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ABSTRACT 

 

 A cell’s morphology plays an important role in its function. Thus, the size, shape, 

and structure of cells can be strikingly different across biology. In order to create this 

variation, cells must divide and differentiate in specific and regulated ways. In this 

dissertation, I describe work using C. elegans sperm to understand the programs 

controlling development of specialized cells. During development, sperm undergo 

meiotic division and differentiation to become polarized, motile, and capable of fusing 

with oocytes. From studying these processes, I identified two genes that are important 

both for sperm development and in contexts beyond reproductive biology. 

 The first chapters of this dissertation describe a new function for the conserved t-

SNARE syntaxin 7 (syx-7) in cytokinesis, the process that separates cells from one 

another following nuclear division. Without syx-7, sperm complete most steps of 

division, but the final abscission fails. During cytokinesis in animal cells, an actin ring 

forms between newly partitioning cells. However, it is not currently understood how 

vesicle traffic is spatiotemporally coupled to actin during cytokinesis. As syx-7 sperm 

progress through division, actin becomes mislocalized, providing one of the first 

examples of a specific component of vesicle trafficking machinery with an impact on 

actin localization during cytokinesis. Additionally, a specialized lysosome-like organelle 

is disrupted in syx-7 sperm, raising interesting questions about the link between this 

family of organelles and cell division. If a functional contribution is established, this 
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would represent a new role for lysosome-like organelles, which, when disrupted, cause 

several human disorders. 

 The later chapters of this work focus on the final steps of sperm differentiation: 

cell polarization and acquisition of motility. Our lab identified a signaling pathway that 

induces sperm motility in response to an extracellular protease. Here, I describe discovery 

of snf-10, a Solute Carrier 6 (SLC6) family gene, which provides the first link connecting 

the protease signal to changes in sperm physiology, and ultimately motility. Positive 

regulation by a protease is a novel finding for a member of the SLC6 family, a group of 

genes that have numerous roles in human physiology, but have been studied in limited 

contexts. 
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CHAPTER 1 

 

INTRODUCTION 

 

 Cell division is an essential part of life. It is necessary to produce sperm and egg 

cells that come together to create a zygote, and is further required to produce new cells as 

the zygote undergoes growth and development. In older animals, cell division remains 

critical as it promotes maintenance and repair of tissue. Because of the lifelong impact on 

an organism’s development and health, defects in cell division cause a wide range of 

defects and disorders. These range from cancer and neurological conditions, to birth 

defects and infertility (Sagona and Stenmark, 2010; Normand and King, 2010; Lacroix 

and Maddox, 2012; Basit et al., 2016; Harding et al., 2016).    

 Although cell types vary greatly in terms of size, shape, and organization, when it 

comes time to divide, they share the need to appropriately organize and separate their 

contents into daughter cells. At the basic level, a cell comprises DNA, cytoplasm, and the 

organelles necessary for its specialized function, all enclosed by the plasma membrane. A 

number of events are carefully orchestrated to ensure proper inheritance of these 

components, and in turn the production of healthy daughter cells. One example is the 

replication and segregation of DNA, which is achieved through either mitosis or meiosis. 

Regulated organelle inheritance is also a key event, and the processes governing this 

inheritance are specialized according to the type of organelle (Jongsma et al., 2015). 
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Additional regulation is in place to specify if cell division is symmetric or asymmetric. 

Asymmetric cytokinesis is important as it contributes to cellular diversity by generating 

cells of a distinct fate or size, for example during stem cell division (Berika et al., 2014) 

or oogenesis (Liu, 2012). 

 Throughout cell division, membrane dynamics are also key for success. For a cell 

to undergo DNA replication and segregation, the nuclear envelope must break down and 

later reform (LaJoie and Ullman, 2017). Some organelles such as the Golgi are 

fragmented during division and reassembled in daughter cells (Thyberg and 

Moskalewski, 1998). Additionally, the plasma membrane must adjust to accommodate 

the changes in volume as cells divide, ingress at the division plane, and undergo 

abscission to form new cells that each have their own continuous membrane (Imoto et al., 

2011; Chen et al., 2012; Horgan and McCaffrey, 2012). Organelle and vesicle 

membranes are also quite dynamic within dividing cells, as trafficking events package 

and deliver machinery for ingression of the furrow, abscission, and other necessary 

processes (Straight and Field, 2000; Prekeris and Gould, 2008; McKay and Burgess, 

2011). 

 Our knowledge regarding how cell division is orchestrated is constantly 

expanding, but there are still many interesting questions to address, which hold 

implications both for human health as well as our fundamental understanding of biology 

(Pollard, 2017). Much of my graduate work focuses on cytokinesis, the final process by 

which new cells separate from one another at the culmination of division. Using the 

nematode worm C. elegans, I studied how membrane trafficking promotes the final 

separation of sperm following meiotic division. This introduction summarizes the current 
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understanding of cytokinesis with particular emphasis on the mechanisms that guide the 

process during sperm meiosis, which is most relevant for understanding my work. 

 

Cytokinesis – A General Overview 

 Cytokinesis is the process by which two cells separate from one another, 

following either mitosis or meiosis. The basic underlying mechanisms of cytokinesis – 

from the general operating principles to the protein machinery used to achieve them – are 

conserved from yeast to humans (Eggert et al., 2006). At the start of division, a 

contractile actomosin ring forms just underneath the cortex of the dividing cell 

(Schroeder, 1972). Constriction of the ring invaginates the plasma membrane, and a 

cleavage furrow forms creating a barrier between the two new cells, until they are 

connected only by a thin cytoplasmic region, called the intracellular bridge (Dionne et al., 

2015). Finally, abscission machinery assembles within the intercellular bridge to seal off 

two new membrane compartments, thus completing separation of daughter cells (Chen et 

al., 2012; Horgan and McCaffrey, 2012). An intricate and complex network of 

components directs the events required for cytokinesis, allowing them to occur in a 

manner that is both spatially and temporally precise. Our understanding of this network is 

constantly expanding, and in fact, a recent review states that how cytoskeletal changes 

are controlled in a cohesive manner alongside dynamic membrane compartments is one 

of the most interesting questions in the field of cell division (Straight and Field, 2000). 
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Cytokinesis Requires Membrane Traffic 

 Cytokinesis requires membrane traffic and targeted vesicle fusion at every stage 

of the process (McKay and Burgess, 2011). The importance of membrane traffic was first 

identified in studies using brefeldin A to inhibit anterograde transport via the secretory 

pathway in embryos from C. elegans and Drosophilia. In both cases, brefeldin A 

treatment led to regression of the intracellular bridge (Skop et al., 2001; Farkas et al., 

2003). Additionally, when Skop et al. isolated midbodies from Chinese hamster ovary 

cells and identified the proteins present using tandem liquid chromatography and tandem 

mass spectrometry, they found 33% of the 160 proteins identified fell into the category of 

membrane trafficking or secretion (2004). This was for only one stage of cytokinesis, and 

further work has shown that trafficking is also important for contractile ring formation 

(Riggs et al., 2007), furrow ingression (Pelissier et al., 2003; Riggs et al., 2003; Ai and 

Skop, 2009), and abscission (Low et al., 2003). 

 Several studies have highlighted the importance of SNARE (N-ethylmaleimide-

sensitive fusion protein (NSF)-attachment protein receptors) proteins, such as the 

syntaxins, in vesicle docking and fusion throughout cytokinesis. SNAREs are a key 

component of vesicle trafficking machinery, as the interaction of v-SNAREs on transport 

vesicles and t-SNAREs on the target membrane brings the two into close proximity and 

likely drives fusion (Chen and Scheller, 2001; Pelham, 2001). The first syntaxin 

discovered to function during cytokinesis was KNOLLE in Arabidopsis. KNOLLE is a 

cytokinesis specific syntaxin required for membrane assembly at the cell midline, the 

means by which plants accomplish cytokinesis (Lukowitz et al., 1996; Lauber et al., 

1997). Shortly after KNOLLE’s discovery, Conner and Wessel discovered cytokinesis 
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was inhibited in the sea urchin Lytechinus variegatus when syntaxin was inhibited by 

either drug treatment or antibody injections (1999), and Jantsch-Plunger and Glotzer 

demonstrated through RNAi depletion experiments that syntaxins were also required for 

cytokinesis in C. elegans embryos (1999). Many more examples have since been 

identified in numerous cell types and organisms including yeast, C. elegans, Drosophila, 

and mammals (Loncar and Singer, 1995; Low et al., 2003; Nakamura et al., 2005; Song 

et al., 2009; Neto et al., 2013). 

 In the above examples of SNAREs involved in cytokinesis, each experiment 

resulted in defects in different stages of cytokinesis. While by no means the only protein 

family involved, SNAREs clearly fulfill an important role in vesicle docking and fusion 

throughout the process. So far, they are known to function both in early stages such as 

formation, ingression, and maintenance of the furrow (Jantsch-Plunger and Glotzer, 

1999; Giansanti et al., 2006), and in later stages such as nuclear envelope reformation and 

abscission (Jantsch-Plunger and Glotzer, 1999; Neto et al., 2013). How the function of 

SNAREs varies by organism and cell type is beginning to be understood. However, one 

aspect that remains unclear is how vesicle fusion is spatiotemporally coupled to the 

actomyosin ring during cytokinesis (Pollard, 2017). 

 

Vesicle Traffic During Sperm Meiosis 

 Cytokinesis is a very robust and highly conserved process, and studies have found 

there is a large amount of overlap in the molecular machinery used, regardless of whether 

a cell is undergoing meiotic or mitotic division (reviewed in Eggert et al., 2006; Belloni 

et al., 2012). This emphasizes that much of what we learn from the study of sperm 
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cytokinesis can be applied more generally. However, sperm are special too. For example, 

when sperm undergo meiosis, two divisions must occur in a fairly short amount of time. 

Additionally, there is no transcription or translation in sperm once meiosis begins (Ward, 

1983), so machinery for the two consecutive divisions must be recycled or repurposed. 

Finally, during sperm meiosis, the first division is often followed by an incomplete 

cytokinesis (Ward, 1983; Hime et al., 1996; Robinson and Cooley, 1996; Greenbaum et 

al., 2011), and developing sperm are connected to one another by thin cytoplasmic 

bridges. Previous work suggests meiotic cytokinesis may have unique requirements for 

vesicle trafficking, perhaps to meet some of these specific features of division during 

sperm development. Drosophila spermatocytes, for example, have either additional or 

slightly different requirements for cytokinesis as compared to mitotic cells. Mutations 

affecting the trafficking-related genes fwd, gio, fws, and Arf6 impair cytokinesis in sperm, 

but not in neuroblasts or S2 cells (Somma et al., 2002; Farkas et al., 2003; Eggert et al., 

2004; Giansanti et al., 2006; Dyer et al., 2007; Giansanti et al., 2007; Belloni et al., 

2012). This suggests these genes fulfill a role either not required by mitotic cells, or that 

mitotic cells can accomplish the same goal using different machinery. 

 Two SNAREs have been identified that are important for sperm cytokinesis. The 

first, Stx2, is involved in both meiotic and mitotic cytokinesis, although this is through 

apparently different roles. In somatic cytokinesis, Stx2 is essential for abscission of the 

intracellular bridge (Low et al., 2003). The role of Stx2 in sperm was identified through a 

mutagenesis screen in mice, as males deficient in Stx2 exhibit infertility (Akiyama et al., 

2008; Fujiwara et al., 2013). Deletion alleles of Stx2 cause an arrest in sperm 

development and instead of haploid spermatids, mutant males produce multinucleated 
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sperm cells. Because sperm from mice deficient in sulfoglycolipids exhibit a similar, 

multinucleated phenotype (Fujimoto et al., 2000; Zhang et al., 2005), and sulfoglycolipid 

localization to the intracellular bridge is disrupted in Stx2 mutants, the authors 

hypothesized that STX2 is involved in transport of sulfoglycolipids and thus maintenance 

of intracellular bridges between dividing sperm. The other syntaxin identified to function 

in sperm is dSyx5 in Drosophila. While a complete loss of dSyx5 is lethal, a hypomorphic 

allele results in male sterility due to multinucleated germ cells produced from incomplete 

cytokinesis (Xu et al., 2002). For dSyx5, the authors show transport from the Golgi may 

be disrupted, although how this directly impacts cytokinesis remains unclear. There is no 

clear role for dSyx5 in cytokinesis for mitotic cells, unless a division defect is causing the 

lethality. However, in somatic cells, dSyx5 is required for reassembly of the Golgi after 

division (Rabouille et al., 1998). 

 Overall, it appears both Stx2 and dSyx5 could be making specialized contributions 

to sperm cytokinesis, even though they have other roles as well. One interesting question 

about SNAREs is how their function is modulated to act at specific stages or in specific 

cell types. Many SNARE isoforms have been identified, and one idea is that controlled 

membrane fusion may come at least in part through cooperation between unique sets of 

SNAREs and interacting proteins with specific cellular distributions (Rothman and 

Warren, 1994).  

 

Cell Division During C. elegans Sperm Development 

C. elegans sperm development is a system well suited for the study of cytokinesis. 

To produce four haploid spermatids, a primary spermatocyte must undergo two 
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sequential rounds of meiotic division, each accompanied by a cytokinesis (Ward et al., 

1981). As in other organisms, this process is accompanied by cytoskeletal restructuring, 

redistribution of cytoplasm, and regulated organelle inheritance, all tightly coordinated 

with each other and with dramatic membrane remodeling (Roberts et al., 1986; 

L'Hernault, 2006). 

Sperm initially form in syncytium along a cytoplasmic core and cellularize when 

they enter meiosis (L'Hernault, 2006). These 4N primary spermatocytes divide to become 

2N secondary spermatocytes. The cytokinesis that accompanies meiosis I can be either 

complete or incomplete, and sperm often remain connected by a thin cytoplasmic bridge 

(Ward et al., 1981). Following the nuclear division of meiosis II, haploid spermatids form 

surrounding a central cytoplasmic core called the residual body, from which they 

eventually separate (Ward et al., 1981). Separated spermatids contain only the necessary 

cellular components for basic function, motility, and fertilization, most notably a haploid 

nucleus, mitochondria, major sperm protein, and lysosome-like membranous organelles. 

Cellular components the spermatids no longer need are left behind in the residual body, 

including most voltage-gated ion channels, tubulin, actin, and ribosomes (Nelson et al., 

1982; Roberts et al., 1986; Machaca et al., 1996).  

C. elegans is a male/hermaphrodite species. In both males and hermaphrodites, 

sperm develop in a similar manner until they transition from spermatids to motile 

spermatozoa, during a process termed sperm activation. In hermaphrodites, newly 

produced spermatids are pushed into the sperm storage organ where they activate and are 

stored until they fertilize oocytes (Ward and Carrel, 1979). In males, sperm are stored as 

nonactivated spermatids. It is not until they are transferred to a hermaphrodite through 
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mating that they are exposed to a protease activator and become motile (Smith and 

Stanfield, 2011). Unlike mammalian sperm, C. elegans sperm lack a flagella and instead 

use a pseudopod to crawl (Ward and Carrel, 1979). 

 

Thesis Summary 

 In this dissertation, I present my work using C. elegans sperm development to 

study cell division and differentiation. Chapters 2 and 3 discuss the identification and 

characterization of syntaxin 7 (syx-7), a gene that promotes cytokinesis in sperm 

following the nuclear division of meiosis II. This is the first time a role in cell division 

has been identified for the well-conserved gene, and in Chapter 2, I present details of the 

cytokinesis defects in the mutant. Loss of syx-7 affects actin localization during sperm 

development, suggesting a mechanism for why cytokinesis fails and providing one of the 

first examples of vesicle fusion functioning upstream of actin localization during 

cytokinesis. In Chapter 3, I present data demonstrating both the formation and function of 

lysosome-like membranous organelles are disrupted in syx-7 mutants, and discuss the 

idea that lysosome-like organelles could broadly contribute to cell division. For Chapters 

3, 4, and 5, I move to a process that occurs after meiotic division in sperm development: 

the activation of sperm motility. These chapters focus on SNF-10, a sperm membrane 

protein required for motility to be triggered via a protease signaling pathway. Chapter 3 

describes discovery of SNF-10 and its role in initiating sperm motility in response to a 

protease signal in seminal fluid. Chapter 4 is a detailed discussion of the experiments and 

discoveries presented in Chapter 3, and Chapter 5 contains further experiments designed 

to address the mechanism of SNF-10’s function. 
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Abstract 

 Cytokinesis requires an intricate interplay between the cytoskeleton and cellular 

membranes. However, it remains unclear how vesicle traffic is spatiotemporally coupled 

to actin assembly and disassembly, and how this is regulated to accomplish the variety of 

cell division patterns that occur in different cell types. Using C. elegans sperm, we 

identified a novel function for the conserved gene syntaxin 7 (mammalian Stx12/13) in 

promoting actin localization during the second meiotic division. Without syx-7, sperm 

complete most steps of division, including karyokinesis and partitioning of cellular 

components. However, as they near abscission, F-actin becomes mislocalized and sperm 

fail to separate from one another. While there are a variety of examples of the 

dependence of membrane trafficking on cytoskeletal structures, fewer examples have 

been identified of the converse situation, in which actin function during cell division is 

dependent on vesicle trafficking machinery. This work suggests distinctive trafficking 

machinery might modulate cellular division when specific requirements must be met, 

such as during meiosis. It also provides one of the first examples of vesicle trafficking 

functioning upstream of actin localization during cytokinesis. 

 

Introduction 

Successful cell division is contingent on a number of carefully orchestrated 

events. These include replication and segregation of DNA, remodeling of the 

cytoskeleton and other cellular structures, and partitioning of organelles and other 

cytoplasmic components into daughter cells. Key to the success of cell division is a 

dramatic remodeling of cellular membranes. This is particularly evident during 
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cytokinesis, the final stage of cell division that culminates in the physical separation of 

daughter cells (McKay and Burgess, 2011). Here, membrane changes are required for 

formation of the ingression furrow, contractile ring, and midbody, and for abscission to 

occur (McKay and Burgess, 2011; Neto et al., 2011). Defects in cytokinesis contribute to 

a wide range of diseases and developmental disorders, from cancer and neurological 

conditions to birth defects and infertility (Normand and King, 2010; Sagona and 

Stenmark, 2010; Lacroix and Maddox, 2012; Basit et al., 2016; Harding et al., 2016). 

Cytokinesis in animal cells involves several stages whose coordination is critical 

for proper division. First, the microtubule cytoskeleton positions the division site 

(Rappaport, 1986). Then, an actomyosin contractile ring forms underneath the cortex of 

the dividing cell to support invagination of the plasma membrane and formation of the 

cleavage furrow (Schroeder, 1972). This forms a barrier between the new cells, which 

eventually remain connected only by a thin cytoplasmic region, the intracellular bridge. 

Finally, the cortical actin cytoskeleton is disassembled and abscission machinery within 

the intracellular bridge seals off the two new membrane compartments, completing 

separation of daughter cells (Chen et al., 2012; Horgan and McCaffrey, 2012). Thus, 

during cytokinesis, precise coordination between the cytoskeleton and cellular 

membranes is needed to ensure successful division. One important aspect of cytokinesis 

that remains unclear is how vesicle fusion is spatiotemporally coupled to actin during 

cytokinesis, for both contractile ring formation as well as later actin disassembly, which 

is required for abscission to occur (Cheffings et al., 2016). 

While the processes involved in mitotic and meiotic cytokinesis largely overlap 

and much of the same molecular machinery is used (Eggert et al., 2006; Belloni et al., 
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2012), meiotic division during sperm development has additional unique requirements. 

For example, in many animals, cells must undergo two consecutive divisions in rapid 

succession. Additionally, the first meiotic division in sperm is often followed by a partial 

cytokinesis and developing sperm remain connected to one another through a 

cytoplasmic bridge (Lindsley, 1980; Ward et al., 1981). Furthermore, sperm undergo 

little transcription or translation during division (Sassone-Corsi, 2002). This means sperm 

cells not only must produce any required gene products prior to initiating meiosis, but 

they also must also have mechanisms in place to ensure the machinery is used at the right 

time and place. Previous work suggests meiotic division may rely on vesicle trafficking 

components to achieve these specialized requirements, as trafficking proteins have been 

identified that are required for meiosis but not for mitosis (reviewed in Giansanti et al., 

2014).  

The SNARE (Soluble N-ethylmaleimide-sensitive fusion protein attachment 

protein receptor) family of proteins are core components of vesicle trafficking machinery. 

SNAREs function in nearly all membrane fusion events that occur within cells (Han et 

al., 2017). SNAREs on different membrane compartments come together via their coiled-

coil SNARE motifs, bringing membranes into close proximity and likely driving fusion 

(Chen and Scheller, 2001; Pelham, 2001). During cytokinesis, SNAREs function to 

traffic machinery required for contractile ring formation, furrow ingression, and 

abscission (reviewed in Neto et al., 2011). Two t-SNAREs have been shown to function 

in sperm cytokinesis: Syntaxin 2 (Stx2) in mice (Fujiwara et al., 2013), and syntaxin 5 

(dSyx5) in Drosophila (Xu et al., 2002). Mutations in these genes cause a similar gross 

phenotype as they result in the formation of large terminal sperm cells with multiple 
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nuclei, although it is not completely understood what aspect of vesicle trafficking is 

affected. 

We are studying sperm from the nematode C. elegans to understand the process of 

cytokinesis. As C. elegans sperm develop, each primary spermatocyte undergoes two 

rounds of meiotic division to generate four haploid spermatids (Ward et al., 1981). As in 

other organisms, this is accompanied by cytoskeletal restructuring, distribution of 

cytoplasm, and regulated organelle inheritance (Roberts et al., 1986; L'Hernault, 2006). 

Using this system, we identified a new function for the gene syntaxin 7, the C. elegans 

ortholog of mammalian t-SNARE syntaxin 12/13 (Stx12/13). Stx12/13 has been 

previously demonstrated to function during homotypic fusion of early endosomes 

(Brandhorst et al., 2006), recycling of surface proteins (Prekeris et al., 1998), and the 

biogenesis of lysosome-related organelles such as melanosomes and platelet granules 

(Huang et al., 1999; Jani et al., 2015).  

Here, we demonstrate a novel function for the t-SNARE syx-7 in sperm 

development. In syx-7 sperm, meiotic cytokinesis is disrupted. While syx-7 sperm 

partition many components correctly into dividing spermatids and attempt division, 

sperm ultimately fail to separate. Interestingly, actin is mislocalized in syx-7 sperm, 

suggesting a mechanism for why they fail to complete division after completing so much 

of the preparatory process. Overall, our results identify a function for SYX-7 in 

facilitating meiotic division, and add to the growing evidence that specialized vesicle 

trafficking machinery is important during meiotic cytokinesis. Furthermore, although 

there is ample evidence for a cytoskeletal requirement for vesicle trafficking, this work 
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provides one of the first examples of a vesicle trafficking requirement for actin function 

during cytokinesis.  

 

Results 

Generation of syx-7 alleles 

We hypothesized that due to the unique requirements of sperm cell division, 

specific SNAREs would be involved in the process. Therefore, to test the role of the t-

SNARE syx-7 in fertility, we used CRISPR/Cas9 to generate deletions within the syx-7 

coding region. In addition to its SNARE domain, SYX-7 contains two other domains 

common to SNARE proteins: an N-terminal regulatory domain (Habc) and a C-terminal 

transmembrane anchor (Figure 2.1A, Figure 2S.1). We designed short guide RNAs 

(sgRNAs) to remove the majority of the coding region of syx-7 and disrupt these 

functional domains (Figure 2.1A,B).  

Nine alleles were obtained (Figure 2S.2A), and we chose to focus on jn37 and 

jn42 for our detailed studies. jn37 is a 1312 base pair (bp) deletion, and jn42 is a 1309 bp 

deletion with an insertion of 15 bp likely produced by nonhomologous end joining (Kim 

and Colaiacovo, 2016). Both mutations are likely null alleles of syx-7, as each introduces 

a frameshift just after the exon 2 cut site that results in an early stop, eliminating a large 

portion of the N-terminal regulatory domain and all of the SNARE domain (Figure 2.1B, 

2S.2A). We also obtained two previously-isolated alleles of syx-7, tm1198 and tm1764 

(National BioResource Project:: C. elegans). These alleles are deletions of 436 bp and 

406 bp, respectively, that remove portions of the N terminus of syx-7 but leave the 

SNARE domain in-frame for translation (Figure 2.1B). Sequence analysis of syx-7 
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cDNAs produced from jn37, jn42, tm1198, and tm1764 animals confirmed that these 

transcripts had the expected structure (data not shown). 

 

syx-7 function is required in developing sperm 

All of the syx-7 mutants generated from our CRISPR experiment appeared normal 

in terms of general appearance and movement, with the exception that the strains 

produced fewer offspring as compared to wild-type. Therefore, we tested if loss of syx-7 

caused developmental or fertility defects. We found syx-7 mutant eggs hatched at rates 

indistinguishable from those of wild-type hermaphrodites, and an equivalent number of 

offspring survived to the last larval stage (Figure 2.1C). Thus, syx-7 is not required for 

viability, but rather for some aspect of fertility. 

We observed that hermaphrodites from all of our CRISPR strains, including syx-

7(jn37) and syx-7(jn42), began laying unfertilized oocytes rather than fertilized eggs after 

approximately 1.5 days of adulthood, indicating that either sperm or oocyte production 

was abnormal. To better understand this defect, we performed brood counts by tallying 

the number of progeny generated by self-fertilizing hermaphrodites. For both syx-7(jn37) 

and syx-7(jn42) hermaphrodites, brood sizes were significantly reduced as compared to 

wild-type (Figure 2.1D). These data show syx-7 is important for fertility. However, when 

we tested tm1198 and tm1164, these mutants had wild-type levels of fertility (Figure 

2.1D), suggesting the N terminus of syx-7 might be less important than the SNARE 

domain for function in this context. We also assayed male fertility by crossing syx-

7(jn37), syx-7(jn42), or wild-type males to fog-2(q71) hermaphrodites. fog-2 mutant 

hermaphrodites are essentially female, as they lack sperm and can only produce offspring 
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by acquiring sperm through mating (Schedl and Kimble, 1988). We found that syx-7 

mutant males sired a severely reduced number of progeny as compared to wild-type 

males (Figure 2.2A). That both syx-7 hermaphrodites and males exhibited reduced 

fertility indicates that sperm defects are at least partially responsible for syx-7 fertility 

defects. 

We next tested if loss of syx-7 also affects development or function of oocytes. If 

sperm were defective but oocytes were normal, fertility should be rescued by providing 

functional sperm. We crossed syx-7 and wild-type control hermaphrodites to males 

containing a GFP transgene, mIs11, which allowed us to distinguish between cross (GFP-

positive) progeny and self (GFP-negative) progeny. We found that mated wild-type and 

syx-7 hermaphrodites produced similar numbers of cross progeny in this assay (Figure 

2.2B), indicating syx-7 mutants produce healthy oocytes and are capable of normal 

fertility if wild-type sperm are provided. Thus, defective sperm are solely responsible for 

the reduced fertility of syx-7 animals.   

To test if syx-7 function is required autonomously in sperm, we generated 

transgenic animals with syx-7 under the control of the peel-1 promoter, which drives 

expression specifically in male germline cells undergoing spermatogenesis (Seidel et al., 

2011). We found Ppeel-1::syx-7 fully rescued the Syx-7 fertility defect and restored 

broods to wild-type levels (Figure 2.2C). We also introduced a 3.4 kb fragment 

encompassing the syx-7 locus into syx-7(jn37) animals, and observed significant rescue of 

the fertility defect in transgenic hermaphrodites (Figure S2.2B). We conclude that syx-7 

functions specifically in sperm to promote fertility.  
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syx-7 mutants have defects in spermatogenesis 

To determine the nature of the defects in syx-7 sperm, we used DIC microscopy to 

examine syx-7(jn37) and syx-7(jn42) mutant males. The C. elegans male gonad is an 

elongated structure that contains a distal-to-proximal gradient of progressively more 

differentiated sperm. A broad zone of prespermatogenic, syncitial germ cells is followed 

by a small region where spermatocytes first cellularize and then undergo meiosis. Each 

spermatocyte divides to form four haploid spermatids, which bud from the residual 

bodies, structures where excess cytoplasm and unneeded cellular components are 

discarded. After division, spermatids move into a proximally-located seminal vesicle, in 

which they are stored (Figure 2.2D). When dissected from the animal, round spermatids 

are observed to contain a centrally placed nucleus surrounded by grainy cytoplasm 

(Figure 2.2D, Inset). In syx-7 mutant males, the prespermatogenic and spermatocyte-

containing zones of the gonad appeared grossly normal. However, mutant males 

contained a reduced number of wild-type-looking spermatids. Instead, the majority of the 

seminal vesicle region was dominated by large cells that were spermatocyte-like in size, 

but lacked the appearance of either normal spermatocytes or spermatids (Figure 2.2E). 

These abnormal cells exhibited both grainy and smooth regions within a single cell, and 

nuclei were difficult to discern (Figure 2.2E, Inset). This phenotype was highly penetrant; 

these cells were present in all syx-7(jn37) and syx-7(jn42) mutant animals analyzed for 

this study.  

While our DIC imaging revealed there are severe defects in syx-7 spermatid 

formation, we wanted to examine the sperm at higher resolution to better understand how 

cellular structures are affected. Therefore, we performed electron microscopy to examine 
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sperm within adult males. In wild-type males, individual spermatids were packed very 

closely into the sperm storage region (Figure 2.2F). We observed condensed nuclei, 

mitochondria, and membranous organelles within spermatids, as previously described 

(Figure 2.2F) (Wolf et al., 1978; Ward et al., 1981). Membranous organelles are sperm-

specific organelles related to lysosomes, with a double-layered membrane that stains 

darkly when observed by EM (Nelson et al., 1980). As in our DIC imaging experiment, 

electron micrographs of syx-7 mutants revealed sperm that were much larger than wild-

type spermatids (Figure 2.2G). The large cells contained both light, spermatid-like and 

dark, residual body-like regions of cytoplasm, likely corresponding to the grainy and 

smooth regions revealed by DIC (Figure 2.2E, 2.2G). In some cases, the compartments 

were partially enclosed by membranes and were within the size range of wild-type 

spermatids. The compartments contained mitochondria and a nucleus, as well as small 

vesicles that were not present in wild-type cells (Figure 2.2G). Membranous organelles 

were not evident in the large syx-7 sperm, although the few relatively normal-looking 

spermatids produced in the mutant did contain abnormal structures that showed 

similarities to membranous organelles (data not shown). Not all of the large cells 

contained compartments or distinct organelles (data not shown), suggesting a breakdown 

of cellular components in syx-7 terminal cells. Based on these data, we conclude syx-7 is 

important for the formation of spermatids. 

 

syx-7 promotes spermatid separation during meiosis 

To define the defects in spermatogenesis in syx-7 mutants, we used DIC 

microscopy to observe sperm of dissected males developing in vitro (Figure 2.3A-N’). 
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For C. elegans, spermatocytes dissected from the male gonad can undergo 

spermatogenesis and even give rise to haploid spermatids in the absence of any 

supporting tissues (Ward et al., 1981). The cellular pathway for sperm differentiation is 

shown in Figure 2.3A. Wild-type sperm begin meiosis and replicate their genome when 

they cellularize. During meiosis I, these primary spermatocytes (4N) (Figure 2.3B,B’) 

divide to become secondary spermatocytes (2N), which in most cases remain connected 

by a thin cytoplasmic bridge (Figure 2.3C,C’). During meiosis II, each spermatocyte 

gives rise to four haploid spermatids. For cells that show incomplete separation, four 

spermatids simultaneously bud from a single residual body (“four-bud spermatocytes”; 

Figure 2.3D,D’). In other cases, where secondary spermatocytes completely separate 

from one another during meiosis I, each of the daughters goes on to bud two spermatids 

from a residual body (“two-bud spermatocytes;” Figure 2.3E,E’) (Ward et al., 1981). 

Although few cells achieve complete separation of spermatids in vitro (Figure 2.3F,F’), 

they often achieve the fully-budded stage prior to arresting and can maintain this 

appearance for some time (Ward et al., 1981). We scored a cell as having stable buds if it 

maintained partitioning for at least 25 minutes, and we often observed them in this state 

for over 40 minutes. Time durations for each stage as well as the outcome of 

differentiation for cells observed in vitro are shown in Figure 2.4. 

A diagram of syx-7 sperm differentiation is shown in Figure 2.3G. For syx-7 

sperm, we observed that cells initiated meiosis as primary spermatocytes that were 

indistinguishable from wild-type (Figure 2.3H,H’). Mutant and wild-type secondary 

spermatocytes also appeared similar, although syx-7 cells required more time to reach this 

developmental stage (9.0 ± 4.2 min for syx-7 cells, as compared to 2.7 ± 0.7 min for wild-
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type; Figure 2.4, Figure 2.3I,I’). Like wild-type, syx-7 primary spermatocytes were 

capable of undergoing either incomplete or complete cytokinesis during meiosis I, 

resulting in four-bud or two-bud spermatocytes at meiosis II (Figure 2.3J-K’).  

At the budding stage, visible differences between syx-7 and wild-type sperm were 

usually evident. While syx-7 mutant sperm showed a similar pattern of budding 

spermatids, each with a single, presumably haploid nucleus, they often formed extra 

membrane blebs from the residual body surface. These blebs were smaller than the 

budding spermatids and contained no nuclei (Figure 2.3J,J’). Additionally, the budding 

stage was highly dynamic in syx-7 sperm. When wild-type cells were observed in vitro, 

spermatid buds consistently grew until they separated from the residual body, or 

sometimes were resorbed in a slow and consistent manner (Figure 2.4). Budding-stage 

syx-7 sperm showed ongoing shrinking and swelling of both the blebs and spermatid 

buds.  

For syx-7 cells, spermatids rarely separated from residual bodies. Instead, the 

majority of developing sperm lost the partitioning they had achieved during budding 

within 8.6 ± 3.4 min (Figure 2.3L,L’; Figure 2.4) and collapsed back into a single, 

abnormal cell within 27.4 ± 15.6 min (Figure 2.3M,M’; Figure 2.4). A subset of syx-7 

cells were successful at budding (Figure 2.3N,N’; Figure 2.4), although resulting 

spermatids were often smaller than those of wild-type (data not shown). Our data indicate 

syx-7 functions to promote fertility by contributing to the formation of haploid 

spermatids. In fact, because syx-7 budding spermatids are so close to separating before 

they fail, it appears syx-7 promotes a very late step of cytokinesis during sperm meiosis.  
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SYX-7 becomes restricted to a lysosome-like organelle in  

budding spermatids  

To examine localization of the SYX-7 protein within the germ line, we used 

MosSCI (Frokjaer-Jensen et al., 2008; Frokjaer-Jensen et al., 2012) to generate transgenic 

strains harboring a single-copy, N-terminal syx-7-GFP fusion driven by the endogenous 

syx-7 promoter. These Psyx-7::gfp::syx-7 animals had wild-type levels of fertility (data 

not shown), indicating the fusion protein is functional.  

 At the primary spermatocyte stage, GFP::SYX-7 was distributed in puncta 

throughout the sperm cytoplasm (Figure 2.5A,B). At the secondary spermatocyte stage, 

GFP::SYX-7 remained punctate and distributed throughout the cytoplasm of each 

dividing cell, but it was notably absent from the division plane between the two 

spermatocytes (Figure 2.5E,F). As sperm continued to mature, GFP::SYX-7 was 

partitioned into the budding spermatids, and was excluded from the residual body (Figure 

2.5I,J). In budded spermatids, GFP::SYX-7 was restricted to a punctate pattern around 

the periphery of the sperm, just underneath the plasma membrane (Figure 2.5M,N).  

 This localization pattern was reminiscent of a sperm-specific lysosome-related 

organelle called a fibrous body-membranous organelle (FB-MO). FB-MOs form during 

early spermatogenesis and are partitioned into budding spermatids. After budding, the 

fibrous bodies and MOs dissociate from one another, and MOs become closely associated 

with the plasma membrane (Wolf et al., 1978; Roberts et al., 1986). We compared the 

localization of SYX-7 to that of FB-MOs and MOs. In primary spermatocytes, the 

majority of both signals were present throughout the cytoplasm, without an obvious 

pattern of overlap. However, at the cell periphery, we observed a ring of 1CB4 where 
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GFP::SYX-7 signal was clearly absent (Figure 2.5A-D). In secondary spermatocytes, this 

pattern persisted, with the additional difference that 1CB4 was present in the GFP::SYX-

7-free region along the division plane (Figure 2.5E-H). At budding, both 1CB4 and 

GFP::SYX-7 were partitioned into spermatids (Figure 2.5I-L), and in haploid spermatids, 

the two signals were almost entirely coincident with one another (Figure 2.5M-P). From 

these data, we conclude that SYX-7 localizes throughout spermatocytes, and is excluded 

from at least a subset of FB-MOs, but it moves to the MOs as sperm divide.  

 

syx-7 spermatids undergo cellular partitioning  

During spermatid budding, nearly all cellular components undergo a striking 

process of partitioning into either the spermatids or the residual body. While specific 

proteins and organelles such as the nuclei, mitochondria, and the MOs are distributed to 

the spermatids, components that are no longer needed, such as tubulin, actin, and 

ribosomes, are relegated to the residual body (Figure 2.6A) (Roberts et al., 1986; Ward, 

1986). This sorting is required for production of functional spermatozoa (Roberts et al., 

1986).  

While we had observed that nuclei partition appropriately into budding-stage syx-

7 spermatids (Figure 2.3I-I’), we sought to determine if syx-7 sperm showed defects in 

sorting of other cellular components. We dissected budding spermatids from males and 

visualized various components using a variety of antibodies, live dyes, and fluorescent 

protein tags. In wild-type cells undergoing partitioning, MOs localized to spermatids and 

were absent from the residual body (Figure 2.6B,B’). We observed a similar pattern in 

syx-7 sperm, although small concentrations of the MO antibody were sometimes visible 
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along the periphery of the residual body (Figure 2.6C,C’). Major sperm protein, which 

comprises the sperm cytoskeleton (Ward and Klass, 1982), was present in partitioning 

spermatids and absent from the residual body for both wild-type and syx-7 cells (Figure 

2.6D-E). We found that both wild-type and syx-7 mitochondria partitioned into 

spermatids, although a few were left behind in the residual body of syx-7 mutants (Figure 

2.6F-G’). The localization of tubulin also was very similar in syx-7 as compared to wild-

type sperm; it localized to the residual body and formed concentrations just beneath 

budding spermatids (Figure 2.6H-I’). In summary, initial partitioning between the 

spermatids and residual body was largely normal in syx-7 mutants. This finding is 

consistent with our observations of dividing cells, which proceeded to an advanced stage 

of budding prior to collapse. 

 

SYX-7 is required for actin-mediated separation of haploid sperm 

 Because budding syx-7 sperm appeared poised to divide, it seemed likely that a 

defect was occurring late in the division process. For example, protein machinery needed 

to generate forces on the membrane and complete spermatid separation might depend on 

syx-7 for proper localization or function. To analyze this, we generated transgenic strains 

expressing LifeAct::mCherry, which binds F-actin (Riedl et al., 2008), and performed 

confocal microscopy on dissected sperm.  

 In the wild-type, LifeAct::mCherry showed a dynamic and reproducible pattern of 

localization during the two meiotic divisions. At the first cytokinesis, it localized to the 

division plane, where furrow ingression occurs (Figure 2.7A). At the second cytokinesis, 

LifeAct::mCherry was restricted to the residual body in both four-bud and two-bud 
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spermatocytes (n=22), and we often saw concentrations under budding spermatids 

(Figure 2.7C, Figure 2.7D-D’).  

 In syx-7 sperm undergoing the first meiotic cytokinesis, LifeAct::mCherry 

localized to the division plane, with no discernable differences as compared to wild-type 

(Figure 2.7B-B’). However, at the second cytokinesis, defects became apparent. In four-

bud spermatocytes, LifeAct::mCherry was restricted to the residual body cytoplasm in 

only 12% of syx-7 cells (n=33), and concentrations were never associated with spermatid 

buds (Figure 2.7C). Instead, LifeAct::mCherry was often detected in concentrations 

between spermatids on the periphery of the residual body (Figure 2.7E-E’), in budding 

spermatids (Figure 2.7F-F’), and in the anucleate blebs that form from the residual body 

in the mutant (Figure 2.7G-G’). Often, we observed a combination of these abnormal 

patterns in a single cell.  

 Notably, the defects observed in syx-7 four-bud spermatocytes were less severe or 

absent in two-bud spermatocytes. For these cells, LifeAct::mCherry was restricted 

appropriately to the residual body in 90% of cases (n=21) (Figure 2.7C,I-I’). 

Furthermore, we often observed concentrations under budding spermatids, as in wild-type 

(Figure 2.7C, H-I’). Interestingly, when we quantified the number of nuclei present in 

terminal syx-7 sperm, we found 98% of cells contained four nuclei (n=52), and none 

contained only two nuclei; 100% of wild-type spermatids had one nucleus (n=45) (Figure 

2.3F-F’, M-M’). Thus, syx-7 is specifically required in cells partitioning into four 

spermatids. Functional sperm formed by syx-7 mutants (Figure 2.3K-K’) likely arise from 

two-bud spermatocytes, where actin localization is largely normal.  

 Taken together, these data establish a strong link between defects in actin 
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localization and failure to complete spermatid separation in cells lacking syx-7. We 

conclude that the extended F-actin domain is key to the division defects we observe in 

syx-7 sperm, and that failure of syx-7 sperm to complete cytokinesis is likely due to 

missing contractile force on the membrane. 

 

SYX-7 and F-actin occupy discrete cellular domains during  

division 

To determine if the mechanism of SYX-7 regulation of actin localization could be 

direct, we obtained confocal images of sperm from strains expressing both gfp::syx-7 and 

LifeAct::mCherry. We found the two markers exhibited mutually exclusive localization 

during sperm meiotic divisions. In primary spermatocytes, GFP::SYX-7 localized 

throughout the sperm cytoplasm, while LifeAct::mCherry localized to the cell cortex 

(Figure 2.7H-H’). In secondary spermatocytes, LifeAct::mCherry concentrated near the 

division plane, where GFP::SYX-7 is absent (Figure 2.7I-I’). Finally, at the budding 

stage, LifeAct::mCherry is restricted to the residual body, while GFP::SYX-7 is 

partitioned into spermatids (Figure 2.7J-J’’’). We conclude GFP::SYX-7 and F-actin 

rarely, if ever, occupy the same domain during sperm meiotic division. 

 

Discussion 

 We have discovered a new role for the conserved t-SNARE SYX-7 in promoting 

meiotic division in sperm cells. Cells lacking syx-7 are specifically unable to complete 

the second cytokinesis of meiosis, even after completing much of the preparation for 

division. Loss of syx-7 causes defects in actin localization, suggesting a mechanism for 
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why cytokinesis fails and providing one of the first examples of vesicle fusion 

functioning upstream of actin localization during cytokinesis. 

C. elegans sperm, like other dividing cells, undergo a number of regulated events 

during cytokinesis that culminate with the physical separation of new cells. One such 

event is the partitioning of cellular components. While all cells must achieve this, sperm 

have additional requirements as they must also discard excess organelles, proteins, and 

cytoplasm during differentiation (Ward, 1986; Cooper, 2011). For example, mammalian 

sperm shed a cytoplasmic droplet (Cooper, 2011), and C. elegans sperm bud and separate 

from a cytoplasmic residual body (Ward et al., 1981). syx-7 sperm initiate the path to 

division, as well-defined spermatid buds form around a residual body and most cellular 

components partition appropriately. However, while wild-type sperm separate from one 

another following partitioning, sperm without syx-7 often do not separate. Instead, they 

lose their partitioning and become large, multinucleated cells. Thus, syx-7 apparently is 

not required either for initiating a cleavage furrow, or for partitioning, but rather 

promotes a later step of division. 

What causes cytokinesis to fail in sperm without syx-7? By visualizing F-actin 

throughout sperm cell development, we observed aberrant actin localization in syx-7 

sperm, specifically at the time of spermatid budding and partitioning. When wild-type 

sperm partition, actin becomes restricted to the residual body and is not visible in 

spermatid buds. As sperm approach division, actin is also visible as a concentration just 

underneath each bud. In the syx-7 mutant, actin is rarely restricted to the residual body, 

and it fails to form concentrations underneath spermatid buds. Conceivably either of 

these defects could impair spermatid separation. Actin disassembly is required for 
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abscission to occur (Tully et al., 2009); therefore, the extended actin domain may 

represent a failure of this key event. For instance, the persistent actin could be physically 

blocking entry of abscission machinery to the required sites, or residual actin cables 

within sperm buds could ectopically tether them to the residual body and thus prevent 

separation. Alternatively, a lack of actin-mediated force generation at the division plane 

could hinder abscission. In our time-lapse imaging, we observed actin move into furrows 

as sperm began to bud, then quickly regress as sperm began to collapse. One explanation 

might be that without syx-7, actin-driven constriction cannot be maintained at the bud 

neck to allow abscission to occur.  

Our data suggest the relationship between SYX-7 and actin is either indirect or 

highly transient, as the localization of the two proteins is nearly mutually exclusive 

throughout development (Figure 2.7J-L’’’). We postulate SYX-7 acts upstream of actin 

localization through effects on an actin regulatory protein. Intriguingly, our studies of 

SYX-7’s localization show GFP::SYX-7 moves from a general cytoplasmic distribution 

to the lysosome-like membranous organelles as sperm complete their second cytokinesis. 

One possibility is that SYX-7 could function to target vesicles containing an actin 

regulatory protein to the membranous organelles for sequestration. For example, it might 

remove a factor that promotes actin assembly, thus allowing abscission to occur. It could 

also sequester a factor that prevents formation of actin concentration beneath spermatids, 

removing it at the proper time to promote separation. 

Our studies of syx-7, combined with the work of others, suggests the second 

meiotic cytokinesis of sperm development requires special molecular processes as 

compared to other cell divisions. There are four other known C. elegans mutants (spe-4, 
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spe-5, spe-26, and spe-39) that, like syx-7, are associated with division defects at meiosis 

II (L'Hernault and Arduengo, 1992; Varkey et al., 1995; Machaca and L'Hernault, 1997; 

Arduengo et al., 1998; Zhu and L'Hernault, 2003; Gleason et al., 2012), although these 

mutants all have defects that make them distinct form syx-7 and actin is not always 

disrupted. One potentially significant difference between the first and second meiotic 

division is that syx-7 is not necessary for targeting actin to the proper domain at the first 

division. Furthermore, actin localization appears largely normal in syx-7 mutant sperm 

that undergo a complete cytokinesis at the first meiotic division and therefore have two 

buds at the second division. Because abnormal syx-7 sperm nearly always have four 

nuclei, two-bud spermatocytes likely represent some if not all of the population of sperm 

that complete development and allow for some fertility in the absence of syx-7. There is 

no transcription or translation in dividing sperm, so how division is coordinated to 

accomplish the specialized requirements of the two stages of meiosis when all the factors 

involved are already in the cell is intriguing. 

The underlying mechanisms of contractile ring function, including assembly, 

attachment to the plasma membrane, and contraction, remain key unknowns in 

understanding cytokinesis. Here, we have shown actin localization during division can be 

dependent on conserved vesicle trafficking machinery, and that a SNARE protein 

functions upstream of actin localization in a specific cellular context. The human 

ortholog of syx-7 is expressed in the testis and many other tissues (Human Protein Atlas), 

so syx-7 might function during mammalian sperm development or to promote asymmetric 

divisions in other cell types. Further analysis of SYX-7’s function and its interacting 

partners should reveal how the contractile ring functions during cell division, as well as 
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how it can be specialized to meet specific cellular goals, such as those of meiotic 

division. 

 

Methods 

Nematode growth and strains 

 C. elegans used in this study were derived from Bristol N2 and were grown at 

20°C on nematode growth medium (NGM) seeded with the E. coli strain OP50 (Brenner, 

1974).  

 The presence of males was achieved by either heat-shock (Sulston and Hodgkin, 

1988) or the presence of the him-5(e1490) allele (Hodgkin et al., 1979). Both of these 

methods increase the frequency of nondisjunction of the X chromosome, but do not 

impact the aspects of sperm development that were the focus of this study. When him-

5(e1490) was used to generate males, it also was present in matched controls. 

 

Generation of syx-7 alleles by CRISPR 

 Targeting sequences (N)19NGG were designed to direct Cas9 to exon 2 and exon 

5 of syx-7, using the Zhang Lab CRISPR Design Tool (http://crispr.mit.edu). The desired 

sequences were inserted into pDD162 (Peft-3::Cas9 + Empty sgRNA) using the Q5 Site-

Directed Mutagenesis Kit (NEB), as in Dickinson et al. (2013).  

 An injection mix containing 50 ng/µL of each syx-7 sgRNA and 20 ng/µL of the 

Co-CRISPR reagents pJA42 (rol-6 sgRNA) and AF-JA-53 (rol-6(su1006) repair 

template) was microinjected into the gonads of young adult hermaphrodites (Arribere et 

al., 2014).  Roller F1s were moved to individual plates 3-4 days after injection, allowed 

http://crispr.mit.edu/
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to lay eggs for 3 days, and then screened by PCR using primers 5’-

TGAGACAGCCAGTCAGCTTC-3’ and 5’-CATTGGATTAACCCTCTACCTGG-3’, 

which flank the expected deletion region. Nonroller progeny from deletion-positive F1 

plates were selected to isolate strains homozygous for CRISPR/Cas9-induced deletions. 

 

cDNA analysis 

 To isolate RNA, a process based on the method described in Ly et al. (2015) was 

used. Briefly, five worms per sample were rinsed in RNAse-free water, then added to a 

small volume of lysis buffer (5mM Tris, pH 8, 0.5% Triton X-100, 0.5% Tween-20, 

0.25mM EDTA, 1 mg/ml Proteinase K). Samples were incubated at 65°C for 10 min to 

lyse worms, then 85°C for 1 min to deactivate Proteinase K. The Maxima H Minus First 

Strand cDNA Synthesis Kit (Thermo Scientific) was used for genomic DNA elimination 

and first-strand synthesis according to kit instructions, using the syx-7 specific primer 5’-

TTACTTAGCCAGGTAGAGGG-3’. After PCR amplification using primers 5’-

ATGGATTTCAATCGAGATGC-3’ and 5’-TTACTTAGCCAGGTAGAGGG-3, cDNAs 

were cloned into pCR4Blunt-TOPO vector (Thermo Fisher) and sequenced. 

 

Generation of transgenic strains 

 For syx-7 genomic rescue, a 3.4 kb fragment surrounding the syx-7 locus was 

amplified using primers 5’-CGAACGTCAGATTAGCGATG-3’ and 5’-

GAAGCAGTGAGATGTGAGAGCT-3’. A mix containing 50 ng/µl each of the syx-7 

fragment and Psur-5::gfp plasmid (Yochem et al., 1998) was injected into syx-7(jn37); 
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him-5(e1490) hermaphrodites. Transgenic F1 hermaphrodites were selected based on 

GFP expression and brood sizes were quantified for F2 hermaphrodites.     

 Mos-mediated single copy insertion (MosSCI) alleles generated for this study 

were:  

jnSi207[Psyx-7::syx-7::3’syx-7], jnSi274[Psyx-7::mCherry::H2B::3’syx-7], 

jnSi259[Psyx-7::gfp::syx-7::3’unc-54], jnSi204[Ppeel-1::syx-7::3’unc-54], and  

jnSi267[Ppeel-1::Lifeact::mCherry::3’unc-54]. Strains were made as in Frokjaer-Jensen 

et al. (2008) and Frokjaer-Jensen et al. (2012). Gateway cloning (Life Technologies) was 

used to generate expression constructs in either the pCFJ150 or pCFJ212 vector, and 

constructs were injected into ttTi5605; unc-119(ed3) or cxTi10816; unc-119(ed3) 

hermaphrodites. The Gateway Slot 2 entry vector containing LifeAct::mCherry was a gift 

from the Plastino lab. The strain meIs16[Ppie-1::mCherry::his-58, Cb-unc-119(+)]; 

ruIs57[GFP::tubulin, Cb-unc-119(+)] was a gift from M. Schvarzstein. 

 

Assays for fertility and lethality 

 To measure hermaphrodite self fertility, L4 hermaphrodites were placed 

individually on plates and transferred daily for 4-5 days, until eggs were no longer 

produced. To measure male fertility, L4 males were placed with fog-2(q71) L4 

hermaphrodites in 1:1 crosses. After 48 hr, males were removed and hermaphrodites were 

transferred daily until eggs were no longer produced. All progeny were counted after 

reaching at least the L4 stage, and broods from hermaphrodites that died before reaching 

4 days of age were excluded from analysis. For all assays involving fertility, control 
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strains were assayed in parallel on media from the same production batch. Each 

experiment was repeated at least three times, with 17-30 animals per genotype. 

 To assay oocyte viability, mIs11[Pmyo-2::gfp, Ppes-10::GFP, gut::gfp]; him-

5(e1490) L4 males were placed with L4 hermaphrodites for 48 hr. Males were removed 

and hermaphrodites were transferred daily until eggs were no longer produced. Cross 

(GFP-positive) and self (GFP-negative) progeny were counted as above. 

 Embryonic and developmental lethality was measured by placing batches of five 

24 hr post L4 hermaphrodites on 3-5 plates. After 3 hr, hermaphrodites were removed 

and eggs were counted. Remaining unhatched (dead) eggs were counted at 24 hr, and live 

progeny were counted after reaching at least the L4 stage. 

 

Imaging 

For all experiments where sperm were visualized on slides, 24-48 hr virgin post 

L4 males were dissected into a small drop of Sperm Medium (5 mM HEPES pH 7.4, 50 

mM NaCl, 25 mM KCl, 5 mM CaCl2, 1 mM MgSO4, and 10 mM dextrose) (Nelson et 

al., 1980). To visualize cell membranes, the vital dye FM1-43 (Thermo Fisher) was 

sometimes included in dissection media at a concentration of 5 µg/mL. MitoTracker Red 

CMXRos (Chen et al., 2000) (Thermo Fisher) was used to label males at 1 µg/ml in 

NGM as described in (Stanfield and Villeneuve, 2006), prior to dissection into Sperm 

Medium and live imaging. To analyze sperm developing in vitro, time-lapse imaging was 

performed as in (Ward et al., 1981). Images were collected every 1, 3, or 4 min for at 

least 39 min.  
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Immunocytochemistry was performed as in Gleason (Gleason et al., 2012). Sperm 

were dissected onto Colorfrost Plus slides (Fisher), and subjected to a freeze-crack 

procedure, followed by a 20 min immersion in 100% methanol at -20°C. Washes were 

performed in PBS pH 7.2 with 0.1% Tween 20 (PBSTw). Blocking (45 min to 1 hr) and 

antibody incubations were performed in PBSTw with 2% BSA. Primary antibody 

incubations were done overnight at 4°C, and secondary antibody incubations were done 

for 2 hr at room temperature. Primary antibodies used were rabbit anti-GFP at 1:1000 

(Abcam #AB290); 1CB4 anti-MO at 1:500 or 1:1000 (Arduengo et al., 1998; Okamoto 

and Thomson, 1985); mouse anti-MSP mAb4A5(G7) and mAb4D5(N2) each at 1:5000 

(Kosinski et al., 2005). Secondary antibodies were Alexa Fluor 568 and 488 goat anti-

rabbit IgG, and Alexa Fluor 568 and 488 goat anti-mouse IgG (Life Technologies). 

Secondary antibodies were used at 1:1000. 

 

Electron microscopy 

 EM methods were modified from Ernstrom (Ernstrom et al., 2012). Worms were 

frozen using high pressure freezing (BAL-TEC HPM 010), with viscous E. coli paste as a 

cryoprotectant. After freezing, specimens were transferred into a cryovial containing 

fixative (1% OsO4, 1% glutaraldehyde, and 1% water in acetone). Freeze substitution 

was carried out in a Leica EM AFS with the following program: -90◦C for 48 hr, +5/hr to 

-25◦C, -25 degrees for 14 hr, +10/hr to room temperature. When the program ended, 

specimens were rinsed six times with acetone and infiltrated with Epon-Araldite resin in 

a stepwise fashion (50% resin:acetone for 5 hr, followed by 70% resin:acetone for 8 hr, 

90% resin:acetone for 8 hr, and finally 3 changes of 100% resin for 8 hr). Polymerization 
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was performed at 60◦C for 48 hr. 70 nm sections were stained with saturated uranyl 

acetate in water for 20 min, and imaging was performed using a JOEL JEM-1400 

microscope. 
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Figure 2.1. Loss of syx-7 causes reduced fertility.  
(A) Diagram of SYX-7. Transmembrane domain (black), coiled-coil SNARE domain 
(blue), and alpha-helical Habc domain (green). (B) Gene model for wild-type syx-7 and 
alleles analyzed for this study. Exons (boxes), deleted sequence (dashed red lines), 
inserted sequence (yellow triangles), Cas9 cut sites (black arrowheads). (C) syx-7 mutants 
showed no increase in embryonic or developmental lethality as compared to the wild-type 
(p>0.05, Student’s t test). Error bars are standard error of the mean (SEM); n=258-294 
eggs. (D) Brood sizes of syx-7(jn37) and syx-7(jn42) hermaphrodites were reduced as 
compared to those of wild-type. Broods of syx-7(tm1198) and syx-7(tm1764) 
hermaphrodites were not reduced (**p<0.001, Student’s t test). Error bars, 95% 
confidence interval (CI); n=20-22. 
  



47 

 

Figure 2.2. syx-7 functions in sperm to promote spermatogenesis. 
(A) syx-7 males produce fewer cross progeny as compared to wild-type. Each point 
represents cross progeny from mating a single male to a spermless fog-2(q71) 
hermaphrodite (**p<0.001, Kolmogorov-Smirnov test). Bars represent medians; n=28-
29. (B) syx-7 hermaphrodites have normal fertility when provided healthy sperm through 
mating with a wild-type male. Each point represents the total cross-progeny brood from a 
single hermaphrodite of the indicated genotype (p>0.05, Kolmogorov-Smirnov test). Bars 
represent medians. (C) Expression of syx-7 using the sperm-specific peel-1 promoter 
restored normal fertility in syx-7 mutants (p>0.05, Student’s t test). Error bars are 95% 
CI; n=18-20. All comparisons are to wild-type. (D-E) Images of seminal vesicles and 
dissected sperm (insets) from 48 hr post L4 males. Genotypes shown: (D) wild-type (E) 
syx-7(jn37). Scale bars: main images, 10 µM; insets, 5 µM. (F-G) Electron micrographs 
of cells in the seminal vesicles of 24 hr post L4 males. (F) Wild-type spermatids show a 
stereotypical arrangement with a central nucleus surrounded by mitochondria and with 
MOs juxtaposed to the plasma membrane; their cytoplasm generally lacks additional 
structures. (G) The syx-7 cell contains partially enclosed membrane compartments and 
membrane-bound vesicles that are not present in wild-type. MOs are not evident in syx-7 
terminal sperm. Scale bar: 1 µM. Nucleus (N), mitochondria (mito), membranous 
organelles (MO). 
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Figure 2.3. syx-7 promotes cytokinesis during meiosis II. 
Stages of spermatogenesis observed for wild-type (A-F) and syx-7 (G-N) males. Paired 
DIC and fluorescence images of sperm dissected from males expressing HTAS-
1::mCherry, which marks chromatin and allows visualization of nuclei (D. Chu and 
GMS, unpublished). (B-B’) Wild-type primary spermatocyte. (C-C’) Primary 
spermatocyte undergoing the first meiotic division. (D-D’) Secondary four-bud 
spermatocyte undergoing the second meiotic division. (E-E’) Secondary two-bud 
spermatocyte undergoing the second meiotic division. (F-F’) Haploid spermatids. (G-N) 
Stages of spermatogenesis observed for syx-7 sperm. In the syx-7(jn37) mutant, primary 
spermatocytes (H-H’) and division into secondary spermatocytes (I-I’) appeared grossly 
normal. (J-J’) Secondary four-bud spermatocyte undergoing the second meiotic division. 
Extra blebs (arrows) are visible along the periphery of the residual body. (K-K’) 
Secondary two-bud spermatocyte undergoing the second meiotic division with no noted 
abnormalities. (L-M) Sperm morphologies observed in syx-7 but not present in wild-type. 
(L-L’) A four-bud spermatocyte in the process of resorption into the residual body. (M-
M’) Terminal sperm cell containing 4 nuclei. (N-N’) Separated spermatids. Box indicates 
stages of syx-7 sperm not seen in wild-type. Scale bars: 5 µM. 
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Figure 2.4. syx-7 sperm have defects in timing and separation of spermatids during 
meiosis II. 
Summary of in vitro observations of spermatogenesis for wild-type and syx-7(jn37) 
sperm. Time-lapse images of dissected cells were collected and time series were analyzed 
for morphological landmarks indicating progression through meiosis. Elongation 1 and 
Furrow Specification refers to the transition from a round primary spermatocyte to an 
elongated cell with a visible furrow. Furrow Ingression 1 was considered complete when 
the cleavage furrow between secondary spermatocytes reached its maximal extent. 
Elongation 2 was considered complete when secondary spermatocytes were maximally 
elongated in the directions of both cleavage planes. Cells were considered to be at the 
budding stage when discrete furrows appeared at budding sites. Timing shown is the 
average amount of time spent at each stage ± SEM. The number of cells analyzed for 
each stage is shown in parentheses. Ratios represent the number of cells with the 
observed outcome over the total number of cells analyzed.   
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Figure 2.5. SYX-7 becomes restricted to membranous organelles following 
spermatid separation. 
(A-P) Antibody-stained sperm dissected from jnSi259[Psyx-7::GFP::syx-7] males. Anti-
GFP (green), MO marker 1CB4 (red), DAPI (blue). (A-D) Primary spermatocytes had 
both GFP::SYX-7 and 1CB4 signal throughout the cytoplasm. (E-H) Secondary 
spermatocytes had cytoplasmic localization of both GFP::SYX-7 and 1CB4, except that 
GFP::SYX-7 was absent from the thin cytoplasmic connection between the two cells 
(arrowheads). (I-L) Budding spermatids contained both GFP::SYX-7 and 1CB4, but both 
markers were mostly absent from the residual body (RB). (M-P) Separated spermatids 
contained GFP::SYX-7 and 1CB4 in a punctate pattern around the cell periphery, and the 
two signals colocalized almost entirely at this stage. Scale bar: 5 µM. 
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Figure 2.6. Sperm components are largely partitioned appropriately in budding  
syx-7 spermatids.  
(A) Diagram of partitioning during wild-type spermatid budding. Spermatid components: 
MOs (orange), major sperm protein (yellow), mitochondria (blue), nuclei (black). 
Residual body components: tubulin (green), actin (not shown). (B-I’) Partitioning of 
MOs, MSP, mitochondria, and tubulin was largely normal in syx-7 sperm, with the 
exception of a small number of MOs and mitochondria that were sometimes visible in the 
residual body. Images show budding-stage spermatids dissected from wild-type and syx-
7(jn37) males. Cells in B-E’ are fixed; F-I’ show live images. (B-C’) Membranous 
organelle localization. Cells are labeled with 1CB4 antibody (red) and co-stained with 
DAPI (blue). One budding spermatid is out of the focal plane. Arrow indicates 
mislocalized 1CB4 signal on the periphery of the syx-7 residual body. (D-E’) MSP 
localization. Cells are labeled with monoclonal antibodies mAb4A5(G7) and 
mAb4D5(N2) (red; (Kosinski et al., 2005), gift of D. Greenstein) and co-stained with 
DAPI. Note that one of the spermatids (bottom left) completed separation prior to 
fixation. (F-G’) Mitochondria visualized with MitoTracker Red CMXRos (red) Arrow 
indicates mitochondria within the syx-7 residual body. (H-I’) Cells expressing 
GFP::tubulin (meIs16; green) and mCherry::histone H2B (ruIs57; red) (Roelens et al., 
2015), gift of M. Schvarzstein). Scale bars: 5 µM. 
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Figure 2.7. Actin mislocalizes in budding syx-7 spermatocytes. 
F-actin localization in dissected spermatocytes during the first and second meiotic 
cytokinesis, visualized with LifeAct::mCherry (red). (A-B’) LifeAct::mCherry localizes 
to the division plane in both wild-type and syx-7 spermatocytes at the first meiotic 
division. (C) Quantification of four-bud and two-bud spermatocytes with the indicated 
LifeAct::mCherry localization patterns. (n=11-33). (D-D’) In wild-type four-bud 
spermatocytes, actin is restricted to the residual body. (E-G’) Aberrant actin localization 
in four-bud syx-7 spermatocytes. Actin is not restricted to the residual body and is found 
in concentrations between spermatids (E-E’), on spermatids (F-F’), and/or in blebs that 
protrude from the residual body (G-G’). (H-I’) Actin localization is restricted to the 
residual body in wild-type and syx-7 two-bud spermatocytes. Filled arrowheads, 
concentrations under forming spermatids; open arrowheads, abnormal localization sites. 
(J-M’’’) Images of both GFP::SYX-7 (jnSi267; green) and LifeAct::mCherry (jnSi259; 
red) in dissected sperm. SYX-7 and F-actin show very little overlap during sperm 
division. Scale bars: 5 µm. 
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Figure 2S.1. SYX-7 is a well-conserved t-SNARE that clusters with human STX12.  
Alignment of C. elegans SYX-7 (accession number O62236) with the most closely 
related syntaxins from Drosophila (SYX7, NP_730632.1) and humans (STX12, Q86Y82; 
STX7, O15400), as well as well-studied syntaxin 1a from S. cerevisiae (SSO2, 
YMR183C), C. elegans (UNC-64, O16000), Drosophila (SYX1a, Q24547), and humans 
(STX1a, Q16623). Alignment was generated using Clustal Omega (Goujon et al., 
2010),(Sievers et al., 2011) and BoxShade 
(https://www.ch.embnet.org/software/BOX_form.html). SYX-7 Habc domain (green) and 
SNARE domain (blue) predicted by NCBI Conserved Domains Database (Marchler-
Bauer et al., 2011), (Marchler-Bauer et al., 2015) (Marchler-Bauer et al., 2017). 
Transmembrane domain (purple) predicted by TMpred 
(https://www.ch.embnet.org/software/TMPRED_form.html).  
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Figure 2S.2. syx-7 transgene arrays rescue fertility defects in a deletion mutant of 
syx-7.  
(A) Gene model for wild-type syx-7 and alleles generated by CRISPR/Cas9 targeting. 
Boxes (exons), Habc domain (green), SNARE domain (blue), deleted sequence (dashed 
red lines), inserted sequence (yellow triangles). Cas9 cut sites (arrowheads). (B) Injection 
of a 3.4 kb genomic fragment encompassing the syx-7 locus into syx-7(jn37) mutant 
hermaphrodites significantly improved fertility (**p<0.01, Student’s t test). Graph shows 
average total hermaphrodite self brood sizes. Error bars, 95% CI; n=19. 



 

 

 

CHAPTER 3 

 

LOSS OF SYX-7 DISRUPTS A SPERM-SPECIFIC,  

LYSOSOME-LIKE ORGANELLE 

 

Introduction 

 Specialized organelles of the secretory and endolysosomal systems are important 

during sperm development. For example, for sperm to successfully fuse with oocytes, 

they must first undergo a specialized exocytosis event to deliver proteins required for 

sperm-oocyte fusion to the cell surface (Berruti and Paiardi, 2011). For mammalian 

sperm, this is accomplished when the acrosome, a large, acidic organelle related to 

lysosomes, fuses with the plasma membrane (Cuasnicu et al., 2016). For C. elegans 

sperm, similarly specialized lysosome-like organelles, called fibrous body-membranous 

organelles (FB-MOs), fuse with the sperm plasma membrane to achieve this goal (Wolf 

et al., 1978; Gleason et al., 2012). FB-MOs serve other functions during sperm 

development as well, including a role in asymmetric partitioning and, potentially, in 

promoting cell division. 

 The formation of FB-MOs is coordinated with meiotic division (Wolf et al., 1978; 

Ward et al., 1981). The organelles are first evident in syncytial pachytene spermatocytes, 

just prior to cellularization (Roberts et al., 1986) (Figure 3.1A). While the FB portion of 

the organelle contains filamentous major sperm protein (MSP), the sperm motility protein 
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(Klass and Hirsh, 1981), the MO portion is acidic and vesicle-like (Wolf et al., 1978). 

However, the two parts form in close association with one another. When primary 

spermatocytes cellularize, they contain large FBs within MO-derived double-layered 

membrane envelopes (Roberts et al., 1986) (Figure 3.1B). Stably associated FB-MOs are 

passed to secondary spermatocytes during the first meiotic division, and are partitioned 

into spermatids at the second meiotic division (Klass and Hirsh, 1981; Ward and Klass, 

1982; Roberts et al., 1986). During spermatid budding, the membrane surrounding the FB 

retracts and MSP is released (Klass and Hirsh, 1981; Ward and Klass, 1982; Roberts et 

al., 1986). When spermatids are fully separated from the residual body, they contain MSP 

dispersed throughout their cytoplasm, as well as MOs that reside just underneath the 

plasma membrane, poised for fusion as the sperm become motile (Argon and Ward, 

1980; Ward and Klass, 1982) (Figure 3.1C). 

 Recently, I identified a protein that localizes to the MOs during sperm 

development: SYX-7. SYX-7 is required for fertility, as it promotes the second division 

of meiosis. The role of SYX-7 in fertility and cell division is explored in Chapter 2 of this 

dissertation. Briefly, syx-7 mutant sperm begin the process of division by partitioning 

many components into dividing spermatids after meiosis II, but cytokinesis fails and most 

terminal syx-7 sperm contain 4 nuclei within a common cytoplasm, rather than the single, 

haploid nucleus found in a wild-type spermatid. Antibody staining for GFP::SYX-7 and 

MOs revealed the localization of SYX-7 does not primarily overlap with that of the MOs 

early in sperm development, but GFP::SYX-7 moves to the MOs at later stages.  

 In this chapter, I further examine the MOs in syx-7 mutants, and demonstrate that 

syx-7 has a role in formation or maintenance of MOs. Abnormal MOs are present in syx-7 
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spermatids, and two different readouts of MO function show loss of syx-7 decreases, but 

does not totally abolish, MO function. It remains unclear if the FB-MO defects present in 

syx-7 mutants are tied to defects in cell division. However, three other mutants have been 

identified that affect the formation or function of FB-MOs and also lead to failure of 

meiotic division (L'Hernault and Arduengo, 1992; Machaca and L'Hernault, 1997; 

Arduengo et al., 1998; Zhu and L'Hernault, 2003; Zhu et al., 2009; Gleason et al., 2012), 

suggesting they may function in this context.  

 

Materials and Methods 

Worm strains and maintenance 

 Worms were grown on NGM at 20°C and fed with OP50 (Brenner, 1974). Strains 

used were him-5(e1490) and syx-7(jn37); him-5(e1490). him-5 worms were used as the 

wild-type to ensure a supply of males for experiments (Hodgkin et al., 1979). 

 

Electron microscopy 

 Fixation was performed using a BAL-TEC HPM 010 (BAL-TEC/Leica 

Microsystems) high-pressure freezing apparatus, then specimens were transferred into 

fixative (1% OsO4, 1% glutaraldehyde, 1% water, in acetone). Freeze substitution was 

carried out with the following program: -90◦C for 48h, +5◦C /h to -25◦C, -25◦C for 14 h, 

+10◦C /h to room temperature. Following freeze substitution, specimens were rinsed 6 

times with acetone, then infiltrated with Epon-Araldite resin in a stepwise fashion (50% 

resin:acetone for 5 h, followed by 70% resin:acetone for 8 h, 90% resin:acetone for 8 h 

and finally 3 changes of 100% resin for 8 h). Polymerization was performed at 60◦C for 
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48h. 70 nm thick sections were stained with either saturated uranyl acetate, or lead citrate 

and uranyl acetate for 20 min prior to imaging. 

 

LysoSensor stain and MO fusion assays 

 To visualize sperm on slides, 24-48 hr virgin post L4 males were dissected into a 

7-10 µL drop of Sperm Medium (5 mM HEPES pH 7.4, 50 mM NaCl, 25 mM KCl, 5 

mM CaCl2, 1 mM MgSO4, and 10 mM dextrose) (Nelson et al., 1980). Two thin strips of 

Vaseline were used to elevate the coverslip. Depending on the assay, the Sperm Medium 

also contained LysoSensor Yellow/Blue DND-160 at 5 µM (Thermo Fisher) (Gleason et 

al., 2012), or Pronase at 200 µg/ml (Sigma-Aldrich) (Shakes and Ward, 1989) and FM1-

43 at 5 µg/mL (Thermo Fisher) (Betz et al., 1996).  

 

Results 

syx-7 mutant sperm have disrupted membranous  

organelle ultrastructure 

 To determine if FB-MOs or any other cellular structures were abnormal in syx-7 

sperm, we performed transmission electron microscopy on sperm from virgin adult syx-7 

males. In wild-type males, the first FB-MOs observed are in syncytial spermatocytes near 

the end of the rachis (Figure 3.2A), consistent with previous descriptions (Roberts et al., 

1986). Wild-type spermatocytes also contained mitochondria and nuclei that had not yet 

fully condensed. We were able to visualize few syncytial spermatocytes in the syx-7 

mutant. However, in those we did observe, there were no FB-MO-like structures present, 

although mitochondria and nuclei were evident (Figure 3.2B). The syx-7 syncytial 
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spermatocytes contained large, lightly-stained patches at the cell periphery, which may be 

MSP that is not enclosed in an FB (Figure 3.2B). While two stages of maturing FB-MOs 

were evident in wild-type syncytial spermatocytes, with more MSP present in the FBs of 

spermatocytes near the end of the rachis (Figure 3.2C,D), syx-7 spermatocytes contained 

only disorganized patches of filaments that may be free MSP in the spermatocyte 

cytoplasm (Figure 3.2E). Other structures were well-preserved and appeared normal in 

the animal (Figure 3.2B,E). Additionally, in dissected and anti-MSP stained syx-7 

spermatocytes, concentrations of MSP were observed that are consistent with the EM 

data (data not shown). Our sample size for syx-7 was very low (n=3 spermatocytes from 1 

animal), so further EM specimens need to be examined, but these preliminary data 

indicate MSP is not packaged by the FB-MOs in syx-7 mutants. 

 We next examined spermatids, which are the last stage of sperm found in males, 

as C. elegans male sperm transition to motile spermatozoa only after transfer to a 

hermaphrodite during mating (Ward and Carrel, 1979). We found that in wild-type males, 

spermatids were packed very closely into the sperm storage region, and contained 

condensed nuclei, mitochondria, and MOs that had released the FBs (Figure 3.3A) (n=2 

animals). We also examined some of the few spermatids formed by syx-7 mutants that 

appeared normal by DIC microscopy (see Chapter 2). In syx-7 males, spermatids were 

not as densely packed as in the wild-type, and space was often visible between stored 

sperm (Figure 3.3D) (n=4 animals). Seminal fluid, which is stored just posterior of the 

sperm in wild-type males, often moved into the open space between cells in the syx-7 

sperm storage region (data not shown). This is consistent with what occurs in other 
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mutants that have increased extracellular space in the seminal vesicle (D. Chavez and G. 

Stanfield, personal communication). 

 Of the main structures evident in spermatids, only the MOs showed defects in syx-

7 males as compared to the wild-type. Wild-type MOs contain specialized, double-

layered membranes that stain darkly by EM (Wolf et al., 1978). The organelle has two 

lobes: a round head and a body of membrane folds which formerly held MSP (Figure 

3.3B). These lobes are separated by an electron-dense collar (Wolf et al., 1978). In wild-

type spermatids, membranous organelles localize very close to the plasma membrane 

(Figure 3.3C), and the two will fuse as sperm gain motility in an event termed sperm 

activation (Argon and Ward, 1980). In syx-7 mutant spermatids, MO-like structures were 

present, but varied greatly in terms of size and structure. Although double membranes 

were still evident as in wild-type, the organization of the organelle was disrupted in syx-7 

spermatids. A head region was rarely discernable, and the few putative head regions were 

small in proportion to the body region (Figure 3.3E). The body regions of the MO-like 

structures in syx-7 spermatids were disorganized compared to wild-type, often containing 

large gaps or thickened sections (Figure 3.3E). In many syx-7 spermatids, fragments of 

membrane were present that did not appear to be part of larger structures, and often small 

vesicles were present that we did not see in wild-type sperm (Figure 3.3F). These vesicles 

stained to a variable degree and thus appear to be heterogenous in nature. While the 

vesicles are present to some extent in most of the syx-7 cells we analyzed, there were 

some cells with very high concentrations of these vesicles (Figure 3.3D). From these 

data, we conclude the MOs are not forming properly or are not maintained in syx-7 
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mutants. Additionally, the presence of extra membrane fragments and vesicles suggests 

that syx-7 may have a role in assembly of the intricate MO membrane structure. 

Finally, we analyzed the large terminal sperm in the syx-7 mutant (n=4 animals). 

(An additional brief description of these cells can be found in Chapter 2.) syx-7 terminal 

sperm are distinguishable as they are much larger than wild-type spermatids and are 

located just anterior to the few small spermatids formed by the syx-7 mutant. In some 

terminal cells, we observed compartments partially separated by membranes (Figure 

3.4A). These compartments were roughly the same size as wild-type spermatids and 

contained mitochondria and a single nucleus (Figure 3.4A). We did not observe MO-like 

structures in this cell type, although there were small vesicles that were not present in 

wild-type sperm at any stage. Other syx-7 terminal cells contained no compartments, and 

organelles were either not discernible or appeared very sick (Figure 3.4B). This suggests 

a breakdown of cellular components in syx-7 terminal cells, although it remains unclear if 

this cell type ever contained MO-like structures.  

 

Loss of syx-7 disrupts MO function during late stages of  

spermatogenesis 

 We used well-defined assays for MO function to further characterize syx-7 sperm. 

Like lysosomes, MOs are acidic and can be marked with LysoSensor (Thermo Fisher), a 

vital dye that fluoresces in acidic environments (Diwu et al., 1999). When we dissected 

wild-type spermatids into media containing LysoSensor, puncta were visible around the 

periphery of the cell where the MOs are distributed (Figure 3.5A-A’), as previously 

described (Gleason et al., 2012). When syx-7 spermatids were dissected into the same 



64 
 
 

 

media, acidic structures were visible, but they formed fewer puncta as compared to wild-

type and often formed ring-shaped structures (Figure 3.5B-B’) that likely correspond to 

the abnormal MOs we saw in our electron micrographs (Figure 3.3). These abnormal 

MOs did not abut the plasma membrane to the same extent as wild-type MOs. We 

conclude that although MOs are abnormal in syx-7 mutants, they do acidify to some 

extent.  

 To further probe MO function, we took advantage of the fact that in wild-type 

sperm, MOs stably fuse with the plasma membrane at the onset of motility (Washington 

and Ward, 2006). To assay such MO fusions, we induced motility in vitro using Pronase 

in the presence of FM1-43 dye. FM1-43 is a noncell permeable dye that marks the plasma 

membrane (Betz et al., 1996), and MO fusions are revealed because punctate 

concentrations of dye appear at the site of membrane fusion (Ward and Miwa, 1978; 

Washington and Ward, 2006). While wild-type sperm showed many MO fusions, the 

number of fusions in syx-7 mutants was drastically reduced (Figure 3.5C-E). Together, 

these data indicate MO function is reduced in syx-7 mutants; however, it does not appear 

to be abolished completely. MO fusion is required for fertilization competence (Ward and 

Miwa, 1978), and the residual fusion observed in syx-7 mutants could help explain why 

these animals are not completely sterile.  

 

syx-7 is unlikely to function via a complex with vti-1 or syx-6  

during sperm development 

 The presence of numerous small vesicles in syx-7 but not wild-type sperm (Figure 

2.2G, 3.3F, and 2.4A-B) suggested the mutant may have a defect in fusion of these 
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vesicles to form membranous organelles. The mammalian ortholog of syx-7, Stx12/13, 

functions in a complex with syntaxin 6, the vesicle transport through t-SNARE 

interaction protein vti1a, and the vesicle-associated membrane protein VAMP4, to 

mediate homotypic fusion of early endosomes (Brandhorst et al., 2006). The C. elegans 

orthologs of vti1a and syntaxin 6, vti-1 and syx-6, are expressed in sperm (Ma et al., 

2014), and I sought to test if this complex functioned during sperm development. 

I obtained mutant strains for both vti-1 and syx-6 (National BioResource Project:: 

C. elegans). vti-1(tm6428) is a 703 base pair deletion that removes a large portion of vti-

1, beginning in exon 1 and continuing past the 3’ end of the gene. gcc-1 syx-6(tm4733) is 

a 420 base pair deletion that removes approximately the first 1.5 exons of syx-6, as well 

as part of the 3’UTR of the neighboring gene, gcc-1. The remaining portion of syx-6 is in 

frame. I hypothesized that if either vti-1 or syx-6 functioned with syx-7 during sperm 

development, defects would be present in sperm formation or fertility in these strains, as 

in syx-7 mutants. However, when I visualized sperm in 48 hr adult males, neither vti-1 or 

syx-6 mutants were distinguishable from wild-type (Figure 3.6A-C). There were no large, 

abnormal cells as in a syx-7 mutant (Figure 3.6D), and no other abnormalities could be 

detected. Both vti-1 and syx-6 mutant hermaphrodites were as fertile as wild-type, and 

loss of either gene did not exacerbate or rescue the fertility defects of syx-7 mutants 

(Figure 3.6E). Thus, it is unlikely syx-7 functions through a complex with vti-1 and syx-6 

during sperm development.   

 

 

 



66 
 
 

 

Discussion 

 Spermatogenesis in C. elegans requires the proper morphogenesis of specialized 

FB-MO secretory vesicles, and there are several functions known or proposed for them. 

FB-MOs package major sperm protein (MSP), and are involved in its asymmetric 

partitioning into spermatids (Roberts et al., 1986). Additionally, FB-MOs have been 

associated multiple times with promoting meiotic division, as sperm cytokinesis is 

disrupted in several C. elegans mutants that affect the biogenesis or function of FB-MOs 

(L'Hernault and Arduengo, 1992; Machaca and L'Hernault, 1997; Arduengo et al., 1998; 

Zhu and L'Hernault, 2003; Zhu et al., 2009; Gleason et al., 2012). Finally, MO fusion 

with the plasma membrane is a required event for sperm to become motile and 

fertilization competent (Ward and Miwa, 1978). 

 Our identification of syx-7 and characterization of defects in syx-7 mutants 

strengthen some of these proposed models for FB-MO function, and suggest others are 

either less likely or more complicated than we currently understand. Our EM data 

regarding MSP packaging into FBs in the syx-7 mutant are somewhat incomplete. 

However, it is clear that terminal syx-7 sperm contain no structures that resemble FB-

MOs, and the MOs present in the few syx-7 spermatids are highly abnormal. Surprisingly, 

most of the asymmetric partitioning that occurs during the meiosis II cytokinesis is 

normal in syx-7 mutants, even though this is where division fails (see Chapter 2). Even 

more surprising, is that this includes the partitioning of MSP. In fact, anti-MSP staining 

revealed no apparent defects in MSP localization at any stage of syx-7 sperm 

development, and mutant sperm are able to form MSP-driven pseudopods both in vivo 

and after Pronase treatment (Chapter 2, Figure 3.5, and data not shown). This suggests 
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even without fully functional FB-MOs, MSP ends up in the proper location in sufficient 

quantities to function in pseudopod formation, at least in a subset of sperm. These data 

highlight the possibility FB-MOs may not be absolutely critical for MSP segregation, as 

was previously thought. 

 Whether or not membranous organelle function directly contributes to cell 

division remains unclear. In addition to syx-7, a t-SNARE, loss of the presenilin spe-4 

(L'Hernault and Arduengo, 1992; Arduengo et al., 1998), the vATPase spe-5 (Machaca 

and L'Hernault, 1997; Gleason et al., 2012), and the novel HOPS complex interacting 

factor spe-39 (Zhu and L'Hernault, 2003; Zhu et al., 2009) all affect FB-MO 

ultrastructure and lead to cytokinesis defects. Loss of each different gene has its own 

unique abnormalities in how the FB-MOs are affected, and it is currently unclear how the 

genes may fit into a pathway(s) that contribute to MO biogenesis or function. It is likely 

that many more genes exist that contribute to MO physiology, and by continuing to 

identify them, as with syx-7, we will be better able to understand how they function 

together and clarify if and how FB-MOs function in cell division. While the vti-1 and syx-

6 mutants I analyzed had grossly normal sperm and wild-type levels of fertility, I have 

not yet directly assayed MOs in these strains. Therefore, it remains a possibility abnormal 

MOs could be uncoupled from sperm meiotic division in the vti-1 or syx-6 mutants. As an 

alternative model to MOs functioning directly in cell division, perhaps the presence of 

abnormal organelles causes sperm to simply fail to pass a checkpoint and arrest division. 

 Previous work indicated MO fusion with the plasma membrane is a critical event 

in sperm gaining fertilization competence (Ward and Miwa, 1978). For example, when 

mutations occur in the dysferlin fer-1, MOs do not fuse and animals are completely 
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sterile (Achanzar and Ward, 1997). One idea for the infertility is that necessary proteins 

do not localize to the plasma membrane in the absence of MO fusion. syx-7 animals have 

some success at fertility, even though MOs are abnormal and fusions are greatly reduced 

(Figures 3.3 and 3.5). It is possible the few fusions observed in syx-7 sperm are enough to 

promote fertility. Alternatively, because MOs are so abnormal in syx-7 mutants, perhaps 

proteins that should localize to the MOs are instead rerouted and localize to the plasma 

membrane, negating the requirement for MO fusion. A third possibility is that other 

unknown defects in fer-1 mutants contribute to the complete lack of progeny in the 

mutant. 

           Membranous organelles have features of a class of organelles called lysosome-

related organelles (LROs). Examples of LROs include melanosomes, dense granules and 

lytic granules, Drosophila eye pigment granules, and C. elegans gut granules. Depletion 

of Stx12/13, the mammalian ortholog of syx-7, reroutes proteins required by 

melanosomes to lysosomes (Jani et al., 2015), indicating there is a role for the protein in 

LRO function in contexts beyond sperm development. As in our system, direct 

connections between LROs and cell division are not clear, although in the human 

disorder Chediak-Higashi Syndrome, melanosomes and other LROs form improperly and 

uncontrollable white blood cell division is one of the many complications of the disease 

(Huizing et al., 2008). While questions still exist, our identification of syx-7 and its 

effects on membranous organelle biogenesis and cell division demonstrates another link 

between the two processes. Demonstrating a clear, functional connection between FB-

MOs and cell division should be a key goal for future work, as it would identify a new 
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function for LROs and further the understanding of Chediak-Higashi Syndrome and other 

lysosomal storage disorders that affect human health.  
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Figure 3.1. Development of FB-MOs.  
(A-C) Electron micrographs of the sperm development and storage regions of adult, wild-
type males. (A) FB-MOs form throughout the cytoplasm of syncytial spermatocytes. 
Major sperm protein comprises the FB and forms filaments within the MO membrane 
envelope. (B) FB-MOs reach their largest size in cellularized primary spermatocytes. The 
FB portion remains associated with the MO head region. (C) Spermatids contain MOs 
that are no longer associated with FBs. MO heads abut the plasma membrane in 
preparation for fusion when motility is triggered. All sections in this figure were stained 
with both uranyl acetate and lead citrate. Nucleus (N), mitochondrion (Mito), rachis (R), 
fibrous body (FB), membranous organelle (MO). Dashed lines indicate approximate 
boundary between spermatocytes. Arrowheads indicate boundary of labeled cells. Scale 
bar: 1 µm.  
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Figure 3.2. FB-MOs are not evident in syncytial syx-7 germ cells. 
(A-E) Electron micrographs of sperm during late syncytial development in wild-type or 
syx-7(jn37) males. (A) Wild-type spermatocyte containing an uncondensed nucleus, 
mitochondria, and forming FB-MOs. (B) syx-7 spermatocyte containing an uncondensed 
nucleus and mitochondria, but no discernable FB-MOs. Putative clumps of unpackaged 
major sperm protein localize near the cell periphery. (C) Forming FB-MO in a young, 
wild-type syncytial spermatocyte. (D) Forming FB-MO in a wild-type syncytial 
spermatocyte that is approaching cellularization. Polymerized MSP is packaged into the 
FB. (E) Putative MSP clump from a syx-7 syncytial spermatocyte. Note: the wild-type 
sections shown (A,C,D) were stained using both lead citrate and uranyl acetate, while 
syx-7 sections (B,E) were stained with uranyl acetate only. Nucleus (N), fibrous body 
membranous organelle (FB-MO), mitochondria (Mito), major sperm protein (MSP). 
Scale bars: 1 µM (top panels), 200 nm (bottom panels).  
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Figure 3.3. MOs are abnormal in syx-7 spermatids. 
(A-F). Electron micrographs of the sperm storage region of adult males. (A) MOs in 
wild-type spermatids. (B) Cross and vertical sections of wild-type MOs. (C) Head regions 
of wild-type MOs localize just under the plasma membrane of spermatids. (D) MO-like 
structures, membrane fragments, and small vesicles in syx-7 spermatids. Vesicles are 
often concentrated together. (E) Variation of MO-like structures in syx-7 spermatids. 
Structures vary in size, and if a head region is discernible, it is usually very small in 
comparison to the rest of the organelle. (F) Many heterogeneous vesicles are present in 
syx-7 spermatids, often concentrated together. All sections in this figure were stained 
with uranyl acetate only. Nucleus (N), mitochondria (Mito), MOs and MO-like structures 
in mutant (MO), MO head (H), MO body (B), membrane fragment (F), vesicle (V). Scale 
bars: 1 µM (top panels), 200 nm (bottom panels).  
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Figure 3.4. Terminal syx-7 sperm. 
(A-B). Electron micrographs of terminal syx-7(jn37) sperm, from within the sperm 
storage region of an adult male. (A) Some terminal cells contained spermatid-sized 
compartments, partially enclosed by membranes. These compartments contained nuclei 
and mitochondria, as well as vesicles that were not present in any stage of wild-type 
sperm. (B) Some terminal cells contained no compartments, and organelles appeared to 
be very sick or breaking down. Both sections in this figure were stained with uranyl 
acetate only. Nucleus (N), mitochondria (Mito), vesicle (V). Scale bar: 1 µm. 
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Figure 3.5. syx-7 mutants have reduced MO function during late spermatogenesis.  
(A-B’) Paired DIC and fluorescent images of dissected sperm stained with LysoSensor 
Yellow/Blue DND-160. (A-A’) Wild-type sperm show staining in a punctate pattern near 
the cell periphery, indicating the presence of acidic MOs. (B-B’) LysoSensor staining in 
syx-7 sperm reveals acidic structures. Unlike wild-type, these often appear ring-like 
(arrowheads). (C-D’) Paired DIC and fluorescent images of sperm dissected into media 
containing Pronase and FM1-43. Pronase causes sperm to undergo stable MO fusions and 
pseudopod extension; FM1-43 is a vital membrane dye that reveals the site of MO 
fusions. (C-C’) Wild-type spermatozoa have many sites of MO fusion per cell (arrow). 
(D-D’) syx-7(jn37) spermatozoa have fewer MO fusions compared to wild-type (arrows). 
Scale bar: 5 µm. (E) Quantification of MO fusion events in wild-type and syx-7(jn37) 
sperm. Error bars are standard error of the mean; n=84-110 cells. 
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Figure 3.6. Loss of vti-1 or syx-6 does not affect sperm formation or fertility. 
(A-D) Images of seminal vesicles from 48 hr post L4 males. Genotypes shown: (A) wild-
type (B) vti-1(tm5428) (C) gcc-1 syx-6(tm4733) (D) syx-7(jn37). Sperm from vti-1 and 
gcc-1 syx-6 mutants was indistinguishable from wild-type sperm. (E) Brood sizes of vti-1 
and gcc-1 syx-6 mutant hermaphrodites were comparable to wild-type broods. Broods of 
syx-7; vti-1 and syx-7; gcc-1 syx-6 mutants were reduced compared to wild-type, but 
were no different than broods from syx-7 mutants. (ns p>0.005, Student’s t test); error 
bars, 95% confidence interval; n=19-21. 



 

 

 

CHAPTER 4 

 

SLC6 FAMILY TRANSPORTER SNF-10 IS REQUIRED FOR PROTEASE-

MEDIATED ACTIVATION OF SPERM MOTILITY IN C.ELEGANS 

 

Originally published as-Fenker, K.E., Hansen, A.A., Chong, C.A., Jud, M.C., Duffy, 
B.A., Norton, J.P., Hansen, J.M., and Stanfield, G.M. (2014). SLC6 family transporter 
SNF-10 is required for protease-mediated activation of sperm motility in C. elegans. 

Developmental Biology, 393(1), 171-182. DOI: 10.1016/j.ydbio.2014.06.001 
 

This article is reprinted with permission from Elsevier by the Creative Commons 
Attribution (CC-BY-NC-ND) license. http://creativecommons.org/licenses/by-nc-nd/4.0/ 
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Supplementary Materials 

Supplementary Methods, Figure Legends, and References 

RNAi 

To prepare RNAi plates, bacterial strains containing dsRNA plasmids (Kamath et al., 

2003) were grown overnight in LB with 10 µg/mL tetracycline and 50 µg/mL ampicillin, 

concentrated by centrifugation, and spotted onto NGM agar containing 1mM IPTG and 

75 µg/mL ampicillin (Ahringer, 2006). Gravid hermaphrodites were placed on RNAi 

plates and allowed to lay eggs overnight at 15°C. Progeny were allowed to develop at 

15°C until reaching the L4 stage. To score sperm activation, male progeny were then 

transferred to fresh RNAi plates which had been allowed to induce overnight, incubated 

for 72 hr, and examined by DIC. To score unc-22, animals were examined directly 

without transfer. 

 

Generation of transcriptional fusion reporter constructs and transgenes 

To allow for determination of cell identities, we generated animals harboring transgenes 

containing the snf-10 promoter region driving expression of fluorescent proteins fused to 

either histone H2B (Merritt et al., 2008) or the sperm-specific small nuclear basic protein 

HTAS-1(Chu et al., 2006). Transgene plasmids were constructed using Multisite 

Gateway Three-Fragment Vector Construction kit entry vectors (Life Technologies). The 

1044 bp region immediately upstream of the snf-10 coding region was amplified using 

the primers 5'-

GGGGACAACTTTGTATAGAAAAGTTGGGGTCCACGAGGTATAGAAGG-3' and 

5'-GGGGACTGCTTTTTTGTACAAACTTGTTCACTGTTTTTATAAAACC-3' and 
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cloned into pDONR P4-P1R, generating the plasmid pAAH004. The 568 bp region 

immediately downstream of snf-10 was amplified using the primers 5'-

GGGGACAACTTTGTATAATAAAGTTGCGGGAATTTCAATCGAGAAG-3' and 5'-

GGGGACAGCTTTCTTGTACAAAGTGGTAATGAATTATTCTACTTTTAT-3' and 

cloned into pDONR P2R-P3, generating the plasmid pAAH007. The htas-1 coding 

region was amplified using the primers 5’-

GGGGACAAGTTTGTACAAAAAAGCAGGCTTGATGGCTCGTCTCAAACAAAGA

CC-3’ (primer htasL) and 5’-

TCTTCTTCACCCTTTGAGACCATAGAATTATTTTCTTTGTCATC-3’, mixed with 

an mCherry fragment generated from plasmid pCFJ33 (Frokjaer-Jensen et al., 2008) 

using the primers 5’-ATGGTCTCAAAGGGTGAAGAAG-3’ and 5’-

GGGGACCACTTTGTACAAGAAAGCTGGGTCTACTTATACAATTCATCCATGCC

-3’ (primer mChR), and an htas-1::mCherry fusion fragment was generated using the 

primers htasL and mChR (Hobert, 2002). Finally, recombination of htas-1::mCherry into 

pDONR221 generated the plasmid pENTRL1L2_htas-1mCh. The Psnf-

10::GFP::H2B::3’snf-10 expression plasmid pAAH014 was then constructed by 

recombination of pAAH004, pCM1.35 (Merritt et al., 2008), and pAAH007 into 

pCFJ150 (Frokjaer-Jensen et al., 2008). The Psnf-10::htas-1::mCherry::3’snf-10 

expression plasmid pAAH013 was constructed by recombination of pAAH004, 

pENTRL1L2_htas-1mCh, and pAAH007 into pCFJ150. Transgenes were inserted into 

the ttTi5605 II insertion site using MosSCI as in Frokjaer-Jensen (2008, 2012).  
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Supplementary Figures 

Supplementary Fig. 1. Mapping snf-10. Schematic of the dpy-11-unc-76 region of 

chromosome V showing CB4856 polymorphisms used for localizing snf-10(jn3) to a ~50 

kb region (Wormbase, 2014). 

 

Supplementary Fig. 2. SNF-10 is a divergent SLC6 transporter. Alignment of 

sequence regions of transmembrane (TM) domains 1, 3, 6, and 8 for C. elegans SNF-10 

(accession number O45915) and SLC6 family members A. aeolicus LeuT (NP_214423), 

Drosophila CG5549 (Q9W1J0), human GlyT2/SLC6A5 (AAK12641.1), and human 

NTT5/SLC6A16 (Q9GZN6). Alignment was generated using Clustal Omega (Goujon et 

al., 2010; Sievers et al., 2011). Yellow indicates transmembrane domains for LeuT as 

reported previously in Yamashita (2005) and as predicted for SNF-10 by TMpred 

(Hofmann and Stoffel, 1993). Colors indicate residues involved in intracellular gating 

(Loland et al., 2004; Loland et al., 2002; Yamashita et al., 2005), extracellular gating 

(Cao et al., 1998; Kristensen et al., 2011; Pantanowitz et al., 1993; Yamashita et al., 

2005), and binding of sodium and substrate (Yamashita et al., 2005).  

 

Supplementary Fig. 3. snf-10 activity is required in the germ line. Germline-restricted 

snf-10(RNAi) is effective in suppressing the swm-1 activated sperm phenotype. The 

indicated strains were fed bacteria containing snf-10 dsRNA or the L4440 vector and 

scored for sperm activation (column graph) or fed bacteria expressing unc-22 dsRNA and 

scored for the Twitching phenotype (% Unc). Graph shading as in Fig. 1E. n, 44-100. 
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Supplementary Fig. 4. snf-10 is expressed in germ cells undergoing spermatogenesis. 

Paired (A) DIC and (B) mCherry fluorescence image of a 48 hr post L4 jnSi74[Psnf-

10::htas-1::mCh]; unc-119; him-5 male. In worms carrying this transcriptional reporter, 

chromatin-localized mCherry is expressed in cells undergoing spermatogenesis and 

retained in the posttranscriptional spermatids and sperm. Arrow indicates a karyosome-

stage spermatocyte. Arrowheads indicate adjacent spermatids within the seminal vesicle. 

int, intestinal autofluorescence. Scale bar: 20 microns. 

 

Supplementary Fig. 5. SNF-10 localization to the plasma membrane is disrupted in 

spe-17 mutant spermatids. (A-D) SNF-10::mCh is localized to the cell periphery in 

nonactivated jnSi96[Psnf-10::SNF-10::mCh]; jnSi192[Ppeel-1::PEEL-1::GFP] 

spermatids. (E,F) In jnSi96; spe-17 spermatids, SNF-10::mCh is present both at the 

plasma membrane and in asymmetrical cytoplasmic puncta. Images shown are live sperm 

visualized by (A,E) DIC, (B,F) SNF-10::mCh, (C) PEEL-1::GFP, and (D) merge of mCh 

and GFP fluorescence. All strains are mutant for unc-119, him-5, and snf-10(hc194). 

Scale bar is 5 microns and applies to all images.  
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CHAPTER 5 

 

SNF-10 CONNECTS MALE-DERIVED SIGNALS TO THE ONSET  

OF SPERM MOTILITY IN C. ELEGANS 

 

Originally published as-Fenker, K.E. and Stanfield, G.M. (2015). SNF-10 connects 
male-derived signals to the onset of sperm motility in C. elegans. Worm 4(1), 
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CHAPTER 6 

 

THE ROLE OF SNF-10 IN SIGNAL TRANSDUCTION 

 

Introduction 

 For most cell types, the ability to receive, interpret, and undergo an appropriate 

response to extracellular signals is critical for proper function. Sperm are particularly 

dependent on sensing their environment and responding to extracellular cues. They 

receive signals from their environment that regulate onset of motility, as well as cues 

from the female reproductive tract that guide migration toward oocytes. In many cell 

types, transduction of signals ultimately leads to changes in transcription and translation. 

However, sperm are unique in that their chromatin becomes very compact during 

development (Sassone-Corsi, 2002). This protects the DNA, but the cell can no longer 

produce new gene products, and therefore, sperm rely heavily on protein-protein 

interactions, ion balance, other biochemical interactions to regulate their response to 

environmental cues (discussed in Ellis and Stanfield, 2014). 

 In C. elegans sperm, a signaling pathway induces cell motility in response to a 

protease signal in seminal fluid (Stanfield and Villeneuve, 2006; Smith and Stanfield, 

2011). This signal is transduced via the Solute Carrier 6 (SLC6) family protein, SNF-10, 

and SNF-10 provides the first known molecular link connecting the protease signal to 

changes in sperm motility (Fenker et al., 2014). When wild-type sperm receive the 
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protease signal, either through a mutation in the protease inhibitor swm-1 in vivo or with 

Pronase treatment in vitro, they undergo a number of easily observed changes. In a 

process termed sperm activation, membrane fusion events, polarization, and cytoskeletal 

reorganization culminate to form a motile sperm cell with a pseudopod for crawling 

(Ward, 1983).  

 In Chapter 4, I demonstrate that while SNF-10 is downstream from the protease 

signal, it is also upstream of any detectable change in sperm physiology induced by 

protease exposure. snf-10 mutant sperm showed no observable membrane fusion, 

polarization, or pseudopod formation upon either loss of swm-1 or exposure to Pronase 

(Fenker et al., 2014). Based on these data, we hypothesize SNF-10 has an early role in 

transducing the protease signal. Additionally, I show via a C-terminal SNF-10::mCherry 

fusion that SNF-10 localizes to the sperm plasma membrane. Signals from a cell’s 

environment can be transduced in a variety of ways, although typically, the signal is 

received by a receptor protein on the cell’s plasma membrane and amplified by an 

intracellular network. Therefore, one hypothesis for SNF-10’s function is that the protein 

could be directly responsible for receiving the sperm activation signal and propagating it 

into the cell to initiate activation (Fenker and Stanfield, 2015) (see Chapter 5 for more 

detail). 

 SLC6 proteins like SNF-10 are best known for importing neurotransmitters, 

amino acids, or osmolytes into cells, in a sodium- and sometimes chloride-dependent 

manner. They have well-established roles in synaptic transmission, neurotransmitter 

recycling, metabolic function, and fluid homeostasis (reviewed in Kristensen et al., 2011; 

Rudnick et al., 2014), but there may be roles for SLC6 transporters beyond their co-
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transporter function as well. These additional roles include ion channel activity in the 

absence of substrate (DeFelice and Goswami, 2007), and perhaps establishing tissue 

polarity via protein-protein interactions (Rawls et al., 2007).  

 SNF-10 is a conserved SLC6 protein in that it shares the 12 transmembrane-

domain structure characteristic to the family (Pramod et al., 2013), yet not all residues 

involved in substrate or ion binding are conserved in SNF-10 (Fenker et al., 2014). 

Therefore, it is difficult to predict if SNF-10 should be expected to have a typical SLC6 

co-transport function or a different role during sperm development. Our identification of 

SNF-10 as part of a protease signaling cascade represents a novel means of regulation for 

an SLC6 protein, so a less-typical function would not be entirely unexpected.   

 In this chapter, I describe experiments designed to test several models SNF-10’s 

function during the onset of sperm motility. I make an effort to address several 

outstanding questions regarding the mechanism of how SNF-10 transduces the protease 

activation signal to ultimately change sperm physiology. Is SNF-10 cleaved by a 

protease? Does SNF-10 function as a typical SLC6 co-transporter? In what other ways 

could SNF-10 transduce the protease signal into sperm? While none of the following 

experiments are entirely conclusive, I present the data obtained and discuss its potential 

indications, as well as how these experiments can be expanded in the future to better 

understand SNF-10. 
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Materials and Methods 

Molecular biology 

 Standard procedures for molecular biology were used. Single-copy transgenic 

strains were generated using MosSCI (Frokjaer-Jensen et al., 2008; Frokjaer-Jensen et al., 

2012). Phsp16.2::snf-10::mCherry was generated in the pCFJ150 vector using Gateway 

cloning (Life Technologies) and injected into ttTi5605; unc-119 hermaphrodites. Heat-

shock was performed at 34ºC for 2 hr, plates placed at 20ºC to recover for 6 hr, then 

worms were either used immediately in western blots or flash frozen and stored at -80ºC. 

 Constructs for Xenopus laevis injection were generated in the pCFJ240 vector 

using Gateway cloning. RNAs were prepared using the T7 mMessage mMachine kit 

(Ambion), according to kit instructions. Integrity of the final product was confirmed by 

gel electrophoresis. 

 

Western blots 

 Over 30 western blot procedures were performed in order to troubleshoot 

detection of SNF-10::mCherry. For the basic protocol, 400 virgin, 48 hr post L4 males 

were added to lysis buffer (100 mM Tris, pH 6.8, 2% SDS, 5% ß- mercaptoethanol, 15% 

glycerol, 8 M urea, and bromophenol blue), and run on a 6.5 or 7% gel using standard 

SDS-PAGE protocols. Brief sonication or passage through a syringe was often used to 

break up DNA and facilitate loading.  

 Variations included: overexpression of SNF-10::mCherry, use of alternative lysis 

buffers (Lamelli, RIPA, and NP-40), isolation of membrane fractions from worm lysates 

with the Mem-PER Plus Membrane Protein Extraction Kit (ThermoFisher), specialized 
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membrane protein protocols as in Abeyrathne and Lam (Abeyrathne and Lam, 2007), 

variation of transfer time and buffers, transfer to nitrocellulose and PVDF membranes, 

and alternative primary antibodies (Abcam anti-mCherry, Clontech anti-mCherry, and 

Rockland anti-RFP). 

 

In vitro sperm activation  

 Sperm from 24-48 hr jnSi96[snf-10::mCherry]; him-5(e1490) males were 

dissected into Sperm Medium (5 mM HEPES pH 7.4, 50 mM NaCl, 25 mM KCl, 5 mM 

CaCl2, 1 mM MgSO4, and 10 mM dextrose) (Nelson et al., 1980). The sperm medium 

contained either 200 µg/ml Pronase or 60 mM triethanolamine (TEA) (Shakes and Ward, 

1989). Sperm were imaged every 3 min for up to 21 min to observe activation. 

 

Electrophysiology 

 The procedures for microinjection, superfusion, and voltage clamping of Xenopus 

laevis oocytes have been described previously (Fei et al., 1998; Jiang et al., 2005). 

Briefly, capped snf-10 (50 ng), snf-10::FLAG (50 ng), or snf-3 (5 ng) RNAs were 

injected into Xenopus oocytes. Oocytes were then stored at 18ºC in SuperBarth’s (88 mM 

NaCl, 1 mM KCl, 0.41 mM CaCl2, 0.33 mM Ca(NO3)2, 1 mM MgSO4, 2.4 mM 

NaHCO3, 10 mM HEPES, 1 mM pyruvate, 100 units/ml penicillin, 100 µg/ml 

streptomycin, 0.25 µg/ml amphotericin B, pH 7.2). Recordings were performed 3-4 days 

after injection, using the two-electrode voltage clamp method with the voltage clamped at 

-60 mV. The standard bath solution was Ringer’s (115 mM NaCl, 2.5 mM KCl, 1.8 mM 

CaCl2, 10 mM Hepes, pH 7.2). Each oocyte was subjected to 20 s application of plain 
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Ringer’s, 60 s substrate (in Ringer’s) followed by a 40 s Ringer’s wash. Candidate SNF-

10 substrates were purchased from Sigma and used at 10 mM. When Pronase was used, 

oocytes were incubated in 200 µg/ml Pronase in Ringer’s for 5 min just prior to 

perfusion. Each candidate substrate for SNF-10 was tested on 2-7 different oocytes. For 

the positive control, snf-3-injected oocytes were perfused with 2.5 mM betaine.  

 

Results 

SNF-10 cleavage by the protease activation signal is unclear 

 SNF-10 localizes to the sperm plasma membrane downstream of the protease 

activation signal (Fenker et al., 2014). Therefore, one model is that cleavage of SNF-10 

may take place during the process of sperm activation. To test this idea, I used strains 

expressing a SNF-10::mCherry transgene in either a wild-type background or a swm-

1(me87) background, in which sperm are exposed to the protease activation signal 

(Stanfield and Villeneuve, 2006; Smith and Stanfield, 2011). I then performed western 

blots and probed for SNF-10::mCherry. If SNF-10 were a direct target of the activation 

signal, I expected to observe full length SNF-10::mCherry in the wild-type background, 

with a smaller band resulting from cleavage in the swm-1 mutant background.  

 Unfortunately, after many attempts at probing for SNF-10::mCherry, I was unable 

to detect the protein via western blot for either genotype, although an alternative sperm 

protein with the same tag, COMP-1::mCherry, was detected. An example of a typical 

western blot is shown in Figure 6.1A. Along with testing a variety of lysis buffers, 

transfer conditions, membrane types, and antibodies, I also generated strains that 

overexpressed SNF-10::mCherry via a heat-shock inducible promoter, and isolated and 
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probed membrane fractions (see Materials and Methods). However, SNF-10::mCherry 

remained undetectable, and thus, it remains unclear if SNF-10 is cleaved during sperm 

activation.  

 

SNF-10 localization does not change in response to different in  

vitro activators 

 C. elegans sperm can be activated in vitro by a number of compounds that alter 

cell physiology in ways that are thought to tie into the in vivo activation pathway. Two 

examples of such compounds include Pronase and triethanolamine (TEA). Pronase is a 

commercially available mixture of proteases thought to mimic the activation signal in 

seminal fluid (Smith and Stanfield, 2011), while TEA leads to alkalization of the sperm 

cytoplasm and is thought to bypass the requirement for an activation signal (Ward, 1983). 

Because snf-10 mutant sperm activate at wild-type levels in response to TEA, but show 

no response to Pronase (Fenker et al., 2014) (Chapter 4), I hypothesized the dynamic 

localization of SNF-10::mCherry during sperm activation may be different in response to 

TEA compared to Pronase, and would lend insight as to the mechanism of SNF-10’s 

function. Therefore, I dissected sperm from SNF-10::mCherry males into media 

containing either TEA or Pronase, and performed time-lapse imaging to track the 

localization of SNF-10::mCherry during sperm activation. 

 The localization pattern of SNF-10::mCherry remained dynamic yet consistent as 

sperm activated, regardless of whether TEA or Pronase was used to trigger activation. 

Representative time-points from the experiments are shown in Figure 6.2A-F. Shortly 

after exposure to activator, most SNF-10::mCherry localized to the cell periphery (Figure 
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6.2A,D). By 3-6 min after dissection, membrane fusion events were visible as puncta 

near the cell periphery (Figure 6.2B,E), and at later time-points, these puncta took on a 

polarized localization and were present in a “C” shaped pattern along the periphery of the 

sperm cell body and absent from the pseudopod (Figure 6.2C,F). As SNF-10::mCherry 

has faint fluorescence and is prone to photobleaching, I also performed antibody staining 

with fixation at several time-points after dissecting sperm into TEA or Pronase, and 

confirmed the same localization patterns (data not shown). Thus, the dynamic 

localization of SNF-10 during sperm activation is not dependent on receiving the protease 

signal. 

 

A specific cargo for SNF-10 is not yet identified 

 The best-studied function for SLC6 family proteins is their role as co-transporters, 

and many members of the family transport a specific substrate (or small set of substrates) 

into cells in a sodium-dependent manner (Wang and Lewis, 2010). To test if SNF-10 

functions as a transporter, I expressed SNF-10 in Xenopus laevis oocytes and used the 

two microelectrode voltage clamp method to assay if exposure to candidate cargo was 

electrogenic, as would be expected if ion-coupled transport occurs (Fei et al., 1998). 

 A list of candidate cargo for SNF-10 is shown in Figure 6.3A. Candidates 

comprise both substrates common to SLC6 transporters as well as free amino acids 

present in the seminal fluid of Ascaris suum, a nematode closely related to C. elegans 

(Abbas and Foor, 1978). I tested these initial candidates in oocytes injected with snf-10 

cRNA, and observed no generation of current above baseline. An example recording is 

shown in 6.3B, where glycine was tested as a potential substrate. SNF-10 shares the 
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greatest amount of sequence similarity to the human glycine transporter SLC6A5/GlyT2; 

however, the substrate binding residues are somewhat divergent in SNF-10 (Fenker et al., 

2014). Because it remains a possibility that SNF-10 must be cleaved in order to function, 

I next tested the same candidate substrates on oocytes that were incubated with Pronase 

for 5 min just prior to recording. As before, no transport of a SNF-10-specific cargo was 

observed. There were two candidate substrates, lysine and arginine, that produced small 

currents under the Pronase-treatment conditions, but the same current was produced by 

both snf-10-injected oocytes and water-injected controls, suggesting this was due to 

Pronase and not a SNF-10-specific event (data not shown).  

 To confirm the electrophysiology was being performed appropriately, I expressed 

SNF-3, a previously characterized C. elegans SLC6 betaine transporter, in Xenopus 

oocytes and confirmed perfusion with betaine was electrogenic (Peden et al., 2013), 

(Figure 6.3C). The snf-3-injected oocytes appeared much less healthy compared to either 

snf-10-injected oocytes or water-injected controls. To test if SNF-10 was being expressed 

by the Xenopus oocytes, I injected oocytes with a C-terminal snf-10::3xFLAG fusion, and 

performed western blots. I was unable to detect SNF-10::FLAG via western blot (Figure 

6.3D); however, no western blot for SNF-10 has ever worked, thus leaving the expression 

of SNF-10 by oocytes uncertain. Injection of a SNF-10::GFP fusion did produce oocytes 

with faint fluorescence on a dissecting microscope (data not shown), but further analysis 

is needed to determine whether or not the protein localizes to the surface of the oocytes. 

For all electrophysiology experiments, I performed electrophoresis to analyze the RNA 

produced prior to oocyte injection, to confirm it was the appropriate size and not 

degraded. From these experiments, I was unable to identify a specific substrate for SNF-
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10, and further analysis with expanded substrates and confirmed surface expression of 

SNF-10 should be considered. 

 

Discussion 

 During sperm development, the timing of sperm activation is very important. If 

sperm are activated too early, they cannot be transferred from males to hermaphrodites 

and males are sterile (Stanfield and Villeneuve, 2006). Our lab identified a protease 

signal that regulates this important event (Smith and Stanfield, 2011), and signals via the 

SLC6 protein SNF-10 to initiate a number of physiological changes to allow sperm to 

become motile and fertilization competent. The mechanism of SNF-10’s function and 

how the protein affects sperm physiology remains unknown. In this chapter, I tested 

several models for SNF-10’s function. 

 Is SNF-10 cleaved during activation? While I attempted to clarify this question 

with western blots to visualize the size of the SNF-10 protein under normal and protease-

exposed conditions, these experiments were inconclusive. The question of SNF-10 

cleavage is an important one; if SNF-10 cleavage is necessary and sufficient for sperm 

activation, this would strengthen the model that it is a direct target of the protease signal. 

Our identification of SNF-10 functioning within a protease signaling cascade is novel, 

and identification of direct cleavage by a protease would allow for this mechanism of 

SLC6 transporter regulation to be easily tested in other contexts and tissues as well. 

 The structure of SNF-10 contains 12 transmembrane domains connected by intra 

and extracellular loops, based on predictions made by the transmembrane prediction 

software TMpred, and consistent with the crystal structure of another SLC6 family 
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member (Yamashita et al., 2005). While predicted trypsin cleavage sites occur across the 

protein, over half of them are concentrated together on one specific extracellular loop, 

while the rest are predominantly intracellular (predicted by ExPASy PeptideCutter). 

Therefore, I hypothesize that if SNF-10 is cleaved during activation, it is likely to occur 

to this extracellular loop. Experiments to engineer a cleavage site at this predicted 

location, for example an Tobacco Etch Virus (TEV) site, combined with experiments to 

remove the endogenous trypsin sites would be informative in understanding the role of 

cleavage on SNF-10’s function.  

 Does SNF-10 transport a specific cargo into sperm? Using electrophysiology, I 

have thus far been unable to detect a specific cargo for SNF-10. While it cannot be ruled 

out that this is how SNF-10 functions, it would not be my first prediction. While SNF-10 

is clearly in the SLC6 family (Fenker et al., 2014), many of the residues involved in 

sodium or substrate binding that are highly conserved in other SLC6 proteins are 

divergent in SNF-10. Additionally, sperm activation in response to Pronase can be 

triggered in vitro, in media containing sodium, potassium, calcium, and magnesium, but 

no obvious cargo molecules for an SLC6 protein. If SNF-10 does function through cargo 

transport, the cargo must come from sperm during activation. This also seems unlikely, as 

the main exocytosis event during sperm activation (MO fusion) occurs after receiving the 

protease signal and is dependent on the presence of SNF-10 (Fenker 2014), although we 

cannot rule out at this point that cargo could be delivered to the sperm surface in another 

manner. I hypothesize it is more likely for SNF-10 to function through channel activity or 

protein-protein interactions, rather than amino acid transport. This function of SNF-10 

could be assayed using radiometric dyes that indicate ion concentrations within cells (as 



119 
 
 

 

in Tsien, 1989 or Rong et al., 2017), and by using CRISPR-directed modifications to 

SNF-10 to probe candidate protein-protein interaction sites that can be predicted based on 

SNF-10’s amino acid sequence. 

  The identification of SNF-10 provides the first link between the environmental 

protease signal and sperm themselves, and future work on how SNF-10 functions will 

answer interesting questions about how sperm maturation is regulated. Genetic screens 

performed by others in the lab have obtained many more mutants with defects in sperm 

activation in response to protease signaling. Identifying the genes disrupted by these 

mutations will also be important to further clarify transduction of the protease signaling 

pathway, including the specific contribution of SNF-10 during the onset of sperm 

motility. 
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Figure 6.1. Example of a western blot for SNF-10::mCherry, showing detection 
of the positive control.  
In each lane, 400 adult males were loaded, except for the OP50 lane, in which only 
bacteria were loaded. Wild-type and OP50 lanes are background controls with no 
mCherry. SNF-10::mCherry is absent from the blot, but has a predicted size of 100 
kDa. COMP-1::mCherry is a positive control, and is approximately 75 kDa (green 
box). Primary antibody was anti-RFP (Rockland) at 1:5000. Secondary antibody was 
goat anti-rabbit (HRP (BioRad) at 1:5000. 
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Figure 6.2. SNF-10’s dynamic localization is not dependent on receiving the protease 
signal. 
Sperm was dissected into media containing either TEA (A-C’) or Pronase (D-F’) and 
imaged every 3 min during activation. Regardless of activator, early SNF-10::mCherry 
initially localized to the cell periphery (arrowhead) and was polarized to the cell body in 
activated spermatozoa (arrows). 
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Figure 6.3. A specific cargo has not been identified for SNF-10. 
(A) List of candidate cargo for SNF-10. By sequence, SNF-10 is most similar to the 
human glycine transporter GlyT2. (B) A snf-10-injected oocyte was perfused for 20s with 
plain Ringer’s, 60s with 10 mM glycine, and finally 40s with plain Ringer’s. No current 
was detected using the two-electrode voltage clamp method. All candidate cargo were 
tested using this setup, in conditions with and without Pronase treatment. (C) Positive 
control recording; snf-3-injected oocytes are electrogenic upon exposure to their known 
substrate, betaine. (D) SNF-10 expression by Xenopus oocytes could not be confirmed by 
western blot.  



 

 

 

CHAPTER 7 

 

SUMMARY AND FUTURE DIRECTIONS 

  

 The goal of my dissertation was to advance understanding of the question: How 

do highly specialized sperm cells develop? Work on syx-7 and snf-10 has described how 

these two well-conserved genes function during sperm development and sheds light on 

how cell division and differentiation can occur. For SYX-7, I described a new role for the 

t-SNARE in cell division, and added to existing evidence that it is important for normal 

function of lysosome-like organelles. For SNF-10, I described a new role for an SLC6 

family protein in sperm differentiation as well as a new means of regulation for a protein 

in this family. Both syntaxins and SLC6 family genes have broad expression in many cell 

and tissue types (Linial, 1997; Broer, 2013; Pramod et al., 2013; Han et al., 2017). 

Therefore, further characterization of the mechanisms of SYX-7 and SNF-10 function 

will continue informing our understanding of these proteins, the ways they can function, 

and how this fits into a broader biological context. 

 

syx-7 in Cytokinesis and Lysosome-related Organelle Biogenesis 

 In Chapters 2 and 3 of this dissertation, I focus on cell division, and report the 

discovery and characterization of the t-SNARE syx-7 in sperm development. Prior to the 

discovery of syx-7, much of our knowledge regarding SNARE function in sperm was in 
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the context of the acrosome reaction, a specialized exocytosis event required for 

fertilization to occur (Kierszenbaum, 2000). Only two other SNAREs have been 

identified that function in sperm cytokinesis (Xu et al., 2002; Fujiwara et al., 2013). 

However, these other SNAREs are not completely understood, and it is likely that the 

role they serve is very different from syx-7’s. This underscores that syx-7 and related 

genes are important in many stages of sperm development, and we have much to 

understand about how they function, as well as how these functions are modulated. 

 My findings for syx-7 describe a role for the gene during meiotic cell division. 

syx-7 is required to complete cytokinesis following meiosis II, demonstrating it is 

required not for general meiotic or cell division, but for a specific, specialized cytokinesis 

to occur. For sperm, asymmetric partitioning of cellular components is a key event during 

cytokinesis. Sperm without syx-7 achieve much of this asymmetric partitioning and 

appear poised for division. However, the final abscission to separate spermatids fails. syx-

7 sperm have two major defects that may contribute to the incomplete cytokinesis. First, 

actin is mislocalized in sperm that do not complete division, suggesting models in which 

missing forces at the division plane or inappropriate connection of sperm to the residual 

body could prevent abscission in the syx-7 mutant. It is an interesting finding that a 

trafficking protein like SYX-7 functions upstream of actin localization, as few other 

examples of this have been identified and the cooperation between trafficking events and 

actin remains an unclear aspect of cell division.  

 The second major defect in sperm lacking syx-7 is the presence of abnormalities 

in organelles of the secretory system: membranous organelles (MOs). It is intriguing to 

think MO function could be required for cell division in sperm, although this remains 
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unclear. One model that ties abnormal MOs and actin together is that MOs could be 

responsible for trafficking necessary machinery, including actin regulatory proteins, to 

the proper subcellular location. An intriguing paradigm is that membranous organelles 

could serve as a streamlined “trafficking hub” in sperm, a cell type that undergoes 

specialized development to leave behind many typical cellular components in order to 

improve motility (Ward et al., 1981; Xu et al., 2013). As with previous data (Wolf et al., 

1978), our electron micrographs (Chapters 2 and 3) revealed there are no other obvious 

organelles of the secretory system present in sperm, consistent with the model that 

perhaps a single, generalized secretory organelle is all sperm can afford. This model 

predicts other proteins would mislocalize in syx-7 sperm. While most of the markers for 

sperm partitioning I assayed in Chapter 2 localized appropriately, it would be interesting 

to focus on MO proteins as well as proteins known to have dynamic localization during 

sperm development.   

 In Chapter 2, I show SYX-7 moves to the MOs as sperm develop, suggesting the 

protein may play a role in membrane reorganization or cargo delivery to the organelle. 

Perhaps SYX-7 has a key role in forming functional MOs, and it is solely due to these 

abnormal MOs that further defects occur, ultimately resulting in mislocalized actin. In 

support of this model, sperm cytokinesis is disrupted in three other C. elegans mutants 

that affect the biogenesis or function of MOs (L'Hernault and Arduengo, 1992; Machaca 

and L'Hernault, 1997; Arduengo et al., 1998; Zhu and L'Hernault, 2003; Gleason et al., 

2012). However, in contrast to what the above model would predict, two of the other MO 

mutants have normal actin localization, and data for the third does not yet exist (Machaca 

and L'Hernault, 1997; Arduengo et al., 1998). This suggests instead of solely disrupting 
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MOs, syx-7 likely has a second function in trafficking and cargo delivery as sperm divide. 

Alternatively, syx-7 function could be required once for MO function, but it disrupts them 

in a way that specifically affects actin. Either of these cases are consistent with current 

data. Actin localization in MO mutants beyond syx-7 was probed using an antibody for 

total actin, rather than our live marker for F-actin (Machaca and L'Hernault, 1997; 

Arduengo et al., 1998). It would be interesting to view live F-actin in other MO mutant 

strains, to better understand if it is affected by MO function. Another means to test the 

current model is to perform a combination of experiments to determine if abnormal FB-

MOs can ever be uncoupled from cell division defects. For example, while sperm and 

fertility appeared normal in vti-1 and syx-6 mutants, I did not look directly at MOs and it 

remains possible these mutants contain abnormal MOs that do not affect sperm division. 

Additionally, screens for MO mutants, as well as using drugs to block MO function and 

aspects of membrane trafficking in sperm, may also support current models or suggest 

alternatives. 

 Large, multinucleated germ cells like those found in syx-7 mutants are also found 

in human pathological conditions that occur within the testes (Holstein and Eckmann, 

1986). These conditions often develop in men older than 65 years, but can also occur in 

younger men and cause fertility problems. How these conditions arise remains unclear, 

although it is proposed that it is through improper maintenance of intercellular bridges, a 

feature of sperm development that relies heavily on cytokinesis machinery (Greenbaum 

et al., 2011). Notably, the arrested human sperm, often referred to as “giant” sperm, share 

a number of features with the large terminal sperm in our syx-7 mutants. Electron 

microscopy of both the giant human sperm and C. elegans syx-7 mutant sperm reveal 



129 
 
 

 

cytoplasmic disorganization and severe degradation of cellular structures, as well as 

numerous small vesicles and abnormal membrane structures present throughout the 

sperm cytoplasm (Holstein and Eckmann, 1986; Miething, 2005) (Chapters 2-3). Thus, 

further understanding of syx-7 may shed light on the mechanisms of sperm pathologies 

that occur in other organisms, including humans, and may have important implications 

for improving fertility. Using syx-7 to answer questions about why cellular components 

break down after division fails may be particularly interesting in this context. 

 SYX-7 is an ortholog of mammalian STX12 (sometimes called STX13), a protein 

with functions beyond reproductive biology. STX12 localizes predominantly to early 

endosomes in a number of cell and tissue types (Tang et al., 1998). The protein is less 

studied compared to some other t-SNARES; however, it is known to mediate fusion of 

endosomal membranes by participating in homotypic fusion events, as well as in 

targeting vesicles during endosome-mediated recycling of surface proteins (Prekeris et 

al., 1998; Brandhorst et al., 2006). In a few cases, a role for STX12 is apparent in the 

biogenesis of lysosome-related organelles (LROs) such as melanosomes, the pigment-

producing organelles in melanocytes. During melanosome biogenesis, enzymes required 

for synthesizing melanin must be transported from endosomes to maturing melanosomes 

(Wasmeier et al., 2008). When STX12 is depleted using shRNAs, several enzymes that 

should be routed to melanosomes are instead routed to lysosomes and degraded (Jani et 

al., 2015). Additionally, STX12 interacts with pallidin (PLDN), a component of the 

biogenesis of LRO complex-1 (BLOC-1), and it is proposed the two function together in 

vesicle fusion during the formation of several types of LROs (Huang et al., 1999). These 

data, combined with our own observation that a similar type of organelle is disrupted in 
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the C. elegans mutant, suggests the role of SYX-7/STX12 in LRO biogenesis may be 

widespread. Also notable is that in the LRO-related disorder Chediak-Higashi Syndrome, 

one of the many problems for patients is inappropriate white blood cell division (Introne 

et al., 1993), representing another possible connection between LROs and cell division, 

this time in the context of human disease. 

 In humans and model organisms alike, disrupting genes involved in melanosome 

maturation causes a reduction in pigmentation, but this is very often accompanied by 

other defects that at first seem unrelated, such as abnormal bleeding, respiratory 

disorders, and immunodeficiencies (Spritz et al., 2003; Hornyak, 2006). These defects, 

however, are connected and result from generalized LRO defects, as other examples of 

LROs include platelet-dense granules, lamellar bodies, basophil granules, and lytic 

granules (Dell'Angelica et al., 2000; Huizing et al., 2008; Marks et al., 2013). Using tools 

like our syx-7 mutants to understand how specific trafficking events are exploited to 

generate cell-type specific organelles will help us understand the plasticity of the 

endosomal and secretory systems, and in the long term may inform treatments for a 

number of human disorders that result from abnormal LROs, including Chediak-Higashi 

Syndrome, Hermansky-Pudlak Syndrome, and Griscelli Syndrome (Huizing et al., 2008; 

Cullinane et al., 2011). Study of syx-7 in C. elegans has unique advantages for helping us 

understand LROs, as loss of syx-7 appears to cause a sperm-specific defect rather than the 

organism-wide defects seen when LROs are disrupted in other organisms. Therefore, use 

of syx-7 will complement studies done in current mouse models of LRO-related 

disorders. While these are excellent models of disease, analysis is often complicated due 

to widespread abnormalities and short life spans (McGarry et al., 1999; Bonifacino, 



131 
 
 

 

2004). With this combined toolkit, we can answer interesting questions about how LROs 

form and function, as well as pursue the important question of whether or not LROs play 

an active role in cell division. 

 

snf-10 in Protease Signaling 

 In Chapters 4-6 of this dissertation, I focus on cellular differentiation, probing 

how sperm can respond to extracellular cues to undergo large changes in physiology and 

become motile. I report the discovery and characterization of snf-10, a member of the 

Solute Carrier 6 family of genes, and demonstrate snf-10 is required to transduce a signal 

from the extracellular environment (seminal fluid) into sperm cells to trigger cell 

polarization and the onset of motility. The discussion of my work on snf-10 in this 

chapter is brief, as Chapter 5 is the reprint of a Commentary Article in which I provide an 

in-depth discussion of my findings and future directions regarding snf-10. 

 Through previous work, our lab identified a signaling pathway that induces sperm 

to become polarized and motile, a process termed sperm activation, in response to an 

extracellular protease signal. This signal comprises the protease inhibitor, SWM-1, and 

the trypsin-like serine protease, TRY-5. Both SWM-1 and TRY-5 are components of 

seminal fluid (Stanfield and Villeneuve, 2006; Smith and Stanfield, 2011). However, 

prior to our identification of SNF-10, it was unknown how the signal from seminal fluid 

was transduced into sperm to induce activation. A genetic screen identified SNF-10 as a 

factor downstream of the protease signal, and I investigated the protein’s role in signal 

transduction and sperm activation.  
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 In Chapter 4, I demonstrate both in vivo and in vitro that SNF-10 is downstream 

of the protease activation signal. However, SNF-10 is also upstream from a number of 

cellular events that must occur in sperm cells as they become motile. When wild-type 

sperm are exposed to the protease signal, the membranous organelles fuse with the 

plasma membrane, specific proteins move to new domains, and cytoskeletal proteins 

form a pseudopod to facilitate crawling (Ward, 1983). When sperm lacking snf-10 are 

exposed to proteases, there are no noticeable morphological changes to the cells. This 

suggests that SNF-10 functions very early during the onset of sperm motility, perhaps 

even in receiving the protease signal and propagating it into sperm to initiate changes in 

intracellular physiology. In further support of this model, we would predict the target of 

the extracellular protease would localize to the plasma membrane; this is, in fact, the 

main cellular compartment in which SNF-10 resides. 

 While current data are consistent with a model in which SNF-10 is a direct target 

of the extracellular sperm activation signal, important questions remain. Notably, is SNF-

10 cleaved during activation, and is this cleavage sufficient to induce sperm motility? 

This is an important question and will be key to understanding both SNF-10’s function in 

sperm, and that of SLC6 proteins in other biological contexts. Positive regulation by a 

protease signaling pathway is a novel means of regulation for an SLC6 family protein. 

Cleavage of SLC6 proteins does occur; for example, the GABA transporter GAT1 and 

the glycine transporter GlyT1 are cleaved by calpain-family proteases (Baliova et al., 

2004; Baliova et al., 2009), but this cleavage either reduced or had no effect on 

transporter function. Widespread positive regulation by protease signaling remains a 

possibility, and could apply to a subset of transporters in specific cell-types or tissues. 
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Knowing if SNF-10 is directly cleaved during sperm activation will lead to a better 

understanding and perhaps identification of a similar means of regulation in other 

contexts. Although the western blots I performed to determine if SNF-10 undergoes 

direct cleavage by proteases were inconclusive (Chapter 6), there are other ways to 

address this question. For example, tools could be created to induce or block cleavage of 

the protein (for details, see Chapter 6). Additionally, there is evidence SNF-10’s 

localization is regulated during activation, and a candidate approach is currently 

underway, using CRISPR to disrupt genes that may be involved in regulating SNF-10’s 

localization. If a mutant could be identified that prevents SNF-10 from localizing to the 

plasma membrane, this could further support or disprove our model, depending on 

whether or not sperm can respond to protease signals.  

 SLC6 proteins like SNF-10 have many roles in human physiology. There are 20 

SLC6 family members in the human genome (Chen et al., 2004; Bröer, 2006). They can 

be found in the central nervous system and peripheral neurons, as well as in the intestine, 

kidneys, lungs, and testis (Bröer and Gether, 2012). Disruptions to these proteins are 

implicated in a variety of disorders, including neuropsychiatric disorders (Grunhage et 

al., 2000; Kim et al., 2006; Kohli et al., 2011), nutrient uptake disorders (Kleta et al., 

2004; Seow et al., 2004), blood pressure abnormalities (Halushka et al., 1999), and 

orthostatic intolerance (Shannon et al., 2000). In the SLC6 field, much work has explored 

how the transporters function within the context of the nervous system. This is very 

important, but it provides a perhaps limited view of the variety and complexity of SLC6 

protein function. Additionally, many of the SLC6 proteins have been implicated in 

human disorders by genome-wide association studies (Lee et al., 2013; Scharf et al., 
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2013), and functional validation is needed. Study of proteins like SNF-10 will help the 

field expand to consider transporters in many biological contexts, as well as identify new 

means of regulation for this important family, and thus better understand amino acid 

homeostasis across the entire body. 

 

Conclusions 

 In conclusion, sperm development in C. elegans provides the opportunity to study 

many different aspects of cell division and differentiation. Many of the genes identified 

as important for C. elegans sperm development are conserved or function in analogous 

processes that take place during the development of other cell types (reviewed in 

L'Hernault, 2006; Lesch and Page, 2012; Ellis and Stanfield, 2014). Continuing to 

identify and investigate the genes involved will continue to improve our understanding of 

both germ cell development and general cellular processes. For example, the work 

presented here on syx-7 and snf-10 identified a new role for each gene during sperm 

development. Interesting questions remain about these genes and the mechanisms of their 

function, and it will also be interesting to determine how widespread these mechanisms 

are, both in sperm biology and beyond. 
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