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ABSTRACT

Matrices are essential data representations for many large-scale problems in data an-

alytics; for example, in text analysis under the bag-of-words model, a large corpus of

documents is often represented as a matrix. Many data analytic tasks rely on obtaining

a summary (a.k.a sketch) of the data matrix. Using this summary in place of the original

data matrix saves on space usage and run-time of machine learning algorithms. Therefore,

sketching a matrix is often a necessary first step in data reduction, and sometimes has

direct relationships to core techniques including PCA, LDA, and clustering.

In this dissertation, we study the problem of matrix sketching over data streams. We

first describe a deterministic matrix sketching algorithm called FrequentDirections. The

algorithm is presented an arbitrary input matrix A ∈ Rn×d one row at a time. It performs

O(d`) operations per row and maintains a sketch matrix B ∈ R`×d such that for any k < `,

‖AT A− BTB‖2 ≤ ‖A− Ak‖2
F/(`− k) and ‖A− πBk(A)‖2

F ≤
(
1 +

k
`− k

)
‖A− Ak‖2

F .

Here, Ak stands for the minimizer of ‖A− Ak‖F over all rank k matrices (similarly Bk), and

πBk(A) is the rank k matrix resulting from projecting A on the row span of Bk. We show

both of these bounds are the best possible for the space allowed, the sketch is mergeable,

and hence trivially parallelizable. We propose several variants of FrequentDirections

that improve its error-size tradeoff, and nearly matches the simple heuristic Iterative SVD

method in practice.

We then describe SparseFrequentDirections for sketching sparse matrices. It resem-

bles the original algorithm in many ways including having the same optimal asymp-

totic guarantees with respect to the space-accuracy tradeoff in the streaming setting, but

unlike FrequentDirections which runs in O(nd`) time, SparseFrequentDirections runs in

Õ
(
nnz(A)`+ n`2) time.

We then extend our methods to distributed streaming model, where there are m dis-

tributed sites each observing a distinct stream of data, and which has a communication

channel with a coordinator. The goal is to track an ε-approximation (for ε ∈ (0, 1)) to



the norm of the matrix along any direction. We present novel algorithms to address this

problem. All our methods satisfy an additive error bound that for any unit vector x,

|‖Ax‖2 − ‖Bx‖2| ≤ ε‖A‖2
F holds.
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NOTATION AND SYMBOLS

[d] Set {1, · · · , d}

‖x‖ Euclidean norm of vector x, i.e. ‖x‖ = (∑i x2
i )

1/2

‖A‖2 Spectral (Operator) norm of a matrix A

‖A‖F Frobenius norm of a matrix A

SVD(A) Singular value decomposition of matrix A

rank(A) Numerical rank of matrix A

πX(r) projection operation of row vector r onto the subspace spanned by matrix X

I` Denotes `× ` Identity matrix

X† Moore-Penrose pseudoinverse of X

ε Error parameter between zero and one

δ Failure parameter between zero and one

nnz(A) Number of non-zero entries of A

SVD(A) Singular Value Decomposition of A



CHAPTER 1

INTRODUCTION

Large data matrices are found in numerous domains, such as scientific computing,

multimedia applications, networking systems, server and user logs, and many others [86,

87, 91, 106]. Since such data are huge in size and often generated continuously, it is

important to process them in streaming fashion and maintain an approximating summary

or a sketch. In this chapter, we formally define the Matrix Sketching problem, and review

different existing sketching paradigms.

1.1 Matrix Sketching Problem
A standard task in scientific computing is to compute for a given n × d matrix A, a

smaller lower rank matrix B that approximates A well. Such matrix B is called a sketch of

A. Often B is smaller than A in one dimension, e.g., B can be `× d for ` � n, and has a

small rank k such that k ≤ `, rank(A).

It is well-known that the best rank-k approximation (under Frobenius or 2 norm)

Ak can be computed using the singular value decomposition (SVD); however this takes

O(nd min(n, d)) time and O(nd) memory. The SVD(A) produces three matrices U, S, and

V where U and V are orthonormal, of size n × n and d × d, respectively, and S is n × d

but only has non-zero elements on its diagonal {σ1, . . . , σd}. Let Uk, Sk, and Vk be the first

k columns of each matrix, then A = USVT and Ak = UkSkVT
k . Note that although Ak

requires O(nd) space, the set of matrices {Uk, Sk, Vk} requires only a total of O((n + d)k)

space (or O(nk) if the matrix is tall). Moreover, even the set {U, S, V} really only takes

O(nd + d2) space since we can drop the last n− d columns of U and the last n− d rows of

S without changing the result.

Computing SVD is prohibitive for modern applications which usually desire a small

space streaming approach, or even an approach that works in parallel. For instance,

diverse applications receive data in a potentially unbounded and time-varying stream and
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want to maintain some sketch B. Examples of these applications include data feeds from

sensor networks [21], financial tickers [30, 129], on-line auctions [13], network traffic [72,

114], and telecom call records [39]. Computing such sketches efficiently is an important

building block in modern algorithms [7, 48, 60, 92, 105] as sketching is either a necessary

first step in data reduction or has direct relationships to core techniques including PCA,

LDA, and clustering.

In the streaming version, the goal is to compute something that replicates the effect of

Ak using less space and only seeing each row once.

1.2 Data Streaming Models
Data streaming model considers computation on a large possibly infinite dataset A =

(a1, · · · , an, · · · ) where data items arrive one at a time in arbitrary order. Thus some or all

of the input data is not available for random access from disk or memory, but rather data

items arrive one by one. Data streams are often denoted as an ordered sequence of updates

that must be accessed in order and can be read only once or a few number of times. Based

on the type of updates, there exist two common data streaming models:

cash-register model: In this model, each update is of the form (i, c), so that ai is

incremented by some positive integer c. Throughout this dissertation, we consider

the special case of c = 1 and denote it as row-update model, as it allows insertion of

rows only.

turnstile model: This model is more general and allows for updates of form (i, c)

where c can be a negative number.

Data streaming model also enforces that only a small amount of memory is available at

any given time. This small space constraint is critical when the full dataset cannot fit in

memory or disk. Typically, the amount of space required is traded off with the accuracy of

the computation on A. Usually the computation results in some summary or sketch of A,

and this trade-off determines how accurate one can be with the available space resources.

1.2.1 Distributed Streaming Model

In this model, there are multiple distributed sites and a single coordinator which has a

two-way communication channel to all sites. Each site observes a disjoint stream of data
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and together they attempt to monitor a function at the coordinator site. Due to its wide

applications in practice [37], a flurry of work has been done under this setting. This model

is more general than the data streaming model [16] that maintains a function at a single site

with small space. It is also different from communication model [127] in which data are

(already) stored at multiple sites and the goal is to do a one-time computation of a target

function. The key resources to optimize in distributed streaming model is not just the

space needed at the coordinator or each site, but the communication between the sites and

coordinator.

This model appears in many applications in distributed databases, wireless sensor

networks, cloud computing, etc.[101] where data sources are distributed over a network

and collecting all data together at a central location is not a viable option. In many such

environments queries must be answered continuously, based on the total data that have

arrived so far. Since data are continuously changing in these applications, query results

can also change with time. So the challenge is to minimize the communication between

sites and the coordinator while maintaining accuracy of results at all times.

1.3 Sketching Paradigms
There exist several approaches to sketching an input matrix A ∈ Rn×d:

Sparsifying the Matrix: This approach retains a small number of non-zero elements

of the matrix [6, 7, 14, 56]. These algorithms typically are assumed to know the n× d

dimensions of A, and are thus not directly applicable in our model.

Random Projection: This approach randomly combines rows of matrix A [93, 105,

113, 117]. An efficient variant [4], computes the sketch B as B = RA where R is

an `× n matrix such that each element Ri,j ∈ {−1/
√
`, 1/
√
`} is chosen uniformly.

This is easily computed in a streaming fashion, while requiring at most O(`d) space

and O(`d) operations per row update. Sparser constructions of random projection

matrices are known to exist [40, 82].

Hashing: This approach [33] uses an extra sign-hash function to replicate the count-

sketch [28] with matrix rows. Specifically, the sketch B is initialized as the ` × d

all zeros matrix, then each row ai of A is added to h(i)-th row of Bh(i) ← Bh(i) +
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s(i)ai, where h : [n] → [`] and s : [n] ← {−1, 1} are perfect hash functions. There

is no harm in assuming such functions exist since complete randomness is naı̈vely

possible without dominating either space or running time. This method is often

used in practice by the machine learning community and is referred to as “feature

hashing” [121].

Sampling: This sketching approach is to find a small subset of matrix rows (and/or

columns) that approximate the entire matrix. This problem is known as the Column

Subset Selection Problem and has been thoroughly investigated [22, 23, 46, 48, 55, 61].

Recent results offer algorithms with almost matching lower bounds [22, 31, 46]. A

simple streaming solution to the Column Subset Selection Problem is obtained by

sampling rows from the input matrix with probability proportional to their squared

`2 norm. Specifically, each row Bj takes the value Ai/
√
`pi iid with probability

pi = ‖Ai‖2/‖A‖2
F. The space it requires is O(`d) in the worst case but it can be much

lower if the chosen rows are sparse. Since the value of ‖A‖F is not a priori known,

the streaming algorithm is implemented by ` independent reservoir samplers, each

sampling a single row according to the distribution. The update running time is

therefore O(d) per row in A. Despite this algorithm’s apparent simplicity, providing

tight bounds for its error performance required over a decade of research [10, 48,

55, 61, 103, 112, 119]. Such advanced algorithms utilize the leverage scores of the

rows [54] and not their squared `2 norms.

Iterative Sketching: This sketching approach maintains a sketch in memory and

receives rows of the input matrix one by one, process each row and iteratively update

the sketch. Examples of these method include incremental PCA [26, 74, 76, 90, 111].

These approaches attempt to maintain the PCA of a dataset A (using the SVD and

a constant amount of additional bookkeeping space) as each row of A arrives in

a stream. In particular, after i − 1 rows they consider maintaining Ai
k, and on a

new row ai compute SVD([Ai
k; ai]) = UiSi(Vi)T and, then only retain its top rank

k approximation as Ai+1
k = Ui

kSi
k(V

i
k)

T.
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1.4 Error Bounds and Measurement
The accuracy of a sketch matrix B can be measured in several ways. In most common

ways, one constructs an n× d, rank k matrix Â from B and sometimes also using A, and

measures approximation error between A and Â. If Â is derived entirely from B, the

result is called a construction result, and provides the stronger construction bound, that

‖A− Â‖ξ ≤ (1 + ε)‖A− Ak‖ξ for ξ = {2, F} and for some parameter ε ∈ (0, 1).

Unless A is sparse, then storing Â explicitly may require Ω(nd) space, so that is why

various representations of Â are used in its place. This can include decompositions similar

to the SVD, e.g., a CUR decomposition [48, 54, 94] where Â = CUR and where U is small

and dense, and C and R are sparse and skinny, or others [33] where the middle matrix is

still diagonal. The sparsity is often preserved by constructing the wrapper matrices (e.g., C

and R) from the original columns or rows of A. There is an obvious Ω(n + d) space lower

bound for any construction result in order to preserve the column and the row space.

In cases with space independent of n, either Â implicitly depends on A, or it requires

another pass over the data. In the former case, Â can be defined as Â = πk
B(A), it takes

Bk which is the best rank-k approximation to B, and projects A onto it. In the latter case Â

is defined as Â = Πk
B(A), this definition projects A onto B, and then takes the best rank-k

approximation of the result. Note that πk
B(A) is better than Πk

B(A), since it knows the

rank-k subspace to project onto without re-examining A.

Both cases provide the weaker projection bound, as it cannot actually represent Â

without making another pass over A to do the projection. When B or Bk is composed

of a set of ` rows (and perhaps Bk is only k rows) then the total size is only O(d`) (allotting

constant space for each entry), so it does not depend on n. This is a significant advantage

in tall matrices where n � d. Sometimes this subspace approximation is sufficient for

downstream analysis, since the rowspace is still (approximately) preserved. For instance,

in PCA the goal is to compute the most important directions in the row space.

Using either definition of Â, we define two error bounds that we use throughout this

dissertation: (1) projection error as proj-err = ‖A− Â‖2
F/‖A− Ak‖2

F, and (2) covariance error

as covar-err = ‖AT A− BTB‖2/‖A‖2
F.

One can also bound ‖AT A− BTB‖2/‖A− Ak‖2
F, but this has an extra parameter k, and

is less clean to empirically evaluate. The covariance error captures the norm of A along
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all directions and does not require Ω(n) space, whereas the projection error indicates how

accurate the choice of the subspace of B is, but requires another pass or Ω(n) space.

1.5 Layout of Dissertation
This dissertation is mainly about FrequentDirections algorithm (FD for short), which

was initially introduced by Edo Liberty [92] at KDD 2013 conference. Throughout this

dissertation we explain FD’s connection to other algorithms, its improved error analysis,

and its various extensions.

More specifically, in Chapter 2, we discuss the Item Frequency Approximation problem

which is tightly connected to Matrix Sketching problem and has been inspiring for Fre-

quentDirections algorithm. We introduce our novel algorithms for Item Frequency Approx-

imation problem in distributed streaming model in this chapter. Part of our work in this

section is published in VLDB 2014 conference [64].

Next, in Chapter 3, we explain FrequentDirections algorithm which was initially in-

troduced by Edo Liberty [91]. We describe our work on improving the error analysis

of FrequentDirections, which has appeared as a conference paper in SODA 2014 [70].

In section 3.2 we discuss the optimality of FrequentDirections with respect to the space

usage-accuracy trade off. Results of this chapter appeared in SICOMP 2016 [66] jointly

with Jeff Phillips, Edo Liberty and David Woodruff, combining three papers [70, 91, 125].

We only state a lower bound result from David Woodruff [124] in this dissertation for

completeness.

In Chapter 4, we discuss various extensions of FrequentDirections which are all in-

spired by different methods on Item Frequency Approximation problem. Our work in this

chapter is published in ESA 2014 [63] and TKDE 2016 [43].

In Chapter 5, we discuss other matrix sketching approaches in detail. Part of the

work in this section has appeared in the M.Sc. Dissertation of Amey Desai, who was a

collaborator on the work. Results of this chapter are included in our journal paper at

TKDE 2016 [43].

In Chapter 6, we introduce SparseFrequentDirections which is a variant of FrequentDi-

rections for processing sparse matrices efficiently. This section was a joint work with Edo

Liberty and is published at KDD 2016 [65].
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In Chapter 7, we extend matrix sketching to distributed streaming model where one

needs to track a matrix approximation at all times. We define the new data model and

propose novel algorithms to address the problem. Our methods in this chapter are inspired

by the methods of Chapter 2 and are published in the same paper as them in VLDB 2014

conference [64].

In Chapter 8, we conclude the dissertation.



CHAPTER 2

ITEM FREQUENCY APPROXIMATION

In this chapter, we overview the item frequency approximation problem, and its con-

nection to matrix sketching. The reason for including this chapter in the dissertation is that

one of our algorithms for sketching matrices is an extension of a well known algorithm

for approximating item frequencies in streams. Understanding these algorithms helps in

getting a more intuitive understanding of our matrix sketching method in Chapter 3.

2.1 Problem Definition
In Item Frequency Approximation problem, there is a stream A = {a1, · · · , an} of n

items, where each ai ∈ [d]. We define f j = |{ai ∈ A | ai = j}| to be the frequency of item j.

In words, f j is the number of times item j appears in the stream. It is trivial to produce all

item frequencies using O(d) space simply by keeping a counter for each item. Although

this method computes exact frequencies, it uses space linear to the size of domain which

might be unacceptable if d is very large. Therefore, we are interested in using sublinear

space while producing approximate frequencies f̂ j.

This problem is also studied under FrequentItems or HeavyHitters in literature. The

φ-heavy hitters are defined as those items e with fe ≥ φn for some parameter φ ∈ (0, 1).

Since computing exact φ-heavy hitters incurs high cost and is often unnecessary, we allow

an ε-approximation. Then the more commonly studied (ε, φ)-heavy hitters problem must

find the set of items e with fe ≥ φn, may or may not return items e with (φ− ε)n ≤ fe < φn,

and must not return items e with fe < (φ − ε)n. From this point on, we refer to these

collectively as FrequentItems.

2.2 Sketch Based Solutions
This problem has received multiple solutions in literature; below we describe the most

relevant ones to our work.
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2.2.1 Misra-Gries (MG) Sketch

This simple and elegant solution is by Misra and Gries [99], which we denote MG

sketch. Their algorithm employs a map of ` < d items to ` counters. It maintains the

invariant that at least one of the items is mapped to a counter of value zero. The algorithm

counts items in the trivial way. If it encounters an item for which it has a counter, that

counter is incremented or else, it replaces one of the items mapping to zero value with the

new item (setting the counter to one). This is continued until the invariant is violated, that

is, ` items map to counters of value at least 1. At this point, all counts are decreased by

the same amount until at least one item maps to a zero value. The final values in the map

give approximate frequencies f̂ j such that 0 ≤ f j − f̂ j ≤ n/` for all j ∈ [d]; unmapped

j implies f̂ j = 0 and provides the same bounds. The reason for this is simple: since we

decrease ` counters simultaneously, we cannot do this more that n/` times. And since

we decrement different counters, each item’s counter is decremented at most n/` times.

Variants of this very simple (and clever) algorithm were independently discovered several

times [41, 73, 83, 97].1

Later, Berinde et al. [19] proved a tighter bound for FrequentItems. Consider summing

up the errors as R̂k = ∑d
i=k+1 | f j − f̂ j| and assume without loss of generality that f j ≥ f j+1

for all j. Then, it is obvious that counting only the top k items exactly is the best possible

strategy if only k counters are allowed. That is, the optimal solution has a cost of Rk =

∑d
i=k+1 f j. Berinde et al. [19] showed that if FrequentItems uses ` > k counters then for any

j ∈ [d] we can bound | f j − f̂ j| ≤ Rk/(`− k). By summing up the error over top k items,

it is easy to obtain that R̂k < `
`−k Rk. Setting ` = dk + k/εe yields the convenient form of

R̂k < (1 + ε)Rk. The authors also show that to get this kind of guarantee in the streaming

setting Ω(k/ε) bits are indeed necessary. This make FrequentItems optimal up to the word

size factor in that regard.

2.2.2 SpaceSaving Sketch

The SpaceSaving sketch [97] is a counter-based sketch that is simple and deterministic

and works very similar to MG sketch. For a parameter `, the SpaceSaving sketch maintains

` items with their associated counters. As it receives an item x in the stream, it does one

1The reader is referred to [83] for an efficient streaming implementation.
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of the following: (1) If x already exists in the sketch, its counter is increased by one. (2) If

x does not exist and the sketch currently has fewer than ` items, we add x into the sketch

and sets its counter to one. (3) If the sketch is full, i.e., it contains exactly ` items and x is

not one of them, we find any item y with the minimum counter value, replace y with x ,

and increase the counter by one.

It is shown that in a stream of length n, the SpaceSaving sketch estimates the frequency

of any item with error atmost n/`. Setting ` = 1/ε for an error parameter ε ∈ (0, 1),

SpaceSaving solves the frequency estimation problem with additive error εn with space

usage O(1/ε). It is clear to see that SpaceSaving can be used to report the heavy hitters

in O(1/ε) time by going through all counters; any item not maintained cannot have

frequency higher than εn. Authors in [8] showed that MG and the SpaceSaving summaries

for heavy hitters are isomorphic.

2.2.3 Count-Min Sketch

The Count-Min Sketch [36] is a randomized and hash-based sketch. It maintains a `×w

matrix (referred to as count), where w = de/εe and ` = dln(1/δ)e for error parameter and

failure parameter ε, δ ∈ (0, 1). It also requires ` hash functions h1, · · · , h` : [d] → [w].

Each hash function is associated with a row in the matrix, and all hash functions are pair-

wise independent. To propagate the count matrix, we apply all hash functions on each

data item in the stream as we encounter it. Each hash functions hi maps an item x to cell

count[i, hi(x)] in ith row of the count matrix, and increment its value by one. At any time in

the stream, the frequency of an item x is estimated as f̂x = min
1≤i≤`

count[i, hi(x)]. It is shown

that Count-Min sketch guarantees 0 ≤ f̂x − fx ≤ εn with probability at least 1− δ.

2.3 Connection to Matrix Sketching
There is a tight connection between the matrix sketching problem and the frequent

items problem. Let A be a matrix that is given as a stream of its rows. For now, let us

constrain the rows of A to be indicator vectors. In other words, we have ai ∈ {e1, ..., ed},

where ej is the jth standard basis vector. Note that such a matrix can encode a stream of

items (as above) [92]. If the ith element in the stream is j, then the ith row of the matrix is

set to ai = ej. The frequency f j can be expressed as f j = ‖Aej‖2. Assume that we construct
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a matrix B ∈ R`×d as follows. First, we run FrequentItems on the input. Then, for every

item j for which f̂ j > 0 we generate one row in B equal to f̂ 1/2
j · ej. The result is a low rank

approximation of A. Note that rank(B) = ` and that ‖Bej‖2 = f̂ j. Notice also that ‖A‖2
F =

n and that AT A = diag( f1, . . . , fd) and that BTB = diag( f̂1, . . . , f̂d). Porting the results we

obtained from FrequentItems we get that ‖AT A− BTB‖2 = maxj | f j − f̂ j| ≤ ‖A‖2
F/(`− k).

Moreover, since the rows of A (corresponding to different counters) are orthogonal, the

best rank k approximation of A would capture exactly the most frequent items. Therefore,

‖A− Ak‖2
F = Rk = ∑d

i=k+1 f j. Using the quantities above we can also reach the conclusion

that ‖A−πk
B(A)‖2

F ≤ `
`−k‖A− Ak‖2

F. We observe that, for the case of matrices whose rows

are basis vectors, FrequentItems actually provides a very efficient low rank approximation

result.

2.4 Heavy Hitters in Distributed Streams
Tracking frequent items (a.k.a heavy hitters) in distributed streaming model is a funda-

mental problem and it is vastly studied in literature [17, 84, 95, 128]. Below, we first define

the distributed streaming model formally, then describe the most relevant prior works to

our proposed methods in this model.

Definition 2.4.1 (Distributed streaming model). Formally, assume there are m distributed sites

S1, · · · , Sm and a single coordinator C which has two-way communication channel to all sites. Let

A = (a1, · · · , an, · · · ) be an unbounded stream of items. At any time t, item an appears at exactly

one of the sites. Although we do not place a bound on the number of items, we let N denote the

total size of the stream at the time when a query q is performed. This allows us to discuss results in

terms of n at a given point, and in terms of N for the entire run of the algorithm until the time of a

query q.

Definition 2.4.2 (Tracking (ε, φ)-heavy hitters in distributed streaming model). The goal is

to continuously maintain an ε approximation to φ-heavy hitters in coordinator C.

Babcock and Olston [17] designed some deterministic heuristics called as top-k moni-

toring to compute top-k frequent items. In their approach, the coordinator computes an

initial top-k set by querying the sites, and installs some arithmetic constraints at sites

over the partial values maintained there to ensure the continuing validity of initial set.
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As update occurs, sites track changes to their partial values and ensure constraints are

satisfied. Whenever a constraint at a site becomes violated, the site informs coordinator

and coordinator determines whether the top-k set is still accurate. If it is not accurate,

coordinator selects a new one if necessary, and then modifies the constraints as needed at

a subset of the sites. Fuller and Kantardzid modified their technique and proposed FIDS

[62], a heuristic method, to track the heavy hitters while reducing communication cost and

improving overall quality of results.

Manjhi et al. [95] studied φ-heavy hitter tracking in a hierarchical communication

model, in which periodically at the end of every epoch, each site sends to the root of the

hierarchy the counts of all items that appeared at the site over last epoch. The root site

combines the count it received from all sites and outputs items whose relative frequency

exceed the threshold φ. To reduce communication and space requirements, they have

defined precision gradient at each level of hierarchy.

Cormode and Garofalakis [35] proposed another method by maintaining a summary

of the input stream and a prediction sketch at each site. If the summary varies from

the prediction sketch by more than a user defined tolerance amount, the summary and

(possibly) a new prediction sketch is sent to a coordinator. The coordinator can use

the information gathered from each site to continuously report frequent items. Sketches

maintained by each site in this method require O((1/ε2) log(1/δ)) space and O(log(1/δ))

time per update, where δ ∈ (0, 1) is a probabilistic confidence.

Yi and Zhang [128] provided a deterministic method with communication

O((m/ε) log N) and space usage O(1/ε) at each site to continuously track φ-heavy hitters

and φ-quantiles. In their method, every site and the coordinator have as many counters

as the type of items plus one more counter for the total items. Every site keeps track of

number of items it receives in each round. Once this number reaches roughly ε/m times

of the total counter at the coordinator, the site sends the counter to the coordinator. After

the coordinator receives m such messages, it updates its counters and broadcasts them to

all sites. Sites reset their counter values and continue to next round. To lower space usage

at sites, they suggested using space-saving sketch [97]. The authors also gave matching

lower bounds on the communication costs for both problems, showing their algorithms

are optimal in the deterministic setting.
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Later, Huang et al. [78] proposed a randomized algorithm that uses O(1/(ε
√

m)) space

at each site and O((
√

m/ε) log N) total communication and tracks heavy hitters in a

distributed stream. For each item a in the stream a site chooses to send a message with

a probability p =
√

m/(εn̂) where n̂ is a 2-approximation of the total count. It then sends

fe(Aj) the total count of messages at site j where a = e, to the coordinator. Again an

approximation heavy-hitter count f̂e(Aj) can be used at each site to reduce space. The ε-

heavy hitters can be maintained from a random sampling of elements of size s = O(1/ε2).

This allows one to use the well studied technique of maintaining a random sample of size

s from a distributed stream [38, 116], which can be done with roughly O((m+ s) log(N/s))

communication.

In summary, there are four main protocols that have formal error guarantees and may

be optimal for different restrictions on the problem:

(P1) Runs streaming algorithm on each site, and sends content of memory to C after

enough items. This protocol has communication of O((m/ε2) log N
s ), and is deter-

ministic.

(P2) Each site sends update of fe to C when local ( fe − f last-sent
e ) > (ε/m)n. This protocol

has communication complexity of O((m/ε) log N) [128], and is deterministic.

(P3) Maintains a random sample of all items from A of size O(1/ε2) on C. This protocol

has communication complexity of O((m + 1
ε2 ) log N

s ) [38], and is randomized.

(P4) Each site sends fe to C for each new ai = e with probability proportional to
√

m/(εn).

This protocol has communication complexity of O((
√

m/ε) log N) [78], and is ran-

domized.

2.5 Weighted Heavy Hitters in Distributed Streams
In this section, we address the problem of tracking weighted heavy hitters in dis-

tributed streams. The input is a distributed weighted data stream A, which is a sequence of

tuples (a1, w1), (a2, w2), . . . , (an, wn), . . . where an is an element label and wn is the weight.

For any element e ∈ [u], define Ae = {(ai, wi) | ai = e} and let We = ∑(ai ,wi)∈Ae
wi. For

notational convenience, we sometimes refer to a tuple (ai, wi) ∈ A by just its element ai.



14

There are numerous important motivating scenarios for this extension. For example,

instead of just monitoring counts of objects, we can measure a total size associated with an

object, such as total number of bytes sent to an IP address, as opposed to just a count of

packets.

2.5.1 Upper Bound on Weights

Let W = ∑n
i=1 wi be the total weight of the problem. However, allowing arbitrary

weights can cause problems as demonstrated in the following example.

Suppose we want to maintain a 2-approximation of the total weight (i.e., a value Ŵ

such that Ŵ ≤ W ≤ 2Ŵ). If the weight of each item doubles (i.e., wi = 2i for tuple

(ai, wi) ∈ A), every weight needs to be sent to the coordinator. This follows since W more

than doubles with every item, so Ŵ cannot be valid for more than one step. The same issue

arises in tracking approximate heavy hitters and matrices.

To make these problems well-posed, often researchers [80] assume weights vary in a

finite range, and are then able to bound communication cost. To this end we assume all

wi ∈ [1, β] for some constant β ≥ 1. One option for dealing with weights is to just pretend

every item with element e and weight wi is actually a set of dwie distinct items of element

e and weight 1 (the last one needs to be handled carefully if wi is not an integer). But this

can increase the total communication and/or runtime of the algorithm by a factor β, and

is not desirable.

Our proposed methods take great care to only increase the communication by a

log(βN)/ log N factor compared to similar unweighted variants. In unweighted version,

each protocol proceeds in O(log N) rounds (sometimes O( 1
ε log N) rounds); a new round

starts roughly when the total count n doubles. In our settings, the rounds will be based on

the total weight W, and will change roughly when the total weight W doubles. Since the

final weight W ≤ βN, this will cause an increase to O(log W) = O(log(βN)) rounds.

We next describe how to extend four protocols for heavy hitters to the weighted setting.

These are extensions of the unweighted protocols described in Section 2.4.

2.5.2 Estimating Total Weight

An important task is to approximate the current total weight W = ∑n
i=1 wi for all items

across all sites. This is a special case of the heavy hitters problem where all items are
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treated as being the same element. So if we can show a result to estimate the weight of

any single element using a protocol within εW, then we can get a global estimate Ŵ such

that |W − Ŵ| ≤ εW. All our subsequent protocols can run a separate process in parallel to

return this estimate if they do not do so already.

Recall that the heavy hitter problem typically calls to return all elements e ∈ [u] if

fe(A)/W ≥ φ, and never if fe(A)/W < φ− ε. For each protocol we study, the main goal

is to ensure that an estimate Ŵe satisfies | fe(A)− Ŵe| ≤ εW. We show this, along with the

Ŵ bound above, adjusting constants, is sufficient to estimate weighted heavy hitters. We

return e as a φ-weighted heavy hitter if Ŵe/Ŵ > φ− ε/2.

Lemma 2.5.1. If | fe(A)− Ŵe| ≤ (ε/6)W and |W − Ŵ| ≤ (ε/5)W, we return e if and only if it

is a valid weighted heavy hitter.

Proof. We need | Ŵe
Ŵ
− fe(A)

W | ≤ ε/2. We show the upper bound, the lower bound argument

is symmetric.

Ŵe

Ŵ
≤ fe(A)

Ŵ
+

ε

6
W
Ŵ
≤ fe(A)

W
1

1− ε/5
+

ε

5
1 + ε/5
1− ε/5

≤ fe(A)

W
+

ε

4
+

ε

4
=

fe(A)

W
+

ε

2
.

Given this result, we can focus just on approximating the frequency fe(A) of all items.

2.5.3 Weighted Heavy Hitters, Protocol 1

We start with an intuitive approach to the distributed streaming problem: run a

streaming algorithm (for frequency estimation) on each site, and occasionally send the

full summary on each site to the coordinator. We next formalize this protocol (P1).

On each site we run the Misha-Gries summary [99] for frequency estimation, modified

to handle weights, with 2/ε = 1/ε′ counters. We also keep track of the total weight Wi

of all data seen on that site i since the last communication with the coordinator. When

Wi reaches a threshold τ, site i sends all of its summaries (of size only O(m/ε)) to the

coordinator. We set τ = (ε/2m)Ŵ, where Ŵ is an estimate of the total weight across all

sites, provided by the coordinator. At this point the site resets its content to empty. This is

summarized in Algorithm 1.
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The coordinator can merge results from each site into a single summary without

increasing its error bound, due to the mergeability of such summaries [9]. It broadcasts

the updated total weight estimate Ŵ when it increases sufficiently since the last broadcast.

See details in Algorithm 2.

Algorithm 1 P1: Tracking heavy-hitters (at site Si)

for (an, wn) in round j do
Update Gi ← MGε′(Gi, (an, wn)).
Update total weight on site Wi += wn.
if (Wi ≥ τ = (ε/2m)Ŵ) then

Send (Gi, Wi) to coordinator; make Gi, Wi empty.

Algorithm 2 P1: Tracking heavy-hitters (at C)

On input (Gi, Wi):
Update sketch S← Mergeε′(S, Gi) and WC += Wi.
if (WC/Ŵ > 1 + ε/2) then

Update Ŵ ←WC, and broadcast Ŵ to all sites.

Lemma 2.5.2. (P1) Algorithms 1 and 2 maintain that for any item e ∈ [u] that | fe(S)− fe(A)| ≤

εWA. The total communication cost is O((m/ε2) log(βN)) elements.

Proof. For any item e ∈ [u], the coordinator’s summary S has error coming from two

sources. First is the error as a result of merging all summaries sent by each site. By

running these with an error parameter ε′ = ε/2, we can guarantee [9] that this leads to

at most ε′WC ≤ εWA/2, where WC is the weight represented by all summaries sent to the

coordinator, hence less than the total weight WA.

The second source is all elements on the sites not yet sent to the coordinator. Since we

guarantee that each site has total weight at most τ = (ε/2m)Ŵ ≤ (ε/2m)W, then that is

also an upper bound on the weight of any element on each site. Summing over all sites,

we have that the total weight of any element not communicated to the coordinator is at

most m · (ε/2m)W = (ε/2)W.

Combining these two sources of error implies the total error on each element’s count is

always at most εW, as desired.
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The total communication bound can be seen as follows. Each message takes O(1/ε)

space. The coordinator sends out a message to all m sites every (at most) m updates

it sees from the coordinators; call this period an epoch. Thus each epoch uses O(m/ε)

communication. In each epoch, the size of WC (and hence Ŵ) increases by an additive

m · (ε/2m)Ŵ ≥ (ε/4)WA, which is at least a relative factor (1 + ε/4). Thus starting from a

weight of 1, there are k epochs until 1 · (1 + ε/4)k ≥ βN, and thus k = O( 1
ε log(βN)). So

after all k epochs the total communication is at most O((m/ε2) log(βN)).

2.5.4 Weighted Heavy-Hitters Protocol 2

Next we observe that we can significantly improve the communication cost of protocol

P1 (above) using an observation, based on an unweighted frequency estimation protocol

by Yi and Zhang [128]. Algorithms 3 and 4 summarize this protocol.

Each site takes an approach similar to Algorithm 1, except that when the weight

threshold is reached, it does not send the entire summary it has, but only the weight at

the site. It still needs to report heavy elements, so it also sends e whenever any element e’s

weight has increased by more than (ε/m)Ŵ since the last time information was sent for e.

Note here it only sends that element, not all elements.

After the coordinator has received m messages, then the total weight constraint must

have been violated. Since W ≤ βN, at most O(log(1+ε)(βN)) = O((1/ε) log(βN)) rounds

are possible, and each round requires O(m) total weight messages. It is a little trickier

(but not too hard) to see it requires only a total of O((m/ε) log(βN)) element messages, as

follows from the next lemma; it is in general not true that there are O(m) such messages in

one round.

Algorithm 3 P2: Tracking heavy-hitters (at site Si)

for each item (an, wn) do
Wi += wn and ∆an += wn.
if (Wi ≥ (ε/m)Ŵ) then

Send (total, Wi) to C and reset Wi = 0.
if (∆an ≥ (ε/m)Ŵ) then

Send (an, ∆an) to C and reset ∆an = 0.

Lemma 2.5.3. After r rounds, at most O(m · r) element update messages have been sent.
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Algorithm 4 P2: Tracking heavy-hitters (at C)

On message (total, Wi):
Set Ŵ += Wi and #msg += 1.
if (#msg ≥ m) then

Set #msg = 0 and broadcast Ŵ to all sites.
On message (an, ∆n): set Ŵan += ∆an .

Proof. We prove this inductively. Each round gets a budget of m messages, but only uses

ti messages in round i. We maintain a value Tr = r ·m−∑r
i=1 ti. We show inductively that

Tr ≥ 0 at all times.

The base case is clear, since there are at most m messages in round 1, so t1 ≤ m, thus

T1 = m − t1 ≥ 0. Then since it takes less than 1 message in round i to account for the

weight of a message in a round i′ < i. Thus, if ∑r−1
i=1 ti = nr, so kr = (r − 1)m− nr, then

if round i had more than m + kr messages, the coordinator would have weight larger than

having m messages from each round, and it would have at some earlier point ended round

r. Thus this cannot happen, and the inductive case is proved.

The error bounds follow directly from the unweighted case from [128], and is similar

to that for (P1). We can thus state the following theorem.

Theorem 2.5.1. Protocol 2 (P2) sends O(m
ε log(βN)) total messages, and approximates all

frequencies within εW.

One can use the space-saving algorithm [97] to reduce the space on each site to O(m/ε),

and the space on the coordinator to O(1/ε).

2.5.5 Weighted Heavy-Hitters Protocol 3

The next protocol, labeled (P3), simply samples elements to send to the coordinator,

proportional to their weight. Specifically we combine ideas from priority sampling [57]

for without replacement weighted sampling, and distributed sampling on unweighted

elements [38]. In total we maintain a random sample S of size at least s = O( 1
ε2 log 1

ε )

on the coordinator, where the elements are chosen proportional to their weights, unless the

weights are large enough (say greater than W/s), in which case they are always chosen. By

deterministically sending all large enough weighted elements, not only do we reduce the
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variance of the approach, but it also means the protocol naturally sends the full dataset if

the desired sample size s is large enough, such as at the beginning of the stream. Algorithm

5 and Algorithm 6 summarize the protocol. We denote total weight of sample by WS. On

receiving a pair (an, wn), a site generates a random number rn ∈ Unif(0, 1) and assigns

a priority ρn = wn/rn to an. Then the site sends triple (an, wn, ρn) to the coordinator if

ρn ≥ τ, where τ is a global threshold provided by the coordinator.

Initially τ is 1, so sites simply send any items they receive to the coordinator. At

the beginning of further rounds, the coordinator doubles τ and broadcasts it to all sites.

Therefore at round j, τ = τj = 2j. In any round j, the coordinator maintains two priority

queues Qj and Qj+1. On receiving a new tuple (an, wn, ρn) sent by a site, the coordinator

places it into Qj+1 if ρn ≥ 2τ, otherwise it places an into Qj.

Once |Qj+1| = s, the round ends. At this time, the coordinator doubles τ as τ = τj+1 =

2τj and broadcasts it to all sites. Then it discards Qj and examines each item (an, wn, ρn) in

Qj+1, if ρn ≥ 2τ, it goes into Qj+2, otherwise it remains in Qj+1.

Algorithm 5 P3: Tracking heavy-hitters (at site Si)

for (an, wn) in round j do
choose rn ∈ Unif(0, 1) and set ρn = wn/rn.
if ρn ≥ τ then send (an, wn, ρn) to C.

Algorithm 6 P3: Tracking heavy-hitters (at C)

On input of (an, wn, ρn) from any site in round j:
if ρ > 2τj then put an in Qj+1,

else put an in Qj.
if |Qj+1| ≥ s then

Set τj+1 = 2τj; broadcast τj+1 to all sites.
for (an, wn, ρn) ∈ Qj+1 do

if ρn > 2τj+1, put an in Qj+2.

At any time, a sample of size exactly s can be derived by subsampling from Qj ∪Qj+1.

But it is preferable to use a larger sample S = Qj ∪Qj+1 to estimate properties of A, so we

always use this full sample.
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2.5.5.1 Communication Analysis

The number of messages sent to the coordinator in each round is O(s) with high prob-

ability. To see that, consider an arbitrary round j. Any item an being sent to coordinator at

this round, has ρn ≥ τ. This item will be added to Qj+1 with probability

Pr(ρn ≥ 2τ | ρn ≥ τ) =
Pr(ρn ≥ 2τ)

Pr(ρn ≥ τ)
=

Pr(rn ≤ wn
2τ )

Pr(rn ≤ wn
τ )

=
min(1, wn

2τ )

min(1, wn
τ )
≥ 1

2
.

Thus sending 4s items to coordinator, the expected number of items in Qj+1 would be

greater than or equal to 2s. Using a Chernoff-Hoeffding bound Pr(2s − |Qj+1| > s) ≤

exp(−2s2/4s) = exp(−s/2). So if in each round 4s items are sent to coordinator, with

high probability (at least 1− exp(−s/2)), there would be s elements in Qj+1. Hence each

round has O(s) items sent with high probability.

The next lemma bounds the number of rounds. Intuitively, each round requires the to-

tal weight of the stream to double, starting at weight s, and this can happen O(log(βN/s))

times.

Lemma 2.5.4. The number of rounds is at most O(log(βN/s)) with probability at least 1 −

e−Ω(s).

Proof. In order to reach round j we must have s items with priority ρn > τj = 2j; this

happens with probability min(1, wn/2j) ≤ min(1, β/2j) ≤ β/2j. We assume for now

β ≤ 2j for values of j we consider; the other case is addressed at the end of the proof.

Let Xn,j be a random variable that is 1 if ρn ≥ τj and 0 otherwise. Let Mj =

∑N
n=1 Xn,j. Thus the expected number of items that have a priority greater than τj is

E[Mj] = ∑N
n=1 wn/2j ≤ Nβ/2j. Setting jN = dlog2(βN/s)e then E[MjN ] ≤ s. We now

want to use the following Chernoff bound on the N independent random variables Xn,j

with M = ∑N
n=1 Xn,j that bounds Pr[Mj ≥ (1 + α)E[Mj]] ≤ exp(−α2 E[Mj]/(2 + α)).

Note that E[MjN+1] ≤ (Nβ)/2jN+1 ≤ s/2. Then setting α = 1 ensures that

(1 + α)E[MjN+1] = 2 · (s/2) ≤ s.

Thus we can solve

Pr[MjN+1 ≥ s] ≤ exp
(
− s/2

3

)
= exp

(
−−s

6

)
.
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Thus since in order to reach round jN + 1 = log2(βN/s) + 1 = O(log(βN/s)), we need

s items to have priority greater than τjN+1, this happens with probability at most e−Ω(s).

Recall that to be able to ignore the case where wn > τjN+1 we assumed that β < τjN+1.

If this were not true, then β > 2log2(βN/s)+1 = 2βN/s implies that s > N, in which case

we would send all elements before the end of the first round, and the number of rounds is

1.

Since with probability at least 1− e−Ω(s), in each round the coordinator receives O(s)

messages from all sites and broadcasts the threshold to all m sites, we can then combine

with Lemma 2.5.4 to bound the total messages.

Lemma 2.5.5. This protocol sends O((m + s) log βN
s ) messages with probability at least 1 −

e−Ω(s). We set s = Θ( 1
ε2 log 1

ε ).

Note that each site only requires O(1) space to store the threshold, and the coordinator

only requires O(s) space.

2.5.5.2 Creating Estimates

To estimate fe(A) at the coordinator, we use a set S′ = Qj ∪Qj+1 which is of size |S′| =

s′ > s. Let ρ̂ be the priority of the smallest priority element in S′. Let S be all elements

in S′ except for this single smallest priority element. For each of the s′ − 1 elements in

S assign them a weight w̄i = max(wi, ρ̂), and we set WS = ∑ai∈S w̄i. Then via known

priority sampling results [57, 115], it follows that E[WS] = WA and that (1− ε)WA ≤WS ≤

(1 + ε)WA with large probability (say with probability 1 − ε2, based on variance bound

Var[WS] ≤ W2
A/(s′ − 2) [115] and a Chebyshev bound). Define Se = {an ∈ S | an = e} and

fe(S) = ∑an∈Se
w̄n.

The following lemma shows that the sample maintained at the coordinator gives a

good estimate on item frequencies. At a high-level, we use a special Chernoff-Hoeffding

bound for negatively correlated random variables [104] (since the samples are without

replacement), and then only need to consider the points selected that have small weights,

and thus have values in {0, ρ̂}.

Lemma 2.5.6. With s = Θ((1/ε2) log(1/ε)), the coordinator can use the estimate from the
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sample S such that, with large probability, for each item e ∈ [u], | fe(S)− fe(A)| ≤ εWA.

Proof. To prove our claim, we use the following Chernoff-Hoeffding bound [104]. Given

a set of negatively-correlated random variables Y1, . . . , Yr and Y = ∑r
n=1 Yn, where each

Yn ∈ [ai, bi], where ∆ = maxn(bn − an) then Pr[|Y− E[Y]| ≥ α] ≤ exp(−2α2/r∆2).

For a given item e ∈ [u] and any pair (an, wn) ∈ S, we define a random variable2 Xn,e

as follows:

Xn,e = w̄n if an = e, 0 otherwise.

Define a heavy set H = {an ∈ A | wn ≥ τj}, these items are included in S deterministically

in round j. Let the light set be defined L = A \ H. Note that for each an ∈ H that Xn,e

is deterministic, given e. For all an ∈ S ∩ L, then Xn,e ∈ [0, 2τj] and hence using these as

random variables in the Chernoff-Hoeffding bound, we can set ∆ = 2τj.

Define Me = ∑an∈S Xn,e, and note that fe(S) = Me is the estimate from S′ of fe(A). Let

WL = ∑an∈L wi. Since all light elements are chosen with probability proportionally to their

weight, then given an Xn,e for ai ∈ S ∩ L it has label e with probability fe(L)/WL. And in

general E[∑an∈S∩L w̄n] = E[WS∩L] = WL. Let He = {an ∈ H | an = e}. Now we can see

E[ fe(S)] = E

[
|S|

∑
n=1

Xn,e

]
= ∑

an∈He

wn + E

[
∑

an∈S∩L
τj

]
· fe(L)

WL
= fe(H) + WL ·

fe(L)
WL

= fe(A).

Now we can apply the Chernoff-Hoeffding bound.

Pr (| fe(S)− fe(A)| > εWA) = Pr (|Me − E[Me]| > εWA)

≤ exp

(
−2ε2W2

A
|S|4τ2

j

)
≤ exp

(
−1

2
ε2|S|/(1 + ε)2

)
≤ δ,

where the last line follows since (1 + ε)WA ≥ ∑an∈S w̄n ≥ |S|τj, where the first inequality

holds with high probability on |S|. Solving for |S| yields |S| ≥ (1+ε)2

2ε2 ln(1/δ). Setting δ =

O(ε2/ log(1/ε)) = 1/|S| allows the result to hold with probability at least 1− 1/|S|.

Theorem 2.5.2. Protocol 3 (P3) sends O((m + s) log βN
s ) messages with large probability; It gets

a set S of size s = Θ( 1
ε2 log 1

ε ) so that | fe(S)− fe(A)| ≤ εW.

2Note that the random variables Xn,e are negatively-correlated, and not independent, since they are derived
from a sample set S drawn without replacement. Thus we appeal to the special extension of the Chernoff-
Hoeffding bound by Panconesi and Srinivasan [104] that handles this case. We could of course use with-
replacement sampling, but these algorithms require more communication and typically provide worse bounds
in practice, as demonstrated.
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2.5.5.3 Sampling With Replacement

We can show similar results on s samples with replacement, using s independent sam-

plers. In round j, for each element (an, wn) arriving at a local site, the site generates s

independent rn values, and thus s priorities ρn. If any of them is larger than τj, then the

site forwards it to coordinator, along with the index (or indices) of success.

For each of s independent samplers, say for sampler t ∈ [s], the coordinator maintains

the top 2 priorities ρ
(1)
t and ρ

(2)
t , ρ

(1)
t > ρ

(2)
t , among all it received. It also keeps the element

information at associated with ρ(1). For the sampler i ∈ [s], the coordinator keeps a weight

w̄i = ρ
(2)
i . One can show that E[w̄i] = W, the total weight of the entire stream [57]. We

improve the global estimate as Ŵ = (1/s)∑s
i=1 w̄i, and then assign each element ai the

same weight ŵi = Ŵ/s. Now E[∑s
i=1 ŵi] = W, and each ai is an independent sample

(with replacement) chosen proportional to its weight. Then setting s = O((1/ε2) log(1/ε))

it is known that these samples can be used to estimate all heavy hitters within εW with

probability at least 1− e−Ω(s).

The jth round terminates when the ρ
(2)
i for all i is larger than 2τj. At this point,

coordinator sets τj+1 = 2τj, informs all sites of the new threshold and begins the (j + 1)th

round.

2.5.5.4 Communication Analysis

Since this protocol is an adaptation of existing results [38], its communication is O((m+

s log s) log(βN) = O((m + 1
ε2 log2 1

ε ) log(βN)) messages. This result doesn’t improve the

error bounds or communication bounds with respect to the without replacement sampler

described above, as is confirmed in Section 2.5.7. Also in terms of running time (without

parallelism at each site), sampling without replacement will be better.

2.5.6 Weighted Heavy-Hitters Protocol 4

This protocol is inspired by the unweighted case from Huang et al. [78]. Each site

maintains an estimate of the total weight Ŵ that is provided by the coordinator and always

satisfies Ŵ ≤ W ≤ 2Ŵ, with high probability. It then sets a probability p = 2
√

m/(εŴ).

Now given a new element (a, w) with some probability p̄, it sends to the coordinator

(e, w̄e,j = fe(Aj)) for a = e ∈ [u]; this is the total weight of all items in its stream that equal

element e. Finally the coordinator needs to adjust each w̄e,j by adding 1/p− 1 (for elements
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that have been witnessed) since that is the expected number of items with element e in the

stream until the next update for e.

If w is an integer, then one option is to pretend it is actually w distinct elements with

weight 1. For each of the w elements we create a random variable Zi that is 1 with

probability p and 0 otherwise. If any Zi = 1, then we send fe(Aj). However this is

inefficient (say if w = β = 1000), and only works with integer weights.

Instead we notice that at least one Zi is 1 if none are 0, with probability 1− (1− p)w ≈

1− e−pw. So in the integer case, we can set p̄ = 1− (1− p)w, and then since we send a more

accurate estimate of fe (as it essentially comes later in the stream) we can directly apply the

analysis from Huang et al. [78]. To deal with non integer weights, we set p̄ = 1− e−pw, and

describe the approach formally on a site in Algorithm 7.

Notice that the probability of sending an item is asymptotically the same in the case that

w = 1, and it is smaller otherwise (since we send at most one update w̄e,j per batch). Hence

the communication bound is asymptotically the same, except for the number of rounds.

Since the weight is broadcast to the sites from the coordinator whenever it doubles, and

now the total weight can be βN instead of N, the number of rounds is O(log(βN)) and the

total communication is O((
√

m/ε) log(βN)) with high probability.

Algorithm 7 P4: Tracking of heavy-hitters (at site Sj)

Given weight Ŵ from C, set p = 2
√

m/(εŴ).
for each item (a, w) it receives do

For a = e update fe(Aj) := fe(Aj) + w.
Set p̄ = 1− e−pw.
With probability p̄ send w̄e,j = fe(Aj) to C.

When the coordinator is sent an estimate w̄e,j of the total weight of element e at site j,

it needs to update this estimate slightly as in Huang et al., so that it has the right expected

value. It sets ŵe,j = w̄e,j + 1/p, where again p = 2
√

m/(εŴ); ŵe,j = 0 if no such messages

are sent. The coordinator then estimates each fe(A) as Ŵe = ∑m
j=1 ŵe.

We first provide intuition how the analysis works, if we used p̄ = 1− (1− p)w (i.e.,

≈ 1− e−pw) and w is an integer. In this case, we can consider simulating the process with

w items of weight 1; then it is identical to the unweighted algorithm, except we always

send w̄e,j at then end of the batch of w items. This means the expected number until the
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next update is still 1/p− 1, and the variance of 1/p2 and error bounds of Huang et al. [78]

still hold.

Lemma 2.5.7. The above protocol guarantees that | fe(A)− Ŵe| ≤ εW on the coordinator, with

probability at least 0.75.

Proof. Consider a value of k large enough so that w · 10k is always an integer (i.e., the pre-

cision of w in a system is at most k digits past decimal point). Then we can hypothetically

simulate the unweighted case using wk = w · 10k points. Since now Ŵ represents 10k times

as many unweighted elements, we have pk = p/10k =
√

m/(εŴ10k). This means the

probability we send an update should be 1− (1− pk)
wk in this setting.

Now use that for any x that limn→∞(1 − x
n )

n = e−x. Thus setting n = wk and x =

pk · wk = (p/10k)(w10k) = pw we have limk→∞ 1− (1− pk)
wk = 1− e−pw.

Next we need to see how this simulated process affects the error on the coordinator.

Using results from Huang et al. [78], where they send an estimate w̄e,j, the expected value

E[w̄e,j] = fe(Aj)− 1/p + 1 at any point afterwards where that was the last update. This

estimates the count of weight 1 objects, so in the case where they are weight 10−k objects

the estimate of fe(Aj)
(k) = fe(Aj)10k is using w̄(k)

e,j = w̄e,j10k. Then, in the limiting case (as

k→ ∞), we adjust the weights as follows.

E[w̄e,j] = E[w̄(k)
e,j ]10−k = ( fe(Aj)

(k) − 1/pk + 1) · 10−k

= ( fe(Aj)10k − 10k

p
+ 1)10−k = fe(Aj)−

1
p
+ 10−k,

so as limk→∞ E[w̄e,j] = fe(Aj) − 1/p. So our procedure has the right expected value.

Furthermore, it also follows that the variance is still 1/p2, and thus the error bound from

[78] that any | fe(A)− Ŵe| ≤ εW with probability at least 0.75 still holds.

Theorem 2.5.3. Protocol 4 (P4) sends O(
√

m
ε log(βN)) total messages and with probability 0.75

has | fe(A)− Ŵe| ≤ εW.

The bound can be made to hold with probability 1− δ by running log(2/δ) copies and

taking the median. The space on each site can be reduced to O(1/ε) by using a weighted

variant of the space-saving algorithm [97]; the space on the coordinator can be made

O(m/ε) by just keeping weights for which w̄i,e ≥ 2εŴj, where Ŵj is a 2-approximation
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of the weight on site j.

2.5.7 Experimental Evaluation

In this section, we describe our experiments, and how our different protocols compare.

2.5.7.1 Datasets

For tracking the distributed weighted heavy hitters, we generated data from Zipfian

distribution, and set the skew parameter to 2 in order to get meaningful distributions that

produce some heavy hitters per run. The generated dataset contained 107 points, in order

to assign them weights we fixed the upper bound (default β = 1, 000) and assigned each

point a uniform random weight in range [1, β]. Weights are not necessarily integers.

2.5.7.2 Metrics

The efficiency and accuracy of the weighted heavy hitters protocols are controlled with

input parameter ε specifying desired error tolerance. We compare them on:

• Recall: The number of true heavy hitters returned by a protocol over the correct

number of true heavy hitters.

• Precision: The number of true heavy hitters returned by a protocol over the total

number of heavy hitters returned by the protocol.

• err: Average relative error of the frequencies of the true heavy hitters returned by a

protocol.

• msg: Number of messages sent during a protocol.

We observed that both the approximation errors and communication costs of all meth-

ods are very stable with respect to query time, by executing estimations at the coordinator at

randomly selected time instances. Hence, we only report the average err from queries in

the very end of the stream (i.e., results of our methods on really large streams).

2.5.7.3 Distributed Weighted Heavy Hitters

We denote four protocols for tracking distributed weighted heavy hitters as P1, P2,

P3 and P4, respectively. As a baseline, we could send all 107 stream elements to the
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coordinator. This would have no error. All of our heavy hitters protocols return an element

e as heavy hitter only if Ŵe/Ŵ ≥ φ− ε/2 while the exact weighted heavy hitter method

which our protocols are compared against, returns e as heavy hitter if fe(A)/W ≥ φ.

We set the heavy-hitter threshold φ to 0.05 and we varied error guarantee ε in the range

{5× 10−4, 10−3, 5× 10−3, 10−2, 5× 10−2}. When the plots do not vary ε, we use the default

value of ε = 10−3. Also we varied number of sites (m) from 10 to 100, otherwise we have

as default m = 50.

All four algorithms prove to be highly effective in estimating weighted heavy hitters

accurately, as shown in recall (Figure 2.1(a)) and precision (Figure 2.1(b)) plots. In particular,

the recall values for all algorithms are constant 1.0.

Note that precision values dip, but this is because the true heavy hitters have fe(A)/W

above φ where our algorithms only return a value if Ŵe/Ŵ ≥ φ− ε/2, so they return more

false positives as ε increases. For ε smaller than 0.01, all protocols have a precision of 1.0.

When measuring (the measured) err as seen in Figure 2.1(c), our protocols consistently

outperform the error parameter ε. The only exception is P4, which has slightly larger error

than predicted for very small ε; recall this algorithm is randomized and has a constant

probability of failure. P1 has almost no error for ε = 0.01 and below; this can be explained

by improved analysis for Misra-Gries [18] on skewed data, which applies to our Zipfian

data. Protocols P2 and P3 also greatly underperform their guaranteed error.

The protocols are quite communication efficient, saving several orders of magnitude

in communication as shown in Figure 2.1(d). For instance, all protocols use roughly 105

messages at ε = 0.01 out of 107 total stream elements. To further understand different

protocols, we tried to compare them by making them using (roughly) the same number

of messages. This is achieved by using different ε values. As shown in Figure 2.1(e), all

protocols achieved excellent approximation quality, and the measured error drops quickly

as we allocate more budget for the number of messages. In particular, P2 is the best if fewer

than 105 messages are acceptable with P3 also shown to be quite effective. P1 performs best

if 106 messages are acceptable.

In another experiment, we tuned all protocols to obtain (roughly) the same measured

error of err = 0.1 to compare their communication cost versus the upper bound on the

element weights (β). Figure 2.1(f) shows that they are all robust to the parameter β; P2 or
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Figure 2.1: Results for distributed weighted heavy hitters protocols on Zipfian distribution
with skew=2.

P3 performs the best.



CHAPTER 3

FREQUENT DIRECTIONS ALGORITHM

In this chapter, we describe FrequentDirections algorithm [92] (short for FD) initially

introduced by Edo Liberty. FrequentDirections is a deterministic and iterative matrix

sketching method that works over a stream. FrequentDirections draws on the similarity

between matrix sketching problem and item frequency estimation problem, and is directly

inspired by MG sketch which was described in Chapter 2.

3.1 Frequent Directions, Intuition and Algorithm
The intuition behind FD is very similar to that of FrequentItems. In the same way

that FrequentItems periodically deletes ` different elements, FD periodically ‘shrinks’ `

orthogonal vectors by roughly the same amount. This means that during shrinking steps,

the squared Frobenius norm of the sketch reduces ` times faster than its squared projection

on any single direction. Since the Frobenius norm of the final sketch is non negative, we

are guaranteed that no direction in space is reduced by “too much”. As a remark, when

presented with an item indicator matrix, FD exactly mimics a variant of FrequentItems.

More explicitly, the algorithm keeps an `× d sketch matrix B that is updated every time

a new row from the input matrix A is added. The algorithm maintains the invariant that

the last row of sketch B is always all-zero valued. During the execution of the algorithm,

rows from A simply replace the all-zero valued row in B. Once B is full, we compute the

full singular value decomposition (SVD) of B and nullify its last row in a two-stage process.

First, the sketch B is rotated (from left) using its SVD such that its rows are orthogonal and

in descending magnitude order. Then, the norm of sketch rows are “shrunk” so that at

least one of them is set to zero.
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Algorithm 8 FD

Input: `, A ∈ Rn×d

B← 0`×d

for i ∈ 1, . . . , n do
B` ← ai # ith row of A replaces (all-zeros) `th row of B
[U, Σ, V]← SVD(B)
δ← σ2

`

B←
√

Σ2 − δI` ·VT # The last row of B is again zero
return B

3.1.1 Error Bounds Analysis

Here we state and prove two different error bounds for Algorithm 8 which is our

simplest and most space efficient algorithm. The first error bound provides an additive

approximation guarantee:

Theorem 3.1.1. Let B ∈ R`×d be the sketch of FD on an input matrix A ∈ Rn×d. Then for any

unit vector x ∈ Rd it holds that

0 ≤ ‖Ax‖2 − ‖Bx‖2 ≤ ‖A− Ak‖2
F/(`− k).

Or equivalently

‖AT A− BTB‖2 ≤ ‖A− Ak‖2
F/(`− k) and AT A � BTB.

This holds for all k < ` including k = 0 where we define A0 as the n× d all zeros matrix. Note

that setting ` = d1/ε + ke yields error of ε‖A− Ak‖2
F using O(d`) = O(dk + d/ε) space.

The second error bound offers a stronger multiplicative bound which requires project-

ing A onto the sketch computed by FD:

Theorem 3.1.2. Let B ∈ R`×d be the sketch FD produces on an input matrix A ∈ Rn×d. Then

for any k < `,

‖A− πk
B(A)‖2

F ≤ (1 +
k

`− k
)‖A− Ak‖2

F,

where πk
B(A) denotes the projection of A onto the best rank k approximation of B. Note that by

setting ` = dk + k/εe FD achieves the standard error bound of form ‖A − πk
B(A)‖2

F ≤ (1 +

ε)‖A− Ak‖2
F using only O(d`) = O(dk/ε) space.
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Below we provide the proofs for the above theorems. The reader will notice that we oc-

casionally use inequalities instead of equalities at different parts of the proof to obtain three

Properties. This is not unintentional. The reason is that we want the same exact proofs to

hold also for Algorithm 9 which is described in Section 3.1.2. Algorithm 9 is conceptually

identical to Algorithm 8. It requires only twice as much space but is asymptotically faster

by a factor of `. Moreover, any algorithm that produces an approximate matrix B which

satisfies the following properties (for any choice of ∆) achieves the error bounds stated in

Theorem 3.1.1 and Theorem 3.1.2.

In what follows, let C ← ΣVT in every iteration of Algorithm 9. In addition, we denote

by δi, B[i], C[i] the values of δ, B and C, respectively, after the ith row of A was processed.

We set ∆ = ∑n
i=1 δi as the total mass we subtract from the stream during our algorithm. To

prove our result we first prove three auxiliary properties.

Property 3.1.1. For any vector x we have ‖Ax‖2 − ‖Bx‖2 ≥ 0.

Proof. Use the observations that 〈ai, x〉2 + ‖B[i−1]x‖2 = ‖C[i]x‖2.

‖Ax‖2 − ‖Bx‖2 =
n

∑
i=1

[〈ai, x〉2 + ‖B[i−1]x‖2 − ‖B[i]x‖2] ≥
n

∑
i=1

[‖C[i]x‖2 − ‖B[i]x‖2] ≥ 0.

Property 3.1.2. For any unit vector x ∈ Rd we have ‖Ax‖2 − ‖Bx‖2 ≤ ∆.

Proof. To see this, first note that ‖C[i]x‖2 − ‖B[i]x‖2 ≤ ‖CT
[i]C[i] − BT

[i]B[i]‖ ≤ δi. Now,

consider the fact that ‖C[i]x‖2 = ‖B[i−1]x‖2 + 〈ai, x〉2. Substituting for ‖C[i]x‖2 above and

taking the sum yields

∑
i
‖C[i]x‖2 − ‖B[i]x‖2 = ∑

i
(‖B[i−1]x‖2 + 〈ai, x〉2)− ‖B[i]x‖2

= ‖Ax‖2 + ‖B[0]x‖2 − ‖B[n]x‖2 = ‖Ax‖2 − ‖Bx‖2.

Combining this with ∑i ‖C[i]x‖2−‖B[i]x‖2 ≤ ∑i δi = ∆ yields that ‖Ax‖2−‖Bx‖2 ≤ ∆.

Property 3.1.3. ∆` ≤ ‖A‖2
F − ‖B‖2

F.

Proof. In the ith round of the algorithm ‖C[i]‖2
F ≥ ‖B[i]‖2

F + `δi and ‖C[i]‖2
F = ‖B[i−1]‖2

F +

‖ai‖2. By solving for ‖ai‖2 and summing over i we get

‖A‖2
F =

n

∑
i=1
‖ai‖2 ≥

n

∑
i=1
‖B[i]‖2

F − ‖B[i−1]‖2
F + `δi = ‖B‖2

F + `∆.
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Equipped with the above three properties, and no additional requirements about the

construction of B, we can prove Theorem 3.1.1:

Proof of Theorem 3.1.1. Let x ∈ Rd be an arbitrary unit vector. First note that

‖Ax‖2 − ‖Bx‖2 = xT AT Ax− xTBTBx = xT(AT A− BTB)x.

Since Property 3.1.2 holds for any unit vector x ∈ Rd, it does so for x∗ =

argmaxx∈Rd,‖x‖=1xT(AT A− BTB)x which is the first eigenvector of AT A− BTB. Therefore

‖AT A− BTB‖2 = x∗T(AT A− BTB)x∗ = ‖Ax∗‖2 − ‖Bx∗‖2 ≤ ∆.

Next, we use Property 3.1.2 verbatim and bootstrap Property 3.1.3 to prove a tighter bound

on ∆. In the following, the vectors yi correspond to singular vectors of A ordered with

respect to decreasing corresponding singular values.

∆` ≤ ‖A‖2
F − ‖B‖2

F via Property 3.1.3

=
k

∑
i=1
‖Ayi‖2 +

d

∑
i=k+1

‖Ayi‖2 − ‖B‖2
F ‖A‖2

F =
d

∑
i=1
‖Ayi‖2

=
k

∑
i=1
‖Ayi‖2 + ‖A− Ak‖2

F − ‖B‖2
F

≤ ‖A− Ak‖2
F +

k

∑
i=1

(
‖Ayi‖2 − ‖Byi‖2) k

∑
i=1
‖Byi‖2 < ‖B‖2

F

≤ ‖A− Ak‖2
F + k∆. via Property 3.1.2

Solving ∆` ≤ ‖A − Ak‖2
F + k∆ for ∆ to obtain ∆ ≤ ‖A − Ak‖2

F/(` − k), which proves

the right hand side of the bound as ‖AT A − BTB‖2 = ‖Ax∗‖2 − ‖Bx∗‖2 ≤ ∆ ≤ ‖A −

Ak‖2
F/(` − k). Property 6.3.3 proves the left hand side of the bound and completes the

proof.

Next, we prove Theorem 3.1.2 that states a multiplicative error bound for FD.

Proof of Theorem 3.1.2. Let the the vectors yi and vi correspond to the singular vectors of

A and B, respectively.



33

‖A− πk
B(A)‖2

F = ‖A‖2
F − ‖πk

B(A)‖2
F = ‖A‖2

F −
k

∑
i=1
‖Avi‖2 Pythagorean theorem

≤ ‖A‖2
F −

k

∑
i=1
‖Bvi‖2 via Property 6.3.3

≤ ‖A‖2
F −

k

∑
i=1
‖Byi‖2 since

k

∑
i=1
‖Bvi‖2 ≥

k

∑
i=1
‖Byi‖2

≤ ‖A‖2
F −

k

∑
i=1

(‖Ayi‖2 − ∆) via Property 3.1.2

= ‖A‖2
F − ‖Ak‖2

F + k∆

≤ ‖A− Ak‖2
F +

k
`− k

‖A− Ak‖2
F by ∆ ≤ ‖A− Ak‖2

F/(`− k)

=
`

`− k
‖A− Ak‖2

F.

This concludes the proof of Theorem 3.1.2. It is convenient to set ` = dk + k/εe which

results in the standard bound form ‖A− πk
B(A)‖2

F ≤ (1 + ε)‖A− Ak‖2
F.

3.1.2 Running Time Analysis

Each iteration of Algorithm 8 is dominated by the computation of the singular value

decomposition of B. The standard running time of this operation is O(d`2) [74]. Since

this loop is executed once per row in A, the total running time would naı̈vely be O(nd`2).

However, we can improve it to O(nd`) time at the expense of doubling the space used by

the algorithm. Algorithm 9 gives the details.

Algorithm 9 FAST-FD

Input: `, A ∈ Rn×d

B← all zeros matrix ∈ R2`×d

for i ∈ 1, . . . , n do
Insert ai into a zero valued row of B
if B has no zero valued rows then
[U, Σ, V]← SVD(B)
δ← σ2

`

B←
√

max(Σ2 − I`δ, 0) ·VT # The last `+ 1 rows of B are zero valued.
return B

Note that in Algorithm 9 the SVD of B is computed only n/(`+ 1) times because the

“if” statement is only triggered once every `+ 1 iterations, thereby exhibiting a total run-

ning time of O((n/`)d`2) = O(nd`). The reader should revisit the proofs in Section 3.1.1
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and observe that they still hold. Consider the values of i for which the “if” statement is

triggered, and let C[i] = ΣVT in the i-the execution of “if” statement. It still holds that

0 � CT
[i]C[i] − BT

[i]B[i] � δId and that ‖C[i]‖2
F − ‖B[i]‖2

F ≥ `δ. For the other values of i, the

sketch simply aggregates the input rows and there is clearly no incurred error in doing

that. This is sufficient for the same analysis to go through and complete the discussion on

correctness of Algorithm 9.

3.1.2.1 Update Time

The total running time of Algorithm 9 is O(nd`) and the amortized running time per row

update is O(d`). However, the worst case update time is still Ω(d`2) in those cases where

the full singular value decomposition is computed. Using the fact that FD sketches are

mergeable, we can actually use a simple trick to guarantee a worst case O(d`) update time.

The idea is to double the space usage (once again) and hold two sketches, one in ‘active’

mode and one in SVD ‘maintenance’ mode. For any row in the input, we first add it to

the active sketch and then spend O(d`) floating point operations in completing the SVD

of the sketch in maintenance mode. After ` updates, the active sketch runs out of space

and must go into maintenance mode. But, at the same time, a total of O(d`2) floating point

operations were invested on the inactive sketch which completed its SVD computation. At

this point, we switch the sketch roles and continue. Once the entire matrix is processed,

we combine the two sketches using their mergeable property.

3.1.3 Parallelization and Merging Sketches

In extremely large datasets, processing is often distributed among several machines.

Each machine receives a disjoint input of raw data and is tasked with creating a small

space summary. Then to get a global summary of the entire data, these summaries need

to be combined. The core problem is illustrated for the case of just two machines; each

processes a dataset A1 or A2, where A = [A1; A2], and separately create two summaries B1

and B2, respectively. Then the goal is to create a single summary B which approximates A

using only B1 and B2. If B can achieve the same formal space/error tradeoff as each Bi to

Ai in a streaming algorithm, then the summary is called a mergeable summary [9].

Here we show that the FD sketch is indeed mergeable under the following procedure.

Consider B′ = [B1; B2] which has 2` rows; then run FD (in particular Algorithm 9) on B′ to
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create sketch B with ` rows. Given that B1 and B2 satisfy Properties 3.1.1, 3.1.2, and 3.1.3

with parameters ∆1 and ∆2, respectively, we will show that B satisfies the same properties

with ∆ = ∆1 + ∆2 + δ, where δ is taken from the single shrink operation used in Algorithm

9. This implies B automatically inherits the bounds in Theorem 3.1.1 and Theorem 3.1.2 as

well.

First note that B′ satisfies all three properties with ∆′ = ∆1 + ∆2, by additivity of

squared spectral norm along any direction x (e.g. ‖B1x‖2 + ‖B2x‖2 = ‖B′x‖2) and squared

Frobenius norms (e.g. ‖B1‖2
F + ‖B2‖2

F = ‖B′‖2
F), but has space twice as large as desired.

Property 6.3.3 holds since B only shrinks all directions in relation to B′. Property 3.1.2

follows by considering any unit vector x and expanding ‖Bx‖2 as

‖Bx‖2 ≥ ‖B′x‖2 − δ ≥ ‖Ax‖2 − (∆1 + ∆2)− δ = ‖Ax‖2 − ∆.

Similarly, Property 3.1.3 can be seen as

‖B‖2
F ≤ ‖B′‖2

F − δ` ≤ ‖A‖2
F − (∆1 + ∆2)`− δ` = ‖A‖2

F − ∆`.

This property trivially generalizes to any number of partitions of A. It is especially

useful when the matrix (or data) is distributed across many machines. In this setting, each

machine can independently compute a local sketch. These sketches can then be combined

in an arbitrary order using FD.

3.2 Space Lower Bounds
FrequentDirections is space optimal with respect to the both covariance error guarantee

and projection error guarantee it achieves.

In [98] we presented nearly-matching lower bounds for covariance error guarantee of

FrequentDirections. More precisely, we showed any algorithm that achieves these error

guarantees requires the space (in bits) of at least d times the number of rows FD requires.

The theorem below states this result.

Theorem 3.2.1. Let B be a ` × d matrix approximating a n × d matrix A such that ‖AT A −

BTB‖2 ≤ ‖A− Ak‖2
F/(`− k) for all 0 ≤ k < `. Assuming constant number of bits is required

to describe a word (i.e. a unit of memory), then any matrix sketching algorithm with guarantee

‖AT A− BTB‖2 ≤ ‖A− Ak‖2
F/(`− k) requires Ω(d`) bits of space.



36

The consequence of Theorem 3.2.1 is that the space complexity of FD is optimal re-

gardless of streaming issues. In other words, any algorithm satisfying ‖AT A− BTB‖2 ≤

‖A − Ak‖2
F/(` − k) must use space Ω(`d) since this is the information lower bound for

representing B; or equivalently any algorithm satisfying ‖AT A − BTB‖2 ≤ ε‖A − Ak‖2
F

must have ` = Ω(k + 1/ε) and hence use Ω(d`) = Ω(dk + d/ε) space.

There is nearly-matching lower bound for projection error guarantee of FrequentDirec-

tions, as well. In [124], David Woodruff proved that FrequentDirections is nearly tight with

respect to the multiplicative error bound ‖A− πk
B(A)‖2

F ≤ (1+ ε)‖A− Ak‖2
F it achieves in

Theorem 3.1.2 with ` = dk + k/εe rows (i.e., O(kd/ε) space) in the row-update streaming

setting. The following theorem which appeared in our joint journal paper [98] shows this

result.

Theorem 3.2.2. Assuming a constant number of bits is required to describe a word (i.e., a unit

of memory), any randomized matrix approximation streaming algorithm in the row-update model,

which guarantees ‖A − πk
B(A)‖2

F ≤ (1 + ε)‖A − Ak‖2
F and succeeds with probability at least

2/3, must use Ω(kd/ε) space.

In fact, this theorem shows that finding B such that ‖A− AB†B‖2
F = ‖A− πB(A)‖2

F ≤

(1 + ε)‖A− Ak‖2
F requires Ω(dk/ε) space in a row-update streaming setting.
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EXTENSIONS OF FREQUENT DIRECTIONS

In this section, we focus on improving the error/size tradeoff of FrequentDirections.

The key operation in FrequentDirections is the rank reduction, where in each iteration

it reduces the rank of the intermediate sketch to make space for processing the next

upcoming rows in the stream. Below, we introduce variants of FrequentDirections by

modifying rank reduction step in the algorithm.

The main structure of all variants is presented in Algorithm 10, where S′ ←

ReduceRank(S) is a subroutine that reduces the rank of singular values matrix S, and

differs for each variant. It sets at least one non-zero in S to 0 in S′; this leads to a reduced

rank for B[i], in particular with one row as all 0s. Notationally we use σj as the jth singular

value in S, and σ′j as the jth singular value in S′.

Algorithm 10 (Generic) FD Algorithm

Input: `, α ∈ (0, 1], A ∈ Rn×d

B[0] ← all zeros matrix ∈ R`×d

for i ∈ [n] do
Insert ai into a zero valued rows of B[i−1]; # result is B[i]
if (B[i] has no zero valued rows) then
[U, S, V]← SVD(B[i])

C[i] = SVT # Only needed for proof notation
S′ ← ReduceRank(S)
B[i] ← S′VT

return B = B[n]

For FD, ReduceRank sets each σ′j =
√

σ2
j − δi where δi = σ2

` . The runtime of FD can be

improved 3.1.2 by doubling the space, and batching the SVD call. A similar approach is

possible for variants we consider.

Since all our proposed algorithms on FrequentDirections share the same structure, to

avoid repeating the proof steps, we abstract out three facts that these algorithms follow
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and prove that any algorithm with these facts satisfy the desired error bounds. This slightly

generalizes (allowing for α 6= 1) Properties 3.1.1, 3.1.2, and 3.1.3 in Section 3.1.1.

4.1 Generalized Bounds on FrequentDirections
Consider any algorithm that takes an input matrix A ∈ Rn×d and outputs a matrix

B ∈ R`×d which follows three properties below, for some parameter α ∈ (0, 1] and some

value ∆ > 0:

• Property 1: For any unit vector x we have ‖Ax‖2 − ‖Bx‖2 ≥ 0.

• Property 2: For any unit vector x we have ‖Ax‖2 − ‖Bx‖2 ≤ ∆.

• Property 3: ‖A‖2
F − ‖B‖2

F ≥ α∆`.

Lemma 4.1.1. In any such algorithm, for any unit vector x:

0 ≤ ‖Ax‖2 − ‖Bx‖2 ≤ ‖A− Ak‖2
F/(α`− k).

Proof. In the following, yi correspond to the singular vectors of A ordered with respect to

a decreasing corresponding singular value order.

α∆` ≤ ‖A‖2
F − ‖B‖2

F via Property 3

=
k

∑
i=1
‖Ayi‖2 +

d

∑
i=k+1

‖Ayi‖2 − ‖B‖2
F ‖A‖2

F =
d

∑
i=1
‖Ayi‖2

=
k

∑
i=1
‖Ayi‖2 + ‖A− Ak‖2

F − ‖B‖2
F

≤ ‖A− Ak‖2
F +

k

∑
i=1

(
‖Ayi‖2 − ‖Byi‖2) k

∑
i=1
‖Byi‖2 < ‖B‖2

F

≤ ‖A− Ak‖2
F + k∆. via Property 2

Solving α∆` ≤ ‖A− Ak‖2
F + k∆ for ∆ to obtain ∆ ≤ ‖A− Ak‖2

F/(α`− k), which combined

with Property 1 and Property 2 proves the lemma.

Lemma 4.1.2. Any such algorithm described above satisfies the following error bound

‖A− πBk(A)‖ ≤ α`/(α`− k)‖A− Ak‖2
F,

where πBk(·) represents the projection operator onto Bk, the top k singular vectors of B.
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Proof. Here, yi correspond to the singular vectors of A as above and vi to the singular

vectors of B in a similar fashion.

‖A− πBk(A)‖2
F = ‖A‖2

F − ‖πBk(A)‖2
F = ‖A‖2

F −
k

∑
i=1
‖Avi‖2 Pythagorean theorem

≤ ‖A‖2
F −

k

∑
i=1
‖Bvi‖2via Property 1

≤ ‖A‖2
F −

k

∑
i=1
‖Byi‖2 since

j

∑
i=1
‖Bvi‖2 ≥

j

∑
i=1
‖Byi‖2

≤ ‖A‖2
F −

k

∑
i=1

(‖Ayi‖2 − ∆) via Property 2

= ‖A‖2
F − ‖Ak‖2

F + k∆

≤ ‖A− Ak‖2
F +

k
α`− k

‖A− Ak‖2
F by ∆ ≤ ‖A− Ak‖2

F/(α`− k)

=
α`

α`− k
‖A− Ak‖2

F.

This completes the proof of lemma.

Thus setting ` = k + 1/ε achieves ‖AT A − BTB‖2 ≤ ε‖A − Ak‖2
F, and setting ` =

k + k/ε achieves ‖A− πBk(A)‖2
F ≤ (1+ ε)‖A− Ak‖2

F. FD maintains an `× d matrix B (i.e.,

using O(`d) space), and it is shown [71] that there exists a value ∆ that FD satisfies three

above-mentioned facts with α = 1.

4.2 Iterative SVD
The simplest variant of this procedure is a heuristic rediscovered several times [26, 74,

76, 90, 111], with a few minor modifications, and we refer to it as iterative SVD or iSVD.

Here ReduceRank(S, V) simply keeps σ′ j = σj for j < ` and sets σ′` = 0. This has no worst

case guarantees (despite several claims), and sometimes performs chaotically [63].

Consider an example where the first k rows of a dataset A generate a matrix Ak with

kth singular value σk = 10. Then each row thereafter ai for i > k is orthogonal to the first

k rows of A, and has norm 5. This will cause the (k + 1)th right singular vector and value

σk+1 of SVD([Ai
k; ai]) to exactly describe the subspace of ai with σk+1 = 5. Thus this row ai

will always be removed on the processing step and Ai+1
k will be unchanged from Ai

k. If all

rows ai for i > k are pointing in the same direction, this can cause arbitrarily bad errors of

all forms of measuring approximation error considered above.
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4.3 Parameterized FD
Parameterized FD uses the following subroutine (Algorithm 11) to reduce the rank of

the sketch; it zeros out row `. This method has an extra parameter α ∈ [0, 1] that describes

the fraction of singular values which will get affected in the ReduceRank subroutine. Note

iSVD has α = 0 and FD has α = 1. The intuition is that the smaller singular values are

more likely associated with noise terms and the larger ones with signals, so we should

avoid altering the signal terms in the ReduceRank step.

Algorithm 11 ReduceRank-PFD(S, α)

δi ← σ2
`

return diag(σ1, . . . , σ`(1−α),
√

σ2
`(1−α)+1 − δi, . . . ,

√
σ2
` − δi)

Here we show error bounds asymptotically matching FD for α-FD (for constant α > 0),

by showing the three Properties hold. We use ∆ = ∑n
i=1 δi.

Lemma 4.3.1. For any unit vector x and any α ≥ 0: 0 ≤ ‖C[i]x‖2 − ‖B[i]x‖2 ≤ δi.

Proof. The right hand side is shown by just expanding ‖C[i]x‖2 − ‖B[i]x‖2.

‖C[i]x‖2 − ‖B[i]x‖2 =
`

∑
j=1

σ2
j 〈vj, x〉2 −

`

∑
j=1

σ′
2
j 〈vj, x〉2 =

`

∑
j=1

(σ2
j − σ′

2
j )〈vj, x〉2

= δi

`

∑
j=(1−α)`+1

〈vj, x〉2 ≤ δi‖x‖2 = δi

To see the left side of the inequality δi ∑`
j=(1−α)`+1〈vj, x〉2 ≥ 0.

Then summing over all steps of the algorithm (using ‖aix‖2 = ‖C[i]x‖2 − ‖B[i−1]x‖2) it

follows that

0 ≤ ‖Ax‖2 − ‖Bx‖2 ≤
n

∑
i=1

δi = ∆,

proving Property 1 and Property 2 about α-FD for any α ∈ [0, 1].

Lemma 4.3.2. For any α ∈ (0, 1], ‖A‖2
F − ‖B‖2

F = α∆`, proving Property 3.
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Proof. We expand that ‖C[i]‖2
F = ∑`

j=1 σ2
j to get

‖C[i]‖2
F =

(1−α)`

∑
j=1

σ2
j +

`

∑
j=(1−α)`+1

σ2
j =

(1−α)`

∑
j=1

σ′
2
j +

`

∑
j=(1−α)`+1

(σ′
2
j + δi) = ‖B[i]‖2

F + α`δi.

By using ‖ai‖2 = ‖C[i]‖2
F − ‖B[i−1]‖2

F = (‖B[i]‖2
F + α`δi)− ‖B[i−1]‖2

F, and summing over i

we get

‖A‖2
F =

n

∑
i=1
‖ai‖2 =

n

∑
i=1
‖B[i]‖2

F − ‖B[i−1]‖2
F + α`δi = ‖B‖2

F + α`∆.

Subtracting ‖B‖2
F from both sides, completes the proof.

The combination of the three Properties, provides the following results.

Theorem 4.3.1. Given an input matrix A ∈ Rn×d, α-FD with parameter ` returns a sketch

B ∈ R`×d that satisfies for all k > α`

0 ≤ ‖Ax‖2 − ‖Bx‖2 ≤ ‖A− Ak‖2
F/(α`− k)

and projection of A onto Bk, the top k rows of B satisfies

‖A− πBk(A)‖2
F ≤

α`

α`− k
‖A− Ak‖2

F.

Setting ` = (k + 1/ε)/α yields 0 ≤ ‖Ax‖2 − ‖Bx‖2 ≤ ε‖A − Ak‖2
F and setting ` =

(k + k/ε)/α yields ‖A− πBk(A)‖2
F ≤ (1 + ε)‖A− Ak‖2

F.

4.3.1 Fast Parameterized FD

Fast Parameterized FD(or Fast α-FD) improves the runtime performance of parameter-

ized FD in the same way Fast FD improves the performance of FD. More specifically,

in ReduceRank we set δi as the (` − `α/2)th squared singular value, i.e. δi = σ2
t for

t = ` − `α/2. Then we update the sketch by only changing the last α` singular values:

we set σ′2j = max(σ2
j − δi, 0). This sets at least α`/2 singular values to 0 once every α`/2

steps. Thus the algorithm takes total time O(nd + n/(α`/2) · d`2) = O(nd`/α).

It is easy to see that Fast α-FD inherits the same worst case bounds as α-FD on cov-err

and proj-err, if we use twice as many rows. That is, setting ` = 2(k+ 1/ε)/α yields ‖AT A−

BTB‖2 ≤ ε‖A− Ak‖2
F and setting ` = 2(k + k/ε)/α yields ‖A− πBk(A)‖2

F ≤ (1 + ε)‖A−

Ak‖2
F. In experiments we consider Fast 0.2-FD.
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4.4 SpaceSaving Directions
SpaceSaving Directions (abbreviated SSD) uses Algorithm 12 for ReduceRank. Like

the SS algorithm for frequent items, it assigns the counts for the second smallest counter

(in this case squared singular value σ2
`−1) to the direction of the smallest. Unlike the SS

algorithm, we do not use σ2
`−1 as the squared norm along each direction orthogonal to B,

as that gives a consistent over-estimate.

Algorithm 12 ReduceRank-SS(S)

δi ← σ2
`−1

return diag(σ1, . . . , σ`−2, 0,
√

σ2
` + δi).

Then to understand the error bounds for ReduceRank-SS, we will consider an arbitrary

unit vector x. We can decompose x = ∑d
j=1 β jvj where β2

j = 〈x, vj〉2 > 0 and ∑d
j=1 β2

j = 1.

For notational convenience, without loss of generality, we assume that β j = 0 for j > `.

Thus v`−1 represents the entire component of x in the null space of B (or B[i] after process-

ing row i).

To analyze this algorithm, at iteration i ≥ `, we consider a d× d matrix B̄[i] that has the

following properties: ‖B[i]vj‖2 = ‖B̄[i]vj‖2 for j < `− 1 and j = `, and ‖B̄[i]vj‖2 = δi for

j = `− 1 and j > `. This matrix provides the constant but bounded overcount similar to

the SS sketch. Also let A[i] = [a1; a2; . . . ; ai].

Lemma 4.4.1. For any unit vector x we have 0 ≤ ‖B̄[i]x‖2 − ‖A[i]x‖2 ≤ 2δi

Proof. We prove the first inequality by induction on i. It holds for i = `− 1, since B[`−1] =

A[`−1], and ‖B̄[i]x‖2 ≥ ‖B[i]x‖2. We now consider the inductive step at i. Before the reduce-

rank call, the property holds, since adding row ai to both A[i] (from A[i−1]) and C[i] (from

B[i−1]) increases both squared norms equally (by 〈ai, x〉2) and the left rotation by UT also

does not change norms on the right. On the reduce-rank, norms only change in directions

v` and v`−1. Direction v` increases by δi, and in B̄[i] the directions v`−1 also does not change,

since it is set back to δi, which it was before the reduce-rank.

We prove the second inequality also by induction, where it also trivially holds for the

base case i = ` − 1. Now we consider the inductive step, given it holds for i − 1. First
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observe that δi ≥ δi−1 since δi is at least the (` − 1)st squared singular value of B[i−1],

which is at least δi−1. Thus, the property holds up to the reduce rank step, since again,

adding row ai and left-rotating does not affect the difference in norms. After the reduce

rank, we again only need to consider the two directions changed v`−1 and v`. By definition

‖A[i]v`−1‖2 + 2δi ≥ δi = ‖B̄[i]v`−1‖2,

so direction v`−1 is satisfied. Then

‖B̄[i]v`‖2 = ‖B[i]v`‖2 = δi + ‖C[i]v`‖2 ≤ 2δi

and 0 ≤ ‖A[i]v`‖2 ≤ ‖B̄[i]v`‖2. Hence ‖B̄[i]v`‖2 − ‖A[i]v`‖2 ≤ 2δi − 0, satisfying the

property for direction v`, and completing the proof.

Now we would like to prove the three Properties needed for relative error bounds for

B = B[n]. But this does not hold since ‖B‖2
F = ‖A‖2

F (an otherwise nice property), and

‖B̄‖2
F � ‖A‖2

F. Instead, we first consider yet another matrix B̂ defined as follows with re-

spect to B. B and B̂ have the same right singular values V. Let δ = δn, and for each singular

value σj of B, adjust the corresponding singular values of B̂ to be σ̂j = max{0,
√

σ2
j − 2δ}.

Lemma 4.4.2. For any unit vector x we have 0 ≤ ‖Ax‖2 − ‖B̂x‖2 ≤ 2δ and ‖A‖2
F − ‖B̂‖2

F ≥

δ(`− 1).

Proof. Directions vj for j > ` − 1, the squared singular values are shrunk by at least δ.

The squared singular value is already 0 for direction v`−1. And the singular value for

direction v` is shrunk by δ to be exactly 0. Since before shrinking ‖B‖2
F = ‖A‖2

F, the second

expression in the lemma holds.

The first expression follows by Lemma 4.4.1 since B̄ only increases the squared singular

values in directions vj for j = `− 1 and j > ` by δ, which are 0 in B̂. And other directions

vj are the same for B̄ and B and are at most 2δ larger than in A.

Thus B̂ satisfies the three Properties. We can now state the following property about B

directly, setting α = (1/2), adjusting ` to `− 1, then adding back the at most 2δ = ∆ ≤

‖A− Ak‖2
F/(α`− α− k) to each directional norm.

Theorem 4.4.1. After obtaining a matrix B from SSD on a matrix A with parameter `, the

following properties hold:
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• ‖A‖2
F = ‖B‖2

F.

• for any unit vector x and for k < `−1
2 , |‖Ax‖2 − ‖Bx‖2| ≤ ‖A− Ak‖2

F/(`/2− 1/2− k).

• for k < `/2− 1 we have ‖A− πk
B(A)‖2

F ≤ ‖A− Ak‖2
F(`− 1)/(`− 1− 2k).

Setting ` = 2k + 2/ε + 1 yields 0 ≤ ‖Ax‖2 − ‖Bx‖2 ≤ ε‖A − Ak‖2
F and setting ` =

2k + 1 + 2k/ε yields ‖A− πBk(A)‖2
F ≤ (1 + ε)‖A− Ak‖2

F.

4.5 Compensative Frequent Directions
In original FD, the computed sketch B underestimates Frobenius norm of stream [69].

In Compensative FrequentDirections (abbreviated CFD), we keep track of the total mass

∆ = ∑n
i=1 δi subtracted from squared singular values (this requires only an extra counter).

Then we slightly modify the FD algorithm. In the final step where B = S′VT, we modify

S′ to Ŝ by setting each singular value σ̂j =
√

σ′2j + ∆, then we instead return B = ŜVT.

It now follows that for any k ≤ `, including k = 0, that ‖A‖2
F = ‖B‖2

F, that for any unit

vector x we have |‖Ax‖2
F − ‖Bx‖2

F| ≤ ∆ ≤ ‖A− Ak‖2
F/(`− k) for any k < `, and since V is

unchanged that ‖A− πk
B(A)‖2

F ≤ ‖A− Ak‖2
F`/(`− k). Also as in FD, setting ` = k + 1/ε

yields 0 ≤ ‖Ax‖2 − ‖Bx‖2 ≤ ε‖A− Ak‖2
F and setting ` = kk/ε yields ‖A− πBk(A)‖2

F ≤

(1 + ε)‖A− Ak‖2
F.

4.6 Experimental Evaluation
Herein we describe an extensive set of experiments on a wide variety of large input

datasets. We focus on comparing the amount of space used by each type of sketch

(measured in rows) against several error measures. We show improvements over FD (and

in one instance iSVD) by our proposed algorithm 0.2-FD. Each dataset is an n× d matrix

A, and the n rows are processed one-by-one in a stream.

4.6.1 Datasets

We compare performance of our algorithms on both synthetic and real datasets; see

a summary in Table 4.1. We also generate adversarial data to show that iSVD performs

poorly under specific circumstances. This explains why there is no theoretical guarantee

for them.
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For Random Noisy, we generate the input n× d matrix A synthetically, mimicking the

approach by Liberty [91]. We compose A = SDU + F/ζ, where SDU is the m-dimensional

signal (for m < d) and G/ζ is the (full) d-dimensional noise with ζ controlling the signal

to noise ratio. Each entry Fi,j of F is generated i.i.d. from a normal distribution N(0, 1),

and we set ζ = 10. For the signal, S ∈ Rn×m again with each Si,j ∼ N(0, 1) i.i.d; D is

diagonal with entries Di,i = 1 − (i − 1)/d linearly decreasing; and U ∈ Rm×d is just a

random rotation. We use n = 10000, d = 500, and consider m ∈ {10, 20, 30, 50} (the default

is m = 50).

In order to create Adversarial data, we constructed two orthogonal subspaces S1 = Rm1

and S2 = Rm2 (m1 = 400 and m2 = 4). Then we picked two separate sets of random vectors

Y and Z and projected them on S1 and S2, respectively. Normalizing the projected vectors

and concatenating them gives us the input matrix A. All vectors in πS1(Y) appear in the

stream before πS2(Z); this represents a very sudden and orthogonal shift. As the theorems

predict, FD and our proposed algorithms adjust to this change and properly compensate

for it. However, since m1 ≥ `, then iSVD cannot adjust and always discards all new rows

in S2 since they always represent the smallest singular value of B[i].

We consider three real-world datasets. Birds [3] has each row represent an image of

a bird, and each column a feature. PCA is a common first approach in analyzing this

data, so we center the matrix. Spam [1] has each row represent a spam message, and each

column some feature; it has dramatic and abrupt feature drift over the stream, but not as

much as Adversarial. ConnectUS is from University of Florida Sparse Matrix collection [27],

representing a recommendation system. Each column is a user, and each row is a webpage,

tagged 1 if favorable, 0 otherwise. It contains 171 users that share no webpages preferences

with any other users.

4.6.2 Approximation Error vs. Sketch Size

We measure error for all algorithms as we change the parameter ` (Sketch Size) deter-

mining the number of rows in matrix B. We measure covariance error as err = ‖AT A −

BTB‖2/‖A‖2
F (Covariance Error); this indicates for instance for FD, that err should be at

most 1/`, but could be dramatically less if ‖A− Ak‖2
F is much less than ‖A‖2

F for some not

so large k. We also consider proj-err = ‖A− πBk(A)‖2
F/‖A− Ak‖2

F, always using k = 10
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(Projection Error); for FD we should have proj-err ≤ `/(`− 10), and ≥ 1 in general.

We denote each variant of Parameterized FD as α-FD in Figure 4.1. We explore the

effect of the parameter α, and run variants with α ∈ {0.2, 0.4, 0.6, 0.8}, comparing against

FD (α = 1) and iSVD (α = 0). Note that the guaranteed error gets worse for smaller α,

so performance being equal, it is preferable to have larger α. Yet, we observe empirically

that FD is consistently the worst algorithm, and iSVD is fairly consistently the best, and

as α decreases, the observed error improves. The difference can be quite dramatic; for

instance in the Spam dataset, for ` = 20, FD has err = 0.032 while iSVD and 0.2-FD have

err = 0.008. Yet, as ` approaches 100, all algorithms seem to be approaching the same small

error. We also explore the effect on α-FD in Figure 4.2 on Random Noisy data by varying

m ∈ {10, 20, 30}, and m = 50 in Figure 4.1. We observe that all algorithms get smaller error

for smaller m (there are fewer “directions” to approximate), but that each α-FD variant

reaches 0.005 err before ` = 100, sooner for smaller α; eventually “snapping” to a smaller

0.002 err level.

In Figure 4.3, we compare iSVD, FD, and 0.2-FD with the other variants based on the

SS streaming algorithm: CFD and SSD. We see that these typically perform slightly better

than FD, but not nearly as well as 0.2-FD and iSVD. Perhaps it is surprising that although

SpaceSaving variants empirically improve upon MG variants for frequent items, 0.2-FD

(based on MG) can largely outperform all the SS variants on matrix sketching.

Finally, we show that iSVD is not always better in practice. Using the Adversarial

construction in Figure 4.4, we see that iSVD can perform much worse than the other

techniques. Although at ` = 20, iSVD and FD roughly perform the same (with about err

= 0.09), iSVD does not improve much as ` increases, obtaining only err = 0.08 for ` = 100.

On the other hand, FD (as well as CFD and SSD) decrease markedly and consistently to

err = 0.02 for ` = 100. Moreover, all version of α-FD obtain roughly err=0.005 already for

` = 20. The large-norm directions are the first 4 singular vectors (from the second part of

the stream) and once these directions are recognized as having the largest singular vectors,

they are no longer decremented in any Parameterized FD algorithm.

To conclude we demonstrate the scalability of these approaches on a much larger real

dataset ConnectUS. Figure 4.5 shows variants of Parameterized FD, those compared against

SpaceSaving variants on this dataset. As the derived bounds on covariance error based on



47

sketch size do not all depend on n, the number of rows in A, it is not surprising that

the performance of most algorithms is unchanged. There are just a couple of differences

to point out. First, no algorithm converges as close to 0 error as with the other smaller

datasets; this is likely because with the much larger size, there is some variation that cannot

be captured even with ` = 100 rows of a sketch. Second, iSVD performs noticeably worse

than the other FD-based algorithms (although still significantly better than the leading

randomized algorithms). This likely has to do with the sparsity of ConnectUS combined

with a data drift. After building up a sketch on the first part of the matrix, sparse rows are

observed orthogonal to existing directions. The orthogonality, the same difficult property

as in Adversarial, likely occurs here because the new rows have a small number of non-zero

entrees, and all rows in the sketch have zeros in these locations; these correspond to the

webpages marked by one of the unconnected users.
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Table 4.1: Datasets; Numeric Rank Is Defined ‖A‖2
F/‖A‖2

2.

DataSet # Datapoints # Attributes Rank Numeric Rank

Random Noisy 10000 500 500
m=50
21.62,

m=30
15.39,

m=20
11.82,

m=10
8.79

Adversarial 10000 500 500 1.69
Birds[3] 11788 312 312 12.50
Spam[1] 9324 499 499 3.25
connectUS 394792 512 512 4.83
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Figure 4.1: Parameterized FD on Random Noisy(50) (left), Birds (middle), and Spam (right).
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Figure 4.2: Parameterized FD on Random Noisy for m = 30 (left), 20 (middle), 10 (right).
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Figure 4.3: SpaceSaving algos on Random Noisy(50) (left), Birds (middle), and Spam (right).
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Figure 4.4: Demonstrating dangers of iSVD on Adversarial data.
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Figure 4.5: Parameterized FD (left), SpaceSaving-based (right) on ConnectUS dataset.



CHAPTER 5

OTHER MATRIX SKETCHING APPROACHES

In Chapter 1, we briefly reviewed main matrix sketching approaches. Among those,

were the three following:

• sampling algorithms: these select a subset of rows or columns from A to use as the

sketch B;

• projection algorithms: these project the n rows of A onto ` rows of B, sometimes

using hashing;

• incremental algorithms: these maintain B as a low-rank version of A updated as

more rows are added.

In Chapters 3 and 4 we studied instances of iterative sketching approach. In this chapter,

we introduce a few new variants, and then compare all with the new FD-related iterative

algorithms.

5.1 Column/Row Sampling Techniques
Sampling algorithms assign a probability pi for each row ai and then selecting ` rows

from A into B using this probability. In B, each row has its squared norm rescaled to wi as a

function of pi and ‖ai‖. One can achieve additive error bound using importance sampling

with pi = ‖ai‖2/‖A‖2
F and wi = ‖ai‖2/(`pi) = ‖A‖2

F/`, as analyzed by Drineas et

al. [49] and[61]. These algorithms typically advocate sampling ` items independently (with

replacement) using ` distinct reservoir samplers, taking O(`) time per element. Another

version [54] samples each row independently, and only retains ` rows in expectation. We

discuss two improvements to this process in Section 5.1.3.

Much of the related literature describes selecting columns instead of rows (called the

column subset selection problem) [24]. This is just a transpose of the data and has no real
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difference from what is described here. There are also techniques [54] that select both

columns and rows. This include CUR decomposition [48, 54, 94] where they construct an

approximate matrix Â = CUR such that C is a sample of columns of A, and R is a sample

of rows of A. In the construction, matrix U is small and dense, and C and R are sparse

and skinny, or others [33] where the middle matrix is still diagonal. The sparsity is often

preserved by constructing the wrapper matrices (e.g., C and R) from the original columns

or rows of A.

This family of techniques has the advantage that the resulting sketch is interpretable in

that each row of B corresponds to data point in A, not just a linear combination of them.

Almost all column sampling algorithms have a projection bound in terms of ‖A −

πB A‖2
F ≤ f (ε)‖A− Ak‖2

F where A ∈ Rn×d is the input matrix and B ∈ R`×d is the output

sketch. Here we derive the other type of bound, cov-err, for the two main algorithms

in this regime, i.e., Norm Sampling and Leverage Sampling. Table 5.1 summarizes this

result. In our proof, we use a variant of Chernoff-Hoeffding inequality: Consider a set of

r independent random variables {X1, · · · , Xr} where 0 ≤ Xi ≤ ∆. Let M = ∑r
i=1 Xi, then

for any α ∈ (0, 1/2)

Pr [|M− E[M]| > α] ≤ 2 exp
(
−2α2

r∆2

)
.

Lemma 5.1.1. Let B ∈ R`×d with ` = O(d/ε2) be the output of Norm Sampling. Then with

probability 99/100, for all unit vectors x ∈ Rd

cov-err(A, B) =
|‖Bx‖2 − ‖Ax‖2|

‖A‖2
F

≤ ε.

Proof. Consider any unit vector x ∈ Rd. Define ` independent random variables Xi =

〈bi, x〉2 for i = 1, . . . , `. Recall that Norm Sampling selects row aj to be row bi in the sketch

matrix B with probability Pr(bi ← aj) = ‖aj‖2/‖A‖2
F, and rescales the sampled row as

‖bi‖2 = ‖aj‖2/(`Pr(bi ← aj)) = ‖A‖2
F/`. Knowing these, we bound each Xi as 0 ≤ Xi ≤

‖bi‖2 = ‖A‖2
F/` therefore ∆i = ‖A‖2

F/` for all Xis. Setting M = ∑`
i=1 Xi = ‖Bx‖2, we

observe

E[M] =
`

∑
i=1

E[Xi] =
`

∑
i=1

n

∑
j=1

Pr(bi ← aj)

〈
aj√

`Pr(bi ← aj)
, x

〉2

=
`

∑
i=1

n

∑
j=1

1
`
〈aj, x〉2 = ‖Ax‖2.

Finally using the Chernoff-Hoeffding bound and setting α = ε‖A‖2
F yields
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Pr
[
|‖Bx‖2 − ‖Ax‖2| > ε‖A‖2

F
]
≤ 2 exp

(−2(ε‖A‖2
F)

2

`(‖A‖2
F/`)2

)
= 2 exp

(
−2ε2`

)
≤ δ.

Letting the probability of failure for that x be δ = 1/100, and solving for ` in the last

inequality, we obtain ` ≥ 1
2ε2 ln(2/δ) = 1

2ε2 ln(200).

However, this only holds for a single direction x; we need this to hold for all unit

vectors x. It can be shown that allowing α = O(ε) · ‖A‖2
F, we actually only need this to

hold for a net T of size t = 2O(d) such directions x [125]. Then by the union bound, setting

δ = 1/(100t) this will hold for all unit vectors in T, and thus (after scaling ε by a constant)

we can solve for ` = O((1/ε2) ln(t)) = O(d/ε2). Hence with probability at least 99/100

we have cov-err(A, B) = |‖Bx‖2−‖Ax‖2|
‖A‖2

F
≤ ε for all unit vectors x.

We would like to apply a similar proof for Leverage Sampling, but we do not obtain a

good bound for ∆ in the Chernoff-Hoeffding bound. We rescale norm of each selected row

bi as

‖bi‖2 =
‖aj‖2

`
· 1

Pr(bi ← aj)
=
‖aj‖2

`
· Sk

s(k)j

,

where s(k)j is the rank-k leverage score of aj, and Sk = ∑n
j=1 s(k)j = k. Unfortunately, s(k)j

can be arbitrarily small compared to Sk (e.g., if aj lies almost entirely outside the best rank-

k subspace). And thus we do not have a finite bound on ∆. As such we assume that

Sk/s(k)j ≤ β for an absolute constant β, and then obtain a bound based on β.

Lemma 5.1.2. Let B ∈ R`×d with ` = O(dβ2/ε2) be the output of Leverage Sampling. Under

the assumption that rank-k leverage score of row aj is bounded as s(k)j ≥ βSk for a fixed constant

β > 0, then with probability 99/100, for all unit vectors x ∈ Rd

cov-err = |‖Bx‖2 − ‖Ax‖2|/‖A‖2
F ≤ ε

Proof. Similar to Lemma 5.1.1, we define ` random variables Xi = 〈bi, x〉2 for i = 1, · · · , `.

Leverage Sampling algorithm selects row aj to be row bi with probability Pr(bi ← aj) =

s(k)j /Sk and rescales sampled rows as ‖bi‖2 = ‖aj‖2/(`Pr(bi ← aj)) = (‖aj‖2/`)(Sk/s(k)j ) ≤

‖aj‖2/(β`) ≤ ‖A‖2
F/(β`). Therefore ∆i = ‖A‖2

F/(β`) for all Xis. Setting M = ∑`
i=1 Xi =

‖Bx‖2 we observe:

E[M] =
`

∑
i=1

E [Xi] =
`

∑
i=1

n

∑
j=1

Pr(bi ← aj)

〈
aj√

`Pr(bi ← aj)
, x

〉2

=
`

∑
i=1

n

∑
j=1

1
`
〈aj, x〉2 = ‖Ax‖2
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Using Chernoff-Hoeffding bound with parameter α = ε‖A‖2
F gives:

Pr
[
|‖Bx‖2 − ‖Ax‖2| > ε‖A‖2

F
]
≤ 2 exp

(
−2ε2‖A‖4

F

∑`
j=1(β2/`2)‖A‖4

F

)
= 2 exp

(
−2`ε2

β2

)
≤ δ

Again letting the probability of failure for that x be δ = 1/100, we obtain ` ≥ β2

2ε2 ln(2/δ) =

β2

2ε2 ln(200).

In order to hold this for all unit vectors x, again we consider a net T of size t = 2O(d)

unit directions x [125]. Then by the union bound, setting δ = 1/(100t) this will hold for

all such vectors in T, and thus we can solve for ` = O((β2/ε2) ln(t)) = O(dβ2/ε2). Hence

with probability at least 99/100 we have cov-err(A, B) = |‖Bx‖2−‖Ax‖2|
‖A‖2

F
≤ ε for all unit

vectors x.

5.1.1 Leverage Sampling

An insightful adaptation changes the probability pi using leverage scores [53] or simplex

volume [44, 45]. These techniques take into account more of the structure of the problem

than simply the rows norm, and can achieve stronger relative error bounds. But they

also require an extra parameter k as part of the algorithm, and for the most part require

much more work to generate these modified pi scores. We use Leverage Sampling [54] as

a representative; it samples rows according to leverage scores (described below). Simplex

volume calculations [44, 45] were too involved to be practical. There are also recent tech-

niques to improve on the theoretical runtime for leverage sampling [52] by approximating

the desired values pi, but as the exact approaches do not demonstrate consistent tangible

error improvements, we do not pursue this complicated theoretical runtime improvement.

To calculate leverage scores, we first calculate the SVD of A (the task we hoped to

avoid). Let Uk be the matrix of the top k left singular vectors, and let Uk(i) represent the

ith row of that matrix. Then the leverage score for row i is si = ‖Uk(i)‖2, the fraction of

squared norm of ai along subspace Uk. Then set pi proportional to si (e.g. pi = si/k. Note

that ∑i si = k).

5.1.2 Deterministic Leverage Scores

Another option is to deterministically select rows with the highest si values instead

of at random. This can be implemented with a simple priority queue of size `. This has

been applied to using the leverage scores by Papailiopoulos et al. [108], which again first
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requires calculating the SVD of A. We refer to this algorithm as Deterministic Leverage

Sampling.

5.1.3 New Without Replacement Sampling Algorithms

As mentioned above, most sampling algorithms use sampling with replacement (SwR) of

rows. This is likely because, in contrast to sampling without replacement (SwoR), it is easy to

analyze and for weighted samples conceptually easy to compute. SwoR for unweighted

data can easily be done with variants of reservoir sampling [120]; however, variants for

weighted data have been much less resolved until recently [34, 58].

5.1.3.1 Priority Sampling

A simple technique [58] for SwoR on weighted elements first assigns each element i a

random number ui ∈ Unif(0, 1). This implies a priority ρi = wi/ui, based on its weight wi

(which for matrix rows wi = ‖a‖2
i ). We then simply retain the ` rows with largest priorities,

using a priority queue of size `. Thus each step takes O(log `) time, but on randomly

ordered data would take only O(1) time in expectation since elements with ρi ≤ τ, where

τ is the `th largest priority seen so far, are discarded.

Retained rows are given a squared norm ŵi = max(wi, τ). Rows with wi ≥ τ are

always retained with original norm. Small weighted rows are kept proportional to their

squared norms. The technique, Priority Sampling, is simple to implement, but requires a

second pass on retained rows to assign final weights.

5.1.3.2 VarOpt Sampling

VarOpt (or Variance Optimal) sampling [34] is a modification of priority sampling

that takes more care in selecting the threshold τ. In priority sampling, τ is generated

so E[∑ai∈B ŵi] = ‖A‖2
F, but if τ is set more carefully, then we can achieve ∑ai∈B ŵi = ‖A‖2

F

deterministically. VarOpt selects each row with some probability pi = min(1, wi/τ), with

ŵi = max(wi, τ), and so exactly ` rows are selected.

The above implies that for a set L of ` rows maintained, there is a fixed threshold τ

that creates the equality. We maintain this value τ as well as the t weights smaller than τ

inductively in L. If we have seen at least `+ 1 items in the stream, there must be at least

one weight less than τ. On seeing a new item, we use the stored priorities ρi = wi/ui
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for each item in L to either (a) discard the new item, or (b) keep it and drop another item

from the reservoir. As the priorities increase, the threshold τ must always increase. It takes

amortized constant time to discard a new item or O(log `) time to keep the new item, and

does not require a final pass on L. We refer to it as VarOpt. Table 5.2 summarizes runtime

and error bounds of VarOpt and Priority sampling algorithms.

A similar algorithm using priority sampling was considered in a distributed streaming

setting [64], which provided a high probability bound on cov-err. A constant probability

of failure bound for ` = O(d/ε2) and cov-err ≤ ε follows with minor modification from

similar analysis as above. It is an open question to bound the projection error for these

algorithms, but we conjecture the bounds will match those of Norm Sampling.

5.2 Random Projection Techniques
These methods linearly project the n rows of A to ` rows of B. A survey by

Woodruff [125] (especially Section 2.1) gives an excellent account of this area. In the

simplest version, each row ai ∈ A would map to a row bj ∈ B with element sj,i (jth row

and ith column) of a projection matrix S, and each sj,i is a Gaussian random variable with

0 mean and
√

n/` standard deviation. That is, B = SA, where S is ` × n. This follows

from the celebrated Johnson-Lindenstrauss lemma [81] as first shown by Sarlos [113]

and strengthened by Clarkson and Woodruff [32]. Gaussian random variables sj,i can be

replaced with (appropriately scaled) {−1, 0,+1} or {−1,+1} random variables [5]. We

call the version with scaled {−1,+1} random variables as Random Projection. Table 5.3

contains runtime and error bounds of a few methods of this group that we discuss shortly.

Most random projection algorithms state a bound (with constant probability) that they

can create a matrix B = SA such that ‖Bx‖ = (1± ε)‖Ax‖ (e.g., (1− ε)‖Ax‖ ≤ ‖Bx‖ ≤

(1 + ε)‖Ax‖) for all x ∈ Rd.

Here we relate this to cov-err and proj-err. We first show that whether this bound is

squared only affects ε by a constant factor.

Lemma 5.2.1. For ε ∈ (0, 1
4 ), ‖Bx‖ = (1± ε)‖Ax‖ implies ‖Bx‖2 = (1± 3ε)‖Ax‖2.

Proof. The upper bound follows since (1 + ε)2 = 1 + 2ε + ε2 ≤ 1 + 3ε for ε ∈ (0, 1
4 ). The

lower bound follows since (1− ε)2 = 1 + ε2 − 2ε ≥ 1− 2ε for ε ∈ (0, 1
4 ).



56

Now to relate this bound to cov-err, we will use ρ(A) = ‖A‖2
F/‖A‖2

2, the numeric rank

of A, which is always at least 1.

Lemma 5.2.2. Given a matrix B such that ‖Bx‖ = (1 ± ε)‖Ax‖ for all x ∈ Rd, then when

ε ∈ (0, 1
4 )

cov-err = ‖AT A− BTB‖2/‖A‖2
F ≤ 3ε/ρ(A).

Proof. Using Lemma 5.2.1, |‖Ax‖2 − ‖Bx‖2| ≤ 3ε‖Ax‖2. Now restrict ‖x‖ = 1, so then

xT(AT A− BTB)x = xT AT Ax− xTBTBx = |‖Ax‖2 − ‖Bx‖2| ≤ 3ε‖Ax‖2.

Since this holds for all x such that ‖x‖ = 1, then it holds for the x = x∗ which maximizes

the left hand side so x∗T(AT A− BTB)x∗ = ‖AT A− BTB‖2 so

‖AT A− BTB‖2 = x∗
T
(AT A− BTB)x∗ ≤ 3ε‖Ax∗‖2 ≤ 3ε‖A‖2

2.

Dividing both sides by ‖A‖2
F = ρ(A)/‖A‖2

2 completes the proof.

We next relate this to the proj-err. We note that it may be possible that the full property

‖Bx‖ = (1 ± ε)‖Ax‖ may not be necessary to obtain a bound on proj-err, but we are

not aware of an explicit statement otherwise. There are bounds (see [125]) where one

reconstructs a matrix Â which obtains the bounds below in place of πBk(A), and these

have roughly 1/ε dependence on ε; however, they also have a factor n in their size.

Lemma 5.2.3. Given a matrix B such that ‖Bx‖ = (1 ± ε)‖Ax‖ for all x ∈ Rd, then when

ε ∈ (0, 1
4 )

proj-err = ‖A− πBk(A)‖2
F/‖A− Ak‖2

F ≤ (1 + 24ε).

Proof. Let V = [v1, v2, . . . , vd] be the right singular vectors of A, so that ‖Ak‖2
F =

∑k
i=1 ‖Avi‖2 and ‖A − Ak‖2

F = ∑d
i=k+1 ‖Avi‖2. It follows from ‖Bk‖2

F ≥ ∑k
i=1 ‖Bvi‖2 and

Lemma 5.2.1 that

‖B− Bk‖2
F ≤

d

∑
i=k+1

‖Bvi‖2 ≤
d

∑
i=k+1

1
1− 3ε

‖Avi‖2 ≤ 1
1− 3ε

‖A− Ak‖2
F.

Let R = [r1, r2, . . . , rd] be the right singular vectors of B. Then by matrix Pythagorean and

Lemma 5.2.1
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‖A− πBk(A)‖2 =
d

∑
i=k+1

‖Ari‖2 ≤
d

∑
i=k+1

(1 + 3ε)‖Bri‖2 = (1 + 3ε)‖B− Bk‖2
F

≤ 1 + 3ε

1− 3ε
‖A− Ak‖2

F ≤ (1 + 24ε)‖A− Ak‖2
F.

5.2.1 Fast JLT

Using a sparse projection matrix X would improve the runtime, but these lose guaran-

tees if the input is also sparse (if the non-zero elements do not align). This is circumvented

by rotating the space with a Hadamard matrix [11], which can be applied more efficiently

using FFT tricks, despite being dense. More precisely, we use three matrices: P is `× n and

has entries with iid 0 with probability 1− q and a Gaussian random variable with variance

`/q with probability q = min{1, Θ((log2 n)/d)}. H is n× n and a random Hadamard (this

requires n to be padded to a power of 2). D is diagonal with random {−1,+1} in each

diagonal element. And then the projection matrix is S = PHD, although algorithmically

the matrices are applied implicitly. We refer to this algorithm as Fast JLT. Ultimately, the

runtime is brought from O(nd`) to O(nd log d + (d/ε2) log n). The second term in the

runtime can be improved with more complicated constructions [12, 40] which we do not

pursue here; we point the reader here [118] for a discussion of some of these extensions.

5.2.2 Sparse Random Projections

Clarkson and Woodruff [33] analyzed a very sparse projection matrix S, conceived of

earlier [40, 122]; it has exactly 1 non-zero element per column. To generate S, for each

column choose a random value between 1 and ` to be the non-zero, and then choose a −1

or +1 for that location. Thus each row can be processed in time proportional to its number

of non-zeros; it is randomly added or subtracted from 1 row of B, as a count sketch [29] on

rows instead of counts. We refer to this as Hashing.

A slight modification by Nelson and Nguyen [102], called OSNAP, stacks s instances of

the projection matrix S on top of each other. If HASHING used `′ rows, then OSNAP uses

` = s · `′ rows (we use s = 4).

5.3 Experimental Comparison
We divide our experimental evaluation into four sections: The first two sections contain

comparisons within algorithms of each group (sampling and random projection), while the
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third compares accuracy and runtime of exemplar algorithm in each group against each

other and against exemplars of iterative sketching discussed in the previous Chapter.

We measure error for all algorithms as we change the parameter ` (Sketch Size)

determining the number of rows in matrix B. We measure covariance error as err

= ‖AT A − BTB‖2/‖A‖2
F (Covariance Error); this indicates for instance for FD, that err

should be at most 1/`, but could be dramatically less if ‖A− Ak‖2
F is much less than ‖A‖2

F

for some not so large k. We consider proj-err = ‖A− πBk(A)‖2
F/‖A− Ak‖2

F, always using

k = 10 (Projection Error); for FD we should have proj-err≤ `/(`− 10), and≥ 1 in general.

We also measure runtime as sketch size varies.

Within each class, the algorithms are not dramatically different across sketch sizes. But

across classes, they vary in other ways, and so in the global comparison, we will also show

plots comparing runtime to cov-err or proj-err, which will help demonstrate and compare

these trade-offs.

5.3.1 Experimental Setup

We used an OpenSUSE 12.3 machine with 32 cores of Intel(R) Core(TM) i7-4770S

CPU(3.10 GHz) and 32GB of RAM. Randomized algorithms were run five times; we report

the median error value.

5.3.1.1 Datasets

We compare performance of the algorithms on both synthetic and real datasets. In

addition, we generate adversarial data to show that iSVD performs poorly under specific

circumstances. This explains why there is no theoretical guarantee for them. Each dataset

is an n× d matrix A, and the n rows are processed one-by-one in a stream.

Table 5.4 lists all datasets with information about their n, d, rank(A), numeric rank

‖A‖2
F/‖A‖2

2, percentage of non-zeros (as nnz%, measuring sparsity), and excess kurtosis.

We follow Fisher’s distribution with baseline kurtosis (from normal distribution) is 0;

positive excess kurtosis reflects fatter tails and negative excess kurtosis represents thinner

tails.

For Random Noisy, we generate the input n× d matrix A synthetically, mimicking the

approach by Liberty [92]. We compose A = SDU + F/ζ, where SDU is the m-dimensional

signal (for m < d) and F/ζ is the (full) d-dimensional noise with ζ controlling the signal
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to noise ratio. Each entry Fi,j of F is generated i.i.d. from a normal distribution N(0, 1),

and we set ζ = 10. For the signal, S ∈ Rn×m again we generate each Si,j ∼ N(0, 1) i.i.d;

D is diagonal with entries Di,i = 1− (i− 1)/d linearly decreasing; and U ∈ Rm×d is just

a random rotation. We use n = 10000, d = 500, and consider m ∈ {10, 20, 30, 50} with

m = 30 as default.

In order to create Adversarial data, we constructed two orthogonal subspaces S1 = Rm1

and S2 = Rm2 (m1 = 400 and m2 = 4). Then we picked two separate sets of random vectors

Y and Z and projected them on S1 and S2, respectively. Normalizing the projected vectors

and concatenating them gives us the input matrix A. All vectors in πS1(Y) appear in the

stream before πS2(Z); this represents a very sudden and orthogonal shift. As the theorems

predict, FD and our proposed algorithms adjust to this change and properly compensate

for it. However, since m1 ≥ `, then iSVD cannot adjust and always discards all new rows

in S2 since they always represent the smallest singular value of B[i].

We consider 4 real-world datasets. ConnectUS is taken from the University of Florida

Sparse Matrix collection [2]. ConnectUS represents a recommendation system. Each column

is a user, and each row is a webpage, tagged 1 if favorable, 0 otherwise. It contains 171

users that share no webpages preferences with any other users. Birds [3] has each row

represent an image of a bird, and each column a feature. PCA is a common first approach

in analyzing this data, so we center the matrix. Spam [1] has each row represent a spam

message, and each column some feature; it has dramatic and abrupt feature drift over the

stream, but not as much as Adversarial. CIFAR-10 is a standard computer vision benchmark

dataset for deep learning [85].

The singular values distribution of the datasets is given in Figure 5.1. The x-axis is the

singular value index, and the y-axis shows the normalized singular values, i.e., singular

values divided by σ1, where σ1 is the largest singular value of dataset. Birds, ConnectUS

and Spam have consistent drop-offs in singular values. Random Noisy has initial sharp and

consistent drops in singular values, and then a more gradual decrease. The drop-offs in

CIFAR-10 and Adversarial are more dramatic.

We will focus most of our experiments on three datasets Birds (dense, tall, large numeric

rank), Spam (sparse, not tall, negative kurtosis, high numeric rank), and Random Noisy

(dense, tall, synthetic). However, some distinctions between algorithms require consid-
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ering much larger datasets; for these we use CIFAR-10 (dense, not as tall, small numeric

rank) and ConnectUS (sparse, tall, medium numeric rank). Finally, Adversarial and, perhaps

surprisingly ConnectUS are used to show that using iSVD (which has no guarantees) does

not always perform well.

5.3.2 Row/Column Sampling Algorithms

Figure 5.2 shows the covariance error, projection error, and runtime for the sampling al-

gorithms as a function of sketch size, run on the Birds, Spam, and Random Noisy(30) datasets

with sketch sizes from ` = 20 to 100. We use parameter k = 10 for Leverage Sampling, the

same k used to evaluate proj-err.

First note that Deterministic Leverage performs quite differently than all other algo-

rithms. The error rates can be drastically different: smaller on Random Noisy proj-err and

Birds proj-err, while higher on Spam proj-err and all cov-err plots. The proven guarantees

are only for matrices with Zipfian leverage score sequences and proj-err, and so when this

does not hold it can perform worse. But when the conditions are right it outperforms the

randomized algorithms since it deterministically chooses the best rows.

Otherwise, there is very little difference between the error performance of all random-

ized algorithms, within random variation. The small difference is perhaps surprising

since Leverage Sampling has a stronger error guarantee, achieving a relative proj-err bound

instead of an additive error of Norm Sampling, Priority Sampling and VarOpt Sampling which

only use the row norms. Moreover Leverage Sampling and Deterministic Leverage Sampling

are significantly slower than the other approaches since they require first computing the

SVD and leverage scores. We note that if ‖A− Ak‖2
F > c‖A‖2

F for a large enough constant

c, then for that choice of k, the tail is effectively fat, and thus not much is gained by

the relative error bounds. Moreover, Leverage Sampling bounds are only stronger than

Norm Sampling in a variant of proj-err where [πB(A)]k (with best rank k applied after

projection) instead of πBk(A), and cov-err bounds are only known under some restrictions

for Leverage Sampling, while unrestricted for the other randomized sampling algorithms.

5.3.3 Random Projection Algorithms

Figure 5.3 plots the covariance and projection error, as well as the runtime for various

sketch sizes of 20 to 100 for the projection algorithms.



61

Otherwise, there were two clear classes of algorithms. For the same sketch size, Hashing

and OSNAP perform a bit worse on projection error (most clearly on Noisy Random), and

roughly the same in covariance error, compared to Random Projections and Fast JLT. Note

that Fast JLT seems consistently better than others in cov-err, but we have chosen the best

q parameter (sampling rate) by trial and error, so this may give an unfair advantage.

Moreover, Hashing and OSNAP also have significantly faster runtime, especially as the

sketch size grows. While Random Projections and Fast JLT appear to grow in time roughly

linearly with sketch size, Hashing and OSNAP are basically constant. Section 5.3.4 on larger

datasets and sketch sizes shows that if the size of the sketch is not as important as runtime,

Hashing and OSNAP have the advantage.

5.3.4 Global Comparison

Figure 5.4 shows the covariance error, projection error, as well as the runtime for

various sketch sizes of ` = 20 to 100 for the the leading algorithms from each category.

We can observe that the iterative algorithms achieve much smaller errors,

both covariance and projection, than all other algorithms, sometimes matched by

Deterministic Leverage. However, they are also significantly slower (sometimes a factor of

20 or more) than the other algorithms. The exception is Fast FD and Fast 0.2-FD, which are

slower than the other algorithms, but not significantly so.

We also observe that for the most part, there is a negligible difference in the perfor-

mance between the sampling algorithms and the projection algorithms, except for the

Random Noisy dataset where Hashing and OSNAP result in worse projection error.

However, if we allow a much larger sketch size for faster runtime and small error, then

these plots do not effectively demonstrate which algorithm performs best. Thus in Figure

5.5 we run the leading algorithms on Birds as well as larger datasets, ConnectUS which

is sparse and CIFAR-10 which is dense. We plot the error versus the runtime for various

sketch sizes ranging up to ` = 10,000. The top row of the plots shows most data points to

give a holistic view, and the second row zooms in on the relevant portion.

For some plots, we draw an Error Threshold vertical line corresponding to the error

achieved by Fast 0.2-FD using ` = 20. Since this error is typically very low, but in

comparison to the sampling or projection algorithms Fast 0.2-FD is slow, this threshold is a
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useful target error rate for the other leading algorithms.

We observe that Fast FD can sometimes match this error with slightly less time (see on

Birds), but requires a larger sketch size of ` = 100. Additionally VarOpt, Priority Sampling,

Hashing, and OSNAP can often meet this threshold. Their runtimes can be roughly 100 to

200 times faster, but require sketch sizes on the order of ` = 10,000 to match the error of

Fast 0.2-FD with ` = 20.

Among these fast algorithms requiring large sketch sizes we observe that VarOpt scales

better than Priority Sampling, and that these two perform best on CIFAR-10, the large dense

dataset. They also noticeably outperform Norm Sampling both in runtime and error for the

same sketch size. On the sparse dataset ConnectUS, algorithms Hashing and OSNAP seem to

dominate Priority Sampling and VarOpt, and of those two Hashing performs slightly better.

To put this space in perspective, on CIFAR-10 (n = 60,000 rows, 1.4GB memory foot-

print), to approximately reach the error threshold Hashing needs ` = 10,000 and 234MB in

2.4 seconds, VarOpt Sampling requires ` = 5,000 and 117MB in 1.2 seconds, Fast FD requires

` = 100 and 2.3MB in 130 seconds, and Fast 0.2-FD requires ` = 20 and 0.48MB in 128

seconds. All of these will easily fit in the memory of most modern machines. The smaller

sketch by Fast 0.2-FD will allow expensive downstream applications (such as deep learning)

to run much faster. Alternatively, the output from VarOpt Sampling (which maintains

interpretability of original rows) could be fed into Fast 0.2-FD to get a compressed sketch in

less time.
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Table 5.1: Theoretical Bounds for Sampling Algorithms. The Proj-Err Bounds Are Based
on a Slightly Weaker ‖A− πB(A)‖2

F Numerator Instead of ‖A− πBk(A)‖2
F One Where We

First Enforce Bk Is Rank k. (?) Maximum of This and {k, (k/ε)1/(1+η)} Where Leverage
Scores Follow Power-Law With Decay Exponent 1 + η.

` cov-err ` proj-err runtime

Norm Sampling d/ε2 ε (†) [50] k/ε2 1 + ε
‖A‖2

F
‖A−Ak‖2

F
[50] nnz(A) · `

Leverage Sampling d/ε2 ε (†) (k log k)/ε2 1 + ε[94] SVD(A) + nnz(A) · `
Deterministic Leverage ` - (k/ηε)1/η(?) 1 + ε [108] SVD(A) + nnz(A) · ` log `

Table 5.2: Theoretical Bounds for New Sampling Algorithms.

` cov-err ` proj-err runtime
Priority d/ε2 ε ` - nnz(A) log `
VarOpt d/ε2 ε ` - nnz(A) log `

Table 5.3: Theoretical Bounds for Projection Algorithms (Via an `2 Subspace Embedding)

Where ` Is the Number of Rows Maintained, and ρ(A) =
‖A‖2

F
‖A‖2

2
≥ 1 Is the Numeric Rank

of A.

` cov-err ` proj-err runtime
Random Projection d/ε2[113] ε/ρ(A) d/ε2 [113] 1 + ε nnz(A) · `

Fast JLT d/ε2 [113] ε/ρ(A) d/ε2 [113] 1 + ε nd log d + (d/ε2) log n [11]
Hashing d2/ε2 [33, 102] ε/ρ(A) d2/ε2 [33, 102] 1 + ε nnz(A) + n poly (d/ε)

OSNAP d1+o(s/ε)/ε2 [102] ε/ρ(A) d1+o(s/ε)/ε2 [102] 1 + ε nnz(A) · s + n poly (d/ε)

Table 5.4: Dataset Statistics.

DataSet # datapoints # attributes rank numeric rank nnz% excess kurtosis
Birds 11789 312 312 12.50 100 1.72

Random Noisy 10000 500 500 14.93 100 0.95
CIFAR-10 60000 3072 3072 1.19 99.75 1.34
Connectus 394792 512 512 4.83 0.0055 17.60
Spam 9324 499 499 3.25 0.07 3.79

Adversarial 10000 500 500 1.69 100 5.80
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Figure 5.1: Singular values distribution for datasets in Table 5.4. The x-axis is singular
value index, and the y-axis shows normalized singular values such that the highest singu-
lar value is one, i.e., each value divided by largest singular value of dataset
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Figure 5.2: Sampling algorithms on Birds(left), Spam(middle), and Random Noisy(30)(right).
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Figure 5.3: Random projection algorithms on Birds(left), Spam(middle), and Random Noisy
(30)(right).
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Figure 5.4: Leading algorithms on Birds(left), Spam(middle), and Random Noisy(30)(right).

Birds ConnectUS CIFAR-10

0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35
Projection Error

0

1

2

3

4

5

Ru
nn

in
g 

Ti
m

e 
(s

ec
s)

Error Threshold

Fast - 0.2FD
Random Projection
Hashing
Deterministic Leverage
Fast FD
Norm Sampling
OSNAP
Priority Sampling
Leverage Sampling
VarOpt Sampling

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Projection Error

0

500

1000

1500

Ru
nn

in
g 

Ti
m

e 
(s

ec
s)

Fast - 0.2FD
Random Projection
Hashing
Deterministic Leverage
Fast FD
Norm Sampling
OSNAP
Priority Sampling
Leverage Sampling
VarOpt Sampling

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Covariance Error

0

20

40

60

80

100

120

140

Ru
nn

in
g 

Ti
m

e 
(s

ec
s)

Fast - 0.2FD
Random Projection
Hashing
Deterministic Leverage
Fast FD
Norm Sampling
OSNAP
Priority Sampling
Leverage Sampling
VarOpt Sampling

0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35
Projection Error

0.0

0.2

0.4

0.6

0.8

1.0

Ru
nn

in
g 

Ti
m

e 
(s

ec
s)

Error Threshold Fast - 0.2FD
Random Projection
Hashing
Deterministic Leverage
Fast FD
Norm Sampling
OSNAP
Priority Sampling
Leverage Sampling
VarOpt Sampling

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Projection Error

0

10

20

30

40

50

Ru
nn

in
g 

Ti
m

e 
(s

ec
s)

Error Threshold

Fast - 0.2FD
Random Projection
Hashing
Deterministic Leverage
Fast FD
Norm Sampling
OSNAP
Priority Sampling
Leverage Sampling
VarOpt Sampling

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Covariance Error

0

1

2

3

4

5

Ru
nn

in
g 

Ti
m

e 
(s

ec
s) Error Threshold

Fast - 0.2FD
Random Projection
Hashing
Deterministic Leverage
Fast FD
Norm Sampling
OSNAP
Priority Sampling
Leverage Sampling
VarOpt Sampling

Figure 5.5: Projection error versus time on Birds and ConnectUS as well as Covariance error
versus time on CIFAR-10. The second line shows close-ups



CHAPTER 6

SPARSE FREQUENT DIRECTIONS

ALGORITHM

In this chapter, we describe a sparse version of FrequentDirections that makes it suit-

able for processing sparse matrices in runtime proportional to the density of the matrix

rather than its ambient dimensions.

6.1 Motivation
Undeniably, many large matrices are sparse; most of their entries are zero. The work

of [47] argues that typical term-document matrices are sparse; documents contain no more

than 5% of all words. On wikipedia, most words appear on only a small constant number

of pages. Similarly, in recommendation systems on average a user rates or interacts with

a small fraction of the available items: less than 6% in some user-movies recommendation

tasks [15] and much fewer in physical purchases or online advertising. As such, most of

these datasets are stored as sparse matrices.

There exist several techniques for producing low rank approximations of sparse ma-

trices whose running time is O(nnz(A)poly(k, 1/ε)) for some error parameter ε ∈ (0, 1).

Here nnz(A) denotes the number of non-zeros in the matrix A. Examples include the

power method [74], random projection techniques [113], projection-hashing [33], and

instances of column selection techniques [50].

However, for FrequentDirections [92]) there is no known way to take advantage of the

sparsity of the input matrix. While it is deterministic and its space-error bounds are known

to be optimal for dense matrices in the row-update model [67], it runs in O(nd`) time to

produce a sketch of size `× d. In particular, it maintains a sketch with ` rows and updates

it iteratively over a stream, periodically invoking a full SVD which requires O(d`2) time.
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6.2 Existing Sparse Matrix Sketching Methods
In this section, we review exsiting techniques for sketching sparse matrices.

6.2.1 Row/Column Sampling techniques

These methods are not typically streaming, nor running in input sparsity time. The

only method of this group which achieves both is [50] by Drineas et al. which uses

reservoir sampling to become streaming. They select O(k/ε2) columns proportional to

their squared norm and achieve the Frobenius norm error bound ‖A − πBk(A)‖2
F ≤

‖A− Ak‖2
F + ε‖A‖2

F with time complexity of O((k2/ε4)(d + k/ε2) + nnz(A)). In addition,

they show that the spectral norm error bound ‖A−πBk(A)‖2
2 ≤ ‖A− Ak‖2

2 + ε‖A‖2
F holds

if one selects O(1/ε2) columns. Rudelson et al. [112] improved the latter error bound to

‖A − πBk(A)‖2
2 ≤ ‖A − Ak‖2

2 + ε‖A‖2
2 by selecting O(r/ε4 log (r/ε4)) columns, where

r = ‖A‖2
F/‖A‖2

2 is the numeric rank of A. Note that in the result by [50], one would

need O(r2/ε2) columns to obtain the same bound.

Another similar line of work is the CUR factorization [25, 48, 51, 54, 94] where methods

select c columns and r rows of A to form matrices C ∈ Rn×c, R ∈ Rr×d and U ∈ Rc×r,

and constructs the sketch as B = CUR. The only instance of this group that runs in input

sparsity time is [25] by Boutsidis and Woodruff, where they select r = c = O(k/ε) rows and

columns of A and construct matrices C, U and R with rank(U) = k such that with constant

probability ‖A− CUR‖2
F ≤ (1 + ε)‖A− Ak‖2

F. Their algorithm runs in O(nnz(A) log n +

(n + d)poly(log n, k, 1/ε)) time.

6.2.2 Random Projection Techniques

These techniques [93, 105, 113, 117] operate data-obliviously and maintain a r × d ma-

trix B = SA using a r × n random matrix S which has the Johnson-Lindenstrauss Trans-

form (JLT) property [96]. Random projection methods work in the streaming model, are

computationally efficient, and sufficiently accurate in practice [42]. The state-of-the-art

method of this approach is by Clarkson and Woodruff [33] which was later improved

slightly in [102]. It uses a hashing matrix S with only one non-zero entry in each column.

Constructing this sketch takes only O(nnz(A) + n · poly(k/ε) + poly(dk/ε)) time, and

guarantees that for any unit vector x that (1 − ε)‖Ax‖ ≤ ‖Bx‖ ≤ (1 + ε)‖Ax‖. For
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these sparsity-efficient sketches using r = O(d2/ε2) also guarantees that ‖A− πB(A)‖F ≤

(1 + ε)‖A− Ak‖F.

6.2.3 Power Method Based Techniques

Another group of methods that run in input sparsity time are techniques based on

Power Method [74] which efficiently computes the singular vectors and values of a matrix.

Recent results give very strong approximation guarantees for block power method tech-

niques [110][126][93][75]. Several variants of this algorithm were studied under different

names in the literature, e.g., Simultaneous Iteration, Subspace Iteration, or Orthogonal

Iteration [74]. We refer to this group of algorithms collectively as SimultaneousIteration.

A generic version of SimultaneousIteration for rectangular matrices is described in Algo-

rithm 13.

Algorithm 13 SimultaneousIteration

Input: A ∈ Rn×d, rank k ≤ min(n, d), and error ε ∈ (0, 1)
q = Θ(log(n/ε)/ε)
G ∼ N (0, 1)d×k

Z = GramSchmidt(A(AT A)qG)
return Z # Z ∈ Rn×k

While this algorithm was already analyzed by [74], the proofs of [75, 100, 110, 123]

manage to prove stable results that hold for any matrix independent of spectral gap issues.

SimultaneousIteration (Algorithm 13) guarantees the three following error bounds

with high probability:

1. Frobenius norm error bound: ‖A− ZZT A‖F ≤ (1 + ε)‖A− Ak‖F

2. Spectral norm error bound: ‖A− ZZT A‖2 ≤ (1 + ε)‖A− Ak‖2

3. Per vector error bound: |uT
i AATui − zT

i AATzi| ≤ εσ2
k+1 for all i. Here ui denotes the

ith left singular vector of A, and σk+1 is the (k + 1)th singular value of A, and zi is the

ith column of the matrix Z returned by SimultaneousIteration.

In addition, for a constant ε, SimultaneousIteration runs in Õ(nnz(A)) time.
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6.3 Sparse Frequent Directions
The SparseFrequentDirections (SFD) algorithm is described in Algorithm 14, and is an

extension of FrequentDirections to sparse matrices.

Algorithm 14 SparseFrequentDirections

Input: A ∈ Rn×d, an integer ` ≤ d, failure probability δ
B = 0`×d, A′ = 00×d

for a ∈ A do
A′ = [A′; a]
if nnz(A′) ≥ `d or rows(A′) = d then

B′ = BoostedSparseShrink(A′, `, δ)
B = DenseShrink([B; B′], `)
A′ = 00×d

return B

It receives the rows of an input matrix A in a streaming fashion and maintains a sketch

B of ` rows. Initially B is empty. On receiving rows of A, SFD stores non-zeros in a buffer

matrix A′. The buffer is deemed full when it contains `d non-zeros or d rows. SFD then

calls BoostedSparseShrink to produce its sketch matrix B′ of size `× d. Then, it updates

its ongoing sketch B of the entire stream by merging it with the (dense) sketch B′ using

DenseShrink.

Algorithm 15 BoostedSparseShrink

Input: A′ ∈ Rm×d, integer ` ≤ m, failure probability δ
while True do

B′ = SparseShrink(A′, `)
∆ = (‖A′‖2

F − ‖B′‖2
F)/α` for α = 6/41

if VERIFYSPECTRAL((A′T A′ − B′TB′)/(∆/2), δ) then
return B′

BoostedSparseShrink amplifies the success probability of another algorithm

SparseShrink in Algorithm 16. SparseShrink runs SimultaneousIteration instead of a

full SVD to take advantage of the sparsity of its input A′. However, as we will discuss,

by itself SparseShrink has a high failure probability. Thus we use BoostedSparseShrink

which keeps running SparseShrink and probabilistically verifying the correctness of its
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result using VerifySpectral, until it decides that the result is correct with high enough

probability.

Algorithm 16 SPARSESHRINK

Input: A′ ∈ Rm×d, an integer ` ≤ m
Z = SimultaneousIteration(A′, `, 1/4)
P = ZT A′, [H, Λ, V] = SVD(P, `)

Λ̃ =
√

Λ2 − λ2
` I`

B′ = Λ̃VT

return B′

Each of DenseShrink, SparseShrink, and BoostedSparseShrink produces sketch matri-

ces of size `× d.

Algorithm 17 DENSESHRINK

Input: A ∈ Rm×d, an integer ` ≤ m
[H, Λ, V] = SVD(A, `)

Λ̃ =
√

Λ2 − λ2
` I`

B = Λ̃VT

Return B

We prove that SparseFrequentDirections satisfies the following theorem:

Theorem 6.3.1 (main result). Given a sparse matrix A ∈ Rn×d and an integer ` ≤ d,

SparseFrequentDirections computes a small sketch B ∈ R`×d such that with probability at least

1− δ for α = 6/41 and any 0 ≤ k < α`,

‖AT A− BTB‖2 ≤
1

α`− k
‖A− Ak‖2

F

and

‖A− πBk(A)‖2
F ≤

`

`− k/α
‖A− Ak‖2

F.

The total memory footprint of the algorithm is O(d`) and its expected running time is

O
(
nnz(A)` log(d) + nnz(A) log(n/δ) + n`2 + n` log(n/δ)

)
.

It is convenient to set ` = d1/εα + k/αe which yields ‖AT A− BTB‖2 ≤ ε‖A− Ak‖2
F or

to set ` = dk/εα + k/αe which yields ‖A− πBk(A)‖2
F ≤ (1 + ε)‖A− Ak‖2

F. Moreover, it
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is reasonable to expect the number of non-zeros per row in A to be larger than ` and for

n, d and 1/δ to be at most polynomial in one another. In this setting, the running time is

dominated by O (nnz(A)` log(d)).

6.3.1 Success Probability

SparseShrink, described in Algorithm 16, calls SimultaneousIteration to approximate

the top rank ` subspace of A′. As SimultaneousIteration is randomized, it fails to converge

to a good subspace when the initial choice of the random matrix G does not sufficiently

align with the top ` singular vectors of A′ (see Algorithm 13). This occurs with probability

at most ρ` = O(1/
√
`). In Section 6.3.3.1, we prove that with probability of at least 1− ρ`

that SparseShrink satisfies the three properties required for Lemma 4.1.1 using α = 6/41

and ∆ = 41/8 s2
` , but replacing Property 2 with a stronger version

• Property 2 (strengthened): ‖A′T A′ − B′TB′‖2 ≤ (∆/2) = 41/16 s2
`

where s` denotes the `th singular value of A′.

However, for the proof of SparseFrequentDirections we require that all SparseShrink

runs be successful. The failure probability of SparseShrink, which is upper bounded by

O(1/
√
`), is high enough that a simple union bound would not give a meaningful bound

on the failure probability of SparseFrequentDirections. We therefore reduce the failure

probability of each BoostedSparseShrink, by wrapping each call of SparseShrink in the

verifier VerifySpectral. If VerifySpectral does not verify the correctness, then it reruns

SparseShrink and tries again until it can verify it. But to perform this verification efficiently,

we need to loosen the definition of correctness. In particular, we say SparseShrink is

successful if the sketch B′ computed from its output satisfies ‖A′T A′ − B′TB′‖2 ≤ ∆ (the

original Property 2 specification in Section 4.1), where ∆ = (‖A′‖2
F − ‖B′‖2

F)/α`. Com-

bining the two inequalities through ∆, a successful run implies that ‖A′T A′ − B′TB′‖2 ≤

(‖A′‖2
F −‖B′‖2

F)/α`. VerifySpectral verifies the success of the algorithm by approximating

the spectral norm of (A′T A′ − B′TB′)/(∆/2); it does so by running the power method for

c · log(d/δi) steps for some constant c.
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Algorithm 18 VerifySpectral

Initialization persistent i = 0 (i retains its state between invocations of this method)
Input: Matrix C ∈ Rd×d, failure probability δ
i = i + 1 and δi = δ/2i2

Pick x uniformly at random from the unit sphere in Rd.
if ‖Cc·log(d/δi)x‖ ≤ 1 return TRUE

else return FALSE

Lemma 6.3.1. The VerifySpectral algorithm returns TRUE if ‖C‖2 ≤ 1. If ‖C‖2 ≥ 2 it returns

FALSE with probability at least 1− δi.

Proof. If ‖C‖ ≤ 1 than ‖Cc·log(d/δi)x‖ ≤ ‖C‖c·log(d/δi)‖x‖ ≤ 1. If ‖C‖ ≥ 2, consider

execution i of the method. Let v1 denote the top singular vector of C. Then ‖Cc·log(d/δi)x‖ ≥

|〈v1, x〉|2c·log(d/δi) ≥ 1, for some constant c as long as |〈v1, x〉| = Ω(poly(δi/d)). Let Φ(t′)

denote the density function of the random variable t′ = 〈v1, x〉. Then Pr[|〈v1, x〉| ≤ t] =∫ t
−t Φ(t′)dt′ ≤ 2tΦ(0) = O(t

√
d). Setting the failure probability to be at most δi, we

conclude that |〈v1, x〉| = Ω(δi/
√

d) with probability at least 1− δi.

Therefore, VerifySpectral fails with probability at most δi during execution i. If any of

VerifySpectral runs fail, BoostedSparseShrink and hence SparseFrequentDirections poten-

tially fail. Taking the union bound over all invocations of VerifySpectral we obtain that

SparseFrequentDirections fails with probability at most ∑ δi ≤ ∑∞
i=1 δ/2i2 ≤ δ, hence it

succeeds with probability at least 1− δ.

6.3.2 Space Usage and Runtime Analysis

Throughout this manuscript we assume the constant-word-size model. Integers and

floating point numbers are represented by a constant number of bits. Random access into

memory is assumed to require O(1) time. In this model, multiplying a sparse matrix A′ by

a dense vector requires O(nnz(A′)) operations and storing A′ requires O(nnz(A′)) bits of

memory.

Fact 6.3.1. The total memory footprint of SparseFrequentDirections is O(d`).

Proof. It is easy to verify that, except for the buffer matrix A′, the algorithm only ma-

nipulates ` × d matrices; in particular, observe that the (rows(A′) = d) condition in
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SparseFrequentDirections ensures that m = d in SparseShrink, and in DenseShrink also

m = 2`. Each of these ` × d matrices clearly require at most O(d`) bits of memory. The

buffer matrix A′ contains at most O(d`) non-zeros and therefore does not increase the

space complexity of the algorithm.

We turn to bounding the expected runtime of SparseFrequentDirections which is dom-

inated by the cumulative running times of DenseShrink and BoostedSparseShrink. Denote

by T the number of times they are executed. It is easy to verify T ≤ nnz(A)/d` +

n/d. Since DenseShrink runs in O(d`2) time deterministically, the total time spent by

DenseShrink through T iterations is O(Td`2) = O(nnz(A)`+ n`2).

The running time of BoostedSparseShrink is dominated by those of SparseShrink and

VerifySpectral, and its expected number of iterations. Note that, in expectation, they

are each executed on any buffer matrix A′i a small constant number of times because

VerifySpectral succeeds with probability (much) greater than 1/2. For asymptotic analysis

it is identical to assuming they are each executed once.

Note that the running time of SparseShrink on A′i is O(nnz(A′i)` log(d)). Since

∑i nnz(A′i) = nnz(A) we obtain a total running time of O(nnz(A)` log(d)). The ith

execution of VerifySpectral requires O(d` log(d/δi)) operations. This, because it multiplies

A′T A′ − B′TB′ by a single vector O(log(d/δi)) times, and both nnz(A′) ≤ O(d`) and

nnz(B′) ≤ d`. In expectation VerifySpectral is executed O(T) times. Therefore total

running time of it is

O(d`
O(T)

∑
i=1

log(d/δi)) = O(d`
O(T)

∑
i=1

log(di2/δ))

= O(Td` log(Td/δ)) = O((nnz+n`) log(n/δ)).

Combining the above contributions to the total running time of the algorithm we obtain

the following fact.

Fact 6.3.2. Algorithm SparseFrequentDirections runs in expected time of

O(nnz(A)` log(d) + nnz(A) log(n/δ) + n`2 + n` log(n/δ)).
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6.3.3 Error Analysis

We turn to proving the error bounds of Theorem 6.3.1. Our proof is divided into

three parts. We first show that SparseShrink obtains the three properties needed for

Lemma 4.1.1 with probability at least 1 − ρ`, and with the constraint on Property 2

strengthed by a factor 1/2. Then we show how loosening Property 2 back to its original

bound enables BoostedSparseShrink to succeed with probability 1− δi for some δi � ρ`.

Finally we show that due to the mergeability of FrequentDirections 3.1.3, discussed in

Section 3.1.3, the SparseFrequentDirections algorithm obtains the same error guarantees

as BoostedSparseShrink with probability 1− δ for a small δ of our choice.

In what follows, we mainly consider only a single execution of SparseShrink or

BoostedSparseShrink and let s` and u` denote the `th singular value and `th left singular

vector of A′, respectively.

6.3.3.1 Error Analysis: SparseShrink

Here we show that with probability at least 1 − ρ` that B′ computed from

SparseShrink(A′, `) satisfies the three properties discussed in Section 4.1 required for

Lemma 4.1.1.

• Property 1: For any unit vector x ∈ Rd, ‖A′x‖2 − ‖B′x‖2 ≥ 0,

• Property 2 (strengthened): For any unit vector x ∈ Rd, ‖A′x‖2 − ‖B′x‖2 ≤ ∆/2 =

(41/16)s2
` ,

• Property 3: ‖A′‖2
F − ‖B′‖2

F ≥ `α∆ = `(3/4)s2
` .

Lemma 6.3.2. Property 1 holds deterministically for SparseShrink: ‖A′x‖2 − ‖B′x‖2 ≥ 0 for all

x.

Proof. Let P = ZT A′ be as defined in SparseShrink. Consider an arbitrary unit vector

x ∈ Rd, and let y = A′x.

‖A′x‖2 − ‖Px‖2 = ‖A′x‖2 − ‖ZT A′x‖2 = ‖y‖2 − ‖ZTy‖2 = ‖(I − ZZT)y‖2 ≥ 0

and

‖Px‖2 − ‖B′x‖2 = λ2
`

`

∑
i=1
〈x, vi〉2 ≥ 0,

therefore ‖A′x‖2 − ‖B′x‖2 = (‖A′x‖2 − ‖Px‖2) + (‖Px‖2 − ‖B′x‖2) ≥ 0.
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Lemma 6.3.3. With probability at least 1− ρ`, Property 2 holds for SparseShrink: for any unit

vector x ∈ Rd, ‖A′x‖2 − ‖B′x‖2 ≤ 41/16 s2
` .

Proof. Consider an arbitrary unit vector x ∈ Rd, and note that

‖A′x‖2 − ‖B′x‖2 =
(
‖A′x‖2 − ‖Px‖2)+ (‖Px‖2 − ‖B′x‖2) .

We bound each term individually. The first term is bounded as

‖A′x‖2 − ‖Px‖2 = xT(A′T A′ − PTP)x (6.1)

≤ ‖A′T A′ − PTP‖2 (6.2)

= ‖A′T A′ − A′TZZT A′‖2 (6.3)

= ‖A′T(I − ZZT)A′‖2 (6.4)

= ‖A′T(I − ZZT)T(I − ZZT)A′‖2 (6.5)

= ‖(I − ZZT)A′‖2
2 (6.6)

≤ 25/16 s2
`+1 ≤ 25/16 s2

` . (6.7)

where transition 5 is true because (I − ZZT) is a projection. Transition 7 also holds by

the spectral norm error bound of [100] for ε = 1/4. To bound the second term, note that

‖Px‖ = ‖ZT A′x‖ = ‖ΛVTx‖, since [H, Λ, V] = SVD(P, `) as defined in SparseShrink.

‖Px‖2 − ‖B′x‖2 =
`

∑
i=1

λ2
i 〈x, vi〉2 −

`

∑
i=1

λ̃2
i 〈x, vi〉2 =

`

∑
i=1

(λ2
i − λ̃2

i )〈x, vi〉2 =
`

∑
i=1

λ2
`〈x, vi〉2 ≤ λ2

` ≤ s2
` ,

where last inequality follows by the Courant-Fischer min-max principle, i.e., as λ` is the

`th singular value of the projection of A′ onto Z, then λ` ≤ s`. Summing the two terms

yields ‖A′x‖2 − ‖B′x‖2 ≤ 41/16 s2
` .

The original bound ‖A′T A′ − B′TB′‖2 ≤ ∆ = 41/8 s2
` discussed in Section 6.3.1 is also

immediately satisfied.

Lemma 6.3.4. With probability at least 1 − ρ`, Property 3 holds for SparseShrink: ‖A′‖2
F −

‖B′‖2
F ≥ `(3/4)s2

` .



77

Proof.

‖A′‖2
F − ‖P‖2

F = ‖A′‖2
F − ‖ZT A′‖2

F = ‖A′ − ZZT A′‖2
F ≥ 0

In addition,

‖P‖2
F − ‖B′‖2

F = `λ2
` ≥ `(3/4)s2

` .

The last inequality holds by the per vector error bound of [100] for i = ` and ε = 1/4,

i.e., |uT
` A′A′Tu` − zT

` A′A′Tz`| = |s2
` − λ2

` | ≤ 1/4s2
`+1 ≤ 1/4s2

` , which means λ2
` ≥ 3/4 s2

` .

Therefore

‖A′‖2
F − ‖B′‖2

F = (‖A′‖2
F − ‖P‖2

F) + (‖P‖2
F − ‖B′‖2

F) ≥ `(3/4)s2
` .

6.3.3.2 Error Analysis: BoostedSparseShrink

We now consider the BoostedSparseShrink algorithm, and the looser version of Prop-

erty 2 (the original version) as

• Property 2: For any unit vector x ∈ Rd, ‖A′x‖2 − ‖B′x‖2 ≤ ∆ = (41/8)s2
` .

By invoking VerifySpectral((A′T A′ − B′TB′)/(∆/2), δ), then VerifySpectral always returns

TRUE if ‖A′T A′ − B′TB′‖2 ≤ ∆/2 (as is true of the input with probability at least 1− ρ` by

Lemma 6.3.3), and VerifySpectral catches a failure event where ‖A′T A′ − B′TB′‖2 ≥ ∆

with probability at least 1 − δi by Lemma 6.3.1. As discussed in Section 6.3.1 all in-

vocations of VerifySpectral succeed with probability at most 1 − δ, hence all runs of

BoostedSparseShrink succeed and satisfy Property 2 (as well as Properties 1 and 3) with

α = 6/41 and ∆ = 41/8 s2
` , and with probability at least 1− δ. Finally, we can invoke the

mergeability property of FrequentDirections [91] and Lemmas 4.1.1 and 4.1.2 to obtain the

error bounds in our main result, Theorem 6.3.1.

6.4 Experimental Evaluation
In this section we empirically validate that SparseFrequentDirections matches (and

often improves upon) the accuracy of FrequentDirections, while running significantly

faster on sparse real and synthetic datasets.

We do not implement SparseFrequentDirections exactly as described above. Instead

we directly call SparseShrink in Algorithm 14 in place of BoostedSparseShrink. The



78

randomized error analysis of SimultaneousIteration indicates that we may occasionally

miss a subspace within a call of SimultaneousIteration and hence SparseShrink; but

in practice this is not a catastrophic event, and as we will observe, does not prevent

SparseFrequentDirections from obtaining small empirical error.

The empirical comparison of FrequentDirections to other matrix sketching tech-

niques is now well-trodden 6.4. FrequentDirections (and, as we observe, by association

SparseFrequentDirections) has much smaller error than other sketching techniques which

operate in a stream. However, FrequentDirections is somewhat slower by a factor of

the sketch size ` up to some leading coefficients. We do not repeat these comparison

experiments here.

6.4.1 Setup

We ran all the algorithms under a common implementation framework to test their

relative performance as accurately as possible. We ran the experiments on an Intel(R)

Core(TM) 2.60 GHz CPU with 64GB of RAM running Ubuntu 14.04.3. All algorithms were

coded in C, and compiled using gcc 4.8.4. All linear algebra operations on dense matrices

(such as SVD) invoked those implemented in LAPACK.

6.4.2 Datasets

We compare the performance of the two algorithms on both synthetic and real datasets.

Each dataset is an n× d matrix A containing n datapoints in d dimensions.

The real dataset is part of the 20 Newsgroups dataset [88], which is a collection of

approximately 20,000 documents, partitioned across 20 different newsgroups. However

we use the ‘by date’ version of the data, where features (columns) are tokens and rows

correspond to documents. This data matrix is a zero-one matrix with 11,314 rows and

117,759 columns. In our experiment, we use the transpose of the data and picked the first

d = 3000 columns, hence the subset matrix has n = 117,759 rows and d = 3000 columns;

roughly 0.15% of the subset matrix is non-zeros.

The synthetic data generate n rows i.i.d. Each row receives exactly z � d non-zeros

(with default z = 100 and d = 1000), with the remaining entries as 0. The non-zeros are

chosen as either 1 or −1 at random. Each non-zero location is chosen without duplicates

among the columns. The first 1.5z columns (e.g., 150), the “head”, have a higher probability
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of receiving a non-zero than the last d − 1.5z columns, the “tail”. The process to place a

non-zero first chooses the head with probability 0.9 or the tail with probability 0.1. For

whichever set of columns it chooses (head or tail), it places the non-zero uniformly at

random among those columns.

6.4.3 Measurements

Each algorithm outputs a sketch matrix B of ` rows. For each of our experiments,

we measure the efficiency of algorithms against one parameter and keep others fixed at a

default value. Table 6.1 lists all parameters along with their default value and the range

they vary in for synthetic dataset. We measure the accuracy of the algorithms with respect

to:

• Projection Error: proj-err = ‖A− πBk(A)‖2
F/‖A− Ak‖2

F,

• Covariance Error: cov-err = ‖AT A− BTB‖2/‖A‖2
F,

• Runtime in seconds.

In all experiments, we have set k = 10. Note that proj-err is always larger than 1, and

for FrequentDirections and SparseFrequentDirections the cov-err is always smaller than

1/( 6
41`− k) due to our error guarantees.

6.4.4 Observations

By considering Table 6.1 on synthetic data and Figure 6.5 on the real data, we can

vary and learn many aspects of the runtime and accuracy of SparseFrequentDirections

and FrequentDirections.

6.4.4.1 Runtime

Consider the last row of Table 6.1, the “Runtime” row, and the last column of Figure 6.5.

SparseFrequentDirections is clearly faster than FrequentDirections for all datasets, except

when the synthetic data becomes dense in the last column of the “Runtime” row, where

d = 1000 and nnz per row = 500 in the right-most data point. For the default values

the improvement is between about a factor of 1.5x and 2x, but when the matrix is very

sparse the improvement is 10x or more. Very sparse synthetic examples are seen in the left
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data points of the last column, and in the right data points of the second column, of the

“Runtime” row.

In particular, these two plots (the second and fourth columns of the “Runtime” row)

really demonstrate the dependence of SparseFrequentDirections on nnz(A) and of Fre-

quentDirections on n · d. In the last column, we fix the matrix size n and d, but increase

the number of non-zeros nnz(A); the runtime of FrequentDirections is basically constant,

while for SparseFrequentDirections it grows linearly. In the second column, we fix n and

nnz(A), but increase the number of columns d; the runtime of FrequentDirections grows

linearly while the runtime for SparseFrequentDirections is basically constant.

These algorithms are designed for datasets with extremely large values of n; yet we

only run on datasets with n up to 60,000 in Table 6.1, and 117,759 in Figure 6.5. However,

both FrequentDirections and SparseFrequentDirections have runtime that grows linearly

with respect to the number of rows (assuming the sparsity is at an expected fixed rate

per row for SparseFrequentDirections). This can also be seen empirically in the first

column of the “Runtime” row where, after a small start-up cost, both FrequentDirections

and SparseFrequentDirections grow linearly as a function of the number of data points n.

Hence, it is valid to directly extrapolate these results for datasets of increased n.

6.4.4.2 Accuracy

We will next discuss the accuracy, as measured in Projection Error in the top row

of Table 6.1 and left plot of Figure 6.5, and in Covariance Error in the middle row

of Table 6.1 and middle plot of Figure 6.5. We observe that both FrequentDirec-

tions and SparseFrequentDirections obtain very small error (much smaller than upper

bounded by the theory), as has been observed elsewhere [42, 67]. Moreover, the error for

SparseFrequentDirections always nearly matches, or improves over FrequentDirections.

We can likely attribute this improvement to being able to process more rows in each batch,

and hence needing to perform the shrinking operation fewer overall times. The one small

exception to SparseFrequentDirections having less Covariance Error than FrequentDirec-

tions is for extreme sparse datasets in the leftmost data points of Table 6.1, last column –

we attribute this to some peculiar orthogonality of columns with near equal norms due to

extreme sparsity.
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Table 6.1: Parameter Values

default range
datapoints (n) 10000 [104 − 6× 104]
dimension (d) 1000 [103 − 6× 103]
sketch size (`) 50 [5− 100]
nnz per row 100 [5− 500]
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Figure 6.1: Comparing performance of FrequentDirections and SparseFrequentDirections
against number of data points (n) on synthetic data. Table 6.1 lists default value of all
parameters.
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Figure 6.2: Comparing performance of FrequentDirections and SparseFrequentDirections
against dimension (d) on synthetic data. Table 6.1 lists default value of all parameters.
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Figure 6.3: Comparing performance of FrequentDirections and SparseFrequentDirections
against sketch size (`) on synthetic data. Table 6.1 lists default value of all parameters.
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Figure 6.4: Comparing performance of FrequentDirections and SparseFrequentDirections
against number of non-zeros per row (nnz) on synthetic data. Table 6.1 lists default value
of all parameters.
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on 20 Newsgroups dataset. We plot Projection Error, Covariance Error, and Runtime as a
function of sketch size (`).



CHAPTER 7

DISTRIBUTED STREAMING MATRIX

TRACKING

In this chapter, we extend weighted frequent item estimation protocols of Chapter 2

to solve the problem of tracking an approximation to a distributed matrix. This problem

can be easily found in distributed network monitoring applications [107], distributed data

mining, cloud computing [109], stream mining [79], and log analysis from multiple data

centers [59]. Examples of its application include in large scale image analysis, where each

row in the matrix corresponds to one image and contains either pixel values or other

derived feature values (e.g., 128-dimensional SIFT features). A search engine company has

image data continuously arriving at many data centers, or even within a single data center

at many nodes in a massive cluster. This forms a distributed matrix and it is critical to

obtain excellent, real-time approximation of the distributed streaming image matrix with

little communication overhead. Yet another example is for large-scale distributed web

crawling or server access log monitoring/mining, where data in the bag-of-words model

is a matrix whose columns correspond to words or tags/labels (for textual analysis, e.g.,

LSI, and/or for learning and classification purpose) and rows correspond to documents or

log records (which arrive continuously at distributed nodes).

Despite prior works on distributed streaming model, and distributed matrix computa-

tions (e.g., the MadLINQ library [109]), little is known on continuously tracking a matrix

approximation in the distributed streaming model. Below, we define the problem formally

and introduce our solutions.

7.1 Problem Definition
The formal definition of the distributed matrix tracking problem is as follows:

Definition 7.1.1 (Tracking distributed streaming matrix). Formally, assume there are m
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distributed sites S1, ..., Sm and a single designated coordinator C, and each site has a two-way

communication channel with C. Assume A = (a1, . . . , an, · · · ) is an unbounded stream of items,

where an is a record with d attributes, a row from a matrix in an application. At each time step,

we assume the item an appears at exactly one of m sites. At the current time tnow , let n denote the

number of items the system has seen so far. Thus, at time tnow, A = (a1, . . . , an) forms a n × d

distributed streaming matrix. And although we do not place a bound on the number of items, we

let N denote the total size of the stream at the time when a query q is performed.

The goal is to continuously track a small approximation of matrix A, while each site must

process its incoming elements in streaming fashion. The objective is to minimize the total commu-

nication between C and all sites. Formally, for any time instance tnow (i.e., for any n), C needs

to maintain a smaller matrix B ∈ R`×d as an approximation to the distributed streaming matrix

A ∈ Rn×d such that `� n and for any unit vector x: |‖Ax‖2 − ‖Bx‖2| ≤ ε‖A‖2
F.

Note that the above expression is equivalent to ‖AT A− BTB‖2 ≤ ε‖A‖2
F. Thus, the approxi-

mation guarantee we preserve shows that the covariance of A is well-approximated by B. And the

covariance is the critical property of a matrix that needs to be (approximately) preserved as the basis

for most downstream data analysis, e.g., for PCA or LSI.

As we will show soon in our analysis, it will be convenient to associate a weight with

each element defined as the squared norm of the row, i.e., wn = ‖an‖2. Hence, for reasons

outlined in Section 2.5.1, we assume in our analysis that the squared norm of every row is

bounded by a value β.

Our measures of complexity will be the communication cost and the space used at each

site to process the stream. We measure communication in terms of the number of messages,

where each message is a row of length d, the same as the input stream. Clearly, the space

and computational cost at each site and coordinator is also important, but since we show

that all proposed protocols can be run as streaming algorithms at each site, and will thus

not be space or computation intensive.

7.2 Overview of Protocols
The protocols for matrix tracking mirror those of weighted item frequency tracking.

This starts with a similar batched streaming baseline P1. Protocol P2 again reduces the total

communication bound, where a global threshold is given for each “direction” instead of
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the total squared Frobenius norm. Both P1 and P2 are deterministic. Then matrix tracking

protocol P3 randomly selects rows with probability proportional to their squared norm

and maintains an ε-sample at the coordinator. Using this sample set, we can derive a good

approximation.

Given the success of protocols P1, P2, and P3, it is tempting to also extend protocol

P4 for item frequency tracking in Section 2.5.6 to distributed matrix tracking. However,

unlike the other protocols, we show that the approach described in Algorithm 7 cannot

be extended to matrices in any straightforward way while still maintaining the same

communication advantages it has (in theory) for the weighted heavy-hitters case.

7.2.1 Distributed Matrix Tracking Protocol 1

We again begin with a batched version of a streaming algorithm, shown as Algorithm

19 and 20. That is we run a streaming algorithm (e.g., Frequent Directions [91], labeled FD,

with error ε′ = ε/2) on each site, and periodically send the contents of the memory to the

coordinator. Again this is triggered when the total weight (in this case squared norm) has

increased by (ε/2m)W.

Algorithm 19 P1: Deterministic Matrix Tracking (at Si)

for (an, wn) in round j do
Update Bi ← FDε′(Bi, an); and Fi += ‖an‖2.
if (Fi ≥ τ = (ε/2m)F̂) then

Send (Bi, Fi) to coordinator; make Bi, Fi empty.

Algorithm 20 P1: Deterministic Matrix Tracking (at C)

On input (Bi, Fi):
Update sketch B← Mergeε′(B, Bi) and FC += Fi.
if (FC/F̂ > 1 + ε/2) then

Update F̂ ← FC, and broadcast F̂ to all sites.

As with the similar frequency tracking algorithm, based on Frequent Directions [91]

satisfying the mergeable property [9], we can show this maintains at most ε‖A‖2
F total

error at all times, and requires a total of O((m/ε2) log(βN)) total rows of communication.
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7.2.2 Distributed Matrix Tracking Protocol 2

Again, this protocol is based very closely on a weighted heavy-hitters protocol, this

time the one from Section 2.5.4. Each site Sj maintains a matrix Bj of the rows seen so

far at this site and not sent to coordinator. In addition, it maintains F̂, an estimate of

‖A‖2
F, and Fj = ‖Bj‖2

F, denoting the total squared Frobenius norm received since its last

communication to C about F̂. The coordinator C maintains a matrix B approximating A,

and F̂, an ε-approximation of ‖A‖2
F.

Initially each F̂ is set to zero for all sites. When site j receives a new row, it calls

Algorithm 21, which basically sends ‖Bjx‖2 in direction x when it is greater than some

threshold provided by the coordinator, if one exists.

Algorithm 21 P2: Deterministic Matrix Tracking (at Sj)

Fj += ‖ai‖2

if (Fj ≥ ε
m F̂) then

Send Fj to coordinator; set Fj = 0.
Set Bj ← [Bj; ai]
[U, Σ, V] = SVD(Bj)

for ((v`, σ`) such that σ2
` ≥

ε
m F̂) do

Send σ`v` to coordinator; set σ` = 0.
Bj = UΣVT

Algorithm 22 P2: Deterministic Matrix Tracking (at C)

On a scalar message Fj from site Sj

Set F̂ += Fj and #msg += 1.
if (#msg ≥ m) then

Set #msg = 0 and broadcast F̂ to all sites.
On a vector message r = σv: append B← [B; r]

On the coordinator side, it either receives a vector form message σv, or a scalar message

Fj. For a scalar Fj, it adds it to F̂. After at most m such scalar messages, it broadcasts F̂ to all

sites. For vector message r = σv, the coordinator updates B by appending r to B ← [B; r].

The coordinator’s protocol is summarized in Algorithm 22.

Lemma 7.2.1. At all times the coordinator maintains B such that for any unit vector x

‖Ax‖2 − ε‖A‖2
F ≤ ‖Bx‖2 ≤ ‖Ax‖2 (7.1)



87

Proof. To prove this, we also need to show it maintains another property on the total

squared Frobenius norm:

(1− 2ε)‖A‖2
F < F̂ ≤ ‖A‖2

F. (7.2)

This follows from the analysis in Section 2.5.4 since the squared Frobenius norm is addi-

tive, just like weights. The following analysis for the full lemma is also similar, but requires

more care in dealing with matrices. First, for any x we have

‖Ax‖2 = ‖Bx‖2 +
m

∑
j=1
‖Bjx‖2.

This follows since ‖Ax‖2 = ∑n
i=1〈ai, x〉2, so if nothing is sent to the coordinator, the sum

can be decomposed like this with B empty. We just need to show the sum is preserved

when a message r = σ1v1 is sent. Because of the orthogonal decomposition of Bj by

the SVD(Bj) = [U, Σ, V], then ‖Bjx‖2 = ∑d
`=1〈σ`v`, x〉2. Thus if we send any σ`v` to the

coordinator, append it to B, and remove it from Bj, the sum is also preserved. Thus, since

the norm on B is always less than on A, the right side of (7.1) is proven. To see the left side

of (7.1) we need to use (7.2), and show that not too much mass remains on the sites. First

we bound ‖Bjx‖2.

‖Bjx‖2 =
d

∑
`=1

σ2
` 〈v`, x〉2 ≤

d

∑
`=1

ε

m
F̂〈v`, x〉2 =

ε

m
F̂ ≤ ε

m
‖A‖2

F.

And thus ∑m
j=1 ‖Bjx‖2 ≤ m ε

m‖A‖2
F = ε‖A‖2

F and hence

‖Ax‖2 ≤ ‖Bx‖2 +
m

∑
j=1
‖Bjx‖2 ≤ ‖Bx‖2 + ε‖A‖2

F.

The communication bound follows directly from the analysis of the weighted heavy

hitters since the protocols for sending messages and starting new rounds are identical

with ‖A‖2
F in place of W, and with the squared norm change along the largest direction

(the top right singular value) replacing the weight change for a single element. Thus the

total communication is O(m
ε log(βN)).

Theorem 7.2.1. For a distributed matrix A whose squared norm of rows is bounded by β and

for any 0 ≤ ε ≤ 1, the above protocol (P2) continuously maintains Â such that 0 ≤ ‖Ax‖2 −

‖Bx‖2 ≤ ε‖A‖2
F and incurs a total communication cost of O((m/ε) log(βN)) messages.
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7.2.2.1 Bounding Space at Sites

It is possible to also run a small space streaming algorithm on each site j, and also

maintain the same guarantees. The Frequent Directions algorithm [91] presented a stream

of rows ai forming a matrix A, maintains a matrix Ã using O(1/ε′) rows such that 0 ≤

‖Ax‖2 − ‖Ãx‖2 ≤ ε′‖A‖2
F for any unit vector x.

In our setting we run this on two matrices on each site with ε′ = ε/4m. (It can actually

just be run on Bj, but then the proof is much less self-contained.) It is run on Aj, the full

matrix. Then instead of maintaining Bj that is Aj after subtracting all rows sent to the

coordinator, we maintain a second matrix Sj that contains all rows sent to the coordinator;

it appends them one by one, just as in a stream. Now ‖Bjx‖2 = ‖Ajx‖2 − ‖Sjx‖2. Thus if

we replace both Aj with Ãj and Sj with S̃j, then we have

‖Bjx‖2 = ‖Ajx‖2 − ‖Sjx‖2 ≤ ‖Ãjx‖2 − ‖S̃jx‖2 +
ε

4m
‖Aj‖2

F,

and similarly ‖Bjx‖2 ≥ ‖Ãjx‖2 − ‖S̃jx‖2 − ε
4m‖Aj‖2

F (since ‖Sj‖2
F ≤ ‖Aj‖2

F). From here we

will abuse notation and write ‖B̃jx‖2 to represent ‖Ãjx‖2 − ‖S̃jx‖2.

Now we send the top singular vectors v` of B̃j to the coordinator only if ‖B̃jv`‖2 ≥ 3ε
4m F̂.

Using our derivation, thus we only send a message if ‖Bjv`‖2 ≥ ε
2m‖A‖2

F, so it only sends

at most twice as many as the original algorithm. Also if ‖Bjv`‖2 > ε
m‖A‖2

F we always send

a message, so we do not violate the requirements of the error bound.

The space requirement per site is then O(1/ε′) = O(m/ε) rows. This also means, as

with Frequent Directions [91], we can run Algorithm 21 in batch mode, and only call the

SVD operation once every O(1/ε′) rows.

It is straightforward to see the coordinator can also use Frequent Directions to maintain

an approximate sketch, and only keep O(1/ε) rows.

7.2.3 Distributed Matrix Tracking Protocol 3

Our next approach is very similar to that discussed in Section 2.5.5. On each site we run

Algorithm 5. The only difference is that for an incoming row ai, it treats it as an element

(ai, wi = ‖ai‖2). The coordinator’s communication pattern is also the same as Algorithm

6. The only difference is how it interprets the data it receives.

As such, the communication bound follows directly from Section 2.5.5; we need

O((m + (1/ε2) log(1/ε)) log(βNε)) messages, and we obtain a set S of at least s =
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Θ((1/ε)2 log(1/ε)) rows chosen proportional to their squared norms; however if the

squared norm is large enough, then it is in the set S deterministically. To simplify notation

we will say that there are exactly s rows in S.

7.2.3.1 Estimation by Coordinator

The coordinator “stacks” the set of rows {a1, . . . , as} to create an estimate B =

[a1; . . . ; as]. We will show that for any unit vector x that |‖Ax‖2 − ‖Bx‖2| ≤ ε‖A‖2
F.

If we had instead used the weighted sampling with replacement protocol from Section

2.5.5.3, and retrieved s = O(1/ε2) rows of A onto the coordinator (sampled proportionally

to ‖ai‖2 and then rescaled to have the same weight), we could immediately show the

desired bound was achieved using know results on column sampling [50]. However,

as is the case with weighted heavy-hitters, we can achieve the same error bound for the

“without replacement sampling” in our protocol, and this uses less communication and

running time.

Recall for rows ai such that ‖ai‖2 ≥ ρ̂, (for a priority ρ̂ < 2τ) it keeps them as is; for other

rows, it rescales them so their squared norm is ρ̂. And ρ̂ is defined so that E[‖B‖2
F] = ‖A‖2

F,

thus ρ̂ ≤W/s.

Theorem 7.2.2. Protocol 3 (P3) uses O((m + s) log(βN/s)) messages of communication, with

s = Θ((1/ε2) log(1/ε)), and for any unit vector x we have |‖Ax‖2 − ‖Bx‖2| ≤ ε‖A‖2
F, with

probability at least 1− 1/s.

Proof. The error bound roughly follows that of Lemma 2.5.6. We apply the same negatively

correlated Chernoff-Hoeffding bound but instead define random variable Xi,x = 〈ai, x〉2.

Thus Mx = ∑s
i=1 Xi,x = ‖Bx‖2. Again ∆ = ρ̂ (since elements with ‖ai‖2 > ρ̂ are not

random) and E[Mx] = ‖Ax‖2. It again follows that

Pr[|‖Bx‖2 − ‖Ax‖2| ≤ ε‖A‖2
F/2] ≤ exp(−ε2s/32) ≤ δ.

Setting δ = Ω(1/s) yields that when s = Θ((1/ε2) log(1/ε)) this holds with probability at

least 1− δ = 1− 1/s = 1− 1/Θ((1/ε)2 log(1/ε)), for any unit vector x.

We need O(1) space per site and O(s) space on coordinator.
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7.2.4 Distributed Matrix Tracking Protocol 4

Again treating each row ai as having weight wi = ‖ai‖2, then to mimic the weighted

heavy-hitters protocol 4 we want to select each row with probability p̂ = 1 − e−p‖ai‖2
.

Here p = 2
√

m/(εF̂) represents the probability to send a weight 1 item and F̂ is a

2-approximation of ‖A‖2
F (i.e. F̂ ≤ ‖A‖2

F ≤ 2F̂) and is maintained and provided by the co-

ordinator. We then only want to send a message from the coordinator if that row is selected,

and then it follows from the analysis in Section 2.5.5 that in total O((
√

m/ε) log(βN))

messages are sent, since O(
√

m/ε) messages are sent each round in between F̂ doubling

and being distributed by the coordinator, and there are O(log(βN)) such rounds.

But replicating the approximation guarantees of protocol 4 is hard. In Algorithm 5, on

each message a particular element e has its count updated exactly with respect to a site

j. Because of this, we only need to bound the expected weight of stream elements until

another exact update is seen (at 1/p) and then to compensate for this we increase this

weight by 1/p so it has the right expected value. It also follows that the variances are

bounded by 1/p2, and thus when p is set Θ(
√

m/(εW)) we get at most εW error.

Thus the most critical part is to update the representation (of local matrices from m

sites) on the coordinator so it is exact for some query. We show that this can only be done

for a limited set of queries (along certain singular vectors), provide an algorithm to do so,

and then show that this is not sufficient for any approximation guarantees.

7.2.4.1 Replicated Algorithm for Matrices

Each site can keep track of Aj the exact matrix describing all of its data, and an

approximate matrix Âj. The matrix Âj will also be kept on the coordinator for each site.

So the coordinator’s full approximation Â = [Â1; Â2; . . . ; Âm] is just the stacking of the ap-

proximation from each site. Since the coordinator can keep track of the contribution from

each site separately, the sites can maintain Âj under the same process as the coordinator.

In more detail, both the site and the coordinator can maintain the [U, Σ, V] = SVD(Âj),

where V = [v1, v2, . . . , vd] stores the right singular vectors and Σ = diag(s1, s2, . . . , sd) are

the singular values. (Recall, U is just an orthogonal rotation, and does not change the

squared norm.) Thus ‖Âjx‖2 = ∑d
i=1 s2

i 〈vi, x〉2. Now if we can consider setting A′ = [Âj; r]

where ‖r‖ = 〈vi′ , r〉, so it is along the direction of a singular vector vi′ , then
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‖A′x‖2 = ‖r‖2〈vi′ , x〉2 +
d

∑
i=1

s2
i 〈vi, x〉2.

Thus if we update the singular value si′ to s̄i′ =
√

s2
i′ + ‖r‖2, (and to simplify notation

s̄i = si for i 6= i′) then ‖A′x‖2 = ∑d
i=1(s

′
i)

2〈vi, x〉2. Hence, we can update the squared norm

of Âj in a particular direction, as long as that direction is one of its right singular values.

But unfortunately, in general, for arbitrary direction x (if not along a right singular vector),

we cannot do this update while also preserving or controlling the orthogonal components.

We can now explain how to use this form of update in a full protocol on both the

site and the coordinator. The algorithm for the site is outlined in Algorithm 23. On an

incoming row a, we updated Aj = [Aj; a] and send a message with probability 1− e−p‖a‖2

where p = 2
√

m/(εF̂). If we are sending a message, we first set zi =
√
‖Ajvi‖2 + 1/p for

all i ∈ [d], and send a vector z = (z1, z2, . . . , zd) to the coordinator. We next produce the

new Âj on both site and coordinator as follows. Set Z = diag(z1, z2, . . . , zd) and update

Âj = ZVT. Now along any right singular vector vi of Âj we have ‖Âjvi‖2 = ‖Ajvi‖2 +

1/p. Importantly note that the right singular vectors of Âj do not change; although their

singular values and hence ordering may change, the basis does not.

Algorithm 23 P4: Site j process new row a

Given F̂ from coordinator, set p = 2
√

m/(εF̂).
The site also has maintained [U, Σ, V] = SVD(Âj).
Update Aj = [Aj; a].
Set p̂ = 1− e−p‖a‖2

. Generate u ∈ Unif[0, 1].
if (u ≤ p̂) then

for i ∈ [d] do zi =
√
‖Ajvi‖2 + 1/p.

Send vector z = (z1, . . . , zd).
Set Z = diag(z1, . . . , zd); update Âj = ZVT.

7.2.4.2 Error Analysis

To understand the error analysis, we first consider a similar protocol, except where

instead of each zi, we set z̄i = ‖Ajvi‖ (without the 1/p). Let Z̄ = diag(z̄1, . . . , z̄d) and Āj =

Z̄VT. Now for all right singular vectors ‖Ajvi‖2 = ‖Ājvi‖2 (this is not true for general x in

place of vi), and since z̄i ≥ si for all i ∈ [d], then for all x we have ‖Ājx‖2 ≥ ‖Âold
j x‖2, where

Âold
j is the approximation before the update. See Figure 7.1 to illustrate these properties.
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For directions x that are right singular values of Âj, this analysis should work, since

‖Ājx‖2 = ‖Ajx‖2. But two problems exist in other directions. First in any other direction

x the norms ‖Ajx‖ and ‖Ājx‖ are incomparable; in some directions each is larger than the

other. Second, there is no utility to change the right singular vectors of Âj to align with

those of Aj. The skew between the two can be arbitrarily large, again see Figure 7.1, and

without being able to adjust these, this error cannot be bounded.

One option would be to after every
√

m rounds send a Frequent Directions sketch Bj of

Aj of size O(1/ε) rows from each site to the coordinator. Then we use this Bj as the new

Âj. This has two problems. First it only has O(1/ε) singular vectors that are well-defined,

so if there is increased squared norm in its null space, it is not well-defined how to update

it. And second, still in between these updates within a round, there is no way to maintain

the error.

One can also try to shorten a round to update when F̂ increases by a (1 + ε) factor,

to bound the change within a round. But this causes O((1/ε) log(βN)) rounds, as in

Section 7.2.2, and leads to O((
√

m/ε2) log(βN)) total messages, which is as bad as the

very conservative and deterministic algorithm P1.

Thus, for direction x that is a right singular value as analyzed above, we can get a

Protocol 4 with O((
√

m/ε) log(βN)) communication. But in the general case, how to,

or if it is possible at all to, get O((
√

m/ε) log(βN)) communication, as Protocol 4 does

for weighted heavy hitters, in arbitrary distributed matrix tracking is an intriguing open

problem.

7.2.4.3 Experiments With P4

In order to give a taste on why P4 does not work, we compared it with other protocols.

Figures 7.2 and 7.3 show the the error this protocol incurs on PAMAP and MSD datasets.

Not only does it tend to accumulate error for smaller values of ε, but for the PAMAP dataset

and small ε, the returned answer is almost all error.

7.3 Experimental Evaluation
We denote our three protocols by P1, P2, and P3 in all plots. As a baseline, we consider

two algorithms: they both send all data to the coordinator. One calls Frequent-Directions



93

(FD) [91], and second calls SVD which is optimal but not streaming. In all remaining

experiments, we have used default value ε = 0.1 and m = 50, unless specified. Otherwise

ε varied in range {5× 10−3, 10−2, 5× 10−2, 10−1, 5× 10−1}, and m varied in range [10, 100].

7.3.1 Datasets

We used two large real datasets “PAMAP” and “YearPredictionMSD”, from the ma-

chine learning repository of UCI.

PAMAP is a Physical Activity Monitoring dataset and contains data of 18 different

physical activities (such as walking, cycling, playing soccer, etc.), performed by 9 subjects

wearing 3 inertial measurement units and a heart rate monitor. The dataset contains 54

columns including a timestamp, an activity label (the ground truth) and 52 attributes of

raw sensory data. In our experiments, we used a subset with N = 629, 250 rows and

d = 44 columns (removing columns containing missing values), giving a N × d matrix

(when running to the end). This matrix is low-rank.

YearPredictionMSD is a subset from the “Million Songs Dataset” [20] and contains the

prediction of the release year of songs from their audio features. It has over 500,000 rows

and d = 90 columns. We used a subset with N = 300, 000 rows, representing a N × d

matrix (when running to the end). This matrix has high rank.

7.3.2 Metrics

We compare efficiency and accuracy of our matrix tracking protocols on the following

metrics:

• err: Defined as ‖AT A − BTB‖2/‖A‖2
F, where A is the input matrix and B is the

constructed low rank approximation to A. It is equivalent to: max{x, ‖x‖=1}(‖Ax‖2 −

‖Bx‖2)/‖A‖2
F.

• msg: Number of messages (scalar-form and vector-form) sent during a protocol.

Similar to experiments in Section 2.5.7, we observed that both the approximation

errors and communication costs of all methods are very stable with respect to query time,

by executing estimations at the coordinator at randomly selected time instances. Hence,

we only report the average err from queries in the very end of the stream (i.e., results of

our methods on really large streams).
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Table 7.1 compares all algorithms, including SVD and FD to compute rank k approxi-

mations of the matrices, with k = 30 and k = 50 on PAMAP and MSD, respectively. Since

err values for the two offline algorithms are minuscule for PAMAP, it indicates it is a low

rank matrix (less than 30), whereas MSD is high rank, since error remains, even with the

best rank 50 approximation from the SVD method.

Note that P3WOR and P3WR refer to Protocol 3, without replacement and with replacement

sampling strategies, respectively. As predicted by the theoretical analysis, we see that

P3WOR outperforms P3WR in both settings, always having much less error and many fewer

messages. Moreover, P3WOR will gracefully shift to sending all data deterministically with

no error as ε becomes very small. Hence we only use P3WOR elsewhere, labeled as just P3.

Also note that P1 in the matrix scenario is far less effective; although it achieves

very small error, it sends as many messages (or more) as the naive algorithms. Little

compression is taking place by FD at distributed sites before the squared norm threshold

is reached.

Figures 7.4(a) and 7.5(a) show as ε increases, error of protocols increases too. In case

of P3 this observation is justified by the fact P3 samples O((1/ε2) log(1/ε)) elements, and

as ε increases, it samples fewer elements, hence results in a weaker estimation of true

heavy directions. In case of P2, as ε increases, they allocate a larger error slack to each

site and sites communicate less with the coordinator, leading to a coarse estimation. Note

that again P1 vastly outperforms its error guarantees, this time likely explained via the

improved analysis of Frequent-Directions [69].

Figures 7.4(b) and 7.5(b) show number of messages of each protocol vs. error guarantee

ε. As we see, in large values of ε (say for ε > 1/m = 0.02), P2 typically uses slightly more

messages than P3. But as ε decreases, P3 surpasses P2 in number of messages. This confirms

the dependency of their asymptotic bound on ε (1/ε2 vs. 1/ε). P1 generally sends much

more messages than both P2 and P3.

Next, we examined the number of sites (m). Figures 7.4(c) and 7.5(c) show that P2 and

P3 used more communication as m increases, showing a linear trend with respect to m. P1

shows no trend since its communication depends solely on the total weight of the stream.

Note that P1 sends its whole sketch, hence fix number of messages, whenever it reaches

the threshold. As expected, the number of sites does not have significant impact on the
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measured approximation error in any protocol; see Figures 7.4(d) and 7.5(d).

We also compared the performance of protocols by tuning the ε parameter to achieve

(roughly) the same measured error. Figure 7.6 shows their communication cost (#msg) vs

the err. As shown, protocols P1, P2, and P3 incur less error with more communication

and each works better in various regimes of the err versus msg trade-off. P1 works the

best when the smallest error is required, but more communication is permitted. Even

though its communication is the same as the naive algorithms in these examples, it allows

each site and the coordinator to run small space algorithms. For smaller communication

requirements (several of orders of magnitude smaller than the naive methods), then either

P2 or P3 is recommended. P2 is deterministic, but P3 is slightly easier to implement. Note

that since MSD is high rank, and even the naive SVD or FD do not achieve really small

error (e.g., 10−3), it is not surprising that our algorithms do not either.

Table 7.1: Raw Numbers of PAMAP and MSD.

DataSet PAMAP, k = 30 MSD, k = 50
Method err msg err msg

P1 7.5859e-06 628537 0.0057 300195
P2 0.0265 10178 0.0695 6362

P3WOR 0.0057 3962 0.0189 3181
P3WR 0.0323 25555 0.0255 22964
FD 2.1207e-004 629250 0.0976 300000
SVD 1.9552e-006 629250 0.0057 300000
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Aj

Âold
j

Āj

Figure 7.1: Possible update of Âold
j to Āj with respect to Aj for d = 2. Note the norm of a

matrix along each direction x is an ellipse, with the axes of the ellipse corresponding to the
right singular vectors. Thus Âold

j and Āj have the same axes, and along those axes both Āj

and Aj have the same norm, but otherwise are incomparable.
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Figure 7.2: P4 vs. other protocols on PAMAP
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Figure 7.3: P4 vs. other protocols on MSD
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Figure 7.4: Experiments for PAMAP dataset
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Figure 7.5: Experiments for MSD dataset
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CHAPTER 8

CONCLUSION

Matrix sketching is becoming an important tool within large scale learning and mining.

This dissertation develops FrequentDirections as a general and fundamental tool within

this landscape. FrequentDirections has a lot of applications in the data reduction step

of other algorithms where it serves as a concise summary. For example, in [68] we

used FrequentDirections for approximating Kernel Principal Component Analysis (KPCA)

of a streaming datasest. FrequentDirections has also been used for streaming anomaly

detection [77] which is a fundamental problem in any data analytics system. New online

hashing techniques (i.e., online sketching hashing [89]) are developed based on Frequent-

Directions to approximate nearest neighbors results in search queries.

Currently, deep learning is one of the most popular areas of research. Deep learning has

led to unprecedented breakthroughs for various problems in imaging and text analysis.

Sketching could be used to speed up development of neural network models. Various

learning algorithms need to learn hyperparameters, for tuning and performing multiple

cycles of learning algorithms is too expensive. Instead one could learn on a sketched

dataset for hyper parameters. Applications of FrequentDirections in this area are yet to

be explored.
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