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ABSTRACT 

Persistent drought conditions and associated vegetation mortality in the central 

Sierra Nevada of California were analyzed from 2013-2015 using a combination of field-

derived polygons and AVIRIS hyperspectral data. Linear Discriminant Analysis (LDA) 

was used to classify hyperspectral data into 5 land cover classes based on dominant flora. 

LDA accuracies were compared across years in order to determine whether classification 

accuracy was correlated with increasing drought severity. It was determined that 2013 

had the greatest accuracy and 2015 had the lowest. However, this trend was influenced by 

Bidirectional Reflectance Distribution Function (BRDF) effects in the densely forested 

landscape. 

Fractional cover data of green vegetation (GV), non-photosynthetic vegetation 

(NPV), and soil were obtained from the US Forest Service to analyze which land cover 

classes and which elevation intervals experienced the greatest fractional cover change, 

which are both indicators of vegetation senescence and mortality. GV loss deemed the 

most appropriate indicator of vegetation senescence and mortality as NPV and soil 

appeared to be confused by the Multiple Endmember Spectral Mixture Analysis 

(MESMA) method used to obtain the fractional cover images. Mixed oak woodland 

(MO) and mixed low conifer (LC) forests experienced the greatest and second-greatest 

decreases in GV, respectively. Lower elevation areas (695-1369 m) generally



experienced greater GV loss than higher elevation areas (2167-2779), which coincided 

with both MO and LC forest classes. 

The MO forest class, which occurs most in lower elevation areas, was comprised 

of dominantly drought resistant flora and experienced the greatest GV loss during the 

study period (16%). Conversely, the HC forest, which occurs dominantly in higher 

elevation areas, was comprised of dominantly non-drought-tolerant flora but experienced 

less GV loss (5%). This suggests that the differences in elevation and location of 

vegetation within the landscape played a larger role than the dominant floras’ degrees of 

drought tolerance. 

Variations in seasonal senescence may have influenced the measured loss of GV 

for the MO and LC classes, which contained deciduous vegetation. However, overall GV 

loss in all classes, even those without trees, indicates that the landscape likely 

experienced vegetation mortality, especially at low elevations in the MO and LC classes.

iv 
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CHAPTER 1 

INTRODUCTION 

1.1 Climate in the American West 

Climate in the American West is punctuated over time by periods of drought 

(Brunelle and Anderson, 2003; Cook et al., 2015; Davis et al., 1985; Davis and Moratto, 

1988; Heusser et al., 2015; Kleppe et al., 2011; Robeson, 2015). Some drought events 

may have relatively little impact on the composition of ecological communities, while 

others can have lasting and severe consequences through elevated forest mortality (Allen 

et al., 2010). Water deficits associated with drought increase physiological stress directly 

by reducing moisture availability in the soil and indirectly by amplifying tree 

susceptibility to pathogen, insect, and fire outbreaks (Allen et al., 2010). Forest die-off 

due to ongoing drought conditions is attributed to declines in whole-branch hydraulic 

conductivities and embolisms, which ultimately result in hydraulic failure (Anderegg et 

al., 2016a, 2014; Choat et al., 2012). Exceptionally warm temperatures during a drought 

can also serve to worsen its effects by increasing evaporative demand in the soil and leaf 

canopies (Asner et al., 2015). As global temperatures continue to rise, so does the risk for 

accelerated forest mortality and community changes, especially for forests within or near 

water-limited climates such as the mediterranean climate (Cs - Köppen Climate 

Classification) present throughout California (AghaKouchak et al., 2014; Allen et al., 
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2010; Anderegg et al., 2016b, 2014).  

 

1.2 Drought in the American West 

The American West is currently affected by a drought which, by one account, first 

began around 2005 and became a megadrought, in 2015 after 10 consecutive years of 

persistent drought conditions (Kogan and Guo, 2015) (Figure 1). Megadroughts generally 

have been defined as droughts that persist for at least 10 consecutive years without 

alleviation. Although periods of drought are not uncommon within the Western U.S., this 

most recent event is characterized by a longer duration and elevated temperatures when 

compared to other drought events within the last 30 years, which typically lasted from 1 

to 4 years (Kogan and Guo, 2015). The current drought is therefore the only mega-

drought to occur in over 30 years. Drought accompanied by elevated temperatures is 

associated with vegetation mortality, wildfires, and increased insect attacks (Williams et 

al., 2010). The likelihood of these hot drought events occurring is increasing in 

probability and spatial extent, and is exacerbated by the multidecadal length over which 

these drought events are likely to occur (Overpeck, 2013).  

Anthropogenic contributions to a warming climate have served to intensify and 

worsen the effects observed during this anomalous drought and will increase the 

likelihood of extreme drought  and hydrologic events into the 21st century (AghaKouchak 

et al., 2014; Cook et al., 2015; Miller et al., 2009; Stewart et al., 2015; Williams et al., 

2015). Droughts that extend across entire continents, such as the pan-continental drought 

of 2012, which occurred in 12% of years during the past millennium, may likely increase 

in frequency as greenhouse gas emissions increase (Cook et al., 2014). Prediction 
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modeling shows a 75% probability that the American West will experience widespread 

megadrought conditions before 2100 under a low CO2 emission scenario, which increases 

to an 80-99% likelihood under high emissions (Ault et al., 2016; Cook et al., 2015). 

Continued monitoring and assessment of forest health and potential risk to ecosystem 

services during the recent drought is vital for resource managers as well as for climate 

change prediction modeling. 

 

1.3 Vegetation Response to Drought Conditions 

The highest intensity drought and most severely affected area lies within the state 

of California, which is home to some of the oldest and most diverse forest ecosystems in 

the U.S., including taxa such as the giant sequoia (Figure 1) (Asner et al., 2015; 

Belmecheri et al., 2016; Fuchs, 2016). In 2014, ~70% of the vegetation in California was 

under stronger than moderate stress while 40% of the vegetation in California was under 

“severe” to “exceptional” stress (Kogan and Guo, 2015). According to the National 

Drought Mitigation Center (NDMC), exceptional drought conditions may cause 

exceptional and widespread loss of crop and pasture (Fuchs, 2016). Some of the forest 

ecosystems in California that are most vulnerable to drought are those located on the west 

slope of the Sierra Nevada because of their hydraulic-dependence on winter snowpack. 

Drought conditions there were exceptional even at high elevation and experienced 

significant canopy water loss due to the recent drought (Asner et al., 2015). These oak 

woodland and conifer forests are situated topographically above a dry chaparral 

ecosystem and typically receive precipitation from air masses as they are forced to rise 

over the crest of the Sierra Nevada to the east.  
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Mortality, or death, of vegetation can occur in response to multiple circumstances 

including drought-induced hydraulic failure, fires, disease, bark beetles, and other blights. 

Recovery of vegetation in a postmortality circumstance also varies due to a variety of 

conditions including soil moisture, temperature, taxa-type, and topography. Meng et al. 

(2015) found that for mixed conifer and red fir forests of California, postfire recovery did 

not fully occur after 5 years. Additionally, greater soil moisture and mild temperatures in 

the first year following mortality were associated with a more substantial recovery in the 

fifth year postmortality (Meng et al., 2015). Drought, like fire, can result in 100% 

vegetation mortality in a given area; however, fire yields different soil-nutrient responses 

than drought. Postfire recovery times of greater than 5 years may serve as first-order 

approximations of drought-recovery times. Also, as drought is alleviated, the magnitude 

of postdrought precipitation and temperatures may affect how quickly vegetation 

recovers. 

 

1.4 Research Objectives 

1.4.1 Goals 

The hypothesis of this study is that drought-induced vegetation response is 

quantifiable via measurement of decreasing fractional photosynthetically active 

vegetation cover, and is more pronounced at lower elevations; therefore, forest 

ecosystems that exist at lower elevations have a greater vegetation response to drought 

than those at higher elevations. Secondary to this is that intense drought conditions in the 

montane Sierra Nevada forests are correlated with impaired classification accuracy of 

land cover. 
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The objectives of this study are twofold; 1) To quantify how Green Vegetation 

(GV) fraction within certain vegetation types changed from 2013 to 2015 using 

hyperspectral imagery from the Airborne Visible Infrared Imaging Spectrometer 

(AVIRIS). This project seeks to understand which forest ecosystems are most impacted 

in the central Sierra Nevada by identifying where elevated mortality occurs in the 

landscape, as indicated by a decline in GV fraction. 2) To assess how classification 

accuracy of each image changes through time on an interannual scale, as classification 

accuracy may change with mortality. This research will consider the following questions: 

1. How do changes in GV fraction compare for different forest types and in 

which forest class does GV fraction decrease the most? Where is drought-induced 

mortality occurring in the landscape and is elevation a significant predictive variable? 

2. How does classification accuracy change from 2013 through 2015 during 

the month of June? Is there a relationship between image classification accuracy and 

change in GV fraction? 

 

1.4.2 Significance 

Continued assessment of forest mortality where exceptional drought conditions 

persist in the lower Sierra Nevada is vital for monitoring and managing forest resources. 

These results will provide insight to how ecosystems may be changing through mortality 

under a rapid climate change regime and thus allow for preparedness in making more 

informed forest and bioecological management decisions, such as selective cutting, 

habitat management, and access-restrictions, as megadroughts continue into the 21st 

century. Ultimately, we can begin to understand better how rapid climate change may 
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influence the degree of forest mortality within different forest ecosystems. Additionally, 

this study will determine the degree to which changes in forest mortality in response to 

drought affect image classification accuracy. 
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Figure 1. This figure contains a summary of drought conditions in the American West 

during the study period. A) Exceptional drought conditions occurred across the Midwest 

during 2013 but were alleviated in this region by 2016. Since 2013, drought conditions 

have intensified to exceptional status within the state of California and notably over 

vulnerable forest ecosystems in the central to southern Sierra Nevada. Drought severity 

increases from abnormal to exceptional and is based on a number of drought indices 

including the Palmer Drought Severity Index (PDSI). The U.S. Drought Monitor is 

jointly produced by the NDMC at the University of Nebraska-Lincoln, the U.S. 

Department of Commerce, the U.S. Department of Agriculture, and the National Oceanic 

and Atmospheric Administration. Map data are courtesy of NDMC-UNL. B) Bar graph 

summarizing the percent land area in the state of California by drought category for June 

11th, 2013 and June 14th, 2016. Within the state of California for 2013, all land area fell 

within abnormal, moderate, or severe status but by 2016, drought conditions intensified 

to include extreme and exceptional status (Fuchs, 2016). 
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CHAPTER 2 

 

BACKGROUND 

 

2.1 Drought Severity and Preliminary Forest Assessment 

Although drought is common for California, few studies have modeled predicted 

vegetation change in response to drought stress for the Sierra Nevada region (Dolanc et 

al., 2013) and the potential impact of the drought on vegetation mortality remains poorly 

understood. However, in a study analyzing growth-climate relationships for six common 

species of trees in the Sierra Nevada, snowpack was found to be a significant variable for 

predicting growth trends (Dolanc et al., 2013). Trees growing where snowpack is deep 

during the wet season are least likely to suffer from drought stress, although it was 

determined that drought stress was already present within the region and snowpack is 

predicted to decrease by 30-90% toward the end of the 21st century (Dolanc et al., 2013). 

Vegetation response to increasing drought stress is likely to vary according to species and 

lag, out of equilibrium, behind a rapidly warming climate (Dolanc et al., 2013). Flora 

with sufficient reserves of energy will not begin to show drought-related senescence until 

these reserves are sufficiently depleted; the amount of reserved energy and duration of 

lag is thus dependent on both environmental circumstances and species-dependent 

drought tolerance. Vegetation in southwestern regions of the Sierra Nevada with high 

ozone concentrations is even more susceptible to stresses associated with climate change, 
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especially at elevations below 2,400 m (Panek et al., 2013). On geologic time-scales, 

Töpel et al. (2012) analyzed the fossil Rosaceae and determined that drought stress may 

have induced plant diversification through adaptation in the American West ~23 Ma. 

Diversification sometimes occurs during drought events possibly because taxa that are 

normally dominant in ordinary environmental conditions are not necessarily able to out-

compete other taxa for resources, which may allow an array of normally minority taxa to 

successfully compete for those resources. Additionally, if minority taxa achieve high 

abundances within the landscape through successful competition, these taxa’s pollen, 

which normally is not likely preserved in ordinary environmental circumstances due to 

low abundance, may be more likely to be preserved during drought. For vegetation 

prediction modeling, community composition change as a long-term response to drought 

could prove to be an important variable. 

A recent study used blue oak tree ring data to calculate Snow Water Equivalent 

(SWE) across the entire Sierra Nevada mountain range in California over the past 500 

years (Belmecheri et al., 2016). SWE is an important gauge because most of California’s 

precipitation accumulates as snow, which later melts and becomes the primary water 

source (AghaKouchak et al., 2014). In 2015, the Sierra Nevada experienced the lowest 

SWE in 500 years, at 5% of its historical average (Belmecheri et al., 2016).  This 

anomalously low SWE event had a calculated recurrence interval of ~3,000 years even 

though drought events of a similar severity occurred during the 16th century, highlighting 

the extreme nature of this low precipitation event (Belmecheri et al., 2016). The 2015 

SWE value exceeded the 95% confidence interval from a model defining a 1,000 year 

recurrence interval (Belmecheri et al., 2016). This period of record low precipitation for 
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California also coincided with record high temperatures. March, 2015 was ~4°C above 

the 20th-century average (NOAA, 2015), exacerbating the effects of low precipitation on 

drought severity (Mao et al., 2015), especially in the lower elevation Sierra Nevada 

(Belmecheri et al., 2016). 

Cook et al. (2015) modeled climate change projections across western North 

America and calculated changes in drought severity using the relative Palmer Drought 

Severity Index (PDSI) and compared these projections to similar periods of megadrought 

during the Medieval Climate Anomaly (MCA). These models showed a significant 

increase in drought severity during the second half of the 21st century when compared to 

droughts during the 20th century and MCA (Cook et al., 2015). June PDSI values were 

calculated for a 122-year precipitation record at a station in Yosemite National Park 

(YNP), in the central Sierra Nevada (Figure 2). Two-tailed z-score analysis on the PDSI 

time series shows that 2014 and 2015 had different PDSI values from most of the 

population (Figure 2). Droughts across the American West are projected to “exceed even 

the driest centuries of the Medieval Climate Anomaly” in both moderate and severe 

future carbon dioxide emission scenarios (Cook et al., 2015). In other words, the current 

megadrought observed in California is likely the beginning of a series of more extreme 

droughts, which may not be comparable to past drought intervals within existing 

sedimentological paleoclimate records. 

The USDA conducted an aerial survey in May of 2016 over the Sierra Nevada 

foothills, Transverse, and Coastal Ranges and reported that 876,000 acres had elevated 

conifer forest mortality out of the 4.5 million acres surveyed (USDA Forest Service, 

2016). This exceptional drought event is causing widespread forest mortality, most 
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severely within oak woodland and mixed conifer forests located along the west slope of 

the southern Sierra Nevada mountain range in California. Conifer mortality was 

especially severe within the southern Sierra Nevada foothills and the most affected 

species were identified as ponderosa pine, Jeffrey pine, sugar pine, white fir, incense 

cedar, and various oak (USDA Forest Service, 2016). Although visual monitoring of 

forests offers the advantage of immediate assessment, remote sensing methods remain 

superior for capturing the large and continuous portion of the landscape in order to detect 

heterogeneous impacts of drought on forest mortality. For example, one method of visual 

monitoring, referred to as aerial sketch mapping, was analyzed using data from 2005 for 

accuracy and determined to have a maximum accuracy of 79% at a 500 meter scale and a 

minimum of 61% at a sub-meter scale, which is not acceptable for most quantitative 

studies (Johnson and Ross, 2008). 

 

2.2 Hyperspectral Remote Sensing 

2.2.1 Hyperspectral vs. Multispectral 

Data from broadband sensors (e.g. Landsat, SPOT, etc.) contain a small number 

of spectral channels, or bands, with wide bandwidths (typically 30-100 nm). In contrast, 

imaging spectrometers retrieve upwelling radiance data for potentially hundreds of 

narrow spectral bands (~10 nm), or channels, over a contiguous portion of the 

electromagnetic spectrum. Images produced by imaging spectrometers are referred to as 

hyperspectral, in contrast to multispectral data obtained by broadband sensors. 

Contiguous spectra measurements from hyperspectral sensors offer unparalleled 

advantages in determining the composition of materials on Earth’s surface over data 
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obtained from multispectral sensors. Accuracy assessments show that hyperspectral data 

vastly outperform their broadband counterparts in measuring vegetation variables (Asner 

and Heidebrecht, 2002; Keshava and Mustard, 2002).  Hyperspectral data have high 

spectral fidelity and allow for sub-pixel discrimination of different materials on Earth’s 

surface, the identification of different plant species, and a better estimation of different 

biophysical, biochemical, and structural parameters across various vegetated ecosystems 

(Asner et al., 2008; Behmann et al., 2014; Chen et al., 2008; Dennison and Roberts, 

2003a; Dudley et al., 2015; le Maire et al., 2008; Thenkabail et al., 2004a, 2004b). 

Additionally, these relatively new spectrometers have allowed for earlier detection of 

changes in reflectance for vegetation canopies due to changes in the environment from 

climatic perturbations such as drought (Asner et al., 2015; Behmann et al., 2014; Coates 

et al., 2015).  

 

2.2.2 Hyperspectral for Discriminating Species and Land Cover Types 

Hyperspectral data offer the advantage of near-continuous spectra, enabling 

researchers to obtain more accurate classification results for plant communities when 

compared to those obtained from broadband analyses (Thenkabail et al., 2004a). 

Chemical and physical attributes unique to different species of trees affect the spectral 

signatures of canopies, and variations of these attributes allow investigators to 

differentiate and classify canopy species via these distinctive spectral signals (Asner, 

1998). Several studies have utilized hyperspectral data for species-level classification 

based on spectral variability within forest communities (Beland et al., 2016; Cochrane, 

2000; Roberts et al., 2015; Roth et al., 2015a) as well as for invasive species detection 
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(Asner et al., 2008). The integration of waveform Light Detection and Ranging (LiDAR) 

data has also been shown to increase forest classification accuracy when coupled with 

hyperspectral imagery (Anderson et al., 2008). The degree to which classification 

accuracy changes with seasonal drought conditions is dependent on the method of 

classification (Dennison and Roberts, 2003a; Dudley et al., 2015). 

 

2.2.3 Hyperspectral for Measuring Fractional Cover 

Roberts et al. (1993) describe green vegetation (GV) as vegetation that contains 

significant abundances of chlorophyll, such that its spectral reflectance shows high NIR 

to red spectral contrast, distinguishing it from soil. Non-photosynthetic vegetation (NPV) 

is defined as vegetation that does not contain significant abundances of chlorophyll such 

that the reflectance does not have a high NIR to red spectral contrast (Roberts et al., 

1993). In some cases, NPV can be spectrally indistinguishable from soil, but with proper 

calibration and endmember spectral profiles, it is possible to differentiate GV, NPV, and 

soil in spectral image analyses (Roberts et al., 1993). Studies show that hyperspectral data 

are valuable for extracting fractional measurements of GV, NPV, and soil when utilizing 

bands in the shortwave infrared 2 (SWIR2) region (2.0 - 2.3µm) (Asner and Heidebrecht, 

2002) and for detecting small differences in percent GV cover (Chen et al., 2008). Such 

studies are important for fractional vegetation classification of images, which is a 

component of this study in examining drought conditions in the central Sierra Nevada. 
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2.2.4 Spectral Unmixing Techniques 

Remote sensing systems are designed to measure spectral radiance within a 

sensor’s ground instantaneous field of view. Radiance data are converted into apparent 

surface reflectance by performing a series of corrections to eliminate non-surface-related 

signals. A measured spectrum for any given pixel represents combined reflectance for all 

surficial materials contained within the sensor’s field of view. Materials may have their 

own unique spectral reflectance signature, which is referred to as an endmember. 

Endmembers are pure spectral reflectance measurements for materials of a known 

composition and can either be obtained through field observations and imagery, or with 

lab spectrometers (Dennison and Roberts, 2003b). This combined spectral profile is the 

result of “spectral mixing” which occurs on micro- to macroscopic scales in the 

landscape.  

The goal of spectral mixture analysis (SMA) techniques is to deconstruct each 

spectrum within an image into its endmember constituents and estimate the sub-pixel 

composition of surficial materials. Spectral libraries contain the pure endmember spectra 

to be used as a reference during the classification process. In some cases, spectral 

libraries are created by extracting spectra from images within polygons where land cover 

type is known. SMA models spectra as the linear combination of endmembers from a 

spectral library, typically using the same set of endmembers for all spectra in an image. A 

milestone application of SMA was used in modelling the Martian rock and regolith cover 

adjacent to the Viking 1 Lander using shade and secondary illumination as endmembers 

(Adams et al., 1986). 
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2.2.4.1 Multiple Endmember Spectral Unmixing Analysis (MESMA) 

Multiple Endmember Spectral Mixture Analysis (MESMA) is a more complex 

variant of SMA that allows for linear combinations of endmembers to be modeled on a 

per-pixel basis (Dennison and Roberts, 2003b; Dudley et al., 2015; Roberts et al., 1998). 

MESMA’s utility is that the number and the types of endmembers can be varied across an 

image, allowing a model to more precisely classify varied, complex ground cover than 

standard SMA (Roberts et al., 1998). MESMA has been used to estimate the fractional 

coverage of GV, NPV, soil, and shade with improved accuracy compared to SMA 

(Roberts et al., 2015). 

Root Mean Square Error (RMSE) is calculated for both SMA and MESMA in 

order to determine the best fitting spectral mixing model for each pixel, using the defined 

endmembers. For a given pixel, the best fit spectral mixing model with the lowest RMSE 

is chosen to determine the fractions of each class within the pixel. RMSE is calculated by 

summing the squares of band residuals, dividing this sum by the number of bands, and 

then taking the square root (Roberts et al., 1998). 

A number of studies have utilized SMA in order to quantify drought-induced 

vegetation responses (Coates et al., 2015; Elmore et al., 2006; Huang and Anderegg, 

2012). Researchers examined the effects of drought on the Santa Barbara Coast and Santa 

Ynez Mountain area in California for 2013-2014 using SMA models (Coates et al., 

2015). As drought conditions persisted, there was a mixed vegetation response where 

deep-rooted vegetation experienced less fractional GV decrease than shallow-rooted 

vegetation. In Colorado, researchers utilized a form of SMA in order to quantify the 

health of aspen forests in 2011 using a three endmember unmixing model (Huang and 
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Anderegg, 2012). This study quantified drought-induced aboveground biomass loss using 

NPV as an indication that a forest had undergone dieback as a result of drought. 

 

2.2.5 Linear Discriminant Analysis (LDA) for Hyperspectral Data 

Discriminant analysis is one statistical procedure used to classify hyperspectral 

data using a set of known training, or reference, spectra (Roth et al., 2015b). Discriminant 

analysis techniques are essentially used to statistically define each pixel as a member of a 

predefined group or class based on several variables simultaneously. For example, 

discriminant analysis functions can incorporate spectral information with elevation data 

or LiDAR in order to more accurately classify a vegetated landscape. The variables used 

to discriminate between groups of pixels are referred to as discriminating variables. 

Linear discriminant analyses utilize a linear transformation of data in order to increase 

the ratio of between-class variance to within-class variance (Roth et al., 2015a). Class 

discriminant functions are calculated for each class, and spectra are assigned scores for 

each class. Spectra are then assigned to the class that yields the highest score. LDA 

techniques have been used to differentiate species-level differences using hyperspectral 

data, reaching very high classification accuracies (Feret and Asner, 2013; Roth et al., 

2015a, 2015b). 

 

2.3 Historic Vegetation Change in the Central Sierra Nevada Due to Drought 

2.3.1 Paleoenvironmental Reconstructions of Sediment Core Studies 

Researchers have conducted a variety of paleoenvironmental studies utilizing 

pollen as a proxy for vegetation abundance within a watershed or region in order to detect 
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long-term responses to variable climate, particularly within the central Sierra Nevada 

(Anderson and Stillick Jr, 2013; Brunelle and Anderson, 2003; Heusser et al., 2015; 

Petel, 2005; Smith and Anderson, 1992; Street et al., 2012). Studies that utilize pollen 

abundances preserved in sediment cores assume sediment records provide a 

representative sample of surrounding vegetation type over time, which is validated by 

comparing modern pollen surface samples to modern vegetation composition surveys 

(Minckley et al., 2008; Petel, 2005). In addition to pollen, sediment cores also record fire 

occurrences, including those during the MCA and a period known as the early-Holocene 

Insolation Maximum. Brunelle and Anderson (2003) analyzed charcoal abundances in 

sediment core from Siesta Lake in Yosemite National Park in order to treat fire events as 

a proxy for periods of drought across the Holocene. The early-Holocene Insolation 

Maximum is likely to have had conditions similar to the modern, and researchers have 

thus suggested a possible 2-4°C increase in average temperature over the next ~90 years 

(Leung and Ghan, 1999). Comparison of drought events within the Sierra Nevada 

indicates that the MCA and Insolation Maximum events were more severe than those 

over the last ~1,000 years (Brunelle and Anderson, 2003). These past trends suggest that 

as modern global temperatures continue to rise and relative available soil moisture 

decreases in the Sierra Nevada, drought and subsequent fire events will increase both in 

frequency and magnitude. 

The timing and duration of drought events affect vegetation response, and may 

cause shifts both in abundance and spatial distribution of flora (Wathen, 2011). Abrupt 

climate changes occur on the order of years to decades and have punctuated more gradual 

climate change fluctuations; abrupt changes may have more acute impacts on ecosystems 
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than gradual ones (Wathen, 2011). During the late Holocene, a climate warming period 

caused disequilibrium vegetation response within the Sierra Nevada (Wathen, 2011). The 

MCA was one of the most significant periods of drought for the Sierra Nevada region and 

occurred from ~900-1200 AD (Kleppe et al., 2011; MacDonald et al., 2008; Millar et al., 

2006). During the MCA, forest fires became more frequent (Brunelle and Anderson, 

2003) and the treeline shifted upwards in elevation (Millar et al., 2006) with the onset of 

mountain glacial retreat (Anderson and Stillick Jr, 2013). This period of extended drought 

and average temperature deviations of ~0.5°C provides an important benchmark in the 

paleorecords for comparison with the modern megadrought phenomenon across the 

American West (Graumlich, 1991).  
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Figure 2. Time-series graph of June Palmer Drought Severity Index (PDSI) values from 

1895-2016 for a station in Yosemite National Park, central Sierra Nevada region. Each 

triangle denotes June PDSI value for given year. Red triangles indicated study period of 

2013-2015. PDSI values for the study period range from moderate to extreme drought 

conditions, which are consistent with conditions during this time throughout much of the 

Sierra Nevada. 
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CHAPTER 3 

 

STUDY AREA AND DATA 

 

3.1 Study Area 

3.1.1 Topography 

The Sierra Nevada Mountains run 640 km in a north-south orientation and stretch 

~110 km wide between the Basin and Range province to the east and the Great Valley 

province to the west (Figure 3). The Sierra Nevada Range is characterized by a gently 

sloping western margin, which varies in elevation from 300 m near the Great Valley up to 

an average elevation of 3,200 m at the Sierran crest. The eastern margins slope steeply 

away from the crest of the range, forming the Sierra Escarpment, and causing a 

rainshadow over the eastern foothills. 

 

3.1.2 Precipitation 

Yearly-averaged precipitation differs slightly from ~1,050 mm in lower montane 

areas (~1,500 m) to ~1,400 mm at 2,000 m in elevation and gradually declines eastward 

from 2,000 m (Fites-Kaufman et al., 2007). Temperature does, however, fluctuate 

considerably across such a large elevational gradient. Generally for the Sierra Nevada, 

the fraction of precipitation occurring as snow greatly increases with increasing elevation. 

In the lower forested areas, 20% to 25% of precipitation falls as snow, compared to 95% 
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or greater accumulating as snow near the upper treeline (Stephenson, 1988). Lower 

temperatures and deeper snowpack at high elevation (2167-2779 m) allow for a longer 

period of snowmelt that begins later in the year when compared to melt at lower 

elevations (695-1369 m). Each of these contributing factors results in relatively lower 

moisture stress for vegetation at high elevation when compared to vegetation at lower 

elevation within the Sierra Nevada. Precipitation in California follows a seasonal, winter-

wet regime with most precipitation falling during January, February, and March. 

Summers are exceptionally dry with the least amount of precipitation received during 

June, July, and August. 

 

3.1.3 Vegetation Zones 

Local topography is highly variable and, when coupled with the overall climatic 

gradient from east to west across the range, largely determines the vegetative 

composition observed across the landscape. Mixed conifer forests for the montane region 

may be broken into two broad categories based on relative elevation, both of which lie 

above mixed oak woodland and drier chaparral-dominant ecosystems: 1) Low montane 

vegetation, and 2) High montane vegetation. The lower montane forests can broadly be 

referred to as Sierran mixed-conifer forests and are dominantly comprised of ponderosa 

pine, blue oak, and white fir. About 30% of precipitation within this vegetative zone falls 

as snow (Fites-Kaufman et al., 2007). Upper high montane forests grow at elevations 

above the mixed-conifer forest types. This transition from lower to upper montane forests 

occurs around ~1,800 m in elevation for the central regions of the Sierra Nevada (Fites-

Kaufman et al., 2007; Smith and Anderson, 1992). Between 70% to 90% of precipitation 
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in this zone falls as snow and the deepest, longest-lasting snowpack accumulates in this 

zone when compared to any other area of California (Fites-Kaufman et al., 2007). Red fir, 

lodgepole pine, and Jeffrey pine comprise the three major conifer forest types within the 

upper montane zone (Fites-Kaufman et al., 2007). Vegetation composition and forest type 

classifications vary by location between eastern and western slopes and with the north-

south strike of the Sierra Nevada range. 

 

3.2 Data 

3.2.1 Digital Elevation Model (DEM) 

The USGS maintains a seamless elevation raster product of the continental United 

States, Alaska, Hawaii, and island territories referred to as the National Elevation 

Dataset. A set of NED DEM data tiles of the study area were available through a legacy 

website in GEOTiff format at https://www.mrlc.gov/viewerjs/. 

 

3.2.2 AVIRIS Reflectance Data 

Hyperspectral data collected by the Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) contain 224 contiguous, 10 nm wide spectral channels ranging 

from 350 to 2500 nm (Green et al., 1998). AVIRIS acquires imagery at an altitude of 

approximately 20 km on an ER-2 aircraft and produces individual scenes that measure 11 

km wide by up to 800 km long with a spatial resolution of ~20 m (Green et al., 1998). 

NASA’s Jet Propulsion Laboratory preprocessed all images to terrain corrected 

reflectance and the Forest Service (Tane, 2016) improved image orthorectification.  

Hyperspectral images collected by AVIRIS for 2013 during the month of June 
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were used to create an initial classified image by land cover type. For 2013, 6 separate 

scenes were mosaicked, or “stitched together”, to create one, spatially contiguous image 

with some degree of overlap between scenes. Similar reflectance mosaics for 2014 and 

2015 were used to classify land cover and produce a final classification accuracy 

assessment.  

 

3.2.2.1 Fractional Cover Images 

A 16 endmember library was used to define GV, NPV, soil, and shade cover 

fractions using MESMA within ENVI. Endmembers were derived from AVIRIS Next 

Generation (AVIRIS-NG) data, which measure spectra from 380 nm – 2510 nm at 5 nm 

spectral resolution across 481 bands. Specifically, endmembers were collected from 

AVIRIS-NG summertime flights over the Shaver Lake area in 2014 and convolved to 

AVIRIS wavelengths. An IDL extension for ENVI called VIPER Tools 

(www.vipertools.org) was used to process 177 bands. MESMA was conducted using an 

uncorrelated Stable Zone Unmixing method (uSZU) yielding 18 bands that maximized 

signal-to-noise ratio for endmember profile selection (Somers et al., 2010; Tane, 2016). 

MESMA analysis was conducted on AVIRIS reflectance data by the U.S. Forest Service 

for 2013, 2014, and 2015 to produce fractional images (Tane, 2016). All remote sensing 

data products used in this study are produced from imagery acquired on the dates listed in 

Table 1. 
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3.2.3 Field Polygon Survey 

A set of 141 polygons was created in 2013 by conducting a field survey within a 

portion of the central Sierra Nevada. Of these 141 polygons, 122 were selected for use in 

classification analysis (Figure 4). Primary field observations with aerial imagery ensured 

that each polygon contains only one type of forest class. The original polygon dataset 

consisted of 9 land cover classes and, for this study, were reduced to 5 classes (Table 2). 

The final land cover classes are as follows: Mixed Oak Woodland (MO), Lower Mixed 

Conifer (LC), High Conifer (HC), Meadow (MD), and Rock (RO) (Table 2). Metadata 

for each class of polygons contains a description of the dominant vegetation species. 

Polygons from this dataset were split into validation and reference groups so that each 

group has a random spatial sample and contains a similar number of pixels for each class. 
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Table 1. Dates of June AVIRIS data collection for central Sierra Nevada study area by 

year. 

Image Year Date of Collection 

2013 June 6, June 12, June 24 

2014 June 3 

2015 June 1 

 

Table 2. Class codes, names, and descriptions used for land cover classification of AVIRIS 

reflectance data. Field polygon work reported that the following vegetation compositions 

are generally observable on elevation gradients from <300 m to >2100 m in the central 

Sierra Nevada, in order from lowest to highest elevation: 1) Mixed Oak Woodland, 

occurring at relatively low elevations; 2) Lower Mixed Conifer; 3) High Conifer; 4) 

Meadow also occurs in Lower Mixed Conifer and High Conifer regions but is found more 

often at higher elevations; 5) Rock occurs at various elevations but is found most frequently 

at higher elevations (Figure 4). These classifications are based on classification of discrete 

areas. 

Class 

Code 

Full 

Name 
Description 

MO 

Mixed 

Oak 

Woodland 

Includes: Mixed Oak Woodland - >50% shrub and tree cover; 

species include interior live oak (Quercus wislizeni), whiteleaf 

manzanita (Arctostaphylos viscida), buckeye (Aesculus), curl-

leaf mountain mahogany (Cercocarpus), California black oak 

(Quercus kelloggii), Jeffrey pine (Pinus jeffreyi), and Oregon 

oak (Quercus garryana). Grassland - Low elevation pasture, 

open, with <10% oak cover. Oak Savana - >50% tree cover, 

blue oak (Quercus douglasii) dominated. Shrub - Found at 

similar elevations as MO and less often, lower extent of LC, on 

dry south or west-facing slopes. Dominated by woolly leaf 

ceanothus (Ceanothus tomentosus) and whiteleaf manzanita 

(Arctostaphylos viscida) taxa, with small percentages of oak 

and pine possible. 

LC 

Lower 

Mixed 

Conifer 

Jeffrey pine (Pinus jeffreyi), ponderosa pine (Pinus ponderosa) 

common at lower extent; incense cedar (Calocedrus decurrens), 

California black oak (Quercus kelloggii), sugar pine (Pinus 

lambertiana), white fir (Abies concolor), ponderosa pine (Pinus 

ponderosa) common at upper extent; giant sequoia 

(Sequoiadendron giganteum) possible, lodgepole pine (Pinus 

contorta) at upper extent. 

HC 
High 

Conifer 

lodgepole pine (Pinus contorta) and red fir (Abies magnifica) 

common, some monotypic stands; ponderosa pine (Pinus 

ponderosa), white fir (Abies concolor) also found. 

MD Meadow Open with few trees, grasses, and herbaceous vegetation. 

RO Rock 
Dominated by exposed granitic bedrock usually at high 

elevation with partial grasses, shrubs and lichen covers. 
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Figure 3. This map illustrates the study area near Fresno, California. A) Inset map of 

drought severity across California on June 14th, 2016. The Sierra Nevada province is 

outlined in black and AVIRIS flight lines are outlined in magenta. Exceptional and 

extreme drought occupy the majority of the Sierra Nevada region. B) Aerial extent of 

AVIRIS flight lines labeled by flight line number within the Sierra Nevada region with 

USDA Forest Service dead tree density overlain in color.  
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Figure 4. Digital elevation model displayed with low elevations in green to higher 

elevations in white and hill-shade underlain. Training and validation polygons (n=122) 

within the AVIRIS flight lines are color coded by the land cover classification types 

found in Table 2. 
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CHAPTER 4 

 

METHODS 

 

4.1 Overview 

In order to quantify vegetation response to intensifying drought conditions from 

2013 to 2015 in the central Sierra Nevada of California, a series of analytical techniques 

were applied to field collected and remotely sensed data. One method employed was to 

determine how measureable features such as decrease in GV fraction (as a proxy for 

vegetation mortality) varied between vegetation classes, across elevation zones, and more 

broadly across the landscape. As vegetation experiences mortality or senesces, either as a 

result of drought or other stress-inducing conditions, GV fraction decreases as reflectance 

increases in the chlorophyll absorption range (400-700 nm) and in both the regions of the 

shortwave infrared (SWIR and SWIR2) and reflectance decreases in the near infrared 

(NIR) (Roberts et al., 1993). The decrease of GV and an associated increase in NPV and 

soil fractions indicates an increase in vegetation mortality and is assumed to occur as a 

result of vegetation response to drought. 

Another method was determining whether vegetation classification accuracy was 

affected by increasing drought conditions from 2013 to 2015 by comparing assessments 

of classification accuracy between each year. A lower classification accuracy that 

coincides with a lower GV fraction in the landscape could indicate that classification 
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accuracy is negatively affected by vegetation mortality. 

All field-derived polygons were assigned into either training or validation 

polygon groups in order to facilitate subsequent analysis using LDA. The IDL code used 

for classification was provided by Dr. Philip Dennison and was updated by both Dr. 

Dennison and Dr. Keely Roth in 2013 and 2015, respectively. Classification of AVIRIS 

data was conducted in order to map vegetation classes throughout the study area and 

multiple iterations of classification were conducted for each year’s data with minor 

changes made between runs in order to maximize the classification accuracy for each 

year. Fractional cover images that were provided by Zachary Tane of the USDA Forest 

Service were analyzed for changes in values of shade-normalized GV, NPV, and soil, and 

then were used with existing field polygon data to identify vegetation classes that 

experienced the largest change in fractional cover. 

 

4.2 Training and Validaton Polygon Categorization and AVIRIS Mosaicking 

Supervised classification techniques of spatial data such as LDA require both 

training and validation sets of polygons for each class. From the 141 field-derived 

polygons that were delineated in the study area during 2013, two sets were assigned, one 

of training and one of validation. An important requirement of grouping the polygons was 

to ensure that for each vegetation class, roughly half of the polygons were put into each 

set with any remainder being placed into the validation set for a more robust assessment 

of classification accuracy.  

The study area is covered by six individual AVIRIS flight lines that were 

measured on an annual basis from 2013-2015. Flight lines were mosaicked in ENVI 5.3 
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Classic using the georeferenced mosaicking tool with a bilinear resampling method. For 

mosaicked reflectance image results, background values were set to zero, which 

simplified masking operations. Numerous mosaics for each year were produced to 

minimize reflectance discontinuities between adjacent flight lines because of differences 

in solar zenith and azimuth, mosaicked images with smaller reflectance discontinuities 

yielding the most accurate results.  

An overlapped mosaic of AVIRIS flight lines was used to extract training spectra 

from the training set of field-derived polygons in order to build a spectral library for LDA 

classification. In areas where overlap between two adjacent flight lines occurred, spectral 

library extraction would only take into account the top flightline’s data, which was 

delineated by each polygon. This method of training a spectral library from an overlapped 

mosaic of the entire study area, instead of individual flight lines, yielded the highest 

accuracy results for 2013 and was consequently utlized for classification of all AVIRIS 

data. 

An alternative method for LDA was attempted, which required dividing all 141 

polygons into groups that fell onto individual AVIRIS flight line extents. This method 

allowed the LDA classifier to train additional spectra for polygons that were located in 

the overlap areas between two adjacent flight lines, for the flight line data on top and 

underneath. Once training spectra were collected individually from each flight line, the 

spectra were combined into a single spectral library and then used to classify the entire 

study area using a mosaic of all flightlines for a single year. However, this method 

resulted in lower overall accuracies for classification of 2013 data and was thus 

abandoned.  
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4.2.1 Randomization 

In order to ensure the unbiased division of polygons for 5 vegetation classes, a 

table of all field polygons was exported from ArcMap, providing a spreadsheet with 

unique identification numbers for each polygon. Polygons were divided into separate 

sheets in Microsoft Excel by all polygons by vegetation class and then cutting and pasting 

groups of the same vegetation class polygons into separate sheets. For each vegetation 

class sheet, every polygon was assigned a random number using the “RAND()” function, 

which generates a random value between 0 and 1. Each sheet was sorted using the 

randomly assigned numbers to scramble the polygons. Once the polygons were 

scrambled, they were divided into training and validation polygons by grouping polygons 

with high random number values together and likewise with low random number values. 

Thus, for each of the 5 vegetation classes, there were two randomly assigned groups, 

training and validation for a grand total of 10 groups. Using the ArcMap-generated 

identification numbers for each polygon, the master polygon shapefile’s attribute table 

was then used to manualy select only polygons from one class, which were then exported 

as new shapefiles, one training and one validation shapefile. This method was employed 

in order to randomize the process of selecting training and validation polygons for each 

of the 5 vegetation classes. 

 

4.3 Linear Discriminant Analysis (LDA) 

4.3.1 Bidirectional Reflectance Distribution Function (BRDF) Effects 

The AVIRIS data utilized in this study were affected by BRDF effects that caused 

both anomalously high and low values for reflectance values based on varying view 
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angles and measured wavelengths. BRDF effects are especially problematic in data with 

large fields of view (FOV), such as AVIRIS data that has a ~34º FOV. Backscattering is 

the preferential reflection of light back towards the illumination source causing higher 

than normal reflectance values. Shadows are the absence of reflected light and occur in 

areas where surface structure blocks solar insolation, especially during high solar zenith 

angle periods. If backscattering is recorded on one side of the FOV and/or shadows are 

recorded on the opposite side, a gradient in reflectance values across the image oriented 

across the image swath will emerge in the data. A gradient will not likely occur 

perpendicular to the sensor sweep path because the sensor remains fixed relative to the 

ground surface between successive sweeps, and thus there are no view angle changes that 

occur orthogonal to the sweep line.  

Reflectance values, even in areas of relatively uniform land cover, differed as a 

function both of the view angle from which the sensor collected data and the wavelengths 

that were measured (Figure 5). 

Backscattering caused increased reflectance values on flight lines in the direction 

opposite of solar azimuth relative to the center of the sensor sweep. Conversely, 

reflectance values in the same direction as solar azimuth relative to the sensor sweep 

were lower as a result of shadows. Thus, each flight line that was utilized via AVIRIS 

collection was subject to some degree of these effects on surface reflectance, which 

caused strong discontinuities between some adjacent flight lines. Manually selecting 

flight line overlaps to minimize these effects across the image was necessary in order to 

produce results with sufficiently high accuracy, especially for training and validation 

pixels used in LDA classification (Figure 5). 
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4.3.2 Resampling and Layer Stacking 

DEM data from the National Elevation Dataset (NED) were obtained for the 

entire study area at a 10 meter resolution and were resized to the AVIRIS data extent as 

well as resampled using a bilinear method in ENVI. The mosaicked AVIRIS reflectance 

data were used to build a mask excluding pixels with values of zero for every band in 

order to identify all pixels that contained data within the study area. Next, the DEM was 

masked using the AVIRIS-derived mask band, and subsequently layer stacked in ENVI 

beneath with the AVIRIS reflectance data. 

 

4.3.3 VIPER Tools 

4.3.3.1 Spectral Library Construction and Management 

One important aspect of supervised classification methods is the construction of a 

library of training data; the classifier makes use of a subset of known values within the 

study area, such as the field-derived polygons, referred to as regions of interest (ROIs), 

for each class and extrapolates using these training values to the rest of the study area in 

order to classify the entire area. Each training pixel has a known field polygon-derived 

land cover class and associated spectral profile of AVIRIS-derived electromagnetic 

reflectance values, which are added to a spectral library. This spectral library is the best 

approximation of possible spectral profiles that each class will likely exhibit. Because the 

training pixels will not necessarily provide every possible spectral profile for a given land 

cover class, the classifier uses these training spectra in order to categorize pixels from the 

rest of the study area into the most likely land cover class.  In order to aid in the accuracy 

of land cover classification, supplementary data such as DEMs can be concatenated, or 
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layer stacked, with AVIRIS data as an additional band. The utility of layer stacking a 

DEM with AVIRIS data is that the classifier will now take into account the elevations at 

which certain land cover classes occur, potentially preventing the inaccurate 

classification of a land cover class at an elevation that falls outside its normal range.  

VIPER Tools, an image analysis extension for ENVI, was used with the training 

polygons as ROIs to first build spectral libraries from layer-stacked AVIRIS and DEM 

data. Once the spectral library was constructed, it was sorted by vegetation class and 

redundant spectra were removed from the library with an IDL program.  

 

4.3.3.2 Linear Discriminant Analysis 

After constructing and removing redundancies from each spectral library, the 

LDA classification was executed using an IDL program that was run in ENVI 5.3 Classic 

+ IDL.  

 

4.3.4 Visual Assesssment 

Upon completion of the classification process, the results were visually inspected 

for errors, accuracy, discontinuities, and artifacts. Generally, if there was a large 

discontinuity in the raw AVIRIS reflectance mosaic (such as BRDF effects between two 

flight lines), it was also present in the classified image as a north-south trending line, in 

the same location as the AVIRIS data suture with a different dominant vegetation class 

east and west of the line. 
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4.3.5 Accuracy Assessment 

A postclassification confusion matrix was generated for each classified image 

result using the validation polygons as ground-truth ROIs to determine the accuracy of 

each LDA iteration. User’s and Producer’s accuracies as well as the kappa coefficient 

were used to compare classifications of the same year. From these results, the most 

accurate classifications for each year were identified and used in analysis to address the 

project’s research objectives. 

 

4.4 Fractional Cover Analysis 

Zachary Tane of the USDA Forest Service provided fractional cover data 

generated through MESMA analysis of the same 2013-2015 AVIRIS dataset used for 

LDA in this study. These fractional cover data provided information on the relative 

proportion of GV, NPV, soil, and shade for each pixel in the study area. 

 

4.4.1 Shade Normalization 

In order to quantify vegetation response for the study period, a normalization 

operation was applied to the fractional cover data for each year. Shade normalization 

excludes shade as a fractional cover endmember, and normalizes the remainder of non-

shade endmembers on a scale from 0 to 1. The following equation is applied to each 

fractional cover endmember for each pixel analyzed: 

𝑆ℎ𝑎𝑑𝑒 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 (𝐸𝑀𝑖)  =  
𝐸𝑀𝑖

𝐸𝑀𝑖+𝐸𝑀𝑖+1+𝐸𝑀𝑖+2
    

EM denotes a non-shade endmember (i.e., GV, NPV, or soil) and the ratio of each 

non-shade endmember to the sum of all non-shade endmembers is equivalent to the shade 
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normalized value for an endmember. This process eliminates variation in canopy shade 

effects, but is still subject to the same BRDF effects that affect other classification 

methods such as LDA. 

 

4.4.2 General GV, NPV, and Soil Analysis 

Before analyzing the changes in either GV, NPV, or soil, an overall assessment of 

the relative values for each endmember across the study area was conducted in order to 

contextualize the analysis. Each endmember fraction was mapped individually to 

determine zones of relative abundance and scarcity, and to identify any artifacts that were 

related to BRDF effects. The goal of utilizing the fractional cover in analysis was to 

determine which endmember, if any, was representative of vegetation changes that were 

occurring as a response to increasing drought severity in the landscape. Thus GV, NPV, 

and soil were compared against one another for each year and between years. 

 

4.4.2.1 GV Changes as Vegetation Response Indicator 

Using the field-derived polygon areas as a sample subset of the entire study area, 

GV, NPV, and soil fractional cover were analyzed to determine general trends from 2013 

to 2015. All vegetated land cover class polygons (HC, LC, MD, and MO) experienced a 

decreasing fraction of GV and increasing fraction of soil (Figure 6). NPV for all 

vegetated land cover class polygons did not experience a measureable increase or 

decrease. When vegetation mortality begins to occur, GV will first covert to NPV, and 

then into soil. From 2013-2014 and 2014-2015, no measureable increase in NPV was 

observed in the field derived polygons’ fractional cover.  
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However, an increase in soil fractional cover was observed. NPV and soil have 

similar spectral profiles and are more similar spectrally than either NPV or soil is to GV. 

It was determined that inexplicably high variations in NPV and soil were present in the 

fractional cover data from 2013 to 2015 that could not necessarily be attributed to a 

reasonable physical vegetation change. Because it was not possible to independently 

verify the accuracy of the NPV and soil fractional cover results (i.e., whether NPV did or 

did not increase from 2013 to 2015), most reliable indication of vegetation response was 

determined to be GV and was used to quantify mortality. Change in GV showed a 

statistical, negative trend from 2013 to 2015, which could represent a vegetation response 

to increasing drought severity. Thus, GV was the only endmember identified as an 

indicator of vegetation response within the study area and was analyzed to determine 

degree of vegetation response to drought. 

 

4.4.3 GV Changes by Vegetation Class 

Using the field-derived land cover polygons, each vegetation class was analyzed 

for changes in GV in order to determine which classes experienced the strongest change. 

These changes in GV for each class were interpreted as vegetation potentially responding 

to intensifying drought conditions in the landscape. Thus, analysis of vegetation response 

to drought by vegetation class was quantified. 
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Figure 5. BRDF effects are present in many flight lines, an example is presented: Flight 

line 3 of 2013 AVIRIS reflectance data. Solar zenith angle is 51.37 degrees and solar 

azimuth is 99.45 degrees (illumination is just south of east). A) Band 1 (~366 nm) 

displays backscattering on the west side of the image and shadows on the east, consistent 

with BRDF effects as the sensor swept back and forth in an east-west trend. B) Band 224 

(~2495 nm) displays very weak if any BRDF effects, which illustrates the wavelength-

dependent nature of backscattering and shadows. 
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Figure 6. Boxplots of land cover class polygons’ fractional cover difference between 

2013 and 2015. Note that soil shows an increase across all vegetation classes, GV shows 

a decrease, and NPV shows no measurable change. The expected result of a decrease in 

GV is an increase in NPV, which was not observed, indicating the possibility that NPV 

was mistaken for soil, or alternatively that the conversion rate of GV into NPV was equal 

to the conversion rate of NPV to soil. 
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CHAPTER 5 

 

RESULTS 

 

5.1 Linear Discriminant Analysis 

Classification of land cover from AVIRIS data decreased in overall accuracy from 

2013-2015 (Table 3). The maximum overall classification accuracy and kappa coefficient 

obtained for each year’s data was used as a metric to compare accuracies from 2013 to 

2015. Overall classification accuracy was greatest in 2013 at 88.0%, lower in 2014 at 

84.1%, and lowest in 2015 at 81.4%. The trend in associated kappa coefficients for each 

year also decreased from 2013 to 2015. 

These decreasing accuracies may have resulted from increasing vegetation 

response to intensifying drought conditions that act to minimize the separability of 

vegetation land cover classes. However, strong BRDF effects present in AVIRIS data 

may have decreased the between-class separability of vegetation land cover in the same 

manner as vegetation response to drought.  Therefore, while it does appear that stronger 

drought conditions are associated with lower classification accuracies, this conclusion 

cannot be confirmed in this study without eliminating the strong BRDF effects present in 

the AVIRIS data. 

LDA classification maps (Figure 7) vary drastically in degree of spatial 

discontinuities and vegetation class occurrence in the landscape. The classified map of 
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vegetation land cover associated with highest LDA classification accuracy obtained from 

the 2013 data has obvious north-south trending discontinuities explained by changes in 

reflectance caused by differences in BRDF along each flight line.  In addition, the 2013 

map may also reflect over-classification of the high conifer and meadow classes. 

Discontinuities present within the 2014 classified map are more numerous and more 

pervasive throughout the study area than the 2013 classified image. However, 

classification accuracy results from 2015, which were lower than any other year, seem to 

have fewer discontinuities and misclassified regions: even fewer than 2013, despite the 

lower overall classification accuracy. The land cover classified map derived from 2013 

AVIRIS data appears to have a limited number of both BRDF-related classification 

artifacts and misclassified regions. 

 

5.2 Fractional Cover Analysis 

5.2.1 GV Changes by Land Cover Class 

Field-derived polygons were used as ROIs to examine changes in fractional cover 

for all land cover classes. Because these polygons are associated with known 

homogeneous land cover classes, the statistics derived from these regions can be utilized 

with confidence; these pixels analyzed for a given class only represented that class, 

whereas pixels from classified image results may not have truly represented the assigned 

class. Because GV was used as a metric to determine degree of vegetation response to 

drought conditions, the time-respective increase or decrease in fractional cover for GV of 

each vegetation class was compared to every other class. Median values for GV change 

across the study period are reported in Table 4 and illustrate that mixed oak (mo) 
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experienced greater decreases in fractional cover of GV than other vegetation classes, 

such as high conifer (hc). Table 4 also indicates that the majority of GV change that 

occurred for each vegetation class took place from 2013 to 2014, and that there was 

negligible change for classes from 2014 to 2015. 

Of the vegetated land cover classes, the period and class associated with greatest 

GV change was mixed oak from 2013-2014, while the period and class associated with the 

least change was high conifer from 2013-2015. Figure 8 offers a graphical representation 

of GV changes by vegetation class and highlights the unequal GV changes associated with 

each vegetation class. 

A closer examinination of which classes exhibited the greatest vegetation 

response to drought was conducted by examining land cover classes by GV change 

quartile breaks (Figure 9). These data were only collected from field-polygons that were 

not fire-affected. The first quartile, which included pixels with the greatest GV decrease, 

was dominated by mixed oak and low conifer. Because the number of pixels varied for 

each land cover type, each class was individually compared to itself between quartiles to 

determine the degree and range of its GV change.  

Mixed oak and low conifer dominate the quartile of greatest GV decrease, but 

because mixed oak has a smaller number of pixels in the other quartiles and low conifer 

has a large number of pixels in all quartiles, it is reasonable to assume that mixed oak 

experienced a more significant loss of GV than low conifer. 

Spatially, the regions of greatest GV decrease were generally located in the 

southwestern side of the study area, though there was GV decrease present throughout the 

entire region (Figure 10). BRDF effects may have affected fractional land cover values, 
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which is evident along flight line boundaries. There are also two areas of strong localized 

GV decrease, one in the center of the study area, and one to the northwest, both of which 

are areas associated with fires. These extreme GV loss areas serve as a basis of 

comparison to which the rest of the study area can be related. In the areas burned by fire, 

GV change values were much more extreme, and some pixels experienced 100% loss of 

GV. The majority of the study area not affected by fire still experienced a negative 

change in GV of ~6%. This suggests that the entire area reflected vegetation response to 

persistent drought conditions.  

 

5.2.2 GV Changes by Elevation Bin 

Given that drought conditions were persistent throughout the study area, the fact 

that some areas in the landscape experienced greater loss of GV than others necessitated 

an examination of another factor such as elevation. Using the same GV quartile ranges, 

elevation intervals were examined for their relationship to loss of GV. Figure 11 

illustrates that the quartile of greatest GV decrease was dominated by the two lowest 

elevation ranges, such that the lower two elevation intervals are expressed more in the 

first and second quartiles of greatest GV decrease than the higher elevation intervals. 

Because all fire affected polygons were removed from analysis, there no fire-induced bias 

of GV loss present in any class. 

 

5.3 Discussion 

This study tested whether drought-induced vegetation response could be 

measured via decreases in GV, if GV decreases were more pronounced at lower 
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elevations, and thus whether forest ecosystems at lower elevations had a greater 

vegetation response to drought than those at higher elevations. This was done by 

classifying hyperspectral data into both discrete land cover classes based on dominant 

flora and bedrock, and into fractional cover classes as a function of photosynthetic 

capacity of vegetation. Secondary to this was whether the accuracies of classification 

methods were affected by intensifying drought conditions.  

Mixed oak, more than any other vegetation class, experienced a strong decrease in 

fractional cover of GV (16%) within the field polygons analyzed. Likewise, low elevation 

regions from 695-1904 m (2280-6247 ft) in the landscape experienced a greater decrease 

in GV compared to higher elevation areas from 1904-2779 m (6247-9117 ft). Given that 

mixed oak was classified more in low elevation areas than other classes, these results 

indicate that the areas of greatest vegetation response to drought conditions were likely 

low elevation areas dominated by mixed oak vegetation. These results also indicate that 

low conifer experienced a decrease in GV (6%), even when accounting for pixel 

decreases due to fire. Every vegetated land cover class in the study area experienced 

varying degrees of vegetation response to drought conditions as evidenced by overall 

negative changes in GV for each class. 

The timing and severity of drought-induced vegetation mortality can be affected 

by both current and past droughts, leading to delayed mortality in some cases (Bigler et 

al., 2007). Therefore, mortality as measured by GV loss in this study is likely affected to 

some degree by past drought periods in addition to the drought conditions present from 

2013-2015. The relative decrease of GV present across all vegetated land cover classes is 

likely due to disproportionate GV decreases among some taxa more than others. The 
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following analysis of vegetation based on the taxa found in Table 2 elucidates the most 

likely culprits of GV loss for each vegetated land cover class. A summary of drought 

tolerance for different species can be found in Figure 12.  

 

5.3.1 Mixed Oak 

Generally, mixed oak contains more deciduous vegetation than any other land 

cover class, which, depending on the timing of each deciduous taxon’s senescence and 

leaf-drop, could affect GV values considerably (Figure 12). However, a number of these 

deciduous taxa in the mixed oak class are also highly drought resistant. Thus, less 

drought resistant perennials could be experiencing drought-induced senescence, 

contributing to GV loss. Based on drought tolerance and foliage-retention, the most likely 

culprits of GV loss in the mixed oak class would likely include interior live oak, 

California black oak, Jeffrey pine, woolly leaf ceanothus, Oregon oak, blue oak, and 

California buckeye. A wide variety of grasses grow throughout the Sierra Nevada, and 

are especially prevalent in the lower elevation mixed oak class. It is likely, given the 

evapotranspirative characteristics of grasses relative to shrubs and trees, that grass 

senescence contributed to loss of GV in mixed oak.  

 

5.3.2 Low Conifer 

Pharis (2010) suggests that ponderosa pine and incense cedar are more drought 

resistant compared to sugar pine, suggesting that among these three evergreen species, 

sugar pine is the most likely to experience GV loss and thus mortality-related senescence. 

Furthermore, this finding that sugar pine is contributing to GV loss in low conifer was 
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confirmed by field observations. Lodgepole pine is not drought-tolerant and thus is also 

likely to contribute to GV loss in the upper extent of the low conifer land cover class, 

although lodgepole pine is much more common in the high conifer class. Both ponderosa 

pine and Jeffrey pine become more susceptible to bark beetle infestations during times of 

drought-induced stress (Fettig et al., 2012). For example, while ponderosa pine may be 

relatively resistant to stress directly related to drought conditions, this stress increases the 

susceptibility of these trees to secondary stresses (i.e., bark beetle attacks and disease), 

which can induce mortality. 

 

5.3.3 High Conifer 

Lodgepole pine is common in the high conifer class along with red fir, which, like 

Lodgepole, lacks drought tolerance. This class contains monotypic stands of both taxa 

throughout. Additionally, there are occurrences of both ponderosa pine, which is drought 

tolerant and white fir, which is only moderately drought tolerant. Although this class 

experienced the least degree of GV loss (Table 4 and Figure 8), it is comprised of 

predominately non-drought-tolerant flora, suggesting that drought conditions were less 

severe in this class. Of the dominant flora present in high conifer, it is most likely that 

GV loss is attributable to lodgepole pine, red fir, and perhaps white fir. 

 

5.3.4 Summary of Taxa Characteristics 

Given that mixed oak had the greatest decrease in GV of any class at 16% (Figure 

8) and also is comprised of the most drought-tolerant taxa, it is interesting to note that 

while both high conifer and low conifer experienced less GV decrease (5% and 6%, 
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respectively) than mixed oak, both of the conifer classes had fewer drought-tolerant taxa 

(Figure 12). 

Loss of GV can occur either because of mortality-related senescence or due to late 

green-up. If for instance California buckeye, a deciduous tree, experiences green-up at 

roughly the same time each year, AVIRIS data collection is likely to consistently capture 

the same seasonal stage of the tree from year to year (e.g., pregreen-up GV, green-up GV, 

nominal GV). However, the possibility does exist that drought-induced stress may change 

the dates of seasonal green-up and senescence for deciduous flora enough to capture a 

non-mortality-related apparent loss of GV in AVIRIS data in subsequent years. 

Perennials like Jeffrey pine that are not highly drought tolerant and do not drop foliage 

could potentially be captured by AVIRIS data experiencing drought-induced mortality, 

which would result in a loss of GV. The measured decreases in GV for the vegetated 

classes are likely due to a combination of factors both mortality-related and seasonally-

related. 

Figure 12 shows that the mixed oak woodland class contains several deciduous 

taxa, the low conifer class only contains a single taxon, and the high conifer class 

contains none. Seasonally-related GV loss may be affecting the mixed oak woodland 

class, but is unlikely affecting either the low conifer or high conifer classes in a 

significant manner, because of the distribution of deciduous taxa in these forested classes. 

Figure 8 and Table 4 both indicate that significant changes in GV took place for high 

conifer and low conifer forests. It is likely that these GV decreases are linked to drought-

related vegetation mortality because low conifer lacks deciduous vegetation and high 

conifer only includes one deciduous taxon. Vegetation mortality occurs through both 
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direct drought-induced senescence and indirect increased susceptibility to bark beetles 

attacks and disease. Since at least two vegetated classes did experience vegetation 

mortality, it is likely that mixed oak also experienced drought-related mortality in 

addition to seasonal shifts in deciduous green-up. Mixed oak includes more drought-

tolerant taxa, which logically would be less affected by drought than the moderate to low 

tolerance taxa of the conifer classes (Figure 12). The degree to which seasonal green-up 

timing affected GV loss relative to mortality requires further analysis. 

Low conifer shares taxa with both the mixed oak and high conifer classes and 

generally resides at elevations between mixed oak and high conifer elevations (Figure 

13). Figure 8 shows that loss of GV for low conifer was on average more severe than 

high conifer, but less severe than mixed oak. This could indicate that the taxa which were 

shared between these classes had a normalizing effect on measured GV loss. Each shared 

taxon could have either contributed to GV loss or not, possibly depending on its elevation 

and/or topography (e.g., on a slope, in a valley, on a ridge, etc.). Because these shared 

taxa were present across classes, they may have acted to mitigate taxa-related differences 

in measured GV loss. Minimizing confounding variability, such as how two different taxa 

react to the same external stimuli, between classes adds a greater level of confidence to 

the results than if no taxa were shared between classes. 

Besides the effects of deciduous vegetation on GV loss, the only remaining 

variable that was measured to be associated with GV loss was elevation. The majority of 

the mixed oak class resides at lower elevations than low conifer or high conifer. Figure 

11 shows that lower elevation areas have on average greater GV loss than higher 

elevation areas. Elevation plays a strong role in determining which dominant flora are 
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present in a given area. Since mixed oak occupies a lower elevation range, it is difficult to 

determine whether the flora present in mixed oak had more of an impact on GV loss than 

elevation, as flora is determined in part by elevation. 

GV loss occurred for all classes, including rock and meadow, which lack a 

significant number of trees. However, fractional data and subsequent analysis (Figure 8) 

indicate that both experienced a loss in GV. This was likely due to the presence of 

grasses and herbaceous growth in these classes. Grasses were likely present in all classes’ 

polygons and had varying effects on GV loss for each class depending on the presence of 

shrubs and trees. The rock land cover class, whose vegetation is primarily limited to 

partial grasses, shrubs, and lichen covers, experienced a significant loss of GV (Figure 8). 

Other classes such as mixed oak woodland and meadow also show a decrease in GV that 

may be attributable to senescence or mortality of a variety of grass taxa, which are 

abundant within these land cover types. 
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Table 3. Summary of maximum accuracies attained via LDA classification of land cover 

classes.  

 2013 2014 2015 

Overall Accuracy (%) 88.0 84.1 81.4 

Kappa Coefficient 0.83 0.77 0.73 

 

Table 4. Summary of mean changes in GV by vegetation class using fractional cover values 

extracted from field-derived polygon pixels. Statistics were generated in RStudio. 

  2013-2014 2014-2015 2013-2015 

hc -6% 1% -5% 

lc -8% 1% -6% 

md -10% -1% -11% 

mo -13% -2% -16% 

ro -3% -4% -7% 
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Figure 8. Median and quartile ranges of GV difference for vegetation classes computed 

from pixels within field-derived polygons. Note that each vegetation class experiences an 

overall decrease in GV fraction, with mixed oak (mo) having the greatest decrease in GV 

fractional cover. 
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Figure 9. 2013-2015 GV difference quartiles plotted as pie charts with land cover classes. 

The majority of mixed oak’s pixels fall into the lower percentile of GV difference, 

indicating this class experienced a greater decrease in GV than other classes. 
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Figure 10. Shade normalized GV difference maps indicate that the southwestern region of 

the study area experienced greater decreases in GV than elsewhere. In July 2013, an area 

in the central region of the study area experienced a fire, the Aspen Fire, causing the large 

decrease in GV. Then, in August 2014 an area in the northwest experienced a fire, the 

Meadow Fire, causing a similar GV decrease. The GV decrease present in center of the 

2013-2015 map that is west of the Aspen Fire is due to a subsequent fire, the French Fire 

(CalFire, 2017; MTBS, 2017). 
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Figure 11. 2013-2015 GV difference quartiles plotted as pie charts with elevation 

intervals. Note that the lower elevations (695-1369 m and 1369-1904 m) express their 

greatest fractions in the 1st and 2nd quartiles while the higher elevation ranges dominated 

the 3rd and 4th quartile. This indicates that greatest loss of GV occurred more so at lower 

elevations than elsewhere in the landscape, and minimal GV loss up and GV increase 

occurred more so at higher elevations. 
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Figure 12. Taxa of each vegetated land cover class expressed as either retaining or 

dropping foliage annually and in terms of drought tolerance as enumerated by the USDA 

Natural Resource Conservation Service (CalFlora, 2017; USDA-NRCS, 2017). Note that 

mixed oak has on average a higher drought tolerance among taxa, and on average more 

deciduous taxa, while by contrast, high conifer has no deciduous taxa and fewer drought-

tolerant taxa. 
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Figure 13. Venn diagram of taxa within each and between each vegetated land cover 

class. Note that low conifer shares taxa with both high conifer and mixed oak. 
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CHAPTER 6 

 

CONCLUSION 

 

6.1 Significance of Major Findings 

Results from this study indicate that extensive drought-related mortality likely 

occurred in the central Sierra Nevada from 2013-2015. Decrease in GV fraction that may 

have been caused by mortality was measured across all land cover classes, but especially 

in the mixed oak woodland class with a GV loss of 16%, which could have been 

compounded by senescence for numerous deciduous taxa in this class. Elevation does 

seem to be predictive of GV loss to a degree, but this is also compounded by the 

elevation-dependence of certain taxa. Classification accuracy decreased over time as 

drought conditions persisted, possibly due to a drought-related reduction in the between-

class separability of spectral profiles. 

 

6.2 Strengths and Weaknesses of Study 

6.2.1 Strengths 

Field-derived polygons were physically delineated by ground-truthing 

homogeneous stands of dominant flora. These polygons allowed for the confident 

statistical treatment of MESMA fractional cover in order to elucidate trends between 

elevation, dominant flora composition, and between years. Determining classification 
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accuracies between years was only possible because of the availability and utilization of 

hyperspectral data for the same areas at roughly the same time of year across multiple, 

consecutive years. These hyperspectral data allowed for discrimination of vegetation 

classes using LDA, and is only possible at these taxa-scales with hyperspectral data, and 

not multispectral data.  

 

6.2.2 Weaknesses 

While consistent data collection at the same time of year aided in research goals, 

the lack of intra-annual data collection limited the degree to which seasonal vegetation 

changes could be measured to affect GV loss. This issue of determining whether changes 

in GV were related to mortality or senescence was hindered by the coarse time resolution 

available. Additionally, a more even distribution and greater number of field polygons 

across different regions in the study area would not only improve LDA classification 

analysis but also improve the robustness of land cover GV changes. Having polygons 

more widely dispersed across the landscape and in greater number would allow for more 

control over confounding variability such as topography, localized effects such as beetle 

attacks, and soil composition. 

 

6.3 Suggested Future Analyses 

6.3.1 Mortality vs. Senescence Analysis 

Determining the degree to which deciduous vegetation experiences shifts in 

green-up and leaf fall is necessary in order to more accurately quantify the GV loss 

associated solely with drought-related mortality. Subsequent analyses should focus on 
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discerning between GV losses associated with drought-related senescence and time-shifts 

in seasonal foliage. 

 

6.3.2 Intra-Annual Analysis 

Data collection at various times of the year, including during winter months, 

would enable the study of postdrought recovery. The drought studied in this research was 

alleviated in the winter months of 2016, which would suggest that recovery would be 

measurable in the dates of green-up starting in 2017. By determining not only early 

summer fractional cover, but also early spring and winter, this would enable examination 

of time-series patterns related to current recovery and subsequent droughts. It would also 

help to determine if vegetation is able to recover at finer time scales throughout the year, 

instead of just between subsequent years. Additionally, comparing the relative timescales 

of recovery between megadroughts and shorter-lived droughts should be examined for a 

more holistic examination of forest recovery. 
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