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ABSTRACT

Active transport of cargoes is critical for cellular function. To accomplish this, networks

of cytoskeletal filaments form highways along which small teams of mechanochemical

enzymes (molecular motors) take steps to pull associated cargoes. The robustness of this

transport system is juxtaposed by the stochasticity that exists at several spatial and tempo-

ral scales. For instance, individual motors stochastically step, bind, and unbind while

the cargo undergoes nonnegligible thermal fluctuations. Experimental advances have

produced rich quantitative measurements of each of these stochastic elements, but the in-

teraction between them remains elusive. In this thesis, we explore the roles of stochasticity

in motor-mediated transport with four specific projects at different scales.

We first construct a mean-field model of a cargo transported by two teams of opposing

motors. This system is known to display bidirectionality: switching between phases of

transport in opposite directions. We hypothesize that thermal fluctuations of the cargo

drive the switching. From our model, we predict how cargo size influences the switching

time, an experimentally measurable quantity to verify the hypothesis. In the second work,

we investigate the force dependence of motor stepping, formulated as a state-dependent

jump-diffusion model. We prove general results regarding the computation of the statistics

of this process. From this framework, we find that thermal fluctuations may provide a

nonmonotonic influence on the stepping rate of motors.

The remaining projects investigate the behavior of nonprocessive motors, which take

few steps before detaching. In collaboration with experimentalists, we study seemingly

diffusive data of motor-mediated transport. Using a jump-diffusion model, the active and

passive portions of the diffusivity are disentangled, and curious higher order statistics are

explained as a sampling issue. Lastly, we construct a model of cooperative transport by

nonprocessive motors, which we study using reward-renewal theory. The theory provides

predictions about measured quantities such as run length, which suggest that geometric

effects have a large influence on the transport ability of these motors.
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CHAPTER 1

INTRODUCTION

For many years, mathematical models of cellular systems were largely deterministic.

While this modeling revealed countless insights regarding the function of these systems

[28], recent years have brought a new paradigm: stochasticity is unavoidable at the cellular

and molecular level. An immediate question arises: how do cells function in the face of

randomness? For instance, how do cells manage to signal robustly in heavily fluctuat-

ing, noisy environments? Questions such as these illuminate the power of mathematical

biology. Experiments with heavily stochastic components can be difficult to perform or

assess, so modeling serves as an invaluable probe in understanding stochasticity in these

biological systems [4]. Although motivated by biological questions, modeling of these

stochastic systems has also led to a volume of novel interesting mathematical questions.

From modeling efforts, a surprising theme has emerged: cells function not only in

spite of noise, but because of it. That is, cellular function appears from stochasticity, for

instance in [40]. Another way of interpreting this statement is that stochasticity cannot

be always averaged or neglected into a deterministic model that accurately describes a

system. Stochasticity is the cog in the machine that allows these systems to function, and

models that do not include it fundamentally fail to describe the essence of the behavior.

For this reason, modeling with stochasticity must be embraced to truly understand biology

at the cellular and molecular scale.

In this thesis, we study a system with a rich array of stochasticity: intracellular trans-

port by molecular motors. Modeling always involves a decision regarding the scale of

interest in which to describe a system. Intracellular transport has the interesting property

of involving noise at a variety of scales [5]. One might hope for fundamental relationships

between the description of noise at different scales, but a unified theory remains largely un-

clear. Another interesting facet of the noise in intracellular transport is its variety. Because
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this system is fundamentally spatial, modeling often incorporates classical continuous

processes (such as Brownian motion) along with jump processes describing the stepping

or binding kinetics of individual motors. Transport typically involves a small team of

motors, and consequently the behavior of individuals contributes meaningfully to the be-

havior. Understanding the net behavior of this system therefore requires disentangling an

intertwined mix of stochasticity that exists at different spatial and temporal scales. In this

thesis, we embark upon exploring how stochasticity in intracellular transport interweaves

and how it can be disentangled. In doing so, both biological and mathematical insights are

achieved.

1.1 Molecular motors, intracellular transport
Cells are spatially compartmental structures, where different compartments produce

and consume particular components for the cell to function. Transactions of cargoes be-

tween these compartments (through crowded environments [15]) drive the need for cells

to have a mechanism of transport. Small cargoes, such as glucose, can be transported via

diffusion, a passive transport mechanism. However, for larger cargoes, such as organelles,

diffusion is not sufficiently fast [28] for the timescale of cellular function. Instead, an

active transport mechanism is utilized: transport mediated by molecular motors along

cytoskeletal filaments.

Molecular motors are, in general, mechanochemical machines that convert energy into

mechanical work. The mechanism of stepping varies dramatically from motor to mo-

tor [7, 10, 21], for which kinesin-1 provides a canonical example. Each kinesin consists

of two heads connected together by a stalk region, ending in a tail region. Kinesin-1

walks along microtubules in a “hand-overhand” matter, where each of the heads alternate

between tightly bound to the microtubule and diffusing freely, resulting in 8 nm steps

[12, 17]. The mechanism that drives the alternation of these two heads is ATP hydrolysis,

which produces a conformational change in the protein. Specifically, ATP binding to the

microtubule-bound stiffens the rear linker, causing a “power stroke” motion of the rear

linker toward the plus end of the microtubule. This head binds to the microtubule and

now is the leading head, and the process cycles producing motion toward the positive

direction on the microtubule. An illustration of this process can be found in Figure 1.1a.
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a b

c

Figure 1.1. Depictions of kinesin stepping behavior and laser tweezers to measure the
force generated by this process. a: Sequence depicting ATP-dependent kinesin-1 walking,
adapted from [11]. b: optical trap setup, a force/displacement measurement tool for single
molecule systems involving molecular motors, c: result of optical tweezer measurements
for a single kinesin-1 motor, showing distinct stepping, both adapted from [2].

One classification of motors relevant to this thesis is whether the motor is processive, in

which the motor takes many (hundreds) steps before detaching, as seen in Figure 1.1c,

or nonprocessive, such as those in the kinesin-14 family, which take 1 to 5 steps before

detaching [8, 16]. From a mathematical perspective, modeling processive motors allows

for the large number of steps to be averaged into a velocity using a central limit theo-

rem flavored argument. Whether an analogous technique is possible for nonprocessive

motors remains unclear. Beyond processivity, motors are categorized into three main

superfamilies: kinesin, dynein, and myosin, seen Figure 1.2a. The two key differences

that distinguish these motors is, aside from chemical structure, the cytoskeletal filaments

with which they are associated and the direction they walk [48]. Kinesin and dynein are

typically associated with microtubules, but kinesins primarily walk in the anterograde di-

rection, whereas dynein transport in the retrograde. Myosin motors are, however, typically
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Figure 1.2. Cartoons describing the biological contexts in which different motors are uti-
lized. a: Diagram illustrating the different types of molecular motors and the cytoskeletal
filaments they are associated with, redrawn from [47]. b, c: Two depictions of intracellular
transport, either along radial microtubule networks or along axonal filaments, redrawn
from [23].

associated with actin filaments.

The cargoes transported by molecular motors reflect the diversity of the motors them-

selves, including vesicles, organelles, or even other cytoskeletal filaments [48, 23]. Two

canonical examples can be seen in Figures 1.2b, 1.2c. In the first, vesicles are delivered

along long arrays of parallel microtubules, transported by teams of both kinesin and dynein

motors. These same motor families also spatially organize organelles throughout the cell

along radially microtubule networks stemming from the microtubule organizing center.

Because of the wide scope of utility intracellular transport provides for the cell, defects in

molecular motors are associated with a number of diseases [44]. Consequently, investigat-

ing the function of molecular motors is of natural interest in order to understand how they

fail.

In contrast to experimental findings of other systems at the molecular scale, advances

in experimental techniques have enabled richly quantitative measurements of molecular

motors. Optical tweezers, as seen in Figures 1.1b, 1.1c have allowed for measurements

of how motors respond to force, including the rate at which they step [7, 10, 21, 49] and

unbind [34], and split force among teams [14, 24]. Advances in DNA manipulation have
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also allowed experiments to precisely control the number of motors associated with a

cargo, as in [1, 13, 19]. This body of quantitative measurements of both individual molec-

ular motors and ensembles makes intracellular transport attractive for modeling studies

at a variety of scales. Although not an extensive list, reviews can be found in [5, 50],

and specific examples include modeling individual motors [32, 42, 46], teams of motors

[25, 29, 30, 31, 33, 36, 39, 43], and macroscale models at the cellular level [6, 9, 22, 26].

1.2 Stochastic models
In this section, we briefly review some of the common mathematical structures used

throughout this thesis.

1.2.1 Langevin and Fokker–Planck equations

The systems in this thesis are primarily described by stochastic differential equations,

which govern the evolution of X(t) ∈ R and take the form

dX(t) = A(X)dt +
√

2B(X)dW(t), (1.1)

where A(x) describes the deterministic drift, B(x) the magnitude of random fluctuations,

and W(t) the classical Weiner process with stationary, Gaussian increments [20]. Note that

trajectories arising from the description (1.1) have continuous paths.

Throughout the work, we utilize an alternative formulation of (1.1). While x(t) de-

scribes the (random-valued) position of a single trajectory, define p(x, t) to be the proba-

bility density of this process conditioned on a known starting position x0. Then, (1.1) is

equivalent to the Fokker–Planck equation

∂t p(x, t) = −∂x {A(x)p}+ ∂xx {B(x)p} , (1.2)

where (1.1) is interpreted in the Itô (rather than Stratonovich) sense, which would modify

the form of (1.2) slightly.

(1.2) is accompanied with some initial condition p(x, t0) = p0(x) and describes the

evolution of the process forward in time. Consequently, this relation is also known as the

Kolmogorov forward equation. In contrast, the Kolmogorov backward equation, which describes

the backward evolution of p̃(x, t), accompanied by a terminal condition p̃(x, T) = pT(x),

takes the form

∂t p̃ = A(x)∂x p̃ + B(x)∂xx p̃. (1.3)
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It is worth noting that if we abbreviate the right-hand side of (1.2) as Lp, then the right-

hand side of (1.3) is the formal adjoint, L† p̃.

1.2.1.1 Ornstein–Uhlenbeck process

The Ornstein–Uhlenbeck process [20] is used commonly in this thesis, as experiments

support that the force response of motor linkers can be modeled as a Hookean spring

[27, 35].

Consider x(t) the displacement (from rest) of a single molecular motor attached to a

cargo at time t. Then, X(t) evolves by the relation

γdX(t) = −kX(t)dt +
√

2D dW(t). (1.4)

The SDE relation (1.4) can be thought of as a balance of forces, where γ is the drag co-

efficient of the cargo, and the lefthand side represents the viscous force. The second

term represents the Hookean force, with k as the stiffness of the motor, and finally the

random force from thermal fluctuations of the cargo is captured described with diffusivity

D scaling Brownian increments. The fluctuation-dissipation theorem states that

D = kBTγ,

where kB is Boltzmann’s factor, T temperature, and γ is again the drag coefficient of the

cargo. Furthermore, the Stokes-Einstein relation states that, for a spherical cargo (such as a

vesicle),

γ = 6πrη,

with η the viscosity of the cytosol, and r the radius of the sphere.

The Ornstein–Uhlenbeck process (1.4) can be written in Fokker–Planck form

∂t p(x, t) = ∂x {(κx)p}+D∂xx p.

This classical process is often a convenient starting point due to having known Gaussian

solutions, with x(0) = y,

p(x, t) =

√
θ

2πD(1− e−2κt)
exp

{
−κ

2D

[(
x− ye−κt)2

1− e−2κt

]}
.
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1.2.2 Jump processes

Molecular motors bind, step due to conformational changes, and then unbind, so their

behavior can be partitioned into discrete states. The canonical model for transitions be-

tween such states is a Markov jump process. This process differs from those described by

SDEs, as it does not necessarily provide continuous trajectories.

Consider a process X(t) that can be in states Ω. The rates of transition between the

states are encoded in a matrix Q = [qij] with i, j ∈ Ω,

P [X(t + h) = j|X(t) = i] = δij + qijh + o(h),

which imposes the requirement that qij ≥ 0 for i 6= j and ∑j qij = 0. The corresponding

forward Kolmogorov equation (analogous to the Fokker–Planck equation) is then

P′(t) = P(t)Q,

where P(t) is the vector of probability densities of each state at time t.

It is often convenient to transform a continuous time Markov jump process into its

embedded discrete chain, where only the sequence of states is tracked [41]. The matrix

S = [sij] of transition probabilities from state i to state j can be computed by

S = I − (diag Q)−1 Q.

Let pn be the vector of probabilities of each state n, which satisfies

pn+1 = pnS.

This transformation often provides a convenient way of computing the stationary distri-

bution, π, which satisfies the matrix equation

π = πS.

Equivalently, π is the (normalized) eigenvector corresponding to the eigenvalue λ = 1.

1.3 Contents of dissertation
In Chapter 2, we explore a mean-field model of transport by two opposing populations

of motors [37]. This study is motivated by the observation that cargoes associated with

opposing populations (say, kinesin and dynein) switch directions, or behave bidirectionally
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[23]. Previous modeling of this system focuses on motor number as the driver of switching

[34, 39], but we instead conjecture that cargo thermal fluctuations (diffusion) drive switch-

ing. To explore this possibility, we reduce our mean-field model to a system of reduced

dimensionality, which is found to be metastable. The metatstable states correspond to

positive and negative average velocities, or bidirectional motion. The mean first passage

time to switch directions is computed and used to make an experimentally verifiable

prediction about how cargo size influences switching time.

In Chapter 3, mathematical theory is developed to study jump-diffusion systems with

state-dependent jump rates [38]. The stepping of molecular motors is well-known to

depend on the force exerted on them [7], but stepping itself modifies the force resulting in

a feedback loop, all while thermal fluctuations of the cargo also continuously modify the

force. This stepping process can be modeled as a state-dependent jump diffusion process,

for which previous tools provide limited insight. We provide an iterated map formulation

for the sequence of jump locations (the process evaluated at jump times), and use this

formulation to extract physically relevant statistics of the process. We ultimately find

that cargo fluctuations may have a nonmonotonic influence on the stepping on individual

motors.

Both Chapters 4 and 5 focus on the study of transport of nonprocessive motors, those

that take very few steps before detaching. Chapter 4 describes the results of a collab-

oration with experimental scientists to understand the observed motion of particles as-

sociated with N340k, a mutant nonprocessive motor that takes steps in both directions.

The observed particle motion is observed to be diffusive (with a linear mean-squared

displacement). Diffusive motion of motor-associated cargoes has been observed to occur

due cytoskeletal complexity [45]. However, in this case, only a single filament is used, so

the motors themselves must drive this motion. A jump-diffusion model is constructed to

explain the mean-squared displacement observations by decomposing the diffusivity into

passive and active components. This model also explains the curious skewed distribution

of diffusivities observed in the data as a sampling issue.

Finally, Chapter 5 focuses on interesting experimental observations made in [19]: Al-

though individual nonprocessive motors are poor at transporting cargoes, teams are able

to act cooperatively to transport cargoes long distances. We construct a simple model
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where motors can bind, step, and unbind. Using asymptotic analysis and reward-renewal

theory, we derive rigorous results allowing for the computation of experimentally ob-

served quantities such as the run time, run length, and velocity. From these quantities,

we find that this cooperative transport is only possible when the binding and step kinetics

have a complex dependence on the current number of bound motors, which we conjecture

stems from observed geometric tethering effects [3, 18].
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a b s t r a c t 

Molecular motor proteins serve as an essential component of intracellular transport by generating forces 

to haul cargoes along cytoskeletal filaments. Two species of motors that are directed oppositely (e.g. ki- 

nesin, dynein) can be attached to the same cargo, which is known to produce bidirectional net motion. 

Although previous work focuses on the motor number as the driving noise source for switching, we pro- 

pose an alternative mechanism: cargo diffusion. A mean-field mathematical model of mechanical inter- 

actions of two populations of molecular motors with cargo thermal fluctuations (diffusion) is presented 

to study this phenomenon. The delayed response of a motor to fluctuations in the cargo velocity is quan- 

tified, allowing for the reduction of the full model a single “characteristic distance”, a proxy for the net 

force on the cargo. The system is then found to be metastable, with switching exclusively due to cargo 

diffusion between distinct directional transport states. The time to switch between these states is then 

investigated using a mean first passage time analysis. The switching time is found to be non-monotonic 

in the drag of the cargo, providing an experimental test of the theory. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Active transport is a key component of cellular function due to 

the compartmental nature of cellular machinery. This transport is 

achieved through the use of molecular motor proteins, which un- 

dergo a series of conformational changes to walk along cytoskeletal 

filaments and generate forces to haul cargoes ( Howard, 2001 ). The 

transport of a single cargo can often involve two families of motors 

that are directed oppositely. For instance, kinesin, which primar- 

ily walks in the positive direction of a microtubule, and dynein, 

primarily in the negative direction, can be attached to the same 

cargo. Another possibility is that two populations of the same fam- 

ily of kinesin motor can be attached to a cargo but walk along op- 

positely oriented microtubule tracks ( Osunbayo et al., 2015 ). This 

phenomenon of opposing motor populations is observed for a wide 

variety of cargoes: mRNA particles, virus particles, endosomes, and 

lipid droplets ( Hendricks et al., 2010; Kunwar et al., 2008 ). Al- 

though both families of motors are exerting forces on the cargo 

in opposite directions, the net motion of cargo transport is able to 

switch. That is, the cargo spends periods of time with a net posi- 

tive, negative, and zero velocity (denoted a pause state), the overall 

motion of which is denoted bidirectional transport ( Hancock, 2014 ). 

∗ Corresponding author. 

E-mail address: miles@math.utah.edu (C.E. Miles). 

This intuitively inefficient transport phenomenon is thought to 

serve a role in pattern formation ( Brooks and Bressloff, 2016 ) or 

spatially uniform cargo delivery ( Bressloff and Levien, 2015 ). How- 

ever, this work focuses on the mechanism of switching. That is, the 

distinct switching between directions suggests the existence of a 

mechanism of cooperation between the motor families, which has 

been explored previously from both experimental and theoretical 

perspectives. 

The role of external influences in the cooperation mechanism 

remains unclear. A number of studies have identified regulators of 

kinesin and dynein ( Fu and Holzbaur, 2014 ). For instance, LIS1 and 

NudE have been found to modulate dynein’s force production capa- 

bilities ( McKenney et al., 2010 ). In Shojania Feizabadi et al. (2015) , 

the authors found that the microtubule itself can regulate kinesin 

force production. However, the necessity of these external regula- 

tors for motor coordination in bidirectional transport remains un- 

established. The alternative hypothesis relies on the notion that the 

coordination is a product of the mechanical interactions of the mo- 

tors with the cargo, denoted a tug-of-war scenario. 

The tug-of-war hypothesis has also been investigated from a 

theoretical and experimental perspective. The authors in Müller 

et al. (2008) formulate the most notable mathematical model ca- 

pable of producing bidirectionality. In the model, the motors share 

the load equally. This assumption is not always invoked in later 

mathematical models. For instance, Kunwar et al. (2011) performs 

stochastic simulations of unequally distributed motors. However, 

http://dx.doi.org/10.1016/j.jtbi.2017.04.032 
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these authors compare the results of the stochastic simulation with 

experiments and conclude that switching statistics do not match 

as the number of motors varies. In Soppina et al. (2009) , another 

mathematical model is proposed where the two motor popula- 

tions are required to be asymmetric. That is, the two opposing 

motor populations must have different force generating proper- 

ties to break symmetry. Lipowsky et al. (2010) ; 2006 ) also pro- 

vide noteworthy mathematical models, thinking of motor trans- 

port as a “rubber-band”-like process and find rich dynamics. Al- 

though not specifically about tug-of-war, motor population models 

such as the Huxley crossbridge model ( Huxley, 1957; Keener and 

Sneyd, 2008 ) use force-velocity relationships for the motor pop- 

ulations. However, since this analysis is a steady-state analysis, it 

is difficult to infer dynamics, which we address in our model. In 

Bouzat (2016) , the authors reexamine the mathematical model of 

Kunwar et al. (2011) and stress the importance of cargo diffusion 

for the model to produce the right behavior, specifically pointing 

out the issue of relating steady-state force-velocity curves to dy- 

namics. An asymptotic analysis of a model bearing many similar- 

ities to our proposed model (but still with discrete motor num- 

ber) can be found in McKinley et al. (2012) . The authors include 

cargo diffusion in a stochastic differentialequation description and 

note that motor dynamics slow compared to fast fluctuations in 

the cargo velocity, which ultimately is an important ingredient of 

our work. 

In this work, we present a new tug-of-war model of bidi- 

rectional motor-mediated transport. Our proposed model contains 

fundamentally different essential components than previous work. 

Broadly, the proposed model is a mean-field model with unequally 

distributed load. This differs from previous discrete motor, un- 

equal load descriptions and therefore requires a different source 

of noise to induce switching. By examining the force generation 

of bound motors, we quantify the delayed response to instanta- 

neous changes in the cargo velocity. We make an approximation 

(and justify numerically) that this delay structure extends beyond 

the scope of only bound motors, allowing for the use of a force- 

velocity relationship to study the full system. This reduction leads 

to a system of two “characteristic distances”, one for each motor 

population. By symmetry, this two-variable system is collapsed to a 

single dimension which is found to be metastable, with two states 

corresponding to positive and negative net velocities, or bidirec- 

tional motion. The noise that drives switching between these two 

states is due to cargo diffusion (thermal fluctuations), an aspect 

of this process previously noticed but under-emphasized until re- 

cently ( Bouzat, 2016 ). 

Previous work has indeed illustrated the significance of mo- 

tor number fluctuations ( Nadrowski et al., 2004 ). However, in this 

present work, we choose to use a mean-field model to emphasize 

the lack of necessity of discrete motor number for bidirectional- 

ity. Our proposed model still incorporates binding and unbinding 

dynamics and therefore has the same mean behavior as a discrete 

motor model, but lacks the noise associated with discrete events. 

The only remaining noise source is then cargo diffusion, which we 

show to be sufficient for bidirectionality. The difference in mag- 

nitudes between the fluctuations due to motor number and cargo 

diffusion is difficult to quantify due to the fundamental difference 

in structure. In Guérin et al. (2011a) , the authors find that motor 

number fluctuations can result in an effective diffusion when the 

number of motors involved in transport is large. 

A characteristic quantity in validating bidirectional transport 

models is the reversal or switching time of the system: the time 

between runs of each direction. In our model, the correlation struc- 

ture of the effect of noise on each population allows for the reduc- 

tion to an invariant manifold and consequently, a one dimensional 

mean first passage time problem in a double-well potential. Classi- 

cal tools can then be used to numerically solve and analytically ap- 

Fig. 1. A diagram of the mean-field model setup. The quantity, x , denoting the dis- 

tance a motor is stretched is always measured with respect to the orientation of 

the microtubule. 

proximate the corresponding boundary value problem. The switch- 

ing time is considered as a function of the cargo drag coefficient, 

which leads to complex behavior as the wells steepen but diffusion 

strengthens as the drag decreases. Ultimately, the mean switching 

time is found to be non-monotonic in the cargo drag coefficient, 

a feature not expected for switching due to motor dynamics. This 

non-monotonicity provides an experimental test to validate (or re- 

fute) our diffusion-driven switching hypothesis. 

2. Methods 

2.1. Model formulation 

Consider a cargo being pulled by two different populations of 

motors, denoted + and −. Let m 

±( x, t ) be the density of type + 

or − motors at time t and stretched from their unstretched dis- 

tance x units. The + or − labeling of the motor families denotes 

their preferred directionality. That is, m 

+ corresponds to the den- 

sity of motors preferring to walk in the positive direction (e.g. ki- 

nesin) and m 

− the density of motors preferring to walk in the neg- 

ative direction (e.g. dynein) as seen in Fig. 1 . Although the neg- 

atively oriented motors are depicted as dynein in the figure, this 

need not be the case. The negatively oriented motors could be, 

for instance, another set of kinesin motors on an opposing micro- 

tubule. The framework presented is sufficiently general to accom- 

modate both. The evolution of each motor population is then de- 

scribed by 

∂m 

±

∂t 
+ 

∂ 

∂x 

{[
w 

±(x ) − v (t) 
]
m 

±}
︸ ︷︷ ︸ 

stepping 

= 

(
M 

± −
∫ ∞ 

−∞ 

m 

±(x, t) d x 

)
�±

on (x ) 

︸ ︷︷ ︸ 
binding 

−�±
off

(x ) m 

±(x, t) ︸ ︷︷ ︸ 
unbinding 

. (1) 

Although (1) appears as only one equation, m 

+ and m 

− each 

have their own equation that are structurally identical but may 

contain different parameters or functional forms. The quantity x , 

describing the distance the motor is stretched from its unstretched 
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displacement is always measured with respect to the microtubule, 

even though each motor type walks in a different direction, see 

Fig. 1 . This choice of frame of reference is convenient, as it causes 

the two equations to be structurally identical (as opposed to hav- 

ing to reverse the sign of v ). 

It is worth noting that this PDE has been studied in other con- 

texts and is referred to as the Lacker–Peskin PDE ( Srinivasan and 

Walcott, 2009 ), which is an extension of the Huxley crossbridge 

model ( Huxley, 1957; Keener and Sneyd, 2008 ). In that literature, 

the particular form of the PDE is derived from the limit of a large 

number of discrete binding sites or a large number of motors. 

However, in the present context, it is well established that the 

number of motors is quite small ( Hendricks et al., 2010; Rai et al., 

2013 ), hence a different interpretation for the mean-field model 

must be taken. If M = 1 , Eq. (1) is a Chapman–Kolmogorov equa- 

tion, corresponding to the behavior of a single motor and describes 

the probability of finding a motor stretched distance at x at time t . 

This process is inherently random by the stochastic nature of the 

binding dynamics, which is entirely accounted for in the binding 

and unbinding terms of the mean-field equation. 

Cargo mediated transport is a multi-motor phenomenon, and 

consequently, we are interested in the behavior of an ensemble 

of motors. However, we point out the observation that (ignoring 

crowding effects) the motors interact solely through the cargo. For 

this reason, the motors can be treated as acting identically and in- 

dependently, and hence, a mean-field model, which can be thought 

of as a rescaling of the Chapman–Kolmogorov equation for a sin- 

gle motor, is applicable. To elaborate, we can regard m ( x, t ) as the 

expected (or mean, hence the name mean-field ) number of motors 

bound at a given x and t . By construction, 0 ≤ ∫ m d x ≤ M , and 

therefore the interpretation of M is a maximum number of motors 

bound. Thus, we have effectively averaged over the stochasticity in 

the binding dynamics to study a mean-field description of motor 

ensembles. 

Before describing, in detail, each term in (1) , we state a driv- 

ing assumption for several of the functional forms appearing in 

the equation. The force generated due to the linker stretching is as- 

sumed to be Hookean, that is force ∼ kx , where k is the spring con- 

stant or stiffness of the motor linker attachment to the cargo. The 

force-displacement curve of molecular motors has been studied ex- 

perimentally ( Kawaguchi et al., 2003; Lindemann and Hunt, 2003 ) 

and, although not perfectly linear, seems to be well-approximated 

by this assumption. 

We now discuss each term of the equation in more detail. 

Broadly, the motor population can change in three ways: motors 

stepping (walking), binding or unbinding. 

1. stepping : We assume that the rate of stepping for motors is 

dependent on the force exerted on the motor, typically char- 

acterized by a force-velocity curve. The force on the motor is 

generated by the linker displacement x in a Hookean manner, 

F = kx . Consequently, the walking rate of a motor is more natu- 

rally thought of as a displacement -velocity relationship, which is 

qualitatively the same as the force-velocity curve by the linear- 

ity of the force generation. Denote this displacement-velocity 

curve by w ( x ) and take it to be of the linear form 

w (x ) := −ax + b, (2) 

where a > 0. At x = 0 , which corresponds to the motor be- 

ing unstretched, the motor walks with some velocity b . For 

the + directed motor, for instance, b > 0. As the motor walks 

farther from its unstretched position ( x > 0), the force exerted 

on it causes the velocity to decrease until it eventually stalls 

at x stall := b / a . If x < 0, that is, the cargo is ahead in the di- 

rection the motor seeks to walk, the velocity is assumed to be 

greater as the linker exerts a force in the direction of motion of 

the motor. If x > x stall , then the force exerted by the linker is 

greater than the stall force, meaning the motor moves opposite 

its preferred direction. 

Force-velocity relationships have been qualitatively observed 

experimentally for kinesin ( Gennerich et al., 2007; Kunwar 

et al., 2008 ) and dynein ( Belyy et al., 2014 ). One notable ob- 

servation is a dramatic difference in behavior between mo- 

tors in high ATP environments ( Carter and Cross, 2005; Viss- 

cher et al., 1999 ) and ATP starved motors ( Gross et al., 2007; 

Mitchell and Lee, 2009 ). For this work, we assume the motors 

operate with sufficient ATP. The force-velocity curve is visibly 

nonlinear, with main deviation from linearity occurring at su- 

perstall forces, where motors velocities become negative (as in 

this model), but with much smaller magnitude. Motors operat- 

ing with an assisting force ( x < 0 in this model) also appear to 

operate with sub-linear velocities. For this reason, a sigmoidal 

form (due to its saturating behavior) is deemed appropriate and 

used in a number of other modeling papers ( Bouzat, 2016; Kun- 

war et al., 2011; McKinley et al., 2012; Müller et al., 2008 ). 

However, in this work, we assume that motors operate in a 

regime of the force-velocity curve that can be approximated by 

its linearization. This assumption is explored and discussed fur- 

ther in Section 3.1 . 

2. binding : The functional form of the binding term is set to be 

�on (x ) := k on δ(x ) , 

where k on is the constant describing the rate of binding of a 

molecular motor to the cargo. The δ( x ) functional form corre- 

sponds to the assumption that motors are initially unstretched 

( x = 0 ) when they bind, thus only binding at x = 0 . That is, the 

motors only bind in a non-force-producing state. This assump- 

tion can be relaxed (and is for later numerical simulations) to a 

Gaussian approximation of the delta function. 

3. unbinding : The unbinding rate of molecular motors has ex- 

perimentally been found to be related to the force exerted on 

them ( Kawaguchi et al., 2003; Kunwar et al., 2011 ), however 

the nature of this dependency is complex and varies from mo- 

tor to motor. Dynein is found to a have a catch-bond behav- 

ior ( Kunwar et al., 2011; Nicholas et al., 2015 ). Both kinesin 

( Andreasson et al., 2015 ) and dynein ( Nicholas et al., 2015 ) have 

been observed to have asymmetric force dependence in their 

unbinding. 

Due to the complexity and variation in unbinding dependence, 

we take the simplest form that still behaves in a way that qual- 

itatively matches experimental results, which is 

�off(x ) = k off exp 

{
k | x | 
F D 

}
, 

where again, the force exerted is assumed to be Hookean ( ∼
kx ), and independent of direction (hence the absolute value). 

F D is a characteristic force fit to experimental observations, and 

k off is the unstretched detachment rate. This form is often re- 

ferred to as Bell’s Law, which is known to need corrections 

in some scenarios ( Walcott, 2008 ). The overall behavior of this 

function establishes that motors detach at a faster rate the far- 

ther they are stretched due to the force exerted on their micro- 

tubule binding sites. 

This functional form (or similar) has been used in other mo- 

tor population models ( Srinivasan and Walcott, 2009; Walcott, 

2008 ). In Kunwar et al. (2011) , the authors account for the 

stalling of motors and the catch-bond behavior of dynein by 

taking a non-monotonic dependence on the force. In our un- 

binding rate, neither the catch-bond behavior nor is the asym- 

metric dependence on force is included. The consequence of ex- 

cluding these phenomena is purely quantitative, as they are not 
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dramatic enough effects (in the regimes that motors operate for 

transport) to produce a qualitative effect in our model. 

It is also worth noting that �off and �on have different units, as 

the off-rate is multiplied by m , a motor density and the on-rate 

is multiplied by a total number of motors ∫ m d x . 

We then can define the average force exerted by each motor 

population, recalling the assumption of a Hookean force, 

F ±(t) := 

∫ ∞ 

−∞ 

k ±xm 

±(x, t) d x. (3) 

This time-varying quantity requires knowledge of the full density 

of motors m ( x, t ), which makes it difficult to study directly. 

2.2. Steady-state analysis 

This time-dependent force, described by (3) is difficult to com- 

pute in practice, so we turn our attention to the steady-state 

force. We consider the steady state ( d m 

±/ d t = 0 ) and behavior of 

(1) with some steady-state velocity ˜ v , which leads to the pair of 

equations for the steady state densities ˜ m 

±

∂ 

∂x 

{[
w 

±(x ) − ˜ v 
]

˜ m 

±}
= 

(
M 

± −
∫ ∞ 

−∞ 

˜ m 

±(x ) d x 

)
�±

on (x ) 

−�±
off

(x ) ̃  m 

±(x ) . (4) 

Exploiting the linearity of (4) , along with the partitioning na- 

ture of the delta function, (4) can be solved analytically, resulting 

in a solution with an integrable singularity at the stall distance de- 

pendent on the velocity 

x stall := 

b − ˜ v 
a 

. 

For details of this calculation, see Supplementary Section S1 . This al- 

lows us to define the steady state force exerted by each population 

of motor 

˜ F ±( ̃ v ) := 

∫ ∞ 

−∞ 

k ±x ̃  m (x ; ˜ v ) d x, (5) 

where we parameterize this force as a function of the steady state 

cargo velocity ˜ v which appears in (4) . 

We now need an equation governing the cargo velocity, which 

is determined by the forces exerted on the cargo 

M ̇

 v + γ v = 

√ 

2 γ k B T ξ (t) + forces exerted by motors . (6) 

In (6) , M is the mass of the cargo, γ is the drag coefficient 

of the cargo and ξ ( t ) is the white-noise process due to thermal 

fluctuations (diffusion) of the cargo which satisfies 〈 ξ (t) ξ (τ ) 〉 = 

δ(t − τ ) . The magnitude of these fluctuations is determined by the 

fluctuation-dissipation theorem ( Gardiner, 2009 ). 

2.3. Forces exerted by motors 

A perhaps natural choice for the force terms in (6) could be the 

steady-state force, ˜ F ±(v ) , found in (5) . The use of a force-velocity 

relationship (which 

˜ F is) to study motors has a long history (e.g. 

Huxley (1957) ) but there is a problem with this choice. Although 

v is changing instantaneously, the position of the cargo is not. The 

forces exerted by the motors are due to stretching of the linker 

(determined by their displacement), which does not change instan- 

taneously as the velocity changes. In other words, it is impossible 

to completely infer dynamics from a steady-state force-velocity rela- 

tionship. Thus, parameterizing the force with time-varying velocity 

would not produce the physical behavior we desire. For this rea- 

son, we turn to a simpler model to understand what to use for the 

force terms in (6) that accounts for this issue. 

In Bouzat (2016) , the authors make the observation that includ- 

ing cargo noise produces this described difficulty: motors should 

not react instantaneously to velocity and classical models produce 

results inconsistent with experimental observations if this is the 

case. To overcome this issue, the authors hypothesize that the mo- 

tors respond to a time-windowed-average force, suggesting some 

“memory” property of the motors. Here, we directly compute a 

physiological, mechanistic delay stemming from the stepping of 

the motor, instead of a phenomenological “memory.”

2.3.1. Ornstein–Uhlenbeck motivation 

To understand motor response to fluctuations in the cargo ve- 

locity, we now turn our attention the behavior of an ensemble of 

M motors on a single run : after binding and before unbinding. This 

focus stems from the observation that force generation can only 

occur while the motors are bound. The dynamics of force genera- 

tion are of interest as these dictate the cargo behavior. In McKinley 

et al. (2012) , the authors also study the behavior of motors without 

binding dynamics and find that multiple motors can actually pro- 

duce a lower cargo velocity than a single motor. However, in our 

model, we reiterate that the motors act identically and indepen- 

dently aside from interaction with the cargo, which is addressed 

separately. Hence, it is sufficient to describe the behavior of a sin- 

gle motor. Let p 1 ( x, t ) describe the probability density of finding a 

motor stretched distance x from its unstretched position at time t 

and let x 1 ( t ) be the corresponding Langevin random process. 

The behavior follows almost identically with the mean-field 

model (1) , but now binding and unbinding can be neglected due 

to the analysis only being of a single run. The only remaining dy- 

namics are the motor stepping (still at its force dependent velocity 

w ) and diffusion (the magnitude of which is lumped into a param- 

eter D ). The resulting process is an Ornstein–Uhlenbeck process 

Gardiner (2009) , which can be described by the Langevin equa- 

tion 

˙ x 1 = [ w (x 1 ) − v (t) ] + 

√ 

2 D ξ (t) , 

or the corresponding Fokker–Planck equation 

∂ p 1 
∂t 

= − ∂ 

∂x 
{ [ w (x ) − v (t)] p 1 } + D 

∂ 2 p 1 
∂x 2 

. (7) 

To quantify the motor’s ability to respond to instantaneous fluctu- 

ations in the cargo velocity, we consider the mean position of a 

motor while still attached, denoted μ1 , 

μ1 := 〈 x 1 (t) 〉 . 
From the Fokker–Planck equation (7) , we find the relationship de- 

scribing the temporal evolution of the mean of this process to be 

(assuming w is a linear function) 

˙ μ1 = w (μ1 ) − v (t) . (8) 

For details of the calculation, see Appendix A . 

However, again recalling the assumption of a Hookean force 

(that is, force from a single motor stretched distance x 1 is kx 1 ), 

the average force exerted by a single motor under evolving under 

this process with density p ( x 1 , t ) is then 

F 1 = k 

∫ ∞ 

−∞ 

x 1 p(x 1 , t) d x 1 = kμ1 . 

and, since we have M motors in our ensemble, the total average 

force is immediate from linearity 

F tot = Mkμ1 . (9) 

In other words, for a bound ensemble of motors , the mean force 

exerted can be parameterized by the mean distance stretched μ, 

where μ “tracks” the velocity through (8) . This illustrates that 

the magnitude of the delay in motor response to fluctuations in 

cargo velocity is determined by the motor velocity. In other words, 

changes in force are only due to changes in displacement, not 
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velocity. This resolves the aforementioned issue about the force 

changing instantaneously. Now, the mean force tracks, with some 

delay as determined by (8) , the velocity and evolves continuously. 

2.3.2. Force evolution approximation 

The previous calculation showed that while still attached, the 

mean force generation for a population of motors could be col- 

lapsed down to a single parameter μ1 . However, relating the 

mean-field model to this single-run analysis presents an obvious 

issue: how to account for binding dynamics? We now make the 

major approximation of the paper: even with binding and unbind- 

ing, the mean force generated by each population of motors can 

be collapsed to a single parameter μ (for each population) with 

a similarly structured delay. This leads us to the set of equations 

(with one motor family for illustration) 

M ̇

 v + γ v = 

ˆ F (μ) + 

√ 

2 γ k B T ξ (t) , ˙ μ = w (μ) − v . (10) 

We assume the cargo velocity v fluctuates with the forces ex- 

erted on it, but the force exerted by the motors is not directly 

prescribed by the current v but rather some parameter μ which 

tracks v with a delay. We note that, in the previous section, we 

have proven that this delay structure exists while the motors are 

attached. However, we posit that this delay structure is still ap- 

propriate even when binding dynamics are incorporated because 

force generation on the cargo requires the motors to be attached. 

In the previous analysis, μ had a physical meaning: the average 

distance a motor is stretched. However, we lose this meaning and 

consider μ a “characteristic distance.” The force exerted by these 

motors is also no longer Mk μ1 because not all motors are bound 

at any given time, so we give the force a general form 

ˆ F (μ) that 

is specified later. It is also important to reiterate that (10) is writ- 

ten for a single parameter μ, meaning a single motor population 

to demonstrate the structure but we later incorporate parameters 

μ1 , μ2 , one for each population. 

The particular choice of the parameterized force ˆ F j (μ) (for j = 

1 , 2 , corresponding to each population) must not neglect unbind- 

ing and binding of the motors and must account for the fact that 

not all motors are bound at a given time. We conjecture that a 

sufficient approximation is the steady-state force ˜ F ( ̃ v ) , originally 

parameterized by a steady-state cargo velocity ˜ v , described by (5) . 

It does not seem immediately clear how to construct a map- 

ping between a value of μ and 

˜ v to plug into ˜ F . We recall that 
˜ F was computed assuming the cargo velocity ˜ v was fixed (in 

steady-state), whereas the true quantity v ( t ) is constantly fluctu- 

ating and never in steady-state. Utilizing the fact that ˜ v corre- 

sponds to steady-state, we can construct a mapping between μ
and 

˜ v by ensuring that the equilibria of our approximation match 

the equilibria of the original system. That is, if we are in steady- 

state, ˙ μ = 0 and consequently 

˙ μ = 0 = −aμ + b − ˜ v ⇒ 

˜ v = −aμ + b. 

This then provides a mapping between a steady-state cargo veloc- 

ity ˜ v and a particular μ value. Hence, we can now evaluate our 

force as a function of μ

ˆ F j (μ j ) = 

˜ F j (−a j μ j + b j ) . (11) 

We reiterate that this approximate system is still inherently out- 

of-equilibrium, but now, by construction, has equilibria that match 

the original model since ˙ μ = 0 corresponds to a particular ˜ v , a 

steady-state velocity from which the force was originally com- 

puted. 

In other words, the motors track the steady state force-velocity 

curve ˜ F with some delay. This particular choice of the force struc- 

ture allows for the complexity of the mean-field model, including 

all binding and unbinding to be embedded into the ˜ F (μ) terms. 

However, the dynamics of the reduced “characteristic distance”

model are easier to study due to being an ordinary differential 

equation rather than a partial differential equation. Our analysis 

shows that this delay structure is exact for bound motors and this 

approximation posits an extension of the structure to account for 

binding and unbinding. We explore the validity of this approxima- 

tion numerically in Section 3.2 . 

2.4. Full model 

The parameter regime we are considering deals with cargo 

with negligible mass, thus suggesting we are in a viscous or near- 

viscous regime. Exploiting this fact, we can perform an adiabatic 

(quasi-steady state) reduction on (10) to eliminate v . For details 

of this calculation, see Supplementary Section S3 . The result of per- 

forming this reduction (with a single motor population) is 

˙ μ = w (μ) −
ˆ F (μ) 

γ
+ 

√ 

2 k B T 

γ
ξ (t) , (12) 

or equivalently, in Fokker–Planck form 

∂ p 

∂t 
= − ∂ 

∂μ

{
w (μ) − 1 

γ
ˆ F (μ) 

}
+ 

k B T 

γ

∂ 2 p 

∂μ2 
. (13) 

One important note from the calculation detailed in Supplemen- 

tary Section S3 is that although v is eliminated from the system, v 

relaxes quickly to a Gaussian centered around 

ˆ v ∼ ˆ F (μ) /γ , (14) 

thus the value of μ directly determines the (mean) velocity of the 

cargo at any time. 

Combining all of the previous observations, we now propose 

the full model. In the derivation of (12,13) , only one motor popula- 

tion was considered, but in bidirectional transport, there are two 

populations evolving separately, resulting in two equations with 

identical structure but different parameters. From this, we get the 

full model 

˙ μ1 = −a 1 μ1 + b 1 − 1 

γ
{ F 1 (μ1 ) + F 2 (μ2 ) } + 

√ 

2 k B T 

γ
ξ (t) , 

˙ μ2 = −a 2 μ2 + b 2 − 1 

γ
{ F 1 (μ1 ) + F 2 (μ2 ) } + 

√ 

2 k B T 

γ
ξ (t) . (15) 

Note that we have switched the two populations to labels j = 1 , 2 

instead of + / − and dropped the hat notation from 

ˆ F j for nota- 

tional convenience. Because the motor populations were originally 

coupled through the forces, the force terms in (12,13) must be re- 

placed with the sum of forces from each family, and consequently, 

the Eqs. (15) are coupled. We have also used the functional form 

of the motor force velocity curve w (x ) = −ax + b and that the net 

force exerted by the motors is simply the sum of the force exerted 

by each population. 

To emphasize the ability of this model to produce bidirectional 

motion without asymmetry between the motor populations, we 

take the parameters describing each of the populations to be the 

same (unless noted otherwise), described in Table 1 . These param- 

eters are chosen as physiologically reasonable parameters in the 

range of reported values of both kinesin and dynein, taken from 

Kunwar et al. (2008) , Schnitzer et al. (20 0 0) and Klumpp et al. 

(2015) . The viscosity of cytoplasm is reported to be higher than 

water ( Luby-Phelps, 20 0 0; Mitchell and Lee, 20 09 ). Although a po- 

tentially large viscosity is used in this work, any smaller would 

only make the magnitude of the fluctuations larger, further mag- 

nifying the importance of cargo diffusion. 

2.5. Dimensional reduction 

An important observation must be made about the noise struc- 

ture of (15) : the white noise term in each equation is exactly the 
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Table 1 

“Typical” motor values used for both populations of motors in the symmetric case of the mean field model. Values 

used are within reported ranges of kinesin and dynein. 

F stall [pN] v 0 
[
nm · s −1 

]
k off

[
s −1 

]
| F d | [pN] k on 

[
s −1 

]
M k 

[
pN · nm 

−1 
]

γ
[
pN · s · nm 

−1 
]

5 10 0 0 1 1 5 10 0.4 0.001 

same (fully correlated). From a biophysical perspective, this is be- 

cause the two motors feel the same fluctuations from the cargo 

diffusion. Hence, this is truly a one-dimensional diffusion rather 

than two dimensional as it currently appears. The Fokker–Planck 

equation corresponding to the system (15) has a non-invertible dif- 

fusion tensor, which further illustrates this point. To make the one- 

dimensional structure more apparent, we perform a change of vari- 

ables, taking 

ζ := μ1 + μ2 , η := μ1 − μ2 

Under this coordinate change, the system (15) becomes, abbreviat- 

ing D := k B T / γ

˙ ζ = −a 1 
2 

(ζ + η) + b 1 − a 2 
2 

(ζ − η) + b 2 − 2 

γ

∑ 

j 

F j + 2 

√ 

2 D ξ (t) 

˙ η = −a 1 
2 

(ζ + η) + b 1 + 

a 2 
2 

(ζ − η) − b 2 . 

By taking the two populations to be symmetric, which corresponds 

to a 1 = a 2 = a and b 1 = −b 2 = b, the η equation becomes 

˙ η = −aη + 2 b, 

which has an invariant manifold described by ˜ η = 2 b/a . Since the 

equilibria of the system must lie on this invariant manifold, all 

dynamics of interest evolve on the manifold and consequently re- 

duces the problem to the one-dimensional evolution 

˙ ζ = −aζ − 2 

γ

[
F 1 

(
ζ + ˜ η

2 

)
+ F 2 

(
ζ − ˜ η

2 

)]
+ 2 

√ 

2 D ξ (t) , (16) 

where again, ˜ η = 2 b/a . 

Thus, we have fully reduced the dynamics of the system to a 

single time-varying quantity ζ , which again does not seem to have 

a physical meaning but can be thought of as the characteristic dis- 

tance of the system. Although a considerable number of reductions 

have been made, the physical behavior of the system is still recov- 

erable by recalling that the instantaneous mean cargo velocity, ˆ v , 
of the system can be recovered from (14) . In other words, ζ ( t ) is 

a proxy for ˆ v (t) which is the biophysical quantity of interest. It is 

worth noting that the analysis exploits the existence of an invari- 

ant manifold, but it does not seem to be the case that such a mani- 

fold exists if the populations are asymmetric. Hence, the asymmet- 

ric population problem is considerably more difficult to study (as 

only Monte Carlo simulations seem to be feasible) and not within 

the scope of this work. 

3. Results 

3.1. Linear motor force–velocity curve 

We briefly explore the consequences of approximating the mo- 

tor force-velocity curve w ( x ) as a linear function described in (2) . 

Recall that w ( x ) is really a displacement -velocity curve but force 

generation is assumed to be Hookean, so the qualitative shape re- 

mains the same as the force-velocity curve. We reiterate that a sig- 

moidal force-velocity relationship seems to be in closer agreement 

to experimentally observed measurements and used it on other 

models. However, we posit that the motors operate primarily in 

a region of the force-velocity curve that can be approximated by 

its linearization. To assess the validity of this approximation, we 

relaxed the assumption of linearity on w ( x ) and changed the func- 

tional form to be of the form w̄ (x ) = α0 + α1 tanh (α2 (x − α3 )) , a 

particular sigmoidal function utilized in previous work ( McKinley 

et al., 2012 ). We then compare the steady-state ensemble force- 

velocity described by (5) produced by the linear w ( x ) and two dif- 

ferent parameter choices of the sigmoidal form that vary only by 

how quickly they saturate. The result of this comparison can be 

seen in Fig. 2 . From this figure, we can see that the force-velocity 

curves produced for the ensemble (on the right) vary very lit- 

tle when the form of w ( x ) is changed. There is excellent qualita- 

tive agreement and even good quantitative agreement, seeming to 

only differ for sufficiently large velocities outside the scope of the 

model. Thus, we conclude the use of the linearized w ( x ) is suitable 

for the analysis, particularly noting that ˜ F is the effectively only 

quantity used from the mean-field model and remains virtually the 

same. We conjecture this result can be interpreted intuitively, as 

superstall velocities are larger in magnitude by our approximation, 

meaning that the motors relax back to stall faster and therefore 

generate a smaller force due to displacement. This is offset by the 

motors unbinding less rapidly (due to a lower force), and conse- 

quently the net force generated is approximately the same. 

3.2. Force delay approximation 

The form of the system (10) is an approximation which de- 

scribes a delay structure, where the force generated by a family 

of motors can be parameterized by a single dynamic quantity, μ. 

We prove this to be the case while the motors are bound with 

(9) and (12) , but the heart of the approximation is that this ex- 

tends to when binding dynamics are incorporated. We posit that 

a sufficient approximation to the instantaneous force generated is 

the steady-state ensemble force ˜ F ( ̃ v ) with a particular mapping be- 

tween μ and 

˜ v described by (11) . We seek to assess the validity of 

the collapse of the force generated by the mean-field equation to a 

force parameterized by μ. Specifically, we compare numerical sim- 

ulations of the full mean-field model (1,3) and the reduced model 

(10) . This numerical simulation is not an assessment of the validity 

of the mean-field model, but rather the validity of the force gen- 

erated by collapsing the PDE behavior down to a single ODE for 

μ. 

We simulate only a single motor family ( + direction) and no 

thermal noise for illustration. The approximation fundamentally is 

one of how motors (and the force generated by them) respond 

temporally, so a numerical experiment is performed by applying 

instantaneous external forces to both the mean field model of mo- 

tors and the reduced model, both of which have cargo dynamics 

determined by (6) . Both models are started at the completely un- 

loaded state and run to equilibrium. Once at equilibrium, a -5 pN 

force (and later + 5 pN) external force is applied to the cargo for 

5 ms and then removed. The mean-field PDE was simulated using 

a Lax–Wendroff scheme and the remaining ODEs are computed us- 

ing a Runge–Kutta 4(5) scheme. The dynamics of the force gener- 

ated by the motor population and the resulting cargo velocity are 

tracked and shown in Fig. 3 . 

From Fig. 3 we are able to make a number of observations 

about the validity of the “characteristic distance” approximation. 

For one, the equilibria of the full model and reduced model are the 

same, which is immediate by the choice of (11) , but also indicates 
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Fig. 2. a: the linear form (green, solid) of the displacement-velocity relationship of individual motors w ( x ) used throughout the paper and two different sigmoidal versions 

for comparison (dotted). b: the resulting steady-state force-velocity curves for the ensemble of motors described by (5) for the different choices of w ( x ). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. A numerical comparison of the forces and cargo velocity generated by the full mean field motor model ( 1,3 ) with the “characteristic distance” approximation described 

by (10) for one motor population and no thermal noise. In both models, the evolution of the cargo velocity is described by (6) . External forces are applied to the cargo and 

removed to illustrate the ability of the reduced model to respond to temporal changes in force. 

that the reduced and full models have agreement on long time 

scales. As the external force changes instantaneously, both mod- 

els behave (quantitatively and qualitatively) similarly regardless of 

the directionality of the force, and therefore, suggests there is also 

agreement on short time scales. Other external inputs (e.g. sinu- 

soid) were also investigated and yielded similar results. Thus, we 

have collapsed the force generated by the PDE mean-field descrip- 

tion of motors ( 1,3 ) into an ODE (10) in a “characteristic distance”

variable and the approximation appears to be valid. We remind 

the reader that the binding dynamics are built into the mean-field 

structure, and therefore are accounted for in both the full model 

and reduced. 
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Fig. 4. a: A typical simulation of (16) performed with the Euler–Maruyama scheme. The system notably switches between two configurations. b: A histogram of the values 

of the simulation, which demonstrates bimodality. 

3.3. Metastable behavior 

We perform simulations of (16) with the parameters specified 

in Table 1 with the Euler–Maruyama scheme ( Kloeden and Platen, 

1992 ). The results of a typical simulation can be seen in Fig. 4 a . 

From this simulation, we see a curious behavior: the characteristic 

distance ζ switches between two configurations, or is said to be 

metastable . Elaborating on this, ζ takes on values near some par- 

ticular point and then, due to the noise of the system, randomly 

switches to values centered around another point. The histogram 

of ζ values during the simulation, which can also be seen in Fig. 4 b 

is clearly bimodal, which is a characteristic sign of metastability. 

Although the two peaks in the figure appear different, this is a 

consequence of the short time for which the simulation was per- 

formed. If more switches were recorded, the two peaks of the his- 

togram would be identical due to the symmetric population as- 

sumption, however this time frame was chosen to demonstrate the 

time-scale on which switching occurs. 

The metastable behavior of the system is apparent from simu- 

lations, but can be further elucidated. To do so, consider the cor- 

responding Fokker–Planck equation to (16) , which describes the 

probability density p ( ζ , t | ζ 0 , 0). That is, the probability density of 

(16) given that it started at ζ 0 , which is described by 

∂ t p = −∂ ζ { A (ζ ) p } + 4 D∂ ζ ζ p, (17) 

where we are abbreviating 

A (ζ ) := −aζ − 2 

γ

[
F 1 

(
ζ + ˜ η

2 

)
+ F 2 

(
ζ − ˜ η

2 

)]
, D := 

k B T 

γ
. 

(18) 

A bifurcation diagram of the equilibria of A ( ζ ) is constructed by 

varying γ , the drag coefficient. Since ζ is not the physical quantity 

of interest, we translate the equilibria of ζ into the corresponding 

mean cargo velocity ˜ v under the transformation described by (14) . 

The resulting bifurcation diagram can be seen in Fig. 5 a. This figure 

captures exactly the phenomenon described as bidirectional motion 

( Hancock, 2014 ). We see that for a robust range of γ , the system is 

bistable : there are stable positive and negative mean cargo veloci- 

ties, which we will denote v + , v − respectively. In this same regime, 

the zero velocity v 0 is unstable. Interestingly, in small window of γ
values, the system is actually tristable : two new equilibria emerge 

in a bifurcation and cause v 0 to turn stable. This may correspond to 

the experimental observation ( Kunwar et al., 2011 ) that the system 

can spend long periods of time in a “pause” state, also noting that 

this same experimental work suggests velocities that agree with 

those predicted by our model. For large values of γ , the system 

only has one stable equilibrium, v 0 . 

From, Fig. 5 a, the tristable region in γ -space is fairly narrow. 

It is possible that other parameters (or more detailed functional 

forms) would allow for this region to be more robust, but this is 

not observed. In fact, increasing motor processivity by lowering the 

baseline unbinding rate by an order of magnitude ( k off = 1 [s −1 ] → 

0 . 1 [s −1 ] ) resulted in a smaller region of tristability, but larger re- 

gion of bistability. For this reason, we instead focus our study to- 

ward the bistable region, where we study the time to switch be- 

tween the positive and negative velocities. Then, the corresponding 

potential can be defined by 

U(ζ ) := −
∫ 

A (χ ) d χ. (19) 

Fig. 5. a: A bifurcation diagram (as a function of the cargo drag, γ ) for the system, which is computed from the equilibria of (18) and then translated into mean cargo 

velocities by (14) . Dotted lines correspond to unstable equilibria and solid lines are stable. In a wide range of γ , the system demonstrates a stable positive and negative 

velocities, or bidirectional motion. b: the double-well potential structure (19) as a function of the drag coefficient γ . As γ decreases, the wells get steeper and farther apart. 

21



C.E. Miles, J.P. Keener / Journal of Theoretical Biology 424 (2017) 37–48 45 

This potential U ( ζ ) can be plotted as a function of γ in the bistable 

region of Fig. 5 a and the result is seen in Fig. 5 b. From the figure, 

we see that U ( ζ ) is a double-well potential. That is, there are two 

distinct well locations and a peak in the center, all three of which 

are roots of A ( ζ ). Denote the two well locations (stable fixed points 

of A ( ζ )) as ζ S 1 and ζ S 2 , where ζ S 1 < ζ S 2 and the middle peak (a 

hyperbolic fixed point of A ( ζ )) as ζ H . 

The effect of the drag coefficient γ on the potential is non- 

trivial. Particularly, as γ decreases, the wells of the potential U ( ζ ) 

deepen and split farther apart, which alone would suggest an in- 

crease in time to switch. However, we later see that there is a 

counteracting effect in the strength of diffusion. 

3.4. Mean first passage time analysis 

One natural quantity to study in bidirectional systems is the 

time to switch directions, or the reversal time. Because of the 

double-potential well structure, this can be thought of as the mean 

time from one of the metastable points to the hyperbolic point, 

from which the system relaxes quickly to the other metastable 

point. Due to the symmetric motor population assumption, the 

time to switch states is independent of state. Thus, without loss 

of generality, we compute the mean first passage time from ζ S 1 → 

ζ S 2 where, again, ζ S 1 < ζ H < ζ S 2 . 

The analysis of a mean first passage time in a one-dimensional 

potential is classical ( Bressloff, 2014; Gardiner, 2009 ) and is briefly 

summarized here. Define G ( z, t ) to be the probability that the sys- 

tem described by (17) is in the leftmost potential well at time t 

given the initial state p(ζ , 0) = z. That is, the survival probability 

density is described by 

G (z, t) := 

∫ ζH 

ζS1 

p(ζ , t | z, 0) d ζ . 

Then, let T ( z ) define the random variable describing the exit time 

from this potential well , which satisfies 

P [ T (z) ≤ t ] = 1 − G (z, t) . (20) 

Taking a derivative of (20) yields the density for exit time f ( z, t ) 

f (z, t) = −∂ t G (z, t) = −
∫ ζH 

ζS1 

∂ t p(ζ , t | z, 0) d ζ . 

From this, we can define the mean first exit time from the poten- 

tial well, starting at the point z by 

τ (z) := 〈 T (z) 〉 = 

∫ ∞ 

0 

t f (z, t ) d t = 

∫ ∞ 

0 

G (z, t ) d t . (21) 

The survival probability G ( z, t ) satisfies the backward Fokker–

Planck equation ( Gardiner, 2009 ), which we can integrate and use 

(21) to yield the governing equation for the mean exit time density 

of the system starting at ζ0 = z, which is 

A (z) τ ′ + 4 Dτ ′′ = −1 , τ (ζH ) = 0 , τ ′ (ζS1 ) = 0 . (22) 

The reflecting boundary at ζ S 1 is a consequence of starting the sys- 

tem in the well corresponding to this point, as any excursions to 

the left will quickly relax back to the bottom of the well. The exit 

location, the hyperbolic point ζ H , is an absorbing state due to the 

fast relaxation to the other potential well once the system trans- 

verses the peak between them. 

The boundary value problem (22) does not appear to be solv- 

able analytically due to the complexity of the force curves. How- 

ever, τ ( z ) can be computed numerically in a straightforward man- 

ner (in a single integration) by exploiting the linearity of the sys- 

tem. Alternatively, a deep-well approximation can be made for the 

potential and the classical Arrhenius formula can be used to ap- 

proximate the mean first passage time. For details on both of these 

methods, see Appendix B . 

Fig. 6. Mean first passage times corresponding to the cargo switching directions. 

Two approaches to solving (22) are illustrated: a shooting technique, and the deep- 

well Arrhenius approximation. The results of an Euler-Maruyama simulation of 

(16) are also shown, where switching is considered passing through the hyperbolic 

point. 

The two aforementioned techniques of evaluating τ ( ζ S 1 ) are 

computed and compared against Monte Carlo simulations of (16) , 

again using the Euler-Maruyama scheme, where switching is con- 

sidered passing the hyperbolic point. The result of these techniques 

can be seen in Fig. 6 . From this, we see that the shooting tech- 

nique agrees with Monte Carlo simulations and the deep-well ap- 

proximation is, although qualitatively similar, an overestimate of 

the switching time. This result is intuitive, as in reality, the wells 

may not be sufficiently deep for the approximation to work well 

and therefore allow escape much faster. 

The behavior of the mean first passage times as a function 

of the drag, γ is quite interestingly, non-monotonic. That is, as 

the drag coefficient increases (which can be thought of as the 

cargo increasing in size), the time to switch initially goes up, but 

then ultimately goes back down. Mathematically, this complexity 

stems from γ scaling both the potential and the diffusion strength 

differently, explicitly in (18) . As γ decreases, the potential wells 

deepen and spread apart as ∼ 1/ γ , but the strength of diffu- 

sion simultaneously scales by ∼
√ 

1 /γ , which are competing ef- 

fects for the switching time. The resulting behavior is therefore a 

complex competition between the scaling of the potential and the 

noise strength, which produces non-monotonicity. Switching due 

to motor binding and unbinding is not expected to demonstrate 

this same non-monotonicity, as this is a feature of the mismatched 

scaling in the strength of the driving noise source (diffusion) and 

the depth of the potential wells. In other words, γ does not scale 

the driving noise source the same way for motor binding dynam- 

ics. In other theoretical works that compute the switching time, 

monotonicity is seen ( Guérin et al., 2011a; 2011b ). 

From a biophysical perspective, it should be noted that the 

predicted mean first passage times are on the order of ∼ 0.5[s], 

which agrees with experimentally observed values ( Kunwar et al., 

2011 ). This agreement supports the hypothesis that cargo diffusion 

is the noise source for bidirectionality. The non-monotonicity of 

the curve also provides a testable experimental prediction. That 

is, bidirectional motion via molecular motors could be observed 

for different cargo drag values (which, could be obtained by vary- 

ing bead size). If the resulting mean time to switch directions is 

found to be non-monotonic, this would further strengthen our the- 

ory that cargo diffusion, not motor binding dynamics are indeed 

the noise source of bidirectionality. 

4. Discussion & conclusion 

In this work, we have proposed a mean-field, unequally dis- 

tributed load description of motor-mediated transport. To under- 
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stand the behavior of this complex model, we perform a series of 

reductions. To justify the first reduction, we take an aside to study 

only motors that are bound. Of these bound motors, we find that 

the force generated displays a delay structure that collapses the di- 

mensionality of the system greatly. We posit that, since bound mo- 

tors are the only contributor to force generation, this delay struc- 

ture is applicable to the full system even when binding dynamics 

are incorporated. This allows for the reduction of a PDE describ- 

ing each motor population to a single ODE for each, describing a 

“characteristic distance.” Secondly, we use the small mass of the 

cargo to perform an adiabatic (quasi-steady state) reduction of the 

system. Due to a correlated noise structure and symmetry in the 

system, the final result is a one-dimensional system, the value of 

which is a proxy for the instantaneous cargo velocity. This result- 

ing stochastic dynamics are observed to be “metastable”, switch- 

ing between two distinct states exclusively due of cargo diffusion. 

These states are associated with positive and negative cargo ve- 

locities, meaning the system is bidirectional. To quantify the re- 

versal time of the system, a mean-first passage time analysis is 

performed and the results are explored as a function of the cargo 

drag, an experimentally tunable quantity. We find that the pre- 

dicted switching time agrees with experimental values and also 

has a non-monotonic dependence on cargo drag, a claim that can 

be experimentally verified. 

The use of a mean-field model in this work was not rigorously 

justified, and could perhaps be made so by starting with a dis- 

crete motor model akin to McKinley et al. (2012) . Despite this, 

the mean-field model is able to accurately reproduce experimen- 

tally observed ensemble switching times and mean velocities from 

single-motor parameters. For this reason, we believe the mean- 

field model to be an appropriate description of the system, but 

the extent to which it is appropriate could be explored in future 

work. One notable behavior of our mean-field model is the insta- 

bility of the pause state for a wide range of parameter values. Intu- 

itively, any small perturbation away from the pause state will pro- 

duce asymmetry in the system and ultimately result in one motor 

population “winning.” However, it is well established experimen- 

tally that bidirectional systems spend a non-trivial amount of time 

in the paused state ( Belyy et al., 2016; Derr et al., 2012 ), which has 

also been reproduced in discrete motor simulations such as Müller 

et al. (2008) . This perhaps gives a clue toward when the mean-field 

model may break down. In the pause state, the motor number may 

be so low that the mean-field model is not appropriate and con- 

sequently, deviates from a discrete motor description. However, we 

see that in some parameter regimes, the mean-field model is even 

able to produce a metastable pause state (and consequently, a tri- 

stable system). Hence, this conjectured relationship between the 

use of a mean-field model and the instability of the pause state 

must be explored further. 

The Ornstein-Uhlenbeck analysis for quantifying the ability of 

a motor to react to instantaneous changes in cargo velocity is 

of interest in other recent work ( Bouzat, 2016 ) and in general, 

causes issue in any work that seeks to use a force-velocity rela- 

tionship (which is inherently a steady-state analysis) to infer dy- 

namics. In Bouzat (2016) , the authors hypothesize a “motor mem- 

ory” and conclude that models only agree with experimental val- 

ues appropriately if the motors react to a windowed-time-average 

velocity. By examining only bound motors, we have quantified this 

“memory” physiologically, noting a distinct delay structure. Be- 

cause bound motors are the force-generators of the system, we 

proposed a novel approximation to the full dynamics that satis- 

fies the same delay structure, the validity of which was supported 

by numerical simulations. A more elegant approach to this approx- 

imation may be possible and could perhaps be related to the more 

detailed analysis of bound motor dynamics found in McKinley et al. 

(2012) . 

In Bouzat (2016) , the authors also cite the importance of cargo 

diffusion in models producing results that match experimental 

values. In our work, we have further illustrated the importance 

of cargo diffusion by illustrating its ability to produce qualitative 

changes in motor-mediated transport. Specifically, the fundamen- 

tal noise driving switching in our model is cargo diffusion, unlike 

previous unequally distributed load models which depended on a 

discrete motor description. This raises the possibility of the impor- 

tance of diffusion in other aspects of motor-mediated transport. 

Thus, we have illustrated that common features of previous 

work: discreteness of the motors, asymmetry of motor populations, 

equally distributed loads are not necessary to produce a physiologi- 

cally reasonable model of bidirectional motor transport. This raises 

uncertainty of which key ingredients may be essential for tug-of- 

war, making it even more difficult to compare to the alternative 

regulatory hypothesis of bidirectionality. However, we have pro- 

vided an experimentally testable prediction of the reversal time as 

a function of the drag coefficient, which can be tuned by the bead 

size in experimental setups. If indeed thermal noise is the driver 

of this switching, then agreement with this experiment would help 

strengthen the validity of this theory since this feature is not ex- 

pected from motor binding dynamics as the driving noise source. 
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Appendix A. Ornstein–Uhlenbeck Mean Evolution 

In this section, we show that if the advection term of an 

Ornstein–Uhlenbeck has a time dependence, a differential equation 

can be obtained for the mean of the process, demonstrating an ef- 

fective delay. 

Consider a Fokker–Planck equation of the form 

∂ t p = −∂ x [ { w (x ) − v (t) } p ] + D∂ xx p. (A.1) 

Denote μ( t ) to be the mean of the process, that is μ = 〈 p〉 . Then, 

we have: 

˙ μ = 

d 

d t 

∫ ∞ 

−∞ 

x p(x, t) d x = 

∫ ∞ 

−∞ 

x∂ t p d x. 

However, we can use (A.1) to find that 

˙ μ = −
∫ ∞ 

−∞ 

x∂ x [ { w (x ) − v (t) } p ] d x + 

∫ ∞ 

−∞ 

xD∂ xx p d x, 

which, after integration by parts, yields 

˙ μ = 〈 w (x ) 〉 − v . 
Jensen’s inequality states that for a convex w 

〈 w (x ) 〉 ≥ w (〈 x 〉 ) , 
however, if we assume w ( x ) is linear (as we have done in the 

model), then Jensen’s inequality attains equality and the result is 

˙ μ = w (μ) − v (t) . 

Appendix B. Methods for 1D MFPT Problems 

For the sake of generality, consider the one dimensional SDE 

d x = A (x ) d t + 

√ 

2 B (x ) d W, 

which has a corresponding Fokker–Planck equation 

∂ t p = −∂ x { A (x ) p } + B (x ) ∂ xx p. 

We are assuming that A ( x ) has three fixed points, two stable and 

one hyperbolic, denote x S and x H . 

We are then interested in the mean first passage time starting 

from a point y , which we denote τ ( y ), and satisfies 

A (y ) τ ′ + B (y ) τ ′′ = −1 , τ ′ (x S ) = 0 , τ (x H ) = 0 . (B.1) 
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B1. Shooting method 

In this section, we exploit the linearity of (B.1) to construct a 

numerical shooting method for constructing a solution. First, we 

write the system as a first order system, by taking σ = τ ′ , [
τ ′ 
σ ′ 

]
+ 

[
0 1 

0 

A (x ) 
B (x ) 

][
τ
σ

]
= 

[
0 

− 1 
B (x ) 

]
, 

[
τ (x H ) 
σ (x S ) 

]
= 

[
0 

0 

]
. (B.2) 

To construct a solution to (B.2) , we obtain two solutions of initial 

value problems of the same form and utilize the linearity of the 

equation to solve the boundary value problem via superposition. 

Thus, consider the following two systems: [
p ′ 1 
p ′ 2 

]
+ 

[
0 1 

0 

A (x ) 
B (x ) 

][
p 1 
p 2 

]
= 

[
0 

− 1 
B (x ) 

]
, 

[
p 1 (x S ) 
p 2 (x S ) 

]
= 

[
0 

0 

]

[
q ′ 1 
q ′ 2 

]
+ 

[
0 1 

0 

A (x ) 
B (x ) 

][
q 1 
q 2 

]
= 

[
0 

0 

]
, 

[
q 1 (x S ) 
q 2 (x S ) 

]
= 

[
1 

0 

]

We now claim ϒ = 

[
τ σ

]T 
is a linear combination of P = [

p 1 p 2 
]T 

and Q = 

[
q 1 q 2 

]T 
. In other words, there exists some 

γ such that ϒ = P + γ Q . The value of γ is to be determined by 

making sure the right boundary condition is satisfied 

τ (x H ) = p 1 (x H ) + γ q 1 (x H ) = 0 ⇒ γ = − p 1 (x H ) 

q 1 (x H ) 
. 

Thus, our mean first passage time from x S → x H is then 

τ (x S ) = p 1 (x S ) + γ q 1 (x S ) = γ . 

It is worth noting that this actually only requires a single ODE in- 

tegration, as Q is identically constant by construction with q 1 ≡ 1 

and q 2 ≡ 0, and consequently 

γ = −p 1 (x H ) . 

B2. Arrhenius (deep well) approximation 

The deep-well approximation is a classical technique used to 

compute the mean first passage time from a potential well. Here, 

we briefly summarize the technique but additional details can 

be found in Gardiner (2009) and Bressloff (2014) . Following the 

latter reference, define the potential function U 

′ ( y ) := −A ( y ), so 

U = − ∫ 
A (y ) d y . After using an integrating factor and assuming B 

is constant for simplicity, we have 

τ = 

1 

B 

∫ x 

x S 

e U ( x 
′ ) /B d x ′ 

∫ x ′ 

0 

e −U ′′ ( x ′′ ) /B d x ′′ , 

noting that we have also taken 0 < x S < x H for convenience. 

Assuming the potential is deep-welled, the first integral is sharply 

peaked arou nd x ′ = x H , where the second integral is slowly vary- 

ing. For this reason, we can interchange the limits of the integral 

to obtain 

τ = 

1 

B 

[∫ x H 

0 

e −U ( x ′′ ) /B d x ′′ 
][∫ x 

x S 

e U ( x 
′ ) /B d x ′ 

]
. 

Now, the first integral is dominated around x ′′ = x H , whereas the 

second is dominated around x ′ = x S so that the limits can be taken 

to infinity with little error. Using the method of steepest descent 

(or simply, a Taylor expansion), we finally have the classical Arrhe- 

nius formula 

τ ∼ 2 π√ | U 

′′ (x H ) | U 

′′ (x S ) 
e (�U) /B , �U := U(x H ) − U(x S ) . 

Supplementary material 

Supplementary material associated with this article can be 

found, in the online version, at 10.1016/j.jtbi.2017.04.032. 
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Abstract
We propose a general framework for studying statistics of jump-diffusion 
systems driven by both Brownian noise (diffusion) and a jump process with 
state-dependent intensity. Of particular natural interest in many physical 
systems are the jump locations: the system evaluated at the jump times. 
As an example, this could be the voltage at which a neuron fires, or the 
so-called ‘threshold voltage’. However, the state-dependence of the jump 
rate provides direct coupling between the diffusion and jump components, 
making it difficult to disentangle the two to study individually. In this work, 
we provide an iterative map formulation of the sequence of distributions 
of jump locations. The distributions computed by this map can be used to 
elucidate other interesting quantities about the process, including statistics of 
the interjump times. Ultimately, the limit of the map reveals that knowledge 
of the stationary distribution of the full process is sufficient to recover (but 
not necessarily equal to) the distribution of jump locations. We propose two 
biophysical examples to illustrate the use of this framework to provide insight 
about a system. We find that a sharp threshold voltage emerges robustly in a 
simple stochastic integrate-and-fire neuronal model. The interplay between 
the two sources of noise is also investigated in a stepping model of molecular 
motor in intracellular transport pulling a diffusive cargo.

Keywords: jump-diffusion, stochastic processes, integrate-and-fire,  
state-dependent rates
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1. Introduction

Stochastic models driven by both Brownian noise (diffusion) and a discrete jump component, 
or so-called jump-diffusion models, have been used to describe a wide variety of phenomena. 
Perhaps most prominently, jump-diffusion has seen widespread use in mathematical finance 
[4, 23, 35, 36, 56] to describe frequent small transactions with occasional larger movements. 
Jump-diffusion has also served useful in mathematical biology, describing the integrate-and-
fire nature of neuronal dynamics [15, 27, 50]. Other applications include biophysical descrip-
tions of movement of chromosomes [51], interaction between soil moisture and rainfall events 
[11], and the occurrence of radio pulsar glitches [25]. Also relevant to the results described 
in this paper is a subset of jump-diffusion models that neglect diffusive noise and are driven 
by deterministic dynamics between jumps. This type of model appears in an equally eclectic 
variety of applications [3, 13, 17, 53].

Of particular interest in this work are jump-diffusion processes with state-dependent jump 
rates. This subset is seen in all the aforementioned applications, including finance [4, 28], ecol-
ogy [17], biology [12], and astronomy [25]. This is often a natural supposition to make of a 
model, as the rate at which the jump event occurs may not remain constant on the timescale of 
interest, but instead depend on the state of the system. For instance, a neuron firing is depend-
ent on the current voltage or a financial asset is often more likely to crash as it rises in price.

For many of these applications, the inclusion of a jump component means that it is a sig-
nificant feature to the modeler. Thus, it is natural to ask: when (in some sense) do these jumps 
occur? While this often leads to studying the interjump times, a different possible interpreta-
tion (and the focus of this work) is to study the jump locations: the system evaluated at the 
jump times. This could be the voltage at which the neuron fires (the ‘threshold voltage’) or 
the price at which a stock crashes. Because the jump intensity is state-dependent, and the state 
itself is governed by a stochastic process, these locations are inherently random and difficult 
to disentangle from the full process. This raises another question: in what sense is knowledge 
(e.g. statistics) of the full process equivalent to knowledge of the jump locations? Does knowl-
edge of the jump locations provide other insight to the behavior of the system? In this work, 
we seek to investigate these issues.

Previous studies have thoroughly investigated jump-diffusion models for constant jump 
rates [11, 29], as the two sources of noise can be independently superimposed. The interjump 
time distributions for processes with no diffusive noise have also been studied [12, 13] pri-
marily using renewal theory or exploiting the deterministic nature between jumps. However, 
in general, state-dependent jump-diffusion is not deterministic between jumps, nor a renewal 
process, as sequential distributions are not independent, hence previous approaches do not 
apply. The theory of Cox processes [10] is also well-established and refers to a diffusion 
process driving a state-dependent Poisson process, but this does not complete the feedback 
loop of the jump process further modifying the state, which our framework allows. Diffusion 
with switching, which bears a resemblance to jump-diffusion, has also been studied [40] but 
is distinctly different in the role of discrete noise and not addressed in this work. Although 
efficient Monte Carlo methods exist for jump-diffusion and Lévy processes [28, 55], the jump 
component may be rare and therefore expensive to find an accurate distribution empirically. 
The solution to the full PDE describing this process can also be computed, but it is seemingly 
unknown how to disentangle the jump component alone from this description.

In this work, we present a general (accommodating a wide variety of models) framework 
for studying jump-diffusion systems and focus particularly on studying the sequence of jump 
locations. We present an iterative map formulation explicitly describing the distribution of 
the ith jump location. Fron this sequence of jump locations, statistics of the interjump times 
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can be extracted even with diffusion, overcoming a limitation of previous works [13]. By 
taking the limit of the map, assuming the process reaches stationery, we find that the density 
of the full process differs from that of the jump locations if and only if the jump rate is state-
dependent. An explicit relationship between these two distributions is established, meaning 
that knowledge of one immediately provides knowledge of the other.

A few examples are discussed, illustrating when this framework can be used to elucidate 
interesting behavior of a system. The first example, a stochastic model of neuronal integrate-
and-fire, is used to demonstrate that the jump locations themselves (in this case, the firing volt-
ages) may be interesting. For the second example, we propose a simple model of a molecular 
motor (such as kinesin [30]) taking force-dependent steps pulling a diffusive cargo. Because 
the stepping rate is state dependent, but steps (and cargo diffusion) also modify the state, the 
effective stepping rate (a proxy for the motor’s ability to produce transport) is non-trivial and 
can be studied using the proposed framework.

2. Formulation

2.1. Jump-diffusion

Let Xt denote a state-dependent jump-diffusion process and p̃(x, t) be the probability density 
(PDF) of the full process, defined formally as

p̃(x, t) dx := P [Xt ∈ (x, x + dx)].

The evolution of the density is described by the forward Champman–Kolmorgov equation [6, 
26]

∂tp̃(x, t) = Lp̃ − λ(x)p̃ + Jλp̃, (1)

where the operator L characterizes the diffusion component, λ(x) is the state-dependent inten-
sity at which the jump process occurs, and the operator J describes the jump. A feature we 
seek to emphasize is the state dependence of the jump-rate λ(x), resulting in direct coupling 
between the diffusion and jump components of the process.

The particular choices of L, J, λ significantly change the behavior and characteristics of the 
process, but the description (1) is flexible enough to accommodate a wide variety of models, 
upon which we now elaborate.

2.2. Diffusion component

Consider the classical one-dimensional Itô SDE driven by Brownian motion described by

dYt = A(Yt) dt +
√

2D(Yt) dWt, (2)

where Wt is a Brownian motion. The Fokker–Planck (forward Chapman–Kolmogorov) equa-
tion describing the evolution of the probability density function p(y, t) corresponding to the 
path-wise description (2) is

∂tp(y, t) = Lp := −∂y {A(y) p} + ∂yy {D(y) p}.

We use the Fokker–Planck operator L to characterize the diffusion process for the remainder 
of the paper. Although the Itô interpretation is used here, we could also consider a Stratonovich 
interpretation by modifying the particular details of L, as this description still produces a 
differ ential operator in the forward equation.
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2.3. Jump component

Let the jump process be an inhomogeneous (state-dependent) Poisson process with intensity 
(rate) λ(Xt). Also necessary is a description of what occurs at the jumps, sometimes referred 
to as the reset map [14]. The behavior of the reset map is characterized by the jump operator 
J, which is a probability density flux, ensuring that (1) indeed describes the evolution of a 
probability density. We now describe a few possible choices of this operator, letting τ denote 
the jump time.

2.3.1. Jump operator examples.

 (i) Constant jump size. At the jump times, the process increments by a fixed amount ∆, so

Xτ+
= Xτ− + ∆.

  Then, the corresponding jump operator J is a shift by that fixed quantity

Jp(x, t) := p(x − ∆, t).

 (ii) Reset. Fundamentally different than the previous example, rather than jumping by a fixed 
displacement, the process resets to a specific position, η, so that

Xτ+
= η.

  The corresponding J operator is

Jp(x, t) := δ(x − η)

∫ ∞

−∞
p(x, t) dx,

  where δ(x) is the Dirac delta function. The integral scaling is necessary to preserve prob-
ability fluxes: 

∫ ∞
−∞ Jp dx =

∫ ∞
−∞ p dx.

 (iii) Random jump size. A generalization of the first example, the particle can jump a random 
displacement ∆, where the size of the jump is described by the probability density 
∆ ∼ µ(∆, x), which can also be state-dependent. The J operator is

Jp(x, t) :=
∫ ∞

−∞
p(x − ∆, t)µ(∆, x) d∆.

 (iv) Other examples. Although not directly considered in this paper, maps of the form

Xτ+
= γXτ− =⇒ Jp(x, t) := γp(γx, t),

  have been studied elsewhere [14] and can be formulated in our framework in the described 
manner. A generalization of this case could also be made to allow for jumps to a random 
location, but this does not seem to provide additional interesting structure.

An example trajectory of the processes considered in this process can be seen in figure  1. In 
this example, the diffusion component is an Ornstein–Uhlenbeck process and the jump con-
sists of a fixed size and Gaussian rate.

While diffusion with resetting fits within the proposed framework, this topic has a long, rich 
history of study [22, 44]. Included within this body of literature are investigations of: time-
dependent resetting (t-dependent λ) [47], optimal resetting [21], resetting in bounded domains 
[8], resets with drift [45], characterizations of the stationary behavior [42], and path-integral 
formulations [49]. We do not seek to propose our framework as an alternative to this rich body 
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of literature, but merely identify that stochastic resetting fits within a family of models that 
otherwise lack this same level of attention and can be studied with the tools presented here.

3. Results In this section, we present the general theoretical results of the paper regarding 
the distributions of jump locations and interjump times.

3.1. Jump distributions

We begin by providing intuition for the construction of the sequence of jump locations. Rather 
than studying the full process including diffusion and jumps, a more convenient process to 
study is a survival formulation between jumps, which we denote the absorbing process,

{
∂tp(x, t) = Lp − λp
∂tq(x, t) = λp. (3)

Note that we distinguish between this and the full process p̃(x, t), which we refer to henceforth 
as the reinjected process. While the absorbing process does not capture all the behavior of the 
full re-injected process (as it does not contain any information about J), the absorbing process 
fixes the distribution (in both space and time) of jump events and consequently serves more 
fruitful in disentangling the jump component from the full process.

Theorem 1. The densities of the jump location pℓ(x) and jump time pτ (t) of (3) are  
described by

pℓ(x) = q(x, ∞) =

∫ ∞

0
λ(x) p(x, t) dt,

and

pτ (t) =

∫ ∞

−∞
λ(x) p(x, t) dx.

Figure 1. An example realization of a jump-diffusion process Xt with Lp = 
∂x{axp} + Dpxx, λ(x) = α exp

{
−x2/β

}
 and Jp = p(x − ∆). Also shown is the state 

dependent jump rate λ(x). In this particular realization, 3 jumps occur. Parameter values 
used a = .1, D = 1, α = 10, β = 10, ∆ = 1.
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Proof. Define the survival probability s(t) to be the probability that the jump has not oc-
curred by time τ

s(t) := P[τ > t] =

∫ ∞

−∞
p(x, t) dx,

which means the first jump time density pτ (t) is then

pτ (t) = −ds
dt

= −
∫ ∞

−∞
∂tp dx.

Then, using (3) and the fact that p → 0 as x → ±∞, we obtain

pτ (t) =

∫ ∞

∞
λp dx =

∫ ∞

∞
∂tq dx.

Due to the lack of spatial flux in q(x, t), the density of exit locations is q(x, ∞), which can be 
obtained by integrating over all possible jump times

pℓ(x) =

∫ ∞

0
∂tq dt = q(x, ∞) − q(x, 0) = q(x, ∞),

by noting that q(x, 0) ≡ 0. For this proof (and the remainder of the results), we assume that 
λ, L, J are chosen with sufficient regularity such that there are no explosions (i.e. the intensity 
stays finite. For more details on these conditions, see [2]. □ 

Although this provides useful information about the distributions (in time and space) at 
which a particular jump occurs, we are interested in studying the distributions of all jumps. 
This requires including the information embedded in J about how to re-inject the particle. trig-
gered. A similar idea of studying the system between jumps was proposed in [46], in which 
the authors study the record statistics of the so-called Sisyphus random walk. However, the 
Sisyphus random walk is a discrete random walk on a lattice, rather than a continuous diffu-
sion as discussed here, meaning the results are not directly applicable but strongly paralleled.

3.2. Jump location sequential mapping

We ystudy the interjump dynamics by noting that between jumps, the full process (1) can be 
described by the absorbing process (3). Define ti to be the ith jump time and let Xi := Xti be the 
ith jump location. Let pi(x) be the probability density of Xti formally defined to be,

pi(x)dx := P[Xt ∈ (x, x + dx) | t = ti].

Theorem 2. The distribution of the ith jump location, pi(x) is described by the following 
iterative relation

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∂tp̂i(x, t) = Lp̂i − λp̂i

p̂i(x, 0) =

{
Jpi−1 i > 1
p0 i = 1

pi+1(x) =
∫ ∞

0 λp̂i dt,

 (4)

where p0 be some known starting distribution of the process.
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This construction follows from directly from theorem 1. Effectively, p̂i serves as intermedi-
ate quantity tracking the distribution of all possible jump locations (and times) for that par-
ticular iterate. That is, p̂i is the survival density (in both time and space), tracking the process 
between jumps, so

p̂i(x, t)dx := P[Xt+ti−1 ∈ (x, x + dx) , t + ti−1 < ti].

Then, to start the next iterate, the distribution of jump locations must be modified by the jump 
procedure characterized by J. Although tracking the jump locations rather than the jump times 
seems counterintuitive at first, no natural analogous formulation is apparent.

Define the more convenient quantity to study

ui := pi(x)/λ(x). (5)

If λ(x) = 0 for some x, then necessarily pi(x) = 0 since λ(x) = 0 implies no jump can occur 
at this location, hence this quotient causes no difficulties.

Theorem 3. The description (4) is equivalent to

Tui+1 := [λ(x) − L] ui+1 = Jλui,

or more explicitly

ui+1 = T−1Jλui. (6)

Proof. Integrating both sides of (4) with respect to t and noting that p̂i(x, ∞) = 0 we are 
left with

p̂i(x, 0) =

∫ ∞

0
Lp̂i dt − λ(x)

∫ ∞

0
p̂i dt.

The linear operator L is a differential operator in x and consequently commutes with the time 
integral. Using the initial condition and pi/λ =

∫ ∞
0 p̂i dt , we obtain the desired result. □ 

The map (6) provides an explicit description for the sequence

u1(x) → u2(x) → · · · → u⋆(x) → u⋆(x) → · · · ,

where, we assume u⋆ is the fixed point of of the map (6) and exists. Although we seek to 
not dwell on this aspect, a natural question to ask is under what conditions does u⋆ exist? 
Equivalently, when does the the process reach stationarity? In appendix B, we provide a brief 
commentary about how the relationship (6) can be thought of as an iterated linear non-nega-
tive integral operator which can be studied as such. Results from theoretical ecology literature 
are then cited which provide a heuristic analysis of conditions for convergence.

We proceed assuming that (6) has a fixed point, which must be of the following form.

Theorem 4. The stationary distribution of the jump locations p⋆(x) is described by

0 = Lu⋆ − λu⋆ + Jλu⋆, (7)

where u⋆ := p⋆/λ.

Corollary 1. The stationary distribution of the jump locations p⋆ is the same as the station-
ary distribution of the full process if and only if λ is constant.

Proof. This is an immediate consequence of taking the full process to be in stationarity, so 
dp̂/dt = 0 in (1), which satisfies
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0 = Lp̂s − λp̂s + Jλp̂s. (8)

This is exactly the same relationship as (7). Recalling that λu⋆ = p⋆ and that both p⋆ and p̂s 
are probability densities, the only way that p⋆ = p̂s is if u⋆ is a rescaling of p⋆ or, equivalently, 
λ is constant. □ 

Elaborating a bit on this relationship: while (8) and (7) may appear to produce the same 
result, the solutions to each require different scalings. Since p̂s is a probability density, it must 
be that

∫ ∞

−∞
p̂s dx = 1. (9)

However, u⋆λ = p⋆, where p⋆ is a probability density, so this means that
∫ ∞

−∞
u⋆(x)λ(x) dx = 1. (10)

It is worth pointing out that [13] derives similar results relating the jump locations and jump 
times, however, the justification used there depends on the trajectories being deterministic 
between jumps, i.e. without diffusion.

3.3. Moments

Define τi to be the ith interjump time, τi := ti − ti−1. Also, let τ⋆ be the interjump time for the 
stationary process.

Theorem 5. The mean interjump time τi can be recovered from the distribution of the ith 
jump location and is

⟨τi⟩ =

∫ ∞

−∞
ui dx =

∫ ∞

−∞

pi(x)
λ(x)

dx. (11)

Also, the mean stationary interjump time can be computed from the stationary distribution of 
the jump locations p⋆

⟨τ⋆⟩ =

∫ ∞

−∞
u⋆ dx =

∫ ∞

−∞

p⋆(x)
λ(x)

dx. (12)

Proof. We integrate both sides of (4) with respect to x, again noting that p̂i → 0 as x → ±∞, 
resulting in

∂t

∫ ∞

−∞
p̂i dx = −

∫ ∞

−∞
λp̂i dx.

However, from theorem 1, we see that the right-hand side is exactly the distribution of the 
interjump time pτi, so we have

∂t

∫ ∞

−∞
p̂i dx = −pτi(t). (13)

Taking the mean on both sides with respect to τi,
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⟨τi⟩ = −
∫ ∞

0

∫ ∞

−∞
t∂tp̂i dx dt,

after integrating by parts and noting that 
∫ ∞

0 p̂i dt = pi/λ, we get the desired result. □ 

While the first moment (mean) of the interjump time can be computed directly with a quad-
rature of the presumed known jump location pi, the higher order moments are less straightfor-
ward. Appendix A describes how, in theory, knowledge of the pi can be used to extract higher 
order moments of τi. Solving for higher order moments using this approach requires solving a 
hierarchy of differential equations, which in practice, may not be so feasible. However, a more 
practical numerical approach may be to solve for pi and then run the absorbing (3) process to 
extract explicitly pτi using the relationships from theorem 1.

4. Examples

4.1. Neuronal integrate-and-fire

The behavior of individual neurons can roughly be thought of as an ‘integration’ process, 
which builds up voltage, and then ‘fires’, which describes the release of this voltage into an 
action potential [27], the full process of which is known as integrate-and-fire. The most classi-
cal version of this model involves a deterministic buildup of voltage until a fixed firing voltage 
threshold is reached.

Incorporating noise in various ways into this class of models has a rich body of literature 
[48, 50]. Some approaches include a so-called ‘leaky’ neuron, one that has diffusive noise 
in the integration phase [15, 18, 24], whereas others regard the threshold itself as stochastic  
[5, 12, 18, 41]. Our work provides a natural framework to consider both sources of noise and 
their effect.

We propose a simple model of neuronal integrate-and-fire. While this model is greatly 
simplified from the actual physiology, we take this approach to show that a minimal model, 
stripped of considerable details, is still able to produce interesting emergent behavior. In pre-
vious models with a stochastic threshold, there is some inherent threshold, say, v0, where the 
firing rate λ(v) is taken to be a Gaussian centered around v0 [5, 12]. The justification for this 
that models such as Hodgkin–Huxley [34], which account for more fine-grained detail, predict 
a distinct firing threshold v0. In our model, we find that this sharp threshold v0 can also arise 
from stochasticity alone, even when no inherent threshold is defined in the model.

Let Vt denote the voltage at time t. Then, in the context of this framework, we take the 
forms

Lp = −∂v{αp} + D∂vvp, λ(v) = γeβv, Jp = δ(v)
∫ ∞

−∞
p(v, t) dv.

In words: we take the buildup to be at a constant rate α and leaky with constant diffusivity. 
While it is typically more common to take evolution of the form v̇ = −a + bv, this defines 
an inherent voltage ṽ = b/a, which we deliberately omit. The result of making this change is 
also qualitatively negligible. For the jump component, we take J to be the reset to zero case, a 
full fire. The rate at which the firing occurs is assumed to be monotonically increasing, where 
again, we emphasize the fundamental difference between this form and previously considered, 
where λ is a Gaussian centered around some voltage v0. In our model, voltage simply builds 
up, and as it builds up, the system is more likely to fire. There is no prescribed firing threshold 
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as in classical work and its extensions. The justification for this form can be thought of as the 
underlying mechanism for firing: a discrete birth-death process (also with voltage dependent 
rates) of ion channels. At some fixed voltage v, the birth-death process is more likely to flip 
entirely ‘on’ and cause the neuron to fire. The relationship between models with explicit ion 
channels and integrate-and-fire has been explored previously [16].

An example simulation of the model can be seen in figure  2(a) with parameter values 
α = 2, D = .1, γ = .5, β = 2. In the simulation, voltage builds up in a noisy (leaky) manner, 
and then the jump process fires, resetting back to v = 0, typical of an integrate-and-fire model. 
However, in this case, we emphasize that the firing voltage is inherently random and therefore 
of interest to study. Then, in stationarity, the fundamental relation in this work (7) becomes 
(noting x → v)

0 = −∂v {αu⋆} + D∂vvu⋆ − γeβxu⋆ + δ(v)
∫ ∞

−∞
γeβvu⋆ dv.

From (10), the integral scaling on the δ function is equal to 1,

δ(v) = −∂v {αu⋆} + D∂vvu⋆ − γeβvu⋆. (14)

This can be computed in a similar manner to a Green’s function, noting that for v ̸= 0,  
we have

0 = −∂v {αu⋆} + D∂vvu⋆ − γeβvu⋆, (15)

and integrating (14) from (−ε, ε) and using the fact that u⋆ must be continuous, we get the 
matching condition

D
{

u′(0+) − u′(0−)
}

= −1. (16)

Solving (15), we get that our solution is of the form

u⋆ =

⎧
⎪⎪⎨
⎪⎪⎩

c1uL(v) := c1e
αv
2D Iα/(βD)

(
2
√

Dγeβv

βD

)
v < 0

c2uR(v) := c2e
αv
2D K−α/(βD)

(
2
√

Dγeβv

βD

)
v > 0,

where I, K  are modified Bessel functions [1] such that I → 0 as v → −∞ and K → 0 as 
v → ∞ (and are linearly independent). The jump condition (16) then becomes

D {c2u′
R(0) − c1u′

L(0)} = −1. (17)

Figure 2. (a) an example trajectory of the proposed integrate-and-fire model. When the 
neuron fires, it resets back to V = 0 (dashed, gray). (b) the resulting stochastic firing 
voltages from Monte Carlo simulation (bars) and theoretically predicted (line). (c) the 
stationary density of the full process from Monte Carlo simulation (bars) and predicted 
(line).
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However, we also need to impose continuity of u⋆, so we also have the requirement

c1uL(0) = c2uR(0). (18)

The conditions (17) and (18) provide us two equations for two unknowns, which yield

c1 =
2

Dβ
2Kα/(Dβ)

(
2γ

β
√

Dγ

)
, c2 =

2
βD

2Iα/(βD)

(
2γ

β
√

Dγ

)
.

Thus far, our solution is defined only up to a constant, but we know that u⋆ must satisfy 
the scaling (10), which our choice of c1, c2 serendipitously already satisfy. By computing u⋆ 
explicitly, we can use (5) to immediately obtain the distribution of jump locations p⋆. Finally, 
from corollary 1, we also have the stationary density of the full process, p̂s, which is a rescal-
ing of q⋆ such that (9) is satisfied.

The stationary density p̂s of the full process and the stationary jump distribution p⋆ are 
shown in figures 2(b) and (c). From this, we can see that p̂s, the stationary density of the full 
process provides no interesting information. It is relatively uniform through some range of 
voltages. If a PDE approach were taken to provide information about the full process, this 
is all that would be available. However, the jump locations p⋆, are noteworthy. Despite pre-
scribing no explicit voltage threshold for firing, the state-dependent nature of the firing rate 
yields an effective threshold (v0 ≈ 1 for these parameter values) and persists through a wide 
range range of parameters. Hence, this is another, novel justification for models that take a 
deterministic firing threshold, as our minimal integrate-and-fire model produces this feature 
as a product of stochasticity, which is made apparent in the lens of the proposed framework.

4.2. Transport by a molecular motor

Consider a single molecular motor (e.g. kinesin [30]) attached to a cargo as in figure 3(a). 
Molecular motors produce transport by taking discrete steps along a track, exerting a force 
on a cargo. A notable feature of these steps is that the rate at which they are taken is well-
established to be force-dependent [7]. That is, motors typically ‘slow down’ as force is exerted 
on them. As this discrete stepping process occurs, another source of noise is the diffusion of 
the cargo, which is also instantaneously changing the force applied to the motor, and conse-
quently, the rate at which it steps. In our proposed simple motor of transport, we provide a 
preliminary investigation into this question.

We assume that the linker between the molecular motor and the cargo can be treated as 
a Hookean spring, where x denotes the distance stretched (from rest), as depicted in fig-
ure 3(a). Then, the diffusion component of this process is an Ornstein–Uhlenbeck process. 
We take the motor to take fixed step sizes, ∆ and the rate at which motors step to be Gaussian 

λ(x) =
√

α2β
2π exp{−βx2/2}. Although there is evidence that the direction of the force is sig-

nificant for motor stepping, we consider a symmetric stepping rate (and only forward step-
ping) for simplicity. A future investigation of the role of asymmetry in the rate is necessary. 
However, this simple model still produces interesting behavior.

The resulting stationary relationship (7) becomes

0 = ∂x {axu⋆} + D∂xxu⋆ − λ(x)u⋆ + λ(x − ∆)u⋆(x − ∆). (19)

There does not appear to be a fruitful approach to studying (19) analytically. However, we 
solve can it numerically using a Crank–Nicolson upwind scheme. From this, u⋆ and con-
sequently p⋆ is obtained. The first moment of the interjump time ⟨τ⋆⟩ is immediate after a 
quadrature (12).
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We plot the mean value of x when a jump occurs, denoted ⟨ j⟩ and the mean time between 
jumps, ⟨τ⟩ as a function of the cargo diffusion coefficient D, for varying values of the 
linker strength, a. These results can be seen in figures  3(b) and (c) for parameter values 
D = .1, α = 1, β = 5. The strength of diffusion appears to produce a curious effect on the 
other noise source. While the mean jump location, ⟨ j⟩, remains effectively unchanged for 
varying values of linker strength, the mean interjump time exhibits very different behavior for 
different values of a. Specifically, we see that if the linker is weak, the interjump time can have 
a non-monotonic dependence on the diffusion coefficient. That is, the interaction between 
these two sources of noise (which can be studied as a result of this work) is non-trivial.

While this model is far simpler than the complex physiological it describes, the overall 
result (non-monotonic dependence on cargo diffusion) may be a feature that persists in a more 
detailed motor model (e.g. multi-motor), as other non-monotonic dependences on cargo noise 
have been seen [43]. Although the quantity ⟨ j⟩ (the average distance a motor is stretched when 
stepping) is perhaps not the most useful in extracting information about more complex trans-
port, it seems feasible that it it could be utilized in a reward-renewal framework akin to others 
utilized to study motor transport such as [31, 32, 39]. Motors also often have an asymmetric 
(state-dependent) unbinding rate, thought to be significant [52] and could perhaps provide a 
future application for this framework.

4.3. Independence of λ(x)

Lastly, we provide a short example (with no physical motivation in mind) that shows that our 
framework can be used with other tools (here, Fourier analysis) to glean interesting features 
of certain families of models. For this example, we consider a constant drift and diffusion with 
random jump size distribution µ(∆). Then, in stationarity (7), becomes

0 = −∂x {au⋆} + D∂xxu⋆ − λ(x)u⋆ +

∫ ∞

−∞
µ(∆)λ(x − ∆)u⋆(x − ∆) d∆.

 

(20)

One quantity of interest is the first moment of jump locations, so

⟨ j⋆⟩ =

∫ ∞

−∞
xp⋆ dx =

∫ ∞

−∞
xu⋆λ dx.

Figure 3. (a) a diagram illustrating the setup for the molecular motor model, where 
x denotes the distance the motor linker is stretched from rest. (b) the mean stationary 
jump location distribution for different values of a, linker strength as a function of the 
cargo diffusion coefficient D. (c) the mean stationary interjump time (stepping rate) for 
the motor.
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Although λ(x) is arbitrary, surprisingly the Fourier transform can be used to gain some insight. 
Define the Fourier transform of u⋆ to be

U(k) := F [u⋆] =

∫ ∞

−∞
e−ikxu⋆(x) dx.

Also define the transformed quantities

Λ(k) := F [λu⋆] , M(k) := F [µ],

from which, we note that

Λ′(0) = −i⟨ j⟩, M′(0) = −i⟨µ⟩.
Taking the transform of (20),

0 = −aikU − Dk2U − Λ(k) + M(k)Λ(k), (21)

which, evaluated at k = 0 yields

[1 − M(0)] Λ(0) = 0. (22)

However, we know µ(∆) and u⋆λ = p⋆ are both probability densities and consequently 
M(0) = 1 and Λ(0) = 1. Thus, (22) is trivially satisfied. This is not useful on its own, but we 
can couple the higher order moments by taking a k derivative of (21) to yield

0 = −aikU′ − aiU − 2DkU − 2k2U′ − Λ′ + M′Λ + MΛ′,

which, at k = 0 and using M(0) = 1, Λ(0) = 1 yields

0 = −aiU − Λ′(0) + M′(0) + Λ′(0),

which says that necessarily

M′(0) = −i⟨µ⟩ = aiU(0).

However, recall from (11) that U(0) = ⟨τ⋆⟩, the mean interjump time, so

⟨τ⋆⟩ = −⟨µ⟩
a

. (23)

This result is interesting for two reasons. For one, we have the mean interjump time is com-
pletely independent of the choice of λ(x), aside from the requirement that the system reaches 
stationarity. Secondly, the sign of (23) narrows down the requirements for the process to reach 
stationarity. Since ⟨τ⋆⟩ is an interjump time, it must be non-negative, meaning this quantity 
only exists if a, ⟨µ⟩ differ in sign. This is intuitive as the drift and jump process must oppose 
each other to have a chance of reaching stationarity. We acknowledge that the linearity of this 
example (which allows us to perform the explicit Fourier analysis) also makes the result pos-
sible to derive through other methods (e.g. taking expectations of the SDE). However, we hope 
this analysis conveys that our framework provides a different lens (in junction with elementary 
tools) to study and possibly reveal behavior of a system.

5. Discussion and conclusion

In this work, we present a general framework for studying jump-diffusion systems with state-
dependent jump rates, a class of models that were previously difficult or impossible to study 
otherwise due to the interaction between the two sources of noise. The formulation is flexible 
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enough to accommodate a variety of behaviors, providing relevance to a wide range of appli-
cations. The particular objects of study in this work are the distributions of the jump locations: 
the values of Xt evaluated at the jump times ti.

We reformulate the full process into a survival description between jumps. Using this 
reform ulation, the explicit distribution of jump locations can be extracted in a manner that 
depends on the previous jump location. This relation can be articulated as an iterated map, 
producing a sequence of jump locations. With explicit knowledge of the distribution of jump 
locations, statistics of the interjump times can be computed in more generality than previous 
work [13]. Taking this map to its limit, or equivalently, assuming the process reaches station-
arity, the stationary distribution of the full process and the jump locations are shown to be 
closely related. An immediate consequence of this relation is that these two quantities differ 
if and only if the jump intensity is state dependent. That is, for the class of models studied 
in this work, the jump locations are distinct from the stationary density. Consequently, if the 
jump locations are of interest, the results of this work illustrate their relation to observations 
of the full process.

Although not the focus of this work, we provide a brief discussion of possible conditions on 
convergence to stationarity in the novel lens of this framework. This discussion utilizes tools 
from theoretical ecology motivated by the observation that the iterated map formulation is 
effectively a non-negative integral linear operator. This is in contrast to previous, more proba-
bilistic approaches to studying finite time blowup of these models or similar [2, 9, 14, 54].

Finally, we provide three example applications of the framework. The first application, to 
a simple model of stochastic neuronal integrate-and-fire, is used to show a scenario where the 
jump locations themselves may be of interest. Our minimal model contains no inherent thresh-
old voltage, but, as a product of stochasticity of the firing threshold, forms a robust, sharp peak 
of firing locations. This provides additional and novel support for the use of a deterministic 
threshold as in classical integrate-and-fire and its extensions. The second model, one of intra-
cellular transport by a molecular motor is used to demonstrate how the two sources of noise 
(diffusion and jumps) interact. We ultimately find that the mean stepping rate of the motor 
can have a non-monotonic dependence on the strength of cargo diffusion, a consequence of 
the interaction between the two noise sources. Finally, a third example calculation shows that 
certain classes of models (in this case, constant drift, random jump size) can have curious 
behaviors. Specifically, we find that the mean interjump time for be independent of the choice 
of λ(x), so long as the process does indeed reach stationarity.

This work proposes a preliminary framework for studying a wide class of problems. 
Although not explicitly studied here, we suspect that with more exotic diffusions (e.g. colored 
noise, which fits within the scope of these results), the interactions between the feedback 
between the noise sources can produce even more interesting behavior and will be explored 
in the future. Additionally, a more precise exploration is necessary of how an iterated map 
framework such as this can be used to provide conditions of stationarity.

Acknowledgments

This research was partially supported by NSF grant DMS 1515130 and DMS-RTG 1148230.

Appendix A. Higher order interjump time moments

In theory, higher order moments of the interjump times can be computed with knowledge of 
the sequence of jump distributions pi as was discussed with the first moment in (11).
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To illustrate this, consider (13) and take the second moment with respect to τi on both sides, 
resulting in

⟨τ 2
i ⟩ = −

∫ ∞

−∞

∫ ∞

0
t2∂tp̂i dt dx.

Again, noting that ui = pi/λ =
∫ ∞

0 p̂i dt, after integrating by parts, we get

⟨τ 2
i ⟩ = −

∫ ∞

−∞
vi dx,

which looks similar to (11), however, vi is defined by the relation

[λ(x) − L]vi = ui. (A.1)

Thus, computation of the second moment requires solving the differential relationship (A.1), 
rather than just a quadrature as in the first moment. Continuing to higher order moments 
using same approach yields a further hierarchy coupled in a differential manner. Interestingly, 
the differential operator (left hand side) of (A.1) is exactly T, the same as (6), meaning the 
Green’s function (effectively T−1, discussed more in appendix B) could be used to compute 
these quantities.

Appendix B. Spectral properties of iterated map

Note that (6) involves the inverse of a differential linear operator T, which is exactly deter-
mined by its corresponding Green’s function. Let G(x, ξ) be the corresponding Green’s func-
tion to T, meaning that

TxG(x, ξ) = δ(x − ξ).

Then, (6) can be rewritten as

ui+1 =

∫ ∞

−∞
G(x, ξ)Jλui(ξ) dξ.

After a change of variables, define G̃  by

ui+1 =

∫ ∞

−∞
G̃(x, ζ)ui(ζ) dζ :=

∫ ∞

−∞
G(x, ξ)Jλui(ξ) dξ.

For example, for fixed jump sizes: Jp = p(x − ∆), then

G̃(x, ζ) = G(x, ζ + ∆)λ(ζ + ∆).

Abbreviate this linear non-negative integral operator

Aq :=
∫ ∞

−∞
G̃(x, ζ)q(ζ) dζ.

Now, iterations of our map correspond to iterating the integral operator A  with kernel G̃ . This 
formulation is exactly that of the so-called integral projection models (IPM) in theoretical 
ecology [20]. Stability results from the IPM literature can be used to understand the conv-
ergence of our iterative procedure.

The main result comes from [19] and is effectively a statement of the Krein–Rutman theo-
rem [37, 38], the infinite dimensional analog of the Perron–Frobenius theorem. [6, 33]
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Although L1 seems like the natural function space to study the spectral properties of these 
operators, since they must preserve probability, L2 turns out to be far more accessible due 
to issues establishing compactness in L1. In appendix C of [20], the authors provide a more 
thorough commentary on these complications. we cite the main theorem which establishes the 
existence of a dominant eigenvalue for A .

Theorem B.1 (Easterling 1998, [19]). Suppose that G̃ ∈ L2 and is non-negative. If there 
exists an α > 0, β > 0, u0 such that

α(x)u0(ξ) ! G̃(x, ξ) ! β(x)u0(ξ),

for all x, ξ , then the integral operator A  has a dominant eigenvalue with associated eigen-
function.

This establishes conditions for the existence of a dominant eigenvalue and eigenvector, 
which establish the long-term behavior.

Theorem B.2 (Easterling 1998, [19]). Assuming that A  satisfies the previous condi-
tion, then the stationary distribution u⋆ is given by the eigenfunction φ1 associated with the  
dominant eigenvalue λ1,

lim
i→∞

ui

λi
1

= κφ1,

where κ is a scaling parameter.

The previous theorem suggests that the sequence ui converges if and only if |λ1| = 1. Thus, 
this summary provides a rough heuristic, but possibly novel angle for determining whether 
the sequence ui (and the full process) approach stationarity, although we reemphasize that this 
is not our focus.
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CHAPTER 4

DISENTANGLING ACTIVE AND PASSIVE

DIFFUSION IN TRANSPORT DATA

The work in this chapter was done in collaboration with Michael D. Vershinin12, Olaolu

Osunbayo1, and Babu J. N. Reddy.3 A version of these contents are currently submitted as

a manuscript under consideration.

4.1 Introduction
Intracellular cargo tracks tend to be highly complex because motion can be driven by

a variety of causes, including mechanochemical enzymes [33] and passive diffusion [6]

(equivalently, motion can be driven by causes that obey or break detailed balance [16]).

The distinction between passive and active motion is crucial. For example, one might use

positional fluctuations of an intracellular cargo to calibrate in vivo optical trapping [12],

but it is essential to first establish that the chosen cargos are not subject to motor activity.

On the other hand, if enzymatic contribution is established then one can proceed to probe

the properties of molecular motors mediating the motility [30, 21]. It is thus desirable

in many experimental contexts to have a simple way to distinguish between active and

passive motility.

Mean-squared displacement (MSD) analysis [24] is commonly used to classify single

particle motion. Pure Brownian motion leads to linear MSD curves whereas motion driven

by individual mechanochemical enzymes often proceeds at constant velocity and produces

a quadratic MSD dependence [24, 26]. An important subtlety is that Brownian motion is

not the only stochastic process that leads to linear MSD curves [23, 35]. A linear MSD

1Department of Biology, University of Utah.

2Department of Physics & Astronomy, University of Utah.

3Department of Developmental & Cell Biology, University of California Irvine.
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can very well arise from an active process, for example, with a balanced ensemble of

mechanochemical enzymes that oppose each-others motion. MSD analysis may be con-

venient and easy to perform but it is not always able to distinguish active from passive

motility.

Motility analysis and modeling is rapidly changing [35, 5]. Interest in active fluctua-

tions and awareness of complications in practical data analysis is growing [28, 34]. Prac-

tical examples of enzymatically driven diffusion are now well established [21]. However,

theoretical approaches to teasing out various diffusion and active motility modes from

single particle tracking data [23] are still under active development [25, 22] and a single

standardized approach has yet to emerge. It is, however, clear that in general mere track-

ing and associated analysis is insufficient to relate cargo-scale phenotype to constituent

single molecule contributions. There is thus an acute need for new experimental probes of

complex motility.

In this work, we construct a minimal model of an active but apparently diffusive pro-

cess. We then examine the resulting motility and demonstrate that even in our minimal

system the overall ensemble phenotype is complex. We then capture the fundamental

dynamics in our system in a minimal theoretical model and further show how active

contribution to the apparent diffusion can be isolated via a simple experimental approach.

4.2 Experimental basis
4.2.1 Bead assay

We have constructed a system for complex motility under controlled conditions by

constructing a bead assay in which multiple microtubule-based motors could cross-bridge

a cargo to a filament and subsequently engaged in a balanced tug-of-war. To keep the

system minimal we have used a single type of motor: N340K mutant of kinesin-14 Ncd

(nonclaret dysjunctional; [7]). Wildtype Ncd is nonprocessive with a bias for minus-end

directed powerstroke [7, 9, 10, 36, 4]. The N340K mutant is a bidirectional motor, with more

balanced preference for stepping in either direction. Ensembles of N340K Ncd motors were

previously used in a microtubule gliding assay and showed ensemble bidirectional motil-

ity. Most of the motility was reported to be localized but some contiguous displacements

in either direction were too long to be ascribed to diffusion even though overall motile
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random process appeared roughly stationary [7]. The general view regarding this phe-

nomenon is that the cooperative activity of Ncd motors is sufficient to temporarily power

directed displacement [16] but the choice of direction occurs via spontaneous symmetry

breaking and need not be biased in a specific direction. However, diffusive motion has not

been fully ruled out [6].

We studied Ncd N340K driven motility in a bead assay to more closely model active

bidirectional cargo motion, seen in Figure 4.1. The observed motility was consistent with

gliding assay phenotype [7]: most beads exhibited limited localized motions while some

beads had more extensive bidirectional motility. The MSD analysis of tracks revealed that

the motion is strongly subdiffusive on short time scales but apparently diffusive on longer

time scales, as in Figure 4.1.

We then wanted to examine whether the linear MSD lineshape could be directly at-

tributed to the enzymatic activity of Ncd. The central idea behind our approach is that

biological enzymes typically undergo dramatic changes in activity over a biologically rel-

evant temperature range [15, 17, 8] whereas passive processes like diffusion show much

less pronounced variation with temperature. We demonstrate in Figures 4.2 and 4.3 that

temperature-dependent single particle tracking is indeed a rapid and convenient approach

a b

Figure 4.1. Experimental bead motility at room temperature. a: Representative weakly
motile tracks. b: TA-MSD (time-averaged mean-squared displacement) for several mea-
surement times: 0.05 sec (black), 0.5 sec (dark magenta), 2.5 sec (burgundy), 5 sec (light
magenta), 10 sec (red). One sigma (68.3%) and two sigma (95%) confidence intervals were
estimated for the 5 sec data via 1000 sample bootstrap for each lag point (dark and light
grey respectively).
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Figure 4.2. Temperature dependence of apparent diffusion coefficients for 5, 10, 15, 22
◦C. In each panel, a fit to exponential density is shown (solid red). Because x-axis values
needed to be rescaled for data at variable temperatures, fits to exponential densities at
lower temperatures are shown for higher temperature panels (dashed red) for reference of
overall scale.

to analysing the active contribution to apparent diffusion.

The linear fits [26] to long lag time portion of the MSD curves revealed that the distri-

bution of the effective diffusion coefficients is not Gaussian. At all temperatures it is highly

skewed and reasonably approximated by an exponential distribution, as in Figure 4.2. This

feature is unexpected: approximately Gaussian distributions typically arise in this type

of analysis due to the central limit theorem for large data sets. Indeed, this observation

is in contrast to, for example, simple Brownian motion of beads in water, for which the

distribution of diffusion coefficients is of course approximately Gaussian and varies slowly

with temperature, as in Figure 4.3. Though exponential density is unusual, it does provide

us with a decay scale which we can then use as the characteristic of diffusion at a given

temperature.

We first highlight that the diffusion coefficient scale at room temperature is 0.008µm2/sec

more than an order of magnitude lower than the typical diffusion coefficients for regular

diffusion of proteins along microtubules [6, 14]. This is consistent with the picture that
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a

b

Figure 4.3. Characteristic diffusion coefficient for each temperature with best fit Arrhenius
curve (red) on linear and Arrhenius style plots. a: Plots for motor-associated cargoes. b:
Same plots for free diffusion of bead in water, showing only a weak dependence. Fit to
Stokes-Einstein equation for radius 505 nm is shown (b; red dashed line); nominal bead
radius is 499± 19 nm. b, inset: histogram of diffusion coefficients at 22 ◦C and a Gaussian
fit (red). Arrhenius style plot: bead diffusion in water (black) is superimposed on linear
trend for N340K Ncd diffusion.

random process generating the linear MSD is a complex multimotor interaction. Next,

we observed that the characteristic diffusion coefficients extracted in this fashion yielded

an excellent fit to the Arrhenius model but not to the linear one, as in Figure 4.3. The

activation energy extracted from the Arrhenius fit was 130 KJ/mol somewhat high but

within the range of activation energies observed for kinesin motors especially for a system

of multiple motors where a stepping enzyme would see significant opposing load [3]. It is

unlikely that another energy barrier relevant to our system is in this range. For example,

the activation energies for protein diffusion along the microtubule lattice are not generally

precisely known but are thought to be more than an order of magnitude lower [6]. The

energy barriers relevant for the motor-microtubule detachment are of order 10 KJ/mol

[32]. We conclude that the apparent diffusion is actually an active process.
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4.2.2 Lipid droplet data

The last question we need to address is the unexpected finding that the distribution

of effective diffusion coefficients in our assays is extremely skewed. To test whether this

is a more general phenomenon associated with immotile but actively driven cargos we

have examined a lipid droplet motility system in mammalian Cos-1 cells. Lipid droplet

motility is known to be driven by kinesin-2 and dynein motors [13] and is also known to

show a diverse array of phenotypes, from long distance directed motion to more stationary

displacements, as in Figure 4.4. Moreover, lipid droplet motility in mammalian cells has

been used as a probe of viscoelasticity of the cytoskeleton [37]. Indeed, subdiffusive

behaviour has been found at short time scales but transition to linear MSD curves have

been seen at longer time scales [37].

We examined the lipid droplet motility at long time scales only and focused on appar-

ently diffusive transport. MSDs which conformed to a quadratic model better than linear

as per Akaike information criterion were ignored in our analysis. The resulting tracks are

not all stationary: linear or subdiffusive MSD curves can arise from active motion if it

is saltatory, or if it is a minor part of a longer record. All these cases are seen in Figure

4.4a. The average MSD curve is broadly consistent with a linear trend, as in Figure 4.4b.

Any minor subdiffusive curvature for short lags is not significant although such a feature

would be expected from and consistent with a prior report [37]. However, the distribution

of apparent diffusion coefficients (in Figure 4.4c) is inconsistent with Brownian motion

and is instead highly skewed. The strong similarity between these observations and our in

vitro data is of course insufficient to infer the microscopic picture of lipid droplet motility

in cells. It is however sufficient to call into question whether viscoelastic contributions can

be unambiguously attributed to the cytoskeletal filaments or cytosol in general. They may

be partially or even wholly due to the motor contribution instead. It is also sufficient to

call into question whether cytoskeletal motor contribution to nanoscale biomechanics in

cells is purely elastic [11].

4.2.3 Subdiffusive behavior

The microscopic picture we have is bead-microtubule coupling via variable number

of nonprocessive motors at a variety of relative binding positions and hence a variety of
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a b

c g

Figure 4.4. Lipid droplet motility in Cos-7 cells at 37 ◦C. a: example trajectory, showing
apparently diffusive behavior, scale bar is 1µm. b: The average MSD curve and c: the
distribution of effective diffusion coefficients.

coupling strengths. In this picture, when a motor detaches or attaches to the microtubule,

the system slowly evolves to a new overall state. We would then expect that after some lag

time, memory effects would become negligible. This is indeed seen in our data in Figure

4.5: Beyond about 1 second lag time, MSD curves do show a linear trend. Therefore, on

long lag time scales the system becomes a good model of apparently diffusive behavior.

Timeaveraged MSD (TA-MSD) analysis [29, 19, 31] of motility data for showed robust

convergence, suggesting that the subdiffusive process is ergodic.

Our analysis also revealed a broad distribution of anomalous exponents from near

zero to slightly above unity, in Figure 4.6. Generally, the distribution shifted lower with

declining temperature. This is naturally explained by the above microscopic picture: as

temperature gets lower, individual motor dynamics and thus also ensemble dynamics

slow down leading to a flattening and leveling off of the MSD curve.
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Figure 4.5. Anomalous features of bead motility. TA-MSD curves were computed for 5,
10, 15, 22 ◦C data as labeled. In each case average TA-MSD was computed for several
measurement times: 0.05 sec (black), 0.5 sec (dark magenta), 2.5 sec (burgundy), 5 sec
(light magenta), 10 sec (red). One sigma (68.3%) and two sigma (95%) confidence intervals
were estimated for the 5 sec data via 1000 sample bootstrap for each lag point (dark and
light grey respectively).

Figure 4.6. Subdiffusive anomalous exponents for MSD records below 1 second (grey
regions in Figure 4.5) at 5, 10, 15, 22 ◦C as labeled. Peak locations and 95 confidence
intervals are shown for each panel. Anomalous exponents were estimated via loglog
linearization after adjustment for noise [18]. Each count corresponds to a full distinct bead
trajectory
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4.3 Jump–diffusion conceptual model
The observation of complex behaviour for nearly-immotile ensembles of molecular

motors likely has some system-specific origins. At the same time, we might expect some

skewness for the distribution of diffusion coefficients on very general grounds. The funda-

mental processes involved in all cases are ordinary diffusion (at the very least the diffusion

of the cargo but also in some cases motor diffusion along the filament) and discrete jumps

(binding, unbinding, and powerstroke events). For this reason, we seek to construct a

minimal model that captures and elucidates the observed complex motility.

Let p(x, t) be the probability density of a 1-dimensional jump-diffusion process in one

dimension governed by the Fokker–Planck equation

∂t p(x, t) = D∂xx p(x, t)− 2λp(x, t) + λp(x− δ, t) + λp(x + δ, t). (4.1)

For simplicity, jumps in either direction are assumed to have fixed characteristic dis-

tance δ and occur at the same rate λ, so that the system is symmetric, in agreement with the

N340K stepping data [7]. When the rate of jumps λ is set to zero, this describes the classical

diffusion process. This system is highly reminiscent of the more general continuous-time

random walk (CTRW) processes [23] but our model lacks the long-tailed correlations.

While this model is minimal in its complexity, its simplicity allows for analytical tractabil-

ity and deep understanding.

Ultimately, one primary feature we are interested in is the distribution of diffusion

coefficients, as experimentally seen in Figure 4.2. We associate an empirical diffusivity

with each trajectory, reflecting how the squared displacement scales with time. In other

words, for a given trajectory we effectively are sampling the random variable

Ds(t) :=
x(t)2

2t
, (4.2)

where t is the sampling time, or the inverse of sampling frequency. One can think of the

estimate of D for each path as an average of these samples. That is, a naı̈ve estimator for

the diffusivity is

Dest =
1
N

N

∑
i=1

D(i)
s , (4.3)

where N is the number of sample points on the path. Although the actual practice of

estimating D for a path using these random variables is considerably more complicated
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(a weighted linear regression [26]), this estimator provides the intuition for the curious

statistics observed in experiments.

4.3.1 Moments

We are therefore interested in observations of the random variable Ds defined by equa-

tion (4.2). Moments of this variable are related to moments of x. Explicitly, the jth moment

satisfies

〈Dj
s〉 =

1
(2t)j 〈x

2j〉 = µ2j

(2t)j , µj := 〈xj〉, (4.4)

The moments of x can be computed explicitly. Multiplying (4.1) by xj and integrating, we

find the explicit evolution of these moments

dµj

dt
= Dj(j− 1)µj−2 + 2λ

bj/2c
∑
k=1

(
j

2k

)
δ2kµj−2k,

where b·c is the floor operator.

This system of ODEs is “lower triangular” in the sense that µj only depends on µk

where k < j. That is, we can solve these moments equations sequentially. The first, µ̇1 = 0,

so that µ1 ≡ 0 is intuitive, as diffusion and symmetric jumps produce no displacement on

average. The remaining ODEs of interest are

dµ2

dt
= 2D + 2λδ2

dµ4

dt
= 12

[
D + λδ2] µ2 + 2λδ4.

dµ6

dt
= 30

[
D + λδ2] µ4 + 30λδ4µ2 + 2λδ6.

Immediately, we note that µ2, the mean-squared displacement is indeed still linear even

with the jump component. Moreover, the estimated diffusivity from this linear MSD is

〈Ds〉 =
µ2

2t
= D + λδ2. (4.5)

We can proceed on to the variance, using

σ̃2 := var[Ds] =
1

(2t)2

[
µ4 − µ2

2
]
= 2δ4λ2 + 2D2 + 4δ2Dλ +

δ4λ

2t
. (4.6)

Notably, if λ = 0 (no jumps, traditional diffusion), there is no dependence on t (the

sampling time). However, with λ 6= 0, σ̃2 → ∞ as t→ 0.
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The last moment, the skewness can be computed and is

g̃ := skew [Ds] =

32D3t2 + 96δ2D2λt2 + 24δ4Dλt(4λt + 1) + δ6λ(8λt(4λt + 3) + 1)

t (4D2t + 8δ2Dλt + δ4λ(4λt + 1))
√

8D2 + 16δ2Dλ + 2δ4λ(4λt+1)
t

. (4.7)

This has the same features as the variance: if λ = 0 (no jumps, traditional diffusion), there

is no t dependence. However, with λ 6= 0, as t→ 0, then g̃→ +∞.

4.3.2 Relation to MSD analysis

We can relate the theoretical quantities to experimental observables by considering the

observations of a single trajectory denoted

{x0, x1, . . . , xN},

where each observation occurs at a fixed time interval ∆t, so x(i) ≈ x0 + i∆t. Then, each

squared displacement, scaled by time, denoted D(i)
s

D(i)
s :=

[xi − xi−1]
2

2∆t
(4.8)

This is inherently a sample estimate of the diffusivity, the total estimator for which is (4.3).

Because each D(i)
s is independent, the statistics of the collection of diffusion coefficients

over several paths each with N samples become

〈Dest〉 = 〈Ds〉, var [Dest] = σ̃2/N, skew [Dest] = g̃/
√

N. (4.9)

From (4.9) and (4.5), we reiterate the feature that this system indeed has a linear MSD

curve, in agreement with the longer time measurements of the experimental system, as

seen in vitro in Figure 4.1 and in vivo in Figure 4.4.

The predicted diffusion coefficient is also of interest. We can also see that for enzymat-

ically driven jumps, whose rate λ scales with temperature per Arrhenius law

λ ∼ exp{−∆E/kBT},

and the passive diffusion scales linearly, by the fluctuation dissapation theorem

D ∼ kBT,

then the effective diffusion coefficient from (4.5) has identical scaling with the same activa-

tion energy. This suggests that our intuition is correct: if passive diffusion is dominant, the
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empirical diffusivity should scale linearly, and if active, it will scale as a Boltzmann factor,

which agrees directly with the experiments seen in Figure 4.3.

The higher order moments of Dest also provide insight toward the experimentally ob-

served quantities. In the absence of jumps (λ = 0), we see from (4.9) the skewness of

each sample is 2
√

2, as expected for the chi-squared distribution with 1 degree of freedom.

However, when λ > 0, the skewness grows. Furthermore, if λ� 1/t, that is, many jumps

occur between samples, then the situation is similar in spirit to classical CTRW models: the

tails become relatively long and lead to strong deviations from Brownian behavior. But the

skewness is enhanced considerably even for λ ∼ 1/t.

Although the skewness does indeed decay with the number of samples as predicted

by the Central Limit Theorem, the rate of convergence is dependent on the magnitude

of the skewness. Hence, as skewness is enhanced, convergence (to a Gaussian) becomes

quite slow, even without violating the central limit theorem or ergodicity. This result

is quite intuitive as a sampling issue. As experimental setups (and consequently, this

random variable) are snapshots of the process and we have no memory effects built into

our model, each sample is an independent identically distributed random variable rep-

resenting diffusion and jumps occurring in a fixed amount of time (sampling time). The

relationship between the sampling rate and the rate at which these jumps occur is therefore

crucial in determining the statistics. In such cases, limited experimental data sets can still

produce strongly skewed distributions for slopes of mean squared displacement curves

without violating ergodicity. This observation has been made in other branches of scientific

literature (for instance, finance [1]) but seems to be underappreciated in this context.

4.3.3 Comparison to simulations

While (4.9) describes the moments of the naı̈ve estimator (4.3), in practice, the MSD,

and associated diffusivity estimate is computed quite differently. Specifically, the MSD

curve is computed using overlapping windows [26], so the MSD associated with a window

of size i∆t is averaged over all windows of that size,

〈x2
i 〉 =

1
Ni

Ni

∑
j=1

[
xij − xi(j−1)

]2
,
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where Ni is the number of overlapping windows of size i, Ni := b(N − 1)/nc. From there,

a weighted linear regression is performed for i∆t against x2
i , with the weights w(i) taken

to be the inverse of the variance of all squared displacements of size i, that is

w(i) =

(
var

[{[
xij − xi(j−1)

]2
}Ni

j=1

])−1

.

The estimate for D is then proportional to the slope of the linear regression line.

While this procedure does a notably good job at filtering out noise, its complexity

makes predicting the output for even simple models, such as jump diffusion, intractable.

For this reason, we perform simulations of jump-diffusion and compare the predicted

skewness for the naı̈ve estimator to that of the more complicated D estimator used in

practice.

The comparison of these skewnesses can be seen in Figure 4.7 and Figure 4.8. From

the first, we see the dependence on the number of paths M, and the number of points on

the path N agrees quite closely with the predicted values of (4.9). We do see an increase

in the skewness for the simulated values, which is intuitive, as the overlapping windowed

procedure introduces correlation in the estimate, which manifests as this difference. Of

particular note, the jump-diffusion process (λ 6= 0) has considerably higher skewness

than that of just classical diffusion for both the theoretical and simulated values.

Figure 4.8, we see the same features, with the noteworthy exception that simulated

values differ from the predicted at small values of ∆t. There is a technical limit on the

number of samples (N) we can reasonably process, but we can fix N to be large and vary

the sample time ∆t (meaning that the total simulation time N∆t also varies). Consequently,

for any finite simulation it is always possible to examine low enough values of ∆t, so

that the length of simulation is not long enough to capture accurate statistics of the jump

component.

4.4 Conclusion
We have demonstrated that tug-of-war events for cytoskeleton transport can lead to

complex motile behaviours in the absence of the cytosol, in the absence of microtubule

movement [19], and indeed even in the absence of multiple cytoskeletal filaments [27].

Some of the motility we observed (short lag times) is clearly in the class of anomalous
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Figure 4.7. Analytically predicted and simulation values skewness of the distribution of
empirical diffusion coefficients. Classical diffusion (λ = 0) and jump diffusion (λ = 1)
cases are shown. a: Skewness decays asymptotically to zero as a function of the number of
points on each path (N). b: Simulated skewness as a function of the number of trajectories
(M) shows asymptotic convergence to analytic prediction (up to estimator bias) for large
M. Analytic curves: dashed lines. Simulated results: crosses. Parameters (unless noted):
D = 1, M = 1000, N = 100, ∆t = 10−3, δ = 0.8.
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Figure 4.8. Simulated skewness as a function of ∆t. As ∆t becomes smaller than 1/λ
the skewness should increase from analytical predictions. The simulated skewness does
indeed grow as expected within a wide range of ∆t, with a technical exception discussed
in the text. Parameters (unless noted): D = 1, M = 1000, N = 100, δ = 0.8.
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diffusion while longer lag time motility remains to be fully understood. We also show

that a tug-of-war process in the context of cytoskeletal transport can lead to linear MSD

curves for longer lag times, however the apparent diffusion coefficients extracted from

such MSD curves are likely to possess a highly skewed distribution. We note that inher-

ently non-Gaussian distribution of apparent diffusion coefficients has been observed in

many systems and has been recently modeled using the diffusing diffusivities approach

[5]. This type of model does not easily map onto the case of enzymatically driven motion

and is unlikely to be generally applicable for all in vitro and in vivo situations. However,

when applicable, this type of a phenomenon is likely to further contribute to the skewness

of the distribution of diffusion coefficients.

Subdiffusion (without aging effects, such as in [27]) observed in the context of cy-

toskeletal transport has often been conceptualized as a process of cargos getting trapped

in small spatial compartments and occasional jumps between such compartments [31].

Our work suggests that stationary segments of cytoskeletal cargo motion may not always

be due to compartment trapping but dynamic tug-of-war trapping instead and we es-

tablish two approaches for testing for this possibility. In addition, models of molecular

motor transport often assume motor crosslinks to be purely elastic springs [2, 20]. This

assumption is convenient, computationally efficient, and allows for reasonably faithful

modeling of motor-driven transport. However, our observation of subdiffusive transport

attributable directly to the motors (rather than the cytosolic influences) suggests that a

more detailed model may be warranted.

On a practical level, we show that when dealing with cytoskeletal motility experiments

which produce linear MSD curves, it is a good idea to examine the distribution of effec-

tive diffusion coefficients because deviations from Gaussian (or high-degree-of-freedom

chi-squared) behaviour can be a signature of a more complex process. We further show

that varying temperature is an excellent and easily experimentally accessible technique for

probing active contributions to single particle motion in the cytoskeletal context.
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CHAPTER 5

COOPERATIVE TRANSPORT BY

NONPROCESSIVE MOTORS

The work in this chapter was done in collaboration with Sean Lawley.1 A version of

these contents are currently submitted as a manuscript under consideration.

5.1 Introduction
In both experimental and modeling studies, processive motors have received consider-

able attention. Processive motors are characterized by taking hundreds of steps along a

microtubule before unbinding. In contrast, nonprocessive motors (such as most members

of the kinesin-14 family) take very few (1 to 5) steps before unbinding from a microtubule

[4, 8]. Nonprocessive motors are crucial to a number of cellular processes, including di-

recting cytoskeletal filaments [37], driving microtubule-microtubule sliding during mitosis

[11], and retrograde transport along microtubules in plants [42]. Here, we focus on motor

behavior during transport.

Some curious properties of nonprocessive motor transport were found in [13], seen in

Figure 5.1. One nonprocessive (Ncd) motor has extremely limited transport ability, mea-

sured by both velocity and run length (distance traveled before detaching from a micro-

tubule). However, two nonprocessive motors somehow act in unison to produce significant

directed motion, a phenomenon termed “clustering.” This observation is supported by the

subsequent studies [23, 33], where similar experiments were performed creating a mutant

of attached nonprocessive kinesin-14 motors, and processivity emerges. Moreover, the

authors of [13] note that adding more Ncd motors beyond two further increases transport

ability. In contrast, one processive motor (kinesin-1) is sufficient to produce transport, and

additional motors do not significantly increase transport ability [13, 39]. Other interesting

1Department of Mathematics, University of Utah.
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Figure 5.1. Adapted from [13], panels show kymographs of motor-associated beads for
varying number of nonprocessive Ncd motors. A single motor is seemingly unable to
produce robust transport, whereas teams of motors produce long run lengths.

facets of transport by nonprocessive motors include the emergence of processive transport

in the presence of higher microtubule concentration [14] or opposing motors [19].

In this work, we formulate and analyze a mathematical model to investigate the natural

question: How do nonprocessive motors cooperate to transport cargo? Our model predicts

that nonprocessive motor stepping, binding, and unbinding rates must depend on the

number of bound motors, and that this dependence is a key mechanism driving the collec-

tive transport of nonprocessive motors. We note that such dependence has been observed

in experiments [10, 17] and in simulations of detailed computational models [26, 9, 31, 14],

all stemming from geometric effects of cargo/motor configuration.

Nonprocessive motors are notoriously difficult to study experimentally, because they

take only a few steps before detaching. For this same reason, it is not clear how to best

model nonprocessive motors, or known if existing modeling frameworks, such as mean-

field methods [24, 6] or averaging the stepping dynamics into an effective velocity [32], are

appropriate. Hence, our model explicitly includes the discrete binding, unbinding, and

stepping dynamics of each motor, as well as the continuous tethered motion of the cargo.

Mathematically, our model takes the form of a randomly switching stochastic differ-

ential equation (SDE), and thus merges continuous dynamics with discrete events. The

continuous SDE dynamics track the cargo position, while the discrete events correspond

to motor binding, unbinding, and stepping. Our model is thus a stochastic hybrid system [3],

which are often two-component processes, (J(t), X(t))t≥0 ∈ I ×Rd, where J is a Markov

jump process on a finite set I , and X evolves continuously by

dX(t) = FJ(t)(X(t))dt + σ dW(t), (5.1)

where {Fj(x)}j∈I is a given finite family of vector fields, σ ≥ 0, and W is a Brownian
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motion. That is, X follows an SDE whose righthand side switches according to the process

J.

However, our model differs from most previous hybrid systems in some key ways.

First, the set of possible continuous dynamics (e.g., possible righthand sides of (5.1)) for

our model is infinite. Second, the new righthand side of (5.1) that is chosen when J

jumps depends on the value of X at that jump time, although the rates dictating J are

taken to be independent of X. We employ several techniques to analyze our model and

make predictions regarding nonprocessive motor transport. First, we cast our model in

a renewal theory framework, and generalize the classical renewal reward theorem [41] to

apply to our setting, distinct from previous motor applications [27, 20, 21, 22, 38]. Next,

we decompose the stochasticity in the system by averaging over the diffusion while condi-

tioning on a realization of the jump process. This effectively turns the randomly switching

SDE into a randomly switching ordinary differential equation (ODE), and thus a piecewise

deterministic Markov process [5]. Finally, we observe that for biologically reasonable

parameter values, the relaxation rate of the continuous cargo dynamics is much faster than

the jump rates for the discrete motor behavior. We then exploit this timescale separation

to find explicit formulas for key motor transport statistics.

The rest of the paper is organized as follows. We formulate the mathematical model

in section 5.2. In section 5.3, we generalize the renewal reward theorem to apply to our

model. In section 5.4, we derive explicit formulas to evaluate motor transport. In sec-

tion 5.5, we use the model to make biological predictions. We conclude with a brief

discussion and an Appendix that collects several proofs.

5.2 Mathematical model
We model the motion of a single cargo driven by M ≥ 1 motors along a single mi-

crotubule. These motors are permanently attached to the cargo, but they can bind to and

unbind from the microtubule. At any time t ≥ 0, the state of our model is specified by

(
X(t), Z(t), J(t)

)
∈ R×RM × {u, b}M,

where X(t) ∈ R is the location of the center of the cargo, Z(t) = (Zi(t))M
i=1 ∈ RM

gives the locations of the centers of M motors, and J(t) = (Ji(t))M
i=1 specifies if each
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motor is unbound or bound. Spatial locations are measured along the principal axis of

the microtubule, which we identify with the real line.

The cargo position evolves continuously in time, while the positions and states of mo-

tors change by discrete events, which correspond to binding to the microtubule, stepping

along the microtubule, or unbinding from the microtubule. Specifically, in between these

discrete motor events, X(t) follows an Ornstein-Uhlenbeck (OU) process centered at the

average bound motor position,

dX(t) =
k
γ ∑

i∈I(t)

(
Zi(t)− X(t)

)
dt +

√
2kBT/γ dW(t). (5.2)

Here, I(t) = {i : Ji(t) = b} ⊆ {1, . . . , M} gives the indices of motors that are bound at time

t ≥ 0, and {W(t)}t≥0 is a standard Brownian motion. The SDE (5.2) stems from assuming

a viscous (low Reynolds number) regime with drag coefficient γ > 0, and that each bound

motor exerts a Hookean force on the cargo with stiffness k > 0. The Stokes-Einstein

relation specifies the diffusion coefficient kBT/γ, where kB is Boltzmann’s constant and

T is the absolute temperature.

The discrete behavior of motors is as follows. Let m(t) ∈ {0, 1, . . . , M} denote the

number of bound motors at time t ≥ 0,

m(t) =
M

∑
i=1

1{Ji(t) 6=u} ∈ {0, 1, . . . , M},

where 1{A} denotes the indicator function on an event A. Each unbound motor binds to

the microtubule at rate kon(m(t)) > 0. Since unbound motors are tethered to the cargo, if

an unbound motor binds at time t ≥ 0, then we assume that it binds to the track at X(t)

(motors can bind anywhere along the microtubule, not only binding sites). We could allow

it to bind to a random position, but if the mean binding position is X(t), then our results

are unchanged. The position of each bound motor is fixed until it either steps or unbinds.

Each bound motor unbinds at rate koff(m(t)) > 0 and steps at rate kstep(m(t)) > 0. When

a motor steps, we add δ > 0 to its position, which is then fixed until it steps again or

unbinds. This discrete motor behavior is summarized in Figure 5.2. We emphasize that

the motor binding, unbinding, and stepping rates are allowed to depend on the number of

bound motors, m(t), but are otherwise independent of X(t).
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Figure 5.2. Schematic describing the binding, unbinding, and stepping of motors. The
positions of cargo and bound motors are X(t) and Zi(t), respectively, both measured
with respect to the principal axis of the microtubule. The state of the motor can switch
between bound or unbound, and while bound, the motor can step, incrementing Zi(t) by
displacement δ.

5.2.1 Nondimensionalization and assumptions

We now give a dimensionless and more precise formulation of the model described

above. First, we nondimensionalize the model by rescaling time by the rate koff(1) and

space by the inverse length δ−1. Next, we note that unbound motors do not affect the cargo

position. Hence, for convenience we can take Zi(t) = X(t) if the i-th motor is unbound,

meaning that we can include unbound motors in the sum in (5.2) with zero contribution,

and make the sum over all motors. This yields the simplified dimensionless form

dX(t) = ε−1
M

∑
i=1

(
Zi(t)− X(t)

)
dt + σdW(t), (5.3)

where

ε := koff(1)γ/k, σ :=
√

2kBT/(δ2koff(1)γ),

and motors bind, unbind, and step at dimensionless rates

λon(m) :=
kon(m)

koff(1)
, λoff(m) :=

koff(m)

koff(1)
, λstep(m) :=

kstep(m)

koff(1)
. (5.4)

We find it convenient for our analysis to track the number of steps taken by each motor

before unbinding, so let us expand the state space of J(t) so that its components (Ji(t))M
i=1

each take values in {u, 0, 1, 2, . . . } with transition rates

u
λon(m(t))→ 0, j

λstep(m(t))→ j + 1, j
λoff(m(t))→ u, j 6= u. (5.5)
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The components of J(t) are conditionally independent given m(t). At time t ≥ 0, the i-th

motor is unbound if Ji(t) = u, bound if Ji(t) ≥ 0, and steps when Ji(t) transitions from j to

j + 1 for j ≥ 0.

Under these assumptions, m(t) is itself a Markov process on {0, 1, . . . , M} with transi-

tion rates

0
Mλon(0)


1
1

(M−1)λon(1)

2λoff(2)

2 
 · · ·
 M− 2
2λon(M−2)



(M−1)λoff(M−1)

M− 1
λon(M−1)



Mλoff(M)

M. (5.6)

For simplicity, we assume that the motors are initially unbound and that the cargo and

motors start at the origin,

Ji(0) = u, X(0) = Zi(0) = 0, i ∈ {1, . . . , M}.

The position of the i-th motor is then

Zi(t) =
(
X(τi(t)) + Ji(t)

)
1{Ji(t) 6=u} + X(t)1{Ji(t)=u}, i ∈ {1, . . . , M}, (5.7)

where τi(t) is the most recent binding time of the i-th motor,

τi(t) = sup{s < t : Ji(s) = u}, i ∈ {1, . . . , M}.

We assume the Brownian motion W = {W(t)}t≥0 and the jump process J = {J(t)}t≥0 are

independent.

5.3 Cargo position as a renewal reward process
In order to analyze our model, we first show that X(t) is a renewal reward process with

partial rewards [41] and extend the classical renewal reward theorem to our case of partial

rewards. This framework has an intuitive interpretation: The net displacement of cargo

is determined by the displacement accrued at each epoch of being bound or unbound.

However, there is a technical challenge. In the most classical setting, the reward-renewal

theorem accrues rewards at the end of each epoch and boundedness of expectation of the

rewards is sufficient to apply the reward-renewal theorem. In the case of partial rewards

(which we have in our model), where rewards are accrued during an epoch, stronger

conditions are required, which we prove are satisfied.
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First, define the sequence of times in which the cargo completely detaches from the

microtubule (off) and subsequently reattaches to the microtubule (on),

0 = τ0
on = τ0

off < τ1
on < τ1

off < τ2
on < τ2

off < . . .

by

τk
off := inf{t > τk

on : m(t) = 0}, k ≥ 1,

τk
on := inf{t > τk−1

off : m(t) ≥ 1}, k ≥ 1.
(5.8)

Next, define the sequence of cargo displacements when the cargo is attached to the micro-

tubule (on) and detached from the microtubule (off),

Rk
on := X(τk

off)− X(τk
on), Rk

off := X(τk
on)− X(τk−1

off ), k ≥ 1, (5.9)

and the corresponding times spent attached or detached,

Tk
on := τk

off − τk
on, Tk

off := τk
on − τk−1

off , k ≥ 1. (5.10)

It follows directly from the strong Markov property that {(Tk
off + Tk

on, Rk
off + Rk

on)}k≥1 is an

independent and identically distributed (iid) sequence of random variables.

In the language of renewal theory, {Tk
off + Tk

on}k≥1 are the interarrival times and {Rk
off +

Rk
on}k≥1 are the corresponding rewards. Let N(t) be the renewal process that counts the

number of arrivals before time t ≥ 0,

N(t) := sup{k ≥ 0 : τk
off ≤ t}. (5.11)

Define the reward function, R(t), and the partial reward function, Y(t), by

R(t) :=
N(t)

∑
k=1

(Rk
on + Rk

off), Y(t) := X(t)− X(τ
N(t)
off ), (5.12)

and observe that

X(t) = R(t) + Y(t).

In words, R(t) describes rewards accrued during past epochs, and Y(t) is the partial

reward accrued during the current epoch. We show below that E[|Ron + Roff|] < ∞ and

E[Ton + Toff] < ∞, and therefore the classical renewal reward theorem [41] ensures that

lim
t→∞

R(t)
t

= lim
t→∞

E[R(t)]
t

=
E[Ron] + E[Roff]

E[Ton] + E[Toff]
almost surely. (5.13)

The following theorem verifies that this convergence actually holds for X(t).
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Theorem 5.1. The following limit holds,

lim
t→∞

X(t)
t

= lim
t→∞

E[X(t)]
t

=
E[Ron] + E[Roff]

E[Ton] + E[Toff]
almost surely. (5.14)

To prove this theorem, we need several lemmas. We collect the proofs of these lemmas

in Appendix B.1. The first lemma bounds the probability that the partial reward function

Y(t) in (5.12) is large when the cargo is detached from the microtubule.

Lemma 5.2. Define the sequence of iid random variables {Yk
off}k≥1 by

Yk
off := sup

t∈[τk−1
off ,τk

on]

∣∣X(t)− X(τk
off)
∣∣, k ≥ 1.

Then for any C > 0 and k ≥ 1, we have that

P(Yk
off ≥ C) ≤

√
π/x(2x + 1)e−x, where x = C

σ

√
2Mλon(0) > 0. (5.15)

Similarly, the next lemma bounds the probability that the partial reward function is

large when the cargo is attached to the microtubule.

Lemma 5.3. Define the sequence of iid random variables {Yk
on}k≥1 by

Yk
on := sup

t∈[τk
on,τk

off]

|X(t)− X(τk
on)|, k ≥ 1.

If Λ := maxm∈{1,...,M} λstep(m), then there exists λ > 0 so that for C > 0, k ≥ 1,

P(Yk
on ≥ C) ≤

(C
2

)−C/2
eC/2 λ

MΛ + λ

(
MΛ

MΛ + λ

)C/2

Γ(C/2 + 1)

+ exp(−λC/(2MΛ)) +
√

π/x(2x + 1)e−x, with x = C
σ

√
λ/2 > 0,

where Γ(c)̇ is the Gamma function.

The next lemma uses Lemmas 5.2 and 5.3 to prove that the partial reward function gets

large only finitely many times.

Lemma 5.4. Define the sequence of iid random variables {Yk}k≥1 by

Yk := sup
t∈[τk−1

off ,τk
off]

∣∣X(t)− X(τk
off)
∣∣, k ≥ 1. (5.16)

Then

P
(

lim
K→∞

∞⋃

k=K

{
Yk >

√
k
})

= 0.
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The last lemma checks that the mean of Yk in (5.16) is finite.

Lemma 5.5. Define {Yk}k≥1 as in (5.16). Then E[Yk] < ∞ for all k ≥ 1.

With these lemmas in place, we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. It follows immediately from Lemma 5.5 that E[|Rk
on + Rk

off|] < ∞. Fur-

thermore, Tk
off is exponentially distributed with rate Mλon(0), and the proof of Lemma 5.3

shows that E[Tk
on] < E[S] for an exponentially distributed random variable S with some

rate λ > 0. Hence, E[Tk
on + Tk

off] < ∞, and thus (5.13) holds by a direct application of the

classical renewal reward theorem [41].

Therefore, it remains to check that

lim
t→∞

E
[
X(t)− X(τ

N(t)
off )

]

t
= 0 = lim

t→∞

X(t)− X(τ
N(t)
off )

t
, almost surely. (5.17)

The first equality in (5.17) follows immediately from Lemma 5.5.

To verify the second equality in (5.17), we note that Lemma 5.4 ensures that

lim sup
k→∞

Yk√
k
≤ 1, almost surely.

Therefore,

lim
t→∞

|X(t)− X(τ
N(t)
off )|

t
≤ lim

t→∞

|YN(t)|
t
≤ lim

t→∞

√
N(t)
t

= 0, almost surely,

since

lim
t→∞

N(t)
t

=
1

E[Ton + Toff]
, almost surely,

by the strong law of large numbers for renewal processes [41].

Consequently, the position of the cargo does indeed satisfy a classical reward-renewal

structure with two different types of epochs: bound and unbound, each of which accrue

some net displacement.

5.4 Mathematical analysis of transport ability
With the framework of renewal theory constructed in section 5.3, we are ready to

analyze the transport ability of the model introduced in section 5.2. To assess the transport

ability of the motor cargo ensemble, we analyze the expected run length, expected run time,



71

and asymptotic velocity. We define the run length to be the distance traveled by the cargo

between the first time a motor attaches to the cargo until the next time that all motors

are detached from the microtubule, which was defined precisely in (5.9) and denoted by

Ron. The run time is the corresponding time spent attached to a microtubule, which was

defined precisely in (5.10) and denoted by Ton. The asymptotic velocity is

V := lim
t→∞

X(t)
t

. (5.18)

The velocity V includes both the time the cargo is being transported along the microtubule

and diffusing while unattached.

Applying Theorem 5.1, we have that

V =
E[Ron] + E[Roff]

E[Ton] + E[Toff]
almost surely. (5.19)

Now,

E[Roff] = 0, (5.20)

since the cargo is freely diffusing when no motors are bound, and since motor binding and

unbinding is independent of Brownian motion {W(t)}t≥0. Furthermore, when all of the

M motors are unbound, each motor binds at rate λon(0). Hence,

E[Toff] = (Mλon(0))−1. (5.21)

It therefore remains to calculate two of the three quantities, V, E[Ron], and E[Ton], since

the third is given by (5.19). We calculate E[Ton] first since it is the simplest, as it is a mean

first passage time of a continuous-time Markov chain

5.4.1 Expected run time

As we noted in section 5.2.1, the number of motors bound m(t) is itself the Markov

process (5.6). To compute the expected run time, we compute the mean time for m(t) to

reach state m = 0 starting from m(0) = 1.

Let Q̃ ∈ R(M+1)×(M+1) be the generator of the Markov chain m(t) in (5.6). That is,

the (i, j)-entry of Q̃ gives the rate that m(t) jumps from state i to state j 6= i, and the

diagonal entries are chosen so that Q̃ has zero row sums. Let Q ∈ RM×M be the ma-

trix obtained from deleting the first row and column of Q̃. The matrix Q is tridiagonal,
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with the m-th row containing subdiagonal, diagonal, and superdiagonal entries mλoff(m),

−(mλoff(m) + (M − m)λon(m)), (M − m)λon(m), respectively. The expected run time

E[Ton] is (by Theorem 3.3.3 in [35]),

E[Ton] = 1Tt, where QTt = −e1, (5.22)

where 1 ∈ RM is the vector of all 1’s and e1 ∈ RM is the standard basis vector.

5.4.2 Decomposing stochasticity

Having calculated E[Ton] in (5.22), we can determine V by determining E[Ron] (or

vice versa). Two key steps allow us to analyze V and E[Ron]: (i) we average over the

diffusive dynamics while conditioning on a realization of the jump dynamics, and (ii) we

take advantage of a timescale separation between the relaxation rate of the cargo dynamics

and the jump rate of the motor dynamics.

5.4.2.1 Conditioning on jump realizations

Observe that the stochasticity in the model can be separated into a continuous diffusion

part and a discrete part controlling motor binding, unbinding, and stepping. Mathemati-

cally, the continuous diffusion part is described by the Brownian motion W in (5.3), and

the discrete motor state is described by the Markov jump process J. We first average over

the diffusion by defining the conditional expectations

x(t) := E[X(t)|J], t ≥ 0, zi(t) := E[Zi(t)|J], t ≥ 0, i ∈ {1, . . . , M}. (5.23)

We emphasize that (5.23) are averages over paths of W given a realization J. Thus, {x(t)}t≥0

and {{zi(t)}t≥0}M
i=1 are functions of the realization J. This definition is convenient, because

while X(t) follows the randomly switching SDE (5.3), the process x(t) follows a randomly

switching ODE, whose solution is known explicitly.

Proposition 5.6. For each t > 0, the expected cargo position x(t) conditioned on a realization of

the jump process satisfies

d
dt

x(t) = ε−1
M

∑
i=1

(
zi(t)− x(t)

)
, almost surely. (5.24)
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Proof. Using the explicit solution of an OU process, we have that

X(t) = X(τ)e−θ(t−τ) + µ(1− e−θ(t−τ)) +M, (5.25)

where τ is the most recent jump time of J,

τ = sup
{
{0} ∪ {s < t : J(s−) 6= J(s+)}

}
,

θ = m(τ)ε−1, µ = 1
m(τ) ∑i∈I(τ) Zi(τ), and M satisfies E[M|J] = 0. We have used the

notation f (t±) := lims→t± f (s). Hence, taking the expectation of (5.25) conditioned on J

yields

x(t) = E[X(τ)e−θ(t−τ)|J] + E[µ(1− e−θ(t−τ))|J]

= e−θ(t−τ)E[X(τ)|J] + (1− e−θ(t−τ))
1

m(τ) ∑
i∈I(τ)

E[Zi(τ)|J],

since τ are {m(s)}s≥0 measurable with respect to the σ-algebra generated by J.

5.4.2.2 Separation of timescales

We next make an observation of disparate timescales. After averaging over the dif-

fusive noise W, the model effectively depends on two timescales: the relaxation time

of the continuous dynamics (5.24) (characterized by the dimensionless rate ε−1) and the

switching times of the discrete motor dynamics (5.5) (characterized by the dimensionless

rates λon, λstep, λoff). Even for conservative parameter estimates, the continuous timescale

is much faster than the discrete switching timescale. For instance, suppose a motor exerts

a Hookean force with stiffness k = 0.5 pN/nm [13] on a spherical cargo with radius r = 1

µm in cytosol with viscosity η equal to that of water. It follows that k/(6πηr) ≈ 3× 104

s−1, whereas koff(1) is on the order of 10−1 to 101 s−1 [13]. Hence,

ε := koff(1)γ/k ≈ 3 < 10−4 � 1. (5.26)

Further, λon, λstep, λoff are roughly order one since kon, kstep, koff have similar orders of

magnitude [13].

Therefore, compared to the switching timescale, x(t) quickly relaxes to an equilibrium

between motor switches. Furthermore, we are interested in studying E[Ron] and V, which

depend on the behavior of x(t) over the course of several motor switches. Hence, we
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approximate x(t) by a jump process x(t) obtained from assuming x(t) immediately relaxes

to its equilibrium after each motor switch.

More precisely, let (x(t), z1(t), . . . , zM(t)) ∈ RM+1 be a J-measurable, right-continuous

process,

x(t) = x(t+), zi(t) = zi(t+), t ≥ 0, i ∈ {1, . . . , M},

with x(0) = x(0) and zi(0) = zi(0), i ∈ {1, . . . , M}, that evolves in the following way. In

light of (5.7), we define the effective motor positions by how they are modified through

the jump process, binding at τi and then incrementing from stepping, or staying unbound

at the cargo position x(t),

zi(t) =
(
x(τi(t)) + Ji(t)

)
1{Ji(t) 6=u} + x(t)1{Ji(t)=u}, i ∈ {1, . . . , M}. (5.27)

Due to the assumed fast relaxation, x(t) only changes when a motor steps or unbinds,

as newly bound motors exert no force. That is, if Ji(t+) = Ji(t−) for all i ∈ {1, . . . , M}
satisfying Ji(t−) ≥ 0, then x(t−) = x(t+). Otherwise, x(t) evolves according to the

following two rules, which describe how the cargo position x(t) changes when a motor

steps or unbinds.

1. If the i-th motor steps (Ji(t−) = j ≥ 0 and Ji(t+) = j + 1), then x(t+) = x(t−) +
1/m(t).

2. If the i-th motor unbinds (Ji(t−) = j ≥ 0 and Ji(t+) = u), then x(t+) = x(t−) +
∆i,(z1,...,zm(t−)), where (z1, . . . , zm(t−)) gives the positions of the m(t−) bound motors

just before time t, and

∆i,(z1,...,zm(t−)) =
1

m(t−)− 1

m(t−)
∑

i′=1,i′ 6=i
zi′(t−)−

1
m(t−)

m(t−)
∑
i′=1

zi′(t−). (5.28)

In words, if either of these events occurs, the cargo position x(t) relaxes to the mean

position of the motors. These two rules describe how the mean motor position changes

in the two scenarios. If a single motor steps, incrementing its position by 1, the mean

motor position increases by 1/m(t). If a motor unbinds, (5.28) is the change in the mean

motor position from removing that motor.
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It follows from these two evolution rules for x(t) that

x(t) =
M

∑
m=1

1
m

Sm(t) + χ(t), (5.29)

where Sm(t) is the number of steps taken when m motors are bound before time t (each of

which modifies the position by 1/m), and χ(t) accounts for changes in the cargo position

that result from a motor unbinding,

χ(t) =
Noff(t)

∑
k=1

∆jk ,(z1(sk
off−),...,zm(sk

off−)
(sk

off−), (5.30)

where 0 = s0
off < s1

off < . . . is the sequence of times in which a motor unbinds,

sk
off := inf

{
t > sk−1

off : Ji(t−) ≥ 0 and Ji(t) = u for some i ∈ {1, . . . , M}
}

k ≥ 1,

and Noff(t) := sup{k ≥ 0 : sk
off ≤ t} is the number of unbindings before time t ≥ 0, and

jk ∈ {1, . . . , M} gives the (almost surely unique) index of the motor that unbinds at time

sk
off. That is, jk satisfies Jjk(s

k
off−) 6= Jjk(s

k
off) = u.

The following proposition checks that x(t) converges almost surely to the jump process

x(t) as ε→ 0. The proof is in Appendix B.2.

Proposition 5.7. If T ≥ 0 is an almost surely finite stopping time with respect to {J(t)}t≥0, then

lim
ε→0

x(T) = x(T), almost surely.

From this proposition, we conclude that studying the mean behavior of the cargo

position X(t) can ultimately be reduced to studying the jump process x(t), where the

jumps correspond to motor stepping and unbinding events.

5.4.3 Run length and velocity

Since ε � 1 for biologically relevant parameters, we investigate the run length and

velocity of X(t) by investigating the analogous quantities for x(t),

R := x(τ1
off)− x(τ1

on), V := lim
t→∞

x(t)
t

. (5.31)

5.4.3.1 Run length

The following proposition checks that the mean run length of the full process X(t)

converges to the mean run length of the jump process x(t) as ε→ 0.
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Proposition 5.8. E[Ron]→ E[R] as ε→ 0.

Proof. By the tower property of conditional expectation (Theorem 5.1.6 in [7]), we have

that

E[Ron] = E[E[Ron|J]] = E[E[X(τ1
off)− X(τ1

on)|J]] = E[x(τ1
off)− x(τ1

on)].

Now, Proposition 5.7 ensures that

x(τ1
off)− x(τ1

on)→ R, almost surely as ε→ 0. (5.32)

Let N ≥ 0 be the number of steps taken between time τ1
on and time τ1

off. Since motors

take steps of distance one, we have the almost sure bound, x(τ1
off) − x(τ1

on) ≤ N. Steps

are taken at Poisson rate m(t)λstep(m(t)) ≤ MΛ, and thus E[N] ≤ ΛME[τ1
off − τ1

on] < ∞.

Thus, (5.32) and the bounded convergence theorem complete the proof.

5.4.3.2 Velocity

Let us now investigate V in (5.31), observing that this quantity can be approached in

two ways. The first exploits the observation that nonzero mean displacements only occur

from motor stepping, so the velocity can be interpreted as the product of how often a step

occurs with m motors and the size of the displacement. The second approach is again

a reward-renewal argument, noting that the only nonzero displacements occur during

epochs of bound cargo. The connection between these two approaches provides explicit

relationships between the velocity, run lengths, and run times.

Recalling the decomposition of the jump process x in (5.29), we seek to compute the

expected value

E[x(t)] =
m

∑
m=1

1
m

E[Sm(t)] + E[χ(t)].

Using the definition of χ(t) in (5.30), we compute its expectation by summing over all

possible displacements from one of m motors unbinding ∆j,(z1(t−),...,zm(sk
off−)

(t−), which yields

m

∑
j=1

∆j,(z1,...,zm) =
1

m− 1

m

∑
j=1

(
− zj +

m

∑
i=1

zj

)
−

m

∑
i=1

zi = 0.

Since each of the bound motors is equally likely to unbind, it follows that E[χ(t)] = 0.

This can be interpreted as the observation that the arithmetic mean does not change in
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expectation when removing a randomly (uniformly) chosen element. In other words, the

effects of motors unbinding ahead of the cargo are completely offset in the mean by motors

unbinding behind the cargo. Therefore, the only long-term influence on x is stepping

events.

Given a realization {m(s)}s≥0, the number of steps taken with m motors bound before

time t ≥ 0 is Poisson distributed with mean mλstep(m)
∫ t

0 1m(s)=m ds. Hence,

E[Sm(t)] = mλstep(m)E
[ ∫ t

0
1m(s)=m ds

]
.

Now, {m(s)}s≥0 is an ergodic Markov process, so the occupation measure converges al-

most surely to the stationary measure (see Theorem 3.8.1 in [35])

1
t

M

∑
n=1

∫ t

0
1m(s)=m ds→ pm, almost surely as t→ ∞,

where pm := limt→∞ P(m(t) = m) is the stationary probability m motors are bound. We

note that pm is the (m + 1)-st component of the unique probability vector, p ∈ R1×(M+1)

satisfying (see Theorem 3.5.2 in [35])

pQ̃ = 0, (5.33)

where Q̃ ∈ R(M+1)×(M+1) is the generator matrix defined in section 5.4.1. Since the occu-

pation measure is bounded above by one, the bounded convergence theorem gives

lim
t→∞

E[x(t)]
t

= lim
t→∞

M

∑
m=1

λstep(m)E
[1

t

∫ t

0
1m(s)=m ds

]
=

M

∑
m=1

λstep(m)pm.

It is easy to see that the classical renewal reward theorem applies to x(t) so that

M

∑
m=1

λstep(m)pm = lim
t→∞

E[x(t)]
t

= lim
t→∞

x(t)
t

=
E[R]

E[Ton] + E[Ton]
, almost surely.

Furthermore, (5.19), (5.20), (5.21), and Proposition 5.8 yield

lim
ε→0

V = lim
ε→0

E[Ron]

(Mλon(0))−1 + E[Ton]
=

E[R]
(Mλon(0))−1 + E[Ton]

=
M

∑
m=1

λstep(m)pm.

In summary, we now have explicit formulas for the velocity V and expected run length

E[Ron] of X(t) in the small ε limit,

lim
ε→0

V = V =
M

∑
m=1

λstep(m)pm (5.34)

lim
ε→0

E[Ron] = E[R] =
((

Mλon(0)
)−1

+ E[Ton]
) M

∑
m=1

λstep(m)pm, (5.35)
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where pm is given by (5.33) and E[Ton] is given by (5.22). In Figure 5.3, we compare

these formulas for E[R] and V with estimates of E[Ron] and V from simulations of the

full process (X(t), Z(t), J(t)) (for details on our statistically exact simulation method, see

section 5.4.5).

Furthermore, some experimental works [13, 23] measure the average run velocity, E[R/Ton].

Now, if σ(m) denotes the σ-algebra generated by {m(t)}t≥0, then recalling (5.8) and (5.10)

and using the tower property of conditional expectation yields

E
[ R

Ton

]
= E

[ 1
Ton

E[R|σ(m)]
]
= E

[ 1
T1

on

M

∑
m=1

1
m

E[Sm(τ
1
off)|σ(m)]

]

=
M

∑
m=1

1
m

mλstep(m)E
[ 1

T1
on

∫ τ1
off

0
1m(s)=m ds

]
.

Hence, it follows from (5.34) that

V := E[R/Ton] = V/pon, (5.36)

where pon = ∑M
m=1 pm is the stationary probability that m(t) ≥ 1.

5.4.4 Cases M = 1, M = 2, and M = 3

In this subsection, we collect explicit formulas for the run length E[R] and run velocity

V when the total number of motors is M = 1, 2, 3. The run time E[Ton] and net velocity V

can be easily deduced from these quantities using (5.34)-(5.35) but are omitted for brevity.

For M = 1 total motors, the quantities are simply

E[R] = λstep(1), V = λstep(1). (5.37)

For M = 2 total motors, we find

E[R] = λstep(1) +
λon(1)λstep(2)

2λoff(2)
, V =

2λoff(2)λstep(1) + λon(1)λstep(2)
2λoff(2) + λon(1)

. (5.38)

For M = 3 total motors, we find

E[R] = λstep(1) +
λon(1)(3λoff(3)λstep(2) + λon(2)λstep(3))

3λoff(2)λoff(3)
,

V =
3λoff(3)

[
λoff(2)λstep(1) + λon(1)λstep(2)

]
+ λon(1)λon(2)λstep(3)

3λoff(3) [λoff(2) + λon(1)] + λon(1)λon(2)
.

(5.39)

To put these quantities in dimensional units, recall the jump rates (5.4) and multiply E[R]

by the dimensional step distance δ > 0 and multiply V by δkoff(1) > 0.
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Figure 5.3. Expected run lengths E[R] and asymptotic velocities V as a function of
the parameters kon, koff, kstep for M = 1, 2, 3 total motors. The curves are the analytical
formulas (5.34)-(5.35) for the ε → 0 limit, and the dots are estimates from statistically
exact realizations of the full process, {(X(s), Z(s), J(s))}t

s=0, where the ending time t
is such that N(t) = 105 where N(t) is defined in (5.11). Unless noted otherwise,
kon(m) = 10

[
s−1] , kstep(m) = 20

[
s−1] , koff(m) = 5

[
s−1] for each m. Further, k and γ

are as in (5.26) and kBT = 4.1 [pN · nm].

5.4.5 Numerical simulations

To verify our predictions for the expected run lengths and velocities, we compare to

statistically exact numerical simulations of the full process (X(t), Z(t), J(t)). In a given

state, we use the classical Gillespie stochastic simulation algorithm to generate the time of

the next transition for the Markov chain J(t) and to choose which transition occurs. For

m(t) ≥ 1, X(t) is an OU process, generically described by

dX(t) = α [µ− X(t)] dt + βdW(t).

To update X(t) to the next time t + τ, we use the statistically exact method described in

[15], summarized by

X(t + τ) = e−ατX(t) + (1− e−ατ)µ + β

√
(1− e−2ατ)

2α
n

where n is a standard normal random variable. When m(t) = 0, X(t) is a pure diffusion

process with α = 0, so (5.4.5) becomes an Euler-Maruyama update. This procedure gener-



80

ates statistically exact sample paths of X(t), sampled at the transition times of J(t). We use

this scheme to generate a long realization of (X(t), Z(t), J(t)), thereby providing Monte

Carlo estimates for E[Ron] and V for a given parameter set.

5.5 Biological application
We now use the formulas (5.37)-(5.39) for run velocity, V , and run length, E[R], to

explore the behavior of nonprocessive motors. The behavior of individual nonprocessive

motors is characterized by two observations: i) short attachment times, ii) the time it takes

to hydrolyze ATP (and consequently, to step) coincides with this attachment time [4, 12,

34]. Concretely, Ncd motors in the kinesin-14 family take 1 to 5 steps before unbinding

[1, 8]. In our model, λstep(1) gives the expected number of steps before unbinding, so we

characterize nonprocessive motors as those with λstep(1) ∈ [1, 5].

Using this characterization, we explore the observation made in [13, 23, 42] that non-

processive motors in the kinesin-14 family cooperate to produce long-range transport. This

behavior is reported in [13, 23] in terms of a velocity that is analogous to the run velocity

V in our model. Specifically, the primary manifestation of cooperativity is that V increases

substantially when the total number of motors increases from M = 1 to M = 2. For M ≥ 2,

the velocity remains relatively constant.

We thus ask the question: What features are necessary to produce this behavior? Now,

if the step rate is independent of the number of bound motors, m, then it follows immedi-

ately from (5.34) and (5.36) that V is independent of M. In particular, if the dimensional

step rate is kstep(m) ≡ k0 for all m ∈ {1, . . . , M}, then in dimensional units V is simply δk0,

regardless of any other parameter values.

Therefore, our model predicts that the stepping rate must depend on the number of

bound motors in order to produce the cooperative behavior seen in run velocities in [13,

23]. This prediction is bolstered by the simulation results of [13]. There, the authors

constructed a detailed computational model of motor transport, and they had to improve

motor stepping ability when two or more motors are bound in order for simulations of

their computational model to match experimental run velocities.

The authors of [13] also describe motor cooperativity in terms of the average distance

traveled by a cargo before all of its motors detach from a microtubule, which is analogous
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to E[R] in our model. Namely, they find that the run length E[R] dramatically increases

when M increases from 1 to 2. Our model can replicate this cooperativity if and only if we

allow the binding rate, kon, and/or the unbinding rate, koff, to depend on the number of

bound motors, m.

To illustrate, we find the parameter values needed for our model to match the mea-

surements from [13]. However, we emphasize the qualitative results rather than the pre-

cise quantitative values of our parameters. Indeed, there are issues preventing an exact

comparison of our model with the data in [13]. For example, as the authors point out, the

length of the microtubules sometimes caused run lengths to be significantly altered (see

Figures 1 and S6 in [13]). Furthermore, for a single motor (M = 1), the authors report

average run lengths of approximately 300 [nm], and they note that this value is necessarily

an overestimate since they were unable to measure very short runs. Furthermore, this

value must also be an overestimate since a single nonprocessive motor takes only a few

steps per run (by definition of nonprocessive), and each step is approximately 7 [nm] [8].

We thus assume that λstep(1) = 4, based on [1, 8] and δ = 7 [nm]. This gives E[R] =

28 [nm] for M = 1, which we use instead of the reported value in [13]. We then match

the respective approximate run lengths of 1300 [nm] and 3300 [nm] for M = 1, 2 and

the respective approximate run velocities of 100, 150, and 150 [nm/s] for M = 1, 2, 3

reported in [13]. Using the formulas in (5.37)-(5.39), this uniquely determines the stepping

rates, kstep(1) ≈ 14 [s−1] and kstep(2) ≈ kstep(3) ≈ 21 [s−1], and the unbinding rate

koff(1) ≈ 3.5 [s−1], which are all within the range of previously reported rates. The other

binding/unbinding rates are not uniquely specified, but rather must satisfy the relations

koff(2) ≈ 0.02kon(1) and koff(3) ≈ 1.1kon(2). Hence, if koff were constant in m, then

kon(1) ≈ 200 [s−1] and kon(2) ≈ 3 [s−1].

We make two observations about this result: i) the binding rate kon(1) is an order of

magnitude larger than reported values [1, 13] and ii) the binding rate decreases as the

number of bound motors increases from 1 to 2. Both of these points can be explained by

geometry. First, the value of kon(1) is enhanced because the single bound motor tethers

the unbound motors close to the microtubule, and thus allows those motors to bind more

easily. This binding enhancement due to geometry has precedent in motor studies. Indeed,

in a different family of kinesins, it was shown to be critical for determining run lengths
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[10]. Further, it was shown to play a critical role in enabling dynein processivity [17],

and it was posited as an explanation for why myosin motors can become processive when

processive kinesin motors are present [19]. The authors in [2] report large kon values in a

model of microtubule sliding driven by kinesin-14 motors and also speculate that this is

due to tethering effects. These effects are summarized in Figure 5.4.

This effect can also be understood in terms of rebinding. If two motors are bound and

one unbinds, then that motor can rapidly rebind since the bound motor keeps it near the

microtubule. Such rebinding was the mechanism posited in [14] to explain the processive

behavior of nonprocessive motors along microtubule bundles. Further, rebinding is very

important in enzymatic reactions [40, 16, 29, 30]. In that context, one incorporates rebind-

ing by using an “effective” unbinding rate, which is the intrinsic unbinding rate multiplied

by the probability that the particle does not rapidly rebind [28]. Hence, this effect could be

included in our model by reducing koff(2) rather than (or in addition to) increasing kon(1).

Importantly, this is exactly what is implied by the relation, koff(2) ≈ 0.02kon(1), derived

above.

Second, geometric exclusion effects can explain a decrease in binding rates as the num-

ber of bound motors increases from 1 to 2. When more motors are bound, it is more

difficult for additional motors to bind because the range of diffusive search is reduced

for unbound motors. In numerical investigations of motor transport systems, this exact

effect is observed [26, 31]. Furthermore this decrease in binding rate can arise due to
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motors competing for binding sites, a point posited in [25]. Interestingly, these authors

find that negative cooperativity has little impact on transport velocity. The same is true

in our model, as the value of V changes by less than 1 [nm/s] as kon(2) ranges from 0 to

∞ while keeping the other parameters fixed. However, we note that the run length for

M = 3 is greatly affected by kon(2), and thus this highlights the importance of using both

run velocity and run length to study motor transport.

5.6 Discussion
In this work, we formulated and analyzed a mathematical model of transport by non-

processive molecular motors. We deliberately made our model simple enough to enable us

to extract explicit formulas for experimentally relevant quantities, yet maintain agreement

with detailed computational studies. One such simplification is to assume the motor step-

ping and unbinding rates are independent of force. The justification for this assumption

is that since nonprocessive motors take only a few steps before unbinding (compared to

hundreds of steps by processive motors), these motors are unlikely to be stretched long

distances and therefore are unlikely to generate large forces. This assumption on the

stepping rate has been made in other models involving nonprocessive motors [34] and

did not appear to be a necessary feature in that context. Furthermore, how force affects

stepping is not completely clear [36].

These limitations notwithstanding, our model makes some concrete predictions about

motor number-dependent stepping, binding, and unbinding behavior and how these quan-

tities contribute to transport by nonprocessive motors. Specifically, we observe that a

complex cooperativity mechanism appears to be a necessary ingredient for nonproces-

sive motor transport, and these predictions align with several recent experimental and

computational works. Furthermore, these predictions can be investigated experimentally.

Indeed, we hope that the work here will spur further investigation into how geometry

affects nonprocessive motor transport, especially given that kinesin-14 motors are known

to transport a wide variety of cargo, including long, cylindrical microtubules [18, 11] and

large, spherical vesicles in plants [42].
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CHAPTER 6

FUTURE DIRECTIONS

In this chapter, we outline plans for future work, both in pursuit of biological and

mathematical questions. Extensions of the contents of this thesis are described, as well as

distinct research directions.

6.1 Bidirectional transport with asymmetric populations
In Chapter 2, we considered the tug-of-war problem for symmetric populations. That is,

the motors associated with each direction had identical properties (e.g., binding kinetics,

velocities). In this scenario, the system displays interesting symmetry breaking behavior,

but perhaps neglects biological evidence to the contrary. It is well established that in

tug-of-war contexts (with kinesin and dynein [9, 34, 22] or by different types of kinesins

[13]) the two populations are asymmetric. It is then of natural interest to investigate the

influence of asymmetry on the metastable switching of this system.

However, the analysis described in Chapter 2 hinged on the symmetry of the system,

with the state of the system (ξ, η) evolving on an invariant manifold. However, if F1, F2

(the effective force generated by each population) differ, the problem becomes a singular

metastable escape problem with a seemingly mathematical interesting structure.

Rather than study this problem directly, we instead turn to a minimal toy problem of

the form x := (x, y) ∈ R2

d
dt

x = A(x) + B(x)ξ(t), (6.1)

where ¸(t) ∈ R2 is a vector of independent white noise processes. We then take the drift A

to be the classical Maier-Stein system [25, 26, 27]

A(x) =
[

x− x2 − αxy2

−y(1 + x2)

]
. (6.2)

The drift (6.2) produces three equilibria at x = 0,±1 along y = 0. The noise matrix B is

taken to be of the form



88

B =

[
1 0
γ ε

]
. (6.3)

The noise matrix (6.3) shares features of the bidirectional transport problem described in

Chapter 2. If ε = 0, γ 6= 0, the noise between the populations is perfectly correlated, as

in the thermal fluctuation case. However, classical metastable escape theory considers the

opposite: ε 6= 0, γ = 0. From the noise matrix B we define the diffusion tensor

D := BBT =

[
1 γ
γ γ2 + ε2

]
. (6.4)

From (6.4) we immediately see an interesting feature, which is that for γ = 0, D is singular.

The classical approach to studying escape problems involves associating a Hamiltonian

H(x, p) = 〈A(x), p〉+ 1
2
〈p, Dp〉, (6.5)

where 〈·, ·〉 denotes the standard inner product. For this Hamiltonian, there is an associ-

ated Lagrangian

L(x, y) = sup
p
{〈y, p〉 − H(x, p)} =

〈
y− A(x), D−1(y− A(x))

〉
. (6.6)

From (6.6) and (6.4), we see an immediate issue when D is noninvertible. This raises the

question: Does metastable switching even occur at all? Geometrically, the singularity of D

comes from the noise being one dimensional. To investigate this, we perform simulations

of the switching problem, which can be seen in Figure 6.1.

From these simulations, we see that when ε 6= 0, the behavior around the metastable

points is ellipsoidal as we expect. However, in the singular case, even though noise pushes

the particle in the diagonal direction (and all the fixed points lie on a horizontal line), we

still get metastable switching.

In the future, we hope to develop a framework for understanding this type of metastable

escape problems. While it may be possible to transform this into a classical formulation,

intuitive transformations such as rotations [19] do not alleviate the singular behavior. We

plan to pursue extending both analytical frameworks such as [23] as well as numerical

techniques such as the geometric minimum action method [18, 36]. The latter seems to

depend on a Hamiltonian formulation, which may still exist, but appears distinct from the

classical formulation. In doing this, new mathematical theory would enable the further

study of the biological system posed in Chapter 2.



89

− 1 0 1
X (t)

− 1.0

− 0.5

0.0

0.5

1.0

Y
(t

)

0 500 1000 1500 2000 2500
t

− 2

0

2

Y(
t)

,
X

(t
)

− 1 0 1
X (t)

− 1.0

− 0.5

0.0

0.5

1.0

Y
(t

)

0 500 1000 1500 2000 2500
t

− 2

0

2

Y(
t)

,
X

(t
)

a bε = 0 ε ≠ 0

Figure 6.1. Metastable switching for the Maier-Stein problem for different values of ε and
α = 1 fixed. a: Singular D case withε = 0, example trajectory and histogram in trajectory
space are shown. b: Same parameters as previous but in this case, ε = 1 producing a
nonsingular D.

6.2 Bayesian methods for motor-mediated transport data
The premise of Chapter 4 was to understand motor-mediated transport data by con-

structing a toy model that agrees with distinct features of the data (summary statistics).

More explicitly, the primary tool to characterize the spatio-temporal data in this context

was mean-squared displacement (MSD) analysis [30]. While this tool has widespread

success in categorizing data as diffusive, subdiffusive, or superdiffusive, further insight

is limited or nonexistent. In Chapter 4, we do ultimately find that more information

can be extracted from MSD analysis, but this issue is inherently caused by the fact that

linear (diffusive) MSD curves are known to be driven by a variety of causes in this context

[31, 8, 38].

For these reasons, it seems apparent that more sophisticated statistical analyses (specif-

ically, Bayesian) may prove fruitful in this context. In some sense, MSD analysis is a

maximum-likelihood-estimator (MLE) oriented analysis, as it is a “best fit” to the mo-
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ments describing the data. However, there are two immediate limiting features of this.

For one, the only models that can be compared against are subdiffusive, diffusive, and

super-diffusive behaviors. While a number of systems can produce these statistics, using

this as the statistical model to compare against limits the zoology of behaviors. Moreover,

MLE-based tests do not provide model assessment. That is, Bayesian techniques have the

feature of providing information (via the posterior distribution) about ranges of param-

eters. For instance, one could write a model of intracellular transport and use Bayesian

techniques to infer parameters, and if a parameter is able to vary over several orders of

magnitude with little impact, this reveals critical insight about agreement between the

model and data. For this reason, Bayesian-based techniques are a natural tool for the study

of these systems.

Application of Bayesian techniques toward spatio-temporal data already has a rich

literature [21, 20]. While others have considered Bayesian techniques for motor-transport

data (e.g. [22]), this body of literature seems underutilized in this context. The primary

context that seems to be advancing this literature is tracking of subdiffusive particles

[24]. In this literature, advancing the classification beyond subdiffusive is critical in order

to understand the underlying mechanisms. Whether it be diffusive or ballistic motion,

the same need exists in motor-mediated transport data. Other valuable features can be

extracted from these techniques. For instance, in [2], a simple Ornstein–Uhlenbeck model

is used to infer information about the environment, a hugely important component of

transport by motors [15, 1].

As it seems as though Bayesian-based single particle tracking techniques are a natural

and likely fruitful tool for connecting motor-mediated transport data and models, we hope

to port the previously successful methods used in other contexts. Although powerful, one

limitation is that these techniques are often model-specific, meaning that in doing so, new

mathematical insight will likely be necessary, meaning this pursuit has both biological and

mathematical benefits.

6.3 Cytoskeletal manipulation by nonprocessive motors
Chapter 5 investigates how nonprocessive motors (such as those in the kinesin-14 fam-

ily) act cooperatively to produce transport, based on the experiments in [13]. In some
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sense, this level of cooperativity is surprising, given the residence time of a single non-

processive motor. However, from an evolutiontuned design perspective: Why do cells have

nonprocessive motors at all? These motors are known to be used for transport in plants

[37], but why use nonprocessive motors when processive seem superior (in the sense

of efficiency) for this application? One might intuit that perhaps nonprocessive motors

somehow are able to use their fast binding and unbinding to somehow “fine tune” a

cellular process. We would like to find and model a context that reveals exactly this

behavior.

In Figure 6.2, two applications of motors in the kinesin-14 family are shown. Aside

from transport in plants, kinesin-14 motors are heavily utilized in mechanically manipu-

lating cytoskeletal filaments [4, 5, 3, 6, 7, 12, 17] including during mitotic spindle assembly

[14, 16, 32]. Aside from binding and unbinding rapidly, motors within this family are

also reported to be particularly bidirectional [28, 29] perhaps enabling them to serve as a

force-induced switch.

However, from all of these reports, it is not clear which features (if any) makes nonpro-

cessive motors particularly suited for the job of cytoskeletal manipulation. We hypothesize

that the long attachment times of processive motors would cause these processes to “get

i

ii STOP

Template MT

Ase1 Transport MT

Ncd

a b

Figure 6.2. Cartoons depicting the utilization of nonprocessive motors in cytoskeletal
regulation. a: Redrawn from [5], kinesin-14 motors are utilized in microtubule sliding.
b: Redrawn from [28], kinesin-14 motors guide microtubules to form parallel bundles.
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stuck,” whereas rapid binding and unbinding allows for the process to achieve increased

temporal resolution. The importance of the force-induced switch also remains elusive,

especially considering the short periods of time the motor is exposed to force. We intend

to construct a mathematical model of teams of nonprocessive motors manipulating cy-

toskeletal filaments with both of these features, parameterized in such a way that could

also describe processive motors. From this model, we hope to discern whether it is ever

“beneficial” to be a nonprocessive motor, a key insight in understanding the role that these

motors play in the ecosystem of motor function within the cell.

6.4 Geometric effects in motor transport
In both Chapter 4 and Chapter 5, the binding and unbinding kinetics of nonprocessive

motors greatly influenced the net motion of the cargo. In the latter project, the conclu-

sion was that the only way nonprocessive motors are able to achieve cooperativity is to

utilize geometric effects (tethering) to increase the rebinding rate of a teammate motor.

This effect has indeed been observed experimentally [11] and thought to be critical for

nonprocessive motor driven microtubule sliding [7]. We raise the question: What geometric

influences dictate these tethering effects? In the first scenario, the cargo is spherical (or linear,

DNA origami), whereas in the second a microtubule serves as a long, cylindrical cargo,

yet this geometric tethering effect appears to be apparent in both. For this reason, we

hope to develop a quantitative understanding of how geometry influences motor binding

kinetics. For this, we plan to use a binding site model [35], or perhaps a mean-first-passage

formulation [10] to model the binding time with different motor configurations and cargo

geometries.

Geometric influences can also influence intracellular transport in other ways. In [23],

the authors find that a diffusible membrane surface to the cargo affects transport velocity,

relating to the fact that motors often transport lipids [33, 22] with diffusible membranes.

This membrane diffusion allows for the motor geometric configuration to be adjusted

dynamically, and therefore closely relates to the theme of this proposed work. We hy-

pothesize that diffusing along the membrane surface allows unattached motors to rebind

faster and enhance net motion. However, it is also feasible that this diffusion allows for

the motors to alleviate some force and stay attached for longer. We hope to construct a
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model including diffusion along the cargo surface to explore where these geometric effects

influence transport ability most significantly.
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APPENDIX A

SUPPLEMENTAL INFORMATION FOR

CHAPTER 2

In this appendix, we include the supplemental information that accompanied the pub-

lished work detailed in Chapter 2, originally published in Journal of Theoretical Biology, 424

(2017) 37–48.

A.1 Steady-State Force Density
In this section, we construct an analytical solution to the steady-state mean field equa-

tion (4) with the particular choice of functional forms described in the chapter. Thus, we

are looking at equations of the form

∂x {(w(x)− v)m}+ koffek|x|/FD m =

{
M−

∫ ∞

−∞
m(x)dx

}
konδ(x).

The first observation that can be made is: due to the linearity of this equation, we can

reduce it to the study of the simpler equation

∂x {(w(x)− v)u}+ koffek|x|/FD u = konδ(x), (A.1)

where m(x), the original solution can be recovered via the relationship

m(x) =
M

1 + U
u(x), U :=

∫ ∞

−∞
u(x)dx. (A.2)

We now divide everything through by koff in (A.1) and recall w(x) = −ax + b. Denote the

rescaled variables ·/koff by ·̃ and also abbreviate k/FD = α, yielding

∂x
{
(−ãx + b̃− ṽ)u

}
+ exp{α|x|}u = k̃δ(x). (A.3)

We can now split this into two scenarios: to the left of x = 0 and to the right:
{

∂x
{
(−ãx + b̃− ṽ)uL

}
+ exp{−αx}uL = 0 for x < 0,

∂x
{
(−ãx + b̃− ṽ)uR

}
+ exp{αx}uR = 0 for x > 0.

(A.4)



97

These two equations must satisfy a matching condition at x = 0, so consider integrating

(A.3) a tiny window around x = 0 from −ε to ε, yielding
∫ ε

−ε
∂x
{
(−ãx + b̃− ṽ)u

}
+ exp{α|x|}u = (b− v) [uR(0)− uL(0)] =

∫ ε

−ε
k̃δ(x)dx = k̃.

In other words, we have the matching condition

(b− v) [uR(0)− uL(0)] = k̃.

Integrating (A.4), we find

uL(x) =
αL

ãx− b̃ + ṽ
exp

{
1
ã

exp
(
(−b̃ + ṽ)α

a

)
Ei
(
− (−b̃ + ṽ + ãx)

ã

)}
(A.5a)

uR(x) =
αR

ãx− b̃ + ṽ
exp

{
1
ã

exp
(
(b̃− ṽ)α

a

)
Ei
(
(−b̃ + ṽ + ãx)

ã

)}
, (A.5b)

where αR, αL are unknown constants and Ei is the exponential integral. The matching of

these two can be simplified by the realization: only one of uL, uR is nonzero.

That is, if −ãx + b̃− v > 0, then the advection is rightward (only starting from x = 0)

and therefore uL = 0. Similarly, if the advection is leftward then uR = 0 necessarily.

It should also be noted that (A.5) demonstrate the integrable singularity at x? = −ṽ+b̃
ã ,

beyond this point, the solution is also necessarily zero. Thus, the solution reduces to either

the interval [0, x?] or [x?, 0] depending on the sign of x?, or really, if b > v.

Thus, if b > v, then x? > 0 and uL < 0 and if b < v then x? < 0 and uR = 0. Thus, if

b > v, then our matching condition provides us αR:

αR = −k̃ exp
{

1
ã

exp
(
(b̃− ṽ)α

ã

)
Ei
(
(−b̃ + ṽ)α

ã

)}
.

Similarly, in the case that b < v, we have

αL = k̃ exp
{

1
ã

exp
(
(−b̃ + ṽ)α

ã

)
Ei
(
(b̃− ṽ)α

ã

)}
.

Thus, we have constructed all components of the analytical solution to the original steady

state equation.

A.2 Force-Velocity Curves
In this section, we plot the steady state force-velocity curves described by (5). In the

plots seen in Figure A.1, the parameter values are taken to be those described by Table 2.1

except for one parameter (shown in the legend), which is adjusted over a range of values.
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(ṽ
) [

pN
] 

FD  [pN]
0.75
1
2
3
4

2000 1000 0 1000 2000
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(ṽ

) [
pN

] 

k  [pN/nm]
0.3
0.4
0.5
0.6
0.7

2000 1000 0 1000 2000
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Figure A.1. Plots of the steady state force distribution F̃ parameterized by the velocity of
the cargo for different parameter values.

A.3 Adiabatic Reduction Details
In this section, we perform an adiabatic reduction of (10), which, recalling the form of

w(x) and using F(x) = kx for the sake of illustration, yields

Mv̇ + γv = kx +
√

2γkBTξ(t), ẋ = ax + b− v,

which is equivalent to the Fokker-Planck equation

∂p
∂t

= − ∂

∂x
{(ax + b− v)p} − 1

M
∂

∂v
{(kx− γv)p}+ kBTγ

M2
∂2 p
∂v2 . (A.6)

We first perform a nondimensionalization. Let y = x/x0, τ = t/t0, which provides a

scaling on the velocity u = vt0/x0, all of which are dimensionless, where we particularly

take t0 = γ/k, and set γt0/M = 1/ε, which gives us that γ2/kM = 1/ε. We can then

also set the last term γkBTt2
0/M2x2

0 = 1/ε, which gives us that x0 =
√

kBTγ2/Mk2. Then,

(A.6) becomes

∂p
∂τ

= − ∂

∂y
{(αy + β− u) p}+ 1

ε

∂

∂u

{
(u− y)p +

∂p
∂u

}
, (A.7)
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which we denote
∂p
∂τ

=
1
ε

L1 p + L2 p.

Note, the null-space of the fast operator, L1 is not the same as the classical Brownian due

to a different choice of ε.

Now, if φ ∈ null(L1), then it satisfies the following differential equation:

∂φ

∂u
+ (u− y)φ = 0,

which has a solution

φ(u) =
1√
2π

exp{−(u− y)2/2}. (A.8)

Define the projection operator P as

P f := φ(u, y)
∫ ∞

−∞
f (u, y)du, Q := 1−P.

We then split our solution p into the part in the null-space of the fast operator and other-

wise. That is,

p = Pp + Qp = v + w,

where we take v to be of the form v = f (y, t)φ(u, y), as it is in the null space of L1, and f

is some unknown amplitude.

We first consider applying L2 to v for later calculations

L2v = L2Pp = − ∂

∂y
{(αy + β− u) f (y)φ(u, y)} .

Now, applying P to this result yields

PL2Pp = − ∂

∂y
{(αy + β− y) f } φ(u, y).

Next, we consider applying P and Q to the Fokker-Planck equation to yield the differential

equation

P

(
∂p
∂τ

)
=

∂v
∂τ

= P

(
1
ε

L1 + L2

)
(v+w) = PL2v+PL2w = − ∂

∂y
{(αy + β− y) f } φ+PL2w,

based on the first calculation and the fact that PL1 = 0 by construction. Next, we have

Q

(
∂p
∂τ

)
=

∂w
∂τ

= Q

(
1
ε

L1 + L2

)
(v + w)

=
1
ε

L1w + QL2(v + w)

=
1
ε

L1w + L2v + L2w−PL2v−PL2w.
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Noting that, again PL1 = 0 and L1v = 0 by construction. We now take w to be in quasi-

steady state, meaning it must satisfy

1
ε

L1w = −L2v + PL2v,

which, when using the definitions of these operators yields

1
ε

∂

∂u

{
(u− y)w +

∂w
∂u

}
=

∂

∂y
{(αy + β− u) f (y)φ(u, y)} − ∂

∂y
{(αy + β− y) f } φ(u, y).

We integrate once with respect to u to get rid of a derivative on the left hand side, finding

that
1
ε

{
(u− y)w +

∂w
∂u

}
= φ

{
f (y)(u− αy− β) + f ′

}
.

and therefore, using an integrating factor

w =
ε

2
φu
{

f (y)(u− 2αy− 2β) + 2 f ′(y)
}

.

Now, using this form of w, we must compute PL2w, since that is the term in the ∂v/∂t

equation. First, applying L2, by definition:

L2w = − ∂

∂y
{(αy + β− u)w(u, y)} .

and now projecting yields

PL2w = ε
[

f (y) + y f ′(y) + f ′′(y)
]

φ(u).

Thus, our differential equation for v is

∂v
∂τ

= −ε
∂

∂y
{(αy + β) f }+ PL2w = −ε

∂

∂y
{(αy + β) f }+ ε

[
f (y) + y f ′(y) + f ′′(y)

]
φ(u),

from which, we can conclude

∂ f
∂τ

= −ε
∂

∂y
{(αy + β) f }+ ε

∂

∂y
{y f (y)}+ ε

∂2 f
∂y2 ,

in the original variables,

∂ f
∂t

= − ∂

∂x

{(
ax + b− k

γ
x
)

f (x)
}
+

kBT
γ

∂2 f
∂x2 .



APPENDIX B

SUPPLEMENTAL INFORMATION FOR

CHAPTER 5

In this appendix, we provide proofs for lemmas and propositions found in Chapter 5.

B.1 Proofs of Lemmas 5.2-5.5
Proof of Lemma 5.2. Between time τk−1

off and τk
on, the cargo is freely diffusing. Therefore, to

control Yk
off, we need to control the supremum of a Brownian motion. Now, for any fixed

T > 0 and C > 0, it follows from Doob’s martingale inequality (Theorem 3.8(i) in [3]) and

symmetry of Brownian motion that

P( sup
t∈[0,T]

|W(t)| ≥ C) ≤ 2 exp
(−C2

2T

)
.

Hence, it follows that

P(Yk
off ≥ C|Tk

off) ≤ 2 exp
( −C2

2σ2Tk
off

)
, almost surely. (B.1)

Note that (B.1) is an average over realizations of the diffusion W for fixed realizations of

the time Tk
off. That is, the inequality holds for almost all realizations of Tk

off.

Now, Tk
off is exponentially distributed with rate Mλon(0). Hence, the tower property of

conditional expectation (see Theorem 5.1.6 in [2]) yields

P(Yk
off ≥ C) = E[P(Yk

off ≥ C|Tk
off)] ≤ 2Mλon(0)

∫ ∞

0
exp

(−C2

2σ2t
−Mλon(0)t

)
dt. (B.2)

Now, we have that
∫ ∞

0
λeλte−a/t dt = 2

√
aλK1(2

√
aλ), if a > 0, λ > 0, (B.3)

where K1(x) denotes the modified Bessel function of the second kind. Hence, the proof is

complete after combining (B.2) and (B.3) and the following bound,

K1(x) ≤
√

π/x(1 + 1/(2x))e−x, x > 0,

which was proven in [6].
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Proof of Lemma 5.3. To control Yk
on, we note that each bound motor takes steps of unit length

at a Poisson rate that is bounded above by Λ := maxm∈{1,...,M} λstep(m). Since the number

of bound motors is bounded above by M, and since the cargo is an OU process centered at

the average bound motor position, it follows that

P(Yk
on ≥ C|Tk

on) ≤ P
(

P(Tk
on) + σ sup

t∈[0,Tk
on]

|W(t)| > C
∣∣∣Tk

on

)
, almost surely,

where P(Tk
on) ≥ 0 is a Poisson random variable with mean MΛTk

on. Hence,

P(Yk
on ≥ C|Tk

on) ≤ P
(

P(Tk
on) ≥ C/2

∣∣Tk
on
)
+ P

(
sup

t∈[0,Tk
on]

|W(t)| ≥ C/(2σ)
∣∣Tk

on
)
. (B.4)

We thus need to control the distribution of Tk
on. Now, Tk

on is the first passage time of

the Markov chain (5.6) to state m = 0 starting from state m = 1. This Markov chain is a

finite state space birth-death process, and thus there exists [1] a unique quasi-stationary

distribution ν ∈ RM, which is a probability measure on {1, . . . , M} so that if P(m(0) =

m) = νm for m ∈ {1, . . . , M}, then

P
(
m(t) = m

∣∣m(s) 6= 0 for all s ∈ [0, t]
)
= νm, m ∈ {1, . . . , M}.

Furthermore, it is known that the first passage time of m(t) to state 0 is exponentially

distributed with some rate λ > 0 if P(m(0) = m) = νm for m ∈ {1, . . . , M} [4]. If S is this

first passage time, then

P(Ton > T) ≤ P(S > T) = 1− e−λT, T > 0,

since S is the first passage time assuming m(0) ≥ 1 and Ton is this first passage time

assuming m(0) = 1. Thus, since both terms in the upper bound in (B.4) are increasing

functions of the realization Tk
on > 0, the tower property yields

P(Yk
on ≥ C) = E

[
P(Yk

on ≥ C|Tk
on)
]

≤ E
[
P(P(S) ≥ C/2|S)

]
+ E

[
P( sup

t∈[0,S]
|W(t)| ≥ C/(2σ)|S)

]
.

(B.5)

Next, if P is Poisson distributed with mean µ, then Corollary 6 from [5] yields

P(P ≥ C) ≤ eC−µ
( µ

C

)C
, if C ≥ µ.
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Hence, we have the following almost sure inequality,

P(P(S) ≥ C/2|S) ≤ e
C
2−MΛS

(MΛS
C/2

) C
2
1 C

2≥MΛS + 1 C
2 <MΛS. (B.6)

Since S ∼ Exponential(λ), we have that

E
[
e

C
2−MΛS

(MΛS
C/2

) C
2
1 C

2≥MΛS

]
≤
∫ ∞

0
e

C
2−MΛs

(MΛs
C/2

) C
2
λe−λs ds

=
(C

2

)− C
2
e

C
2

λ

MΛ + λ

(
MΛ

MΛ + λ

) C
2

Γ(C/2 + 1),

(B.7)

where Γ(·) denotes the Gamma function. Further,

P(C/2 < MΛS) = e−λC/(2MΛ). (B.8)

Also, as in Lemma 5.2, we have that

E[P( sup
t∈[0,S]

|W(t)| ≥ C/(2σ)|S)] ≤ (2x + 1)
√

π/(2x)e−x, x = C
σ

√
λ/2 > 0. (B.9)

Therefore, taking the expectation of (B.6) and using (B.5), (B.7), (B.8), and (B.9) completes

the proof.

Proof of Lemma 5.4. Since Yk ≤ Yk
off + Yk

on for k ≥ 1, we have that if C > 0, then

P(Yk > C) ≤ P(Yk
off + Yk

on > C) ≤ P(Yk
off ≥ C/2) + P(Yk

on > C/2).

Hence, using the upper bounds established in Lemmas 5.2 and 5.3, we have
∞

∑
k=1

P(Yk >
√

k) <
∞

∑
k=1

[√ π

xk
(2xk + 1)e−xk + e−λ

√
k/(4MΛ) +

√
π

yk
(2yk + 1)e−yk

]

+
λ

MΛ + λ

∞

∑
k=1

(√k
4

)−
√

k
4

e
√

k
4

(
MΛ

MΛ + λ

)√k
4

Γ
(√k

4
+ 1
)

,

(B.10)

where xk =
√

k
2σ

√
2Mλon(0) and yk =

√
k

2σ

√
λ/2. A straightforward application of the

integral test confirms that the first series on the righthand side of (B.10) converges.

To check the convergence of the last series in (B.10), we recall Stirling’s formula,

lim
z→∞

Γ(z + 1)√
2πz

( z
e

)z = 1,

and thus the limit comparison test implies that the last series converges if and only if

∞

∑
k=1

k1/4
(

MΛ
MΛ + λ

)√k
4

< ∞. (B.11)

The integral test confirms that (B.11) holds. Therefore, (B.10) converges, and thus the Borel-

Cantelli lemma (Theorem 2.3.1 in [2]) completes the proof.
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Proof of Lemma 5.5. Since Yk ≥ 0 almost surely, we have that E[Yk] =
∫ ∞

0 P(Yk > C)dC.

Using the bounds in Lemmas 5.2 and 5.3 as in the proof of Lemma 5.4 shows that this

integral is finite.

B.2 Proof of Proposition 5.7
Proof. Fix a realization J. Let K ≥ 0 denote the almost surely finite number of jump times

of J before time T, where t is said to be a jump time if J(t+) 6= J(t−). Denote these K jump

times by 0 < τ1 < · · · < τK < T and let τ0 = 0 and τK+1 = T.

For ease of notation, define the sequences

xk := x(τk), xk := x(τk), zi
k := zi(τk), zi

k := zi(τk), mk := m(τk),

for k ∈ {0, 1, . . . , K}. Further, define the time between jumps, sk := τk − τk−1, for k ∈
{1, . . . , K}. It follows immediately from Proposition 5.6 that

xk+1 = xke−sk+1/ε + µk+1(1− e−sk+1/ε), k ∈ {0, 1, . . . , K}, (B.12)

where for k ∈ {0, 1, . . . , K + 1} we define

µk+1 :=

{
1

mk
∑i∈I(τk)

zi
k if mk > 0,

xk if mk = 0.
(B.13)

Furthermore, it follows from the definition of x(t) that for k ∈ {0, 1, . . . , K},

xk+1 :=

{
1

mk
∑i∈I(τk)

zi
k if mk > 0,

xk if mk = 0.
(B.14)

Now, since motors take steps of size one, it follows that if k ∈ {0, . . . , K} and i ∈
{1, . . . , M}, then 0 ≤ zi

k ≤ K + 1 and 0 ≤ xk ≤ K + 1. Hence, if k ∈ {0, . . . , K}, then (B.13)

implies

|xk − µk+1| < K + 1. (B.15)

Next, we claim that if k ∈ {0, . . . , K} and

max
j∈{0,...,k}

{
|xj − xj|, max

i∈{1,...,M}
|zi

j − zi
j|
}
< η, (B.16)

then

max
{
|xk+1 − xk+1|, max

i∈{1,...,M}
|zi

k+1 − zi
k+1|

}
< (K + 1)e−sk+1/ε + η. (B.17)
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To see this, we use (B.12) and (B.15) to obtain

|xk+1 − xk+1| = |xke−sk+1/ε + µk+1(1− e−sk+1/ε)− xk+1|

≤ (K + 1)e−sk+1/ε + |µk+1 − xk+1|.

Using (B.13) and (B.14), we have that

|µk+1 − xk+1| ≤
{

1
mk

∑i∈I(τk)
|zi

k − zi
k| if mk > 0,

|xk − xk| if mk = 0.

Furthermore, it follows from (5.7) and (5.27) that

|zi
k+1 − zi

k+1| ≤ max
j∈{0,...,K+1}

|xj − xj|, i ∈ {1, . . . , M}.

Hence, the claim (B.17) is verified.

Define the largest time between jumps, s := maxk∈{1,...,K} sk. Since x0 = x0 = zi
0 = zi

0

for i ∈ {1, . . . , M}, we apply (B.16) and (B.17) iteratively to obtain

|xK+1 − xK+1| ≤ (K + 1)2e−s/ε.

Taking ε→ 0 completes the proof.
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