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ABSTRACT 

Intra-abdominal pressure (IAP) is the pressure within the abdominal cavity. IAP is 

routinely studied in the field of urogynecology to comprehend its relation to pelvic floor 

disorders. In contrast to the potential negative role of high IAP on the pelvic floor, IAP is 

important for various forms of human performance. Given the disparate thoughts on IAP 

and its impact on pelvic floor health and sport and exercise performance, better 

understanding the IAP response in women without pelvic floor disorders during physical 

activity is warranted. In brief, the purpose of the study was to describe IAP responses 

during a variety of exercises and physical activities in women without a history of pelvic 

floor disorders. Our primary aim is to calculate the percentage of maximal for a select 

group of the activities detailed in a previous study, using the IAP during seated ValSalva 

(VM) as the maximal capacity. A secondary aim is to characterize the relationship 

between the relative term of percent of maximal for each activity, and maximal IAP. We 

hypothesize that there will be an inverse relationship between percentage of maximal for 

each activity and maximal IAP. 

In total, the data of 55 women were included in the analysis. Women were aged 

20-54 (M 30.38±SD 9.43 yrs) and had BMI values between 17.7-28.9 (M 22.4±SD 2.63

kg/m2). Participants completed a 1-hour exercise protocol in a human performance 

laboratory.  

Pearson r correlation results indicate that all relative values (% maximal of seated 
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VM) were significantly and negatively correlated at (p<0.001) with seated VM IAP, 

except for seated shoulder press with 6.9 kg (p 0.023) and 9.1 kg (p 0.557).  

Our findings support the contention that the IAP response to individual, 

submaximal activities exhibits a similar relationship to maximal capacity as that observed 

in well-established measures of fitness, such as muscular strength and oxygen 

consumption. It is imperative that coaches understand the relationship between IAP and 

higher intensity efforts during training. With this knowledge, strength and conditioning 

specialists may adjust training practices in order to limit the likelihood of precipitating 

pelvic floor symptoms in women.  
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CHAPTER 1 

 

INTRODUCTION 

 

Intra-abdominal pressure (IAP) is the pressure within the abdominal cavity. The 

boundaries of the abdominal cavity consist of the thoracic and lumbar spine, muscles of 

the abdominal wall, diaphragm, and pelvic floor. Together, these muscles and structures 

form a cylindrical cavity allowing for regulation of IAP. The contraction and relaxation 

of muscles surrounding the abdominal cavity contribute to changes in volume. The 

inverse relationship between volume and pressure dictates that muscular contraction of 

muscles surrounding the abdominal cavity decreases the volume and increases the 

pressure. Cresswell and colleagues observed that the erector spinae, internal obliques, 

external obliques, and the transverse abdominus all contributed to increases in IAP during 

lifting tasks (Cresswell & Thorstensson, 1994).  These authors found that the transverse 

abdominus contributed most to IAP, likely due to the circumferential orientation of the 

transverse abdominis muscle fibers around the trunk. 

Direct or indirect methods can assess IAP, which exhibits great variability 

between people. The direct methods involve placing a catheter into the abdominal cavity. 

Indirect measurements are taken in the bladder, gastrointestinal tract, rectum, or vagina, 

and have been shown to accurately measure IAP (De Waele, De laet, & Malbrain, 2007). 

IAP is usually measured in cmH2O, and high values achieved through voluntary effort are 
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typically observed during a ValSalva maneuver (VM). The VM involves forcefully 

exhaling against a closed airway, accomplished through a closed glottis preventing any 

air from escaping the lungs. The VM increases IAP and consequently creates a rigid torso 

(Haff, 2016). Brandt et al. (2006) reported IAP of 7-193 cmH2O with a mean of 99.3 

cmH2O in women aged 36-56 years while maximally straining measured though a rectal 

catheter. Shaw and colleagues (2014) indicated women utilizing a vagina pressure 

transducer achieved values of 16-220 cmH2O while performing a seated ValSalva. Other 

researchers reported IAP values of 16-137 cmH2O measured through a rectal catheter in 

women performing the VM (Greenland, Hosker, & Smith, 2007).  

IAP is routinely studied in the field of urogynecology to comprehend its relation 

to pelvic floor disorders (Nygaard & Shaw, 2016). That is, exposure to high IAP is 

considered by many as deleterious to the pelvic floor. For example, sudden and quick 

increases of IAP are linked to stress incontinence, the involuntary loss of urine, in women 

(Nygaard & Shaw, 2016).  Some clinicians and data suggest that high IAP may also 

contribute to the development of pelvic organ prolapse (Woodman et al., 2006). 

Approximately 1 in 4 women in the U.S. experience symptoms related to urinary 

incontinence, pelvic organ prolapse, and fecal incontinence (Nygaard & Shaw, 2016), so 

it is important to consider preventive measures, which may involve limiting exposure to 

high IAP.  

It is estimated that the number of women who undergo pelvic organ prolapse 

surgery will increase by 47% from the year 2010-2050 (Bradley, Weidner, Siddiqui, 

Gandhi, & Wu, 2011). Due to the increasing prevalence of pelvic floor surgery, 

physicians and leading organizations recommend that women limit repeated heavy lifting 
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and exercises requiring near maximal or maximal exertion (Nygaard & Shaw, 2016). This 

recommendation aimed to prevent the incidence of pelvic floor disorders and reduce 

complications post-pelvic-floor surgery. The American Urogynecologic Society released 

a statement recommending the “Do’s” and “Don’t’s” regarding prevention of pelvic floor 

disorder (Society, 2017). In the document, this organization recommends that women 

avoid repetitive strenuous exercises and heavy lifting placing strain on the pelvic floor. 

Specifically, the suggested median recovery period post-pelvic-floor surgery was 1-2 

weeks for nonstrenuous activities and 4-5 weeks for strenuous activities (Nygaard & 

Shaw, 2016). Restrictions set by physicians include avoiding lifting for a mean of 5-7 

weeks, carrying over 15 kg, and standing and walking for an entire workday for 4 weeks. 

In addition, there are other instances when these restrictions may also be warranted. In 

literature regarding inguinal hernias, it was reported that the ValSalva maneuver, heavy 

lifting, coughing, and physical activity might be the cause of herniation. Continuing these 

activities could increase the risk of hernia enlargement. However, when or how to restrict 

these activities was not reported in the literature (Ouellette & Dexter, 2006). 

 In contrast to the potential negative role of high IAP on the pelvic floor, IAP is 

important for various forms of human performance. Specifically, successful technique 

during many athletic movements and common exercises require spinal stability, 

sometimes referred to as trunk rigidity (Hodges, Eriksson, Shirley, & Gandevia, 2005; 

Haff, 2016).  Further, a stiff trunk allows for optimal force transfer during certain 

movement patterns (Ulm, 2017).  Athletes and recreational exercisers will achieve trunk 

stiffness by consciously engaging the abdominal musculature and controlling ventilation, 

which often results in breath holding and performing some degree of the VM, depending 
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upon the strenuousness of the task.  Increasing pressure of the abdominal cavity stabilizes 

the ribs, pelvis, and spine, creating a fixed point that optimizes lower and upper body 

movement patterns. In the task of lifting a heavy weight off the floor and then pressing it 

overhead, the resultant IAP generated will vary depending on how difficult the task is for 

a given individual. Referencing task difficulty to an individual provides an index of 

“relative intensity.”  When a task requires high force output or high relative intensity, 

IAP will be high. Conversely, during low relative intensity lifting, IAP will be low (Kolar 

et al., 2010; Ulm, 2017). What constitutes “high” or “low” IAP may relate to an 

individual’s capacity rather than to an absolute scale for IAP in cmH2O. 

Weightlifters and exercise enthusiasts commonly perform the VM in order to 

stabilize the trunk while performing exercises near maximal capacity. Research shows 

that the VM alone increases IAP even higher than the IAP achieved during various 

resistance exercises, which may also include the VM (Hackett & Chow, 2013). For 

example, during a deadlift, the VM stabilizes the spine and the individual generates 

muscular force to overcome the load. However, the IAP generated during the deadlift 

reflects a lower value compared to the same individual’s VM despite an increase in the 

biomechanical stress placed on the body during the lift.  Furthermore, the author suggests 

that the VM is a natural reflex that is evoked during resistance exercise when near 

maximal or maximal efforts are required. Weightlifters also seek to further enhance 

spinal stability by using weightlifting belts. Lander and colleagues (1992) demonstrated a 

25-40% increase in IAP for participants wearing a weightlifting belt while performing 

barbell back squats at a 8-repetition maximum compared to when participants did not. 

This is purported to offer lumbar spinal relief during the lifting of heavy objects and acts 
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as an externally applied device to further increase IAP.   

Improvements in IAP and spinal stability, even without lifting additional weight, 

augment lower body muscular strength and power, which could translate to improved 

physical performance (Tayashiki, Maeo, Usui, Miyamoto, & Kanehisa, 2016).  

Specifically, these authors asked young men to engage in a regular program of abdominal 

bracing, which was essentially isometric engagement of the abdominal muscles, over 

several weeks.  The participants improved their lower body muscular strength and power 

as well as increased their IAP during VM from this program of abdominal bracing alone.  

In the field of athletics, such improvement may translate to increase sport capability, 

which is the rationale for instituting routine strength and conditioning as an adjunct to 

sport specific training. For example, an American football lineman who requires lower 

body power to move an opposing player, or a basketball player who requires lower body 

power to jump higher than an opponent, both benefit from auxiliary training that is 

necessarily accompanied by high IAP. Consequently, exercises to increase lower body 

strength and power require spinal stability and are standard adjuncts in athletics. 

Detailed studies describing exercise program design in professional women’s 

athletics have not been conducted. Therefore, data on exercises utilized by strength 

coaches and their implication on spinal stability and IAP in women is unavailable. 

However, it is plausible that these training programs are similar to those conducted in 

men, save for the absolute intensities achieved, with males tending to achieve higher 

absolute intensities compared to females. In male professional sports, most athletic 

training programs include compound movement patterns such as the clean and jerk, 

squat, deadlift, overhead press, or a variation of these exercises. For example, in the 
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National Basketball Association, National Hockey League, and Major League Baseball, 

all coaches in these organizations reported using Olympic lifts and the squat exercise in 

order to develop the power and strength necessary to be successful in their respective 

sports (Ebben, Carroll, & Simenz, 2004; Ebben, Hintz, & Simenz, 2005; Simenz, Dugan, 

& Ebben, 2005). 

Given the disparate thoughts on IAP and its impact on pelvic floor health and 

sport and exercise performance, better understanding the IAP response in women without 

pelvic floor disorders during physical activity is warranted.  If athletic and fitness coaches 

encourage abdominal bracing to stiffen the trunk by increasing IAP, do such repeated 

exposures reflect the overload principle, thereby increasing the capacity to further 

generate IAP? Should IAP be expressed using an absolute value in cmH2O, or is this best 

understood with reference to an individual’s maximal capacity for generating IAP?  If 

referenced to an individual’s maximal capacity, then any given IAP response to an 

activity can be expressed in relative terms.  For example, lifting a 50 lb. bag of dog food 

could generate 80 cmH2O in woman A, and 60 cmH2O in another woman, B.  If woman 

A does a VM with 160 cmH2O, then lifting the bag of dog food represents 50% of her 

maximal capacity.  If woman B does a VM with 80 cmH2O, then lifting the bag of dog 

food represents 75% of her maximal capacity.  Using relative values would suggest that 

the lower absolute IAP in fact reflects a higher relative effort for woman B doing the 

same task as woman A.  

Expressing IAP response to activity in relative terms with respect to an 

individual’s maximal capacity is the manner in which measures or correlates of physical 

fitness are expressed. Specifically, high maximal capacity is used as an indicator of high 
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levels of fitness and submaximal efforts are indicated in terms that are relative to the 

maximal capacity as a percentage. Because IAP is not routinely assessed in association 

with physical exercise trials, controlled, longitudinal training that would increase 

exposure to IAP has not been conducted to determine whether such training a) increases 

maximal capacity for generating IAP and b) reduces the relative strain for a given task at 

lower levels as explained in the example above.   

This project explores a secondary analysis of data collected by Shaw et al. (2014). 

In brief, the purpose of the study was to describe IAP responses during a variety of 

exercises and physical activities in women without a history of pelvic floor disorders. 

Conducted in a laboratory, several traditional exercises and other likely household tasks 

were studied, along with seated VM, which produced the highest IAP for the group. The 

complete protocol as described in Shaw et al. (2014) will hereafter be referred to as the 

“original” protocol from which this study was adapted. 

The current paper, using archived data from the original protocol, will provide a 

preliminary investigation of whether IAP “behaves” in a similar manner to other 

correlates or indicators of physical fitness. The first aim of this paper is to calculate the 

percentage of maximal for a select group of the activities detailed in Shaw et al. (2014), 

using the IAP during seated VM as the maximal capacity.  The second aim is to 

characterize the relationship between the relative term of percent of maximal for each 

activity, and maximal IAP. We hypothesize that there will be an inverse relationship 

between the percent of maximal for each activity and maximal IAP. If this hypothesis is 

supported, these findings will provide preliminary indication that IAP behaves as a 

correlate or indicator of physical fitness.    
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1.1 What Is Physical Fitness?  

According to the National Institutes of Health, physical fitness is defined as a set 

of attributes that are either health- or skill-related. These attributes are categorized to 

distinguish different areas of physical fitness, including body composition, 

cardiorespiratory fitness (CRF), muscular strength, muscular endurance, and flexibility 

(Pescatello, 2014). Supplemental to health-related physical fitness are skill-related 

aspects of fitness, which include agility, balance, coordination, speed, and reaction time 

(Baechle, 2008). An important distinction must be made between physical fitness, 

exercise, and physical activity. Physical activity is defined as any bodily movement 

produced by skeletal muscles resulting in energy expenditure above resting levels. 

Exercise, which is a subset of physical activity, is structured and meets thresholds for 

duration and intensity with the objective of maintaining or improving physical fitness 

(Caspersen, Powell, & Christenson, 1985).   

Research has demonstrated a relationship between physical fitness and health-

related outcomes. The effects of physical fitness and all-cause mortality in men has been 

studied (Blair et al., 1995). These authors hypothesized that the highest age-adjusted all-

cause mortality rate would be observed in men who had the lowest levels of CRF, and 

therefore were assigned as the referent.  Comparatively, the all-cause mortality rate in 

men who were fit was significantly lower (RR 0.33) than in the least fit. In addition, there 

was a 44% reduction in mortality rate for men who improved from unfit to fit during the 

initial and subsequent examination (RR 0.56) (Blair et al., 1995). Low CRF levels and 

other predictors are correlated to higher CVD mortality in men. After an average 8.4-year 

follow-up and adjusting for smoking, elevated systolic blood pressure, and elevated blood 
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cholesterol, low CRF level was the highest predictor of death resulting from CVD 

(Farrell et al., 1998). 

Some portion of physical fitness is heritable (Costa et al., 2012; Garatachea & 

Lucia, 2013). That is, the expression of physical fitness reflects engagement in exercise 

and good fitness genes. Both are needed to obtain high levels of physical fitness. Another 

study aimed to focus on the quantification of genetic and environmental sources of 

variation in physical fitness components in 105 10-year-old twin pairs and their parents. 

Subjects participated in performance-related tests that included static strength, explosive 

strength, running speed, speed of limb movement, and balance. They also participated in 

health-related tests: trunk strength, functional strength, maximum oxygen uptake, and 

flexibility. Performance-related fitness characteristics exhibited a moderate to high 

heritability and heritability for health-related fitness characteristics was slightly higher 

(Maes et al., 1996). Genetic inheritance can account for 40-70% for peak oxygen uptake, 

a classic measure of CRF, and cardiac mass and structure, and 30-90% for anaerobic 

power and capacity, depending on metabolic category (Costa et al., 2012). Although 

components of physical fitness display a measure of heritability, augmentations in any of 

the components require stimulus and sustained effort. A detailed description of each 

component of physical fitness will be provided to solidify the importance each plays in 

physical fitness and health. 

 

1.1.1 Measures of Physical Fitness: Muscular Strength 

Muscular strength is the maximal force that a muscle or muscle group can 

generate at a specific velocity to overcome external forces (Baechle, 2008). The more 
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force the muscle or muscle group is able to produce, the heavier loads it can overcome 

and thus, increased muscular strength is required. Muscular strength is necessary in 

everyday activities such as standing from a seated position, being able to pick up objects 

from the floor and placing them overhead like placing a suitcase in an overhead 

compartment in a plane or a bus. Participating in exercises that mimic these movement 

patterns and that require higher loads that would be encountered in everyday life will 

create greater efficiency in that movement. According to the American College of Sports 

Medicine (ACSM), resistance training is a form of physical activity that is designed to 

improve muscular fitness by exercising a muscle or a muscle group against external 

resistance (Dunn-Lewis & Kraemer, 2016). Participating in resistance training helps 

decrease the loss of lean muscle mass, prevent osteoporosis, decreased blood pressure, 

decreased body fat percentage, and risk of heart disease (Pescatello, 2014). Resistance 

training can increase lean body mass and combined with aerobic training can reduce fat 

mass (Willis et al., 2012).  In earlier research, males participating in resistance training 

exhibited lower systolic and diastolic blood pressures compared to less-trained and 

sedentary men (Fleck & Dean, 1987). Males and females aged 55-74 years old who 

performed resistance training displayed significant increases in bone mineral density after 

40 weeks of training (Bemben & Bemben, 2011). For general health, the ACSM 

recommends 8-10 exercises targeting major muscle groups with at least one set of 8-12 

repetitions of 2 nonconsecutive days of the week minimum (Dunn-Lewis & Kraemer, 

2016). Both the ACSM and the National Strength and Conditioning Association (NSCA) 

recommend ranges between 2-6 sets, 1-8 repetitions with 2-5 minutes rest between each 

set when focusing on muscular strength (Baechle, 2008; Dunn-Lewis & Kraemer, 2016). 



11 

 

1.1.2 Measures of Physical Fitness: Muscular Endurance 

The ability to produce and maintain force production over prolonged periods of 

time is defined as muscular endurance (ACSM, 2009; Pescatello, 2014). Benefits of 

increasing muscular endurance are similar to benefits obtained by increasing muscular 

strength through participation in regular resistance training.  The ranges recommended by 

the ACSM and NSCA for muscular endurance are between 2-4 sets, 12-25 repetitions, 

and 1 minute or less of rest between each set (Baechle, 2008; Dunn-Lewis & Kraemer, 

2016). 

 

1.1.3 Measures of Physical Fitness: Cardiorespiratory Capacity 

Cardiorespiratory fitness is the ability of the lungs and heart to supply oxygen-

rich blood to working muscles within the body (Baechle, 2008; Pescatello, 2014). Higher 

physical fitness level is associated with better cardiovascular health and vascular function 

in nonexercising older individuals (Oudegeest-Sander et al., 2015). To examine this, 40 

healthy older individuals aged 65 to 73 who were classified as nonexercising for the past 

5-10 years were allocated to a lower physical fitness (VO2max 20.7 ± 2.4 mL.kg-1.min-1 ) 

or higher physical fitness group (VO2maax 29.1 ± 2.8 mL.kg-1.min-1). The researchers 

reported that the Lifetime Risk Score indicating risk for developing cardiovascular 

disease over a lifetime was significantly higher in the low-fitness group compared to the 

high-fitness group. In addition, they reported that higher physical fitness levels were 

associated with better cardiovascular health and vascular function. The association 

between low fitness and mortality across short (0 to 10 years), intermediate (10 to 20 

years), and long-term (>20 years) time periods was explored (Vigen, Ayers, Willis, 
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DeFina, & Berry, 2012). After a median 16 years follow-up, low cardiovascular fitness 

was associated with all-cause mortality across all periods of time in men. Further, a 

significant relationship exists between increased cardiovascular fitness and lower 

mortality risk, even while adjusting for total sedentary time and other covariates (Shuval 

et al., 2015).  

To improve or maintain CRF, both the ACSM and the American Heart 

Association (AHA) recommend moderate aerobic activity (64% to 76% of maximum 

heart rate) for 30-60 minutes a day for 5 days a week or 20-60 minutes of vigorous 

aerobic activity (77% to 93% of maximal heart rate) for 3 days a week. This is 

accomplished through rhythmic contraction of large muscle groups such as walking, 

running, jogging, and cycling. Increased cardiorespiratory fitness leads to a lower risk of 

heart attack, stroke, reduced blood pressure, increased insulin sensitivity, and positive 

changes in blood lipid profile (Pescatello, 2014). 

 

1.1.4 Measures of Physical Fitness: Flexibility 

Flexibility is the ability for a joint to move in a specific range of motion. Since 

muscles are the contracting force that allows for these movements, the ability to maintain 

their elasticity becomes of increasing importance with increasing age. Decreased 

flexibility can lead to injury, decreased efficiency of activities of daily living, and overall 

quality of life (Pescatello, 2014; Raab, Agre, McAdam, & Smith, 1988). A loss of 

skeletal muscle mobility is associated with a reduction in physical performance 

(Schenkman, Hughes, Samsa, & Studenski, 1996). In addition, this decline may be 

modified through flexibility training. In a study conducted by Worrell and colleagues 
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(1994) on 19 subjects, flexibility increased after performing both static (+21.3%) and 

proprioceptive neuromuscular facilitation (+25.7%) types of stretching. As flexibility 

increases, there is a reduction in the incidence of muscular and skeletal injuries 

(Witvrouw, Mahieu, Danneels, & McNair, 2004). The guidelines established by the 

ACSM suggest stretching all major muscle groups at least 2-3 days a week, holding each 

stretch for 10-30 seconds for at least 4 repetitions per muscle group (Dunn-Lewis & 

Kraemer, 2016). 

 

1.1.5 Measures of Physical Fitness: Body Composition 

Body composition is the measured ratio of fat to fat-free mass in the body. Fat-

free mass is one of two body components that includes internal organs, bone, muscle, 

connective tissue, and water. Fat mass is the amount of adipose tissue found in the body. 

Generally speaking, individuals with high levels of aerobic and muscular fitness typically 

have lower levels of body fat and higher levels of fat-free mass compared to their 

counterparts with low levels of aerobic and muscular fitness.   

Body composition is routinely measured through indirect means to determine 

relative proportions of fat and fat-free mass. Common examples include the assessment 

of multiple skin fold measurements, air plethysmography using equipment such as the 

Bod Pod, water displacement, or hydrostatic weighing, and dual energy x-ray 

absorptiometry (DXA). Most research has established a positive correlation between 

body fat percentage and risk for coronary artery disease, type 2 diabetes, and certain 

cancers (Pescatello, 2014). Body fatness, in particular visceral adipose tissue 

accumulation, is associated with insulin resistance and incidence of type 2 diabetes 
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(Goedecke & Micklesfield, 2014). Britton et al. (2013) explored the relationship between 

body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality. 

After multivariable adjustment, visceral adipose tissue was associated with 

cardiovascular disease (RR= 1.44) and cancer (RR= 1.43). 

  Body fat levels vary depending on the sex and age of the individual. Males 

typically range from 6-24% and females from 13-31% based upon population normative 

data (ACSM, 2009; Pescatello, 2014). Maintaining a healthy body fat percentage is key 

in reducing the risk of certain diseases, though practically speaking, most often this 

notion is supported by evidence of body mass index (BMI, kg/m2), and not a true 

measure of body composition.  Nonetheless, body composition is an important measure 

of physical fitness.  

Enhanced measures of physical fitness lead to greater efficiency in daily tasks and 

decreased risk for disease and mortality. Exercise principles must be followed to observe 

improvements in various components of physical fitness.  

 

1.2 Exercise Principles 

There are many principles that guide the practice of exercise training to ensure 

appropriate increase in physical fitness over time.  One of the most important principles 

is progressive overload. The principle of progressive overload states that for continual 

adaptation to occur, the stimulus of overload must be progressive. That is, the dose of 

exercise must increase over time. With progressive overload, the body adapts to the stress 

and stimulus placed upon it, resulting in improved physical fitness (Baechle, 2008). This 

is true for any of the physical fitness variables stated previously, and is best illustrated 
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using the variable of muscular strength.   

Most strength gains at the beginning of a resistance training program occur due to 

neural adaptations and improvements in motor control (Baechle, 2008). When performing 

a novel task, such as a new exercise, there must be motor adaptations and learning, which 

improves an individual’s ability to perform that task with greater efficiency and 

effectiveness. This process of improvement can include beneficial adaptations in firing 

rate, sequence of firing, and number of motor units recruited. For example, anaerobic 

training, which can include resistance training, enhances firing rates of recruited motor 

units (Aagaard, Simonsen, Andersen, Magnusson, & Dyhre-Poulsen, 2002). If each 

motor unit within a muscle is capable of producing more force after training, this would 

result in fewer motor neurons needing to be recruited to produce an equivalent outcome, 

in this case, the expression of muscular strength (Carroll, Riek, & Carson, 2001; Ploutz, 

Tesch, Biro, & Dudley, 1994). Following the first 8 weeks of an exercise program, 

increases in muscular strength are attributed to physiological adaptations occurring in the 

muscle (Haff, 2016). Regardless of the mechanism, exposing individuals to increasing 

stress or stimulus results in muscular strength augmentation.  

Muscular strength gains with training varies by initial levels of training and 

exercise program components.  The literature is replete with resistance training studies 

employing different levels of stimulus.  The following discussion is limited to a few 

examples to illustrate most important points.  A review of more than 100 articles showed 

an approximate increase in muscular strength of 40% in untrained individuals, 20% in 

moderately trained, 16% in trained, 10% in advanced trained, and 2% in elite athletes 

during exercise program durations ranging from 4 weeks-2 years (Pescatello, 2014). This 
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graduated response to training in varying levels of initial experience is known as 

diminishing returns.  Muscular strength increases were observed following a 4-week 

program in which participants exercised 3 times a week using a heavy weight stimulus of 

5 sets of 6-10 repetitions of biceps curl. Participants increased maximal dynamic and 

isometric muscle strength by 31% and 12.5%, respectively (Jensen, Marstrand, & 

Nielsen, 2005). Increases in muscular strength have been observed in individuals 

participating in nonspecific exercise protocols beyond 4 weeks. Participants who engaged 

in 5 sets of 10 repetitions of abdominal bracing for 3 times a week over 8 weeks 

exhibited improvements in lower body muscular strength (34.7%) and lifting power 

(15.6%) compared to baseline (Tayashiki et al., 2016).  

Other researchers demonstrated enhancements of muscular strength in trained 

males ensued following a resistance training protocol.  One group trained with a high 

load, consisting of 3 sets of 8-10 repetitions while a second utilized a low load of 3 sets 

of 25 to 35 repetitions.  The high-load group utilized much higher relative resistance to 

induce fatigue in 8 to 10 repetitions.  Therefore, the low-load group utilized much lower 

resistance, allowing for many more repetitions prior to achieving fatigue.  Both groups 

exercised 3 times per week for 8 weeks. All groups performed exercises aimed at 

targeting all major muscle groups: flat barbell press, barbell military press, wide-grip lat 

pull-down, seated cable row, barbell back squat, machine leg press, and machine leg 

extension. Both groups improved muscular strength assessed through 1 repetition 

maximum back squat, with the high-load group demonstrating greater improvements 

compared to the low-load group (19.6% vs. 8.8%) (Schoenfeld, Peterson, Ogborn, 

Contreras, & Sonmez, 2015). In the examples listed above, observed increases in 
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muscular strength followed a stimulus novel to the participant, and magnitude of increase 

in strength was associated with higher relative loads, therefore coinciding with the 

principle of progressive overload. 

In addition to adaptations that specifically correlate to performance and physical 

fitness due to the principle of overload, exercise has the potential to improve indices of 

physical health. These include blood lipid levels, metabolic syndrome, blood pressure, 

and resting heart rate. High levels of cholesterol, LDL, and triglycerides have been 

associated with high risk for atherosclerosis and other CVD. Stefanick et al. (1998) 

demonstrated that there was a significant decrease in total cholesterol, LDL, and 

triglyceride levels in both men and women who participated in a 6-week aerobic exercise 

intervention 3 times a week compared to controls at 6-8-month follow-up. Johnson and 

colleagues (2007) demonstrated that both exercise at low amount/moderate intensity 

(walking 12 miles/week at 40-55% of peak oxygen consumption) and high amount/high 

intensity (jogging 20 miles/week at 65-80% of peak oxygen consumption) was successful 

in reducing metabolic syndrome compared to control group. Aerobic exercise is effective 

in decreasing systolic blood pressure by 4.39 mmHg and diastolic blood pressure by 2.87 

mmHg (Whelton et al., 2002). With increasing aerobic training, adaptations with stroke 

volume, blood pressure, maximal oxygen intake, and other metabolic adaptations 

exhibited a dose response (Ilmarinen & Fardy, 1977). These adaptations result in an 

increase in maximal aerobic capacity. As maximal capacity increases, individuals attain 

higher levels of physical fitness. Participating in repeated aerobic exercise stresses the 

heart and results in adaptations leading to greater efficiency. Most noticeable is the 

decrease in resting heart rate and a decrease in heart rate to a given submaximal effort, 
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indicating increased efficiency.  This change in heart rate occurs largely as a function of 

greater stroke volume to achieve the same cardiac output. In other words, the stress 

placed on the heart diminishes despite the workload remaining the same (Pescatello, 

2014; ACSM, 2009). 

 In order to determine specific exercise workloads that will cause desired 

physiological adaptations, exercise prescriptions indicate the intensity, or effort, 

expressed as a percentage of maximal capacity. In the case of aerobic fitness, maximal 

capacity is most commonly expressed as maximal oxygen consumption (VO2 max), and 

the exercise stimulus to promote fitness is written as the percentage of VO2 max. Because 

there is a strong linear association between VO2 and heart rate, a percentage of maximal 

heart rate is used for greater feasibility of participant monitoring during exercise. In 

resistance training, capacity is reflected by the most weight that can be lifted in one 

repetition for a given lift, the “1 repetition maximum” (1 RM).  Resistance exercises are 

then prescribed as a percentage of 1 RM. Using a percentage of maximal capacity allows 

for exercise programs that are individually tailored to produce a specific performance or 

health outcome (e.g., increases in muscular strength, power, hypertrophy, or endurance). 

Using a percentage of maximal capacity also allows for the ability to obtain normative 

data for the population. When designing an exercise program, it is important to determine 

if the stimulus is appropriate for the individual. The load for an exercise program will be 

relative to each individual depending on the 1RM. To illustrate this point, elderly 

populations in assisted living can participate in a resistance program at 80% of 1 RM. 

However, the absolute weight lifted to elicit 80% of 1RM will be considerably lower than 

the weight need for college-aged adults since they begin with a greater capacity, or a 
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greater 1RM (Fiatarone et al., 1994). 

The importance of establishing valid and reliable measures of physical fitness is 

key in determining areas of focus for each individual as it pertains to physical fitness. 

Although there are well-established methods of measuring the different aspects of 

physical fitness as mentioned previously, there are still many questions regarding 

physical fitness and the relation to health outcomes. Exercise intensities prescribed to a 

normal, healthy population may not be suitable for all individuals. Circumstances do not 

always allow for exercises performed at the upper limits of intensity. In certain instances, 

exercise may be contraindicated and be avoided due to potential harm. For example, an 

individual with a newly sprained ankle should avoid agility or speed movements 

(basketball, soccer, and football drills) that would further connective tissue damage 

(Järvinen et al., 2007). An individual with severe osteoporosis is not recommended to 

participate in activities that could result in spinal fracture (Sinaki & Mikkelsen, 1984). 

Someone with significant coronary blockage is counseled to refrain from participation in 

high-intensity activities that could lead to plague breaking off creating a clot in the 

smaller arteries of the heart (Maron et al., 1996). In all these cases, exercise intensity is 

reduced in an effort to promote safety. This is usually the case with variables that are well 

understood: muscular strength, muscular endurance, aerobic capacity, flexibility. 

However, there are physical characteristics that may behave similarly to these 

components of physical fitness, yet their implications on health and physical fitness are 

not fully understood. 
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cmH2O. Certain absolute values are associated with negative health outcomes, most 

notably, pelvic floor disorders (Nygaard, Hamad, & Shaw, 2013; Shaw et al., 2014). For 

example, a value of 100 cmH2O is considered high, and activities causing high IAP 

values are not recommended. However, young nulliparous women who regularly 

participated in high-intensity CrossFitTM exercise (CrossFit, inc., Washington, DC) did 

not have different pelvic floor support from women who were regularly active but did not 

do strenuous activity (Middlekauff, Egger, Nygaard, & Shaw, 2016).  Strenuous 

activities, like CrossFit™ and several athletic events, are known to increase IAP in a 

functional manner, in order to provide spinal stability (Hodges et al., 2005). When higher 

amounts of weight are lifted, this equates to higher increases in IAP. It seems that 

repeated exposure to activities increasing IAP results in improved fitness levels. Sport 

and exercise express stress to the body as percentages of maximal capacity. In this 

manner, the appropriate stimulus is assigned to obtain a specific outcome. This method is 

used for each variable of physical fitness. Conflicting perspectives from clinical and 

exercise physiology settings raise important questions concerning IAP. What is “high” 

IAP? Can it be defined using an absolute value in cmH2O, or is this best understood with 

reference to an individual’s maximal capacity for generating IAP? That is, if IAP is a 

correlate of physical fitness, then IAP could be expressed in relative terms, as a 

percentage of maximal. IAP, which contributes to physical performance, has not been 

studied in this manner. 

1.3 What About IAP? 

In the field of urogenycology, IAP is commonly expressed as an absolute value in 



 

 

 

 

CHAPTER 2 

 

METHODS 

 

2.1 Participants 

Participants were women aged 18 and 54 years and were excluded if they 

answered positive to any of the questions in the Physical Activity Readiness 

Questionnaire (Thomas, Reading, & Shephard,1992), had physical injuries or limitations 

preventing them from completing a 1-hour, controlled exercise protocol, were pregnant, 

or <=six months postpartum. The average age of participants was 30.4 (SD 9.3) years and 

mean BMI was 22.4 kg/m2 (SD 2.68). 

 

2.2 Design 

This study is cross sectional and explores the relationship between the relative 

term of percent of maximal IAP for individual activities and maximal IAP observed 

during seated ValSalva.  

 

2.3 Procedures 

Participants completed a 1-hour exercise protocol in a Human Performance 

Laboratory located at the University of Utah. The laboratory was equipped with a 

Quinton Q-Stress TM55 treadmill (Bothell, Washington, USA), and a Monark 828E 
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cycle ergometer (Vansbro, Sweden) used to conduct the walking, running, and cycling 

measurements. Participants wore light exercise clothes and voided their bladders upon 

arriving to the Laboratory.  A wireless pressure transducer, developed for this research, 

was used to assess IAP during the exercise trial (Hsu et al., 2012; Hamad et al., 2012).  In 

brief, the transducer is made of a gel-filled capsule with an electronic pressure sensor 

inside, a tether made of flexible polymer tubing, and an antenna. Data were 

communicated wirelessly through the antenna and received by a “base station” 

(ZLE70101BADA Applications Development Kit, Zarlink), which recorded and saved 

the data for later analysis. The polymer tubing allowed for device removal and provided a 

reference to atmospheric pressure. The antenna was taped securely near the anterior 

superior iliac spine.  Participants were instructed to insert the device into the upper 

vagina like a tampon. During the exercise protocol, IAP data collected by the transducer 

were transmitted every 1.5 seconds to the base station at a frequency of 32 Hz. 

Participants completed the activity protocol on two separate occasions with the second 

session to assess repeatability (Egger et al., 2015). The data used for this project were 

selected from the first of the two trials.  

The activities from the original protocol chosen for this study reflect mostly 

traditional exercises, in addition to some lifting tasks (Table 2.1). Tasks with progressive 

levels of activity, such as walking, cycling, lifting and calisthenics, were specifically 

chosen for these analyses, since increasing activity intensity should translate to increases 

in relative strain.  Walking and running occurred during 30-second intervals on the 

treadmill, preceded by a warm up. Walking and running were divided into 3 levels of 

intensity (Table 2.1). Seated and standing cycling were conducted at predetermined 
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workloads during 30-second intervals. Stand to sit involved a movement pattern 

resembling the squat, with the seated position closely achieving a 90 degree knee angle in 

most women. Lifting tasks included two levels of intensity (13.6kg, 18.2kg) in which 

women lifted the load from the floor onto a counter and back to starting position three 

times. Participants were given basic instructions and a demonstration prior to doing each 

task, but they were not coached to follow specific lifting mechanics. Participants 

performed 8 repetitions of dumbbell seated shoulder press at each intensity level (3.6kg, 

5.5kg, 6.9kg, and 9.1kg). Jumping was done in place, using body weight alone, and was 

performed 10 times. 

The order of the activity protocol remained constant and was developed to mimic 

a traditional exercise format for safety purposes.  The laboratory session began with a 

warm up of easy walking on the treadmill, followed by aerobic activities of progressing 

intensity (walking, running, cycling), then to activities with lower intensity, including sit 

to stand, lifting tasks, and calisthenics. Jumping and seated ValSalva were placed at the 

end of the protocol in the event the pressure transducer was not retained in the upper 

vagina, which would have disrupted protocol flow.  The exercise session concluded with 

stretching (data not shown).  

The VM was conducted three times each in the seated and lying positions.  The 

seated VM consistently demonstrated the highest IAP in 55 of 57 women and also had 

the highest mean IAP for the group.  Therefore, the IAP from seated and not lying VM 

was used to reflect maximal IAP for the present paper. 
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2.4 Data Analysis 

All IAP values were calculated using established methods from the prior study 

(Hamad et al., 2012).  For this subanalysis of data, the data used for the original study 

were drawn from archived files. Descriptive statistics, means and standard deviation 

(SD), range, and minimum and maximum values were used to summarize the data (Table 

2.2). Seated ValSalva represented the highest observed IAP values for most women (M 

124.91) (SD 41.15). In comparison, lying ValSalva (M 91.82) (SD 31.61) yielded slightly 

lower mean IAP. Therefore, seated ValSalva was assumed as maximal IAP capacity, as 

observed in prior research (Hackett & Chow, 2013). In total, 55 out of the 57 women had 

data for seated VM; therefore, the two women without seated VM data were excluded 

from this project.   

For each of the 55 participants in this study, the IAP of each activity was 

expressed as a percentage of maximal capacity.  Therefore, the IAP for each individual 

activity was divided by the same participant’s IAP for seated ValSalva. Pearson’s r 

correlation coefficients were calculated to determine the nature of the relationship 

between the maximal capacity for IAP (from seated VM) and the percentage of maximal 

capacity for the individual activities. To confirm that the relative expression of IAP was 

unique from that of the absolute value, separate correlation analyses were conducted 

between the absolute IAP for each activity and maximal IAP during seated VM. The 

Statistical Package for the Social Sciences (SPSS) (IBM Corp. Released 2013. IBM SPSS 

Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.) was used to conduct all 

statistical analyses.  

Descriptive data were analyzed to determine whether a partial correlation analysis 
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would be more appropriate than a bivariate analysis. For this, Pearson r correlation 

analyses were used for interval and ratio data (age and BMI) while Spearman’s rho was 

used for nominal data (parity). Given the wide range of IAP for seated VM (16.48-

207.73), individuals with what appeared to be “low” IAP during VM (less than 80 

cmH2O or lowest ~16%) were compared to those with IAP during VM higher than 80 

cmH2O—as we wanted to determine whether these people with “low” IAP during VM 

were different by age, BMI, or parity as well. Of the individuals in the “low” group, the 

highest seated VM value was 69.48 cmH2O, which corresponds to 1.7 SD from the mean 

(124.91). 
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Table 2.1 Description of activities (All activities performed for a 30-second 

interval unless indicated otherwise) 

Activity Description 

Seated Valsalva The index of maximal IAP (3 maximal efforts) 

Walking and Running Levels  Walking on treadmill at 4.8 km/hr 0% grade 

Walking on treadmill at 5.6 km/hr 7% grade 

Running on treadmill at 8-9.7 km/hr 0% grade 

Cycling Levels  Seated at 600 kgm/min 

Standing at 900 kgm/min 

Stand to Sit From a standing position, lower to a seated 

position in a chair, return to standing 

Lifting Task  Lift 13.6 kg floor to counter and back three times 

Lift 18.2 kg floor to counter and back three times 

Seated Shoulder Press Shoulder press with 3.6 kg dumbbells (8 

repetitions) 

Shoulder press with 5.5 kg dumbbells (8 

repetitions) 

Shoulder press with 6.9 kg dumbbells (8 

repetitions) 

Shoulder press with 9.1 kg dumbbells (8 

repetitions) 

Calisthenics  Abdominal Curl-Ups 

Full Sit-Ups with feet held 

Push Ups from Knees 

Jumping Jumping with counter movement 10 times 
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Table 2.2 Absolute IAP values for seated ValSalva and laboratory activities. 

Descriptive Statistics 

 N Minimum Maximum Mean 

Std. 

Deviation 

Seated ValSalva (Maximum 

IAP) 

55 16.49 207.73 124.91 41.18 

Walk 4.8 km/hr 0% grade 55 15.27 36.58 24.72 3.98 

Walk 5.6 km/hr 7% grade 55 20.13 56.12 35.67 6.55 

Run 8-9.7 km/hr 0% grade 54 32.38 98.65 65.24 13.60 

Seated Cycling, 600 kgm/min 55 4.05 16.47 8.24 2.26 

Standing Cycling 900 

kgm/min 

54 14.55 66.86 42.77 10.35 

Stand to Sit 53 20.59 99.73 37.15 15.71 

Lift 13.6 kg floor to counter 

and back 

54 17.14 62.62 35.00 9.49 

Lift 18.2 kg floor to counter 

and back 

53 13.60 119.98 50.81 19.21 

Seated Shoulder Press 3.6kg 43 4.00 31.91 10.41 5.66 

Seated Shoulder Press 5.5 kg 38 3.91 24.91 11.38 4.76 

Seated Shoulder Press 6.9kg 11 8.13 19.30 12.21 3.63 

Seated Shoulder Press 9.1 kg 8 10.43 36.52 21.82 9.82 

Abdominal Curl Ups 55 6.49 82.32 23.17 15.59 

Full Sit Ups w/ feet held 55 13.89 128.48 64.54 24.35 

Push Ups from Knees 55 4.03 42.47 16.05 6.73 

Jumping 49 25.70 153.87 88.50 24.71 

 



 

 

 

 

CHAPTER 3 

 

RESULTS 

 

3.1 Participants 

In total, the data of 55 women were included in the analysis. Women were aged 

20-54 (M 30.38±SD 9.43 yrs) and had BMI values between 17.7-28.9 kg/m2 (M 22.4) 

(SD 2.63). Of the women who had data for seated VM, 14 (~25%) were parous, having 

delivered 1 to 4 children, and 41 were nulliparous. 

Pearson and Spearman correlation analyses showed a positive association 

between age and parity (r=.691, p=.000) and age and BMI (r=.318) (p=.016). However, 

there was no significant relationship between IAP during seated VM and age, parity, or 

BMI. 

 

3.2 Individuals With “Low” Maximal IAP 

Some participants exhibited higher IAP values for select laboratory activities than 

the IAP values for seated ValSalva. Those activities and corresponding numbers of 

participants who exhibited this phenomenon (N) were the following: running at 8-

9.7km/hr (N=3), standing cycling at 900 kg/min (N=2), stand to sit (N=2), lifting 18.2 kg 

(N=2), full sit ups (N=4), and jumping (N=9).  As such, differences between individuals 

with “low” maximal IAP and those with “high” maximal IAP were examined. Less than 
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16.3% (N=9) of the sample had maximal IAP below 80 cmH2O. Of the individuals 

having below 80 cmH2O, the highest seated VM value was 69.48 cmH2O, which 

corresponds to 1.7 SD from the mean (124.91). These women were categorized as “low” 

and all others (83.7%, N=46) were categorized as “high.”  The differences in IAP for 

seated VM between these groups were statistically significant (Table 3.2). However, 

these two groups were of similar age, parity, and BMI (ANOVA, p >0.05).  

Because jumping had the largest number of observations in which IAP was 

greater than seated VM, the relative IAP (% of maximal) for jumping was compared 

between the “low” and “high” VM groups. The “low” IAP group (N=8) had a mean % 

Max IAP of 111.8% (SD 36.3%) compared to the “high” group (N=41) (M= 69.6%) (SD 

19.2%); this difference in % Max IAP for jumping between groups was statistically 

significant (t=4.830, p<0.000). 

 

3.3 Activities Analysis 

The mean relative IAP for individual laboratory activities ranged from 8.41 

(seated cycling at 600 kgm/min) to 75.65 (jumping) % of seated VM IAP (Table 3.3).  

Pearson r correlation results indicate that all relative values (% maximal of seated VM) 

were significantly and negatively correlated at (p<0.001) with seated VM IAP (Table 

3.3), except for seated shoulder press with 6.9 kg (p 0.023) and 9.1 kg (p 0.557). 

One woman in the “low” IAP group had a maximal seated VM IAP of greater 

than 2 SD below the mean (IAP = 16.49).  Therefore, a sensitivity analysis of the 

correlations and % of maximal IAP for each activity was conducted without that one 

woman.  All other “low” IAP women remained in the analysis.  The results of the 



30 

 

sensitivity analysis without the outlier are displayed in Table 3.4. 

Figures 3.1-3.8 visually demonstrate the relationship between the % of maximal 

IAP with maximal IAP for the two walking and one running activity, two cycling 

activities, one curl up and one sit-up activity, two lifting activities, four seated shoulder 

press activities, one stand to sit activity, one push up activity, and the jumping activity. 

The outlier described above was omitted from Figures 3.1-3.8 because her inclusion 

significantly altered the outline of the graph and influenced the relationships among some 

of the variables.  Activities containing multiple levels are color coded to facilitate 

identification. In some cases, graphs include IAP percent values that are greater than 

100% due to the observation that seated VM was not the highest IAP observed for all 

individuals for all activities.  

Lastly, as a final data check, we conducted correlation analyses between the 

absolute value of seated VM and the individual activities.  There were few significant, 

positive correlations between four higher IAP activities and seated VM (lifting 13.6 kg r 

= .338, lifting 18.2 kg r= .274, full sits ups, r= .281, jumping r= .467), but the 

correlations, while significant (p<0.001), were of relatively low magnitude.  Further, to 

illustrate the difference in this relationship, Figures 3.8 and 3.9 show the relationships 

between seated VM and the relative and absolute IAP values for jumping. Figure 3.9, 

which depicts an activity requiring high absolute values, illustrates that maximal and 

absolute IAP values are correlated. However, many of the activities requiring lower 

absolute IAP did not display this same relationship. Despite this, all except for seated 

shoulder press with 6.9 kg (p 0.023) and 9.1 kg (p 0.557) displayed a significant 

relationship between relative and maximal IAP values at the p<0.001 level (note: seated 
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shoulder press with 6.9 kg significant at p<0.05 level). Figures 3.10 and 3.11 show the 

relationship between seated VM and the relative and absolute values for walking at 4.8 

km/hr at 0% grade. 
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Table 3.1 Sample characteristics 

Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation 

Height (inches) 55 60.00 72.80 64.77 2.84 

Weight (lbs) 55 101.00 200.00 136.75 20.17 

BMI (kg/m2) 55 17.70 28.90 22.31 2.63 

Age (yrs) 55 20 54.00 30.38 9.43 

 

 

Table 3.2 Maximal IAP differences between “low” and “high” participants 

Group Statistics 

 VM Category N Mean Std. Deviation Std. Error Mean 

Seated ValSalva 

(Maximum IAP) 

Low 9 57.01 17.27 5.76 

High  46 138.20 29.65 4.37 
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Table 3.3 Relative (% of maximal) IAP for laboratory activities and correlation 

with Maximal IAP with outlying score 

 
N Minimum Maximum Mean Std. Deviation 

 

Pearson 

Correlation 

% of Max-Walk 4.8 km/hr 0% grade 55 10.93 152.58 24.21 20.14 -.677** 

% of Max Walk 5.6 km/hr 7% grade 55 15.92 210.47 34.92 28.52 -.689** 

% of Max- Run 8-9.7 km/hr 0% grade 54 23.79 373.35 62.13 50.81 -.652** 

% of Max- Seated Cycling 600 

kgm/min 

55 02.46 70.56 08.42 09.28 -.609** 

% of Max Standing Cycling 900 

kgm/min 

54 17.72 271.48 41.74 37.13 -.622** 

% of Max Stand to Sit 53 10.66 240.89 36.54 35.40 -.584** 

% of Max-Lift 13.6 kg floor to counter 

and back 

54 10.01 143.69 32.20 20.36 -.697** 

% of Max-Lift 18.2 kg floor to counter 

and back 

53 11.46 113.59 43.14 21.31 -.571** 

% of Max-Seated Shoulder Press 

3.6kg 

43 02.42 70.64 11.09 12.17 -.683** 

% of Max-Seated Shoulder Press 5.5 

kg 

38 04.36 30.23 10.31 05.98 -.693** 

% of Max-Seated Shoulder Press 

6.9kg 

11 05.33 24.39 10.84 05.12 -.673* 

% of Max-Seated Shoulder Press 9.1 

kg 

8 07.47 23.55 17.14 06.24 -.246 

% of Max-Abdominal Curl Ups 55 04.66 91.53 21.08 17.61 -.444** 

% of Max-Full Sit Ups w/ feet held 55 21.28 162.39 56.86 26.94 -.596** 

% of Max-Push Ups from Knees 55 04.79 56.33 14.62 09.27 -.589** 

% of Max- Jumping 49 29.15 165.32 75.66 27.37 -.645** 

*Significant at p 0.05 

** Significant at p 0.001 
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Table 3.4 Relative (% of maximal) IAP for laboratory activities and correlation 

with Maximal IAP with outlying score removed 

 N Minimum Maximum Mean Std. Deviation  

Pearson 

correlation 

% of Max-Walk 4.8 km/hr 0% grade 54 10.93 57.20 21.83 09.83 -.801** 

% of Max Walk 5.6 km/hr 7% grade 54 15.92 90.02 31.67 15.39 -.770** 

% of Max- Run 8-9.7 km/hr 0% grade 53 23.79 203.16 56.26 27.08 -.680** 

% of Max- Seated Cycling 600 

kgm/min 

54 02.46 24.11 07.27 03.67 -.756** 

% of Max Standing Cycling 900 

kgm/min 

53 17.72 133.19 37.41 19.27 -.650** 

% of Max Stand to Sit 52 10.66 153.20 32.61 21.05 -.682** 

% of Max-Lift 13.6 kg floor to counter 

and back 

53 10.01 87.44 30.10 13.38 -.571** 

% of Max-Lift 18.2 kg floor to counter 

and back 

53 11.46 113.59 43.14 21.31 -.531** 

% of Max-Seated Shoulder Press 

3.6kg 

42 02.42 39.65 09.67 07.94 -.645** 

% of Max-Seated Shoulder Press 5.5 

kg 

37 04.36 30.23 09.95 05.62 -.630** 

% of Max-Seated Shoulder Press 

6.9kg 

11 05.33 24.39 10.84 05.12 -.673* 

% of Max-Seated Shoulder Press 9.1 

kg 

8 07.47 23.55 17.14 06.24 -.246 

% of Max-Abdominal Curl Ups 54 04.66 91.53 20.09 16.17 -.346* 

% of Max-Full Sit Ups w/ feet held 54 21.28 162.39 56.35 26.93 -.590** 

% of Max-Push Ups from Knees 54 04.79 56.33 14.39 09.20 -.570** 

% of Max- Jumping 49 29.15 165.32 75.66 27.37 -.645** 

*Significant at p 0.05 

** Significant at p 0.001 
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Figure 3.1 Walk to Run 

 

 

Figure 3.2 Cycling 
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Figure 3.3 Abdominal Curl ups and Full Sit ups 

 

Figure 3.4 Lifting 
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Figure 3.5 Seated Shoulder Press 

 

Figure 3.6 Sit to Stand 
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Figure 3.7 Push Ups 

 

Figure 3.8 Jumping 
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Figure 3.9 Jumping Absolute Values 

 

Figure 3.10 Walking 4.8km/hr 0% Grade 
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Figure 3.11 Walking 4.8 km/hr 0% Grade Absolute Values 

 



 

 

 

 

CHAPTER 4 

 

DISCUSSION 

 

In this secondary analysis of previously reported descriptive data of IAP 

measured during a laboratory exercise protocol, we found that the relative expression of 

IAP had a negative association with maximal capacity for generating IAP.  In most cases, 

this negative association was of moderate to strong magnitude and statistically significant 

(p<.001).  The two exceptions to this overall finding occurred in seated overhead press of 

6.9 and 9.1 kg, which fewer women could do (N=11 and N=9, respectively).  Taken 

together, these findings support the contention that the IAP response to individual, 

submaximal activities exhibits a similar relationship to maximal capacity as that observed 

in well-established measures of fitness, such as muscular strength or maximal oxygen 

consumption. 

In prior clinical and exercise studies, IAP has been reported as an absolute value 

in units of cmH2O or mmHg. Because there is concern that repeated exposure to “high” 

IAP may contribute to pelvic floor symptoms and disorders (Middlekauff et al., 2016; 

Nygaard et al., 2013), there is a need to define either a threshold value for high IAP or 

values for IAP that constitute limits of safety. In exercise settings, IAP rises in response 

to increases in activity intensity, as we have seen with increasing walking speeds and 

others have observed with lifting weights (Coleman et al., 2012; Tayashiki et al., 2016). 
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However, the maximal limits for doing any exercise activity will vary by individual, 

which helps define physical fitness. Therefore, understanding whether IAP is “high” may 

depend upon individual capacity, as our data demonstrate. To illustrate, in one woman 

with absolute IAP during seated VM of 45 cmH2O and absolute IAP during jumping of 

75 cmH2O, jumping was 165% of volitional maximal capacity. On the other end of the 

spectrum, another woman generated absolute IAP of 208 cmH2O during seated VM and 

92 cmH2O during jumping, which was only 45% of maximal.  Despite having a higher 

absolute value of IAP during jumping, the woman with the higher maximal capacity may 

have experienced lower relative strain from the jumping activity compared to the woman 

with lower maximal capacity.  Using the method of calculating relative intensity, as is 

commonly done in exercise science, for IAP may therefore be useful in studying whether 

IAP is high or within limits of safety for individuals.  Further, given that jumping is an 

activity reported to induce stress urinary incontinence, relative intensity for IAP may also 

help signal when pelvic floor symptoms are likely to occur. 

While all of the correlations between the relative IAP and maximal IAP were 

negative, there was variability in correlation strength.  The strongest correlations were 

observed for walking and seated cycling activities, likely because these activities do not 

allow for much variability in performing the tasks. Other activities such as lifting and 

jumping are subject to greater task variability between individuals, which may explain 

slightly lower correlations.  Higher task variability is likely explained, in part, by 

differences in biomechanics, muscle recruitment patterns used by the individuals, and 

previous experience with the task. Interestingly, the relative IAP for abdominal curl ups 

had a much weaker correlation with maximal IAP than full sit-ups. This may be due to 
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individuals utilizing head and shoulder momentum during a curl up to assist in the 

movement or simply the low amounts of IAP needed to accomplish the movement 

compared to full sit-ups. 

We and others have demonstrated previously that IAP increases with increased 

activity intensity (Hodges et al., 2005; Tayashiki et al., 2016). In the present study, this 

occurred with participants that performed the walking/running activity, the trunk 

exercises activity, cycling activity, and lifting activity. This supports findings by Hodges 

and colleges who found that IAP increased in response to higher loads during back squat 

(Hodges et al., 2005). Increases in IAP have also been reported due to higher walking 

speeds (de Gennaro et al., 2017). This may be due to several factors, primarily impact 

forces and the role IAP plays in spinal stability. For example, the greatest IAP mean 

percent of maximal (75.66%) occurred during jumping, an activity requiring spinal 

stability and producing high ground reaction forces (McNair & Prapavessis, 1999). 

Seated cycling had the lowest mean IAP percent of maximum (8.42%). The seated 

posture supports spinal stability and cycling does not involve impact forces. Our study 

supports previously published literature that demonstrates IAP increases in response to 

greater demands placed on the body. This mirrors other measures of fitness formerly 

mentioned such as muscular strength or oxygen consumption. As the intensity of the 

activity increases, the system stressed increases the output to accomplish the activity. 

Consequently, our findings support the notion that IAP responds similar to measures of 

fitness. 

Distinguishing between individuals with “low” and “high” maximal IAP 

presented a unique problem. What absolute value would be established as the threshold to 
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be considered high? To our knowledge, there was no previously published literature on 

an established value to be considered “high” IAP for seated VM. Upon further review of 

literature, maximal IAP achieved during VM or abdominal bracing was consistently 

around 90 cmH2O (Brandt et al., 2006; Tayashiki et al., 2016). In experienced exercisers, 

this mean can be even higher (170 cmH2O) (Cresswell, Blake, & Thorstensson, 1994). As 

such, we felt it appropriate to set the threshold conservatively at 80 cmH2O. Moreover, is 

there an IAP value to be considered to reflect maximal capacity? Research previously 

published supports the notion of substantial variability when performing VM (Brandt et 

al., 2006; Greenland et al., 2007). In sensitivity analyses, removal of one extreme outlier 

(>2 SD from the mean for seated VM) altered the relationships we observed, and for 

some, removal of this score increased the strength of the relationship.  

Our study has limitations. We assume that VM elicits maximal IAP response. 

Although this is supported by the literature (Hackett & Chow, 2013; Hodges et al., 2005), 

levels of IAP achieved are subject to voluntary maximal exertion, familiarity with the 

VM, and ability to recruit musculature necessary to perform VM correctly. Proper VM 

necessitates strain against a closed glottis; this ensures that air is not lost though 

expiration and enables IAP to rise in the abdominal cavity. Individuals unable to close the 

airway would diminish the maximal IAP they are able to achieve. Indeed, the range of 

IAP by VM reported herein was extremely wide (16.49 to 207.73 cmH2O), which is not 

unique to our study (Brandt et al., 2006; Greenland et al., 2007). Some correlation results 

changed with sensitivity analyses with the lowest VM value removed.  Further, some 

activities such as jumping resulted in higher IAP than VM in some but not most women.  

However, there are examples of supra-maximal exertion, such as the Wingate anaerobic 
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power test, in which workloads exceed 100% of that achieved in a test of maximal 

oxygen consumption (Medbø & Tabata, 1989).  Physical fitness was not assessed in the 

original study, so a direct comparison of IAP among higher and lower fit women could 

not be done.  Lastly, our findings are limited to women within the age (18 to 54 yrs) and 

BMI (18.5 and 29.9 kg/m2) ranges of our participants. 

Our findings suggest that it may be helpful to express IAP in terms relative to 

maximal, rather than as absolute values. For clinicians, this may mean a change in 

perspective such that an absolute value that may appear to be high instead be considered 

in light of an individual’s capacity before determining whether that exposure is 

potentially harmful.  Such a change in focus may help clinicians and coaches understand 

the unique IAP stress a woman experiences with a given task. Although IAP is not 

routinely assessed in strength and conditioning settings, coaches may observe women 

with pelvic floor symptoms such as urinary incontinence during heavy lifting and impact 

activities. Despite not having access to the means of measuring IAP associated with these 

activities, it is imperative that coaches understand the relationship between IAP and 

higher intensity efforts during training.  With this knowledge, strength and conditioning 

specialists may adjust training practices in order to limit the likelihood of precipitating 

pelvic floor symptoms in women. 

In conclusion, additional data are needed to confirm the present findings. 

Documenting changes in IAP associated with motor learning, such as in acquiring sound 

lifting techniques, could reduce the influence of varying biomechanics in IAP observed 

during exercise tasks.  Further, a prospective longitudinal design constructed to improve 

physical fitness, using activities known to elevate IAP, is indicated. Lastly, documented 
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improvements in physical fitness that correspond to increases in capacity to generate IAP 

through VM, and result in lower relative IAP with submaximal efforts would solidify our 

findings.  
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Table A1. Lifting 

Descriptive Statistics 

 Mean Std. Deviation N 

Seated ValSalva 124.914909090909090 41.175446080145754 55 

% of Max-Lift 13.6 kg 

floor to counter and back 

.321999023480450 .203612535950577 54 

% of Max-Lift 18.2 kg 

floor to counter and back 

.431403164915427 .213074462210275 53 

 

Correlations 

 Seated ValSalva 

% of Max-Lift 13.6 

kg floor to counter 

and back 

% of Max-Lift 18.2 kg 

floor to counter and 

back 

Seated ValSalva Pearson Correlation 1 -.697** -.571** 

Sig. (2-tailed)  .000 .000 

N 55 54 53 

% of Max-Lift 13.6 kg 

floor to counter and back 

Pearson Correlation -.697** 1 .773** 

Sig. (2-tailed) .000  .000 

N 54 54 53 

% of Max-Lift 18.2 kg floor 
to counter and back 

Pearson Correlation -.571** .773** 1 

Sig. (2-tailed) .000 .000  

N 53 53 53 
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          Table A2. Core Progression 

Descriptive Statistics 

 Mean Std. Deviation N 

Seated ValSalva 124.9149090909090

90 

41.175446080145754 55 

% of Max-

Abdominal Curl 

Ups 

.210764114070781 .176108873081959 55 

% of Max-Full Sit 

Ups w/ feet held 

.568566977633299 .269418883573485 55 

 

 

Correlations 

 
Seated 

ValSalva 

% of Max-

Abdominal Curl Ups 

% of Max-Full Sit 

Ups w/ feet held 

Seated ValSalva Pearson Correlation 1 -.444** -.596** 

Sig. (2-tailed)  .001 .000 

N 55 55 55 

% of Max-

Abdominal Curl 

Ups 

Pearson Correlation -.444** 1 .658** 

Sig. (2-tailed) .001  .000 

N 55 55 55 

% of Max-Full Sit 

Ups w/ feet held 

Pearson Correlation -.596** .658** 1 

Sig. (2-tailed) .000 .000  

N 55 55 55 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table A3. Cycling  

Descriptive Statistics 

 Mean Std. Deviation N 

Seated ValSalva 124.914909090909090 41.175446080145754 55 

% of Max-Seated Cycling, 

600 kgm/min 

.084110668305061 .092054245721982 55 

% of Max-Standing 

Cycling 900 kgm/min 

.417428276704738 .371228912546713 54 

 

Correlations 

 Seated ValSalva 

% of Max-

Seated Cycling, 

600 kgm/min 

% of Max-Standing 

Cycling 900 

kgm/min 

Seated ValSalva Pearson Correlation 1 -.610** -.622** 

Sig. (2-tailed)  .000 .000 

N 55 55 54 

% of Max-Seated 

Cycling, 600 

kgm/min 

Pearson Correlation -.610** 1 .956** 

Sig. (2-tailed) .000  .000 

N 55 55 54 

% of Max-Standing 

Cycling 900 kgm/min 

Pearson Correlation -.622** .956** 1 

Sig. (2-tailed) .000 .000  

N 54 54 54 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table A4. Push Ups 

Descriptive Statistics 

 Mean Std. Deviation N 

Seated ValSalva 124.914909090909090 41.175446080145754 55 

Push Ups .146171342917058 .092710941463181 55 

 

Correlations 

 Seated ValSalva Push Ups 

Seated 

ValSalva 

Pearson Correlation 1 -.589** 

Sig. (2-tailed)  .000 

N 55 55 

Push Ups Pearson Correlation -.589** 1 

Sig. (2-tailed) .000  

N 55 55 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table A5. Running and Jumping 

Descriptive Statistics 

 Mean Std. Deviation N 

Max IAP 124.914909090909090 41.175446080145754 55 

% of Max-Run 8-9.7 km/hr 

0% grade 

.621272471063730 .508065977243440 54 

% of Max-Jumping .756586943699249 .273705027189660 49 

 

Correlations 

 Max IAP 

% of Max-Run 8-9.7 

km/hr 0% grade % of Max-Jumping 

Max IAP Pearson Correlation 1 -.652** -.645** 

Sig. (2-tailed)  .000 .000 

N 55 54 49 

% of Max-Run 8-9.7 

km/hr 0% grade 

Pearson Correlation -.652** 1 .776** 

Sig. (2-tailed) .000  .000 

N 54 54 48 

% of Max-Jumping Pearson Correlation -.645** .776** 1 

Sig. (2-tailed) .000 .000  

N 49 48 49 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table A6. Walking 

Descriptive Statistics 

 Mean Std. Deviation N 

Max IAP 124.914909090909090 41.175446080145754 55 

% of Max-Walk 4.8 

km/hr 0% grade 

.242089919182521 .201410742430113 55 

% of Max-Walk 5.6 

km/hr 7% grade 

.349161277221454 .285248024693646 55 

 

Correlations 

 Max IAP 

% of Max-Walk 4.8 

km/hr 0% grade 

% of Max-Walk 5.6 

km/hr 7% grade 

Max IAP Pearson Correlation 1 -.677** -.689** 

Sig. (2-tailed)  .000 .000 

N 55 55 55 

% of Max-Walk 4.8 

km/hr 0% grade 

Pearson Correlation -.677** 1 .990** 

Sig. (2-tailed) .000  .000 

N 55 55 55 

% of Max-Walk 5.6 

km/hr 7% grade 

Pearson Correlation -.689** .990** 1 

Sig. (2-tailed) .000 .000  

N 55 55 55 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table A7. Seated Shoulder Press 

Descriptive Statistics 

 Mean Std. Deviation N 

Seated ValSalva 124.914909090909090 41.175446080145754 55 

Seated Shoulder Press 3.6 kg .110903953817434 .121618333820486 43 

Seated Shoulder Press 5.5 kg .102963436502740 .059379082793179 38 

Seated Shoulder Press 6.9 kg .108427863205368 .051249880647434 11 

Seated Shoulder Press 9.1 kg .171399389547948 .062412722941027 8 

 

Correlations 

 

Seated 

ValSalva 

Seated 

Shoulder Press 

3.6 kg 

Seated 

Shoulder Press 

5.5 kg 

Seated 

Shoulder Press 

6.9 kg 

Seated Shoulder 

Press 9.1 kg 

Seated Valsalva Pearson 

Correlation 

1 -.683** -.688** -.673* -.246 

Sig. (2-tailed)  .000 .000 .023 .557 

N 55 43 38 11 8 

Seated Shoulder 

Press 3.6 kg 

Pearson 

Correlation 

-.683** 1 .614** .c .c 

Sig. (2-tailed) .000  .001 . . 

N 43 43 27 0 0 

Seated Shoulder 

Press 5.5 kg 

Pearson 

Correlation 

-.688** .614** 1 .907** .470 

Sig. (2-tailed) .000 .001  .000 .240 

N 38 27 38 11 8 

Seated Shoulder 

Press 6.9 kg 

Pearson 

Correlation 

-.673* .c .907** 1 .384 

Sig. (2-tailed) .023 . .000  .347 

N 11 0 11 11 8 

Seated Shoulder 

Press 9.1 kg 

Pearson 

Correlation 

-.246 .c .470 .384 1 

Sig. (2-tailed) .557 . .240 .347  

N 8 0 8 8 8 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table A8. Sit to Stand 

Descriptive Statistics 

 Mean Std. Deviation N 

Seated ValSalva 124.914909090909090 41.175446080145754 55 

Sit to Stand .365390529918874 .353961527503773 53 

 

Correlations 

 Seated ValSalva Sit to Stand 

Seated ValSalva Pearson Correlation 1 -.584** 

Sig. (2-tailed)  .000 

N 55 53 

Sit to Stand Pearson Correlation -.584** 1 

Sig. (2-tailed) .000  

N 53 53 

**. Correlation is significant at the 0.01 level (2-tailed). 
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