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ABSTRACT 

 

 The chromosomal inversions of D. persimilis and D. pseudoobscura have deeply 

influenced our understanding of the evolutionary forces that shape natural variation, 

speciation, and selfish chromosome dynamics. Here, we perform a comprehensive 

reconstruction of the evolutionary histories of the chromosomal inversions in these 

species and provide a solution to the puzzling origins of the selfish Sex-Ratio 

chromosome in D. persimilis. We show that this Sex-Ratio chromosome directly 

descends from an ancestrally-arranged chromosome, suggesting that unsuppressed selfish 

chromosomes may remain polymorphic within populations for long periods of time. We 

further show that all fixed inversions between D. persimilis and D. pseudoobscura were 

segregating in the ancestral population long before speciation, and that the genes 

contributing to reproductive barriers must have evolved within them afterwards. We 

propose a new model for the role of chromosomal inversions in speciation and suggest 

that higher levels of divergence and an over-abundance of hybrid incompatibilities are 

emergent properties of ancestrally segregating inversions. Our findings force a 

reconsideration of the role of chromosomal inversions in speciation, not as a protector of 

existing hybrid incompatibility alleles, but as fertile ground for their formation. 
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CHAPTER 1 

 

INTRODUCTION 

 

Dobzhansky and Sturtevant’s key insight that chromosomal inversions can be 

used as a direct readout of natural genetic variation revolutionized evolutionary biology, 

and played a critical role in the unification of genetics and evolutionary theory.1,2 This 

insight powered a highly influential body of work centered on the polymorphic, fixed, 

and Sex-Ratio inversions of Drosophila persimilis and D. pseudoobscura.3 

 

The inversions of D. persimilis and D. pseudoobscura 

First, studies on the polymorphic inversions on the third chromosomes of D. 

persimilis and D. pseudoobscura led to the development of the first genetics-based 

phylogenetic reconstruction of the evolutionary history of the different inversion 

polymorphisms, and pioneered investigations of genetic variation across geographical 

distributions and timescales.2 Ongoing genomic analyses of these polymorphisms 

continue to reveal how the interplay between mechanisms of local adaptation, selection, 

recombination, and epistasis govern the patterns of genetic variation in natural 

populations.4–6 Together, these studies have transformed our understanding of the general 

principles that govern the patterns of natural genetic variation. 

Second, studies on the genetic basis of reproductive isolation between D. 

persimilis and D. pseudoobscura led to the development of the Dobzhansky-Muller 
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model of the evolution of hybrid incompatibilities, and provided a framework for 

understanding speciation.7–11 Recent studies have led to the development of two new 

models for the role of chromosomal inversions in speciation.12–17 These models attempt 

to explain two empirical patterns observed in this hybridization: i) nearly all genes that 

contribute to reproductive isolation are located among fixed chromosomal inversions 

between these species, and ii) these fixed chromosomal inversions display higher genetic 

divergence than collinear regions of the genome. Both models, which rely on a persistent 

history of gene flow either during secondary contact after speciation (Noor-Reiseberg 

model) or during speciation (Navarro-Barton model), can sufficiently explain both 

empirical patterns. As a result, the idea that chromosomal inversions may contribute to 

speciation has seen a dramatic resurgence.18–21  

Third, studies on the Sex-Ratio inversions in D. persimilis and D. pseudoobscura 

have provided insights into the mechanisms of meiotic drive, the population dynamics of 

selfish chromosomes, the fitness components that lead to protected polymorphisms, and 

the role of polyandry in countering selfish genetic elements.22–25 Males that carry Sex-

Ratio inversions on the X-chromosome eliminate nearly all Y-bearing sperm,26 produce 

nearly all female offspring, and heavily distort progeny sex ratios (therefore called Sex-

Ratio chromosomes). By tipping the balance of segregation in their favor in excess of 

Mendelian expectations, these selfish X-chromosomes can rapidly spread through 

populations even if they reduce the fitness of the individuals that carry them.27,28 In the 

absence of opposing forces such as the evolution of suppressor alleles, Sex-Ratio 

chromosomes may even drive populations extinct.29 The Sex-Ratio chromosomes of D. 

persimilis and D. pseudoobscura, however, represent enigmatic cases of unsuppressed 

distorting systems that are stably maintained within populations. These studies on Sex-
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Ratio chromosomes played a critical role in bringing forth the role of meiotic drive as a 

potent evolutionary force.30,31 

 

The strange collinearity between D. persimilis SR and D. pseudoobscura 

The Sex-Ratio chromosome of D. persimilis presents an enigmatic case. Sex-Ratio (SR) 

chromosomes have been identified in many Dipteran species, and are almost always 

associated with one or more chromosomal inversions relative to the wild type or 

Standard (ST) chromosomes. When a new inversion generates tight linkage between a 

segregation distorter and alleles that enhance distortion (or alleles that neutralize 

suppressors-of-distortion), this produces a stronger driving chromosome that can supplant 

its weaker versions.32 This explains why most Sex-Ratio chromosomes are associated 

with one or more derived inversions. The D. persimilis SR chromosome is also inverted 

with respect to the D. persimilis ST chromosome on the right arm of the X chromosome 

(XR). The Standard D. persimilis also differs from D. pseudoobscura by a single derived 

inversion. Surprisingly, however, the D. persimilis SR inversion appears to have reversed 

the same derived D. persimilis ST inversion, such that D. persimilis SR now appears 

collinear with D. pseudoobscura (Figure 1.1). This strange collinearity is thought to be 

the result of a second inversion on the background of D. persimilis ST at approximately 

the same breakpoints as the original D. persimilis inversion. However, previous 

molecular evolutionary studies have yielded conflicting results, and the origin of the D. 

persimilis Sex-Ratio inversion remains the subject of speculation.33–35  
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D. pseudoobscura

D. persimilis ST

D. persimilis SR

Figure 1.1: A phylogeny of the X chromosomes of D. persimilis SR, ST, and D. 
pseudoobscura. The D. persimilis SR chromosome is collinear across species 
boundaries with D. pseudoobscura. 
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The evolutionary history of the inversions of D. pseudoobscura and D. persimilis 

The inversions of D. persimilis and D. pseudoobscura have played an outsized 

influence on current evolutionary thought, and reconstructing their correct evolutionary 

history has important consequences for understanding the dynamics of selfish genes and 

speciation. Here, we sequenced the full genomes of ST and SR strains in D. persimilis and 

several strains of D. pseudoobscura to investigate the evolutionary history of 

chromosomal inversions in these two closely related species. First, we identify the 

inversion breakpoints on XR and find that the D. persimilis SR chromosome is precisely 

collinear with D. pseudoobscura ST. Moreover, the regions flanking the D. persimilis SR 

inversion breakpoints display phylogenetic discordance in the form of being more closely 

related to the D. pseudoobscura, rather than to the D. persimilis ST chromosome. Our 

results demonstrate that the D. persimilis SR chromosome arose, not from a second 

inversion event, but directly from the ancestrally-arranged chromosome. Second, we 

show that this phylogenetic discordance is not due to the result of gene flow between the 

two species and demonstrate that the patterns of discordance at the SR chromosome 

breakpoints are the result of incomplete lineage sorting of the derived D. persimilis ST 

inversion from the ancestor of D. pseudoobscura and D. persimilis. Third, by estimating 

the absolute divergence between the two collinear chromosomes, we demonstrate that the 

D. persimilis SR chromosome is a long-term segregating polymorphism that predates the 

species divergence between D. persimilis and D. pseudoobscura. Lastly, by estimating 

divergence in regions surrounding inversion breakpoints, we show that all of the fixed 

rearrangements between D. persimilis and D. pseudoobscura arose in the ancestor of the 

two species, but were passed exclusively to D. persimilis. Together, our results challenge 

the current understanding of the evolutionary history of these inversions, present 
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evidence of the long-term maintenance of Sex-Ratio chromosome polymorphisms, and 

suggest a new model for the role of chromosomal inversions in speciation. 



 

 

 

 

CHAPTER 2 

 

MATERIALS AND METHODS 

 

Isolation and maintenance of Sex-Ratio chromosome strains 

D. persimilis strains were provided as a generous gift by Dean Castillo, collected 

in the Sierra Nevada mountain range and Mt. St. Helena, CA. We tested individuals from 

these strains for the presence of Sex-Ratio chromosomes by crossing males to standard D. 

persimilis females. We isolated two individual D. persimilis Sex-Ratio strains and 

generated stable stocks through eight to twelve generations of inbreeding. All stocks were 

raised on standard cornmeal media at 18 degrees C. 

 

Polytene chromosome squashes  

We used two crosses of D. persimilis SR/ST heterozygotes to compare the D. 

persimilis SR chromosome with D. pseudoobscura and D. persimilis ST chromosomes.  

In the first cross, a D. persimilis SR/ST sepia heterozygous female was crossed to a D. 

pseudoobscura ST se male.  Of the two XL/XR karyotypes possible from this cross, we 

examined females heterozygous for XL and homozygous for XR inversions.  These 

females allow us to evaluate whether the D. persimilis SR and D. pseudoobscura ST 

chromosomes are homosequential.  In a second cross, a D. persimilis SR/ST sepia 

heterozygous female was crossed to a D. persimilis ST se male.  Of the two XL/XR 
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karyotypes possible from this cross, we examined females homozygous for XL and 

heterozygous for XR inversions.  These females allow us to examine the D. persimilis SR 

and D. persimilis ST heterozygotes. We prepared salivary squashes from larvae from 

these two crosses using standard techniques, with modifications described by Harshman 

(1977) and Ballard and Bedo (1991).36–38 

 

DNA extractions and sequencing  

To generate whole genome shotgun sequencing libraries for D. persimilis strains, 

we pooled one male each from two SR strains and two ST strains (from Sierra Nevada 

and Mt. St. Helena collections). We extracted DNA from these flies using the 5 Prime 

Archive Pure DNA extraction kit according to the manufacturer’s protocol 

(ThermoFisher, Waltham, MA). All libraries were generated with the Illumina TruSeq 

Nano kit (Epicentre, Illumina Inc, CA) using the manufacturers protocol, and sequenced 

as 500bp paired end reads on an Illumina HiSeq 2000 instrument. 

 

Sequence alignment and SNP identification 

Low-quality bases were removed from the ends of the raw paired end reads 

contained in FASTQ files using seqtk (https://github.com/lh3/seqtk) with an error 

threshold of 0.05. Illumina adapter sequences and polyA tails were trimmed from the 

reads using Trimmomatic version 0.30.39 The read quality was then manually inspected 

using FastQC. Following initial preprocessing and quality control, the reads from each 

pool were aligned to the D. pseudoobscura reference genome (v 3.2) using bwa version 

0.7.8 with default parameters.40 Genome wide, the average fold coverage was ~180x and 
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~133x for the D. persimilis ST and SR pools, respectively. For reads mapping to X 

chromosome scaffolds, the average fold coverage was ~97x and ~74x for D. persimilis 

ST and SR, respectively.  

After the binary alignments were sorted and indexed with SAMtools,41 single 

nucleotide polymorphisms (SNPs) were called using freebayes (v. 0.9.21)42 with the 

expected pairwise nucleotide diversity parameter set to 0.01, based on a previous 

genome-wide estimate from D. pseudoobscura.43 The samples were modeled as discrete 

genotypes across pools by using the “–J” option and the ploidy was set separately for X 

chromosome scaffolds (1N) and autosomes (2N). SNPs with a genotype quality score less 

than 30 were filtered from the dataset. We restricted all downstream analyses to sites that 

had coverage greater than 1N and less than 3 standard deviations away from the genome-

wide mean for all samples (Table S1). Across the genome, we identified a total of 

3,598,524 polymorphic sites, 703,908 and 844,043 of which were located on 

chromosomes XR and XL, respectively. 

The D. pseudoobscura reference assembly does not contain complete sequences 

for either of the arms of the X or 4th chromosomes. Instead, each is composed of a series 

of scaffold groups that differ both in size and orientation relative to one another.44 

Schaeffer et al. (2008) previously determined the approximate locations and ordering of 

each of these scaffolds.44 We used their map to convert the scaffold-specific coordinates 

of each site to the appropriate location on the corresponding chromosome to construct a 

continuous sequence.  
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Estimating the phylogenetic relationship of Sex-Ratio chromosomes 

We estimated the genetic distance between each pairwise grouping in 10 kb 

windows using Nei’s DA distance, which has been shown to accurately recover the 

topology of phylogenetic trees from allele frequency data.45,46 To root the tree with an 

outgroup, we aligned publically available short reads of D. miranda (SRX965461; strain 

SP138) to the D. pseudoobscura reference genome. In each window, we constructed 

neighbor-joining trees 47 using distance matrices constructed from the estimated genetic 

distances (DA) and classified the phylogeny based on the topology it supported. If a 

window contained fewer than 10 segregating sites, we did not construct a tree or estimate 

the genetic distance. For each tree, we performed 10,000 bootstrap replicates and only 

included those windows with a support value of 0.75 or higher.  

 

Divergence estimates  

We estimated absolute divergence with Nei’s dxy, a measure of the average 

number of pairwise nucleotide substitutions per site.48 dxy was measured between each 

population grouping in 10 Kb, nonoverlapping windows across the genome. To convert 

estimates of absolute divergence into divergence times, the dxy values were scaled to a 2 

My species split between D. pseudoosbcura and D. miranda in each window.  

 

Identification and verification of inversion breakpoints 

The proximal and distal breakpoints have both been characterized previously, and 

the regions in D. pseudoobscura contain unique sequence flanking a series of 302-bp 

repeats known as Leviathan repeats, present throughout the genomes of both D. 
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pseudoobscura and D. persimilis. We designed primers to capture both the array of 

repeats as well as portions of unique sequence. We extracted DNA from all three 

genotypes and amplified the proximal breakpoint region using primers designed to anneal 

to the D. pseudoobscura genomic sequence flanking the Leviathan repeats (F5’- 

GATCTAATCCAGAAAGTTCGCTTGCG -3’, R5’- 

AGTGTGACCCATTTTAAGCGG-3’). These primers amplified a single, approximately 

1500bp, product in D. pseudoobscura and D. persimilis SR, but not D. persimilis ST 

(Figure 2.1). PCR products were Sanger sequenced using the forward and reverse PCR 

primers at the DNA Sequencing Core Facility, University of Utah. The reads were 

aligned both to one another and to sequence from the D. pseudoobscura genome 

assembly around the proximal breakpoint. The sequenced PCR product was confirmed to 

contain both the repeats and sections of unique sequence flanking the repeat region at the 

proximal breakpoint. 
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Figure 2.1: Primer design strategy for amplifying the proximal breakpoint. Primers that 
bridge the breakpoint can amplify the breakpoint only if the chromosome is in the 
ancestral orientation, as in D. pseudoobscura and D. persimilis SR. The primers are not 
in the correct orientation to produce an amplicon in D. persimilis ST. 

(         )

pBP dBP

D. pseudobscura

D. persimilis SR

D. persimilis ST



 

 

 

 

CHAPTER 3 

 

RESULTS 

 

A high-resolution examination of polytene chromosomes confirms the apparent 

collinearity of D. persimilis Sex-Ratio with D. pseudoobscura 

To uncover the evolutionary origins of the D. persimilis SR chromosome, we 

screened for the Sex-Ratio trait in wild caught D. persimilis flies. We isolated two 

independent D. persimilis SR strains that produce >90% female progeny, and generated 

high-quality mosaic images of polytene chromosomes with squashes of larval salivary 

glands. Consistent with previous reports,30 the D. persimilis SR chromosomes in the 

strains that we isolated differ by one major inversion on XR with respect to D. persimilis 

ST, but appear collinear with D. pseudoobscura (Figure 3.1). If D. persimilis SR was 

derived from D. persimilis ST through a somewhat imprecise reversion to the ancestral 

arrangement, the banding patterns of polytene chromosomes in D. persimilis SR/D. 

pseudoobscura female hybrids may reveal slight imperfections near the inversion 

breakpoints. Even under close examination, we did not observe any disruption of 

chromosome pairing near the inversion breakpoints in D. persimilis SR/D. 

pseudoobscura heterozygotes, suggesting that any secondary inversion event may have 

been in close vicinity of the original breakpoints of the D. persimilis ST inversion. 
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A

B

5(F)5(F)

2(E)2(E)

XL InversionXL Inversion

DperSR/Dpse

2 Inversion2 Inversion

XR(A_D)

XL(A)XL(A)

3(C)3(C)

4(B)4(B)

DperSR/ST polytene
XR(A_D)

3(C)3(C)

XL(A)XL(A)

5(F)5(F)

2(E)2(E)

4(B)4(B)

DperSR/DperST

Figure 3.1: Polytene chromosome squashes show D. persimilis SR is collinear with D. 
pseudoobscura but not D. persimilis ST. While D. persimilis SR is collinear on the right 
arm of the X chromosome, the characteristic fixed inversions can be seen on the XL and 
2nd chromosomes in (A), but these chromosomes are collinear in (B). 
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D. persimilis Sex-Ratio and D. pseudoobscura are precisely  

collinear at a single base pair resolution 

While our polytene analyses showed no visible aberrations at the breakpoints of 

the D. persimilis inversion, such analyses provide only a coarse view of chromosome 

structure. Previously, the D. persimilis ST inversions breakpoints were mapped at a 

resolution of 30kb.15 To precisely identify the inversion breakpoints on the D. persimilis 

SR chromosome, we first performed whole genome sequencing of males pooled from 

two D. persimilis SR strains, as well as males pooled from two D. persimilis ST strains. 

Using the approximate genomic coordinates of the inversion breakpoints, we designed 

multiple primer pairs that span the proximal and distal inversion breakpoint sequences 

from D. persimilis SR and D. pseudoobscura. We performed PCR with these primers to 

successfully amplify single products using D. persimilis SR and D. pseudoobscura 

genomic DNA as templates. We were able to amplify sequences corresponding to the 

proximal breakpoint, but not the distal breakpoint. We identified the precise molecular 

breakpoints of this inversion by Sanger sequencing the proximal breakpoint PCR 

products, which revealed the presence of four 319bp Leviathan repeats 49 at the 

breakpoint. More importantly, D. persimilis SR and D. pseudoobscura sequences that 

flank the Leviathan repeats are precisely collinear to a single base pair resolution 

(Figure 3.2). These results show that a slightly staggered second inversion event is not 

the basis for the collinearity between the D. persimilis SR and D. pseudoobscura 

chromosomes.   
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Figure 3.2: D. persimilis SR is collinear with D. pseudoobscura at the base pair level. 
This primer pair produced amplicons from D. pseudoobscura and D. persimilis SR 
genomic template, but not D. persimilis ST (A). We sequenced this amplicon and find 
that the sequence at the inversion breakpoint region is collinear between D. persimilis 
SR and D. pseudoobscura. 
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The D. persimilis Sex-Ratio chromosome is more closely related to D. pseudoobscura 

than to D. persimilis at the inversion breakpoints 

If the D. persimilis SR inversion originated through a recombination event 

within Leviathan sequences at the inversion breakpoints, such an event can generate the 

same pattern of perfect collinearity of the flanking sequences. Such repetitive sequences 

are known to be hotspots for inversion breakpoints.49,50 While Leviathan repeats are 

unique to D. persimilis and D. pseudoobscura, there are more than 850 of these repeats 

spread across their genomes. Because XR alone harbors more than 650 Leviathan 

repeats spread across the chromosome arm, the probability of a second inversion event 

on D. persimilis SR at the same two Leviathan repeats as the original breakpoints 

appears vanishingly small. However, to directly test whether D. persimilis SR is 

recently derived from D. persimilis ST through a secondary inversion event, we 

constructed phylogenies in sliding windows across the chromosome using D. miranda 

as an outgroup. As expected, D. persimilis SR sequences cluster with those from D. 

persimilis ST across nearly the entire genome (Figure 3.3). Surprisingly, we find two 

large blocks of phylogenetic discordance concentrated at the inversion breakpoints on 

XR. In these recombination-limited regions of phylogenetic discordance, D. persimilis 

SR sequences are more closely related to D. pseudoobscura rather than to D. persimilis 

ST, with several regions within the inversion also showing the same discordant pattern 

(Figure 3.3). Together with the precise collinearity of D. persimilis SR and D. 

pseudoobscura, these results support a single origin of the arrangements of these two 

chromosomes. 
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Figure 3.3: The inversion breakpoints on XR show extensive phylogenetic discordance. 
(A) Sliding window phylogeny classification on XR. Blue, grey, and orange vertical lines 
represent the tree topology supported by neighbor-joining trees. Grey trees represent no 
phylogenetic discordance. Blue trees represent regions where the two collinear 
chromosomes appear more similar. Large regions centered on the proximal and distal 
breakpoints (dashed lines) of the XR inversion show discordant clustering of D. persimilis 
SR with D. pseudoobscura rather than D. persimilis ST. (B) Large regions of 
phylogenetic discordance are not observed in the remainder of the genome. 
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Phylogenetic discordance is a specific property of the 

D. persimilis Sex-Ratio chromosome 

We next asked whether the phylogenetic discordance that we observed with the 

D. persimilis SR chromosome is a general property of chromosomal inversions between 

D. persimilis and D. pseudoobscura. There are two other fixed inversion differences on 

the XL and 2nd chromosomes between the two species. Similar to the XR inversion, the 

un-inverted XL and 2nd chromosomes of D. pseudoobscura represent the ancestral state 

and the inverted D. persimilis chromosomes represent the derived state. Our sliding 

window phylogenetic analyses show that the sequences at the breakpoints of these two 

fixed inversions show no phylogenetic discordance and recapitulate the species tree. 

Although these analyses also revealed small regions of phylogenetic discordance in 

other regions of the genome, there is no clustering of consecutive windows showing this 

discordant pattern and discordant windows are not associated with inversions. These 

results demonstrate that the pattern of phylogenetic discordance is not a general feature 

of inversion differences between these species, but instead is a specific property of the 

D. persimilis SR chromosome (Figure 3.3).  

D. persimilis and D. pseudoobscura are known to rarely, but successfully, 

produce hybrids in nature.51 Gene flow across species may generate the same pattern of 

phylogenetic discordance we observe around the D. persimilis XR inversion if the 

species share a chromosomal arrangement that is also polymorphic within each species. 

We were able to test this idea because, like the Standard arrangement of XR, the 

Standard arrangement on the 3rd chromosome (3ST) is both shared across D. persimilis 

and D. pseudoobscura, and is polymorphic within each species.52 Using 3ST from both 
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species and the Arrowhead (3AR) arrangement of D. pseudoobscura, we performed the 

same phylogenetic analysis across the 3rd chromosome. Sequences at the breakpoints of 

this shared polymorphic inversion recapitulate the correct species tree, again indicating 

that the large blocks of phylogenetic discordance at the inversions breakpoints on XR is 

a unique property of the D. persimilis SR chromosome (Figure 3.4).  

 Together with the precisely-shared breakpoints, the relatedness between D. 

persimilis SR and D. pseudoobscura at the inversion breakpoints rejects the currently 

accepted secondary-inversion hypothesis for the origin of the D. persimilis SR 

arrangement, and suggests a single origin for these chromosomes. Our results raise the 

surprising possibility that D. persimilis SR was derived either through a recent  

introgression event from D. pseudoobscura, or from the common ancestor of D. 

persimilis and D. pseudoobscura. 

 

The D. persimilis SR inversion is derived from the ancestor of 

D. persimilis and D. pseudoobscura 

Because D. persimilis and D. pseudoobscura can hybridize in nature,51 our 

results raise the possibility that D. persimilis SR originated as a recent introgression of 

D. pseudoobscura XR. Under the introgression scenario, repeated back-crossing to D. 

persimilis after the initial hybridization event gradually removes D. pseudoobscura 

material through single crossovers outside the inversion, and through double crossovers 

or gene conversion events inside the inversion. These recombination events homogenize 

D. persimilis SR and ST, largely wiping out any hints of a potential cross-species origin 

of D. persimilis SR from D. pseudoobscura. However, this history of introgression  



21 

 

  

Figure 3.4: Species clustering within inversion polymorphisms on chromosome 3. The 
D. pseudoobscura 3rd chromosome arrangements Standard (ST) and Arrowhead (AR) 
lack the large breakpoint-specific phylogenetic discordance observed at the inversion 
break points of the inversion between D. pseudoobscura and D. persimilis SR on 
chromosome XR. While some windows demonstrate phylogenetic discordance, these 
windows are independent of the arrangement of the chromosome forms and, unlike the 
XR inversion, do not cluster at the inversion breakpoints. 
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would be best preserved at the breakpoints of the inversion where suppression of 

crossovers is greatest.53,54 The preservation of D. pseudoobscura material at the 

inversion breakpoints would then generate the blocks of phylogenetic discordance we 

observe on D. persimilis SR. The modified fd statistic  is a broadly used and effective 

test to discriminate between introgression versus incomplete lineage sorting (ILS), 

similar to related “ABBA-BABA” measures.55 We analyzed our genomic data from D. 

persimilis SR and ST, along with D. pseudoobscura and D. miranda sequences, to 

estimate the modified fd across the entire genome. Indeed, we observed significant fd 

between D. pseudoobscura and D. persimilis SR at the same chromosomal inversion 

breakpoint regions that show phylogenetic discordance (Figure 3.5). 

Interpreting significant values of fd and related statistics as introgression 

involves an implicit assumption of free recombination in the ancestral population. 

However, in regions of limited recombination, such as when inversions segregate in the 

ancestral population, it is incorrect to conclude introgression from the results of these 

statistical tests. Because the D. persimilis SR chromosome involves a chromosomal 

inversion that was potentially segregating in the ancestral population, this violates the 

assumptions required to reliably conclude introgression from the fd statistic alone.56 The 

interpretation of introgression based on the modified fd statistic in this context may, 

therefore, be premature and instead may be the result of incomplete lineage sorting 

(ILS). Indeed, it is not clear if any of the existing statistical approaches can effectively 

discriminate between introgression and ILS to determine the ancestry of chromosomal 

inversions. 

Moreover, an alternative model that involves the inheritance of the D. persimilis   
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Figure 3.5: Significant fd signature at phylogenetically discordant breakpoints. (A) We 
observe large regions with significant fd at both of the inversion breakpoints on the XR 
chromosome. (B) In contrast, we observe fewer and less concentrated windows with 
significant fd through the remainder of the genome. 
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SR and D. pseudoobscura ST arrangements from the common ancestor of both species 

can adequately explain the observed patterns. In particular, the phylogenetic 

discordance that we observe can be explained by the inheritance of the D. persimilis SR 

arrangement from the ancestor of D. persimilis and D. pseudoobscura, in combination 

with ILS of the D. persimilis ST chromosome (Figure 3.6). Under the ILS scenario, the 

D. persimilis ST inversion originates as a freely segregating polymorphic chromosome 

in the ancestral population of D. persimilis and D. pseudoobscura. The recombination-

suppressed regions at the breakpoints of the D. persimilis ST inversion begin diverging 

from the ancestrally-arranged chromosomes long before speciation. During this time, 

the ancestor of D. persimilis SR and D. pseudoobscura ST chromosomes continue to 

freely recombine until the time of speciation, but diverge from the derived inverted D. 

persimilis ST chromosome. Similar to the introgression scenario, recombination events 

homogenize D. persimilis SR and ST after speciation, except at the breakpoints of the 

inversion, thus leading to the patterns of phylogenetic discordance. 

We reasoned that the same recombination-suppressing properties of 

chromosomal inversions that thwart the application of standard statistical approaches 

may also preserve the information necessary to discriminate between introgression and 

ILS. In particular, because recombinants at the sequences in the regions near the 

inversion breakpoints are less frequent, the divergence of the chromosomes can be 

reliably estimated using these sequences. The introgression and ILS hypotheses make 

distinct and testable predictions about the relative divergence times of each 

chromosomal arrangement. Under the introgression scenario, we expect the D. 

persimilis SR chromosome to appear much younger than the species divergence time  
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Figure 3.6: Discordance may be produced by introgression or incomplete lineage 
sorting of the XR arrangements. Under model (A), the D. persimilis ST inversion 
segregates in the ancestral population of the species. Later divergence between D. 
persimilis SR and D. pseudoobscura chromosomes and recombination restriction 
between the two D. persimilis chromosomes leads to phylogenetic discordance at the 
inversion breakpoints. (B) An introgression model again predicts discordance if the D. 
persimilis SR chromosome introgressed from D. pseudoobscura after species 
divergence. Recombination between the introgressed chromosome and D. persimilis ST 
will gradually homogenize the two chromosomes excluding the inversion breakpoints. 
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due to a more recent coalescence at introgressed loci. In contrast, the ILS scenario 

makes two distinct predictions. First, we expect the D. persimilis SR chromosome to be 

as old or older than the species divergence time. Second, we expect the D. persimilis ST 

chromosome to be much older than the species divergence time and more diverged from 

the D. persimilis SR chromosome near inversion breakpoints. To test these predictions, 

we estimated the absolute divergence (dxy) in 10 kb windows between D. persimilis and 

D. pseudoobscura in all collinear regions across the genome and observed a mean dxy of 

2.42x10-3 (95% CI: 2.37 – 2.47 x10-3). When standardized to a D. miranda divergence 

set to 2 million years in each window, this corresponds to a speciation time between D. 

persimilis and D. pseudoobscura of approximately 500,000 years ago. We used the 

sequences flanking the inversion breakpoints (± 250 kb) to estimate dxy between D. 

persimilis SR and D. pseudoobscura and observe a significantly higher (p<2.2x10-16) 

mean divergence (4.55 x10-3; 95% CI: 4.22 – 4.89 x10-3) than estimated between 

species in collinear regions, indicating the D. persimilis SR chromosome is older than 

the speciation time (Table 3.1). When similarly standardized to the D. miranda 

divergence in each window flanking the breakpoints, we estimate the D. persimilis SR 

chromosome to be ~1.09 million years old. This is inconsistent with the introgression 

scenario, and suggests that ILS may better describe the evolutionary origins of the D. 

persimilis SR chromosome. Moreover, the ILS hypothesis makes a second prediction 

that the D. persimilis ST chromosome should be older than the divergence time between 

the two species. Indeed, we estimate dxy between D. persimilis ST and D.pseudoobscura 

in the same sequences flanking the breakpoint regions (dxy: 4.94 x10-3; 95% CI: 4.67 – 

5.21 x10-3) to be significantly greater (p<0.038) corresponding to an older standardized  
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Species
divergence

Divergence Time Estimates

0.50

0

1.09

0.59

1.23

0.73

1.48

0.98

0.75

0.25

0.42

-0.08

1.66

1.16

Divergence
time (mya)

Time prior
to species
divergence

DperSR
divergence

Chr XR
inversion

Chr 2
inversion

Chr XL
inversion

Chr 3 PP
inversion

Chr 3 AR
inversion

0.59

0.09

Chr 3 AR
divergence

Table 3.1: The fixed inversions between D. persimilis and D. pseudoobscura were 
segregating prior to speciation. The order of the inversions between the two species is 
concordant with previous estimates. The XL inversion is the oldest, followed by the 2nd 
inversion, and lastly the XR inversion, which still predates species divergence by 730,000 
years. 
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divergence time of ~1.23 million years old. 

It is important to note three points. First, accurately estimating absolute 

divergence time in years is known to be fraught with several sources of error and relies 

on an accurate calibration point in the absence of an estimate of the mutation rate in 

each species.57 We instead rely on the relative comparison between dxy estimates, which 

are sufficient to resolve the questions that we seek to address here. Second, our 

conclusion that the D. persimilis ST inversion existed as a segregating polymorphism in 

the ancestor of D. persimilis and D. pseudoobscura is robust to various methods of 

inferring the divergence between the two species. For example, our results are not 

significantly different (p<0.70) if we use whole genome data or only the collinear 

regions to estimate the absolute divergence between D. persimilis and D. 

pseudoobscura (genome-wide mean dxy: 2.41 x10-3; 95% CI: 2.36 – 2.46 x10-3). Third, 

our data only address the order of origins of the various chromosomal inversions, but do 

not allow us to estimate when the Sex-Ratio distortion alleles evolved in these 

populations. Identifying the causal segregation distortion genes may allow us to address 

this aspect in the future. Despite these important caveats of our analysis, the two 

observations of D. persimilis SR being older than the species divergence and the D. 

persimilis ST chromosome appearing significantly more diverged than both the collinear 

regions and the D. persimilis SR chromosome reject the introgression scenario and 

support the ILS explanation.  
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All fixed inversions in D. persimilis originated as segregating polymorphisms in the 

ancestral population of D. persimilis and D. pseudoobscura 

Because the XR inversion exists only in D. persimilis and not in D. 

pseudoobscura, it is often immediately assumed that this inversion must have originated 

in the D. persimilis lineage after speciation. The idea that the XR inversion on the 

Standard chromosome of D. persimilis originated as a segregating polymorphic 

inversion in the ancestral population prior to speciation goes against this widely-

accepted notion. The two other fixed inversions on the XL and 2nd chromosomes in D. 

persimilis are thought to be even older than the XR inversion.12 We used the same 

approach that utilizes the sequences flanking inversion breakpoints to also estimate the 

divergence of the inversions on the XL and 2nd chromosomes. Consistent with the idea 

that the XL and 2nd chromosome inversions are older than the XR inversion, we 

observed greater mean levels of dxy for both fixed inversions (XL: 1.08x10-2; 2: 6.82x10-

3) than for XR (dxy: 4.94 x10-3). Likewise, standardizing to the speciation time with D. 

miranda, we estimate that the inversions on XL and the 2nd chromosomes originated 

approximately 1.66 and 1.48 million years ago, respectively (Table 3.1). Our results 

show that all of these fixed inversions originated in the ancestral population long before 

the speciation event that separated D. persimilis and D. pseudoobscura.  

Because it may be argued that genome-wide divergence estimates may be a poor 

proxy for speciation time, we calculated an estimate using another method. D. 

persimilis and D. pseudoobscura harbor numerous inversion polymorphisms on the 3rd 

chromosome that are exclusive to each species. Structural analyses of the relationship 

between these inversion polymorphisms show that many of these have been derived 
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from the Standard arrangement in D. persimilis (3ST).52,58 This ancestral 3ST 

arrangement continues to segregate in both D. persimilis and D. pseudoobscura 

populations, and is the only 3rd chromosome arrangement that is shared between the two 

species. Because the 3ST arrangement was present in the ancestral population, and was 

inherited by both D. persimilis and D. pseudoobscura, the amount of divergence 

between the 3ST arrangements of the two species provides an opportunity to determine 

an upper bound to the estimates of speciation time.  We estimated absolute divergence 

in inversion-associated sequences from the 3ST strains of D. persimilis and D. 

pseudoobscura, and observed a mean dxy of 2.49 x 10-3 (95% CI:  2.34 – 2.65 x10-3). 

Standardizing to the speciation time with D. miranda in these regions, we estimate the 

3ST inversion between D. persimilis and D. pseudoobscura to have diverged 

approximately 590,000 years ago. This estimate is consistent with those using genome-

wide sequences, and is far younger than any of the fixed inversion differences. This 

difference in the age of the fixed inversions and the time of speciation is not subtle: 

while the speciation time is estimated at around 500,000 years, the XL, XR, and 2nd 

chromosome inversions are at least twice as old as this estimate (Figure 3.7). These 

results suggest that all of the fixed, derived inversions in D. persimilis must have freely 

segregated in the ancestral population for a substantial period of time before speciation. 

  



31 

 

 

 

0.5

0.0

1.0

1.5

2.0

3PP 3AR 3STXL ST2 2SR XL3ST

Chr XL Chr 2 Chr XR Chr 3
D

iv
er

ge
nc

e 
Ti

m
e 

(M
ya

)

ST
D. pseudoobscura D. persimilis

Figure 3.7: Incomplete lineage sorting of the inversions of D. persimilis and D. 
pseudoobscura. The fixed inversions on the XL and 2nd chromosomes, as well as the 
polymorphic inversions on XR and the Pikes Peak (3PP) inversion arose before species 
divergence. Incomplete lineage sorting produced the observed inversion patterns in the 
species present today. 



 
 

 

 

 

CHAPTER 4 

 

DISCUSSION 

 

The study of chromosomal inversions in the classic systems of D. pseudoobscura 

and D. persimilis has deeply informed our understanding of the evolutionary forces that 

shape natural variation, the evolution of new species, and selfish chromosome dynamics. 

Our results have several important implications.  

First, our results provide a solution to the strange collinearity of the D. persimilis 

SR and D. pseudoobscura ST chromosomes first observed by Dobzhansky. We show that 

this collinearity is a consequence of the direct descent of these chromosomes from one of 

the ancestrally segregating arrangements, and not due to two independent inversions at 

the same breakpoints. Segregation distorters are often associated with inversions because 

new inversions that tightly link a segregation distorter gene with existing enhancer alleles 

enjoy a selective advantage. In contrast to most other Sex-Ratio systems associated with 

derived inversions, the D. persimilis SR system evolved on the background of an 

ancestral arrangement. This indicates that segregation distorters may not only become 

associated with new inversions, but can utilize existing chromosome inversion 

polymorphisms.  

Second, a new Sex-Ratio distorting allele may follow three potential fates over 

time: 1) it may get stochastically lost; 2) it may drive populations to extinction through 
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biased sex ratios; 3) it may get suppressed and become cryptic.59 When we observe extant 

Sex-Ratio systems, this represents a snapshot in the life of a distorting chromosome on its 

way to one of these three fates. Because Sex-Ratio chromosomes have such a large effect 

on phenotypes tightly linked to fitness traits, one may expect this dwell time to be short. 

Our findings with the D. persimilis SR chromosome along with a growing number of 

other studies suggest that, contrary to these expectations, some unsuppressed Sex-Ratio 

chromosomes may remain polymorphic for long periods of time.60–63 This can occur if 

the evolutionary advantage conferred by the selfish behavior of a distorter is balanced by 

a fitness cost associated with the chromosome.64 These results may also have 

implications for artificial gene drive systems.65,66 While evolutionary analyses of the fate 

of artificial gene drive systems have focused on the rise of resistant targets of distortion, 

our data suggest that even unsuppressed drive systems may linger in populations for a 

long time. 

Third, our results demonstrate the difficulty in interpreting statistics such as the 

modified fd when inversions segregate in the ancestral population. When we used such an 

approach in this study, we observed significant fd at the inversion breakpoints of D. 

persimilis SR. Such signals are often interpreted as evidence for past introgression events. 

In the context of our study, these signals could not distinguish between introgression and 

ILS because of restricted recombination in the ancestral population. Nonetheless, many 

analyses of this class are applied to systems where the history of recombination 

landscapes is unknown. Such signals should be interpreted with caution, particularly 

when inversions potentially segregate in ancestral populations. Our results show that, in 

the case of inversions, the same recombination block that complicates the interpretation 
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of these statistics also preserves information that can be used to reconstruct evolutionary 

histories of these inversions. 

Fourth, the inversion differences in D. pseudoobscura and D. persimilis have led 

to the development of models for the role of chromosomal inversions in the evolution of 

hybrid incompatibilities. Any model exploring this role must explain at least two 

empirical patterns: a) the fixed inversions between D. persimilis and D. pseudoobscura 

have higher divergence as compared to collinear regions of the genome, and b) most 

genes that underlie reproductive isolation between D. persimilis and D. pseudoobscura 

reside within these inversion differences. Our results show that these inversions were 

freely segregating in the ancestral population long before speciation, and that the genes 

contributing to reproductive barriers must have evolved within them afterwards. 

Here, we propose a simple model to explain the above two empirical patterns 

(Figure 4.1). 1) Chromosomal inversions can arise and persist in ancestral populations for 

long periods of time. During this period, the genomic regions spanning the inversions and 

the corresponding regions on the un-inverted chromosomes can accumulate genetic 

divergence aided by the suppression of recombination in heterozygotes.4,5,43 2) These 

chromosomal inversions may undergo incomplete lineage sorting when the ancestral 

population is split into two allopatric populations.67 At the initial time of separation, the 

genes within the chromosomal inversions are already highly diverged, whereas the genes 

within the collinear regions are nearly identical, with little or no divergence. The highly 

diverged genes associated with chromosomal inversions are fewer mutational steps away 

from reaching an incompatible state and are, therefore, likely to evolve to an 

incompatible state more quickly than those in the collinear regions of the genome. This 
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Figure 4.1: Inversions accelerate the formation of hybrid incompatibilities.  
(A) Polymorphic inversions arise in the ancestor of the two species. (B) Restricted 
recombination between the inversions leads to accumulating divergence (red, blue) 
distinct from collinear regions of the genome (grey). (C) Incomplete sorting of the 
inversions between two isolated populations generates immediate divergence between 
the two populations. (D) Preexisting divergence increases the chance of hybrid 
incompatibilities forming in the inverted regions as compared to the collinear regions. 
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accumulation of hybrid incompatibilities occurs in isolation, unopposed by selective cost 

of producing unfit offspring, in a manner consistent with the Dobzhansky-Muller 

model.11,68 This simple model is consistent with all of our findings, and sufficient to 

explain both patterns. Under our model, the heterogeneity in divergence across the 

genome caused by ancestrally segregating inversions makes the evolution of alleles that 

cause reproductive isolation more likely in the regions encompassed by these inversions 

rather than in the collinear regions of the genome. 

Previously, two other models have attempted to explain these patterns. Work 

centered on the inversions between D. persimilis and D. pseudoobscura, and those 

between species in the Helianthus sunflower genus, led to the development of the Noor-

Rieseberg model.16,17 According to the Noor-Rieseberg model, if populations diverge in 

isolation and later re-hybridize on secondary contact, then any incompatible alleles that 

may have evolved will carry a fitness cost and be selected against. Because inversions 

suppress recombination, this generates a large block of tightly linked loci. If an 

incompatible allele is associated with an inversion, then its linkage to other beneficial 

alleles within the inversion may preserve it in the face of gene flow. In contrast, any 

incompatible allele that is contained within collinear regions will be replaced by a 

compatible allele. Thus, fixed inversions associated with hybrid incompatibility genes 

will appear more diverged, while collinear regions will be homogenized by pervasive 

gene flow after speciation. 

In contrast to the Noor-Rieseberg model, which relies on gene flow after 

speciation, the Navarro-Barton model invokes gene flow during speciation to explain the 

above patterns.69 Normally, due to the cost of producing unfit hybrids, an incompatible 
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allele is not expected to spread within populations connected by migration. This model 

considers a scenario where an incompatible allele is located within a chromosomal 

inversion that carries beneficial alleles. According to this model, the fitness cost incurred 

by an incompatible allele due to producing unfit hybrids can be offset by the fitness 

advantage conferred by its linkage to beneficial alleles. Because an incompatible allele 

located in a collinear region is less likely to be tightly linked to a beneficial allele, 

inversions rather than collinear regions will contain hybrid incompatibility genes. In 

addition, inversions associated with alleles that are beneficial in one population but not 

the other may persist for a long time and accumulate genetic divergence. Under this 

model, ancestrally segregating inversions explain both patterns described above. 

Both the Navarro-Barton and Noor-Rieseberg models rely on gene flow during or 

after speciation to account for the higher divergence of fixed inversions, and their 

association with hybrid incompatibility genes. We, however, find little evidence for 

extensive gene flow that would be required to explain the phylogenetic discordance that 

we observed on the D. persimilis XR chromosome. In the localities where D. 

pseudoobscura and D. persimilis overlap, there are frequent arrangements in both species 

that were derived from the ST karyotype.52 D. pseudoobscura alone harbors more than 30 

different polymorphic inversions.2 If any of the 3rd chromosome inversion 

polymorphisms that arose after speciation in D. pseudoobscura were to be found in D. 

persimilis, this would provide strong evidence for gene flow during secondary contact 

between these species. For example, if D. persimilis harbored an Arrowhead 3rd 

chromosome arrangement, which arose in D. pseudoobscura after speciation,70 this 

would provide indisputable evidence of large-scale gene flow on secondary contact as 
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necessitated by the Noor-Rieseberg model. Instead, D. persimilis and D. pseudoobscura 

each have their own exclusive series of third chromosomes inversions. Similarly, strong 

evidence for gene flow during the accumulation of hybrid incompatibilities as 

necessitated by the Navarro-Barton model is also lacking. 

Our model can also account for a third empirical pattern that sympatric species 

are more likely to harbor fixed chromosomal inversion differences as compared to 

allopatric species.71 Under our model, when two temporarily isolated populations inherit 

ancestrally segregating chromosomal inversions through incomplete lineage sorting, 

these populations start with highly diverged genomic regions at birth (i.e., associated with 

inversions) where genes underlying isolating mechanisms may evolve quickly. In 

contrast, populations that inherit fully collinear genomes have little or no divergence 

between them at birth and may, therefore, require more time to evolve isolating 

mechanisms.  

If single species often fragment into temporarily isolated populations and merge 

again, then the populations that inherit ancestrally segregating inversion differences 

through ILS are more likely to survive as separate species even if they later become fully 

sympatric. In contrast, those with collinear genomes are less likely to evolve hybrid 

incompatibilities during temporary allopatry and collapse back into single species on 

secondary contact. Such cases will not be observed, unless allopatry is maintained long 

enough to allow the evolution of hybrid incompatibilities. Together, this process is 

predicted to generate a pattern of sympatric species pairs that are enriched for inversion 

differences, and allopatric species pairs that have collinear genomes.  

Our model also makes a distinct prediction regarding young allopatric species that 
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inherit ancestrally segregating inversions through ILS: if such cases are found, hybrid 

incompatibility genes must be enriched in regions spanned by the inversion differences 

despite no gene flow between these populations. Because hybrid incompatibilities may 

accumulate across the genome over time through the snowball effect, this enrichment of 

hybrid incompatibility genes at inversions may decay over time in older species. This 

prediction is not expected under the Noor-Rieseberg or Navarro-Barton models. 

We propose that higher divergence and hybrid incompatibilities are emergent 

properties of ancestrally segregating inversions that are inherited through incomplete 

lineage sorting. Our model explains previously observed empirical patterns without 

invoking gene flow across populations during or after speciation. These findings force a 

reconsideration of the role of inversion polymorphisms in speciation, perhaps not as a 

protector of existing hybrid incompatibility alleles, but as fertile ground for their 

formation.
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