD HPHFVRCIIPN RAFMGVKNW PW 
MYH7 QSI LI TGE SGA HMFVLEQE EY K FSLI HYAGIV D HPH FVRC I IPN RAFIVlGVK NItJ PW 
MYH8 QSILITGESGA HMF\lLEQEE YK FSLI HYAGTVD HPHFVRC II PN RAFMNVKHWPW 
MYH9 QSILCTGESGA TMFILEQEEYQ FC I I HYAGKVD NPNFVRCIIPN AA Y LKLRmJQW 
MYHlO QSILCTGESGA TMFI LEQEEYQ FCI I HYAGKVD NPNF VRC IIPN AAYLKLRmvQW 
MYHll QSILCTGESGA TMFILEQEEYQ FSIIHYAGKVD TPN FVRCIIPN AAYLKLRNWQW 
MYHl3 QS I LI TGESGA HMF VLEQEEYK FSLVHYACTVD HPHFVRCLI PN RS FMNVKHWPW 
MYHl4 QSILCTGESGA TMFVLEQEE YQ FSVLHYAGKVD NPSFVRCIVPN AAYLKLRHWQW 

human QSILITGESGA HMFVLEQEEYK FS LI HYl"GTVD HPHFVRC IIPN RSFMNVKHWPW 
mouse QSILITGESGA HMFVLEQEEY K FSLVHYAGTVD HPHFVRCIIPN RAFMN------
rat QS ILITGESGA HMFVLEQEEYK FS LI HYAGTVD HPHFVRCIIPN RAFt1NVKHWPW 
chimp - --------- - HMFV LEQEEYK FSLIHYAGTVD HPHFVRCIIPN RSFMNVKHvJPW 
chicken QSIL I TGESGA HMFVLEQEEYK FSLVJ-lYAGTVD HPHFVRCIIPN RSFMNVKHvJPW 
fish ----------- HIVlFVLEQEE YK FSLVHYAGTVD HPHFVRC LIPN RSFMNvKHWPW 
frog QSILITGESGA HMFVLEQEE YK FSL IHYAGTVD HPHFVRCIIPN RAFMNVKHWPW 
dog QSILITGE SGA HMFVLEQEEYK FSLVHY.l>.GTVD HPHFVRCLIPN RA FMNVKHW PW 

b Ser26l Ser292 Glu375 AspSl7 Gly769 Lys838 Leu84l Aspl622 Alal637 
MYH3 TGKLASADIE T FYQ I LSNKKPE REEQAEPDGTE I DFGr-'iDLAAC I VFFKAGLLGTL LFFKIKPLLKS KIKP LLKSAET KKMEGDLNEIE HANRQAAETLK 
MYHl TGKLASADI ET FYQI LSNKKPD REEQAE PDGTE IDFGMDLAACI VFFKAGLLGLL LYFKIKPLLKS KIKPLLKSAET KKMEGDLNEME HANRMAAEALR 
MYH2 TGKLASADIET FYQILSNKKPE REEQAEPDGTE IDFGMDLAACI VFFKAGLLGLL LFFKIKPLLKS KIKPLLKSAET KKMEGDLNEME HANRMAAEALR 
MYH4 TGKLASADIET FYQILSNKKPE REEQAEPDGTE IDFGMDLAACI VFFKAGLLGTL LYFKIKPLLKS KIKPLLKSAET KKMEGDLNEME HANRQAAEALR 
MYH6 1'GKLASA DIET FYQI LSNKVPE REEQAEPDGTE I DFGMDQAAC I VFFKAGLLGLL LYFKI KPLLKS KIKPLLKSAET KKMEGDLNEME HANRMAAEAQK 
MYH7 TGKLASADIET FYQILSNKKPE REEQl>..EPDGTE I DFGMDQAAC I VFFKAGLLGLL LYFKIKPLLKS KIKPLLKSAER KKMEGDLNEME HANRHAAEAQK 
MYH8 TGKLASADIET FYQILSNKKPD REEQAEPDGTE IDFGMDLAACI VFFKAGLLGLL LFFKIKPLLKS KIKPLLKSAET KKMEGDLNEME HANRLAAESLR 
MYH9 NGYIVGANI ET FYYLLSGAGEH NTDQASMPDNT IDFGLDLQPCI VFFRAGVLAHL LFTKVKPLLQV KVKPLLQVSRQ KKLEMDLKDLE SANKNRDEAIK 
MYHlO TGYIVGJI.NIET FYQLLSGAGEH NTDQASl'-1PENT IDFGLDLQPCI IFFRAGVLAHL VFTKVKPLLQV KVKPLLQVTRQ KKMEIDLKDLE AANKARDEVIK 
MYHll TGYIVGANI ET FYYM IAGAKEK N'I' DQASM PDNT IDFGLDLQ PC I I FFKTGVLAHL LFTKVKP LLQV KVKP LLQVTRQ KKLEGDLKDLE SAIKGREEAIK 
MYHl3 TGKLASADIET FYQIMSNKK PE REEQAEPDGTE IDFGMDLAACI VFFKAGLLGLL LFFKIKPLLKS KIKPLLKSAEA KKMEGDLNEME HSNRQMAETQK 
MYHl4 AGYIVGANI ET FYQLLGGAGEQ NTDQAT!>1PDN'l' LDFG LDLQ PCI IFFRAGVLAQL LFTKVKPLLQV KVKPLLQVTRQ KKLEGELE ELK SAGQGKEEAVK 

human 'l'GKLASADIET FYQILSNKKPE REEQAEPDGTE I DFGMOLAACI VFFKAGLLGTL LFFK IKPLLKS KIKPLlJKSAET KKMEGDLNEIE HANRQAAETLK 
mouse TGKLASADIET F'YQI LSl\TKKPE REEQAEPDGTE I DFGlvJDLAACI VFFKAGLLGT L 
rat TGKLASADI ET FYQILSNKKPE REEQAi:PDGTE IDFGMDLAACI VFFKAGLLGTL LFFKIKPLLKS KIKPLLKSAET KKMEGDLNEIE HANRQAAETIK 
chimp ----------- ----------- ----------- I DFGtvDLAAC I VFFKA,GLLGT L LFFKIKPLLKS KIKPLLKSAET KKMECDLNEI E HANRQAAETLK 
chicken TGKLASADIET FYQVTSNKKPE REEQAEPDGTE IDFGrvJDLAACI VFFKAGLLGLL LFFKIKPLLKS KIKPLLKSAET KKMEGDLNEIE HANRQAAEAQK 
fish TGKLASAD I ET FYQLMTGHK PE REEQAEPDGTE I DFGMDLAAC I VFFKA'~LLGTL LYFKIKPLLKS KIKPLI.KSAET KKMEGDLNEME HANRQAAEAQK 
frog TGK LA:SADI ET FYQILSNKKP E REEQAEPDGTE I DFGMDLAACI VFFKAGLLGTL LYFKrKPLLRS KIK PLLRSAET KKMEGDLNEME HANRUlTETQK 
dog TGKLASAD IET FYQIHSNKKPE REEQAE PDGTE IDFGMDLAACI VFFKAGLLGTL LYFKIKPLLKS KIKP I.JLKSAET KKMEGDLNEME HANRQAAEAIR 

Supplementary Figure 1. Amino acid alignments of the regions surrounding the mutated residues in FSS (a) and SHS (b) patients. The Ensembl accession codes of the 
paralogous sequences are: MYH3, ENSG00000109063; MYH1, ENSG00000109061; MYH2, ENSG00000125414; MYH4, ENSG00000141048; MYH6. ENSGOOOOO197616; 
MYH7. ENSG00000092054; MYH8, ENSG00000133020; MYH9. ENSG00000100345; MYH10. ENSG00000133026; MYH11, ENSG00000133392; MYH13. 
ENSG00000006788; MYH14, ENSG00000105357; The Ensembl accession codes of the orthologous sequences are: mouse (Mus musculus), ENSMUSGOOOOOO57003; 
rat (Rattus norvegicus), ENSRNOG00000031497; chimp (Pan troglodytes), ENSPTRG00000008773; chicken (Gallus gallus), ENSGALG00000000965; fish (Danio rerio), tv 
ENSDARG00000014711; frog (Xenopus tropicalis), ENSXETG00000016237; dog (Canis familiaris), ENSCAFGOOOOOO17575. N 



a 602C ~T (T1781) 

II --' 
GATCACG T A A G Nla III digest 

1817A~ (Y583S) 

J 
CCACTATGCGG Pst I d igest 

b 851C-T(S261F) 

t 
G Gee T C T G C A G Pst I digest 

1618G -T (D517Y) 

G GAT GG A ce TG Rsa I digest 

4934A~ (D1622A) 

G G G G G Ace T G A Ava II digest 
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'" 

1562A -G (E498G) 
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I 
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2083C ~T (R672C) 
2084G ~A (R672H) 

I 
\ 

TTG T GC G TTGT A 

1192G -A (E375K) 

I 
A GGCCGAGC CG 

2581A ~ (K838E) 

I 
AGA T CAAGCCC 

U PCB 

Mly I digest 

Ban II digest 

2590_2592de1CTC (del L841) 

U PCB 

I 
'/ \ 

C e T C A A G A BseR I digest 
AAGAGTG 

23 

'83 
176 

151 

176 

'" 

489 

396 

256 

140 

93 

489 
414 

263 

'54 

72 

Supplementary Figure 2. Electropherograms and restriction digests in FSS (a) and SHS (b) fam ilies with respective controls. The 
missense mutations are shown with arrows, deleted nucleotides are shown in red. U: uncut PCR, P: patient, C: control, B: blank. 
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Supplementary Note. Structure-function analysis of MYH3 mutations. 

a R672, Y583, and T178 sidechains point into a cavity that lies adjacent to the nucleotide binding 

site. Mutations of these residucs arc predicted to alter the active site geometry surrounding the 

nucleotide binding site. 

h E498 forms a salt bridge interaction with R714, which provides stabilization of the 

subdomains. E498G mutation is expected to abolish this salt bridge, destabilizing subdomain 

interactions. 

c V825D, K838E, and del L841 are predicted to alter regulatory light chain (RLC) interactions 

with the heavy chain (HC). Del L841 lies at the HC-RLC interface and deletion of this residue 

would likely result in extensive changes in HC-RLC interaction in the region. V825D mutation 

introduces a charged residue into an otherwise hydrophobic interaction, possibly destabilizing 

HC-RLC interaction. K838E causes a charge reversal in a region of the HC dominated by 

positive charge. 

d S261 hydrogen bonds to residues in a loop (residues 450-458). 826 I F mutation disrupts this 

loop and causes stcrlc clash, possibly altering stability of the large beta-sheet that fonus the core 

of the head domain. 

e S292C is an isostructural mutation that might disrupt an important hydrogen bonding 

interaction, perhaps altering enzyme kinetics or the stability of a state of the head domain during 

catalysis. 

r E375K results in charge reversal at a surface-exposed loop 25 angstroms distant from the actin

myosin interface, but is not predicted to alter the conformation of the loop nor that of a 

neighboring loop (residues 402-418) that makes contact with actin. The effect of this mutation 

might alter actin-myosin interaction during a different state of the contractile process. 

g D517Y neutralizes a surface charge, but is not predicted to have a large structural consequence. 

This mutation might affect interactions between this surface and regions of the protein that are 

disordered in the existing crystal structure, or perhaps affects surface interactions when myosin 

undergoes conformational changes during catalysis. 

h G769V mutation results in greater geometric constraint of the protein backbone where this 

residue lies in a tum at the start of a helix. Reduced flexibility in this turn might prevent access 

of a required conformational state during catalysis. 
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Supplementary Table 1. Mutations reported in myosin genes expressed in striated muscles that cause 
inclusion body myopathy (blue), autosomal dominant myopathy (red), hypertrophic cardiomyopathy 
(black), atrial septal defect (Hght blue), dilated cardiomyopathy (pink), distal myopathy (dark blue), 
myosin storage myopathy (purple), hyalin body myopathy (brown), and Trismus-Pseudocamptodactyly 
syndrome (orange). The paralogous residues in MYH3 are shown in parentheses. Only missense and 
nonsense mutations are shown. Residues mutated in e) FSS and e) SHS are also shown. 

MYlI2 MYH7 (Continued) MYH7 (Continued) MYH7 (Continued) 

E706K (E701) AJ55T (A356) R694H (R695) Q882E (Q883) 

V97PIlt (V965) K3R3N (K384) N696S (N697) E894G (E895) 

Ll061Va (LlO56) A385V (A386) R712L (R713) E903K (E904) 

L390V (L39l) G716R (G717) C905F (C906) 

MYH6 R403L (R404) R7t9P (R720) L90SV (L909) 

R795Q (R794) R403N (R404) R719Q (RnO) E921K (£922) 

(IS 19) R403W (R404) R719W (R720) E924K (E925) 

V404L (V405) R723C (R724) E924Q (E925) 

MYH7 V404M (V405) R72JG (R724) E927K (E928) 

A26V (1\27) V406M (V407) A728V (S729) 0928N (0929) 

V1'-)M (V40) G407V (G4mn P731L (P732) E930K (E931) 

R54X (S55) V411l (V412) G733E (G734) E93lK (E932) 

V591 (V60) A428V (S429) Q734E (Q735) E935K (E936) 

YI15H (YI16) A4JOE (S431) 1736M (1737) E949K (E950) 

TI241 (TI25) M435T ~L436) 1736T (1737) 0953H (D954) 

R143G (RI44) V 440M (V441) G741A (A742) L961R (L962) 

Rl43Q (R1441 1443T ([444) G741R (A742) (H0575 (GlOSS) 

RI43W (RI44) K450E (K451) G741R (A742) LI t35R (QI136) 

SI481 (QI49) R453C (R454) G741W (A742) EI218Q (EI219) 

YI62e (YI63) R453H (R454) E7430 (E744) EI356K (E1357) 

NI87K (NI88) R453L (R454) V763G (V764) TI377M (Tl378) 

TISBN (Tl89) N479S (N4S()) (F765) Al379T (A I J80) 

RI90T (R191 ) E4B3K (E484) G768R (G769)2 RI382W (RI383) 

YI94S (YI95) E499K tE5(0) E774V (E775) Rl420W (RI421) 

AI96T (AI97) E500A (£501) 0778E (0779) KI459N (KI460) 

R204H (L205) 1511T (r5l2) 0778G (0779) RI500P (RI501) 

K207Q (K208) F513C (F5l4) D778V (0779) TI513S (TI514) 

P21lL (K2121 MS15R (M516) E779X (D78()) E1555K (£1556) 

Q222K (S223) L517M (L518) S782N (A78J) A1663P (G1664) 

(A224) L!i' (S533) R787H (R788) V 1691M (TI692) 

L227V (L228) G584R (G5S5) L796F (L797) Ll706P (Ll70R) 

N232S (N233) G584S (G585) A797T (M798) R1712W"(RI713) 

F244L (F245) 0587V 10588) M822V (M823) El768K (E1769) 

K246Q (K247) L601V (1.602) VR241 (V825)' S1776G (S 1777) 

R249Q (R252) N602S (N603) E846K (EM7) Al777T (A177S) 

G256E (G259) V606M (V6(7) E846Q (E847) (R1846) 

1263M (1264) K615N (R616) M852T (MS53) Tl854M (RI846) 

l163T (1264) (S643) R858C (K859) H1901L (HI902) 

F312C (F3131 M6591 (M660) R869C (K87()) Tl9291'\1 (SI930) 

V320M (V3211 R663C (R664) R869G (K870) 

A326P (A327) R663H (R664) R869H (K870) MYH8 

E328G (E329) R663S (R664) R870C (R871) (R672)1 

M349T (1350) R671C (ROn)l R870H (871) 

K351E (KJ52) R694C (R695) M877K (L878) 

All mutations are listed in the Human Gene Mutation Database, which can be accessed at htlp:llwww.hgmd.org tSten<;on ef 
al. The Human Gene Mutation Database fHGMD®): 2003 Update. Ilum. Jfutat. 21, 577-581 (2003)) except: 
n TajsharghL H. el al. Mutations and sequence variation in the human myosin heavy chain lIa gene U"IYH2). Bur. J. Hum. 

13, 617-622 (2005); 
Ching, Y H. el al. Mutation in myosin heavy chain 6 causes atrial septal defect. Nal. Genel. 37, .t23-42x (2005): 

«) Houg~. L. eI al. One third of Danish hypertrophic cardiomyopathy patients with ,'vIYH7 mutations have mutalions 
Icorrcclcdl in MYH7 rod region. Eur. J. Hum. Genet. 13, 161-J65 (1005). 



Supplementary Table 2. PCR primers and restriction enzymes used for mutation analysis. Nucleotides incorporated to create restriction 

sites for mutation screening and to create control restriction sites are shown in blue and respectively. Oligonucleotide primers were 

designed to analyze if the 602C ~ T mutation affected splicing. The cDNA of a patient with R672H mutation (2084G~A) was also 

~~yU~ll"'~U as a positive control. 

lVlutations Forward Primers 

FSS Mutations 

1'1781 5'-1'GCTCCAACACTITCTAATGAA-3' 

G498R 5' -CCTTCCTTCTTGTACTCCrCCAGC-3' 

Y583R 5'-CACl'GTAGTCCACGGTGCCTGC-3' 

R672CfH 

V825D 

5' -l' ACACCGCGGCTGGTGCAGA-3' 

5' -ACACAAGCTGTGl'GCAGAGG-3' 

SHS Mutations 

S261 F 5' -CCCATAAGATGAAT AGGAACT A'n"GG-3' 

S292C 

E375K 

D517Y 

G769V 

K838E 

del L841 

D1622A 

A1637V 

S'-CCCAl'AAGATGAATAGGAACTAl'TGG-3' 

S'-ACCTl'CTGTGCCA l'CCGACT -3' 

5' -GGAAl'Gl'TGACAGTCTTTGAl'l'C-3' 

5' -GGAAGAGAGGCCl'GAACTACA-3' 

5' -ACACAAGCl'GTGTGCAGAGG-3' 

S' -ACACAAGCTGTGTCrCAGAGG-3' 

5'- CTGCAGGGTAGTGGAGCTG-3' 

5' - Cl'GCAGGGl' AGTGGAGCTG-3' 

Site Mutation 

602C~T 

2084G~A 

5'-TGATCGl'GAAAACCAGl'CCATl'CT-3' 

5' -CTCl'{fCCCTTTl'CAGGGAAAACC-3' 

Reverse Primers 

5' -GGGT AGAATCGGGAAGCTCl' -3' 

5" -l'GACAGGAACCrGGGGCAATGAG-3' 

5' -CCCACCGTAAGCl'CTICl'CA-3' 

5 '-AAGAACl'ACl'CACCCl'CAl'l'TTGCG-3' 

5' -GCAAAAAl'CCCCACCAAT AA~3' 

5'-AAACTrrCCCTGTTGACTGTAGA-3' 

5'-ATGAGCl'CAGGCl'TCl'TGGl'A-3' 

5' -GCCAACTGACTGACGTGCT _3' 

5' -TGCAGl' AATGAGCAGAAGAGl'C-3' 

5' -Tl'TCTGAGAGAGACTCCCCTTC-3' 

5'-GCAAAAATCCCCACCA.ATAA-3' 

5' -GCAAAAATCCCCACCAAT AA-3' 

5' -GCCCAGCCT ACATTTCTGAG-3' 

5' -GCCCAGCCT ACATTTCTGAG-3' 

5' -Tl'GGCCAGGTCCCCAGT AGCl' -3' 

5'-CTGGTGCAGAACAAGGCl'GTGl'-3' 

Enzymes 

Nla lIJ 

AlII. I 

Pst I 

BstUI 

Hp.vCH4TV 

Pst I 

Rsa J 

Mlyl 

Rsa I 

Cac8 J 

Ban II 

BseRI 

Avan 

F1lu4H I 

tv 
0\ 



CHAPTER 3 

TRISMUS-PSEUDOCAMPTODACTYL Y SYNDROME IS 

CAUSED BY A RECURRENT MUTATION IN MYH8 

The following chapter is a manuscript coauthored by myself, Harold Chen, 
Virginia K. Proud, Hans van Bokhoven, Rick Martin, Constantine A. Stratakis, Lynn B. 
Jorde, and Michael J. Bamshad. This article is published in American Journal of 
Medical Genetics in 2006 (volume 140A, number 22, pages 2387-2393). It is presented 
here with the permission of the coauthors and the publisher. 
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Trismus-pseudocamptodacryly syndrome (rPS) is a rare 

autosomal dominant distal arthrogryposis (DA) character
ized by an inability to open the mouth fuBy (trismus) and an 

nnlL'lUal camptodactyly of the fingers that is apparent only 
upon dorsiflexion of the \vrisl (i.e" pseudocamptodaclyly), 

TPS is also known as Dutch-Kentucky syndrome because a 
Dl1Tch founder mutation is presumed to be the origin of TPS 
cases in the Southeast US, induding Kentllcky. To date only a 

single mutation, p.R674Q, in kf'rH8 has been reported to 
cause TPS. Several individuals with thb mutation also had a 

so·called ('variant" of Carney complex, suggesting that the 

pathogenesis of TPS and Carney might be shared. 
We screened Iv!YJ-IS in four TPS pedigrees, including the 

origin;'ll Dutch family in which TPS was reported. All four 
TPS families shared the p.R674Q substitution. How(~ver. 

haplotype analysis revealed that this mutation has arisen 
independently in North American ~md European TPS 
pedigrees. None of the individuals with TPS "tudied had 
features of Carney complex, and 'was not found in 
49 independent cases of Carney complex that V,erl: 
screened. Our findings show that distal arthrogryposb 
syndromes share a similar pathogenesis and arc, in general, 
caused by disruption of the contractile complex of muscle. 

2006 Wiley-Uss. Inc. 
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INTRODUCTION 

Trismus-pseudocamptodactyly syndrome ('1'1'S, 
OlvtIM #1')8300) is a rare aUlOsomal dominant 
disorder characterized by an inability to fully open 
the mouth (1,e" trismus) and an unusual campto
dactyly of the tIngers that is apparent only upon 
hyperextension of the wrist pseudocamptodac
ryly). Additional reported features of IPS include 
clubfoot, shortened "hamstring" muscles, and short 
stature, The penetrancc of TPS appears to he high, 
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although clinical characteristics vary widely within 
families, and no single feature, including either 
lrismus or pseudocamptodactyly, is present in all 
affected individuals. 

TPS was originally described by Hecht and Beals 
119691 and Wilson etal. [1969]. Over the past 40 years, 
at least 20 families have been reported [De .long, 
1971; Horowitz et 31., 197.3; Mabry et ai., 1974; Ter 
HaarandvanHoof, 1974: Yamashita and Arnet, 1980; 
Mercuri, 1981; Robcl1,..;;on et a1., 1982; O'Brien et aL, 
1984; Tsukahara etaL, 1985;Markus, 1986; Vaghadia 
and Blackstock, 1988; Chen et al., 1992; Teng et a1., 
1994; Karras and \Volford, 1995; Geva et a1., 1997; 
Lano and \\7erkhaven, 1997; Adams and Rees, 1999; 
Seavello and Hammer, 1999; I.efaivre and Aitchison, 
2003; Pelo et al., 2003; Skinner and Rees, 2004; Carlos 
et al., 2005; Guimaraes and Marie, 2005J. TPS is also 
known by the popular label, Dutch-Kentucky 
syndrome because a Dutch founder was proposed 
to have been the common ancestor of many of the 
cases reponed in the Southeast US [Mabry et a1.) 
19741. However, while most reported cases are from 
Korth America, individuals with TPS have been 
reported from the Netherlands, Germany, United 
Kingdolll,]apan, Belgium, and Guatemala lTsukhara 
et al., 1985; Hertrich and Schuch, 1991; Rombourli 
and Verellen-Dumoulin, 1992; Hirano et aL, 1994; 
Teng et a1., 1994; Nagata et aI., 1999; Carlos et aL 
20051. 

In Bamshad et aL's [1996] re-organization of Hall 
et al, 's 09821 classification of the distal arthrogryposis 
(DA) syndromes, 10 different DA disorders were 
categorized hierarchically according to their similar
ity with one another. TPS was labeled DA type 7 
(DA 7) because of its unusual hand contracnues and 
lack of Similarity to more common DAs such as DA 
type 1, Freeman-Sheldon syndrome (FSS or DA2A), 
or Sheldon-Hall syndrome (SHS or DA2B). In retro
spect greater emphasis should probably have been 
given to the overlapping facial characteristics of 
TPS with FSS and SHS since all three conditions arc 
characterized by a small mouth, and individuals with 
FSS or SHS occasionally have trismus, Moreover, 11>5 
has been reported to be caused by a single mutation 
in M}718, a gene lhat encodes the perinatal myosin 
heavy chain rVeugelers et aI., 2004}, while FSS and 
SHS recenlly were reported to be caused by 
mutations in the gene that encodes the embryonic 
myosin heavy chain, MYH3 [Toydemir et aL, 2006]. 
Therefore, TPS, FSS, and SHS appear to have a similar 
molecular pathogenesis as well as overlapping 
clinical characteristics. 

To further charactetize the molecular basis of TPS 
and determine \vhether families reported from the 
Netherlands and Southeastern US shared a founder 
mutation in lvlYH8, we sequenced iHYlI8 in four 
families with TPS and genotyped a set of micro
satellites in the region bracketing IHYH8 in order to 
reconstnlct MYH8 haplorypes. These four TPS 

families include representatives from Doth the 
original Dutch kindred (Fig. 1A) and several Tl'S 
kindreds from the Southeast US (Fig. 1B-D). 
Furthermore, 3 of 19 members of the TPS family in 
which a MHf8 mutation was reported originally 
were also affected with a so-called "variant" of 
Carney complex, an autosomal dominant condition 
characterized by skin pigmentary abnormalities, 
myxomas, endocrine tumors or over activity, and 
schwannomas [Kirschner et aI., 2000; Veugelers et aI., 
2004] that manifest with cardiac myxomas and spotty 
skin pigmentation, This obselVation prompted Veu
gelers et a!. [2004J to conclude that the mutation in 
J),fY1fB that caused TPS also caused Carney complex 
and that the pathogenesis of the two disorders might 
overlap. Accordingly, we also screened 49 indepen
dent cases of Carney complex to determine whether 
they had the mutation reported to cause TPS. 

SUBJECTS AND MEmODS 

All studies were approved by the Institutional 
Review Board of the Universitv of Utah and the 
intramural program of the Natio~allnstitute of Child 
Health and Human Development. Inclusion criteria 
included the presence of congenital contractures of 
two or more different body areas, including but not 
limited to pseudocamptodactyly of the fingers and 
trismus. If at least one affected family member met 
these criteria. the diagnostic criteria were relaxed for 
other family members such that only pseuclocamp
todactyly, camptodactyly, or trismus need be present 
to confirm the diagnosis of 11)S. 

Clinical descriptions of the families A ancl B (Fig. 1) 
have been published [Ter Baar and van Hoof. 19i4; 
Chen et al., 19921. After obtaining informed consent. 
genomic DNA was extracted. using standard proto
cols, from peripheral lymphocytes from 19 affected 
and 12 unaffected individuals in four TPS families 
(Fig. 1) and 49 individuals with Carney complex who 
were negative for mutations in PRK4RIA, the only 
gene confirmed to date to cause Carney complex. 
The entire coding region of AIYH8 was PCR
amplified using previously reported primers [Veu
gelers el ai., 20041 and HotstarTaq DNA polymerase 
(Qiagen, Inc., Valencia, CA) following the manufac
turer's recommendations. PCR products "vere pur
ified by exonuclease I (New Fngland Biolabs, Inc., 
Beverly, MA) and shrimp alkaline phosphatase 
(USB Corp., Cleveland, OH) treatment. Purified 
PCR products were sequenced using the Am BigOye 
Terminator v.3.1 chemistry (Applied Biosystems. 
Inc.. Foster Citv, CAl and an Am 3100 automated 
sequencer (Applied Biosystems, Inc.). The sequ
ences were ana I yzed by the Sequencher 4.1 program 
(Gene Codes Corp., Ann Arbor, MO. 

The presence of the c.2021 G > A mutation was 
confirmed in each family member by restriction 
digestion with both BsiW I (New England Biolabs, 
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Pedih'J\'e, ofTPS r:mliJic, (A-DI. Filled symhols denote affected individuals and open symbol, unaffected individ\,aJs. Arrows indicate the prohand 

Inc.) and TspR 1 (\'EB, Inc.) performed according to 
the manufacturers' instructions. Using these restric
tion enzymes, 4AO chronlosomes from unrelated, 
presumably unaffected individuals matched for 
geographic ancestry were also screened. 

Molecular modeling was done with PyMOL 
[DeLano, 2002], llsing the chicken myosin head 
structure as a model [Rayment et al., 1993a,b]. 

RESULTS 

Tn each affected individual in each TPS pedigree, 
we identified a guanine to adenine missense muta
tion at nucleotide position 2021 (c.2021G > A) of 
MYH8 (Fig. 2) that results in substitution of a highly 
conserved arginine residue with a glutamine 
(p.R674Q)' This mutatjon was not observed in the 

unaffected family memhers or in 180 control 
chromosomes. This mutation is identical to the 
mutation t.hat was repotted previously in a family 
with TPS and a variant of Carney complex (Vt~llgelers 
eral.,2004]. 

To determine whether individuals from different 
TPS pedigrees with c.2021G > A shared this mutation 
as a result of a recent common ancestor or recurrent 
mutation, we genotyped four microsatdlites 
(01751879; 017S520, 017S1A52. D17Sll'S9) span
ning a 500 kb region around JH1J8 in an affected 
parent and an affected child from each TPS kindred. 
These genotypes were llsed to manually construct 
the c. 2021 G > A-bearing i",IY118 haplotypes segregat
ing in each pedigree. Analysis of haplotype sharing 
among TPS pedigrees revealed that whHe each of the 
pedigrees ascertained in the US shared the same 
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His Phe Val Arg Cys lie lie TspRI 8siW I 

CA C T T CG T A eGG TG T ATC A T T PC BP C au 

326 

184 

142 

h e. 2. -nlC <:.2 21(, > A mutation {red :lITOw ) in :llYH8 C.IU ~I.'S 10 arginim: [0 glu[amine ~llbsti(u[ion . Thi~ Il1U(;uj n en::::!t's a '[spR I sit .In c1c <;troys a B:;i\ r ire 
P: patient. C: control. 13; hbnk , (I . uncut peR product. 

A1YH8 haplotype, this haplotype was not shared with 
the Dutch TPS kindred (Fig. 3). Therefore, the 
hypothesis that TPS falTIilies in the Southeast US 
share c.2021G > A-beating J1!IYH8 haplotypes as a 
consequence of a recent shared Dutch ancestor '\-vith 
TPS is rejected, 

None of the individuals studied herein \-vith TPS 
were reponed to have multiple hyper-pigrnented 
macules and/ or cardiac myxomas like those pre
Viously reported in several individuals vvith TPS 
caused by c.2021G > A [Veugelers et aI. , 200,4], The 
c.2021G > A n1utation was not found in any of the 49 
Carney conlplex cases that were screened, consistent 
with the absence of TPS stigmata in any Carney 
complex patient studied by an international con
sortium [Stratakis et a1. ) 2004]. 

DISCUSSION 

These results demonstrate that (1) a.ll cases of IPS 
studied to date are caused by an identical 
c.2021G > A mutation in Jl;1Y1!8 that causes a 
p. R674Q substitution; (2) c.2021G > A has arisen 
independently at least twice; (.3) Dutch and US TPS 
pedigrees do not share a founder mutation; and (4) 
c.2021G > A might be associated \vith increased risk 
of cardiac rnyxonlas but it rarely, if ever, causes 
Carney complex. 

Dl 7S18 79 
D1.7S520 

017S1 852 
D17 811 9 

~ 
3 1 3 3 

7 7 5 

1 -1 1 5 

3 4 3 1 

~ 
? 1 2 2 
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~ 4 i 2 
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1 3 , 2 
., 7 6 3 

FIr. 3. [1 . Ru 7 4 (,!-JH H8 haplotypes in TPS blmilies (A-D l. 

D 

II 
') 4 

1 3 
3 2 

6 3 

TIle tTIolecular etiology of TPS has been further 
clarified vvith the characterization of four new and 
putatively independent IPS pedigrees. The observa
tion that.i\tJYH8-c.2021G > A haplorypes are identical 
suggests that all of the TPS cases fron1 Notth Anlerica 
studied to date are likely descendants of a C0l11r110n 
ancestor and therefore represent only a single 
founder [nutation. However, JJIH8-c .2021G > A in 
the Dutch TPS kindred appears to have arisen 
independently. indicating that c2021G > A has 
arisen at least twice. \\7hether this is a lTIutational 
hotspot and/or 'whether other mutations in JlIIYH8 
cause IPS will require testing of additional indivi
duals with 11)S, ideally those \vith a geographic 
ancestry outside of Europe. 

The arginine residue affected hy the c.2021G > A 
[nutation is conserved in all known human genes that 
encode lTIyosin heavy chains and hon101ogs o f JIIYH8 
in a variety of species (Fig. 4). This observation 
suggests that this arginine residue plays a critical role 
in the normal function of myosin heavy chain 8. 
Based on hon101ogy rnodelinK substitution of 
glycine for this arginine residue is not likely to ause 
major stnlCtural perturbation of nlyosin, but this 
arginine does lie on the surface of a groove between 
the two Illajor donlains of the myosin head near the 
ATP binding site (Fig. 5) . Therefore, the c2021G > A 
mutation Il1ight disrupt the catalytic activity of 
myosin. 

To date, the only TPS cases reported with 
characteristics of Carney cOluplex are those in the 
falnily repor1ecl by Veugelers et a1. [20041. None of the 
TPS cases studied herein had any of the features of 
Carney complex, nor have individuals with Carney 
con1plex accompanied by trismus and/ or pseudo
can1ptodactyly been report.ed [Stratakis et aI., 2004l. 
Additionally, ,\\re did not find c.202·1 G > A in 49 
independent cases of Carney cOluplex, nor have 
other 111utations in JVIYH8 been reported to cause 
Carney complex [Stratakis et aI., 2004]. 
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Arq674 
MYR8 P"F r-PN human 
MYHl BPHF I :PN mouse R IIPN 
MYH2 rat 
MYH3 chimp 
MYH4 chicken 
MYB6 fish LIP 
MYH7 frog F R lIP] 

MYH9 dog .. L1 

MYH10 N 

MYHll IPJF R '1_ P ~ 

MYH13 HPh R '.!.J _PN 

F IG 4 ConselY3tion of Arg674 1L1 .H't7fS p:1rJlog~ :lOd orlholog'i 

These results suggest that the etiologies of Carney 
complex and TIJS are independent, and that the 
observation of both disorders segregating in a single 
pedigree is likely to be coincidental. AlrH8 appears 
to be expressed in th developing chick heal1 
[Machida et aI. , 2000]. Therefore, it is possible that 
mutations in lHYH8 influence susceptibility to 
isolated cardiac Inyxoma. However, 'while our study 
was not designed to test the relationship bet\veen 
.:.V1YH8 mutations and risk for cardiac luyxoo1a, none 
of the individuals with TPS that we studied were 

reported to have a cardiac myxoma lJfYHR is 
expressed only in the perinatal period and primarily 
in the skeletal muscles of the limbs and to a more 
liInited extent in the muscles of the face. Therefore, 
both the teluporal and spatial expression of ivIYH8 
are consistent with the following: the ontractures in 
TPS appear prenatally. are limited to the limbs and 
face, and are non-progressive. The spatial expres
sion pattern of Il111l8 is similar to that of M YH3, the 
gene that encodes the feta 1 myosin heavy cha in. 
Mutations in JfrH3 cause congenital contractu res of 

FI(" 'i , Srruclural model oL II,:rin-myo, in coOlrl-·x 'he rihbon cli Jgram ofa sho n streIch o fF-3clin (gray) and myosin h~:J.d (blue) is sh( \ ·n. The c,2021G > A ll1u[a[i )11 

G IU5l'S :1 slIh-;t ilulio n (lfthe Argo: f (red) wh ich is n \.:. lr the TI> b ind ing site (an ATP mu\ccuk is shown in gn: en l, 
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the face and limbs in Freeman-Sheldon syndrome 
and Sheldon-Hal] syndrome {Toydemir et aI., 2006}. 
This observation confirms that these three distal 
arthrogryposis syndromes have shared pathogenesis 
and is consistent with the hypothesis that distal 
arthrogryposis syndromes are, in general, caused by 
disruption of the contractile complex of fast-twitch 
myofibers. 
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CHAPTER 4 

A LOSS-OF-FUNCTION MUTATION IN FGFR3 CAUSES 

CAMPTODACTYLY, TALL STATURE, AND 

HEARING LOSS (CATSHL) SYNDROME 

The following chapter is a manuscript coauthored by myself, Anna E. 
Brassington, Plnar Bayrak-Toydemir, Patrycja A. Krakowiak, Lynn B. Jorde, Frank G. 
Whitby, Nicola Longo, and Michael J. Bamshad. This article is published in American 
Journal of Human Genetics in 2006 (volume 79, number 5, pages 935-941). It is 
presented here with the permission of the coauthors and the publisher. 
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REPORT -----,---------_. __ .-------
A Novel Mutation in FGFR3 Causes Camptodactyly, Tall Stature, 
and Hearing Loss (CATSHL) Syndrome 
Reha M. Toydemir, Anna E. Brassington, PIllar Bayrak-Toydemir, Patrycja A. Krakowiak, 
Lynn B. Jorde, Frank G. Whitby, Nicola Longo, David H. Viskochil, John C. Carey, 
and Michael J. Bamshad 

Activating mutations of FGFR3, a negative regulator of bone growth, are well known to cause a variety of short-limbed 
bone dysplasias and craniosynostosis syndromes. We mapped the locus causing a novel disorder characterized by 9!mp
todactyly, !ail ~tature, ~coliosjs, and !learing loss (CATSHL syndrome) to chromosome 4p. Because this syndrome reca
pitulated the phenotype of the Fgfr3 knockout mouse, we screened FGFR3 and subsequently identified a heterozygous 
missense mutation that is predicted to cause a p.R621H substitution in the tyrosine kinase domain and partial loss of 
FGFR3 function. These findings indicate that abnormal FGFR3 signaling can cause human anomalies by promoting as 
well as inhib1ting endochomiral bone growth. 

Fibroblast growth factor receptor 3 (FGFR3) is one of five 
distinct membrane~spanning tyrosine kinases that partic
ipate in a variety of developmental processes. Mutations 
in FGFR3 cause at least half a dozen different disorders j 

including achondroplasia (ACH [MIM lO0800}), hypo
chondroplas.ia (HCH lMIM 146000]), thanatophoric dys
plasia I and II (MIM 187600), Muenke syndrome (MIM 
602849), Crouzon syndrome with acanthosis nigricans 
(MIM 1876(0), severe ACH with developmental delay 
and acanthosis nigricans (SADDAN) syndrome, I and 
lacrimo-auriculo-dental-digital (LADD [MIM 149730]) 
syndrome.2

•
3 FGFR3 is a negative regulator of bone growth, 

and all mutations characterized to date cause constitutive 
FGFR3 activation and impair endochondral bone growth,:' 

We evaluated a large Utah pedigree in which 27 living 
affected family members spanning four generations (from 
a total of 3S affected individuals in seven generations; see 
fig. 1) were affected with dominantly inherited £ampto
dactyly, iall ~.tature, and hearing !oss or CATSHL (pro
nounced "cat-shul") syndrome (fig. 2). Phenotypic infor
mation and DNA were available from 20 of 27 affected 
individuals. Adult height in males was >97th percentile 
in 5 of 5 men, with a mean height of 77 inches, and adult 
height in females was >7Sth percentile in 9 of 9 and >97th 
percentile in 8 of 9 women, with a mean height of 70 
inches. Camptodactyly of the hands and/or feet (fig. 2) 
was present in 18 (9Q<}'b) of 20 individuals, and 17 (8S IJ,6) 
of 20 had hearing loss (14 of 20 were documented as hav
ing hearing Joss, and 3 of 20 acknowledged having hearing 
loss but refused formal testing). Of 20 individuals, 12 
(60%) had developmental delay and/or mental retarda
tion, and several of these had microcephaly (head circum
ference <2nd percentile). Several had scoliosis and/or a 

pectus excavatum (fig. 2), although the frequency of oc
currence might be underestimated because many family 
members elected not to undergo chest and/or spine ex
amination. No individual had characteristics of LADD syn
drome or craniosynostosis syndromes caused by muta
tions in FGFR3. Marfan syndrome was considered a 
possible diagnosis, but no affected individuals who were 
examined had severe myopia, lens dislocation, or aortic
root abnormalities. Therefore, the diagnosis of Marfan 
syndrome was excluded. 

Radiographic findings included tall vertebral bodies 
with irregular borders and broad femoral metaphyses with 
long tubular shafts (data not shown). Several affected in
dividuals had a single osteochondroma of the femur, the 
tibia, or a phalanx; pectus abnormalities; and/or severe 
thoracolumbar kyphoscoliosis (fig. 2). On audiological 
exam, each tested individual had bilateral sensorineural 
hearing loss and absent otoacoustic emissions (fig. 3). By 
report, the hearing loss was congenital or developed in 
early infancy, progressed variably in early childhood, and 
ranged from mild to severe. Computed tomography and 
magnetic resonance imaging revealed that the brain, mid
dle ear, and inner ear were structurally normal. 

To identify the locus for CATSHL syndrome, we per
formed a genomewide linkage scan, on 20 affected indi~ 
viduals, that revealed a significantly positive LOD score 
of 3.76 (recombination fraction (0] 0.(01) with marker 
1)45412 (table 1), located on the tip of chromosome 4p. 
A multipoint LOD score estimated from markers saturat· 
ing this region was 5.1 and reached its maximum at D4S43 
(table 2). No other region of the genome harbored markers 
with a significantly positive LOD score. Haplotype analysis 
delimited a cri tical interval of -7 Mb (fig. 1) that contained 

From the Departments 01 Human Genetics (R,)'f.T.; A,E.B.; L.B.J.l. Pathology (P.B:r.), Biochemistry (EG.W.), and Pediatrics (N.L.; D.t·J.V.; .I.C.C.), 
University of Utah, Salt Lake City; Department of PediatriCS, University of Arkansas for MedicalSciel1ces, Little Rock (P.A.K.); and Departments of Pediatrics 
and (;l.!llomc Sciences. Univer,ity of Washington (M.).B.), and Children's Hospital amI Regional Medical Center (M.lR.), Seattle 

Received June 14,2006; accepted for publication AugllSt 10, 2006; electronic-ally published September 26. 2006. 
Address for correspondence and reprints: Dr. Michael J. Barmhad, Department of Pediatrics. Division of Genetics and Developmental Medicine, 

University of Washington School of Medidne, 1959 NE PacUk Street, HSB RR349, Seattle, W:\. 98195, E-mail: mbamshad@u.washinglon.edu 
Am. I, Hum. Genet. 2006;79:9:~5-941. 2006 by The American Society of Human Genetics. All rights reserved. 0002-9297/2006/7905-0015$IS.O() 

www.ajhg.org The American Journal of Human Genetics Volume 79 November 2006 935 



II 

III 

IV 

V 

VI 

VII 

h 

04S3038 
04543 
D4S124 
04S412 

5W 1 2 
1 3 
6 ' 

168 180 

rn. 
5 

2 3 
3 2 
6 1 

188 

183 

22 27 28 

33·341 35·5Q. 
5) (2' 

185 
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Figure 2. Clinical characteristics of CATSHL syndrome. A, Tall stature, pectus excavatum, and scoliotic deformity of the spine. Camp
todactyly of the hands (8 and C) and feet (D and E). F, Anterior-posterior radiograph of the thoracolumbar spine, showing _800 lateral 
curvature of the lumbar spine. G, Radiograph of the hand of an individual with camptodactyly. 

-30 genes, including FGFR3 (Genbank accession number 
N1vL000142). Because the features of CATSHL syndrome 
overlapped with those of mice homozygous for a Fgfr3 
null allele," we screened affected individuals for FGFR3 
mutations by direct DNA sequencing. 

In all affected family members tested (II = 20), we dis
covered a G->A missense mutation at nucleotide position 
+ 1862 (c.1862G->A) that crcates a novel IJralII restric
tion site (fig. 4) and a histidine->arginine substitution 
(p.R62HI). R621 is located in the catalytiC loop of the 
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tyroSine kinase domain of FGFR3, and it is invariant in 
the tyrosine kinase superfamily (fig. 4c). No unaffected 
family members had this variant, nor was it found in 500 
chromosomes from individuals matched for geographiC 
ancestry (Western Europe). 

The catalytic loop plays a critical role in the transfer of 
a phosphate ion to its target sites. On the basis of ho
mology modeling done using the crystal structure of 
FGFRl, the homologous amino acid residue (i.e., R627) is 
predicted to be critical for the transfer of phosphate." The 
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Figure 3. Representative audiograms of two individuals with CATSHL syndrome that demonstrate sensorineural hearing loss. Pure
tone response in the left ear is indicated by a cross (x) and response in the right ear by an open circle (0). Responses in the 500-
8,000 Hz range were obtained in the mild sloping to severe hearing loss range, bilaterally. 
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p.R621 H substitution may therefore interfere with the 
ability of FGFR3 to transfer phosphate to its peptide sub
strate, resulting in loss of function (fig. 5). This prediction 
js supported by experiments in which site-directed mu
tagenesis of the homologous amino acid residue in the 
kinase domain of the insulin receptor (Le., Rl 136) and the 
C-terminal Src Kinase virtually inactivates the receptor. 7

,::; 

The anomalies observed in humans with p.R621H re
capitulate the defects identified in Fgfr3-1 mice. 4,s The 
skeletal phenotype of Fgfr3 -1- mice is characterized by 
elongated long bones (particularly the femur) and long 
vertebral bodies that predispose the animals to thoracic 
kyphoscoliosis and tail kinks. Like the Fgfr3 mice, only 

A Ala Ala Arg Asn Val 
GeT Ge e C G C A A T G T G 

c 
FGFRI 
fG[R2 

l-GFR3 
FGFR4 

Y.QVA 

y 

R-t us n.,rve lC\lS Y 

Mil.' m sell I t s Y 

lS Ta llrlJ ~ 

:1io rC' i-) 

Table 1. Two-Point Linkage Data for ALL 
Chromosomes 

The table is available in its entirety in the online 
edition of The Amen'can Journal of Human Genetics. 
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bones formed by endochondral ossification are affected 
in CATSHL syndrome, and the bones most notably af
fected are the long hones and vertebral bodies. Fgfr3 I 

mice also exhibit profound sensorineural deafness that is 
caused by cochlear defects, including absence of inner and 
outer pillar ceUs in the organ of Corti and reduced in
nervation of the outer hair cells.4,s However, the middle 

B 
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Figure 4. Identification of loss-of-function mutation in FGFR3 that causes CATSHL syndrome. A, A heterozygous G-A FGFR3 mutation 
creates a novel DraIn restriction site. B, Restriction digest with DraIn that confirmed homozygosity for the uncut wild-type FGFR3 
allele (419 bp) in unaffected individuals (open symbols), whereas affected individuals (filled symbols) were heterozygous for a wild
type allele (419 bp) and a mutant allele that cut into two fragments (318 and 101 bp). C, Amino acid alignment of different FGFRs. 
Arginine at codon 621 of the activation domain is conserved among human FGFR1, -2, -3, and -4 (top), in all vertebrate FGFR3s 
characterized to date (middle), and in other receptor tyrosine kinases (bottom). 
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ear ossiclcs and the gross structure of the inner ear of 
Fxfr3 i mice are normal. Likewise, individuals with 
p.R621 H had sensorineural hearing loss, normal conduc
tive hearing, and no gross abnormalities of the middle or 
inner ear. [n contrast to the static deafness observed in 
Fgfr3-i- mice, the hearing loss in individuals with the 
p.R621H substitution was progressive. This difference may 
be a result of the residual activity of the wild-type copy 
of FGFR3 in individuals with CATSHL syndrome. It also 
suggests that the support cells of the organ of Corti might 
require FGfR3 for maintenance as well as formation. an 
inference consistent with the expression of Fgfr3 in pillar 
cells of the adult rat." This requirement (my be dose-sen
sitive, because some individuals with consti tutively acti
vating mutations in f(iFR3 also develop sensorineural 
hearing 10ss.'O 

A 

B 

Table 2. Results of the Multipoint 
Linkage Analysis 

The table is available in its entirety in the online 
edition of The Amen'can Journal of Human Genetics. 
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The skeletal phenotypes of both Fgfr3 mice and in-
dividuals with CATSHL syndrome also are similar to those 
of sheep with a naturally occurring condition called 
"ovine hereditary chondrodysplasia" or "spider lamb syn· 
drome" (SLS)." ,12 SLS is a codominant condition charac
terized by modestly increased long-bone length in het
erozygotes and elongated "spider-like" legs, a "humped 
and twisted spine," flexion contractures of the legs, and 
deformed ribs and sternebra in homozygotE's. \2 SLS is 
caused by a substitution of glutamic acid for valine at 

Figure 5, A, Ball-and-stick model of the active-site region of the catalytic domain of FGFR1, The model is based on the 0.2-nm crystal 
structure of the tyrosine kinase domain of the human FGFRl (RSCB Protein Data Bank entry lFGK). R627 of FGFRl is homologous to 
R621 of FGFR3. B, Hypothetical model of FGFR3. showing position of histidine side chain when substituted for R621. 
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amino acid position 700 (p.V700E) in the tyrosine kinase 
of Fgfr3, where it is predicted to cause a loss of FGFR3 
function. 12 Therefore, both p.R621H and p.V700E cause a 
dominantly inherited loss of FGFR3 function and similar 
skeletal anomalies. 

For several reasons, it is unlikely that the loss of function 
caused by p.R621H results from haploinsufficiency. First, 
mice heterozygous for an Fgfr3 null allele are phenotyp
ically normal. Second, deletion of FGFR3, which occurs 
in most patients with Wolf-Hirschhorn syndrome (WHS 
[MIM 194190]), is not associated with any of the skeletal 
defects observed in the individuals with p.R621H. How
ever, it is possible that other genes that are typically de
leted in patients with WHS mask the effect of FGFR3 hemi
zygosity. Third, the fibroblasts of individuals affected with 
CATSHL syndrome express both wild-type and mutant 
(Le., p.R621 H-containing) FGFR3 RNA in nearly equal pro
portiOns, and the expression levels of all five FGFRs in 
patients are similar to those of normal individuals, Fur
thermore, both mutant and wild-type FGFR3 localizes to 
its normal position in the cell membrane (data not 
shown). These observations suggest that p.R621H might, 
instead, cause loss of FGFR3 function by a dominant neg
ative mechanism. 

Proper FGF signaling requires dimerization of FGJR mol
ecules on the cell surface. Dimerization subsequently pro
motes the intracellular autophosphorylation of critical ty
rosine residues in the activation loop of the receptor. 6 This 
stabilizes the tyrosine kinase domain in the active con
formation, leading to phosphorylation of other tyrosine 
residues in the activation domain and binding of target 
proteins. p.R621H-FGFR3 might form a heterodimer with 
wild-type FGFR3 that reduces or abolishes kinase activity. 
This mechanism has been shown to underlie the domi
nant negative effect of several amino acid substitutions in 
the activation domain of the insulin receptor (MIM 
147670), another tyrosine kinase receptor, that cause 
dominantly inherited insulin resistance. 

It has been speculated that polymorph isms in FGFR3 
might influence adult height. l

" This hypothesis is sup
ported by the observation that several FGFR3 mutations 
cause such mild forms of HCH that the height of affected 
individuals falls within the normal spectrum. 16 On the 
other hand, p.V700E is positively correlated with 10ng
bone length in sheep, and the height of p.R621 H heter
ozygotes overlaps with indiViduals on the taller end of the 
normal height spectrum. Analogous to the positive asso
ciation between the level of FGFR3 activation and bone
growth inhibition (Le., higher levels of FGFR3 altivation 
cause more-severe limb shortening), our results indicate 
that increases in long-bone length are associated with 
FGFR3 impairment. This observation suggests that human 
stature might be influenced by FGFR3 activity in a dose
dependent fashion. 
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Table 4.1. Two-Point Linkage Data for All Chromosomes 

Chromosome LOD at =8 

and Marker 0.00 0.01 0.05 0.10 0.20 0.30 0.40 
1 : 

DlS407 -8.31 -3.36 -1.70 -0.98 -0.36 -0.11 -0.02 
DlS396 -18.90 -4.72 -2.44 -1.45 -0.54 -0.14 0.01 
DlSl150 -9.94 -6.38 -3.76 -2.47 -1.21 -0.55 -0.17 
DlSl162 -7.09 -3.57 -2.11 -1.44 -0.74 -0.35 -0.11 
DlS410 -5.60 -3.00 -1.99 -1.47 -0.94 -0.59 -0.29 
DlS406 -7.05 -5.43 -3.26 -2.24 -1.23 -0.67 -0.29 
DlSl174 -7.19 -5.10 -2.90 -1.91 -1.04 -0.59 -0.26 
DlSl153 -11.15 -6.18 -4.84 -3.39 -1.77 -0.92 -0.38 
DlSl165 -16.48 -6.43 -3.53 -2.27 -1.08 -0.48 -0.15 
DlS370 -13.00 -1.93 -0.64 -0.18 0.13 0.19 0.13 
DlS384 -10.80 -0.70 0.13 0.48 0.67 0.60 0.37 
DlS408 -5.54 -2.18 -1.31 -0.88 -0.46 -0.24 -0.10 
DlS373 -14.13 -2.71 -1.15 -0.48 0.07 0.23 0.19 
DlSl164 -5.71 -2.34 -1.44 -1.00 -0.53 -0.27 -0.10 
DlS399 -0.12 -0.12 -0.10 -0.08 -0.04 -0.02 0.00 
DlS389 -10.87 -1.65 -0.27 0.20 0.44 0.39 0.24 
DlS517 -21.05 -6.02 -3.05 -1.77 -0.67 -0.21 -0.03 
DlS404 -7.73 -3.39 -1.75 -0.99 -0.32 -0.05 0.04 
DlS211 -18.09 -8.51 -5.11 -3.44 -1.77 -0.88 -0.33 

2: 
D2S262 -16.13 -5.90 -3.18 -2.04 -1.03 -0.53 -0.22 
D2S272 -15.04 -5.59 -2.89 -1.78 -0.78 -0.31 -0.08 
D2S265 -5.63 -2.40 -1.10 -0.61 -0.24 -0.11 -0.06 
D2S1248 -12.95 -5.42 -2.60 -1.45 -0.51 -0.15 -0.02 
D2S1262 0.17 0.17 0.15 0.12 0.07 0.03 0.01 
D2S274 -16.98 -4.69 -2.08 -1.12 -0.39 -0.14 -0.04 
D2S1265 -11.21 -2.75 -1.26 -0.64 -0.15 0.02 0.05 
D2S275 -20.46 -5.61 -2.75 -1.58 -0.58 -0.18 -0.04 
D2S1268 -4.42 -1.08 -0.27 0.07 0.28 0.27 0.16 
D2S1244 -13.82 -6.01 -3.09 -1.83 -0.73 -0.26 -0.06 
D2S273 -10.56 -2.84 -1.47 -0.90 -0.39 -0.15 -0.03 
D2S1242 -16.27 -5.38 -2.93 -1.88 -0.90 -0.42 -0.15 
D2S1279 -18.57 -5.16 -2.86 -1.82 -0.81 -0.31 -0.07 

3: 
D3S1539 -4.69 -0.64 -0.01 0.20 0.30 0.26 0.15 
D3S1537 -4.33 -0.99 -0.19 0.14 0.35 0.34 0.22 
D3S2303 -13.19 -3.81 -1.68 -0.82 -0.15 0.08 0.10 
D3S2327 -7.22 -1.56 -0.17 0.32 0.56 0.46 0.24 
D3S2304 -6.27 -4.51 -2.72 -1.83 -0.90 -0.41 -0.13 
D3S1514 -14.59 -3.20 -1.25 -0.54 -0.03 0.11 0.09 
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Table 4.1. Continued 

Chromosome LOD at =(j 

and Marker 0.00 0.01 0.05 0.10 0.20 0.30 0.40 
D3S2329 -6.88 -1.13 -.48 -0.25 -0.09 -0.03 0.00 
D3S1542 -16.77 -5.28 -2.86 -1.76 -0.74 -0.26 -0.05 
D3S2318 -4.31 -1.03 -0.39 -0.18 -0.06 -0.02 0.00 
D3S1667 -19.00 -7.21 -5.50 -3.87 -2.10 -1.12 -0.47 
D3S2322 -13.33 -5.50 -4.77 -3.53 -1.92 -1.01 -0.41 
D3S1512 -3.90 -3.85 -2.57 -1.75 -0.99 -0.58 -0.27 
D3S1545 -6.52 -5.80 -4.15 -2.88 -1.60 -0.88 -0.38 
D3S1530 -12.12 -6.55 -3.67 -2.38 -1.17 -0.56 -0.21 
D3S2305 -14.58 -8.47 -5.23 -3.42 -1.73 -0.86 -0.34 

4: 
D4S3360 1.07 1.04 0.92 0.77 0.48 0.25 0.09 
D4S3038 3.72 3.65 3.36 2.99 2.21 1.43 0.68 
D4S412 3.76 3.68 3.34 2.90 2.04 1.21 0.48 
D4S3023 1.81 1.76 1.58 1.37 0.98 0.64 0.32 
D4S2285 0.22 0.21 0.18 0.13 0.04 0.01 0.00 
D4S431 2.12 2.07 1.87 1.62 1.16 0.74 0.36 
D4S3007 -9.34 -1.65 -0.43 -0.04 0.15 0.14 0.08 
D4S1511 -3.33 -0.62 0.12 0.37 0.45 0.33 0.16 
D4S1525 -4.34 -0.72 0.07 0.37 0.51 0.42 0.24 
D4S2289 -17.89 -6.69 -3.81 -2.51 -1.22 -0.57 -0.21 
D4S2282 -19.67 -8.67 -4.75 -3.00 -1.42 -0.67 -0.25 
D4S2295 -5.44 -5.35 -3.79 -2.62 -1.42 -0.74 -0.30 
D4S1631 -13.56 -7.69 -5.13 -3.40 -1.72 -0.84 -0.32 
D4S2308 -16.06 -8.84 -5.57 -3.65 -1.83 -0.90 -0.34 
D4S1517 -8.37 -7.41 -4.86 -3.24 -1.71 -0.91 -0.38 
D4S2284 -16.72 -3.97 -1.99 -1.22 -0.57 -0.26 -0.09 
D4S1531 -5.47 -5.37 -3.72 -2.56 -1.38 -0.72 -0.30 
D4S1527 0.18 0.17 0.15 0.12 0.07 0.03 0.01 
D4S2286 -19.82 -4.23 -1.73 -0.78 -0.05 0.17 0.17 
D4S1515 -19.69 -5.91 -2.67 -1.42 -0.41 -0.03 0.08 
D4S2292 -16.65 -3.42 -1.50 -0.75 -0.13 0.10 0.12 
D4S1529 -16.01 -5.20 -2.52 -1.47 -0.60 -0.23 -0.06 
D4S1530 -14.94 -3.61 -1.56 -0.75 -0.09 0.12 0.13 
D4S2299 -11.69 -3.60 -1.68 -0.97 -0.34 -0.06 0.03 

5: 
D5S593 -16.18 -5.31 -2.67 -1.64 -0.80 -0.42 -0.19 
D5S580 -13.41 -6.12 -5.40 -3.96 -2.16 -1.16 -0.05 
D5S1377 -19.84 -7.28 -3.80 -2.35 -1.06 -0.47 -0.16 
D5S612 -12.72 -6.45 -3.55 -2.29 -1.14 -0.56 -0.22 
D5S1351 -12.96 -7.06 -5.56 -3.95 -2.08 -1.10 -0.47 
D5S1347 -0.62 -0.51 -0.26 -0.13 -0.04 -0.02 -0.01 
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Table 4.1. Continued 

Chromosome LOD at =8 

and Marker 0.00 0.01 0.05 0.10 0.20 0.30 0.40 
D5S1346 -12.59 -8.95 -5.43 -3.62 -1.92 -1.02 -0.43 
D5S592 -12.15 -5.75 -2.92 -2.92 -1.73 -0.69 -0.24 
D5S613 -18.40 -8.51 -4.65 -2.94 -1.36 -0.59 -0.18 
D5S1392 -12.36 -6.07 -3.38 -2.17 -1.03 -0.46 -0.15 
D5S1349 -11.17 -5.57 -2.78 -1.67 -0.76 -0.35 -0.12 
D5S1398 -11.19 -3.83 -1.74 -0.94 -0.34 -0.12 -0.02 
D5S1354 -5.69 -2.16 -0.94 -0.47 -0.11 0.01 0.03 
FBN2 -1.60 -1.05 -0.51 -0.30 -0.14 -0.06 -0.02 

6: 
D6S942 -17.17 -4.92 -2.51 -1.48 -0.56 -0.16 0.01 
D6S399 -5.23 -1.08 -0.45 -0.23 -0.07 -0.02 0.00 
D6S394 -6.78 -1.01 0.19 0.54 0.63 0.45 0.20 
D6S400 -6.76 -0.63 0.02 0.26 0.40 0.37 0.22 
D6S948 -8.78 -5.39 -2.76 -1.70 -0.79 -0.37 -0.14 
D6S395 -12.19 -7.84 -4.65 -3.04 -1.52 -0.75 -0.30 
D6S954 -17.04 -8.27 -4.36 -2.72 -1.26 -0.58 -0.22 
D6S939 -10.07 -6.59 -3.32 -2.01 -0.91 -0.41 -0.15 
D6S979 -4.81 -2.11 -1.11 -0.64 -0.24 -0.07 -0.01 
D6S935 -14.81 -4.69 -2.17 -1.20 -0.43 -0.12 0.00 
D6S393 -16.61 -6.76 -3.83 -2.52 -1.24 -0.56 -0.18 
D6S392 -16.44 -3.81 -1.66 -0.79 -0.11 0.12 0.13 
D6S1011 -4.63 -0.61 -0.01 0.16 0.21 0.13 0.04 
D6S439 -15.87 -2.73 -1.22 -0.57 -0.01 0.19 0.18 
D6S291 -10.86 -0.72 0.07 0.40 0.60 0.55 0.35 
D6S105 -4.06 -0.72 0.07 0.37 0.51 0.42 0.24 
D6S276 -0.08 -0.08 -0.06 -0.05 -0.03 -0.01 0.00 
509-8B2 -11.50 -7.27 -4.38 -2.84 -1.42 -0.71 -0.29 
509-12Bl -11.50 -7.27 -4.38 -2.84 -1.42 -0.71 -0.29 

7: 
D7S1484 -12.19 -7.84 -4.65 -3.04 -1.52 -0.75 -0.30 
D7S620 -17.17 -4.92 -2.51 -1.48 -0.56 -0.16 0.01 
D7S1504 -6.76 -0.63 0.02 0.26 0.40 0.37 0.22 
D7S1512 -11.50 -7.27 -4.38 -2.84 -1.42 -0.71 -0.29 
D7S1526 -4.06 -0.72 0.07 0.37 0.51 0.42 0.24 
D7S1485 -16.61 -6.76 -3.83 -2.52 -1.24 -0.56 -0.18 
D7S1517 -11.72 -5.91 -3.49 -2.36 -1.26 -0.68 -0.29 
D7S1520 -11.50 -7.27 -4.38 -2.84 -1.42 -0.71 -0.29 
D7S618 -0.08 -0.08 -0.06 -0.05 -0.03 -0.01 0.00 
D7S1522 -17.13 -7.57 -4.16 -2.67 -1.32 -0.64 -0.24 

8: 
D8S391ID8S307 -12.02 -2.17 -0.82 -0.29 0.12 0.21 0.16 
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Table 4.1. Continued 

Chromosome LOD at=B 

and Marker 0.00 0.01 0.05 0.10 0.20 0.30 0.40 
D8S492 -19.05 -4.64 -1.79 -0.67 0.17 0.39 0.30 
D8S405 -0.16 0.35 0.76 0.80 0.64 0.41 0.20 
D8S499 -13.98 -5.10 -2.36 -1.24 -0.29 0.07 0.14 
D8S1097 -10.06 -2.82 -1.44 -0.88 -0.37 -0.13 -0.02 
D8S366 -19.19 -3.21 -1.24 -0.51 0.04 0.19 0.17 
D8S562 -8.68 -5.57 -3.03 -1.87 -0.88 -0.43 -0.18 
D8S343 -12.98 -7.50 -4.17 -2.65 -1.24 -0.55 -0.17 
D8S384 -6.49 -4.92 -2.74 -1.77 -0.85 -0.40 -0.14 
D8S378 -23.90 -10.12 -5.31 -3.28 -1.46 -0.62 -0.19 
D8S386 -15.01 -4.21 -2.04 -1.14 -0.37 -0.07 0.03 
D8S315 -11.65 -4.35 -1.90 -0.90 -0.15 0.06 0.06 

9: 
D9S759 -32.37 -12.01 -6.93 -4.53 -2.26 -1.09 -0.40 
D9S770 -15.35 -6.85 -3.92 -2.61 -1.34 -0.66 -0.24 
D9S235 -6.13 -1.44 -0.75 -0.46 -0.19 -0.07 -0.01 
D9S248 -12.64 -5.99 -3.22 -2.06 -0.98 -0.44 -0.15 
D9S768 -14.62 -3.84 -1.85 -1.08 -0.43 -0.17 -0.04 
D9S249 -6.21 -3.91 -2.07 -1.28 -0.56 -0.22 -0.05 
D9S774 -5.55 -3.62 -1.72 -1.04 -0.55 -0.35 -0.17 
D9S762 -8.14 -4.26 -2.54 -1.61 -0.71 -0.28 -0.07 
D9S752 -17.60 -4.33 -1.70 -0.71 0.03 0.23 0.19 
D9S15 -8.35 -0.78 -0.17 0.02 0.10 0.07 0.02 

10: 
DIOS526 -8.21 -4.22 -2.13 -1.22 -0.42 -0.09 0.02 
DIOSl152 -26.40 -8.78 -4.60 -2.85 -1.28 -0.55 -0.17 
DIOS527 -5.18 -3.79 -2.25 -1.53 -0.83 -0.44 -0.19 
DIOS509 -25.19 -8.98 -4.77 -3.02 -1.41 -0.62 -0.18 
DIOS524 -3.48 -0.22 0.32 0.42 0.36 0.23 0.11 
DIOS523 -19.32 -5.38 -2.68 -1.61 -0.67 -0.25 -0.06 
DIOS521 -14.28 -8.63 -6.02 -4.04 -2.12 -1.09 -0.44 
DIOS528 -11.23 -4.84 -2.23 -1.26 -0.52 -0.24 -0.09 
DIOSl134 -12.69 -8.11 -6.11 -4.20 -2.23 -1.14 -0.45 

11 : 
DllS1923 -10.56 -6.38 -4.16 -2.84 -1.52 -0.79 -0.32 
DllS1301 -15.36 -4.61 -1.97 -0.96 -0.16 0.09 0.12 
DllS1298 -18.45 -7.48 -3.94 -2.43 -1.06 -0.42 -0.10 
DllS1291 -16.77 -6.03 -2.77 -1.49 -0.45 -0.05 0.07 
DllS1302 -12.23 -2.08 -0.73 -0.26 0.02 0.06 0.02 
DllS1899 -9.74 -2.33 -1.11 -0.71 -0.39 -0.21 -0.07 
D11 S1304 -5.68 -4.70 -4.28 -3.91 -2.37 -1.37 -0.63 
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Table 4.1. Continued 

Chromosonle LOD at =8 

and Marker 0.00 0.01 0.05 0.10 0.20 0.30 0.40 
12: 

VWFII -4.72 -2.71 -1.24 -0.66 -0.21 -0.07 -0.02 
D12S369 -8.85 -6.95 -4.04 -2.68 -1.34 -0.64 -0.23 
D12S802 -9.91 -1.98 -0.69 -0.23 0.09 0.14 0.10 
D12S799 -16.09 -7.85 -6.07 -4.14 -2.09 -1.01 -0.36 
D12S297 -0.08 -0.08 -0.06 -0.05 -0.03 -0.01 -0.00 
D12S303 -15.30 -5.21 -2.81 -1.73 -0.73 -0.27 -0.06 
D12S296 -6.12 -2.57 -1.31 -0.78 -0.32 -0.12 -0.03 
D12S300 -7.60 -6.65 -5.78 -4.22 -2.31 -1.23 -0.51 
D12S807 -8.99 -6.30 -3.70 -2.46 -1.30 -0.69 -0.30 
D12S834 -17.97 -4.87 -2.48 -1.42 -0.49 -0.12 -0.01 

13: 
D13S250 -6.53 -3.59 -1.97 -1.23 -0.54 -0.21 -0.05 
D13S252 -9.35 -5.99 -3.73 -2.57 -1.38 -0.73 -0.30 
D13S305 -5.55 -4.70 -2.99 -2.10 -1.17 -0.64 -0.28 
D13S242 -15.33 -4.85 -2.35 -1.26 -0.35 -0.01 -0.36 
D13S258 -5.30 -4.39 -2.27 -1.35 -0.55 -0.20 -0.04 
D13S628 -3.18 -0.87 -0.26 -0.07 0.03 0.02 0.00 
D13S254 0.22 0.21 0.19 0.15 0.09 0.04 0.01 
D13S248 -6.84 -2.96 -1.45 -0.80 -0.24 -0.02 0.04 

14: 
D14S781 -19.19 -8.22 -4.59 -3.00 -1.49 -0.71 -0.26 
D14S122 -10.31 -1.58 0.24 0.79 0.96 0.74 0.36 
D14S121 -10.50 -2.59 -1.15 -0.59 -0.15 0.01 0.05 
D14S562 -12.38 -5.00 -2.25 -1.18 -0.36 -0.11 -0.06 
D14S119 -7.11 -2.34 -1.03 -0.54 -0.16 -0.04 -0.01 
D14S140 -15.56 -5.41 -3.01 -1.93 -0.93 -0.46 -0.19 
D14S553 -3.55 0.46 0.94 0.96 0.70 0.37 0.12 
D14S118 -11.44 -3.17 -1.54 -0.85 -0.27 -0.05 0.00 
D14S126 0.20 0.19 0.14 0.09 0.03 0.01 0.01 
D14S131 0.20 0.19 0.14 0.09 0.03 0.01 0.01 

15: 
D15S540 -4.56 -1.01 -0.36 -0.12 0.04 0.08 0.06 
D15S537 -10.62 -0.20 0.38 0.53 0.52 0.40 0.22 
D15S195 -5.85 -4.90 -2.73 -1.75 -0.84 -0.39 -0.14 
D15S192 -8.23 -5.90 -4.07 -2.79 -1.49 -0.77 -0.30 
D15S533 -21.58 -7.39 -3.85 -2.35 -1.01 -0.39 -0.10 
D15S184 -27.70 -5.42 -2.16 -0.96 -0.08 0.16 0.18 

16: 
D16S423 -7.77 -1.39 -0.13 0.28 0.48 0.41 0.23 
D16S475 -7.25 1.19 1.62 1.59 1.24 0.81 0.40 
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Table 4.1. Continued 

Chromosome LOD at =(} 

and Marker 0.00 0.01 0.05 0.10 0.20 0.30 0.40 
D16S680 -8.13 -2.19 -0.78 -0.26 0.07 0.13 0.09 
D16S683 0.24 0.23 0.18 0.13 0.06 0.03 0.01 
D16S490 -9.29 -2.02 -0.51 0.05 0.39 0.38 0.23 
D16S746 -14.39 -3.91 -2.13 -1.26 -0.45 -0.09 0.03 
D16S487 -19.07 -5.04 -2.23 -1.08 -0.15 0.16 0.18 
D16S671 -3.95 -0.67 -0.02 0.20 0.33 0.31 0.19 
D16S676 -15.29 -3.88 -1.34 -0.43 0.18 0.28 0.19 
D16S418 -2.28 0.03 0.58 0.70 0.64 0.46 0.23 
D16S3024 -14.67 -2.29 -0.42 0.21 0.54 0.49 0.29 
D16S291 -8.42 -1.18 0.03 0.39 0.50 0.38 0.19 
D16S287 -12.08 -3.13 -1.12 -0.36 0.17 0.28 0.21 

17: 
D17S695 -11.97 -6.68 -3.70 -2.38 -1.13 -0.50 -0.16 
D17S919 -4.85 -1.55 -0.82 -0.50 -0.21 -0.08 -0.02 
D17S900 -15.94 -2.43 -0.97 -0.39 0.03 0.11 0.08 
D17S750 -23.38 -4.43 -1.76 -0.74 0.02 0.22 0.19 
D17S515 -16.07 -5.98 -3.08 -1.84 -0.72 -0.22 -0.01 
D17S722 -9.99 -4.56 -2.45 -1.59 -0.86 -0.47 -0.20 
D17S914 -10.53 -3.03 -1.36 -0.61 -0.01 0.14 0.10 

18: 
D18S818 1.09 1.05 0.91 0.74 0.43 0.20 0.06 
D18S391 -9.49 -4.01 -2.33 -1.48 -0.66 -0.27 -0.07 
D18S53 -4.71 -0.67 -0.07 0.11 0.16 0.10 0.03 
D18S819 -12.08 -6.23 -3.42 -2.22 -1.12 -0.56 -0.22 
D18S383 -8.84 -2.44 -1.15 -0.66 -0.28 -0.12 -0.03 
D18S51 -22.46 -6.36 -3.02 -1.72 -0.64 -0.22 -0.06 
D18S390 -17.86 -4.77 -2.11 -1.09 -0.29 -0.01 0.04 
D18S380 -11.53 -3.18 -1.34 -0.64 -0.11 0.08 0.10 
D18S64 -24.62 -5.36 -2.58 -1.48 -0.60 -0.24 -0.08 

19: 
D19S549 -5.52 -2.15 -1.28 -0.86 -0.45 -0.23 -0.09 
D19S395 -27.00 -10.06 -5.72 -3.76 -1.89 -0.91 -0.33 
D19S403 -4.81 -1.27 -0.65 -0.43 -0.24 -0.13 -0.06 
D19S400 -5.79 -4.34 -2.19 -1.29 -0.53 -0.22 -0.09 
D19S393 -2.57 -0.27 0.28 0.40 0.34 0.18 0.04 
D19S553 -7.17 -1.68 -0.27 0.24 0.51 0.42 0.20 
D19S727 -10.53 -7.24 -4.18 -2.69 -1.26 -0.55 -0.17 

20: 
D20S165 -6.41 -3.01 -1.62 -0.96 -0.38 -0.14 -0.03 
D20S156 -16.1 0 -6.37 -3.49 -2.27 -1.15 -0.57 -0.21 
D20S161 -4.51 -1.22 -0.54 -0.27 -0.04 0.04 0.05 
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Table 4.1. Continued 

LOD at =(} 

and Marker 0.00 0.01 0.05 0.10 0.20 0.30 0.40 
D20S438 -18.48 -4.85 -2.19 -1.17 -0.35 -0.07 0.00 
D20S423 -19.72 -7.87 -4.30 -2.77 -1.36 -0.66 -0.24 
D20S428 -10.24 -3.10 -1.72 -1.14 -0.59 -0.30 -0.11 
D20S149 -6.98 -3.48 -1.94 -1.26 -0.61 -0.27 -0.08 
D20S94 -18.96 -4.02 -2.00 -1.20 -0.50 -0.19 -0.04 
D20S164 0.22 0.21 0.17 0.12 0.05 0.01 0.00 

21: 
D21S1414 -5.14 -3.85 -2.30 -1.58 -0.86 -0.46 -0.19 
D21S1409 -16.31 -8.05 -4.75 -3.11 -1.56 -0.77 -0.30 
D21S1245 -5.06 -2.33 -1.30 -0.80 -0.33 -0.11 -0.02 
D21S1413 -10.30 -4.63 -2.47 -1.57 -0.77 -0.38 -0.16 
D21S1246 -5.43 -1.14 -0.50 -0.28 -0.10 -0.03 0.00 
D21S1411 -14.02 -3.63 -1.93 -1.14 -0.59 -0.30 -0.11 

22: 
D22S533 -5.92 -2.73 -1.74 -1.16 -0.53 -0.21 -0.05 
D22S528 0.50 0.48 0.39 0.28 0.14 0.05 0.02 
D22S417 -14.00 -7.52 -4.43 -2.99 -1.57 -0.80 -0.31 
D22S526 -10.79 -4.84 -2.20 -1.19 -0.38 -0.07 0.02 

N OTE.-Two-point linkage analyses were perfonned with the MLINK program of 
the F ASTLINK * package, under the assumptions of autosomal dominant inheritance 
and full penetrance. The disease-allele frequency was set at 0.0001. 

*Lathrop GM, Lalouel J-M, Julier C, Ott J (1984) Strategies for multilocus analysis in 
humans. PNAS 81 :3443-3446. 



Table 4.2. Results of the Multipoint Linkage Analysis 

Position or Marker 
-49.9999 
-45.0000 
-40.0000 
-35.0000 
-30.0000 
-20.0000 
-15.0000 
-10.0000 
-5.0000 
-0.0001 

D4S3038 
0.0001 
0.1092 
0.2184 
0.3276 
0.4367 
0.5459 
0.6551 
0.7643 
0.8735 
0.9827 
1.0917 

D4S114 
1.0919 
1.1471 
1.2024 
1.2577 
1.3131 
1.3684 
1.4237 
1.4790 
1.5343 
1.5896 
1.6448 
D4S43 
1.6450 
1.7428 
1.8408 
1.9387 
2.0367 
2.1346 
2.2326 
2.3306 

Location Score 
1.8770 
2.0890 
2.3220 
2.5770 
2.8550 
3.4870 
3.8420 
4.2240 
4.6330 
5.0690 

5.0690 
5.0710 
5.0740 
5.0760 
5.0790 
5.0820 
5.0840 
5.0870 
5.0890 
5.0920 
5.0940 

5.0940 
5.0950 
5.0960 
5.0960 
5.0970 
5.0980 
5.0990 
5.0990 
5.1000 
5.1010 
5.1010 

5.1010 
5.1010 
5.1010 
5.1010 
5.1010 
5.1010 
5.1010 
5.1010 

50 



Table 4.2. Continued 

Position or Marker 
2.4285 
2.5265 
2.6243 

D4S127 
2.6245 
2.6909 
2.7573 
2.8237 
2.8902 
2.9566 
3.0231 
3.0895 
3.1559 
3.2224 
3.2887 

D4S412 
3.2889 
8.2888 
13.2888 
18.2888 
23.2888 
28.2888 
33.2888 
38.2888 
43.2888 
48.2888 
53.2887 

Location Score 
5.1010 
5.1010 
5.1010 

5.1010 
5.1010 
5.1000 
5.1000 
5.1000 
5.0990 
5.0990 
5.0990 
5.0980 
5.0980 
5.0980 

5.0980 
4.6600 
4.2500 
3.8670 
3.5100 
3.1800 
2.8760 
2.5960 
2.3400 
2.1050 
1.8920 
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NOTE.-Multipoint linkage analysis was performed using SimWalk*, with markers 
on the short arm of chromosome 4, under the assumptions of dominant inheritance and 
a disease allele frequency of 0.001. 

*Sobel E and Lange K (1996) Descent graphs in pedigree analysis: applications to 
haplotyping, location scores, and marker sharing statistics. Am J Hum Genet 58: 1323-
1337. 



APPENDIX A 

DISTAL ARTHROGRYPOSIS TYPE 5 IS 

CAUSED BY DEFECTS OF MYOSIN 

The following abstract, coauthored by myself, Lynn B. Jorde, and Michael J. 
Bamshad, was presented at the 2006 annual meeting of the American Society of Human 
Genetics held in New Orleans and published in the American Journal of Human 
Genetics in 2006 (volume 76, Supplement, page 74). 
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Distal arthrogryposis type 5 is caused by defects of myosin 

Toydemir Rl, Jorde LBl, Bamshad M2,3 

IDepartment of Human Genetics, University of Utah, Salt Lake City, UT 

2Departments of Pediatrics and Genome Science, University of Washington, Seattle, 

WA 3Children's Hospital and Regional Medical Center, Seattle, WA 

The distal arthrogryposes (DA) are a group of syndromes characterized by 

congenital contractures of the hands and feet, limited proximal joint involvement, 

autosomal dominant inheritance, reduced penetrance, and variable expressivity. To 

date, 10 different DA syndromes have been characterized. Among the DAs, DA5 is 

unique since in addition to contractures of the skeletal muscles, affected individuals 

have ocular abnormalities such as ptosis, ophthalmoplegia, and strabismus. Based on 

our previous findings, which showed DAs are caused by mutations that encode proteins 

of contractile apparatus of myofibers, we hypothesized that DA5 might be caused by 

contractile proteins that are expressed in both skeletal and extraocular muscles. Two 

such proteins are myosin heavy chain IIa and myosin heavy chain 13 that are encoded 

by MYH2 and MYH13, respectively. We screened the entire coding region of these 

genes in 8 independent cases ofDA5. In two cases, we found missense mutations in 

MYH2 that caused substitutions of highly conserved amino acid residues. Neither of 

these mutations was found in more than 200 chromosomes from controls matched for 

geographic ancestry. Additionally, one of the two DA5 cases with a MYH2 mutation 

also had a mutation in MYH13. This mutation also alters a highly conserved amino acid 



54 

residue and it is not found in the healthy population. Our results suggest that DA5 is 

genetically heterogeneous, and mutations in MYH2 cause a subset ofDA5 cases. In 

addition, mutations in other contractile proteins might modify the phenotype associated 

with MYH2 mutations or, alternatively, MYH2 might in some cases modify a phenotype 

caused by mutations in genes that encode other contractile proteins. 



APPENDIXB 

A NEW AUTOSOMAL DOMINANT DISTAL ARTHROGRYPOSIS SYNDROME 

CHARACTERIZED BY PLANTAR TENDON CONTRACTURES 

IN A LARGE UTAH KINDRED MAPS TO 2q 

The following abstract, coauthored by myself, David A. Stevenson, Kathryn 
Swoboda, Hilary Coon, and Michael J. Bamshad, was presented at the 2006 annual 
meeting of the American Society of Human Genetics held in New Orleans and 
published in the American Journal of Human Genetics in 2006 (volume 76, 
Supplement, page 282). 



A new autosomal dominant distal arthrogryposis syndrome characterized by plantar 

tendon contractures in a large Utah kindred maps to 2q 

Stevenson DAI, Toydemir R2, Swoboda K1,3, Coon H4
, Bamshad M5 

Departments of lpediatrics, 2Human Genetics, 3Neurology, and 4Psychiatry 

(Neurodevelopmental Genetics Program), University of Utah, Salt Lake City, UT 

5Department of Pediatrics, University of Washington, Seattle, WA 
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The distal arthrogryposis (DA) syndromes are a distinct group of disorders 

characterized by contractures of two or more different body areas. More than a decade 

ago, we revised the classification of DAs and distinguished several new syndromes. 

This classification facilitated the identification of nearly half a dozen genes (i.e., 

TNNI2, TNNT3, MYH3, MYH8, and TPM2) that encode components of the contractile 

apparatus of fast-twitch nlyofibers and when defective cause D A. We now report the 

characterization of a novel DA disorder in a large five-generation Utah family in which 

plantar tendon shortening was transmitted among 14 affected individuals in an 

autosomal dominant pattern. Contractures of hips, elbows, wrists, and fingers varied in 

severity among affected individuals. All affected individuals had normal neurological 

examinations; electromyography and creatinine kinase levels on selected individuals 

were normal. We have tentatively labeled this condition distal arthrogryposis type 10 

(DAIO). A genome-wide linkage scan showed a maximum LOD score of3.96 at 

marker D2S364 on chromosome 2q near a region containing several genes that encode 

contractile proteins. 


