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ABSTRACT 

Modeling the relationships between climate and crop growth is an important tool 

to study agriculture in the past and future. Agricultural suitability models, which estimate 

the probability of rain-fed cultivation in a particular location, provide an opportunity to 

predict agricultural conditions for multiple scenarios in space and time. This thesis 

presents a methodological approach to developing a simple agricultural suitability model 

with machine learning techniques and applying it to two scenarios. First, to predict the 

potential impacts of climate change, the model was used to project agricultural suitability 

at the end of the 21st century at the global scale. Second, the model was used to predict 

agricultural suitability in Range Creek Canyon, an important archeological site in east-

central Utah, in the 10th -13th centuries. The agricultural suitability model was 

supplemented with a streamflow model of Range Creek to address the potential for 

irrigation. The predictive power of random forest and XGBoost were compared and 

random forest was found to build the stronger model in this application. Applied to the 

future, this model predicts a net increase of 13.8-28.2% of agriculturally suitable land by 

AD 2100. The broad patterns agree with past suitability models, with the largest gains of 

suitability distributed in the high-northern latitudes. Decreases in suitability are projected 

in some regions, particularly in the current most intensely cultivated regions including 

Midwestern America. A sensitivity analysis revealed that the main driver of these shifts 

was changing growing season length and intensity, while changing soil moisture had a 
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limited effect. Applied to the past in Range Creek Canyon, the model predicted very low 

agricultural suitability, providing evidence that rain-fed agriculture in Range Creek 

Canyon from AD 900-1200 was nearly impossible. Modeled Range Creek streamflow 

predicted that mean streamflow from AD 900-1200 was 6.34% greater than modern 

streamflow. The area of maize fields that could be irrigated with this amount of 

streamflow was approximately 30.6 hectares. The agricultural suitability model applied to 

two scenarios differing in scales of time and space demonstrate how it can provide 

meaningful insights to a broad range of past and future scenarios. 
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CHAPTER 1 

 

INTRODUCTION 

 

 Models describing the relationship between crop growth and climate have been 

widely used to better understand critical components of food systems and to predict 

potential outcomes to future conditions. Amid threats from anthropogenic climate 

change, crop models are increasingly important tools to equip scientists, policy-makers, 

and farmers with vital information for an uncertain future. Additionally, crop models can 

provide valuable insight to researchers studying past agriculture of prehistoric 

civilizations. 

 Most crop models produce estimates of crop yield as an output, but an interesting 

and much less studied approach is to estimate agricultural suitability. Agricultural 

suitability predicts the probability that a particular location will be cultivated and 

provides a spatial domain for the crop/climate relationship. There is now an opportunity 

to improve past iterations of agricultural suitability models with advanced statistical 

modeling techniques and updated data. Additionally, agricultural suitability models can 

be applied to research questions at a broad range of scales in time and space and can 

easily be used in tandem with additional models to explore specific research questions 

related to climate/crop relationships. 

 The first objective of this thesis is to develop a global agricultural suitability 
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model, building on the framework outlined by Ramankutty, Foley, Norman, and 

McSweeney (2002). Two machine learning methods were used to build the model, and 

the resulting models were evaluated and compared by predictive skill. The second 

objective of this thesis is to apply the more robust model at the global scale in a snap-shot 

of time under two future climate scenarios. Future climate change has the potential to 

have net negative impacts on crop-yield, which would subsequently impact food security 

(Porter et al., 2014). Projecting future shifts in agricultural suitability can inform how to 

adapt to climate change and mitigate potential losses in food security. The third research 

objective is to apply the agricultural suitability model to prehistoric farming in the past 

over a 300-year-long time series and compliment the model with a simple streamflow 

model. Projecting changing agricultural suitability in Range Creek Canyon, UT during 

the Fremont occupation from AD 900-1200 provides the opportunity to understand 

agricultural limitations of these prehistoric Native American farmers. Irrigation likely 

played an important role in maize cultivation for the Fremont in Range Creek Canyon 

(Boomgarden, 2015) and therefore, understanding streamflow is a crucial component to 

understand past conditions. 

 This thesis presents a methodological approach to modeling climate/crop 

relationships at broad scales in space and time. The remainder of the first chapter presents 

a literature review of key topics: climate impacts on agriculture, an overview of crop 

models, future impacts of climate change on agriculture and food security, and relevant 

background of Range Creek Canyon and the Fremont farmers that occupied the canyon. 

Chapter 2 focuses exclusively on the agricultural suitability model and will present its 

development and applications in the future. Finally, Chapter 3 covers the implementation 
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and results of the agricultural suitability model and supplemental streamflow model in 

Range Creek Canyon from AD 900-1200.  

Climate Impacts on Agriculture 

Agricultural outcomes are greatly determined by climate, and precipitation and 

temperature are the two most important climate parameters that directly affect crop 

growth. All crops require access to water and a minimum number of days within an 

optimum temperature range, although the range of climate requirements varies depending 

on crop species and cultivar. Water availability is thought to be the most important 

variable for crop growth as drought is a leading cause of crop failure in rain-fed systems 

(i.e., Baro & Deubel, 2006; Mall, Singh, Gupta, Srinivasan, & Rathore, 2006), but 

temperature is also a vital control through qualities discussed below. 

Water availability to plants is determined by precipitation and temperature 

through evapotranspiration and soil qualities that determine water retention. Crop 

modelers have found that an adequate proxy of soil moisture available to crops is the 

ratio of actual evapotranspiration to equilibrium evapotranspiration, referred to as the 

Priestley-Taylor coefficient (Cramer & Solomon, 1993; Priestly & Taylor, 1972), or the 

ratio of actual evapotranspiration to potential evapotranspiration, a (Ramankutty et al., 

2002), which are determined by both precipitation and temperature. Equilibrium 

evapotranspiration considers only local conditions whereas potential evapotranspiration 

accounts for advection of dry air above a surface. Growing season intensity and length is 

more important to agriculture than temperature values, and is often measured for a 

location with growing degree days (GDD) by summing the annual total of degrees for 
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days above a base temperature, commonly 5°C. GDD and a have been shown to be 

adequate representations of the cold and dry limits of global agricultural lands (Cramer & 

Solomon, 1993). 

 Climate has the potential to indirectly impact crop growth as well, such as through 

pests and disease (Porter et al., 2014; Tubiello, Soussana, & Howden, 2007). Just as 

climate greatly determines the distribution and success of vegetation (Prentice, Bartlein, 

& Webb, 1991), climate also controls the success and geographic distribution of weeds 

that compete for resources, destructive insects, and pathogens (Porter et al., 2014). For 

example, the geographic distribution of Myzus persicae, an aphid that is considered a 

major pest of sugar beets and potatoes, was found to negatively correlate with 

precipitation and positively correlate with temperature (Cocu, Harrington, Rounsevell, 

Worner, & Hullé, 2005). 

 Crop growth is also influenced by the climate-related variables of atmospheric 

concentration of carbon dioxide (CO2) and ozone (O3). Increased CO2 has been shown to 

increase photosynthesis, and therefore yield, in C3 plants, which include soybean and 

wheat, by reducing the instance of photorespiration (Ainsworth & Rogers, 2007; Long, 

1991). This effect is not found in C4 plants such as maize and sorghum, as the unique 

photosynthetic pathway of these plants eliminates photorespiration (von Caemmerer & 

Furbank, 2003). A second way increased CO2 impacts crop growth is by reducing 

stomatal conductance, the rate that CO2 enters or water vapor exits a leaf through its 

stomata (Ainsworth & Rogers, 2007). Both C3 and C4 plants benefit from reduced 

stomatal conductance by allowing plants to conserve water while maintaining sufficient 

CO2 for photosynthesis (Ainsworth & Rogers, 2007). It is important to note, however, 
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that increased CO2 causes a significant decrease in plant protein in all crops investigated 

so far, including barley, rice, wheat, soybean, and potato (Taub, Miller, & Allen, 2008). 

Another important consideration is the detrimental impact of atmospheric O3, a 

phytotoxic pollutant that inhibits photosynthesis (Ainsworth & Rogers, 2007; Morgan, 

Ainsworth, & Long, 2003). Important crops sensitive to O3 include soybean, wheat, 

peanut, and cotton (J. L. Hatfield et al., 2011), and a meta-analysis of the effects on 

enclosed and controlled-environment soybean showed decreased yield after exposure to 

O3 (Morgan et al., 2003). 

 

Overview of Crop Models 

 There are two important approaches to crop yield models: process-based crop 

growth models and statistical models (Rosenzweig et al., 2013). Process-based growth 

models (also called biogeochemical or mechanical models) attempt to incorporate as 

much relevant detail about the biology of plant growth as possible in order to accurately 

predict crop yield (Brisson et al., 2003; Challinor, Wheeler, Craufurd, Slingo, & Grimes, 

2004; Del Grosso, Mosier, Parton, & Ojima, 2005; Keating et al., 2003). These models 

are crop-specific and require detailed climate data, soil type and nutrients data, and crop 

management information, but have the advantage of being more flexible and can account 

for impacts of dynamic CO2. Alternatively, statistical models construct crop yield 

regression equations using meteorological inputs (i.e., temperature and precipitation) 

trained on historic data, and have been shown to be comparable to process-based crop 

models at broad spatial scales (Lobell & Burke, 2010; Makowski et al., 2015). The 

advantage of using statistical models is their ability to predict with few key variables, 
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measure uncertainty, and to analyze large and irregular datasets across the globe (Lobell 

& Burke, 2010; Rosenzweig et al., 2013).  Additionally, they are able to identify 

temperature and CO2 thresholds that result in significant yield gains and losses through 

interpolating between data points (Makowski et al., 2015). However, important 

limitations of statistical models are a lack of consideration of variables related to plant 

biology as well as potential bias due to spatial correlation of climate variables (Lobell, 

Schlenker, & Costa-Roberts, 2011; Schlenker & Roberts, 2009).  

 While crop yield models are valuable, particularly because crop yields can be 

used as inputs for economic models, they lack the ability to explore shifting distributions 

of agriculturally suitable land, which likely impacts global crop yields. Agricultural 

suitability models (also called land suitability or agricultural land availability models) use 

statistical methods to explore the relationship between climate to cropland distribution 

(i.e., Ramankutty et al., 2002; Zhang & Cai, 2011). Agricultural suitability can be defined 

and measured as the proportion of land in a grid cell that is able to successfully grow 

crops. While traditional crop models ask the question “How much crop yield is expected 

under an assigned set of conditions for a specific crop,” agricultural suitability models 

ask the question “How likely is it that land will be successfully cultivated for any crop 

under an assigned set of climate conditions?” 

 Ramankutty et al. (2002) created a pioneering global agricultural suitability model 

to examine sensitivity to climate change. To build the model, the authors empirically 

derived probability density functions to describe the relationships between the probability 

of cultivation and the climate variables GDD and a, and the soil quality parameters 

carbon density and soil pH. The resulting model captures important global patterns of 
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current cropland distribution but overestimates agricultural suitability. The authors argue 

that this result is realistic and represents the underutilization of suitable cropland due to 

competing factors such as grazing and forestry. Broadly, the study found that agricultural 

suitability is expected to decrease in tropical regions and increase in high northern 

latitudes under future climate change scenarios (Ramankutty et al., 2002).  

 There are trade-offs to using a model as simple as the above agricultural 

suitability model. Limitations include the exclusion of potentially important variables and 

processes such as disturbance and certain adaptive farming practices such as irrigation. 

Benefits of a simple model opposed to a complex model include fewer data requirements 

(important for regions where data are scarce), decreased computing time, and the ability 

to calibrate models on observed data. Additionally, simple agricultural suitability models 

implicitly account for some adaptive farming practices such as cultivar/species selection 

and changing cultivation and sowing times. 

 

Impacts of Climate Change on Future Agriculture and Food Security 

 Understanding the effects of anthropogenic climate change on agriculture is 

imperative to ensure future food security of a growing population. Food security is met 

by physical and economic access to food, and involves all elements of complex food 

systems including production (i.e., crop growth) and nonproduction (i.e., packaging, 

transport, storage, retail, and income) elements (Porter et al., 2014). In their fifth report, 

the Intergovernmental Panel on Climate Change (IPCC) concluded with high confidence 

that climate change has the potential to affect all production and nonproduction aspects of 

food security (Porter et al., 2014), including through changes in crop yields and 
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consequences of climate-related disasters (J. Hatfield et al., 2014). If crop yields 

decrease, it is expected that food prices will increase in response, potentially resulting in 

decreased physical and economic food access (J. Hatfield et al., 2014; Porter et al., 2014).  

 A major concern associated with a potential decrease in future food security as a 

result of climate change is how to minimize these effects to feed a rapidly growing 

population. The people most vulnerable to food insecurity are the poorest populations of 

countries affected by conflict, violence, and fragility (FAO, IFAD, UNICEF, WFP, & 

WHO, 2017). The World Bank estimates that these populations may increase from 17% 

today to 50% of the total global population by 2030 due to the population growth (The 

World Bank, 2017).  In 2016, an estimated 815 million people were chronically 

undernourished compared to 777 million people the previous year, the first increase in 

more than a decade (FAO et al., 2017). The causes of this decrease in food security are 

complex, and include increased conflict in Africa and the Near East and economic 

challenges in parts of Latin America (FAO et al., 2017). Many of these regions suffered 

concurrent incidence of drought and flood, exacerbating the problem (FAO et al., 2017).  

 Adapting food systems to mitigate potential losses will be essential moving 

forward, and an important consideration will be the changing geographic distribution of 

land suited to successfully grow crops. As part of the fifth Coupled Model 

Intercomparison Project (CMIP5), researchers have used a suite of general circulation 

models (GCMs) to simulate future climate scenarios (Taylor, Stouffer, & Meehl, 2012). 

Using the CMIP5 output data, the IPCC concluded that the mean global temperature for 

2081-2100 is likely to increase between 0.3°C and 4.8°C relative to 1986-2005 

depending on the CO2 emissions scenario (Collins et al., 2013). Precipitation is expected 
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to increase globally as temperatures rise, although models show much greater uncertainty 

when projecting precipitation compared to temperature (Knutti & Sedláček, 2012). The 

spatial pattern of precipitation increase is expected to resemble a “rich get rich, poor get 

poorer” scenario in which already wet regions in high latitudes will experience most of 

this increase while normally arid regions dry out even further (Collins et al., 2013).  

These changes have the potential to directly affect agriculture in two important ways: 

growing season length and water availability. In some tropical regions, crop yields are 

predicted to decrease as extreme heat shortens the growing season and causes water loss 

via increased evaporation (Jones & Thornton, 2003; Porter et al., 2014). However, 

croplands are expected to expand at high northern latitudes as increasing temperatures 

cause the growing season to lengthen (Ramankutty et al., 2002; Zhang & Cai, 2011). 

Overall, climate change is expected to have a net negative impact on global crop yield 

through direct (i.e., temperature) and indirect (i.e., pests and diseases) impacts (Porter et 

al., 2014). 

 

Impacts of Climate on Prehistoric Agriculture in Range Creek Canyon 

 Range Creek Canyon in east-central Utah on the Tavaputs Plateau is the site of an 

intense Fremont occupation from AD 900-1200. The Fremont were an agricultural 

society as evidenced by maize cobs, maize starch on tools, and maize storage structures 

(Boomgarden, 2015). The cause of the civilization’s collapse in AD 1200 is not well 

understood, but a reasonable hypothesis is that changing climate reduced agricultural 

suitability and thus food security, potentially increasing already present internal strife 

(Boomgarden, Metcalfe, & Springer, 2014). Similar collapses of Native American 
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societies in the 11th through 13th centuries across the American Southwest have been 

correlated with severe drought, including the Anasazi in the Four Corners region and 

other Fremont populations in the Uinta Basin, eastern Great Basin, and Southern 

Colorado Plateau in AD 1150 (Benson et al., 2007). Modeled prehistoric maize 

productivity for southwestern Colorado showed that during a major drought in AD 1130-

1180, precipitation would only have been adequate for dry maize farming at elevations 

above 2200 m, where growing seasons are considered to be unsuitable for prehistoric 

agriculture (Benson, Ramsey, Stahle, & Petersen, 2013), a challenge which may have 

contributed to the decline of the local Anasazi population.  

 Experimental maize farms in the Range Creek Canyon in 2013 and 2014 revealed 

that modern maize farming is nearly impossible without irrigation (Boomgarden, 2015). 

A precipitation reconstruction from the Tavaputs Plateau indicates that the climate during 

the Fremont occupation was similar to the modern climate and experienced significant 

dry periods, though on average received greater mean annual precipitation than modern 

years (Boomgarden, 2015; Knight, Meko, & Baisan, 2010). Using the Tavaputs Plateau 

precipitation reconstruction, Boomgarden (2015) calculated that dry farming maize 

would have been possible for at most 38 years out of the 300-year occupation, assuming 

seasonal precipitation patterns were not drastically different during that time frame. This 

means that irrigation would have played a key role in the civilization’s ability to farm, 

and the streamflow of Range Creek is important to understand. 

 In an effort to estimate the area of maize fields possible to irrigate with available 

streamflow (hereafter called “irrigation potential”), Potter (2016) developed a method 

that considers irrigation efficiency and water requirements for maize during the critical 
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maize reproductive phase. Simple surface irrigation systems such as diversion dams 

result in considerable water loss due to spillage, percolation, and evaporation. Therefore, 

the amount of streamflow successfully converted to soil moisture is a small proportion of 

the total streamflow even when 100% of streamflow is diverted. Potter (2016) estimates 

that this proportion, the irrigation efficiency, can be no greater than 38% in Range Creek 

Canyon with simple technology. Water requirements for maize peak at 0.81 cm per day 

during the reproductive phase (Kranz, Irmak, Van Donk, Yonts, & Martin, 2008), and 

thus water availability during reproduction is arguably the greatest limiting factor in 

irrigation potential. This method for calculating irrigation potential does not consider 

complicating factors such as the location(s) of irrigation diversion and possible 

subsequent downstream recharge via groundwater contribution, but is a starting-point to 

quantify how streamflow translates to maize production along Range Creek.  

 The Range Creek watershed is located on the western side of the Tavaputs Plateau 

and has an area of ~375 km2. It is a perennial stream that flows for 60 km and discharges 

into the Green River. Precipitation contributes to streamflow via surface runoff and 

snowmelt, and it is thought that a large proportion of Range Creek streamflow is 

groundwater contribution, though the groundwater/streamflow relationship is not yet well 

understood (Potter, 2016). Streamflow measurements recorded in the summers of 2015 

and 2016 ranged from 1037 m3 to 9245 m3 per day, and included a measurement of 3,542 

m3 per day during the maize reproductive phase (Potter, 2016), enough water to irrigate 

16.6 hectares of maize per day. This irrigation potential seems low considering the 

intensity of the Fremont habitation; however, a single measurement has limited accuracy 

to predict irrigation potential presently or during the Fremont occupation. While future 
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studies of Range Creek Canyon will yield more streamflow data and a better 

understanding of groundwater and maize farming, it is currently possible to model past 

conditions to provide preliminary insight into the agricultural potential and challenges for 

the Fremont farmers in Range Creek Canyon. 



 

 

 

 

CHAPTER 2 

 

AGRICULTURAL SUITABILITY MODEL 

 

 The objective of this chapter was to develop a simple global agricultural 

suitability model and apply it to future scenarios. The first section describes the 

construction and evaluation of two candidate models. In the second section, the more 

robust model was used to project agricultural suitability at the end of the century and 

calculate predicted gains and losses in agricultural suitability. A sensitivity analysis was 

also conducted to parse the individual contributions of changing GDD and a to changing 

agricultural suitability. 

 

Methodology 

 The framework for this agricultural suitability model was derived from the model 

presented by Ramankutty et al. (2002). Ramankutty et al. (2002) used GDD, a, soil pH, 

and soil carbon content as predictors of fractional cropland area and created an 

agricultural suitability index by combining probability density functions of each variable. 

The resulting projection of modern agricultural suitability depicted important geographic 

patterns of intensely cultivated regions in the United States, Russia, and China, but 

greatly overestimated agricultural suitability compared to the actual distribution of 

cropland. The authors justify the overestimation as a realistic representation because not 
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all agriculturally suitable land is utilized as cropland, and instead is used for grazing, 

forestry, or is protected (Ramankutty et al., 2002).  

 Like Ramankutty et al. (2002), this model used GDD, a, and soil quality as 

drivers of agricultural suitability. Additionally, slope was included as a variable to 

account for topography, an influence that Ramankutty et al. (2002) identified as 

necessary to incorporate in future model iterations. The distribution of cropland used to 

train this model includes rain-fed cropland only, which represents more than 70% of 

modern agriculture (Porter et al., 2014), and allows the effects of climate to be 

distinguished from the effects of irrigation.  

 The machine learning statistical approaches used in the construction of this model 

differ substantially from previous agricultural suitability models. While the Ramankutty 

et al. (2002) model is empirically derived, the rules and weights of the relationship 

between variables and cropland distribution is oversimplified and ultimately programmed 

by the authors. This strategy potentially impacts model fit and predictive power, and it 

fails to account for nonlinear relationships between climate variables and agricultural 

suitability. Supervised machine learning algorithms are able to address these issues by 

iteratively building, analyzing, and revising models based on the given data to produce 

final dynamic models capable of making highly accurate predictions. They are 

completely data-driven and are able to model nonlinearities and other complex 

relationships found within the data without being explicitly programmed. The two 

machine learning techniques used in this study are random forest and XGBoost, 

described in detail below. 
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Data 

 This study utilized a global dataset from the Global Agro-Ecological Zones 

Assessment for Agriculture (GAEZ) of the distribution of modern rain-fed cultivated 

land, which is derived from six geographic datasets with the purpose of categorizing 

global land cover (IIASA & FAO, 2012). The units are the proportion of cropland per 

raster cell provided at a 5-minute resolution, which were aggregated to a 10-minute 

resolution. These data were used to train the random forest and XGBoost models. 

 WorldClim 2 (Fick & Hijmans, 2017) is a spatially interpolated monthly 

terrestrial data set that provides climate variables averaged across 1970-2000. This study 

used 10-minute mean monthly temperature and mean monthly sum of precipitation from 

this data set to represent modern climatology. Mean monthly cloud cover fraction was 

used from the Climatic Research Unit Climatology version 2.0 (CRU CL v. 2.0) (New, 

Lister, Hulme, & Makin, 2002), a mean monthly global climatology data set averaged 

across 1961-1990.  Precipitation, temperature, and cloud cover fraction were inputs used 

to calculate a, the ratio of potential evapotranspiration over actual evapotranspiration, 

using SPLASH methodology (Davis et al., 2016). Monthly mean temperature was 

interpolated into daily mean temperature to calculate growing degree days (GDD), the 

annual sum of degrees for every day above surface air temperature 5°C, a proxy of 

growing season length and intensity. 

 As part of the Harmonized World Soil Database (HWSD), a data set of seven soil 

quality parameters important to crop growth was created (FAO, IIASA, ISRIC, ISSCAS 

& JRC, 2012). The parameters are nutrient availability, nutrient retention capacity, 

rooting conditions, oxygen availability to roots, excess salts, toxicity, and workability. 
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These data are provided at a 5-minute resolution on a 4-tier categorical scale ranging 

from “very severe constraints” to “no or slight constraint,” with the additional categories 

“mostly nonsoil,” “permafrost area,” and “water bodies.” These categories were 

converted into continuous numerical data by assigning the three nonsoil categories the 

value 0, and the remaining categories integer values 1-4, with 4 as the highest quality. 

These data were then aggregated to a 10-minute scale by taking the mean of 2 x 2 

adjacent grid cells, a process that transformed the integers to continuous numerical values 

from 0 to 4. Because the soil quality parameters were highly correlated and to make the 

model as parsimonious as possible, a principal component analysis (PCA) was run on the 

seven variables. The first principal component, which accounted for 91% of the 

variability, was used as a soil quality index to build the agricultural suitability model.  

 To incorporate topographical features that may constrain successful crop 

cultivation, slope (degrees) was also included in the model. Slope was calculated with the 

landsat8 package in R (dos Santos, 2017) using an elevation raster from the HWSD (FAO 

et al., 2012). The data used to build and assess the models are summarized in Table 1, 

and a flow chart describing the data and model-building process is presented in Figure 1. 

 

Methods 

 All analyses were conducted with R (R Core Team, 2017). Random forests 

(Breiman, 2001) and XGBoost (Chen & Guestrin, 2016) are both tree-based ensemble 

methods. Tree-based methods refer to classification and regression tree algorithms that 

build a network of nodes and splits intended to maximize variance of points between 

nodes and minimize the variance within nodes. For regression trees, the type of trees used 
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in this study, the measure of variance is the sum of squared errors (S). Each tree begins 

with a “root” node that contains all of the points in the dataset. The data in that node is 

then split into two parent nodes in a position that will produce the maximum reduction of 

S using one of the explanatory variables (i.e., all points < GDD 3000 belong to parent 

node 1, all points ³ GDD 3000 belong to parent node 2). Each parent node is split in the 

same way until a stopping criterion is met. The mean of the observed outcomes (response 

variable) of the points in each terminal node is the value subsequently assigned to 

predicted outcomes. The resulting model is a decision tree that predicts an outcome based 

on given explanatory variables. Ensemble tree methods build hundreds or thousands of 

these trees and take votes or an average of all trees to produce the final model. They are 

capable of handling large, irregular datasets with missing data (Breiman, 2001; Chen & 

Guestrin, 2016), all of which recommends them as great options for this application. 

 Random forest is an algorithm that utilizes a “bagging” method. Individual trees 

are grown with bootstrapped samples of data with the same distribution, and each node is 

split with a random selection of variables. In this way, trees are independent from each 

other, allowing many trees to be built (100s to 1000s) without overfitting the model to the 

data (Breiman, 2001), and also allowing variable importance to be calculated. Random 

forest averages the ensemble of trees to create a predictor (Breiman, 2001). This study 

used random forest regression available through the randomForest package in R (Liaw & 

Wiener, 2002). The model was built with 200 trees that considered two variables at each 

node.  

 XGBoost (eXtreme Gradient Boosting) utilizes a “boosting” method. Trees are 

built sequentially, and each tree models the errors of the previous combination of trees. 
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Unlike random forest, the trees are dependent on each other and the final model is a 

combination of the weighted trees. XGBoost differs from traditional gradient boosting in 

a few major ways. The algorithm builds full trees down to individual data points then 

prunes them from the bottom-up, and employs a regularization parameter that penalizes 

model complexity to avoid overfitting (Chen & Guestrin, 2016). Lastly, XGBoost is able 

to run in parallel, dramatically decreasing computation time (Chen & Guestrin, 2016). 

This study used the logistic regression option in the XGBoost package in R (Chen, He, 

Benesty, Khotilovich, & Tang, 2017) and tuned parameters using the mlrMBO package 

(Bischl et al., 2017). 

 Random forest and XGBoost agricultural suitability models were built as a 

function of GDD, a, soil quality, and slope, and trained with modern rain-fed cropland 

distribution (Figure 1). The models were used to predict modern agricultural suitability 

and were evaluated with the root mean squared error (RMSE). They were further 

examined by mapping the residuals of the proportion of rain-fed cropland subtracted from 

the projected agricultural suitability. 

 

Results 

 The random forest proved to be a more robust model than XGBoost for this 

application. The RMSE of the random forest’s projection of modern agricultural 

suitability was 0.044 and the model reported to explain 68.38% of the variance. The 

RMSE of XGBoost’s modern projection was 0.099 and did not capture extreme values as 

well as the random forest model (Figure 2). The models underestimate and overestimate 

in the same geographic pattern, but the magnitude of the residuals is more extreme with 



19 

the XGBoost model (Figure 2). The random forest model was used for further projections 

and analysis in the remainder of this thesis. 

The models tend to underestimate agricultural suitability in the most intensely 

cultivated regions such as the U.S. Midwest, India, Southern Australia, sub-Saharan 

Africa, and Eurasia. They overestimate suitability in regions with very little rain-fed 

cultivation such as the American Southwest and Northern Australia but predict the lack 

of rain-fed cultivation in the Sahara, the Amazon, Western China, and high-latitudes of 

Eurasia, North America, and Greenland very well. These regions are marked with poor 

soil quality or permafrost, which may be a prominent influence in the predictions of these 

regions. Although magnitude of agricultural suitability in regions with intense cultivation 

and regions with existing but little cultivation are not perfectly projected, the geographic 

pattern of suitability is very accurate. 

Discussion 

This agricultural suitability model predicts the distribution of rain-fed cropland 

accurately, especially considering its simplicity. This model is intended to be as simple as 

possible while still providing valuable insight to the geography of climate/agriculture 

relationships. The benefits of simple models include ease of implementation and 

interpretation; however, they require sacrifices in precision and must be discussed within 

the context of their limitations.  

Variables omitted from this model that are known to impact agriculture are 

changing atmospheric CO2 and O3 and changing distributions of pests and insects. 

Although results of CO2 fertilization studies are inconsistent (Porter et al., 2014), 
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increased CO2 is known to positively impact yield (McGrath & Lobell, 2011) and 

negatively impact nutritional value (J. L. Hatfield et al., 2011). While these effects are 

not relevant to agricultural suitability, increased CO2 may positively impact suitability in 

regions with low a values due to decreased stomatal conductance. On the other hand, any 

positive effects of CO2 fertilization may be counteracted by the damaging effects of 

increasing atmospheric O3 (Porter et al., 2014). Climate can also impact the geographic 

distribution of pests and diseases, but there is a shortage of studies on the topic (Porter et 

al., 2014). Because the individual and interactive effects of these factors on agriculture 

are not well understood, they were left out of this study.  

Another limitation of this model that it does not address extreme climatic events, 

such as drought and floods, that are projected to occur more often and intensely by the 

end of the century (Seager et al., 2007; Sheffield & Wood, 2008). Drought and extreme 

heat were demonstrated to have a considerable damaging effect on global agriculture 

from 1964-2007 (Lesk, Rowhani, & Ramankutty, 2016), so it can be assumed that they 

will in the future as well. Extreme climatic events have been identified as particularly 

difficult to model because their rarity makes model calibration nearly impossible (Porter 

et al., 2014). 

In a very general way, this model takes human management and adaptation into 

consideration. The distribution of cropland used to calibrate the model includes land 

managed with fertilizer, cultivar selection, and other adaptive practices that are therefore 

implicit to the model. This means that if a farm is projected to experience a locally novel 

climate in the future, if that climate has a modern analog somewhere on the globe where 

land is cultivated, the farm will be deemed suitable for agriculture. This is a strength of 



21 

the model where adaptive management practices are available and possible, but it is a 

limitation where they are not. To take advantage of the model in this way, further efforts 

to identify modern analogs and research their management practices would be required. 

Future Agricultural Suitability and Sensitivity 

Climate change has the potential to negatively impact global food security in the 

coming century (Porter et al., 2014). Decreased crop yields due to increased temperature 

and aridity are expected, and adaptation to these changes will be a vital response to 

maintain food security. Agricultural suitability models can identify at-risk regions as well 

as regions that may become more agriculturally suitable due to climate change and are 

therefore a useful tool for managers and policy-makers. 

This section utilizes the agricultural suitability model described in the previous 

section to project agricultural suitability at the end of the 21st century. Future agricultural 

suitability is compared to modern suitability to identify regions of gains and losses. 

Additionally, a sensitivity analysis is conducted to parse the individual contributions of 

changing GDD and changing a on the outcome. 

Data 

Future mean monthly temperature and mean monthly total precipitation data 

simulated by the Goddard Institute for Space Studies (GISS) ModelE2 GCM, the model 

used in CMIP5 (Nazarenko et al., 2015; Taylor et al., 2012), were used to predict 

agricultural suitability at the end of the 21st century. To estimate a range of potential 

outcomes, low (RCP2.6) and high (RCP8.5) CO2 emissions scenarios were used. The 
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RCP2.6 scenario represents a “peak and decay” emissions pattern in which radiative 

forcing increases until the middle of the 21st century, then falls to a level of 2.6 W m-2 by 

2100 (Taylor et al., 2012). The RCP8.5 scenario represents a high emissions scenario in 

which radiative forcing increases throughout the 21st century, reaching 8.5 W m-2 by 

2100 (Taylor et al., 2012).  

As with the modern climate data, mean monthly temperatures were interpolated 

and used to calculate GDD. Mean monthly precipitation, temperature, and cloud cover 

fraction from CRU CL v. 2.0 (New et al., 2002) were used to calculate a with SPLASH 

(Davis et al., 2016). Modern cloud cover was used because it is one of the only estimates 

of high-resolution cloud cover available, although this is not an ideal solution as recent 

evidence indicates that cloud distribution and shape is changing as a result of climate 

change (Witze, 2016). Soil quality and slope were assumed to be unchanging on this 

relatively small time-step, so the same data sets from the HWSD (FAO et al., 2012) were 

used to predict future suitability. Projections of agricultural suitability were debiased 

using the change-factor approach (Wilby et al., 2004) by subtracting future modeled 

agricultural suitability from modern modeled agricultural suitability, then adding the 

resulting residuals to the modern observed rain-fed cropland (IIASA & FAO, 2012). The 

data sources and descriptions used in this section are summarized in Table 2 

Methods 

Experiment 1: Future Agricultural Suitability 

The agricultural suitability model built with a random forest described in the first 

section was used to project future suitability under RCP2.6 and RCP8.5 scenarios. Future 
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GDD, future a, modern soil quality, and slope were the inputs into the model. Residuals 

for each projection were calculated by subtracting the projected modern agricultural 

suitability from future agricultural suitability, and the final future agricultural suitability 

distributions were calculated by adding the residuals to the modern observed distribution 

of rain-fed cropland.  

Experiment 2: Sensitivity Analysis 

A sensitivity analysis was conducted by running the model with a) future GDD 

and modern a, and b) modern GDD and future a. The future scenario used for the 

sensitivity analysis was RCP8.5. The same process as above was used to calculate 

residuals and final results for the sensitivity analysis. Predicted global change in 

agricultural suitability was calculated for each future and sensitivity scenario. 

Results 

Experiment 1: Future Agricultural Suitability  

The model predicted a 13.8% and 28.2% increase in the global area of 

agriculturally suitable land for RCP2.6 and RCP8.5, respectively (Table 3). Figure 3 

shows the distribution of projected future agricultural suitability as well as the residuals 

between the future scenarios and modern projected agricultural suitability, which can be 

interpreted as gains (positive values) and losses (negative values). The land surface area 

projected to improve suitability by at least 1% is 38.8% for RCP2.6 and 45.6% for 

RCP8.5. Although the model predicts a net gain in suitability, a considerable proportion 

of land will experience a suitability loss of at least 1% compared to projected modern 
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values: 18.8% for RCP2.6 and 18.6% for RCP8.5.  

Experiment 1: Future Agricultural Suitability 

The sensitivity analysis shows that future change in GDD has the most influential 

impact on the positive outcomes compared to future change in a. A simulation run with 

RCP8.5 GDD values and modern a values resulted in a projection with a 27.8% increase 

in suitability compared to modern projected suitability (Table 3). Alternately, simulation 

with RCP8.5 a and modern GDD resulted in a -0.6% change, indicating a minor net loss 

in suitability. Figure 4 shows the distribution of the residuals between the two sensitivity 

projections and projected modern agricultural suitability. 

The area of land projected to experience a loss of agricultural suitability greater 

than or equal to 1% is approximately the same for each RCP and sensitivity scenario, 

ranging from 17.9% to 18.9%. This indicates that changes in GDD and a are 

approximately equally important in areas projected to experience decreasing agricultural 

suitability. 

Discussion 

Generally, the most agriculturally suitable regions projected for the end of the 

21st century closely resemble the most intensely rain-fed cultivated regions today. The 

American Midwest, Central America, Eastern Argentina, regions directly south of the 

Sahara, Eastern Africa, Southern Australia, India, Indonesia, Mediterranean countries, 

central Europe, Southwest Russia, and Eastern China stand out as the most agriculturally 

suitable regions currently and in the future (Figures 2A, 3A, 3B). However, while these 
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regions are expected to remain suitable, they are also projected to experience the greatest 

relative loss of agriculturally suitable land in the future (Figure 3C, 3D). The sensitivity 

analysis reveals that the losses in these regions are caused mostly by changes of GDD 

(Figure 4B), although changes of a are also a contributing factor (Figure 4A). 

Future projections predict a net increase in agriculturally suitable land, much of 

which can be attributed to increases in suitability in high northern latitudes of Canada 

and Russia (Figure 3A, 3B). The sensitivity analysis shows that this increase is due 

almost entirely to increased GDD, as short growing seasons are currently a major 

limiting factor in these cold regions (Figure 4A, 4B). The American Southwest, Northern 

Australia, much of sub-Saharan Africa, and South America are predicted to increase in 

suitability as well, mostly due to changes in GDD. 

The projected future increase in agricultural suitability in high Northern latitudes 

and the American Southwest, as well as projected future decreases along the 

Mediterranean and directly south of the Sahara, agrees with previous work (Ramankutty 

et al., 2002; Zhang & Cai, 2011). However, this model predicts a much more 

heterogeneous distribution of future gains and losses compared to previous studies, likely 

due to a higher resolution. Additionally, this model predicts gains and losses in some 

regions where previous models do not: losses in Europe, the American Midwest, and 

China are unique to this model, as are gains in the Amazon and Northern Australia. 

These disparities may be caused by the differing climate models used for future 

projections, or by the differences in models. 

 The relative importance of GDD changes compared to a changes to agricultural 

suitability as demonstrated by the sensitivity analysis agrees with past work analyzing the 
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importance of temperature relative to precipitation on agricultural outcomes (Lobell & 

Burke, 2008). Lobell and Burke (2008) demonstrated that despite the importance of 

precipitation (and therefore soil moisture) to annual crop yields, changes in temperature 

had a greater impact on agricultural projections. This was found to be caused by the 

greater magnitude of climate change-induced temperature increase compared to changes 

in precipitation. The diminished contribution of a to the projected outcomes compared to 

GDD likely reflects this same pattern.  

While this model predicts a 13.8%-27.8% net increase in agriculturally suitable 

land by 2100, major obstacles must be addressed to ensure food security of the future 

population. The projected global population increase to 9.8 billion people by 2050 

(United Nations, Department of Economic and Social Affairs, 2017) is expected to 

increase agricultural demand by 50% (FAO, 2016). The challenge to meet this increasing 

agricultural demand could be helped by expanding agriculture to newly suitable land 

identified by this model; however, it is unknown if increasing the area of cultivated land 

will result in a directly proportional increase in food production.  Additionally, 

expanding cultivated lands comes with severe environmental costs including 

deforestation, which leads to decreased biodiversity, species loss, and greatly adds to 

greenhouse gas emissions (FAO, 2016).  



27 

Table 1. Sources and descriptions of data used to build the model 

Variable Source Description 
Modern rain-fed cropland GAEZ Rainfed cropland distribution c. 2000 

(mean proportion/cell) 
Modern temperature WorldClim 2 Monthly 1970-2000 mean terrestrial 

(mean °C) 
Modern precipitation WorldClim 2 Monthly 1970-2000 mean terrestrial 

(total mm) 
Modern cloud cover CRU CL v. 2.0 Monthly 1961-1990 mean terrestrial 

(mean percent)  
Soil quality HWSD Seven parameters described on a 

categorical scale 
Slope HWSD Mean rate of elevation change (°) 



 

 

 

 

 

Figure 1. Flow chart of the model-building process. Raw data inputs are represented in the left-hand column, and processes 
used to calculate drivers are in the following column. Final drivers used as model inputs are in the middle column. The next 
column represents the two models built as well as the rain-fed cropland data used to train the model. The final output, 
agricultural suitability, is represented in the right-hand column. 
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Figure 2. Comparison of agricultural suitability projections. A) A map of the distribution of modern rain-fed cropland. B) A 
map of the residuals between random forest projected modern agricultural suitability and modern rain-fed cropland. C) A map 
of the residuals between XGBoost projected modern agricultural suitability and modern rain-fed cropland. D) A histogram of 
the random forest residuals. E) A histogram of the XGBoost residuals. In (B-E), blue represents underestimation and red 
represents overestimation. 
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Table 2. Sources and descriptions of data used to project future agricultural suitability 

Variable Source Purpose Description 
Future temperature GISS 2.6 and 

8.5 
Future agricultural 
suitability 

Projected monthly 2081-2100 mean terrestrial for 
RCP2.6 and RCP8.5 (mean °C) 

Future precipitation GISS 2.6 and 
8.5 

Future agricultural 
suitability 

Projected monthly 2081-2100 mean terrestrial for 
RCP2.6 and RCP8.5 (total mm) 

Modern cloud cover CRU CL v. 
2.0 

Future agricultural 
suitability 

Monthly 1961-1990 mean terrestrial (mean percent) 

Modern temperature WorldClim 2 Debias GISS temperature Monthly 1970-2000 mean terrestrial (mean °C) 
Modern precipitation WorldClim 2 Debias GISS precipitation Monthly 1970-2000 mean terrestrial (total mm) 
Soil quality HWSD Future agricultural 

suitability 
Seven parameters described on a categorical scale 

Slope HWSD Future agricultural 
suitability 

Mean rate of elevation change (°) 
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Table 3. The area of agriculturally suitable (AgS) land and changes compared to predicted modern agricultural suitability 

 Suitable 
Land 
(km2) 

Suitable 
Land 
(%) 

AgS 
Change 
(%) 

AgS 
Increase ≥ 
1% (km2) 

AgS 
Increase ≥ 
1% (%) 

AgS Decrease 
≥ 1% (km2) 

AgS Decrease 
≥ 1% (%)  

Actual Rain-
fed Cropland  

1.28E+07 9.59%      

Predicted 
Modern AgS 

1.29E+07 9.61%      

RCP2.6 1.46E+07 10.94% 13.82% 5.19E+07 38.79% 2.53E+07 18.88% 
RCP8.5 1.65E+07 12.32% 28.20% 6.10E+07 45.60% 2.49E+07 18.60% 
RCP8.5 GDD 1.64E+07 12.28% 27.76% 6.15E+07 45.96% 2.40E+07 17.92% 
RCP8.5 a 1.28E+07 9.55% -0.63% 3.22E+07 24.05% 2.53E+07 18.92% 
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Figure 3. Distribution and residuals of future agricultural suitability. A) A map of the 
distribution of projected agricultural suitability under RCP2.6. B) A map of the 
distribution of projected agricultural suitability under RCP8.5. C) A map of the residuals 
between projected RCP2.6 agricultural suitability and modern projected agricultural 
suitability. D) A map of the residuals between projected RCP8.5 agricultural suitability 
and modern projected agricultural suitability. E) A histogram of the projected RCP2.6 
agricultural suitability residuals. F.) A histogram of the projected RCP2.6 agricultural 
suitability residuals. In (C-F), red represents losses of agricultural suitability and blue 
represents gains. 
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Figure 4. Sensitivity analysis of future projections. A) A map of the residuals between 
agricultural suitability projected with modern values of GDD and RCP8.5 values of a 
and modern projected agricultural suitability. B) A map of the residuals between 
agricultural suitability projected with RCP8.5 values of GDD and modern values of a 
and modern projected agricultural suitability. C) A map of the residuals between modern 
GDD/RCP8.5 a and modern agricultural suitability.  D) A map of the residuals between 
RCP8.5 GDD/modern a and modern agricultural suitability. 



 

 

 

 

CHAPTER 3 

 

AGRICULTURAL SUITABLITY AND STREAMFLOW IN 

RANGE CREEK CANYON, UTAH 

 

Introduction 

 Agriculture in Range Creek Canyon, UT was likely a challenge for the Fremont 

farmers that occupied the canyon from AD 900-1200. Today, with a mean GDD of 1823 

and a mean a of 0.6, the semi-arid climate and short growing season severely limits 

agriculture to the point that maize farming is impossible without irrigation (Boomgarden, 

2015). Predicting the agricultural suitability of Range Creek Canyon during the time of 

the Fremont occupation will provide an estimate of the probability of successful rain-fed 

cultivation. Supplementing the agricultural suitability model with a streamflow model 

will allow the irrigation potential to be estimated, and together, these models can give 

quantifiable insight to the agricultural conditions faced by the Fremont farmers. 

 The objective of this chapter is to apply the agricultural suitability model 

described in Chapter 2 along with a streamflow model to study how climate may have 

impacted agriculture in Range Creek Canyon during the time of the Fremont occupation. 

Because water is known to be the major limiting factor in maize farming in Range Creek 

Canyon today, three scenarios were used to investigate a range of conditions the Fremont 

farmers may have experienced: a “wet” scenario, a “dry” scenario, and one scenario 
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representing the mean-state from AD 900-1200. These scenarios were compared to 

modern conditions for context.  

 

Data 

 The Community Earth System Model-Last Millennium Ensemble (CESM-LME) 

(Otto-Bliesner et al., 2016) provides fully forced global daily temperature and 

precipitation simulations from AD 850-2005 compiled from proxy records worldwide at 

a 2° resolution. This data set is the most appropriate option for this study because it 

provides modeled temperature data that are otherwise unavailable for the time period of 

interest. Because all models present some form of bias and projections differ from 

observations, best-practice is to debias modeled climate data (Wilby et al., 2004). The 

CESM-LME data were debiased using the change-factor approach (Wilby et al., 2004) by 

subtracting CESM modeled modern data from CESM modeled paleo data, then added to 

the WorldClim 2 modern observed climatology (Fick & Hijmans, 2017). By debiasing 

the modeled climate data, the WorldClim 2 climatology acts as a correct baseline and 

spatial pattern, and the CESM-LME data provide changes in the mean-state and 

variability. The modern portion of the debiased time series had greater variability than 

modern observations, but the means were very similar.  

 Temperature and precipitation from CESM-LME were used to calculate a 

monthly time series of GDD and a and PET (for use in the streamflow model) with the 

SPLASH methodology (Davis et al., 2016) for Range Creek Canyon (-110.25 E, 39.48 

N). As in Chapter 2, modern cloud cover from CRU CL v. 2.0 (New et al., 2002) was 

used and repeated for the length of the time series as it is one of the only estimates of 
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high-resolution sunshine fraction available. Soil quality and slope were assumed to be 

unchanging, so the same data sets from the HWSD (FAO et al., 2012) were used to 

predict past suitability. 

 Because modern streamflow data from Range Creek Canyon are currently very 

sparse, modeled streamflow was calibrated with observed streamflow from 1986-2016 

collected from the Green River at Green River site (-110.09 E, 38.59 N), the nearest 

downstream USGS data collection site from the confluence of Range Creek and Green 

River (U.S. Geological Survey, 2016). These data were aggregated from daily to monthly 

values, and the units were converted from m3/day to mm/month by dividing mm3/month 

by the area of the Range Creek water basin (3.75e+14 mm2). The data were then scaled 

with the available Range Creek discharge data (Potter, 2016), consisting of 10 data points 

recorded in the summers of 2015 and 2016. The scalar was the slope of linear regression 

between the two data sets with the y-intercept set to 0 (Figure 5). Modern mean monthly 

temperature, total monthly precipitation, and total monthly PET were used from CRU TS 

vs. 4.01 (Harris, Jones, Osborn, & Lister, 2014), debiased with WorldClim2 climatology. 

To account for the effects of snow for past and modern streamflow, a method described 

by Gerten et al., (2004) was used to calculate “rain,” the combination of snowmelt and 

precipitation runoff available to enter the stream. Rain was used in place of precipitation 

in the models for calibration and simulation. In the future, this model will greatly benefit 

from calibration with longer and more consistent streamflow data from Range Creek. The 

data sources and descriptions used in this section are summarized in Table 4. 
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Methods 

All analyses were conducted in R (R Core Team, 2017). A time series of a from 

AD 900-1200 extracted from the coordinates -110.25 E, 39. 48 N was constructed with a 

Loess smoother spanning 3% of the data. The minimum and maximum of the smoothed 

time series were identified (Figure 6), and 10-year time series surrounding them served as 

the dry and wet scenarios (AD 1051-1060 and AD 1174-1183, respectively). A 10-year 

time series surrounding the mean-state was also selected (AD 992-1001), and the three 

scenarios were compared to the most recent 10-year time series in the CESM data set 

(AD 1996-2005). 

Experiment 1: Agricultural Suitability in Range Creek Canyon 

The agricultural suitability model built with a random forest described in Chapter 

2 was used to predict a monthly time series of agricultural suitability values from AD 

850-2005 using past GDD (annual values repeated each month of each respective year),

past a, modern soil quality, and slope as inputs. Agricultural suitability during the 

modern, mean, dry, and wet scenarios was isolated. To compensate for the greater 

variability in the past modeled data compared to observed data, the proportional 

difference between the mean of the modern scenario and the means of the mean, wet, and 

dry scenarios were calculated and used to scale modern agricultural suitability to produce 

estimates of all scenarios. This method was also used to scale modern GDD and a for all 

scenarios.  
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Experiment 2: Streamflow and Irrigation Potential in Range Creek Canyon 

 Past streamflow in the mean, dry, and wet scenarios was simulated and compared 

to the modern scenario. The proportional differences between the mean of the modern 

scenario and the means of the mean, wet, and dry scenarios were calculated and used to 

scale modern observed streamflow for each scenario to offset the greater variability found 

in past modeled data. The resulting streamflow scenarios were used to calculate July 

irrigation potential, the month Boomgarden (2015) found that the maize reproductive 

phase occurred in the experimental plots in Range Creek Canyon.  

 Streamflow models use climate variables and relevant data about a watershed to 

predict streamflow (also called discharge) at the basin outlet. Many models used to 

predict streamflow run on a daily time-step and require detailed data related to catchment 

morphology and initial state (Devia, Ganasri, & Dwarakish, 2015). However, detailed 

data for the study site and time period are not available, so a reasonable option for 

predicting past streamflow is a monthly model with few data requirements. The GR2M 

model (Mouelhi, Michel, Perrin, & Andréassian, 2006) implemented in this study runs on 

a monthly time-step, requires three inputs (temperature, precipitation, and potential 

evapotranspiration), and can be calibrated on modern streamflow.  

 The GR2M model was empirically derived in a step-wise manner using 

streamflow data from 410 basins across the world, including semi-arid basins in the 

American Southwest (Mouelhi et al., 2006). It was developed with the intention to 

improve existing models while reducing their complexity, and ultimately to produce a 

simple monthly model with broad applicability. GR2M requires total monthly 

precipitation and total monthly PET and has two free parameters that should be 
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calibrated: maximum soil storage capacity and the outside exchange coefficient. The 

authors describe the model as possessing “three-fold lumping” consisting of spatial, 

temporal, and conceptual lumping. Spatial lumping occurs because precipitation and PET 

are averaged across the entire basin, so relative wet and dry areas within the basin are not 

considered separately. Temporal lumping occurs because precipitation and PET are 

summed into an entire month so that individual precipitation events are not considered 

individually. Conceptual lumping occurs because biophysical processes involved are not 

considered individually. Lumping sacrifices accuracy to some extent but allows the 

complexity of the model to be greatly reduced. 

 Described generally, each month’s streamflow is calculated starting with the 

previous month’s excess soil moisture storage and reservoir storage. Water is added to 

the system in the form of precipitation, and water is removed from the system in the form 

of potential evapotranspiration. Some water may remain in the system as determined by 

the maximum store capacity (a free parameter) and the reservoir storage (set to 60 mm), 

and water is either added or subtracted to the system by the outside exchange coefficient 

(a free parameter) which represents groundwater contribution or loss. Excess water exits 

the system in the form of streamflow at the basin outlet. 

 The two free parameters in the GR2M model were optimized with a genetic 

algorithm using the GA package in R (Scrucca, 2013). Genetic algorithms are designed to 

mimic natural selection to find the optimal set of parameters given a “fitness” function, 

and are commonly used to calibrate hydrological models (i.e., Wang, 1991). The genetic 

algorithm first creates multiple parameter sets by selecting random values for each 

parameter and uses them to run the model. It then evaluates the outputs compared to 
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actual values using the fitness function. The highest performing parameter sets are kept 

(parent parameter sets), and a series of new parameter sets (child parameter sets) are 

created from combinations of the parent parameter sets. The child parameter sets are 

“mutated” by randomly changing one or more parameter values, and the process is 

repeated until a stopping criterion is met.  

The fitness function used for the genetic algorithm in this experiment is the root 

mean squared error (RMSE), and the optimal values were found to be 752.08 mm for the 

maximum soil store capacity, and 0.92105 for the outside exchange coefficient. The 

resulting simulated streamflow had a RMSE of 0.309. Although the simulated streamflow 

does not fully capture the amplitude of the peaks of the observed streamflow, the model 

adequately captures annual fluctuation and is a great approximation considering the 

observed streamflow is proxy data (Figure 7). 

Irrigation potential was calculated via the methods described by Potter (2016). 

The streamflow data were first reduced to 38% of the total to account for losses to 

evapotranspiration and soil percolation during simple open irrigation. The values were 

then converted to ha/day×0.81 cm. This unit provides the hectares the daily streamflow 

could irrigate to a depth of 0.81 cm, the daily water requirement for maize during the 

reproductive stage. 

Results 

Experiment 1: Agricultural Suitability in Range Creek Canyon 

The proportional differences between modeled modern scenarios and modeled 

mean, wet, and dry scenarios used to scale modern observed data are summarized in 
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Table 5. Past mean agricultural suitability was very low in each scenario examined, 

ranging from 0.0492 to 0.0644 (Figure 8A). Surprisingly, the wet scenario resulted in the 

lowest agricultural suitability, while the modern scenario resulted in the highest 

agricultural suitability. This was unexpected because a was hypothesized to be the 

limiting factor of suitability in Range Creek Canyon. However, the result can be 

explained by examining a and GDD across the scenarios: Increased a correlates with 

decreased GDD, a variable shown to have a larger impact on agricultural suitability by 

the sensitivity analysis in Chapter 2. The relative difference in mean a between the wet 

(0.676) and dry (0.597) scenarios is small compared to the difference in GDD (1537 and 

1747, respectively) (Figure 8B and 8C). The modern scenario had a greater mean GDD 

than the dry scenario (1823) as well as a greater mean a (0.612) than the dry scenario, 

which resulted in the highest agricultural suitability. The mean agricultural suitability for 

the mean scenario was 0.0591, right between the dry and wet scenario means.  

 

Experiment 2: Streamflow and Irrigation Potential in Range Creek Canyon 

 The proportional differences between the modeled modern scenario and modeled 

mean, wet, and dry scenarios used to scale modern observed streamflow data are 

summarized in Table 5. The medians of the streamflow scenarios ranged from 0.208 

mm/month (dry) to 0.603 mm/month (wet) (Figure 9A). The median streamflow of the 

mean scenario was 0.383 mm/month, and at 0.234 mm/month, the median modern 

streamflow closely resembled the dry scenario streamflow.  

 These streamflow values resulted in median irrigation potentials ranging from 

16.6 ha (dry) to 48.1 ha (wet) (Figure 9B). Just like the streamflow medians, the median 
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irrigation potential of the modern scenario (18.7 ha) resembled the dry scenario, and the 

median irrigation potential of the median scenario fell between modern and wet at 30.6 

ha. The medians of streamflow and irrigation potential were considered rather than the 

means because the means were influenced by a particularly high outlier in the observed 

streamflow data. Although the outlier is an example of real variability, proportionally 

increasing the data (as in the mean and wet scenarios) may have compounded the outlier 

beyond normal variability. 

 

Discussion 

 The results of Experiment 1 indicate that not only does the agricultural suitability 

model agree with the experimental results of Boomgarden (2015) that modern rain-fed 

maize agriculture is impossible in Range Creek Canyon, it also suggests that rain-fed 

maize agriculture was unlikely to succeed from AD 900-1200 even during anomalously 

wet periods. The mean scenario resulted in a mean agricultural suitability value of 

0.0591, indicating that the mean probability of rain-fed cultivation in Range Creek 

Canyon throughout the Fremont occupation was 5.91%. The highest value of agricultural 

suitability across the three past scenarios was 0.175 in the dry scenario, still a very small 

probability of rain-fed cultivation.  

 While the projected agricultural suitability values were too similar to 

meaningfully differentiate between scenarios, the results do reveal meaningful 

information about rain-fed agriculture in Range Creek Canyon. Interestingly, the wet 

scenario produced low agricultural suitability despite some a values reaching 1.0 

(indicating fully saturated soil). This result emphasizes the severe limitations imposed by 
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low GDD, and suggests that short growing seasons in Range Creek Canyon may have 

been at least as much of an obstacle to successful cultivation as soil moisture. 

Additionally, this result points out a limitation of the agricultural suitability model that 

can be addressed in the future.  

Modern streamflow compared to the past mean scenario provides further evidence 

that current conditions are dry compared to mean conditions during the Fremont 

occupation, and are more comparable to streamflow in the dry scenario. The current 

irrigation potential is therefore a low-end estimate of past irrigation potential. However, 

even the median irrigation potential of the wet scenario, at 30.6 ha, seems like a small 

area considering the scale of the Fremont occupation. The mean irrigation potential of the 

mean scenario suggests that Range Creek had the potential to irrigate a median of only 

30.6 ha annually from AD 900-1200.  

The estimates of past streamflow and irrigation potential may be low due in part 

to weaknesses in the streamflow model calibration. Using scaled streamflow from Green 

River at Green River as a proxy for Range Creek streamflow certainly resulted in 

inaccuracies. This obstacle can easily be overcome in the future by calibrating the model 

with actual Range Creek streamflow data. Additionally, groundwater is a vital component 

of streamflow that is not yet understood in Range Creek. The optimal value of the outside 

exchange coefficient, the parameter that accounts for groundwater gains or losses, in the 

GR2M model was found to be 0.92105 when calibrated with the scaled Green River 

streamflow data. Because the value is less than one, it works as an overall loss of 

streamflow to groundwater that acts in contradiction to the current understanding of 

Range Creek streamflow (Potter, 2016). Additionally, it is important to consider that 
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groundwater contribution changes over time as a function of decadal-scale climate 

changes. Future work that defines this relationship in Range Creek could be utilized to 

calculate a dynamic outside exchange coefficient and greatly improve past streamflow 

and irrigation potential estimates.  

 Combining the insights gained from the agricultural suitability model and the 

streamflow model suggests that maize farming in Range Creek Canyon during the 

Fremont occupation was an arduous task, even with irrigation. A long and hot enough 

growing season was likely at least as important as soil moisture to maximizing crop 

success, an occurrence that correlates with lower soil moisture, streamflow, and irrigation 

potential. The ideal scenario for a Fremont farmer was likely an anomalously wet, warm 

and long summer, or an anomalously warm and long summer with enough groundwater 

contribution to the streamflow to counteract corresponding decreased soil moisture.  
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Figure 5. Linear regression of streamflow. Green River at Green River streamflow is on 
the x-axis and Range Creek streamflow is on the y-axis and the y-intercept is set to 0. The 
slope of the regression line, 0.0004, is used to scale Green River streamflow data for use 
in GR2M calibration. 

 

 



Table 4. Sources and descriptions of data used to project past agricultural suitability and streamflow 

Variable Source Purpose Description 
Past temperature CESM-LME Past agricultural suitability and 

streamflow 
Projected daily AD 850-2005 mean 
terrestrial temperature (°C) 

Past precipitation CESM-LME Past agricultural suitability and 
streamflow 

Projected daily AD 850-2005 total 
precipitation (mm) 

Modern temperature CRU TS v. 4.01 GR2M modern streamflow 
calibration and modern agricultural 
suitability 

Daily mean terrestrial (°C) 

Modern precipitation CRU TS v. 4.01 GR2M modern streamflow 
calibration and modern agricultural 
suitability 

Daily total terrestrial (mm) 

Modern PET CRU TS v. 4.01 GR2M modern streamflow 
calibration 

Daily total terrestrial (mm) 

Modern cloud cover CRU CL v. 2.0 Past PET and a Monthly 1961-1990 mean terrestrial 
(mean percent)  

Modern temperature 
climatology 

WorldClim 2 Debias CESM-LME and CRU TS 
v. 4.01 temperature

Monthly 1970-2000 mean terrestrial 
(mean °C) 

Modern precipitation 
climatology 

WorldClim 2 Debias CESM-LME and CRU TS 
v. 4.01 precipitation

Monthly 1970-2000 mean terrestrial 
(total mm) 

Soil quality HWSD Past and modern agricultural 
suitability 

Seven parameters described on a 
categorical scale 

Slope HWSD Past and modern agricultural 
suitability 

Mean rate of elevation change (°) 

Green River streamflow USGS Modern streamflow and irrigation 
potential 

Daily streamflow 1986-2016 (m^3/day) 

Range Creek streamflow Potter (2015) Scale Green River streamflow Streamflow from 10 days in 2015 and 
2016 (m^3/day) 
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Figure 6. Time series of Loess-smoothed monthly a values in Range Creek Canyon from 
AD 900-1200. The red vertical line is centered on the series minimum in AD 1056, blue 
vertical line is centered on the series maximum in AD 1179, and the gray vertical line is 
centered on AD 997, the selected example of mean conditions during this time series. 

 

 

 



 

 

 

 

Figure 7. Streamflow calibration results. A) A time series of monthly rain values in Range Creek Canyon from AD 1986-2016. 
B) A time series of observed (black) and simulated (red) streamflow. 
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Table 5. Differences between modern modeled means and the means of past scenarios 

Modern AgS Modern a Modern GDD Modern Streamflow 
Past Mean -8.27% 5.84% -8.44% 63.4% 
Past Wet -23.5% 17.2% -15.7% 157% 
Past Dry -6.55% -2.58% -4.17% -11.4%
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Figure 8. Boxplots of Range Creek Canyon agricultural suitability, a, and GDD. The 
boxes in A) agricultural suitability, B) a, and C) GDD show for four scenarios: modern 
(displayed in white), mean (displayed in gray), wet (displayed in blue), and dry 
(displayed in red). The dark red points and text in each box indicate the respective means. 
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Figure 9. Boxplots of Range Creek Canyon streamflow and irrigation potential. The 
boxes in A) streamflow and B) July maize irrigation potential for Range Creek show four 
scenarios: modern (displayed in white), mean (displayed in gray), wet (displayed in blue), 
and dry (displayed in red). The text in each box indicates the respective medians. 
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CHAPTER 4 

 

CONCLUSION 

 

 This thesis presented a methodological approach to the development and 

implementation of an agricultural suitability model. Using a random forest to build the 

agricultural suitability model along with updated, high-resolution climate, soil, and slope 

parameters increased the accuracy and resolution of the suitability model presented by 

Ramankutty et al. (2002) from which this model was derived. In the future, the model can 

certainly be improved by accounting for CO2, and may be improved by using growing 

season a instead of mean annual a, and using stratified sampling to train the model. 

  Predicting the impacts of climate change on agricultural suitability is an 

important application of this model, which was demonstrated here at a global scale. 

Understanding how the distribution of suitable land is likely to shift provides a tool that 

could be used to adapt to climate change, which will be necessary to meet the increasing 

agricultural demands of the growing population. While the model predicted a net increase 

in agriculturally suitable land by the end of the century, a large proportion of land is 

expected to decrease in suitability as well. It will be important to consider the distribution 

of predicted gains and losses to guard against future food insecurity.  

 The second application of the agricultural suitability model demonstrated here 

was to predict prehistoric suitability at a single location. While statistical models are 



53 

known to present inaccuracies when used at a small spatial scale, a process-based model 

would be extremely difficult or impossible to implement in the study of prehistoric 

agriculture in Range Creek Canyon because of the limited data availability from AD 900-

1200. This case study utilized the agricultural suitability model at a broad time scale 

instead of a broad spatial scale to provide insight to prehistoric farming conditions, an 

exercise that provided useful insights. Supplementing the agricultural suitability model 

with a streamflow model was an important addition to the study, as projected past 

agricultural suitability indicates that rain-fed agriculture would unlikely have been 

successful during the Fremont occupation. The results presented here provide the first 

quantifiable insight into past irrigation potential for Range Creek Canyon during the 

Fremont occupation, as well as a method to improve the results as knowledge of Range 

Creek streamflow improves. 
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