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ABSTRACT 

 

 HIV-1 latently infected cells are the major hurdle impeding viral eradication despite 

the development of ART (Anti-retroviral therapy), which works by inhibiting various viral 

proteins necessary for HIV-1 replication. Even after years of daily regimens of ART therapy, 

HIV-1 reemerges once the ART is discontinued. This is because HIV-1 can go latent or 

quiescent in resting CD4+ cells. These resting CD4+ cells contain integrated HIV DNA 

within the genetic material in the host cell, but no viral proteins are produced, and they are 

thus immune to circulating antiretroviral drugs. For that purpose, it is essential to understand 

the mechanisms and genes involved in the development, maintenance, and activation of 

latency. To investigate functions of transcripts and pathways critical for biological processes 

and disease mechanisms, gene knockout is a very useful technique. We propose to use the 

CRISPR/ cas9 system to knockout target genes and test if these genes are involved in the 

development of latency or are involved in the reactivation of latently infected cells. 
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CHAPTER 1 

 

BACKGROUND AND SIGNIFICANCE 

 

 Human immunodeficiency virus-1 (HIV-1) is a common and pathogenic strain of 

virus responsible for infecting around 34 million people worldwide [1][2]. If HIV-1 infection 

is left untreated, it advances into a life-threatening illness known as acquired 

immunodeficiency syndrome (AIDS). HIV is not a particularly infectious virus, nor is it highly 

contagious like measles. Nonetheless, the world is experiencing an epidemic and the World 

Health Organization has estimated that 1.1 million people died of HIV in 2015 [3].   

 HIV-1 is an enveloped positive sense RNA lentivirus comprised of a small genome 

of about 10kb. It consists of nine structural and nonstructural (regulatory and accessory 

proteins) coding genes, which are necessary for replication and infection in the human body. 

When HIV-1 infects, it starts to destroy cells of the immune system, making the body 

vulnerable to a host of diseases. HIV-1 infects multiple cells including brain cells (like 

microglia, oligodendrocytes, neurons, endothelia, and astrocytes [4]), T lymphocytes, and 

macrophages, but its main targets are CD4 lymphocytes, also known as T-cells or CD4+ cells. 

HIV-1 uses its surface protein gp120 to attach to the cells that have a CD4 receptor on their 

surfaces. Using the CD4 receptor in conjunction with chemokine receptors (CXCR4 and 

CCR5), the virus lipid membrane attaches and fuses with the cell membrane [2][5], and the 

virus core enters into the host cell. During entry, the core un-coats, which allows the genetic 

material, RNA, and three essential replication enzymes (integrase, protease, and reverse 
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transcriptase) to enter into cytoplasm. The viral enzyme reverse transcriptase copies the 

genetic material (RNA) of the virus, so it can be integrated into the host DNA. Reverse 

transcriptase has a high error rate that makes mutations in the copied DNA. These mutations 

produce mutant forms of HIV which can help the virus to evolve to evade drug therapies like 

ART (Anti-retroviral therapy).  

ART is a cocktail of several antiretroviral medicines that consist of different 

nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse 

transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), entry inhibitors, and Integrase 

inhibitors (wedmd.com) [6] [7] . ART works by impeding the HIV life cycle and leads to 

suppression of viral expression [8] [9]. A patient infected with HIV has a lower level of CD4 

count, higher level of RNA viral load, as well as has a higher chance of having opportunistic 

infections. ART regimens dramatically improve the patient's CD4 count, highly decreasing the 

level of RNA viral load [10].  Treatment with potent antiretroviral drugs causes plasma viral 

levels to fall at an exponential rate. Newer antiretroviral drugs are powerful enough to stop all 

new infections of CD4+ cells [11]. The development of combined antiretroviral therapies 

ART drugs has thus dramatically extended the life of an HIV infected individual by preventing 

new infections from arising from latent reservoir of antigen as long as the therapy is being 

administered [12] . Unfortunately, the lifelong regime of daily pills in ART therapy is not a 

cure. 

The reason ART does not results in a cure is that a small population of infected CD4+ 

memory T –cells (Tcm) enter a latent or quiescent state [2][13][9]. This state of retrovirus in 

which it is stored in the resting CD4+ T cells is called latency. Retroviral latency, the state of 

reversibly non-productive infection of individual cells, should not be confused with the long 

asymptomatic period between the initial infection and the onset of AIDS [11]. During this 
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initial period, most infected cells express viral proteins and rapidly replicate. Unlike many other 

viruses, HIV evades immune responses in the incubation period of the disease by rapid 

evolution of escape mutations [11]. The latent proviruses are relatively invisible to the immune 

system, and even a single latent HIV virus can later restart the infection. When ART is stopped, 

new and often drug-resistant infections arise out of the latent state virus that persists in 

CD4+T memory cells. The decay rate of the pool of latently infected CD4+ cells is 

tremendously slow at a half-life of 44 months, which would require over 70 years of treatment 

to eradicate the latent reservoir [11][14][9]. This inducible reservoir of latent proviruses is thus 

the major obstacle in the treatment of HIV AIDS, as it may be necessary to eliminate all latent 

forms of HIV for a successful eradication of the virus.  Latency, for HIV, creates a stable 

reservoir of pathogen for onset of future infections at the level of individual CD4+ T cells. A 

complete cure of HIV would, therefore, not only require prevention of active infected cells 

from producing the virus, but also the elimination or complete repression of the latent 

reservoir. Efforts to achieve this goal would be greatly advanced by better understanding the 

mechanisms that are relevant to latency.  

One of the traditional gene knockout methods is the homologous recombination 

technique (HR), which has been used to target both alleles in embryonic stem cells of mouse 

[15]. This method, however, is time-intensive and inefficient [15]. RNA interference (RNAi) 

is another method that represses gene expression through sequence-specific degradation of 

mRNA. Although widely used, this method can create off-target effects, and incomplete 

silencing often does not create noticeable changes in phenotype [15] . Advanced genome-

editing technologies like zinc-finger nucleases can modify loci with precision, but are difficult 

to engineer into large-scale knockout libraries [16] [15]. On the other hand, the new 

CRISPR/cas9 system is more effective and reliable in both loss-of-function and gain-of-



 

 

4 

function screening than other traditional methods of gene knockouts [15].  

The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system 

is a novel tool for gene editing and gene regulation found in prokaryotes. This natural gene 

regulation, derived from Streptococcus pyogenes, protects these microorganisms from invading 

viruses and plasmids [17][18]. CRISPR-Cas9works through the type II Cas9 nuclease and two 

individual RNA components, namely crRNA and tracrRNA, which are fused in the 

recombinant system as an sgRNA [15]. Within the sgRNA, there are both structural RNA 

elements and 20 residue targeting sequences. The Cas9 protease is directed to the genomic 

DNA sequence by the sequence encoded in the sgRNA and proceeds to create double strand 

breaks (DSBs) on each side of the aligned segment. These DSBs recruit a DNA repair 

mechanisms in the cell, HR, or error-prone non-homologous end joining, which establish 

insertions and deletions at the target site [15]. The sgRNA directs Cas9 nuclease to the targeted 

genomic locus through Watson-Crick base pairing to create double strand breaks. To achieve 

that, Cas9 has to recognize the protospacer adjacent motif (PAM), which resides near the 

target DNA. This allows for a greater simplicity in the construction of a vector [15]. Cas9 

promotes genome editing by making a targeted DSB via a deletion or addition mutation. 

CRISPR/Cas9 has been engineered to carry out large-scale function-based screening, and is 

easy to use in mammalian cells [15]. These changes completely alter gene function, which can 

be advantageous in genome engineering. We hope to use CRISPR/Cas9 to easily target 

numerous genes and to assay their effects in HIV latency. 

 

 

 



 

 

 

CHAPTER 2 

 

SPECIFIC AIMS 

 

In a larger study, we would like to use CRISPR/Cas9 to knock out individual genes 

and then assay their effect on HIV-1 latency. We will test potential latency regulator genes and 

perform subsequent mechanistic studies in primary Tcm cells. The genes that are screened are 

those that are widely implicated in the literature as important in the establishment or 

maintenance of latency or in its reactivation, as well as the newly proposed genes from 

unpublished screens performed in many different laboratories. In this study, we are going to 

validate these targets to see if they are involved in latency by performing experiments in 

different cell lines. The aim of this pilot project is to develop the CRISPR protocol in 

conjunction with HIV latency assay. We have chosen five different genes for this pilot project: 

CD4, Brd4, Hexim1, CDk9, and CXCR4. 

 

2.1 AIM1: To engineer the CRISPR/Cas9 vectors capable of  

targeting genes involved in HIV-latency 

In the original LentiCRISPR.v2 vector, the Cas9 nuclease is followed by self-cleaving 

peptide and GFP (Green fluorescent protein).  We will generate a derivative of the 

LentiCRISPR vector by replacing GFP with a truncated version of murine heat-stable antigen 

short (HSAS). The HSAS gene has the advantage of remaining surface exposed and associated 

with permeabilized or non-permeabilized cells during flow cytometry.  Six unique guide RNAs 
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will be designed against the five target genes and cloned into the modified vector.  We aim to 

conduct knockout mutations in both eukaryotic cell lines - SupT1, and in primary CD4+ cells. 

The CRISPR vector will be co-transfected with viral helper plasmids to generate lentiviruses 

that can easily infect primary and cultured cell lines.   

 

2.2 AIM2: To confirm CRISPR in primary cells 

While CRISPR/Cas9 has been shown to be effective at single gene knockout in 

passaged tissue culture lines, it is not known how the technology will work in primary cells. 

We aim to determine whether the system is capable of successfully knocking out the targeted 

genes in primary Tcm cells.  

 

2.3 AIM3: Establishment of protocol for primary cells 

Using the lentiviruses created in AIM1, and after confirming whether primary cells can 

be targeted with the CRISPR in AIM2, we would ultimately establish a protocol to examine if 

these genes play roles in maintaining HIV latency. In Aim3, we will attempt to determine if 

infection and knockdown efficiencies are sufficient to incorporate CRISPR knockdown into 

our latency assay. First, we will validate if activation of primary cells at different time 

points (one-and three-day post isolation) effects the knockout efficiency when CRISPR is 

administered one day after activation. We will also test various donors to characterize donor 

to donor variation in CRISPR knockout efficiency. 

 

 



 

 

 

CHAPTER 3 

 

RESULTS 

 

3.1 Generation of LentiCRISPR-HSAS and lentiviruses 

To investigate if the CRISPR- Cas9 system is able to target genes in eukaryotic cells, 

we generated six different guide RNAs for five genes targets using the online CRISPR tool 

provided by MIT (crispr.mit.edu) [19] [20]. First, LentiCRISPR-HSAS vector was made by 

replacing GFP (Green fluorescent protein) tag in LentiCRISPRv2 plasmid, provided by Dr. 

Ryan O’Connel at the University of Utah. This vector contains two expression cassettes, Cas9 

and the single guide sgRNA. Cas9 and sgDNA are operated by two different promoters. 

sgRNA production is driven by U6 promoter, which is the RNA pol III promoter necessary 

for production of small RNA. Cas9 production is driven by a constitutive promoter, EF-alpha 

(human elongation factor-1 alpha), which can be used to drive ectopic gene expression. In our 

vector, Cas9 is followed by a P2A cleavage sequence and GFP. The HSAS clone is a truncated 

murine cell-surface protein homologous to human CD24, which has advantage of remaining 

associated with permeabilized cells during flow cytometry; in contrast, GFP leaks during 

permeabilization, making it harder to analyze true infected cells during flow cytometry. 

Furthermore, HSAS has stronger expression and can be used to select positive cells by 

magnetic sorting to overcome the low frequency of transduction in primary cells. This base 

clone contains filler sequence, which his flanked by BsmBI site where the gRNA sequence is 

inserted using the MIT server that identifies 20bp sequences with downstream PAM sequences 
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(addgene.com) [19] [21]. 

  For our first experiment, we targeted the CD4 gene, as it is a surface receptor that has 

the advantage of easy detection. Lentiviruses were made from these six constructs by co-

transfecting 293FT cells with the CFRISPR vector, a pVSV-G- expression vector, and a 

packaging vector (pS2PAX) as described in the methods section. Viruses were harvested and 

concentrated prior to determining the final viral titer. The level of infectivity in Supt1 cells was 

measured by checking HSAS expression after 2 days of infection.  Five out of the six guide 

constructs displayed a high level of infection by 2 days post infection ranging from 70-100% 

depending upon the MOI used to infect the cells (Figure 3.1). 

 

3.2 CRISPR-cas9 system can generate knockouts in SupT1 cells 

CD4-CRISPR-infected SupT1 cells were monitored for surface-expressed CD4. At 9 

days post infection, we observed the level CD4 knockout using a flow cytometer.  Two of the 

six sgRNA constructs showed 20-40% CD4 knockout represented by cells with high HSAS 

and low CD4 expression (Figure 3.2). The big problem during our experiment was that the 

level of HSAS was decreasing as the days of infection proceeded. This could be the result of 

fast growth of uninfected cells in the infected pool, or it could be because of the transcriptional 

repression of the Cas9-P2A-HSAS gene. Consequently, we isolated HSAS positive cells using 

magnetic beads after 10 days post infection, then determined the level of HSAS and CD4 

before and after sorting. Sorting improved and increased the level of HSAS+/CD4- cells by 

up to 66%. Due to strong knockout potential, we then chose HSAS-LentiCRISPR antiCD4 

constructs A1 and C1 for future testing of primary cells (TCM). 
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3.3 Testing in primary cells to validate targets 

To examine the transduction and knockout levels in primary cells, we first isolated 

PBMCs from anonymous healthy donors. Naïve CD4+ T-cells were isolated from PBMCs by 

the Easy Sep negative selection human naïve CD4+ T-cell enrichment cocktail (Stemcell 

Technologies Inc. Vancouver, Canada). After isolation, naïve CD4+ T-cells were activated 

using human αCD3/αCD28 antibody-coated magnetic beads in the presence of human α- IL4, 

α-IL-12 and tumor growth factor TGF-β1. This process will generate NP cells (non-polarized). 

To establish the protocol, we first checked if activating primary cells for differing amounts of 

time effects the overall outcome of knockouts (schematic representation is shown in (Figure 

3.3)). For this, we activated the primary cells using dynabeads coated with αCD3/αCD28 for 

1 or 3 days and infected them with LentiCRISPR virus after removing the cells from the beads. 

After 2 days post infection, we monitored transduction efficiency via HSAS staining. In the 

following days, we checked how much knockdown we incurred. We followed loss of CD4+ 

cells in different donors by staining cells for HSAS (marker) and CD4 protein using flow 

cytometry. From the two experiments, we concluded that 3-day-activated cells have better 

transduction rate than 1-day-activated cells shown in Figures 3.4 and 3.5. In contrast, 1 day-

activated cells have better knockout CD4 level than the 3-day-activated cells (Figure 3.4). An 

average over many experiments suggests the total knockout level of CD4 is about 25-35%. 

We also observed donor to donor transduction/knockout variation (data not shown). These 

low transductions and knockout rates suggest that conducting the HIV latency assay in primary 

CD4+ cells will be very difficult as high levels of KO are required to observe an effect from 

gene loss on the small percentage of latent cells present in the experiment. 

We have produced CRISPR/Cas9 vectors capable of targeting genes in AIM1 and are 

able to show knockout of these targets in SUPT1 cells in AIM2. Unfortunately, transduction 
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and knockout rates in the primary CD4+ cells were found to below. We will have to improve 

isolation techniques, CRISPR transduction efficiency, and efficient magnetic sorting in 

primary cells prior conducting the latency assay. In the meantime, the assay can be attempted 

in SupT1 cells which obtain transduction rates of 98% and knockout rates of 60%. 
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Figure 3.2. CRISPR knockout via CRISPR/Cas9 in SupT1 cells. A. HSAS 
indicated transduction level (99.8%). B. Showing downregulation of  CD4 and 
HSAS expression in FACS at day 10 post transduction after sorting.  
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CHAPTER 4 

 

SUMMARY 

 

In our study, we successfully generated CRISPR-containing LVPs with transduction 

efficiency up to 100% in SupT1 cells and 50% in primary CD4+ t cells.  SUPT1 cells were 

infected with these CRISPR-containing LVPs and we documented the knockout of target 

genes through flow cytometry analysis. Two out of six anti-CD4 constructs were able to show 

20-60% CD4 knockout as represented by cells with high HSAS and low CD4 expression 

(Figure 3.2). On the other hand, transduction of primary cells ranges from 20%-50% 

depending on the number of days activated. For transduction, 3-day-activated cells were able 

to transduce better than 1-day-activated cells, and transducing 1-day-activated cells resulted in 

higher knockout percentage than 3-day-activated cells. Overall, knockout efficiency in primary 

cells was 25-35% measured after 10 days.  

 Low infection and knockout percentage emphasize the need for better isolation and 

selection techniques for infected cells containing CRISPR knockouts. The numbers are 

currently too low to continue AIM3 as the HIV latency assay requires the majority of cells to 

be modified before an effect on latency can be determined.  One solution is to continue the 

validation work in SupT1 cells which do have high infectivity and knockout percentage.  

 
 

 



 

 

 

 

CHAPTER 5 

 

METHODS AND MATERIALS 

 

5.1 Cell lines 

HEK293FT, SupT1 cells, and CD4+ T cells 

 

5.2 Cas9/CRISPR constructs design and vector construction  

CRISPR guide RNAs (gRNAs) were designed to be 20bp long and immediately 

preceded by 5’-NGG-3’ sequence (PAM) at the 3’end. Cas9 targets for different genes were 

identified using an online CRISPR design tool (http://crispr.mit.edu/) [19][20]. We selected 

five unique and nonoverlapping guide sequences in the first or second exon of our target genes 

(Table 5.1).  Synthetic oligos were ordered which contain the guide sequence flanked by four 

bases which when paired will anneal with an overhang to allow cloning into the Bsmb-I site 

of LentiCRISPRv2 (addgene.com) [19][21]. LentiCRISPR-HSAS vector was digested with 

BsmBI and dephosphorylated and the size was confirmed by running 1% agarose gel. The 

correct band was gel extracted and purified.  Each pair of target oligos was annealed, 

phosphorylated, and cloned into the LentiCRISPR BsmBI site. Clones were transformed into 

Stbl3 cells (Life technologies) to avoid homologous recombination of the LTR sequences.  

Finally, positive clones were identified by sequencing (University of Utah core). This way the 

base filler clone in LentiCRISPR-HSAS vector was replaced by different gRNAs to generate 

target sgRNAs clones.   

http://crispr.mit.edu/)
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We also generated a CRISPR-HSAS-Scrambled sequence as positive control for the 

HSAS tag and negative control for the gene target using a pair of unique oligos (see Table 5.1). 

 

5.3 Generation of CRISPR-containing LVP 

HEK293FT (Human Embryonic Kidney 293 fast T antigen cells) cells were cultured 

in DMEM (Dulbecco’s Modified Eagle’s Medium) supplemented with 10% of fetal bovine 

serum (FBS) and 2mM of L-glutamine. When HEK293FT cells grow exponentially, and are 

at 70-80% confluent, the cells are ready for transfection. To make lentiviruses, CRISPR-

sgRNA (transfer vector) (12.5ug), pSPAX2 (packaging plasmid) (12.5ug), and pVSV-G 

(pseudo typing plasmid) envelop (5ug) plasmid are mixed and co-transfected in HEK293FT 

cells using the calcium phosphate method. Supernatants were collected every 12h until the 

monolayer died. Lentiviruses were concentrated by ultracentrifugation at 25,000 rpm for 2h at 

4oC. Most of the supernatant is aspirated and the remaining media plus virus allowed to rest 

at 4oC overnight before pooling, aliquoting, and freezing at -80 for long-term storage.  

 

5.4 Viral titer determination in SupT1 cells 

 For the experiment, 5 x 105 SupT1 cells were titered by spinoculation using various 

concentrations from 1-100ul of CRISPR viral stocks in a total volume of 0.5 ml.  Then the 

SupT1-virus mixture is centrifuged at 2,900 rpm for 2h at 37oC. The transduction levels were 

measured using an PE(XX)-ligated anti-CD24 antibody to determine production of HSAS on 

the surface by flow cytometry. The level of HSAS production was used to calculate the MOI 

(Multiplicity of Infection) necessary for further infection in Supt1 cells and Primary cells.      
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5.5 Isolation and activation of Tcm cells 

Peripheral blood mononuclear cells (PBMC) were isolated from healthy donors’ 

peripheral blood using density gradient centrifugation [22][23] [13]. These studies are done 

following protocols outlined in IRB# 67637 approved by the University of Utah Institutional 

Review Board. Naïve CD4+ cells were isolated via MACS-microbeads negative sorting using 

the naïve T-cell isolation kit (Miltenyi Biotech).  Cultured Naïve CD4 T-cells were generated 

and infected as previously described [23][22]. After isolation, naïve cells were activated using 

human αCD3/αCD28-coated magnetic beads in the presence of human α-IL4, α-IL-12, and 

tumor growth factor TGF-β1 [23]. Activation of naïve cells was done in two different ways: 

in the first method, the naïve cells were activated for 1 day and then infected with lentiviral 

vector, and in the second, they were activated for 3 days and infected with lentiviral vector. 

The two different ways of activation will provide us information on transduction efficiency of 

the lentiviral vector. Then, we followed up the experiment to check knockout percentage of 

CD4 genes in different donors by staining cells for HSAS (marker) and CD4 gene (receptor) 

using flow cytometry. 

 

5.6 Flow cytometry analysis 

To measure the expression of levels of CD4 and HSA in SupT1 and primary cells, 1 

X 105 cells were stained with human monoclonal antibodies: phycoerythrin-conjugated-(PE)- 

anti-CD4(Cat#MHCD0405-APC conjugated antibody) for CD4 receptor and mouse 

monoclonal antibodies Allophycocyanin (APC)-anti-CD24 to stain surface protein HSA. HSA 

and CD4 fluorescence was measured and collected on a BD FACSCanto flow cytometer and 

all data were analyzed using Flowjo. 
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Name

Target

For Seq CACCGCAGGGCTCCTTCTTAACTAA

Rev Seq AAACTTAGTTAAGAAGGAGCCCTGC

For Seq CACCGGCGCGATCATTCAGCTTGGA

Rev Seq AAACTCCAAGCTGAATGATCGCGCC

For Seq CACCGTGCACTGAGGGGCTACTACC

Rev Seq AAACGGTAGTAGCCCCTCAGTGCAC

For Seq CACCGGACCCTCTCCGTGTCTCAGC

Rev Seq AAACGCTGAGACACGGAGAGGGTCC

For Seq CACCGGGTGGGTCCCCACACCTCAC

Rev Seq AAACGTGAGGTGTGGGGACCCACCC

For Seq CACCGCCTGCTGGAATCCAACATCA

Rev Seq AAACTGATGTTGGATTCCAGCAGGC

For Seq CACCGTCGAGAGCGTTCCCCCAGTT

Rev Seq AAACAACTGGGGGAACGCTCTCGAC

For Seq CACCGCGGACGAGTCGTCCCCATTC

Rev Seq AAACGAATGGGGACGACTCGTCCGC

For Seq CACCGGACTCCGAGGCCAGTAAGTT

Rev Seq AAACAACTTACTGGCCTCGGAGTCC

For Seq CACCGAACCGTACTACAAGCTGACC

Rev Seq AAACGGTCAGCTTGTAGTACGGTTC

For Seq CACCGAACAGAGCCTTCGAGCTTCA

Rev Seq AAACTGAAGCTCGAAGGCTCTGTTC

For Seq CACCGCGAGCCGAGATGTTCGCCAA

Rev Seq AAACTTGGCGAACATCTCGGCTCGC

For Seq CACCGCTTGGCGAGCTTCTCGTATT

Rev Seq AAACAATACGAGAAGCTCGCCAAGC

For Seq CACCGGCACCGCAAGACCGGCCAGA

Rev Seq AAACTCTGGCCGGTCTTGCGGTGCC

For Seq CACCGGGTGCTGATGGAAAACGAGA

Rev Seq AAACTCTCGTTTTCCATCAGCACCC

For Seq CACCGAAGGATCTTGATCTCCCGCA

Rev Seq AAACTGCGGGAGATCAAGATCCTTC

For Seq CACCGTTCCCCCTATAACCGCTGCA

Rev Seq AAACTGCAGCGGTTATAGGGGGAAC

For Seq CACCGGCTCGCAGAAGTCGAACACC

Rev Seq AAACGGTGTTCGACTTCTGCGAGCC

CD4

CDK9

Sequence

CD4-2-1

CD4-3-1

CD4-62.1

CD4-62.2

CD4-62.3

CDK9-79.3

Hex1-5

Hex1-1

Hex2-9

Hex3-5

Hex3-13

Hex3-1

CDK9-2-1

Hexim1

CDK9-79.1

CDK9-2-5

CDK9-3-1

CDK9-79.2

C2

B3

D3

E3

F3

F1

A2

B2

CD4-62.4

D2

E2

F2

A3

C3

A1

B1

C1

D1

E1

Table: 5.1 List of  guide sequences of  target genes  
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Name

Target

A4 BRD4-28.1 For Seq CACCGCAGTTGGTTGGTCTGCCTCT

Rev Seq AAACAGAGGCAGACCAACCAACTGC

B4 BRD4-28.2 For Seq CACCGTAAGATCATTAAAACGCCTA

Rev Seq AAACTAGGCGTTTTAATGATCTTAC

C4 BRD4-3-6 For Seq CACCGGAGCTTCTGCCATTAAGACT

Rev Seq AAACAGTCTTAATGGCAGAAGCTCC

D4 BRD4-3-1 For Seq CACCGAACCGAGATCATGATAGTCC

Rev Seq AAACGGACTATCATGATCTCGGTTC

E4 BRD4-4a-1 For Seq CACCGTTTGGTACCGTGGAAACGCC

Rev Seq AAACGGCGTTTCCACGGTACCAAAC

F4 BRD4-4a-3 For Seq CACCGGGTCTGGACGATGAGGTCCG

Rev Seq AAACCGGACCTCATCGTCCAGACCC

A5 CXCR4-1-2 For Seq CACCGGGGCAATGGATTGGTCATCC

Rev Seq AAACGGATGACCAATCCATTGCCCC

B5 CXCR4-1-1 For Seq CACCGGAAGCATGACGGACAAGTAC

Rev Seq AAACGTACTTGTCCGTCATGCTTCC

C5 CXCR4-95.2 For Seq CACCGTTGTCATCACGCTTCCCTTC

Rev Seq AAACGAAGGGAAGCGTGATGACAAC

D5 CXCR4-2-1 For Seq CACCGGCCGTGGCAAACTGGTACTT

Rev Seq AAACAAGTACCAGTTTGCCACGGCC

E5 CXCR4-95.1 For Seq CACCGGTAGCGGTCCAGACTGATGA

Rev Seq AAACTCATCAGTCTGGACCGCTACC

F5 CXCR4-2-3 For Seq CACCGAGGTGGTCTATGTTGGCGTC

Rev Seq AAACGACGCCAACATAGACCACCTC

SC Scrambled For Seq CACCGGCACTACCAGAGCTAACTCA

Rev Seq AAACTGAGTTAGCTCTGGTAGTGCC

BRD4

CXCR4

Scrambled 

Sequence

Table 5.1 Continued  
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