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ABSTRACT

This dissertation theoretically and empirically explores how development impacts

the environment in the largest developing country in the world from the perspective of

the sociology of development, and environmental and urban sociology. This dissertation

focuses on the context of China, reviews the development trajectories adopted during the

past more than 6 decades, and presents the spatial and temporal pattern of environmental

degradation across regions and over time. This dissertation also empirically examines the

relationship between development and environmental degradation answering the

following questions: (1) whether economic development level is positively or negatively

associated with air and water pollution; (2) whether industrialization, urbanization, and

globalization (international trade and Foreign Direct Investment inflows) are positively or

negatively associated with air and water pollution; (3) how the impact has changed across

regions and over time; and (4) how the sources of foreign capital have differentially

affected environmental pollution across cities and over time. The dissertation presents

how economic development level (GDP per capita as the indicator), globalization,

industrialization, and urbanization have an impact on air and water pollution, respectively,

across regions and over time, and examines whether globalization, industrialization, and

urbanization serve as the pathways in the association between development and

environmental pollution in such a rapidly growing economy with the largest
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population in the world. Multilevel modeling is used to analyze the longitudinal data at

the city level from 2004 to2013. The findings confirm that there is an inverted U-shape

only between economic development and SO2 emission (not for dust emission or water

pollution), indicating whether the Environmental Kuznets Curve (EKC) holds depending

on the specific indicators of environmental degradation analyzed. More importantly, the

results show that industrialization and urbanization are more likely to positively impact

air pollution, while there is no strong evidence supporting that globalization has impact

on air pollution. Meanwhile, industrialization and globalization are more likely to

positively impact water pollution, while population density is negatively associated with

water pollution.
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CHAPTER 1

INTRODUCTION

In December 2015, a historic and ambitious agreement to combat climate change
was approved by 196 parties in Paris (United Nations, 2015). For the first time in history,
all nations in the world reached consensus to reduce emissions to limit the increase of the
world’s average temperature to two degree Celsius. According to the United Nations, the
Paris Agreement, as a dynamic and universal agreement, provides a mechanism for all
countries to address global climate change predominately caused by human activities. In
particular, China has promised that it will reduce its carbon dioxide emissions per unit of
GDP by 40-45% from the 2005 level and annual carbon dioxide emissions from
coal-fired power generation by 180m tons by the year 2020. Given the fact that China is
the world’s largest emitter of greenhouse gases, the commitment China made to reduce
its carbon dioxide emissions and improve energy efficiency is critically important for the
goals towards a low-carbon sustainable future for human beings.

------ 2015 Paris Climate Conference

In China, the ongoing deterioration of the environment is of great concern to the

public and policymakers, who expect academic research to offer evidence-based

solutions. Hence, academic research on environmental issues is urgently needed to

systematically explore causes and consequences of environmental degradation.

Beginning in the early 2000s, there has been a burgeoning debate about development and

the environment from researchers in response to the increasing frequency and severity of

environmental degradation (He et al., 2012, 2014; He & Pan, 2013; Huang et al., 2015;

Kahn, 2004, 2009; Kuby & He, 2011). According to Kuhn (1962), doing research is

essentially “like solving a puzzle” with different disciplines offering different paradigms
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to direct their inquiries (Kuhn, 1962). Regarding environmental-related research,

different disciplines have very distinct views of how environmental studies can be

conducted. Research in environmental science and environmental engineering

extensively examine the environmental systems, focusing on scientific inquiry and

technological feasibility, respectively. For example, environmental scientists examine the

emission sources based on the spatial patterns of air pollution across different industry

sectors (Lei et al., 2011) and across regions ( Rohde & Muller, 2015; Zhang et al., 2011).

By contrast, social scientists study the environment with different perspectives

than natural scientists and engineers. Environmental sociologists are more concerned

with socioeconomic systems. In particular, they emphasize that environmental-related

issues are profoundly social in addition to being technical/scientific. Environmental

history argues that to study the modern ecological history of the planet, the

socioeconomic history of humanity should be explored together (Mcneill, 2000). A report

from the World Bank and United Nation Environment Program (UNEP) largely focuses

on the environmental regulation and enforcement, including pollution charges,

environmental subsidies, ownership structure, and the bargaining power of polluters

(Dasgupta et al., 2001; VanRooij, 2012; Van Rooij & Lo, 2010).

Most existing studies on the relationship between development and the

environment in the context of China are conducted using theoretical frameworks in

ecological economics and economic geography (He & Pan, 2013; Huang et al., 2015;

Kahn, 2004, 2009; Kuby & He, 2011). Studies in ecological economics investigate how

economic growth impacts the environment across provinces in China based on the

framework of the Environmental Kuznets Curve (EKC), overlooking the institutional and
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structural context (Shen, 2006; Song et al., 2008). These studies particularly focus on the

effects of industrialization and industrial structure (Wang et al., 2011) and globalization

(e.g., international trade and foreign direct investment) (He, 2006) on environmental

quality. Studies in economic geography analyze the environmental impact based on the

triple process of marketization, decentralization, and globalization, including sulfer

dioxide (SO2) emissions (He et al., 2012) and land use expansion (Huang et al., 2015).

Urbanization processes, especially the spatial shift of the population from rural to urban

areas, is seriously considered under the triple structure of the transition process. Crudely

put, integration of these theoretical frameworks will provide much more comprehensive

explanations for the dynamics of development and environmental degradation in China

than would be provided by any one perspective alone.

The main purpose of this dissertation is to provide a comparative framework for

understanding the socioeconomic determinants and the underlying mechanisms of

environmental degradation in China using longitudinal data at the prefecture-city level

from 2004 to 2013. This is a break from conventional analyses of cross-national

comparative sociology, which takes China, as a whole, as the unit of analysis to compare

with other countries in one or more time periods. Geographically, China is vast and

diverse with a huge population. Accordingly, the environmental destruction in the

country, along with its economic development, has varied significantly at the regional,

provincial, and city level. To my knowledge, this study is the first to develop a systematic

theoretical framework to examine how the dynamics of development in China have

impacted the environment across cities in different regions and over time. Given the

institutional and structural context of China, results from this study demonstrate that
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exploring the complex dynamics of development (especially economic development level,

globalization, industrialization, and urbanization) are critical in addressing environmental

challenges (e.g., air and water pollution) for developing countries. In addition, this study

also contributes to a broad literature on changing dynamics of human-nature relationship,

providing insight into the debate surrounding the interdisciplinary study of how

manufacturing industrial structure, population density, international trade, and foreign

direct investment (FDI) have impacted the quality of the natural environment.

The Context of China

As the world’s most populous country and largest developing country, China is

currently undergoing remarkable economic growth and dramatic social change through

globalization, industrialization, and urbanization (Wei & Ye, 2014). Meanwhile, as the

new engine of global growth and the manufacturing hub of the world, China has become

the largest contributor to carbon dioxide emissions since 2007, and accounting for 29%

of the world’s total emissions in 2013, higher than such emissions from the United States

and the European Union combined. In short, explosive economic development has posed

serious environmental challenges at an unprecedented scale within the country, even

spilling across its borders (Bao et al., 2012; Chen et al., 2011; Zhu et al., 2014).

Purportedly, the rapid economic growth in China has consumed a large proportion of

global raw materials (e.g., 54% of aluminum, 48% of copper, 50% of nickel, 45% of all

steel, and 60% of concrete). According to the most recent waste report from the World

Bank, China was the world’s largest waste generator in 2016, producing about 189

million tons of waste annually (World Bank, 2016). Hence, environmental degradation in



5

China has a planetary effect, and pollution in China is not just simply China’s problem

since pollution knows no political boundary (Liu & Beattie, 2016, p. 1). Thus global

climate change challenges could not be adequately addressed without the cooperation of

China. Given the planetary scale effects, understanding the environmental consequences

of China’s development trajectories takes on tremendous significance for humanity in

general. In particular, special attention should be devoted to the more specific questions

about how the development of China has, and will, impact the environment within the

country and even within the world. These questions are the core of my dissertation.

Theoretical Perspectives

Theoretically, two opposing views have dominated the intersection of

development and the environment in environmental sociology and ecological economics.

One is the Treadmill of the Production Theory and the other is Ecological Modernization

Theory (Dietz, Rosam, & York, 2012; Gould, Pellow, & Schnaiberg, 2004; Jorgenson &

Clark, 2012; Mol, Spaargaren, & Sonnenfeld, 2009; Schnaiberg, 1980).

Treadmill of Production Theory

The Treadmill of Production Theory (TPT) developed a sociological

understanding of why environmental degradation has increased rapidly in the U.S. TPT

provides a political economic approach for addressing growth dynamics of both

capitalism and Soviet-style socialism (Foster, 2005; Schnaiberg, 1980 ). According to

Foster (2007), capitalism itself is an ecologically destructive means of production, and

more importantly, the process of producing and consuming goods generates ecological
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disorganization. For instance, using a societal-environmental dialectic, Schnaiberg

presents an explanatory model of how the organization of social production (also called

the treadmill of production) transformed and even disorganized the ecosystem by

depletion (withdrawals) and pollution (additions).

TPT describes the dialectic dimensions of development and environmental

impacts given that there are political-economic alternatives to the environmental impact

of an accelerating treadmill (Gould et al., 2004, p. 304). More importantly, the theory

works to disentangle the role of the agents of this production/destruction dynamic, such

as producers, the state, consumers, and environmentalists (Schnaiberg et al., 2002). TPT

identifies the state, capital, and labor as the significant actors that impact the treadmill

(Spapens et al., 2016).

The belief is widely held that the most pressing environmental problems can be

ameliorated by technological “fixes.” However, TPT posits that the treadmill of

production is partly built upon expanded technological capacity (Schnaiberg & Gould,

1994, p. 70). Inevitably, the technological advances increase the volume of natural

resource extraction (depletion) and waste (pollution). The socioeconomic production of

human beings has maintained an increasingly damaging negative environmental impact

across the globe (Gould & Lewis, 2009; Schnaiberg, 1980; Schnaiberg & Gould, 1994).

Thus, the treadmill of production continually disrupts ecosystems at both local and global

levels. Following the trajectory of expanding production, the faster the machines run, the

more energy consumed, and the more the ecological disruption would occur,

quantitatively and qualitatively. Essentially, environmental disruption is an inherent part

of development and is deeply rooted within the socioeconomic system (Schnaiberg &
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Gould, 1994). According to Jorgenson and Clark (2012), the environmental impact of

economic development at the national level should remain stable or increase in

magnitude over time in both developed and developing countries.

In Buttel’s (2004) view, however, it would be too superficial and simplistic to

apply the Treadmill of Production Theory as a linear model since some scholars note that

the treadmill is expanding exponentially rather than linearly. Most of the research

indicates that the theory underestimates the environmental outcome due to the constraints

of available data, whereas for others, the theory overestimates the negative environmental

impact of economic activities (Pellow & Brehm, 2013). In addition, TPT provides a

theoretical framework that explores the causes and consequences of environmental

degradation. However, in terms of influencing policy, this perspective is far from viable

given economic expansion is of central importance to policymakers in most developing

countries (Gould et al., 2004).

Ecological Modernization Theory

In contrast to the pessimism of Treadmill of Production Theory, Ecological

Modernization Theory (EMT) provides a more optimistic perspective. Specifically,

unlike the widespread yet general concept of sustainability, EMT gives primary emphasis

on how to conceptualize environmental improvement. Essentially, EMT identifies factors

such as technology (e.g., technological advances), policies (e.g., the state), affluence (e.g.,

economic development level), and culture (e.g., environmental consciousness and

consumption style changing) as the keys to improving environmental quality (Buttel,

2000; Mol, 2002; Mol & Spaargaren, 2000; Sonnenfeld & Rock, 2009). Specifically,
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EMT is understood as a technology-based and innovation-oriented approach to achieve

environmental sustainability (Janicke, 2008). In terms of the diffusion of environmental

innovation, the state plays a crucial role in creating environmental governance and

developing effective strategies. Moreover, proponents of EMT hypothesize that the most

serious and challenging environmental problems have been caused by modernization and

industrialization, and can ultimately be solved through further “super modernization and

industrialization” (Liang, 2012). In brief, EMT argues that economic development and

environmental improvement can be compatible and reconcilable. Put differently, a

coherent set of hypotheses can be generated from EMT, from how the competition

among capitalists would effectively lead to beneficial environmental outcomes, to

recognizing the institutional capacity to improve eco-efficiency in the production and

consumption processes. As Buttel (2000) noted, the rising visibility and influence of

EMT is not only due to the clarity of its theoretical arguments, but primarily because it

provides a positive response to the growing global environmental challenges.

Research Objectives

Air/water pollution accompanying economic expansion has attracted considerable

attention from the general public, policymakers, and researchers who examine the key

determinants of environmental degradation in China. The most important objective of the

dissertation is to present how environmental degradation has changed across cities and

through time, and provide a systematic exploratory study of development and the

environment, focusing on globalization, industrialization, and urbanization.

The dissertation will examine the intersections of development and the
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environment in a rapidly developing social setting using nationally representative

longitudinal data for the time period 2004-2013. The dissertation will investigate several

key questions, including (1) whether economic development level (GDP per capita) is

positively or negatively associated with air and water pollution, net of other variables; (2)

whether globalization (international trade and FDI inflows), industrialization, and

urbanization are positively or negatively associated with air and water pollution, net of

other variables; (3) how the impact has changed across regions and over time; and (4)

how the sources of foreign capital have differentially affected the environment across

cities and over time. More importantly, the study will examine the joint effects of

economic development (GDP per capita) and other driving forces (e.g., globalization,

industrialization, and urbanization) on environmental degradation across 287 cities from

2004 to 2013. To my knowledge, this is the first multilevel study designed to exam the

relationship between development and the environment within China from the

perspectives of development, and urban and environmental sociology using the data at

the city level. Compared to the analysis of the cross-sectional data, using longitudinal

data to explore these issues will improve our understanding of the complex dynamic

relationship between development and the environment over time.

Significance and Innovation of the Dissertation

Although previous research has made valuable contributions, this dissertation

advances the literature in several ways. First, it will provide a detailed analysis of

variation within one particular country--China, the world’s most populous nation with

world’s most dynamic developing economy. Most of the literature on the relationship
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between development and the environment mainly focused on the West (within the

United States, within Europe, or between United States and Europe), adopting social

theories or analytical framework deeply rooted in the Western society (Liang, 2012). In

spite of some scholars who have started to assess the appropriateness of the existing

findings as a way of explaining environmental degradation in China (Mol, 2006), the

historical and institutional context of China’s development trajectories has rarely been

systematically studied in comparative development-environment research. This

dissertation attempts to examine how China adopted different development trajectories

during different periods, and describes the spatio-temporal patterns of environmental

degradation across different regions within the country.

Second, the most recent longitudinal data available are used. Prior research takes

China as a whole or provinces within China as unit of analysis. Studying environmental

degradation (either air pollution or water pollution) across nationally representative

Chinese cities has not before been conducted. This bias is particularly evident in smaller

scale studies with very limited diversity. Empirically, this dissertation is a comprehensive

comparative sociological analysis of the relationship between development and the

environment using the data from 287 prefecture-level cities from 2004-2013.

Third, the joint effect of a series of major factors is tested. I incorporate economic

development level, globalization, industrialization, and urbanization, whereas previous

studies mostly examine the effect of such factors separately. This dissertation will also

extend prior research by highlighting air and water pollution, both of which are important

specific types of environmental degradation.

Last, but most importantly, this dissertation will contribute to the literature by
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examining the independent role of the factors that have not been studied previously

within China: the source of foreign direct investment, domestic investment, and

population density. For instance, this dissertation extensively focuses on the relationship

between globalization and the environment in the most populous developing country. In

particular, it has strong policy implications for examining how the sources of foreign

capital have differentially affected the environment. This dissertation will provide

evidences on whether foreign capital is beneficial or detrimental to the environment,

depending on the source and the type of environmental degradation. Moreover, this

dissertation is sensitive to the intersection between population density and environmental

degradation, and finds that higher population density is significantly positively correlated

with air pollution.

In addition, this dissertation has several implications for policymakers and

practitioners. For instance, this dissertation has significant implications in addressing

economic disparities and environmental degradation in terms of regional development

strategies. This dissertation also presents the relationship between industrialization and

environmental degradation, suggesting aside effect of the spatial shift of manufacturing

industries across regions.

Organization of the Dissertation

This dissertation is organized into five chapters. Following this introductory

chapter, there are three chapters that describe and explain environmental degradation

patterns across China from 2004-2013. Following these chapters, the dissertation briefly

concludes with a discussion of the theoretical and policy implications of the findings.
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Chapter 2, “Development Trajectory and Spatio-temporal Patterns of

Environmental Degradation in China,” provides a big picture of how the development

trajectory and the patterns of air and water pollution have changed across regions and

over time. This chapter focuses on the context of China and extensively reviews the

institutional changes in the transition from the planned economy to a market economy.

Spatial and temporal patterns of environmental degradation are illustrated in detail.

Chapter 3, “The Dynamics of Development and Air Pollution,” presents the first

empirical multilevel analysis to examine the dynamics of development on air pollution in

China using longitudinal data at the prefecture-city level from 2004 to 2013. The focus

is on the pathways in which major factors such as economic development level,

globalization, industrialization, and urbanization have impacted air pollution across

regions and over time. The chapter provides a snapshot of how the dynamics of

development influences air pollution during the past 10 years, and examines whether

globalization, industrialization, and urbanization serve as the pathways and underlying

mechanisms in the association between development and air pollution in China.

Chapter 4, “The Dynamics of Development and Water Pollution,” empirically

demonstrates the dynamics of development on water pollution in China using

longitudinal data at the city level from 2004 to 2013. This chapter will consist of a

literature review, description of the methodology used, and empirical analyses, showing

how the trends of water pollution changed and how development affected water quality.

Especially, more attention has been devoted to analyze how the major driving forces of

development (such as economic development level, globalization, industrialization, and

urbanization) have impacted water quality across regions and over time.
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Chapter 5, “Conclusions and Implications,” will briefly sum up the contributions

of these analyses to the field of environmental and urban sociology, and the broader

literature on development and the environment in ecological economics and urban

geography. The most significant findings are addressed in terms of their implications

regarding development and environmental policies.



CHAPTER 2

DEVELOPMENT TRAJECTORY AND SPATIO-TEMPORAL

PATTERNS OF ENVIONMENTAL

DEGRADATION IN CHINA

The interplay between development and the environment has been recognized as a

fundamental question with highly controversial debates in environmental sociology and

ecological economics ( Jorgenson, 2014; Jorgenson & Clark, 2012). Theoretically, it is

well established that development and the environment are interdependent worldwide.

However, in practice, giving top priority to development over the environment in national

and regional policy is pervasive. Substantial evidence shows that rapid economic growth

has been, and continues to be, pursued at the cost of environmental degradation,

particularly in most developing countries (Dinda, 2004; Jorgenson, 2006). Moreover,

within the developing countries, it is worth noting nation-specific institutional contexts

matter when studying the environmental implications of development at different stages

(Jorgenson & Clark, 2012; United Nations Development Programme, 2015). Therefore,

exploring the intersection between development and the environment in a specific

country is particularly significant and worthwhile to the researchers of and

decision-makers in developing countries.

As the most populous and the largest developing country, China is a particularly
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important and interesting case for studying the intersection between development and the

environment. First, sustainable development of China is of global interest given its size

and unique institutional and structural characteristics. Secondly, the development mode

and trajectories China adopted during the past 6 decades were paradoxically different,

originally from a centrally planned economy and then transformed towards a market

economy. Third, the landscape and ecosystem of China have been significantly

transformed by the large-scale industrialization, urbanization, and globalization.

Although many scholars in economics have systematically studied how China developed

and reformed (Chow, 2004), we still know little about the environmental implications of

different development strategies. In particular, within the discipline of development and

environmental sociology, comparative analysis on the development trajectory and

environmental degradation in China has rarely been undertaken. Hence, examining the

case of China under a systematical theoretical framework will provide valuable insight

into understanding environmental degradation and contributing theoretically to the

scholarly literature on the relationship between development and environment problems.

How shall we best understand and elaborate the relationship between

development and the environment across China from a comparative environmental

sociology perspective? What are the determinants of environmental degradation in

different regions of this rapidly growing economy? These questions will be explored in

this chapter. To provide a snapshot of how China has developed and how environmental

conditions have changed, I will first briefly review the development trajectories that

China has followed since the founding of the People’s Republic of China (PRC) in 1949.

Following this, I will present the spatial and temporal patterns of environmental
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degradation across regions during the 10 years, 2004-2013, in China.

China’s Development Trajectory

When the Communist Party took power in 1949, China had been backward in

terms of economic development for more than 100 years. Catching up with the economic

development level of developed countries is the aspiration for political leaders and social

elites in backward economies, and China has been no exception. According to the United

Nations (2015), the central government of China has made concerted efforts in directing

national economic strategies (UNDP, 2015). Broadly, the development trajectory of

China during the past more than 6 decades can be divided into two phases: the planned

economy (1949-1977) and the mixed economy (1978-present) combining planned and

market economy.

Soviet-Style Development Strategy Under the Planned Economy

During the prereform period (1949-1977), China was a planned economy that was

closed to foreign trade and investment (Chow, 2006). Since the first 5-year plan in the

1950s, soviet-style development strategies, with emphasis on industrial development in

urban areas and collectivization of agriculture in rural areas, respectively, have been

adopted in China. It is widely recognized that the country’s economic development

strategy during 1952-1977 was characterized by a “high rate of capital accumulation at

the expense of consumption and the promotion of industry at the expense of agriculture”

(Chow, 1993, p. 809). As a result, in spite of its economic backwardness, giving priority

to the development of heavy industry “yielded an accumulation rate over 15% of the
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national income,” and led to a relatively comprehensive industrial system in China (Lin

et al., 2003, p. 69). Accordingly, the industrial structure of Gross Domestic Product (GDP)

changed greatly throughout 1949-1977 (see Figure 2.1). More strikingly, the contribution

of industrial production dramatically rose from 21% in 1949 to 47% in 1977.

Meanwhile, in terms of economic efficiency and environmental impact, the cost

of implementing heavy industry-oriented development strategy was extremely high.

Based on the assessment of environmental problems under the Mao era, Shapiro (2001)

concluded that contemporary environmental problems in China should not be attributed

solely to the postreform period of remarkable economic development and industrial

growth. As Shapiro (2001) noted, the rapid development of heavy industry started “the

path” of environmental degradation in the 1950s when the negative effects of

industrialization on the environment had been largely ignored. For example, to achieve

national transformation through rapid industrialization of the rural areas, the central

government in 1958 attempted to accomplish catch-up development through “the

adoption of a leap-forward strategy” ignoring other development stages (Lin et al., 2003,

p. 103).The share of industry in GDP rapidly increased at a much higher speed than

expected, from 27% from 1957 to 44% in 1960 (see Figure 2.1). Consequently, the Great

Leap Forward in 1958-1960 brought a dramatic increase in the number of factories (such

as steel industries) along with pollution and more deforestation (Shapiro, 2001).

Moreover, some environmental historians argued that the environmental problems

since the 1950s in China could not be understood without references to preceding

development regimes (Elvin, 2012). Prior to the impact of the modern West in the 19th

century, traditional Chinese society slightly changed. Although traditional China



18

depended upon the natural environment for thousands of years, it rarely worked explicitly

against nature. For instance, Pomeranz (2000) pointed out that in China, traditional

agricultural practices attempted but failed to radically change nature due to low

productivity in the absence of mechanization. According to Murphey (1967), traditional

China was as an agrarian society in which nature was grander than man and admired by

man. The traditional Chinese ideal of Tianrenheyi (unity of heaven and humanity) posited

man as an integral part of nature, stressing the harmony between man and nature. Thus,

the harmonious cooperation between man and nature became one of the central parts of

Chinese philosophy. The orientation towards the natural environment that the traditional

Chinese carefully cultivated and preserved was fundamentally different from that of the

West (Murphey, 1967). However, such traditional notions of compromise and harmony

were specifically attacked, and then replaced by Rendingshengtian (man must conquer

nature). Following such an ideal, man was viewed as opposed to the nature, and more

importantly, played the dominant role in transforming nature. Under the materialist

policies of the Mao era, environmental exploitation, especially massive deforestation,

overgrazing, and soil erosion, accelerated considerably in the pursuit of ambitious

development projects (Edmonds, 1998; Murphey, 1967).

China was largely rural and markedly underurbanized when the West experienced

the industrial and urban transformation during past centuries (Glaeser, 2011). In 1949,

industry only accounted for 12.6% of national income and 10.6% of the total population

lived in the city (Li & An, 2009). The growth of industrial cities such as Philadelphia in

the world proved that industrial development and urban growth always proceed side by

side and reinforce each other (Pred,1980). The rise of heavy industries (coal, steel, iron,
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and oil, etc.) in China had largely contributed to the urban expansion across the nation.

According to Gu (1992), there were almost 40 prefecture-level new industrial cities

established during the period of 1949-1977 across the nation, mostly in central and

western regions (see Figure 2.2).

According to the World Development Report 2009, the national policies on

urbanization in China have alternated between facilitating city growth to restricting it

during 1949-1977. Accordingly, the patterns of population mobility were shifting from

rural-urban migration in 1950s to urban-rural migration during the Cultural Revolution

(1966-1976). At the beginning of the Mao era from 1949-1957, urban population

increased rapidly. It is estimated the urban population in China grew by 34 million

(Bernstein, 1977; Rosen, 1982). However, the growth rate of the urban population grew

much faster than the job opportunities in the industrial sector (Rene, 2013). To cope with

the population flows into urban areas, the government began to take stringent measures to

restrict rural out-migration (Chan & Xu, 1985; Wu, 2004). In 1958, the National People’s

Congress officially issued the regulation of household registration system (HRS, also

called the hukou system) to control population mobility. Since then, the freedom of

residence and migration within the country were severely controlled and all internal

migration was subject to approval by the relevant local government (Chan, 2010).

According to HRS, each citizen is required to register with a hukou (registration status),

categorized either as “agricultural” or “nonagricultural” by a specific administrative unit.

Under this system, peasants were confined to the rural areas and entitled to many fewer

rights and benefits, compared to the urban residents who had housing, educational

opportunities, permanent employment, medical insurance, and pensions, etc. Arguably,



20

the social divide between the urban and the rural that was institutionalized by the hukou

system has become the most prominent structural feature of Chinese society (Wu, 2004).

Regarding why the government adopted such a policy to restrict population

mobility, the dominate view in the literature is that the massive inflows of rural migrants

into the cities earlier in 1950 greatly exceeded the growth of industrial employment in the

urban areas (Chen, 1972). Therefore, the unemployment of rural-urban migrants had

become a serious burden for many cities. The adoption of the Great Leap strategy and

communization of agriculture also attempted to solve the problem of the massive

underutilization of labor in the countryside (Chen, 1972, p. 372). Unlike Chen’s

statement, Chan (2010) provided an alternative explanation from the perspective of social

control mechanisms. Given the scarce capital in agrarian economy, heavy

industry-oriented development strategy required the extraction of agricultural surplus

from the peasantry. Similar to the unequal exchange between developed and developing

countries, to speed up industrialization, the government had to artificially create unequal

exchange between agricultural and industrial sectors to accumulate capital. He further

argued that under the Soviet-style planned economy, the government “took up the

responsibility of providing food, jobs and related welfare for all urban residents” in the

industrial sector, while leaving the rest of the population largely outside state support

(Chan & Zhang, 1999, p. 821). The economic system needed an effective mechanism to

prevent a rural exodus.

Although the rapid industrialization in cities promoted the recruitment of labor

from the rural areas in 1958-60, such high rates of rural-urban migration were not

sustained due to the disastrous famine of 1958-1961(Kung & Lin, 2003), which in turn
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enabled the government to set up the full hukou system in 1960. Figure 2.3 presents the

percentage of urban population and nonagricultural population from 1949-1977 and

clearly shows that year 1960 is a significant turning point. After 1960, the percentage of

nonagricultural population became lower than the urban population share, indicating the

government policies of controlling rural-urban migration including the hukou system

took effect. The rate of the urban population sharply declined from 19.75% in 1960 to

16.84% in 1963, and then started to rise again in 1964. Meanwhile, besides the hukou

system controlling rural-urban migration, according to Rene (2013), rustication (sending

urban youth to rural areas) had become a fundamental part of the national reeducation

program in 1962. Although rustication was officially designed for reeducation in line

with the rationale for the Cultural Revolution, it had multiple purposes. One of the

important objectives of the initiation of rustication was that the government could not

provide enough employment opportunities in the cities for the new incoming graduates.

Rustication was viewed as a means to reduce the urban unemployment (Bernstein, 1977;

Chen, 1972; Rosen, 1982). It was estimated that there were about 17 million urban youths

and intellectuals resettled from cities to the countryside from 1962-1977 (Rene, 2013). In

short, the government severely controlled rural-urban migration under the hukou system

and promoted urban-rural migration through rustication on the other hand. The

percentage share of the urban population in China sharply decreased after the 1960s and

the rate of urbanization lagged behind industrialization during the prereform era

1949-1977 (see Figure 2.4). This is in sharp contrast to the close correlation found in the

relationship between industrialization and urbanization cross-nationally.
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Export-Oriented Development Strategy During the Transition

After nearly 2 decades of experience in the planned and command economy,

China began to reform the planned, centralized, and inefficient economic system.

Learning from the model of the “East Asian Miracle,” China adopted a comparative

advantage strategy to promote regional and national economic growth (World Bank,

1993). Compared to Eastern Europe, the transition in China has been a gradual process,

consisting of small, step-by-step changes preceded by trial and error (Shi, 1998).

Noticeable structural change in economic sectors and institutions under these steady and

experimental policies has brought rapid economic growth across the country. During the

transition from a highly centralized planned economy to the market economy, a series of

policy reforms have been effectively implemented nationwide.

Household responsibility system. One of the most fundamental policy reforms

that moved China towards a market-oriented economy, the Household Responsibility

System (HRS) was adopted in the rural areas. In Kochin’s (1996) view, collectivization

of agriculture in 1950s aimed to extract resources from the agricultural sector to finance

industrialization. In the reform era, land was decollectivized, rather than privatized, in the

form of independent family production. The implementation of HRS facilitated the

decollectivization of agricultural production by replacing production team system as the

unit of production and income distribution (Nolan, 1983). This institutional change has

brought remarkable development for rural China, including increasing agricultural yields,

production efficiency, and higher peasant income (Friedman & Lee, 2010; Wallace,

2014). The decollectivization not only increased the efficiency of labor usage, but also

revealed the existence of a massive labor surplus prior to the HRS in the countryside
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(Wallace, 2014). More importantly, it undermined the capacity of the government to

prevent population mobility to cities. To effectively “soak up” the surplus rural labor

force, the policy of rural industrialization, commonly expressed as litubulixiang (leaving

the land but not leaving the villages), had been advocated in the 1980s and then the

Township and Village Enterprises (TVEs) took off (Oi, 1999; Wallace, 2014). In sum,

the rapidly growing surplus labor after the decollectivization and the implementation of

HRS facilitated the transition from heavy industry-oriented development strategy in a

capital-scarce economy to a comparative advantage strategy in a labor-intensive economy

(Cai et al., 2003; Lin et al.,1993).

Household registration system. In essence, The Household Registration System

(also called the hukou system) in China is both the basis and product of the authoritarian

command economy (Chan, 2010). During the collective era, the hukou system integrated

with other social and economic mechanisms, restricting population mobility from the

rural to urban areas. Under the reform, the hukou system was challenged when the

distributions of daily necessities were no longer monopolized by the state and job

opportunities were available in nonstate sectors. Therefore, the hukou system, on the

premise of a command system with a strong state and static population, became

increasingly incompatible with a more marketized economy (Chan, 2010).

Specifically, along with the reform of the planned economy, the hukou system,

functioning effectively in a closed economy, required reform to accommodate the

rural-urban migration under the new circumstances since the late 1970s. The reform of

the system has been very complicated, involving a series of flexible policies. The basic

principle of population mobility under the hukou system is to control formal migration
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from rural to urban areas, while the flows in the opposite direction are allowed. For

instance, the migration from the countryside to cities, from towns to cities, and from

small cities to big cities is severely controlled. By contrast, the migration from cities to

the countryside, from cities to towns, and from big cities to small cities is not limited.

There are two main parts of hukou registration: the place of hukou registration and

the status of hukou registration (agricultural or nonagricultural status). The reform of

hukou system in 1980s and 1990s focuses on the status of hukou registration. Chan and

Zhang (1999) extensively investigated the specific measures of relaxing policies for

hukou system, including loosening control policies for formal rural-urban migration

(nongzhuanfei, converting the hukou status from agricultural to nonagricultural), issuing

temporary resident certificates, issuing citizen identity cards, and sales of urban hukou,

etc. In 2014, the national resident registration system (jumin hukou) for both rural and

urban populations was set up, although the essential features of the hukou system were

not abolished.

The massive internal migration, including both hukou and non-hukou migrants,

has been remarkable since the 1980s (Cheng & Selden, 1994). The non-hukou migrants

are also called the “floating population,” mainly moving from rural to urban areas, and

geographically from central/western regions to eastern regions. During the reform period

(1978-present), given that the One-Child policy was more strictly enforced in urban areas,

urban growth and expansion are primarily the result of rural-urban migration (Gu et al.,

1989; Zhou & Ma, 2003). The underlying cause for rural-urban migration is the shift of

labor force and employment from agricultural to nonagricultural sectors. As the World

Bank (2014) observed, the spatial transformation of population in China from the
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countryside to cities reflects the sectoral transformation of the economic structure from

agriculture to manufacturing and service industries in urban areas. Until 1978, only 18%

of the total population lived in the cities, which is considerably less than the average

low-income country (Naughton, 2007). Therefore, some scholars believed China was

underurbanized in the prereform era (1949-1977) (Chan & Xu, 1985).

The urbanization of China in the reform era has greatly accelerated with the size

of urban population relative to the total population, increasing to 53.73% in 2013,

representing a growth rate that is three times the global average during this period

(United Nations, 2014). The urban transformation has spread across the country. Figure

2.5 presents the trends of industrialization and urbanization from 1952 to 2014, indicating

the level of urbanization has increased rapidly since 1977. At the national level, in 2012,

over 680 million people lived in the cities, of which over 200 million are the rural

migrants. According to the National New-type Urbanization Plan (2014-2020), over 100

million people are expected to move from the countryside to the cities by 2020. At the

city level, taking the large cities, Beijing and Shanghai as examples, the primary and

secondary labor market is not only attracting interregional migration from the hinterland

to the developed coastal regions, but also from rural to urban areas. According to the data

from Beijing and Shanghai Municipal Bureau of Statistics, the floating population in

Beijing increased from 2.50 million in 2000 to 7.58 million in 2013, and it increased

from 2.87 million in 2000 to 9.90 million in 2013 in Shanghai.

Stated-owned enterprises. Stated-owned enterprises (SOEs) were reformed in

urban areas. SOEs, playing a leading role in industrialization of China, have dominated

the key sectors of the national economy, and have been the main force behind national
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rapid economic growth for decades. During the transition to the market economy,

institutional reform of SOEs became an urgent priority when incentive incompatibility

and information asymmetry increased inefficacies and decreased their profitability (Lin et

al., 2003). The institutional arrangements via corporatization, rather than privatization,

substantially improved the enterprise performance by addressing inefficiencies,

uncompetitiveness, and weak transparency (Mcnally, 2002; Zhu & Nyland, 2004).

However, the environmental impact of SOEs is highly controversial. In particular, the

SOEs centered on heavy industry served as the basis of many resource-based industrial

cities. Figure 2.6 shows that there had been 128 prefecture-level industrial cities until

2013, indicating that nearly 45% of the cities nationwide is heavily based on a single

industry and is highly unsustainable in the long term (the State Council of RPC, 2013).

Additionally, studies note that the heavy manufacturing companies, especially

SOEs in China, are significantly more pollution-intensive than their counterparts in the

United States and Europe (Dasgupta et al., 2001). Shi and Zhang (2006) noted that the

state-dominated system of industrial pollution control has fallen short in mitigating the

environmental impacts of rapid industrialization. Wang and Jin (2006) provided

empirical evidence that the environmental performance of SOEs was worse than POEs

(privately-owned enterprises), COEs (collectively-owned enterprises), and FOEs

(foreign-owned enterprises), given that SOEs had lower efficiency in implementing

environmental policies and stronger bargaining position to avoid compliance with the

local environmental authorities. Nevertheless, other studies argue that SMEs (small and

medium enterprises), as crucial for the early stages of industrialization, tend to have

worse environmental performance due to having less environmental awareness and
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limited investment in environmental protection (United Nations, 2011).

According to the Chinese Research Academy of Environmental Sciences

(CRAES), industrial pollution has been identified as the source of approximately 70% of

China’s total environmental pollution. Coal, as a major source of fuel, supplied nearly

66% of national total energy consumption in 2012 and is identified as the biggest source

of air pollution in China (Energy Information Administration,2015). The report from the

World Energy Council confirmed that China is ranked as the world’s top coal producer,

and accounts for almost half of global coal consumption, an important factor in world

energy-related carbon dioxide emissions (EIA, 2015) (see Table 2.1).

The report from the U.S. Energy Information Administration (EIA) showed that

the unprecedented large-scale industrialization trajectory helped China become the

world’s largest power generator in 2011, surpassing the United States as the world’s

largest net importer of petroleum in 2013. According to the Center for International

Climate and Environmental Research in Norway, China became the world’s largest total

carbon dioxide emitter in 2007 and per capita carbon dioxide emitter for the first time in

2014. However, the most recent study conducted by Harvard scientists argues China’s

carbon dioxide emission may have been overestimated (Liu et al., 2015).

Foreign direct investment and foreign-owned enterprises. The foreign direct

investment (FDI) and foreign-owned enterprises (FOEs) are attracted through low taxes

and loose environmental regulations. Then products are exported into the world market

through international trade. Essentially, attracting FDI and exporting products via

international trade are the main features of the export-oriented comparative advantage

strategy China adopted, which also results in the consumption of vast natural resources,



28

the production of considerable pollution, and increases in occupational illness and

diseases related to working in and living near to hazardous industries.

Since the policies of opening up adopted in China, a series of regional

development policies were implemented in the coastal areas (Chai, 1996; Goodman &

Segal, 1994). For example, the Sixth Five Year Plan 1981-1985 clearly highlighted

efficiency, rather than equity, as the chief priority. In order to achieve efficiency, uneven

regional economic development policy was effectively implemented following the

guidelines that required inland areas to provide energy and raw materials to support

economic development in coastal areas. Then, the Seventh Five Year Plan 1986-1990 for

the first time divided the inland areas into central and western regions (Yang, 1990).

More specifically, the blueprint of China’s regional development was generally

based on the statement to speed up the development of the coastal region, to put the

emphasis on energy and raw materials construction in the central region, and to actively

make preparations for the further development of the western region in the plan. The

cities close to waterways with access to international waters, which were designated as

Special Economic Zones and Open Coastal Cities, became more specialized (see Figure

2.7). Gradually, China has become a global economic powerhouse and the world’s

factory. One of the externalities of the comparative advantage strategy is exporting

globally and polluting locally.

China’s economic development boom and globalization. How may we

understand China’s economic development and its environmental impacts in relation to

globalization? First, I take China as a developing country that is actively integrated into

processes of economic globalization dominated by developed countries. China, once a
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marginal player in global trade, emerged as the world’s largest trading nation in 2013 in

the era of globalization. Conventional theories of modernization optimistically implied

that development for all nations worldwide is a linear, evolutionary process, and

developing countries would become modern if they followed the pathways that most

developed countries passed through in the past (Bernstein, 1977; Harrison, 1988; Lerner,

1958; Rostow, 1960). For instance, as a representative of classic modernization theory,

Lewis contended that the international flow of capital facilitated economic development

by creating industries, transferring technology, increasing productivity, and raising living

standards (Kentor, 1998; Lewis, 1948). However, dependency theory, as a critique of

modernization theory, focusing on the uneven development in the world economy,

argued that the pathways to national development cannot be well explained without

taking into account this country’s position in the international division of labor (e.g., in

the context of international trade and geopolitical power relations) (Amin, 1976;

Bornschier & Chase-Dunn, 1985). A large number of cross-national comparative studies

showed that national economic growth is positively associated with trade openness,

human capital, education, lower fertility rates, lower share of government consumption,

institutions (e.g., law, and regulations), and political stability (Barro & Lee, 2001;

Bosworth & Collins, 2003). Moore (2002) argued that China’s remarkable economic

record is “not fathomable without consideration of its relation to the world market”

(Moore, 2002, p. 2). Economic openness (especially attracting foreign direct investment

and trade) has been conducive to the increasing economic prosperity in China during the

past 3 decades.

Secondly, globalization is a transformative process involving international
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integration and interaction. The accelerating pace, scope, and scale of globalization have

exerted profound influence on the flows of goods and services, capital and people, ideas

and information, as well as on the natural environment (Christmann & Taylor, 2001;

Smith, 2006). The literature on the environmental impact of globalization is confounding

theoretically and empirically, and the findings are highly contentious (Christmann &

Taylor, 2002). Specifically, globalization itself is “a complex process that has both

positive and negative environmental potentials” (Paehlke, 2001, p. 1). Globalization

proponents argue that lower barriers to international trade and foreign investment

encourage firms to transfer advanced environmental technologies from developed

countries with strict environmental standards to developing countries.

Moreover, the global process can also increase self-regulation pressures on firms.

In contrast, globalization opponents contend that increasing international trade and FDI

encourage governments to lower production costs within their jurisdiction by neglecting

to enact the laws to protect the environment (Christmann & Taylor, 2001). In China,

alongside an abundant labor force and low labor costs, attracting foreign capital by

offering various concessions in taxes, land use fees, and environmental regulations has

become one of the important strategies for the central and local governments. By

studying changing patterns of environmental degradation, we can better understand

whether globalization is detrimental or beneficial to the environment and, more

specifically, how global processes have impacts on the environment, positively or

negatively, across and within the country.
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Conceptual Framework for the Case of China

To summarize, Table 2.2 outlines the development trajectories China adopted

during the two developmental phases. During the prereform era (1949-1977), China was

a closed, planned economy in which the central state played the dominant role. This

Soviet-style development strategy centered on heavy industry was adopted across the

nation, where industrialization was maximized and urbanization was severely minimized.

During the reform era (1978-present), China began to open up and reform the command

system. The state began allowing market forces to play an important role in the economy

and also relaxed the policies in regulating rural-urban migration. An export-oriented

development strategy emphasizing comparative advantage was gradually implemented.

Overall, by introducing reform towards a market economy, China is experiencing

remarkable economic growth and dramatic social changes through industrialization,

urbanization, and globalization. In terms of the relationship between development and the

environment, I argue that there are two different types during the two phases.

Development without consideration for the environment was the main feature under the

Mao era when environmental degradation was largely ignored by policymakers. During

the reform era, development versus the environment is the key theme since a mix of laws,

regulations, and industrial policies have been formulated since the 1980s to steer the

country towards a sustainable development.

Following the above review, my research question is how shall we best

understand, theoretically and empirically, the relationship between development and the

environment during the reform era? In Table 2.2, the triple process of industrialization,

urbanization, and globalization represents the driving forces of development. Most
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existing literature in environmental and urban sociology has examined the environmental

impacts of development from the perspective of globalization or urbanization separately,

neglecting the multifaceted nature of a country’s economic development (Chase-Dunn &

Jorgenson, 2003).

For the case of China, given its unique context, scholars have found that the

country’s experience is difficult to understand in terms of Western perspectives dominant

in the literature (Wei & Ye, 2014). For example, when studying the economic transition

towards a market economy, Wei (2001) observed that the relationship between central

and local states, between plan and market, and between domestic and international forces,

has been substantially reconstructed in the economic reform (Wei, 2001, p.7). Therefore,

based on Nee’s market transition theory (1989) and Oi’s decentralization theory (1990),

Wei (2001) proposed that the transition in China could be conceptualized as a gradual

transformation driven by the triple process of decentralization, marketization, and

globalization. Inspired by Wei’s triple framework, I suggest that the development in

China can be understood as a gradual triple process of industrialization, urbanization, and

globalization as articulated in Chapter 1 (see Figure 2.8).

Methodologically, conventional analyses of cross-national comparative sociology

always take China, as a whole, as the unit of analysis. However, China is a nation with a

large and diverse geographical area. Disparities across regions have always been the most

striking features of China’s socioeconomic landscape (see Figure 2.9). Coastal areas were

much more developed than interior areas even prior to the founding of the PRC in 1949

(Shabad, 1972). Regional disparities typically result from the physical geographic and

topographic diversity of the country. Earlier studies on regional disparities claimed that
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the larger the geographical size of the national unit, the larger the scope for wide regional

variations, whether due to differential natural resource endowments, to the nation with a

large and diverse geographical area, to the weaker economic and cultural linkages

between regions, or to the greater incidence of localism (Williamson, 1965). As a result,

the disparities of development have impacted the environmental degradation at a regional,

provincial, and even city level. In light of the geographical complexity of China, a

considerable number of studies of regional disparities devoted special attention to a series

of regional development policies launched by the state government, finding that since

1979, unbalanced regional policies emphasized regional specialization according to

comparative advantages (Fan, 1995; Fleisher & Chen, 1997; Fujita & Hu, 2001; Wei,

2001) (see Figure 2.10).

Spatial and Temporal Pattern of Environmental Degradation

In retrospect, as He et al. (2002) observed, black smoke stacks became the main

feature of Chinese industrial cities during the 1970s. Acid deposition was recognized as a

potential environmental problem in 1980s, and many southwestern cities such as

Chongqing and Guiyang and central cities such as Nanchang suffered serious acid rain

pollution (Larssen et al., 2006). In the 1990s, acid rain pollution extended from hinterland

areas (western and central regions) to coastal areas (southeast coastal cities including

Xiamen and Shanghai and northeast coastal cities such as Qingdao and Shenyang). Since

the late 1980s, air pollution was rapidly emerging as the major environmental issue and

the air quality in many cities had deteriorated due to sulfur dioxide (SO2), nitrous oxides

(NOx), carbon monoxide (CO), and photochemical smog, which are typical of industrial
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and vehicle emissions, respectively. In 2000, according to the Report on the State of the

Environment in China, the air pollution levels in more than 40 cities were far exceeding

the residential area air quality standard set by the World Health Organization.

This section will provide a snapshot of how spatio-temporal patterns of air and

water pollution have changed across provinces over the time period from 2004-2013 (see

maps in Figures 2.11-2.13). First and foremost, air and water pollution in China is

unevenly distributed across regions. For instance, according to the data from the Ministry

of Environmental Protection (2013), 7 of the top 10 most polluted cities in China are

located in Hebei province, which surrounds the capital Beijing geographically. Here, I

use three measures of environmental degradation: two for air pollution (total SO2

emissions and total dust emissions), and one for water pollution (total wastewater

discharge). These indicators of air and water pollution are generally used to compare

nations’ degree of environmental degradation, but they are equally suited for making

comparisons across regions within a country. The following maps were generated in

ArcGIS based on the data of the China City Statistical Yearbook 2004-2013. The colors

of the maps represent different levels of pollution. There are three types of colors based

on the annual volume of air and water pollution. The darker the color, the higher the level

of pollution is. For air pollution, provinces in the central and eastern regions are much

more polluted than the provinces in the western region. As for water pollution, the

eastern regions are much more polluted than the provinces in the central and western

regions.
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Air Pollution

SO2 emission. One of the indicators of air pollution is “Total SO2 Emission”

which is measured by the annual volume of industrial sulfur dioxide emission (10

thousand tons per year) in total. Generally, the major source of sulfur dioxide (SO2) is

combustion of sulfur containing fossil fuels (coal and oil). Sulfur dioxide (SO2) emissions

have not only environmental effects such as sulfuric/nitric acid, which corrodes metals,

harms textiles, impairs visibility, and stunts plant growth, but also lead to respiratory

disease. Specifically, like carbon monoxide (CO) and nitrogen dioxide (NO2), sulfur

dioxide (SO2) is also a gaseous air pollutant, causing a range of harmful effects on the

lungs, including increasing inflammation of the airways, worsening cough and wheezing,

reducing lung function, and increasing asthma attacks (Delfino et al., 2003; Gent et al.,

2003). The estimates of total SO2 emission are taken from the China City Statistical

Yearbook. In the dataset, sulfur dioxide (SO2) emission is the only indicator available. Its

levels vary across provinces, ranging from 104 (10 thousand tons per year) in Hainan

province in 2011 to 1,703,378 (10 thousand tons per year) in Shandong province in 2006.

Figure 2.11 shows how the spatial pattern of SO2 emission changed during the

period 2004-2013. The most polluted provinces measured by SO2 emission in 2004 were

located in the eastern (Hebei, Shandong, and Jiangsu), central region (Shanxi, and

Henan), and western region (Sichuan). The least polluted provinces were located in the

eastern region (Beijing, Tianjin, Shanghai, Fujian, and Hainan), central Region (Jilin and

Heilongjiang), and western region (Ningxia, Qinghai, Tibet and Xinjiang). In 2005, there

were two more highly polluted provinces; one was Guangdong in the eastern region and

the other was Sichuan in the western region. Meanwhile, the province Liaoning became
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less polluted than in the previous year. Although there were few changes in 2006, the SO2

emission in Shandong province reached 1,703,378 (10 thousand tons), which is the

highest in the nation during the previous 10 years 2004-2013. In 2007, there were three

more low-polluted provinces, including Anhui in the central region and Guizhou and

Yunnan in the western region. Guangxi in the eastern region became one of the most

polluted areas in 2008, 2009, and 2011, while Shaanxi in the western region for the first

time became one of the worst polluted areas in 2011.The SO2 emission in Sichuan

decreased in 2012 and 2013, and became one of the moderate polluted areas in 2004 and

2007. In short, in terms of SO2 emission, seven provinces (Liaoning, Hebei, Shandong,

and Jiangsu in eastern regions and Inner Mongolia, Shanxi, and Henan in the central

region) remained as the worst polluted areas throughout the period 2004-2013.

Dust emission. The other indicator of air pollution in my study is “Total Dust

Emission,” which is measured by the annual volume of industrial dust emission (10

thousand tons per year) in total. Industrial dust emission primarily consists of particulate

matter (PM) that refers to a mixture of solid and liquid particles suspended in the air.

Dust is one of solid particles. The existing literature shows that PM10 and PM2.5

(particulate matter less than 10 and 2.5 micrometers in aerodynamic diameter) are

consistently linked with reduced visibility, chronic respiratory impairments, exacerbation

of asthma symptoms, and lower life expectancy (Kunzli et al., 2005; Wen & Gu, 2012).

In terms of the level of PM2.5, Yale’s Environmental Performance Index has ranked

China as one of the worst performers internationally since 2006. Given that the annual

data for PM10 and PM2.5 are unavailable at the city level during the past 10 years, here

total dust emission is used instead. The data of total dust emission are also taken from the
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China City Statistical Yearbook. In the dataset, the total dust emission is unevenly

distributed across provinces ranging from 176 (10 thousand tons) in Hainan province in

2010 to 5,951,819 (10 thousand tons) in Shanxi province in 2013.

Figure 2.12 shows how the spatial patterns of dust emission have changed during

the period 2004-2013. The worst polluted provinces measured by dust emission in 2004

were spread across three regions: Hebei in the eastern region, Shanxi and Henan in the

central region, and Sichuan in the western region. The least polluted provinces were

mostly located in the eastern region and the western region (Beijing, Tianjin, Shanghai,

Zhejiang, Fujian, Guangdong, and Hainan in the eastern region and Ningxia, Gansu,

Qinghai, Xinjiang, Chongqing, Guizhou and Yunnan in the western region). In 2005,

Hebei became less polluted and the least polluted areas expanded to central regions such

as Anhui and Hubei. In 2006, the most polluted areas expanded to include Shandong and

Liaoning in the eastern region, Inner Mongolia in the central region, and Guangxi in the

western region. Again, the most polluted areas measured by dust emission in 2007

expanded to include Jiangsu in the eastern region, and then Heilongjiang and Hunan in

the central region. Unexpectedly, the most polluted areas in 2009 had shrunk to Liaoning

and Hebei in the eastern region and Shanxi and Henan in the central region. Meanwhile,

Shaanxi became one of the least polluted provinces for the first time since 2004. In 2010,

Hebei became less polluted, whereas Zhejiang became more polluted than the previous

year. As the spatial pattern of SO2 emission in 2004 and 2013, the worst polluted areas

with the highest dust emission in 2011 had spread out to the seven provinces (Liaoning,

Hebei, Shandong, and Jiangsu in the eastern region, and Inner Mongolia, Shanxi, and

Henan in the central region). The map for 2012 indicates that most of the country’s
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provinces fell into the least polluted category. It is worthwhile to note that the dust

emission in Inner Mongolia reached 3,834,671 (10 thousand tons), and in Hebei, Shanxi,

and Sichuan was higher at 610,300 (10 thousand tons), both of which were the highest

point on record. The most polluted province in 2013 was Shanxi, where the dust emission

reached 5,951,819 (10 thousand tons) that is 12 times more than the highest point in 2011.

In a word, the province Shanxi, as the leading producer of coal in China, remained the

most polluted area as measured by dust emission throughout the years 2004-2013.

Water Pollution

The measurement of water pollution in the study is “Total Wastewater

Discharge,” which is measured by the annual volume of industrial wastewater discharge

(10 thousand tons per year). According to EPA, wastewater, by definition, is water

containing wastes from agricultural, industrial, residential, and commercial processes and

requires treatment to remove pollutants prior to discharge. Therefore, wastewater is an

important source of water pollution. In the dataset, Total Wastewater Discharge primarily

consists of industrial wastewater. Purportedly, at least one third of the industrial

wastewater in China is directly released into rivers and lakes without treatment. The data

for wastewater discharge come from the China City Statistical Yearbook. According to

Yale’s Environmental Performance Index 2014, China is one of the worst performers

internationally (109 out of 178 countries) in access to clean drinking water and sanitation.

However, again, there is considerable variation within China. In this dataset, the total

wastewater discharge is unevenly distributed across provinces ranging from 333 (10

thousand tons) in Tibet to 236,095 (10 thousand tons) in Shanxi province in 2013.
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Figure 2.13 illustrates how the spatial pattern of water pollution had changed

during the period 2004-2013. The worst polluted provinces measured by Wastewater

Discharge in 2004 were located in Jiangsu and Zhejiang in the eastern region. The

moderate polluted areas were mostly located in the eastern and central region. Most of

the western region was in the least polluted category except Sichuan and Chongqing. In

2005, the high-polluted areas had spread across most of the eastern region (except

Beijing, Tianjin, Shanghai, Liaoning, and Hainan), Henan and Hunan in the central

region, and Sichuan in the western region. Remarkably, the high-polluted areas in 2006

had dramatically shrunk to only one province, Jiangsu, in the eastern region. More

surprisingly, there were no differences in the following year 2007. Then, the most

polluted areas in 2008 had expanded to the coastal region, including Shandong, Zhejiang,

Guangdong, and Guangxi, and the pattern remained similar in 2009. The province of

Guangxi became less polluted, whereas Henan became more polluted in 2010. The least

polluted areas mostly covered the western region except the province Sichuan and Henan

became one of the moderately polluted areas in 2011. For the first time, the province

Fujian became one of the worst polluted areas in 2012 and then became less polluted in

2013. In summary, the province Jiangsu in the eastern region remained the most polluted

province during the period 2004-2013.

Conclusion

Placing development trajectory and environmental degradation in a historical

context can enrich our understanding of complex socioeconomic dynamics, facilitating

the identification of environmental implications of different development phases. This
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chapter provides a general picture of how the development trajectory and the pattern of

air and water pollution changed across regions and over time in China, more

descriptively than analytically. In this chapter, I first mainly focus on the context of

China and review the institutional changes in the transition to a market economy. Then,

the spatial and temporal patterns of environmental degradation (including air and water

pollution) are described in detail.

Overall, the development trajectory in China since the founding of PRC could be

divided into two phases: the planned economy (1952-1977) and the mixed economy

combining a planned and market economy (1978-present). Faced with scarce capital in an

agrarian economy, China adopted the Soviet-style development strategy (primarily

centered on heavy industry) beginning in the 1950s. In spite of almost 40 prefecture-level

new industrial cities established during the era, urbanization largely lagged behind

industrialization due to a range of aggressive policies and practices aimed at limiting

urban growth, such as the hukou system, which prevented urbanward migration. Above, I

show that China was underurbanized compared to overurbanization patterns found in

other developing countries during the period (Chan & Xu, 1985; Chan & Zhang, 1999). It

is worth noting that the traditional Chinese ideal of Tianrenheyi (unity of heaven and

humanity) was replaced by the ideal Rendingshengtian (man must conquer nature). The

harmony between human activities and the environment the Chinese carefully cultivated

for thousands years, ideologically and practically, had been fundamentally reshaped.

Environmental exploitation greatly accelerated in carrying out ambitious industrial

development projects. However, these costs to the environment remained largely ignored

by the policymakers and researchers during the period 1952-1977. With the adoption of
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reform and opening up policies in 1978, China adopted an export-oriented comparative

advantage strategy. A series of important policies and practices were implemented to

transform towards a market economy. In the rural areas, the land was decollectivized by

the form of the Household Responsibility System. In the urban areas, stated-owned

enterprises (SOEs) were reformed through corporatization. Although its essential feature

has basically remained, the reform of the hukou system permitted more rural-urban

migration and accelerated the scale of urbanization in China from 1980s to date. Finally,

China successfully pursued foreign direct investment (FDI) and foreign-owned

enterprises (FOEs), fueling rapid export-oriented industrialization linked to the world

market through international trade.

Theoretically, given the special institutional context, I propose a triple conceptual

framework to understand the relationship between development and the environment in

China. Methodologically, I argue that it is particularly significant to study the dynamic

relationships between development and the environment within China across regions and

over time, using longitudinal data. Following the proposed methodological structure, I

illustrate the spatial and temporal pattern of air and water pollution, respectively. In short,

both air and water pollution in China is unevenly distributed across provinces over the

period 2004-2013. Specifically, in terms of SO2 emission, seven provinces (Liaoning,

Hebei, Shandong, and Jiangsu in the eastern region and Inner Mongolia, Shanxi, and

Henan in the central region) remained the worst polluted area. As for dust emission, the

province Shanxi, as the leading producer of coal in China, has remained as the most

polluted area. Unlike the spatial pattern of air pollution, the province Jiangsu and

surrounding areas in the eastern region has remained the most polluted area in terms of
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water quality.

In the subsequent chapters, I will take a more explanatory focus on the dynamics

of development and environmental degradation across cities in China. Specifically, I will

examine the relationship of development to air pollution (Chapter 3) and development to

water pollution (Chapter 4), focusing on how the economic development level,

urbanization, industrialization, and globalization impact air and water quality.
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Figure 2.1

The Industrial Structure of GDP in China, 1952-1977

Figure 2.2

Industrial Cities Established Under the Mao Era in China, 1949-1977
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Source: Data from China Statistic Yearbook 1949-1977

Figure 2.3

The Percentage of Urban and Nonagricultural Population, 1949-1977

Figure 2.4

Industrialization and Urbanization in China, 1952-1977
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Figure 2.5

Industrialization and Urbanization in China, 1952-2014

Figure 2.6

Resource-based Industrial Cities in China, 1950-2013
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Table 2.1

Major Coal Producers by Country (Thousand Short Tons)

2004 2006 2007 2008 2009 2010 2011 2012

China 2308713 2757986 2954542 3099061 3301803 3560635 3878012 4017920
USA 1112099 1162750 1146635 1171809 1074923 1084368 1095628 1016458
India 446683 500119 531521 570010 614918 619843 633774 649644
Indonesi
a 158418 257187 274290 274218 321045 358251 397202 488112

Australia 382608 412984 431047 432383 449631 467823 443390 463783
Russia 285437 313680 318591 336163 304228 354615 354869 390152
South
Africa 267666 269817 273005 278017 275015 280562 278617 285832

Germany 232673 220554 225526 214268 202410 200955 207853 217144
Poland 178260 171135 159773 157993 148356 146257 152680 158197
World
Total 6216306 6965038 7235883 7470959 7601609 7999455 8443803 8687297

Source: U.S. Energy Information Administration (EIA), 2015

Figure 2.7

Special Economic Zones and Open Coastal Cities, 1980-
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Table 2.2

Development Trajectories in China, 1949-Present

Time Period 1949-1977 1978-present
Economy System Planned Economy Transition to Market Economy
Major Role Central State State and Market
Development Strategy Soviet-Style Export-Oriented

Development Mode Industrialization Industrialization, Urbanization and
Globalization

The relationship between
development and
environment

Development without
environment Development versus environment

Development

Globalization Industrialization Urbanization

Global
Trade

FDI &
Sources

Industrial
Structure

Urbanizatio
n Rate

Population
Density

Environmental Degradation
(air/water pollution)

Figure 2.8

The Structure of Development and the Environment in China
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Figure 2.9

The Map of China by Region

Notes: Regional development policies were outlined in each 5-year plan, respectively: the Sixth Five

Year Plan (1981-1985); the Seventh Five Year Plan (1986-1990); the Eighth Five Year Plan (1991-1995);

the Ninth Five Year Plan (1996-2000); the Tenth Five Year Plan (2001-2005); the Eleventh Five Year Plan

(2006-2010); the Twelfth Five Year Plan (2011-2015).

Figure 2.10

Regional Development Policies in Mainland China, 1979-2015
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Figure 2.11

The Spatio-Temporal Pattern of SO2 Emission, 2004-2013
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Figure 2.11 Continued
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Figure 2.12

The Spatio-Temporal Pattern of Dust Emission, 2004-2013
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Figure 2.12 Continued
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Figure 2.13

The Spatio-Temporal Pattern of Water Pollution, 2004-2013
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Figure 2.13 Continued



CHAPTER 3

THE DYNAMICS OF DEVELOPMENT AND AIR POLLUTION

After more than 30 years of remarkable economic growth since the policy of

reform and opening up was adopted in 1978, China became the world’s second largest

economy by nominal GDP (Gross Domestic Product) in 2010 according to the IMF

(International Monetary Fund) and the largest economy by PPP (Purchasing Power Parity)

in 2014. Rapid economic growth has been accompanied by ballooning energy

consumption. In 2007, China became the world’s largest emitter of greenhouse gases,

surpassing the United States. In 2012, China’s carbon emissions were almost equivalent

to the carbon emissions from both the United States and the European Union combined

(Liu et al., 2015). In short, China made tremendous efforts to promote economic growth,

industrialization, urbanization, and globalization, while suffering from a wide variety of

environmental problems. It is widely recognized that China’s environmental problems are

among the most severe of any major country, and are mostly getting worse (Bao et al.,

2012; Chen et al., 2011; Liu & Diamond, 2005). These pressing environmental

challenges are not only causing serious economic losses and social conflicts within China,

but also spilling over into other surrounding countries (Li et al., 2012; Zhu et al., 2014).

Air pollution is one of the most remarkable features of environmental degradation

in China. In the early 2000s, Particular Matter (PM2.5) concentrations in Beijing and
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Shanghai were about 10 times and 6 times the standard set by the World Health

Organization (WHO), respectively (Ye et al., 2003). In 2005, particulate concentrations

in most Chinese cities were far above the standard of the WHO. According to the World

Bank (2007), 16 out of the world’s 20 most polluted cities were in China, which is

commonly considered to have the worst urban air pollution on earth (World Bank, 2007).

The report from Yale’s Environmental Performance Index (2014) indicated that China,

overall, is one of the worst performers internationally (176 out of 178 countries) with

respect to its levels of PM2.5. Based on the most recent report from the United Nations

Environment Program (UNEP), although the level of sulfur dioxide (SO2) had declined in

Beijing during the period 1998-2013, such decreasing emission is at the expense of

moving the emission elsewhere by relocating heavily polluting industries away from the

capital (UNEP, 2016). The costs of environmental pollution are high. Polluted air can

damage the health of humans who are exposed to it, in some cases even leading to

premature death. According to the estimates by the World Health Organization (2009), at

least a quarter of the burden of disease in the world and approximately 21% of disease in

China can be attributed to air pollution (indoor and outdoor). Many epidemiological

studies have confirmed that air pollution has adverse health effects, including excess risk

of mortality, high rates of morbidity, and reduced lung function, etc. (Chen et al., 2013;

Kunzli et al., 2005; Pope et al., 2009; Wen & Gu, 2012).

This chapter examines the effects of development, conceptualized as a triple

process of industrialization, urbanization, and globalization, on air pollution in China.

Theoretically, I develop a systematic framework to understand air pollution in China.

Methodologically, using longitudinal data 2004-2013, I first analyze the spatial and
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temporal pattern of air pollution at the provincial level and then apply multilevel

modeling analysis of the prefecture-city level to examine the driving forces of air

pollution. The findings of the dynamics of development and air pollution are confounding

given the different measurements of air pollution in the cities of China.

Theoretical Framework

Air pollution in China has become of great concern to the general public and

policymakers, who expect academic research to offer evidence-based explanations of its

causes and possible solutions. Academic researchers across different disciplines have

increasingly turned their attention to the problem of air quality since 2000. Research on

air pollution in environmental science and engineering focused on scientific inquiry into

the sources of pollution emission and technological feasibility of possible solutions,

respectively. For instance, Chan and Yao (2008) explored the topography and

meteorology of the megacities, and the emission sources of different gaseous pollutants

and particulate pollutants. Using a technology-based methodology, Lei et al. (2011)

estimate particulate matter (PM) emissions across different industry sectors (such as

cement, coke, iron, and steel industry) during the period 1990-2005. Zhang et al. (2007)

explored the spatio-temporal variations of Nitrogen Oxides (NOx) emissions and their

driving forces using satellite-derived tropospheric NO2 columns in the Global Ozone

Monitoring Experiment (GOME) and Scanning Imaging Absorption Spectrometer for

Atmospheric Cartography (SCIAMACHY). Rohde and Muller (2015) presented the

spatial pattern of air pollution concentration and its sources using 4-month data from

monitoring stations. Essentially, three important findings from these studies are
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significant to social scientists. The first study showed there might be an association

between urbanization and air pollution. The second study suggested that there is a

relationship between industrialization and air pollution. The last two studies indicated

that air pollution was unevenly distributed across regions, and is closely linked to

population density.

Unlike environmental scientists and engineers who emphasize environmental

systems, social scientists are more concerned with socioeconomic systems when studying

air pollution. Most existing studies on the relationship between development and air

pollution are conducted using theoretical frameworks in environmental sociology,

ecological economics, and economic geography (see Table 3.1) (He & Pan, 2013; Huang

et al., 2015; Jorgenson & Clark, 2012; Kahn, 2009; Kuby & He, 2011). Studies in

environmental sociology examine the relationship between development and CO2

emission either based on the contending theoretical positions of ecological modernization

theory and the treadmill production theory (Jorgenson & Clark, 2012), or ecological

unequal exchange theory (Jorgenson, 2012). Studies in ecological economics investigate

how economic growth impacts air quality across provinces in China based on the

framework of the Environmental Kuznets Curve (EKC), overlooking the institutional and

structural context (Shen, 2006; Song et al., 2008). Studies in economic geography

analyze the patterns of SO2 emission on the basis of the triple process of marketization,

decentralization, and globalization (He et al., 2012).

Overall, although a large number of existing studies theoretically and empirically

focus on development and air pollution, the findings are inconclusive. The existing

literature has provided explanations for air pollution with different perspectives and
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identified economic development level, industrialization, urbanization, and globalization

as the underlying driving forces of air pollution separately (He at al., 2008; Jorgenson,

2009; Jorgenson & Clark, 2012). However, there are weaknesses and limitations. First,

there is a lack of a systematic theoretical framework embracing the findings from

environmental scientists and social scientists in the study of air pollution in China.

Integration of the perspectives will provide a much more comprehensive explanation for

air pollution in China. As Chapter 2 elaborated, development in China has been

understood as the sectoral transformation of the economy from agriculture to

manufacturing and service industries, the spatial transformation of labor from rural to

urban areas, and the trans-boundary flows of goods and capital from domestic to

international markets. To explore the environmental implications, the theoretical

framework I propose is tested in the following empirical analysis.

Secondly, as a large and geographically diverse country, air pollution is unevenly

distributed across regions within China. We still know little about how the spatial pattern

and temporal trend in air pollution changes in China across cities over time since few

studies have been conducted to elaborate the associations between development and air

pollution using multilevel, longitudinal modeling. Therefore, showing how the levels of

air pollution vary with development over time in China is another objective of this study.

Lastly, the effects of development on air pollution are varied depending on the

measures of air pollution. Most of the existing regression studies in the context of China

choose only one indicator of air pollution, either CO2 emission, NOX emission, SO2

emission, or particular matters such as PM2.5, to draw conclusions. Given different types

of pollution with different sources, the findings based on only one measure of air
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pollution may be of limited generalizability. For example, the largest source of NOx

emissions is from the transportation sector, while the largest source of SO2 emission is

combustion of sulfur containing fossil fuels (coal and oil).

Literature Review

Economic Development and Air Pollution

The poorest and richest countries in the world tend to have cleaner air, while

middle-income countries are the most polluted. It is hypothesized, therefore, that some

forms of pollution appear to worsen first and then to improve later as national incomes

grow. The inverted U-shape between GDP per capita and ambient air quality was first

captured by the World Bank (1992). Given its resemblance to the pattern of inequality

and income described by Simon Kuznets (1955), Grossman and Krueger (1995) proposed

the Environmental Kuznets Curve (EKC) in their pioneering study. Specifically, the EKC

posits that economic growth initially has an adverse effect on the environment, which

then subsequently improves as national income increases over a turning point (the peak

of inverted U-shape). According to the empirical study of Grossman and Krueger (1995),

environmental conditions would dramatically improve with national per capita GDP

reaching $5000-8000 (1985 PPP). Since then, research has generally supported the

inverted U-shape relationship across regions such as European countries (Ansuategi,

2003; Maddison, 2006). However, further studies have found there is an N-shaped

relationship, rather than an inverted U-shape, between national income and air pollution,

including SO2 emission (Torras & Boyce, 1998) and CO2 emission (Friedl & Getzner,

2003).



61

In spite of most empirical studies providing evidence in support of the inverted

U-shape/N-shape relationship across developed countries, there is scant evidence

providing support across and within the developing countries due to the scarcity of

representative data. In the context of China, data from the World Bank show that in 2012,

the average national GDP per capita was $ 6188, which falls exactly in the range of the

turning points identified in the existing literature. As a diverse geographical area, given

regional disparities having historically been its significant feature, environmental

conditions over time along with economic development vary significantly across regions.

According to the National Statistical Yearbook 2012, the GDP per capita in

coastal regions (e.g., Beijing, Shanghai, Zhejiang, Jiangsu, Guangdong, etc.) was higher

than $12,000, reaching the level of their counterparts in some middle-income developed

countries, while that in some provinces of western regions such as Guizhou is still far

below $3000, similar to many low-income countries in Africa (NSB, 2012). In the same

year, in some parts of the country air was severely polluted, while in other parts it was

moderately polluted. However, the relationship between economic development and air

pollution is not well understood or empirically examined at the city level using the most

recent longitudinal dataset. Within the existing literature, EMT (Ecological

Modernization Theory) and the EKC (Environmental Kuznets Curve) provide

frameworks to explore the complexity between economic development and air pollution

in China. Therefore, the first hypothesis this study will test is that the environmental

impact of economic development is more likely to be more severe at the initial stage of

economic development, and then decrease in the long run. Here, my hypothesis is the

following:
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Hypothesis 1: Air pollution will increase rapidly in the early period of rapid

economic growth, and then air pollution will decrease in later periods.

EMT highlights that the most serious and challenging environmental problems

have been caused by modernization and industrialization, and could ultimately be solved

through super modernization and industrialization. More specifically, EMT first lays out

how social institutions, especially the state, respond to environmental deterioration and

then provide solutions to address environmental challenges through various technological

advances and innovation, along with the increasing levels of economic development.

Moreover, it is widely believed that extreme environmental pollution will greatly

improve environmental consciousness of the general public who aspire for higher

environment quality, which in turn will lead to more measures taken to reduce

environmental degradation.

Stern (2004) argued that national economic development can impact

environmental quality through scale, composition, and technical effects. In the earlier

stage of development, pollution increases when the scale of the economy grows. In the

later stages, pollution will decrease when the composition of the economy shifts from

resource-based heavy industries towards service industry and advanced pollution control

technologies are adopted. In sum, as the national economy evolves, air quality may

decrease in the early stages (through scale effect), and then improve in later stages

(through composite and technique effects) (Stern, 2004). According to Jorgenson and

Clark (2012), the decoupling between economic development level and air pollution is

more likely to occur in more developed regions. Thus, air quality would greatly improve

first in the regions where a higher level of economic development has been achieved. In
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China, the eastern region is the most developed region, and the western region is the least

developed region. This suggests the following hypothesis:

Hypothesis 2: The relationship between economic development level and air

pollution varies across regions. Air pollution level in the more developed regions is more

likely to lower than other less developed regions.

Industrialization and Air Pollution

According to the treadmill of production theory, industrialization is a key

component of socioeconomic development. Learning how to balance industrial

development and air pollution is urgent for both developed and developing countries.

Most existing studies are conducted in developed countries. For instance, using national

longitudinal data, Haberl and Krausmann (2001) show that there are was substantial

increases in environmental efficiency during the industrialization of Austria from 1830 to

1995. For developing countries, Singh et al. (2012) provide empirical support for a

detrimental effect of industrial development on air pollution in India. Federman and

Levine (2010) investigate the effect of industrialization on infant mortality across almost

200 Indonesian districts during 1985-1995, a time of rapid heavy industrialization. They

found no evidence of a positive relationship between industrialization and infant

mortality. However, when the growth in manufacturing is concentrated in more polluting

manufacturing industries, there are statistically significant increases in infant mortality.

The relationship between industrialization and air pollution in China has drawn

considerable attention from scholars. Pandey et al. (2005) found that suspended

particulate levels are higher in northern cities, largely due to industrial activities. Cole et
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al. (2007) identified most determinants of pollution emissions in China from

manufacturing industries. The World Bank (2007) concluded that air pollution in China is

closely associated with industrialization. According to NBS (2016), the average annual

growth rate of industrial production in China is 13% during 1990-2016. There is evidence

showing that the leading players in China’s industrialization, state-owned enterprises

(SOEs), are more polluting than heavy manufacturing companies in the US and Europe

(World Bank, 1997). However, most prior studies have been focused on how

industrialization has affected air pollution using cross-sectional data, and very few

studies have been conducted to systematically examine how industrialization

differentially affects air pollution across regions and over time. Therefore, the proposed

hypothesis is as follows:

Hypothesis 3: Industrialization is positively associated with air pollution. That is,

the higher the level of industrialization, the higher the level of air pollution will be.

Urbanization and Air Pollution

In essence, urbanization (especially the mass migration of people who are

displaced from the land and seeking employment in urban areas) has always coincided

with the rise of industrialization (Jorgenson, Rice, & Clark, 2010). Rapid urbanization

has greatly impacted the environment (e.g., air pollution, water pollution, and land use

expansion). In particular, urban air pollution poses a significant threat to human health

throughout both the developed and developing parts of the world. Urban population is

frequently exposed to high air pollution concentration in cities, where motor vehicle

emissions constitute the main source of fine and ultra-fine particles (Palmgren, 2003).
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According to the World Bank, urbanization is characteristic of nearly all

developing countries where many of the world’s most populous cities are found. The

intersection between the high concentration of population (especially poor residents) and

air pollution in the large populous cities in developing countries is important to study

further. For example, Gupta (2012) pointed out that rapid urbanization has resulted in

increasing air pollution emissions due to transportation, energy production, and industrial

activity, all concentrated in densely populated areas. In China, urbanization is widely

recognized as an important indicator of development since cities are much more

economically advanced than rural areas.

The existing studies show that energy consumption, especially coal consumption,

is the main source of anthropogenic air pollution emissions in Chinese cities, and urban

air pollution in China, especially for northern cities, is mainly from coal smoke with

particles (He et al., 2002). Li et al. (2012) categorized urbanization into demographic,

economic, social, and spatial urbanization, and conceptualized environment based on

environmental pressure, level, and control. Using panel data collected from 2000 to 2008

in the city of Lianyungang, China, they found there is U-shaped relationship between

urbanization and environmental degradation. It is well documented that population size

affects the environment, and there is widespread scientific agreement that population size

is one of the principal driving forces behind many undesirable environmental changes.

For example, cross-national evidence shows population size is an important contributor

to national-level total carbon dioxide emission (Jorgenson & Clark, 2013). This suggests

the following hypothesis:

Hypothesis 4: The rate of urbanization is positively associated with air pollution.
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That is, the higher the rate of urbanization, the higher the level of air pollution will be.

Holding population size constant, it is intensively debated whether population

density is positively or negatively linked with the environment. According to the report

of the Environmental Protection Agency (EPA) in 2010, there is a strong association

between population density and road vehicle nitrogen oxides (NOx) emission, based on

the data for the 51 metropolitan areas of more than 1 million in population in the United

States. Cooper et al. (2012) confirm that air pollution globally varied across urban and

rural areas based on satellite-based estimates of PM2.5 and NO2. That is, the spatial

structure of air pollution indicates that there is a direct relationship between population

density and air pollution. However, it is worth noting that the proponents of “new

urbanism” in the field of urban planning argue that higher population density is positively

associated with sustainability (Glaeser, 2011). However, overall, the literature to date

suggests the following hypothesis:

Hypothesis 5: Population density is positively associated with air pollution. That

is, the higher the population density, the higher will be their level of air pollution.

International Trade and Air Pollution

According to the notion of socioeconomic metabolism, human societies as a

whole require the continual extraction of raw materials and energy from, and deposition

of waste products or pollution into, ecological systems (Rice, 2009). The patterns of

cross-national exchange of energy and natural resources are structured by the economy.

Specifically, according to Frank et al. (2000), cross-national exchanges between the

low-skill/wage sectors in developing countries and high-skill/wage sectors in developed
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countries at world market prices benefited the latter at the expense of the former.

Therefore, to a large extent, international trade between developed countries and

developing countries is marked by unequal exchange. Hornborg (2001) noted that the

study of unequal exchange of embodied labor could be combined with the study of

unequal exchange of embodied land. Put briefly, in Emmanuel’s view, international trade

reinforces differential cross-national wage rates and contributes to higher labor

exploitation in developing countries (Rice, 2009).

Although unequal exchange theory faces critiques due to lack of

application-specific policies, it still has important implications for studying

environmental degradation nationally and internationally. For example, in a historical

analysis of the underdevelopment in the Amazon Basin from 1600 (the time of colonial

conquest) to 1980, Bunker (1984) extended the notion of unequal exchange into an

“ecological” model, and explored the demographic, ecological, and infrastructural

consequences of extractive export economies in Brazil. Moreover, the empirical findings

provided supporting evidence for the argument Rice (2009) made that inequalities in

environmental degradation not only exist within the world-system hierarchy, which in

turn is partially perpetuated through uneven access to and utilization of ecological

resources. In short, the environmental impact of globalization through international trade

is uneven between nations based on the relative level of development of the various trade

partners (Paehlke, 2001; Roberts, 2001).

The theory of ecological unequal exchange has become popular with

interdisciplinary studies including in human ecology, ecological economics, and

environmental sociology (Hornborg, 2009; Jorgenson, 2006; Jorgenson et al., 2010). The
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theory generally posits that, in the global economy, developed countries are more

advantaged in terms of environmental impacts than developing countries. First, in

international trade, export flows from developing countries to developed countries are

environmentally at the expense of the former due to externalization of environmental

costs. In a cross-national panel analysis of deforestation, Jorgenson (2003) found that

developed countries with higher levels of resource consumption “externalize their

consumption-based environmental costs” to developing countries, which increases levels

of environmental degradation within the latter (Jorgenson, 2003, p. 691).

Second, developed nations are winners of the zero-sum energy game by receiving

a transfer of energy resources from developing countries, where limited restrictions are

set on pollution (Hornborg, 2009). The uneven deterioration of the environment across

nations is shaped and reproduced by the hierarchy of the world economy to a great extent.

In Pellow’s view (2006), ecological modernization in developed nations is at the expense

of the acceleration of extensive environmental degradation as well as the treadmill of

production based on cheap labor in developing nations, which are more likely to be the

“victims” of transnational environmental injustice. In sum, the theory of unequal

ecological exchange has provided a simple yet clear framework to understand how

unevenly distributed environmental impacts are produced and maintained through

international trade in the global economy.

Previous studies have shown that global processes have vastly increased

emissions in specific nations in the global South, allowing the North to slow their rates of

increasing emissions even as levels of consumption have held steady or increased (Zhang

et al., 2012). For example, Roberts and Park (2007) showed that off-shoring and shifting
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energy/natural resource-intensive production to developing countries such as China and

India has sharply increased carbon dioxide emissions (CO2) and air pollution in these

countries. Therefore, as a new center for global growth and the manufacturing hub of the

world, air pollution in China is not simply China’s problem (Liu & Beattie, 2016;

Shapiro, 2001). Other nations, through globalization, pollution, and resource exploitation,

significantly affect China’s environmental quality (Liu & Diamond, 2005).

Most existing studies indicate the dramatic increase of China’s CO2 emissions

could be largely attributed to the production of exports. For instance, Peters and Hertwich

(2008) show that about 24% of China’s CO2 emissions in 2001 were embodied in exports,

and Weber et al. (2008) found this proportion rose from 12% in 1987 to about 33% in

2005. This means developed countries benefit environmentally from international trade

by transferring consumption-based production to developing countries. Furthermore, Lin

et al. (2014) estimated that about 21% of export-related emissions in China were

attributed to China-to-US exports. Meanwhile, they also present that the portion of the

export-related pollution transported from China across the Pacific Ocean contributed to

12-24% of sulfate concentrations over the western United States. Although prior studies

have quantified the substantial CO2 emissions embodied in international trade taking

China as the unit of analysis, little attention has been paid to how the relationship

between international trade and other types of air pollution such as SO2 emission and dust

emission changed within China across cities and over time. Taking the position of China

in the global economy into account, the proposed hypothesis is as follows:

Hypothesis 6: International trade (export) is positively associated with air

pollution. That is, the higher rate of the international trade (exports) of Chinese cities,
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the higher will be their level of air pollution.

Foreign Direct Investment and Air Pollution

To further understand the environmental impact of globalization, the role of

foreign direct investment (FDI) deserves more attention. Despite the argument that FDI is

an important avenue for the transfer of skills and technology, the effect of FDI on the

environment is highly controversial, depending on the dataset used in various studies that

have examined its impact (Christmann & Taylor, 2002; Dean et al., 2009; Jorgenson,

2009; Jorgenson & Kuykendall, 2008; Spatareanu, 2007). In terms of the mechanisms

underlying the effect of FDI on the environment, the perspectives can be categorized in

several ways. First, the effect of FDI on the environment varies across world regions (e.g.,

developed vs. developing countries). There are generally two main hypotheses. One is the

“pollution haven hypothesis” that highlights the gaps between developed and developing

countries in natural environmental standards that draw the dirtiest and most polluted

industries to developing countries (Cole et al., 2006). Unlike developed countries,

central/local governments of developing countries are competing among themselves to

attract foreign investors by providing the lowest taxes and the least stringent domestic

environmental regulations (Frey, 2003). Foreign investors from developed countries are

attracted to relaxed labor laws and weak environmental regulations in developing

countries, thus creating pollution havens and propelling a global race to the bottom in

terms of environmental standards. To prevent capital flight, the developing countries are

also less likely to effectively enforce the relevant domestic environmental regulations that

already exist (Frey, 1998). Meanwhile, developing countries are less likely to ratify
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international environmental treaties due to disadvantageous position in the global

economy, environmental vulnerability, and domestic institutional structures (e.g., less

voice and accountability) (Jorgenson et al., 2007, p. 373; Roberts et al., 2003). Moreover,

a large portion of FDI attracted to developing countries finances ecologically inefficient,

highly polluting, and labor-intensive manufacturing facilities and processes outsourced

from developed countries (Jorgenson, 2006; Jorgenson et al., 2007). Therefore, most FDI

is significantly detrimental to the local environment (especially water and air) in the

developing countries. In short, the pollution haven hypothesis that FDI is positively

linked to air pollution in developing countries has been empirically supported (Grimes &

Kentor, 2003; Jorgenson et al., 2007). However, these viewpoints are also criticized for

being too simplistic and are challenged by some studies that argue there is no association

between FDI and environmental degradation (World Bank, 1997).

An alternative perspective is the pollution halo hypothesis that suggests more

resource-efficient technologies and better environmental management systems brought

by FDI, as well as the demands by associated costumers in the home (developed)

countries, would significantly improve environmental performance in developing

countries. For example, Eskeland and Harrison (2003) found that foreign firms are

associated with significantly more environmental efficiency and lower levels of energy

use than their counterparts in developing countries such as Mexico and Venezuela. In

sum, the pollution halo hypothesis highlights the notion that FDI could effectively

promote the establishment of higher environmental standards through technology transfer

(Jorgenson et al., 2007) or existing environmental practices within transnational

corporations (Lin et al., 2009). However, some researchers found that there is no
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evidence that foreign firms were significantly cleaner or new technology/equipment was

associated with better environmental performance given different sectors and investors

(Dasgupta et al., 2001).

These critics of the “halo” argument suggest that the effect of FDI on the

environment differs across sectors and investors. Some scholars presented that foreign

investment dependence in the primary sector is positively associated with pesticide and

fertilizer use intensity in developing countries (Jorgenson & Kuykendall, 2008).

Similarly, foreign investment in the secondary sector (e.g., resource extraction industries

including mining and refining) has frequently led to serious environmental degradation.

According to Spatareanu (2007), the level of environmental pressure that investors face

locally, globally, and in its home country, affects its willingness to address environmental

issues as part of investment. Some studies confirmed that globalization might have

positive environmental effect because global ties increase self-regulation pressures on

firms in low-regulation countries. In addition, firm size matters. Using firm-level

evidence, Dasgupta et al. (2001) found that large firms are more likely to be associated

with more pollution-intensive activities given their scale economies.

However, some studies found that smaller firms are significantly associated with

more pollution since they are more difficult to monitor and regulate. For example, Lam

(2005) ’study showed no evidence that foreign investment in power generation in China

reduces emission, which was not consistent with what Blackman and Wu (1998)

observed. One of the most important factors is that most foreign investors choose to

invest in smaller power projects that only require local government approval, the

regulatory power of which has been greatly reduced in order to attract foreign investors
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(Roberts et al., 2004). Thus, reliance on foreign direct investment (FDI) would

undermine the regulatory authority of the state in developing countries and reduce its

capacity to deliver public goods (e.g., environmental protection).

Christmann and Taylor (2001) noted that multinational ownership, multinational

customers, and exports to developed countries increase self-regulation of environmental

performance. On the other hand, without any pressure at the local and global level as well

as the home country, the transportation vehicles used by foreign-owned manufacturing

enterprises in developing countries for the movement of goods and labor are more likely

to be outdated and energy inefficient because of cost efficiency (Grimes & Kentor, 2003;

Jorgenson et al., 2007). Therefore, different ownership patterns have different

environmental implications. In the context of China, based on a detailed survey of

approximately 1000 firms in three provinces in 1999, Wang and Jin (2002) found that

FDI and collectively-owned enterprises have better environmental performance in terms

of water pollution discharge intensity, while state-owned enterprises (SOEs) and

privately-owned enterprises (POEs) are the worst performers. In particular, compared to

FDI, SOEs have greater bargaining power with the local environmental authorities, which

partly explained why SOEs are more likely to be the worst environmental performers

(Wang et al., 2003). Therefore, the proposed hypothesis is as follows:

Hypothesis 7: FDI is negatively linked to air pollution in China over time. That is,

the higher FDI in cities, the lower the level of air pollution will be.

Although most existing studies extensively examined the impact of FDI on the

environment, it is worth noting the significant role of variation in the source of foreign

capital. In China, the major source countries and regions of FDI are from Hong Kong,
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Taiwan, United States, Japan, South Korea, and UK (Tang et al., 2009). It is estimated

that FDI from Hong Kong, Macao, and Taiwan account for more than 50% due to

language and cultural similarity, geographic proximity, and historical ties (Tang et al.,

2009; Wei, 2002). Thus, equity joint ventures in highly polluting industries funded

through Hong Kong, Macao, and Taiwan are attracted by weak environmental standards

and have negative effect on the environment.

In contrast, equity joint ventures funded from unethnic Chinese sources are not

significantly attracted by weak standards, regardless of the pollution intensity of the

industry (Dean et al., 2009). Dean et al. provide explanations of the findings that equity

joint ventures from developed Western countries may adopt newer and cleaner

technologies compared to those from ethnic Chinese sources, regardless of the local

standards. Given the export-oriented development strategy China adopted, it is difficult to

generalize the findings if we only take total FDI of a country into account since FDI is

unevenly distributed in terms of national origin. Therefore, the last proposed hypothesis

is to further our understanding of whether FDI is beneficial or detrimental to the air

quality depending on the source of FDI. Following the study by Dean et al. (2009), I

propose the hypotheses as follows:

Hypothesis 8: The sources of foreign capital from Hong Kong, Macao, and

Taiwan are more likely to increase air pollution. That is, the higher investment of foreign

capital from HMT a city attracts, the more severely polluted its air becomes.

Hypothesis 9: The sources of foreign capital from Western countries are more

likely to decrease air pollution. That is, the higher investment of foreign capital a city

attracts, the less severely polluted its air becomes.
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Data and Methods

This chapter examines the effects of economic development, industrialization,

urbanization, and globalization on air pollution across regions and over time. The dataset

mainly comes from the China City Statistical Yearbook 2004-2013 and the China

Regional Economy Statistical Yearbook 2006-2013. Complementary data are from the

China Statistical Yearbook 2004-2013 and the China Environmental Statistical Yearbook

2004-2013. To test the proposed hypotheses, the data analyzed in this study include 287

cities (4 municipalities—Beijing, Tianjin, Shanghai and Chongqing, and 283

prefecture-level cities), covering 31 provinces, autonomous regions, and the

municipalities directly under the central government in eastern, central, and western

regions of China. The name of cities is listed (see Appendix A).

Figure 3.1 shows the map of 287 cities (4 municipalities and 283 prefecture-level

cities) in China. Taking the year 2013 as an example, the land area of 287 cities analyzed

in this study is 4.977 million (square km), covering 53.37% of total land area in the

country. Meanwhile, the population size of these cities is 1.272 billion, consisting of

93.73% of total population in the country. That is, 93.73% of the population in China

lives on 53.37% of the land in the country, indicating the population is unevenly

distributed across the nation.

Table 3.2 presents the changes in total SO2 and dust emissions across China’s

provinces. During the past years, in spite of overall increases in air pollution, there are

different change trends in SO2 and dust emissions across provinces. SO2 emissions have

declined in some provinces in the eastern region, including Beijing, Shanghai, Jiangsu,

and Zhejiang, while also increasing rapidly in some provinces of the central and western
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regions such as Inner Mongolia, Henan, Jiangxi, Guizhou, and Yunnan. Some provinces

of eastern regions such as Beijing and Tianjin witnessed declines of dust emission, while

some other provinces, such as Shanxi and Hebei, witnessed dramatic increases.

Key Independent Variables

GDP per capita. The key independent variable is measured by GDP per capita

(see the definition in Table 3.3), a commonly used indicator of overall economic

development level and quality of life. Per capita GDP, as the original indicator of

economic development in terms of standard of living, has two important implications.

First, per capita GDP is used to facilitate the comparison with the existing studies in

China and elsewhere (Grossman & Krueger, 1995; Jorgenson & Clark, 2012). Second,

per capita GDP is one of the most “readily and consistently” available indicators for

economic development in longitudinal analyses (Fan & Sun, 2008). The data at

prefecture-city level are taken from the China City Statistical Yearbook and at the

provincial level from the China Statistical Yearbook, respectively, both of which are

comprehensive yearly statistics databases on the economy and social development. The

GDP per capita for 287 cities ranges from a value of ¥ 1892 in Dingxi City, Gansu

province in 2004 to ¥182,680 in Ordos, Inner Mongolia in 2013. The GDP per capita of

the most prosperous city (Ordos) is more than 22 times that of the poorest city (Dingxi)

in 2013, revealing there is a remarkable gap among different cities over the past 10 years.

Industrialization. There are three measurements of industrialization. The first is

the percent of secondary industry in GDP. In 2009, the two prefecture-level cities with

highest level of industrialization are Karamy (90.87%) in Xinjiang and Daqing (85.08%)
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in Heilongjiang province, both of which are important oil producing and refining centers

in China. The prefecture-level cities with lowest level of industrialization in 2006 are

Pingliang (9%) in Gansu province and Heihe (15.73%) in Heilongjiang province. The

second is industrial structure (ratio of secondary industry to the total of manufacturing

and service industry in GDP), indicating the shifting of the economic structure away from

manufacturing industries to service industries. The third variable is total amount of

industrial electricity consumption (10,000 kwh). The prefecture-level cities with highest

amount of industrial electricity consumption are Tangshan (481 million kwh) in Hebei

province and Dongguan (452 million kwh) in Guangdong province. Tangshan is an

important heavy industrial city in North China, while Dongguan is an industrial city and

major manufacturing hub attracting foreign direct investment. The prefecture-level cities

with lowest amount of industrial electricity consumption are Zhongwei, Longnan, and

Dingxi, all of which are located in Gansu province. All of the above data are from the

China City Statistical Yearbook. Additionally, I chose a dummy variable,

RESBINDUSTC, indicating whether a city is a resource-based industrial city. Such cities,

highly dependent on natural resources, are more likely to have the single resource-based

industry as the pillar industry of the economy and are more environmentally polluted

(Hong et al., 2011; Mao, 2014).

Urbanization. There are three measurements of urbanization. The first is total

urban population size (the absolute size of the urban population). The second is the level

of urbanization (the relative size of urban population to total population). The

prefecture-level cities with highest level of urbanization in 2013 are Karamay (100%) in

Xinjiang and Shenzhen (100%) in Guangdong province. The prefecture-level cities with
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lowest level of urbanization in 2012 are Ulanqab in Inner Mongolia and Dazhou in

Sichuan province. The third is population density (number of residents per square

kilometer). The prefecture-level cities with highest population density in 2013 are

Dongguan and Shantou in Guangdong province. The prefecture-level cities with lowest

population density in 2013 are Jiuquan (5.10) in Gansu province and Hulunbuir (10.51)

in Inner Mongolia. The data are from the China City Statistics Yearbook. In addition, I

choose a dummy variable, CITY LEVEL, indicating whether a city is a municipality,

provincial capital, or sub-provincial city. Such cities, as the political, economic, and

cultural center of the nation/region/province, are more likely to have higher level of

urbanization and to be more densely populated.

Globalization. International trade is an important part of globalization.

International trade is measured by the sum of imports and exports (in $10,000s). The

prefecture-level city with highest amount of trade is Shenzhen ($4,688 million in 2013)

in Guangdong province, while that with lowest amount of trade is Guyuan ($200,000 in

2013) in Gansu province. To further explore the composition of international trade, I

choose the variable EXPORT, measured by total amount of goods exported (10,000

dollar). Similar to international trade, the prefecture-level city with highest amount of

export is Shenzhen (2,714 million dollars in 2013) in Guangdong, while the city with

lowest amount of trade is Ankang ($ 10,000 in 2006) in Shaanxi province. The data are

from the China Regional Economy Statistical Yearbook 2006-2013.

International capital flow is another important feature of globalization. Foreign

direct investment (FDI) is a commonly used measurement of international capital flows.

In this study, FDI is measured by the total amount of realized FDI (in $10,000s). The
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prefecture-level cities with the highest amount of FDI are Dalian ($123 million in 2013)

in Liaoning province and Suzhou (92 million dollars in 2013) in Jiangsu province. The

prefecture-level cities with lowest amount of FDI are Zhongwei ($ 20,000 in 2005) in

Gansu province and Hegang ($120,000 in 2004) in Heilongjiang province. In terms of the

sources of foreign capital, it is measured by the absolute amount (Yuan), generally

divided into foreign capital from Hong Kong, Taiwan, and Macao (HTM) and from

Western countries. The provinces with highest amount of foreign capital from HTM are

Guangdong, Jiangsu, Zhejiang, and Fujian, while those with lowest amount are Gansu

and Guizhou. The prefecture-level cities with highest amount of foreign capital from

HTM are Shenzhen (¥5, 235 million in 2013) in Guangdong province and Suzhou

(¥4,978 million in 2013) in Jiangsu province. The prefecture-level cities with lowest

amount of foreign capital from HTM are Qingyang and Jiayuguan in Gansu province.

The provinces with highest amount of foreign capital from Western countries are Jiangsu,

Guangdong, and Shandong, while those with lowest amount are Gansu and Shaanxi. The

prefecture-level city with highest amount of foreign capital from Western countries is

Suzhou (¥140 million in 2013) in Jiangsu province. The prefecture-level cities with

lowest amount of foreign capital from Western countries are Jiayuguan in Gansu

province and Chifeng in Inner Mongolia. The data come from the China City Statistical

Yearbook. In addition, I use the dummy variable SEZOCC, indicating whether a city is

designated as a special economic zone or an open coastal city. According to Huang et al.

(2011), the cities designated as SEZ or OCC are more likely to promote international

trade and attract FDI.
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Additional Dummy Variables

Regions. The first additional dummy variable included was labeled as “Region,”

which quantifies if a province is located in eastern, central, or western region in China.

Year. I take year as a dummy variable to indicate period-specific effect of

explanatory variables on dependent variable. Year included is controlled as the fixed part

for the linear increase of the independent variables in the models in order to guard against

spurious associations among variables with common trends (Beckfield, 2006).

Control Variables

Consumption. Consumption, measured by the absolute value of total consumer

goods sold per year, is controlled. The existing literature in treadmill of consumption

theory shows that increased production of the amount of the goods requires increasing

consumption, which in turn has an important impact on environment. Some other

empirical studies in the context of China show that industrialization and urbanization

have significantly influenced consumption and lifestyle of urban China (Zhao & Wang,

2015). To examine the role of industrialization and urbanization, consumption is held

constant in the study. The data come from the China City Statistical Yearbook.

Population size. Population size, measured by the absolute number of registered

population, is controlled. There are a number of existing studies showing population size

is an important predictor in environmental degradation (Jorgenson & Clark, 2012; Rosa

et al., 2004; York, 2007; York et al., 2003). Thompson (2013) provides evidence for the

significant role of population in the model of the Environmental Kuznets Curve (EKC) in

impacting the turning point. Therefore, population size is controlled in this study. The
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data come from the China City Statistical Yearbook.

Public transportation. Public transportation, defined as the indicator of

infrastructure, is widely recognized as the basic physical structures, providing facilities,

commodities, and services essential to enable, sustain, or enhance economic growth and

social development (Lall & Rastogi, 2007; Sullivan & Sheffrin, 2003). Roads, ports,

airports, communication networks, etc. are the key components. The study uses public

transportation as the indicator of infrastructure due to unavailability of other components.

The data come from the China City Statistical Yearbook.

Method

Methodologically, ordinary least squares (OLS) estimation is inappropriate for

such longitudinal data due to heterogeneity bias within panels. Both fixed-effects model

(FEM) and random effect models (REM) are identified as better techniques for

comparative studies with panel data (Beckfield, 2006; Jorgenson & Kuykendall, 2008).

Here, fixed effect model (FEM) is defined as:

y=a+bx+e �~� (0, �2)

where y is the dependent variable, a is the unknown intercept, x represents one

independent variable (IV), b is the coefficients for that IV, and e is the error term.

Specifically, the estimated model in this study is,

AirPollution=a+b*lnGDPpc+c*lnIndustrialization+d*lnUrbanization+e*lnTrade+f*ln
FDI +g* lnFIhmt +h*lnFIwest + i*lnConsumption+j*lnPopsize+h*lnPubtra+e

FEM with standard error is used to examine the effect of economic development,

industrialization, urbanization, and globalization on air pollution over the past 10 years,

given that the Hausman test is significant and net of all time-varying variables. Random
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effects models (REM) not only include between/within-region variation, but also

time-invariant variables. Since one of my primary interests is about the hypothesized

effects of economic development, industrialization, urbanization, and globalization on air

pollution across regions, multilevel modeling would be a better choice than REM. Thus,

multilevel modeling is applied to test the overall trend of air pollution across region and

time. More importantly, the joint effect of economic development, industrialization,

urbanization, and globalization on air pollution is estimated.

However, the dataset in this study results in unbalanced, longitudinal data

consisting of clusters of observations at different time points for each city. This is

referred to as a variance component model that is designed to estimate between- and

within-cluster correlations (Rabe-hesketh & Skrondal, 2005). Typically, for longitudinal

data, occasions i is level-1 units and subject j is level-2 clusters. In this dataset, level-1 is

year i, level 2 is city j, and level 3 is province k. In other words, 10 different time points

from 2004 to 2013 are nested in each city, which itself is nested in provinces. The level-1

model for city j in province k at year i is:

��th � ��th � ��th

Here ��th is specific to each city j and constant across year i, called random

effect with normal distribution of population mean zero and between-city variance φ.τ1jk

varies between city j and province k. εijk is, specific to each city j of province k at each

year i, called residual with a normal distribution of population mean zero and between

provinces, within-city variance θ (Rabe-hesketh & Skrondal, 2005).

The level-2 model is specified for the intercept ��th

��th � ���h � �‸�t � �th
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The level-3 model is specified for the intercept ���h,

���h � ���� � �h

The final model obtained is

��th � ���� � �‸�t � �h � �th � ��th

Specifically, the estimated baseline model in this chapter is as follows,

Log (Total SO2/Dust Emission) = β0+β1*lnGDPpc+β2*Consumption+β3*Popsize +β4
Pubtra+β5*year 2004+...+ β14*year2013 +e

The multilevel model is

Log (TotalSO2/Dust Emission) = β0+β1*lnGDPpc+β2*(lnGDPpc)2+β3*lnIndustrialization
+β4*lnUrbanizatio+β5*lnGloblalization+β5*lnConsump+β6lnPopSize+β7*lnPubTran+β
8*year2004+...+ β17*year2013+e

Results

Table 3.4 presents descriptive statistics for all variables, including dependent

variables, independent variables, and control variables before transformation in the

analysis. Then, the multilevel regression analyses are reported in the following series of

tables. I present and discuss the findings, with a particular focus on the effect of

economic development, industrialization, urbanization, and globalization on SO2 and dust

emission, respectively.

Tables 3.5-3.6 present the multilevel modeling analysis of economic development,

industrialization, urbanization, globalization, and air pollution over the period 2004-2013.

Specifically, Table 3.5 and 3.6 show the estimates of the effects of economic

development on SO2 and dust emission, respectively, net of consumption, population size,

and public transportation. Model 1 is treated as a baseline model, consisting of

consumption, population size, and public transportation. I add the key independent
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variable GDP per capita in Model 2 to examine the effect of economic development on

air pollution. Then I add an additional predictor, the quadratic term of GDP per capita,

into Model 3. Models 3 and Model 4 include all predictors from Model 2 as well as

dummy variables. Model 5 is the most fully saturated model reported for all outcomes

investigated in the analyses, consisting of all of the predictors included in Model 1

through Model 4.

Model 1, as a baseline model, obtains a crude estimate of SO2 and dust emission,

net of consumption, population size, and public transportation. Specifically, consumption,

and public transportation are statistically significant for both SO2 and dust emission while

population size only positively affected dust emission. The overall fit of Model 1 is

moderate (R2= .400 for SO2 emission, .334 for dust emission), implying that other

variables matter.

In Model 2, I introduce GDP per capita to predict SO2 and dust emission. Holding

the control variables in the baseline model, the primary finding in Model 2 shows that

GDP per capita is a significant factor and positively associated with SO2 and dust

emission, suggesting that the higher GDP per capita, the higher the level of air pollution

is, regardless of which type (SO2 or Dust). The increase of one unit in log GDP per capita

leads to a .497 growth in log SO2 emission, and a .373 growth in log dust emission. That

is, an additional unit of GDP per capita leads to an increase in the expected SO2 emission

by 1.644 and the expected dust emission by 1.452. The overall fit improved with the R2,

rising from .400 to .448 for SO2 emission, and from .334 to .367 for dust emission.

In Model 3, I add the quadratic term of GDP per capita to test the Hypothesis 1

that there is an inverted U-shape curve between GDP per capita and air pollution.
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Controlling the explanatory variables in Model 2, the primary finding in Model 3 shows

that there is an inverted U-shape between GDP per capita and SO2 emission, suggesting

that GDP capita at the initial stage is positively associated with SO2 emission, and then

negatively associated with SO2 emission after a turning point. However, surprisingly, the

findings provide no evidence for dust emission. Overall, the finding partially confirms

Hypothesis 1 and supports the Environmental Kuznets Curve (EKC) that argued that air

pollution first rises, and then falls as economic development proceeds (Grossman &

Krueger, 1995). For SO2 emission, Kander (2002) and Stern (2004) argued there is a

structural shift away from agriculture toward industry in the earlier stages of

development, during which particularly heavy industry substantively increasing

emissions. In the later phases of development, there is a sectoral shift away from the

resource-intensive and heavy industrial sectors toward technology-intensive industries

and services, which supposedly have lower emissions (Proops & Safonov, 2004).

Meanwhile, the finding also provides support for the statement by Panayotou (1997) that

the simple reduced approach to the Environmental Kuznets Curve only holds for certain

pollutants, but could not provide explanations for the underlying mechanism. In terms of

dust emission, the effect of the structural change of industrial production is lumped given

its mixing sources.

Model 4 adds dummy variables to test whether the relationship between GDP per

capita and air pollution varies given the characteristics of cities. As expected, the variable

RESBINDUSTC is negative and statistically significant, indicating SO2 and dust

emission are higher in a resource-based industrial city than that in a non-resource-based

industrial city. The variable CITYLEVEL is negative and slightly statistically significant,
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suggesting there is difference in SO2 and dust emission between different levels of cities.

Specifically, SO2 and dust emission are lower in prefecture-level cities than in the cities

that are municipalities, provincial capitals, or sub-provincial cities. The variable

SEZOCC is statistically significant only for dust emission, indicating there is no

difference of SO2 emission between the cities that are designated as Special Economic

Zones or Open Coastal Cities and other cities.

Model 5 introduces region and year as predictors and offers a comprehensive

model that demonstrates the effect of economic development on air pollution across

regions over time. Both central and western regions are moderately significant for dust

emission, while only the western region is significant for SO2 emission. Consistent with

what we expected, compared to more developed eastern regions with higher GDP per

capita, SO2 and dust emission are higher in these less developed regions. Interestingly,

after adding the interaction effect of region, I find that it is statistically significant for SO2

emission, but not dust emission. This finding partially confirms the expectation of

Hypothesis 2 and supports the statement by Jorgenson and Clark (2012) that the

decoupling between economic development level and air pollution is more likely to occur

in more developed regions. Meanwhile, Model 5 also shows that the effect of the

magnitude of economic development on air pollution varies over time. The variable year

and the interaction effect are statistically significant for dust emission, but not for SO2

emission, indicating only the effect of the magnitude of economic development on dust

emission varies over time. Specifically, from 2005 through 2013, the effect of economic

development on SO2 emission steadily decreases until 2012. The estimated coefficient for

GDP per capita decreases through time, suggesting the decoupling between economic
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development and dust emission during the period. The decoupling first occurred in 2005,

and then the coefficient substantially decreases except for an increase in 2012.

To summarize, this comprehensive model provides insight into the decoupling of

economic development and air pollution across regions and through time. Regarding the

underlying causes of why higher GDP per capita could lead to better environmental

quality, previous studies argued that structural transformation from heavy industry

towards technology-intensive industries and services, coupled with environmental

consciousness, enforcement of environmental regulations, higher environmental

expenditures, and more advanced technology, would result in gradual decline of

emissions (Panayotou, 1997; Stern, 2004). It is noteworthy to point out that holding

constant other variables, if there is no structural change of the economy or no advanced

pollution control technology applied, the increasing growth in the economy would result

in increasing levels of emissions (Stern, 2004).

Tables 3.7-3.8 show the estimates of industrialization on air pollution. The

Akaike Information Criterion (AIC) determines which of the two models is preferred.

The lowest AIC is the preferred model. To further explore the effect of the level of

industrialization on air pollution, in Model 4, I introduce two more variables INDUSTR

and IELECON to test the Hypothesis 1 that the level of industrialization is positively

associated with SO2 emission. Controlling the explanatory variables in Model 3, the

result in Model 4 shows the industrial structure is negative and slightly statistically

significant for SO2 emission, while industrial electricity consumption is positive and

statistically significant for dust emission. The finding demonstrates that the higher the

level of industrial electricity consumption, the higher the level of air pollution is.
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Model 5 adds dummy variables RESBINDUSTC and year to test whether the

relationship between industrialization and air pollution varies given the characteristics of

cities over time. As expected, the variable RESBINDUSTC is negative and statistically

significant. The negative estimated coefficient indicates air pollution is higher in a

resource-based industrial city than that in a non-resource-based industrial city. Model 5

also introduces year as predictor to show how the effect of the magnitude of

industrialization on air pollution varies over time. In the initial period of 2005-2007, year

is not statistically significant. Then the decoupling between industrialization and air

pollution first occurs in 2009. From the year 2009 through 2013, the coefficient is

negative and statistically significant, indicating the effect of industrialization on both SO2

and dust emission decreases through time.

In sum, Table 3.7 and 3.8 provide us insight into the decoupling of

industrialization and and SO2 and dust mission, respectively, over time. The

between-region standard deviation is estimated as 0.018 in Model 1, and it changes to

0.005 in Model 5. The between-province within-regions standard deviation is estimated

as 0.852 in Model 1, and then it changes to 0.633 in Model 5. The value of AIC is

calculated as 7750.27/7959.23 in Model 1, and then it gradually decreases to

5960.47/6485.46 in Model 5, indicating Model 5 is a better model that provides more

comprehensive understanding of the effect of industrialization on air pollution over time.

Tables 3.9-3.10 show the estimates of urbanization on air pollution. In Model 6, I

add the variables URBAN to test Hypothesis 4. In Model 7, I introduce the variable

POPD to test the Hypothesis 5 that population density is positively associated with air

pollution. Controlling the explanatory variables in Model 6, inconsistent with the
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commonly held view, the primary finding in Model 7 shows that population density is

negative and statistically significant for SO2 emissions. In terms of dust emission, it is

negative and slightly statistically significant, revealing that the higher the level of

population density, the lower the level of dust emissions is (Eriksson & Zehaie, 2005).

In Model 8, I add dummy variables CITYLEVEL and year to test whether the

relationship between urbanization and air pollution varies given the characteristics of

cities over time. As expected, the variable CITYLEVEL is statistically significant. The

estimated coefficient is positive, indicating air pollution is lower in prefecture-level cities

than that in the cities which are municipality, provincial capitals, or sub-provincial cities.

Model 8 also introduces year as predictor to estimate how the effect of the magnitude of

urbanization on air pollution varies over time. In the initial period of 2005-2007, year is

not statistically significant. Then, decoupling between urbanization and air pollution first

occurs in 2008. The year effect from 2008 through 2013 is negative and statistically

significant, indicating the effect of urbanization on air pollution decreases through time.

The between-region standard deviation is estimated as 0.030 in Model 6, and it increases

to 0.070 in Model 8. The between-province within-regions standard deviation is

estimated as 0.819 in Model 6, and then it also increases to 0.959 in Model 8. The value

of AIC is calculated as 7217.84/7607.59 in Model 6, and then it gradually decreases to

6428.52/6754.88 in Model 8, indicating Model 8 is a better model that provides much

more comprehensive understanding of the effect of urbanization on air pollution over

time.

Tables 3.11-3.12 show the estimates of globalization on air pollution. In Model 9,

I add the variables TRADE to test the proposed Hypothesis 6. Holding constant the
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explanatory variables from Model 1 of Table 3.7, the primary result is that trade has a

positive and statistically significant effect, indicating that the higher the amount of total

international trade, the higher the level of air pollution is.

In Model 10, I introduce the variable total FDI to test Hypothesis 7 that FDI is

positively associated with air pollution. Controlling the explanatory variables, FDI is

slightly statistically significant, revealing FDI is positively associated with SO2 emission.

However, for dust emission, Hypothesis 7 is rejected. Therefore, the primary finding

indicates that the effect of FDI on air pollution is mixed.

Model 11 adds the variable FIHTM to test Hypothesis 8 that foreign capital from

Hong Kong, Taiwan, and Macao is positively associated with air pollution. Controlling

the explanatory variables, the finding shows that FIHTM is positive and statistically

significant for SO2 emission, revealing that the higher the amount of foreign capital from

HTM, the higher the level of SO2 emission is. As for dust emission, the variable FIHTM

is slightly statistically significant. Model 12 adds the variable FIWEST to test Hypothesis

9 that foreign capital from Western countries is positive and strongly associated with air

pollution. Holding constant the explanatory variables, the results show that FIWEST is

not statistically significant, suggesting there is no evidence to support the statement that

foreign capital from Western countries is more likely to increase SO2 emission. For dust

emission, the result shows that FIWEST is not statistically significant, indicating foreign

capital from Western countries has no effect on dust emission.

Meanwhile, in Model 13, I introduce the variable DCIV to test the effect of

domestic capital on air pollution. Controlling the explanatory variables, the finding in

Model 14 shows that DCIV is strongly statistically significant, indicating there is no
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effect of the investment from domestic capital on air pollution.

In Model 14, I add dummy variables SEZOCC and year to test whether the

relationship between globalization and air pollution varies given the characteristics of

cities over time. The variable SEZOCC is statistically significant for dust emission, but

not for SO2 emission. The results indicate there is no difference in SO2 emissions

between the cities that are designed as Special Economic Zones or Open Coastal Cities

and other cities. Additionally, Model 15 introduces year as predictor to show how the

effect of the magnitude of globalization on air pollution varies over time. The decoupling

between globalization and air pollution first occurs in 2008. From 2008 through 2013,

year is negative and statistically significant, indicating the effect of globalization on air

pollution decreases through time.

Overall, Tables 3.11-3.12 provide a comprehensive view of how the effect of

globalization and air pollution changed over time. The between-region standard deviation

is estimated as .055 in Model 9, and it increases to .023 in Model 14. The

between-province within-regions standard deviation is estimated as .864 in Model 9, and

then it decreases to .733 in Model 14. The value of AIC is calculated as 5598.65 in

Model 9, and then it gradually decreases to 4102.92 in Model 14, indicating Model 9 is a

better model that provides much fuller understanding of the effect of globalization on air

pollution across regions and over time.

Table 3.13 shows the joint effect of economic development, industrialization,

urbanization, and globalization on air pollution. In Model 15, all key independent

variables are included to examine the joint effects of economic development,

industrialization, urbanization, and globalization on air pollution. The results are mixed
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given different measurements of air pollution. For instance, the variable URBAN is

positively associated with SO2 emission, but has no impact on dust emission. The result

shows that FDI has no association with air pollution. The sources of foreign capital exert

different influences on air pollution given its different types. The variable FIHTM has no

effect on SO2 emission, but is positively associated with dust emission. By contrast, the

variable FIWEST is positive but not significantly associated with either SO2 emission or

dust emission.

Model 16 adds dummy variables to test whether the joint effects of economic

development, industrialization, urbanization, and globalization on air pollution vary

according to the characteristics of cities. As expected, the variable RESBINDUSTC is

negative and strongly statistically significant, indicating air pollution is lower in a

resource-based industrial city than that in a non-resource-based industrial city. The

variable CITYLEVEL is positive and slightly statistically significant. Meanwhile, the

variable SEZOCC has no effect on SO2 emissions, but is positive and strongly

statistically significant for dust emission. This result suggests that dust emissions are

lower in the cities that are designated as Special Economic Zone or Open Coastal Cities

than other cities. Then, I add dummy variables for year to show how the effect of the

magnitude of development on air pollution changes over time. The year 2007 is not

statistically significant for SO2 emissions, but slightly statistically significant for dust

emission. The decoupling between development and air pollution first occurred around

2008. The year through 2008-2013 is negative and statistically significant, indicating the

effect of the magnitude of development on air pollution decreases through time.

In summary, Table 3.13 provides a comprehensive statistical view on how the
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effects of development on air pollution changed over time in the early part of the 21st

century. The between-region standard deviation is estimated as .000 in Model 15, and

then increases in Model 16 for SO2 emission, while decreasing for dust emission from

Model 15 to Model 16. The between-province within-regions standard deviation

increases for both SO2 emission and dust emission. The value of AIC for air pollution

decreases from Model 15 to Model 16, indicating Model 16 is a better model that

provides much fuller understanding of the effects of development on air pollution.

Conclusion

This chapter aims to address the question how development within a developing

country impacts air quality across regions and over time. The chapter provides a snapshot

of how the dynamics of development influences air pollution during the 10 years,

2004-2013, and examines whether industrialization, urbanization, and globalization serve

as pathways in the association between development and air pollution in the context of

the rapidly expanding economy of the most populous country in the world. Empirically,

this chapter examines the effects of development on air pollution in China using

longitudinal data at prefecture-city level. The aim is to test the theoretical framework

proposed in Chapter 1 and present how major factors such as economic development

level, industrialization, urbanization, and globalization have affected air pollution across

regions and over time. Multilevel models are deployed to test for the presence of regional

disparities in the relationship between economic development and air pollution and the

variance in disparities between- and within- provinces/regions.

Recall that Hypothesis 1 and 2 posited an inverted U-shape relationship between
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economic development and air pollution. That is, economic development initially has an

adverse effect on air quality, which then subsequently improves as the level of national

economic development increases over a turning point (the peak of the inverted U-shape).

The hypothesis is partially validated. There is strong evidence in Table 3.5 showing an

inverted U-curve between economic development and SO2 emission at 95% confidence

level and the turning point is estimated as GDP per capita reached ¥ 61659.5. However,

there is no evidence to show that there is an inverted U-relationship between economic

development and dust emission. Therefore, the EKC does not apply to dust emission.

Meanwhile, there are regional disparities in the effect of economic development on SO2

emission, but not dust emission.

Recall that Hypothesis 3 suggested that industrialization is positively associated

with air pollution. That is, the higher the level of industrialization, the more air pollution

there will be. The findings from Tables 3.7-3.8 confirm this hypothesis and provide

strong evidence to support the statement that the higher levels of manufacturing industry

and industrial electricity consumption are associated with higher level of air pollution

(both SO2 and dust emissions). The decoupling between industrialization and air pollution

first occurred around the year 2008-2009. Specifically, the effect of industrialization on

SO2 emissions decreased from 2009 to 2013, while its effects on dust emissions

decreased from 2008-2011 and then increased in 2012.

Hypothesis 4 and 5 suggested that urbanization is positively associated with air

pollution. That is, the higher the level of urbanization, the higher the level of air pollution

will be. The findings from Tables 3.9-3.10 confirm the hypothesis that the higher rates of

urbanization are associated with higher levels of air pollution. Hypothesis 5 is partially
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supported since the findings are mixed and vary according to the indicators of air

pollution. Specifically, population density is slightly positively associated with SO2

emissions, while negatively associated with dust emissions. The decoupling between

urbanization and air pollution first occurred around the year 2007-2008. Specifically, the

effect of urbanization on SO2 emissions decreased from 2008 to 2013, while the effects

on dust emission decreased through 2007-2011 and then increased in 2012.

Recall Hypotheses 6-9 suggested that globalization is positively associated with

air pollution. That is, the higher the level of globalization, the more severe the air

pollution will be. The findings from Tables 3.11-3.12 confirm Hypothesis 6, that the

higher the level of international trade, the higher the level of air pollution will be.

Hypotheses 7-8, are partially supported since the findings are mixed and vary depending

on which type of air pollution is under consideration. Overall, there is no evidence

showing that FDI affects air pollution. More importantly, this study shows that different

sources of foreign capital have different effects on air pollution. There is no evidence to

show that foreign capital from Western countries affects dust emissions.

More specifically, Table 3.12 presents that foreign capital from Hong Kong,

Taiwan, and Macao is positively associated with SO2 emissions, but the effect is offset

after controlling for domestic capital. Similarly, foreign capital from Hong Kong, Taiwan,

and Macao are slightly positively associated with dust emissions, while the effect is

offset after controlling domestic capital. The decoupling between globalization and air

pollution first occurred around the year 2007-2008. Specifically, the effect of

globalization on SO2 emissions decreased from 2008 to 2013, while on dust emissions, it

decreased over 2007-2011 and then increased in 2012.
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Overall, this empirical study is designed to respond to the demand for systematic

analysis of the relationship between development and the environment in China (Liu &

Bettie, 2016). This chapter examines how development processes impact air pollution at

the prefecture-city level. It provides new findings on how industrialization, urbanization,

and globalization, as driving forces, as well as economic development level, have

affected air quality. Inconsistent with Dinda’s observation that the EKC is more likely to

hold for the environmental impact locally (Dinda, 2004), the findings demonstrate that

there is an inverted U-shape relationship between economic development and SO2

emission (but not dust emission). More importantly, the results show that the cities with

the higher levels of industrialization and urbanization have higher levels of air pollution.

In terms of globalization, the findings are mixed. For cities with higher levels of

international trade, there are higher levels of air pollution. For cities with higher level of

foreign capital from Hong Kong, Taiwan, and Macao, levels of air pollution are greater.

Although previous research has made valuable contributions, this study advances

the literature in several ways. First, this study focuses on the relationship between

development and air pollution at the city level within the largest developing country in

the world. In Chapter 2, I describe the development mode of China since the policies of

reform and opening up were introduced in 1978, leading to rapid industrialization,

urbanization, and globalization. Therefore, this study is a systematical empirical analysis

testing the theoretical framework of the triple process of development in China. Secondly,

the joint effects of economic development level, industrialization, urbanization, and

globalization on air pollution have been tested, while previous studies mostly examine

the effect of those factors separately with respect to water pollution. Third, multilevel
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modeling is used to analyze the most recent city-level data. This study is the first to

provide a comprehensive comparative quantitative analysis of the relationship between

development and air pollution from 287 cities across regions and over time, as prior

research takes China itself or provinces within China as the units of analysis. Last but

most importantly, the findings have policy implications for the development trajectories,

and industrialization and globalization particularly for developing countries, contributing

to the literature by examining the independent role of population density and the sources

of foreign capital in relation to air pollution locally.

There are several limitations to this study. First, the indicators of air pollution are

SO2 emissions and dust emissions, which are used as indicators for air quality in the

environmental studies. The findings may not be generalizable to other indicators of air

quality, particularly particulate matter (PM2.5 and PM10). In future research, particulate

matter will be explored when the long-term data at the city level become available.

Secondly, the theoretical framework is constructed in the context of China, where the role

of the state and policies should be seriously taken into account. Given the unavailability

of data, this study fails to examine the effect of such policies implemented by central and

local governments on air pollution. The effects of specific policies should be examined in

future studies.
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Table 3.1

Summary of Different Theoretical Frameworks in Different Fields

Indicators Variables
Environmental
Sociology

Ecological
Economics

Economic
Geography

Economic Development GDP per capita Yes Yes

Industrialization
Manufacturing Yes Yes
Industrial Electricity ConsumpYes Yes

Urbanization Rate of Urbanization Yes Yes
Population Density Yes

Globalization
Trade (or Export) Yes Yes Yes
FDI Yes Yes Yes

Figure 3.1

Map of China in This Study
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Table 3.2

Changes of Air Pollution by Provinces, 2004-2013 (10,000 tons)

Provinces SO2 Emission Dust Emission

Change Percent Change Percent

1814394 100% 6399868 100%
Eastern Region

Beijing -54682 -3.01% -1301 -0.02%
Tianjin -14690 -0.81% -27489 -0.43%

Hebei 50172 2.77% 416189 6.50%
Shandong 269446 14.85% 161062 2.52%
Liaoning 326229 17.98% 212308 3.32%
Shanghai -60634 -3.34% 37429 0.58%
Jiangsu -45871 -2.53% 59814 0.93%
Zhejiang -102621 -5.66% 54084 0.85%
Fujian 158580 8.74% 160457 2.51%
Guangdong -256254 -14.12% 99574 1.56%
Guangxi -210199 -11.59% -189776 -2.97%
Hainan 765 0.04% 554 0.01%

Central Region
Shanxi 41961 2.31% 5080875 79.39%
Inner
Mongolia 463481 25.54% 377081 5.89%
Jilin 155568 8.57% 3841 0.06%
Heilongjiang 57378 3.16% -22120 -0.35%
Anhui 70889 3.91% 128098 2.00%
Henan 206334 11.37% -147915 -2.31%
Hubei 79984 4.41% 4968 0.08%
Hunan -31329 -1.73% -110475 -1.73%
Jiangxi 269325 14.84% 132947 2.08%
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Table 3.2 Continued

Provinces SO2 Emission Dust Emission

Change Percent Change Percent

Western Region
Chongqing -89876 -4.95% 46325 0.72%
Sichuan -238701 -13.16% -457587 -7.15%
Guizhou 265785 14.65% 700 0.01%
Yunnan 253362 13.96% 106877 1.67%
Tibet 1075 0.06% 647 0.01%
Shaanxi 6368 0.35% 141522 2.21%
Gansu 83753 4.62% 40665 0.64%
Qinghai 26924 1.48% 20200 0.32%
Ningxia 56189 3.10% 49847 0.78%
Xinjiang 75683 4.17% 20467 0.32%
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Table 3.3

Lists of Definitions of Independent and Control Variables

Variables
Variable
Label Definition Period

Economic
Development GDPPC The annual amount of GDP per capita 2004-2013

Industrialization MAINDU
The ratio of manufacturing industry to
total GDP 2004-2013

INDUSTR
The ratio of manufacturing industry to
total non-primary sector 2004-2013

IELECON
The annual consumption of industrial
electricity 2004-2014

RESBINDUSTC
Whether a city is resource-based industry
city 2004-2013

Urbanization URBANP The size of urban population 2004-2013

URBAN
The ratio of urban population to
total population size 2004-2013

POPD The population density of the city 2004-2013

CITYLEVEL
Whether a city is municipality, provincial
capital or sub-provincial city 2004-2013

Globalization TRADE The annual amount of international trade 2005-2013

EXPORT
The ratio of export to total international
trade 2005-2013

FDI The annual amount of Realized FDI 2004-2013

FIHTM
The annual amount of FDI from
Hong Kong, Macao and Taiwan 2004-2013

FIWEST
The annual amount of FDI from Western
countries 2004-2013

DCIV The annual amount of domestic capital 2004-2013

SEZOCC
Whether a city is Special Economic Zone
or Open Coastal City 2004-2013

Control
Variables CONSUM The annual amount of total consumption 2004-2013

POPSIZE The size of population in the whole city 2004-2013

PUBTRA
The number of public transportation
per 10,000 person 2004-2013
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Table 3.4

Descriptive Statistics of the Analysis

Variables Min Max Mean Std. Dev
Dependent Variables
SO2 12 705751 62995.74 63813.60
Dust 34 5168812 30408.65 120553.81
Independent Variables
GDP pc 99 182680 24939.28 21173.03
Manufacturing 9 91 48.85 11.48
Industrial Electri 0 8057600 432689.10 730180.33
Urbanization 0 1 0.34 0.21
Popu density 5 2662 416.22 318.80
Trade 2 46680286 866686.46 3147905.42
Export 0 27135572 468126.95 1584273.97
FDI 0 1518453 51052.65 125151.03
FI from HTM 0 54732030 1759357.92 5013512.49
FI from West 0 144700000 3120012.50 10663102.67
Domes Invest 6007 138900000 11726056.27 16486018.97
Control Variables
Consumption 11209 77028167 3851169.87 6248666.11
Population size 16 3343 425.52 303.18
Public transport 0 115 6.7395 6.69319

Note: N=2870
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Table 3.5

Multilevel Estimates of Economic Development and SO2 Emission in China

Model 1 Model 2 Model 3 Model 4 Model 5
Independent Variables
GDPPC(ln) 0.672*** 1.717*** 1.558*** 1.631***

(0.050) (0.338) (0.327) (0.320)

GDPPC2(ln) -0.055**
-0.061**
* -0.050**

(0.018) (0.017) (0.017)
Dummy Variables

RESBINDUSTC
-0.451**
* -0.455***
(0.035) (0.034)

CITYLEVEL -0.148* 0.290***
(0.062) (0.065)

SEZOCC -0.001 0.065***
(0.070) (0.067)

Central Regions 0.420***
(0.211)

Western Regions 0.845*
(0.217)

2005 -0.061
(0.063)

2006 -0.015
(0.064)

2007 -0.126†
(0.065)

2008 -0.288***
(0.067)

2009 -0.484***
(0.070)

2010 -0.621***
(0.072)

2011 -0.819***
(0.075)

2012 -0.890***
(0.078)

2013 -1.062***
(0.082)
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Table 3.5 Continued

Model 1 Model 2 Model 3 Model 4 Model 5

Control
Variables
CONSUM(ln) 0.280*** -0.259*** -0.232*** 0.002 0.352***

(-0.025) (0.047) (0.048) (0.053) (0.053)
POPSIZE(ln) 0.434*** 1.015*** 0.983*** 0.388*** 0.001***

(0.030) (0.052) (0.053) (0.064) (0.061)
PUBTRA(ln) 0.322*** 0.257*** 0.259*** 0.233*** 0.167***

(0.024) (0.024) (0.024) (0.024) (0.024)
Constant 3.521*** 1.451*** -3.708* -1.069 -6.102***

(0.226) (0.268) (1.672) (1.636) (1.632)

R2 Between 0.388 0.476 0.470 0.456 0.586
R2 Overall 0.400 0.448 0.447 0.297 0.325
Between Cities 0.969 0.914 0.920 0.772 0.457
Within Cities 0.832 0.809 0.808 0.766 0.728
ICC 0.576 0.561 0.565 0.504 0.283
Notes:
1. †p<0.1; *p<0.05; **p<0.01; ***p<0.001(two-tailed tests).
2. Line 1: unstandardized coefficients; line 2: standard error in parentheses.
3. GDPPC= gross domestic product per capita; GDPPC2 =Quadratic term of gross
domestic product per capita.
4. ICC=Intraclass correlation coefficient;
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Table 3.6

Multilevel Estimates of Economic Development and Dust Emission in China

Model 1 Model 2 Model 3 Model 4 Model 5
Independent Variables
GDPPC(ln) 0.551*** 0.533 0.378 0.979**

(0.052) (0.355) (0.350) (0.339)
GDPPC2(ln) 0.001 -0.004 -0.025

(0.018) (0.018) (0.018)
Dummy Variables
RESBINDUSTC -0.364*** -0.369***

(0.038) (0.036)
CITYLEVEL -0.172** 0.183**

(0.066) (0.068)
SEZOCC 0.334*** -0.455***

(0.075) (0.067)
Central Regions 0.755**

(0.257)
Western Regions 0.621*

(0.263)
2005 -0.053

(0.067)
2006 -0.047

(0.067)
2007 -0.198**

(0.065)
2008 -0.442***

(0.071)
2009 -0.675***

(0.074)
2010 -0.852***

(0.076)
2011 -1.033***

(0.079)
2012 -0.510***

(0.083)
2013 -0.714***

(0.086)



106

Table 3.6 Continued

Model 1 Model 2 Model 3 Model 4 Model 5
Control Variables
CONSUM(ln) 0.206*** -0.236*** -0.237*** -0.036 0.173**

(0.026) (0.049) (0.050) (0.056) (0.056)
POPSIZE(ln) 0.565*** 1.042*** 1.043*** 0.504*** 0.438***

(0.031) (0.055) (0.056) (0.068) (0.065)
PUBTRA(ln) 0.164*** 0.110*** 0.110*** 0.098*** 0.041†

(0.025) (0.026) (0.026) (0.026) (0.025)
Constant 3.202*** 1.511*** 1.600 3.813* -2.883†

(0.234) (0.281) (1.755) (1.748) (1.731)

R2 Between 0.286 0.345 0.348 0.528 0.580
R2 Overall 0.334 0.367 0.368 0.224 0.284
Between Cities 0.909 0.870 0.870 0.758 0.567
Within Cities 0.862 0.848 0.848 0.821 0.779
ICC 0.526 0.513 0.513 0.460 0.346
Notes:
1. †p<0.1; *p<0.05; **p<0.01; ***p<0.001(two-tailed tests).
2. Line 1: unstandardized coefficients; line 2: standard error in parentheses.
3. GDPPC= gross domestic product per capita; GDPPC2 =Quadratic term of gross
domestic product per capita.
4. ICC=Intraclass correlation coefficient;
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Table 3.7

Multilevel Estimates of Industrialization and SO2 Emission in China

Model 1 Model 2 Model 3 Model 4 Model 5

Fixed-Effect
GDPPC(ln) 0.678*** 0.184** 0.119* 0.228***

(0.050) (0.055) (0.050) (0.059)
MAINDU(ln) 1.499*** 1.103*** 0.624**

(0.086) (0.204) (0.217)
INDUSTR(ln) -0.464† -0.101

(0.239) (0.254)
IELECON(ln) 0.389*** 0.278***

(0.015) (0.016)
RESBINDUSTC -0.308***

(0.032)
2005 -0.001

(0.058)
2006 0.141*

(0.059)
2007 0.079

(0.060)
2008 -0.009

(0.062)
2009 -0.110†

(0.065)
2010 -0.180**

(0.067)
2011 -0.315***

(0.071)
2012 -0.323***

(0.074)
2013 -0.415***

(0.076)
Control Variables
CONSUM(ln) 0.278*** -0.266*** -0.003 -0.274*** -0.036
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Table 3.7 Continued

Model 1 Model 2 Model 3 Model 4 Model 5

(0.025) (0.047) (0.047) (0.045) (0.051)
POPSIZE(ln) 0.438*** 1.025*** 0.803*** 0.756*** 0.445***

(0.030) (0.052) (0.051) (0.048) (0.059)
PUBTRA(ln) 0.323*** 0.257*** 0.211*** 0.103*** 0.095***

(0.024) (0.024) (0.023) (0.022) (0.022)
Constant 3.502*** 1.426*** -1.904*** -0.422 0.575

(0.294) (0.322) (0.348) (0.816) (0.855)
Variance Components
Regional-level 0.018 0.020 0.003 0.016 0.005
Provincial-level 0.852 0.752 0.534 0.502 0.633

Log Likelihood -3868.14 -3770.19 -3626.51 -3264.41 -2959.23
AIC 7750.27 7556.37 7271.03 6550.81 5960.47
Notes:
1. †p<0.1; *p<0.05; **p<0.01; ***p<0.001(two-tailed tests).
2. Line 1: unstandardized coefficients; line 2: standard error in parentheses.
3. AIC=Akaike information criterion
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Table 3.8

Multilevel Estimates of Industrialization and Dust Emission in China

Model 1 Model 2 Model 3 Model 4 Model 5
Fixed-Effect
GDPPC(ln) 0.557*** 0.150* 0.103† 0.138*

(0.052) (0.059) (0.056) (0.065)
MAINDU(ln) 1.233*** 1.257*** 0.909***

(0.092) (0.228) (0.239)
INDUSTR(ln) -0.858** -0.584*

(0.266) (0.279)
IELECON(ln) 0.327*** 0.235***

(0.016) (0.018)
RESBINDUSTC -0.260***

(0.035)
2005 -0.002

(0.064)
2006 0.079

(0.065)
2007 -0.030

(0.066)
2008 -0.205**

(0.069)
2009 -0.351***

(0.071)
2010 -0.473***

(0.073)
2011 -0.589***

(0.078)
2012 -0.005

(0.082)
2013 -0.154†

(0.084)
Control Variables
CONSUM(ln) 0.204*** -0.244*** 1.485 -0.288*** -0.075

(0.026) (0.049) (0.360) (0.050) (0.056)
POPSIZE(ln) 0.569*** 1.051*** 0.866*** 0.861*** 0.552***

(0.031) (0.055) (0.055) (0.054) (0.065)
PUBTRA(ln) 0.166*** 0.111*** 0.074** -0.028 -0.032

(0.025) (0.025) (0.025) (0.025) (0.024)
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Table 3.8 Continued

Model 1 Model 2 Model 3 Model 4 Model 5
Constant 3.185*** 1.485*** -1.252** -1.424 -0.109

(0.330) (0.360) (0.391) (0.920) (0.948)
Variance Components
Regional-level 0.092 0.090 0.064 0.105 0.078
Provincial-level 0.675 0.611 0.464 0.422 0.479

Log Likelihood -3972.61 -3909.86 -3822.34 -3591.09 -3221.73
AIC 7959.23 7835.72 7662.67 7204.18 6485.46
Notes:
1. †p<0.1; *p<0.05; **p<0.01; ***p<0.001(two-tailed tests).
2. Line 1: unstandardized coefficients; line 2: standard error in parentheses.
3. AIC=Akaike information criterion



111

Table 3.9

Multilevel Estimates of Urbanization and SO2 Emission in China

Model 6 Model 7 Model 8
Fixed-Effect
GDPPC(ln) 0.687*** 0.663*** 0.692***

(0.048) (0.048) (0.055)
URBAN(ln) 0.548*** 0.568*** 0.256***

(0.033) (0.034) (0.041)
POPD(ln) -0.098*** 0.047*

(0.027) (0.028)
CITYLEVEL 0.546***

(0.067)
2005 -0.053

(0.0640
2006 0.0285

(0.064)
2007 -0.066

(0.066)
2008 -0.192**

(0.069)
2009 -0.363***

(0.072)
2010 -0.461***

(0.074)
2011 -0.635***

(0.079)
2012 -0.703***

(0.083)
2013 -0.850***

(0.087)
Control Variables
CONSUM(ln) -0.417*** -0.385*** 0.025

(0.046) (0.047) (0.054)
POPSIZE(ln) 1.244*** 1.222*** 0.550***

(0.052) (0.052) (0.066)
PUBTRA(ln) 0.216*** 0.215*** 0.190***

(0.024) (0.023) (0.024)
Constant 2.928*** 3.396*** -0.163



112

Table 3.9 Continued

Model 6 Model 7 Model 8
VarianceCom (0.335) (0.350) (0.546)
Regional-level 0.030 0.009 0.070
Provincial-level 0.819 0.823 0.959

Log Likelihood -3599.92 -3593.41 -3194.26
AIC 7217.84 7206.83 6428.52
Notes:
1. †p<0.1; *p<0.05; **p<0.01; ***p<0.001(two-tailed tests).
2. Line 1: unstandardized coefficients; line 2: standard error in parentheses.
3. AIC=Akaike information criterion
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Table 3.10

Multilevel Estimates of Urbanization and Dust Emission in China

Model 6 Model 7 Model 8
Fixed-Effect
GDPPC(ln) 0.571*** 0.520*** 0.538***

(0.051) (0.051) (0.059)
URBAN(ln) 0.431*** 0.474*** 0.209***

(0.035) (0.036) (0.043)
POPD(ln) -0.202*** -0.086**

(0.029) (0.030)
CITYLEVEL 0.407***

(0.071)
2005 -0.048

(0.068)
2006 -0.024

(0.068)
2007 -0.167*

(0.070)
2008 -0.381***

(0.073)
2009 -0.603***

(0.076)
2010 -0.751***

(0.079)
2011 -0.917***

(0.084)
2012 -0.390***

(0.088)
2013 -0.580***

(0.092)
Control Variables
CONSUM(ln) -0.369*** -0.301*** 0.040

(0.049) (0.050) (0.057)
POPSIZE(ln) 1.229*** 1.184*** 0.607***

(0.056) (0.055) (0.071)
PUBTRA(ln) 0.080** 0.077** 0.049†

(0.025) (0.025) (0.026)
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Table 3.10 Continued

Model 6 Model 7 Model 8

Constant 2.671*** 3.638*** 0.996†
(0.379) (0.383) (0.572)

Variance Components
Regional-level 0.110 0.067 0.092
Provincial-level 0.639 0.627 0.697

Log Likelihood -3794.80 -3770.23 -3357.44
AIC 7607.59 7560.46 6754.88
Notes:
1. †p<0.1; *p<0.05; **p<0.01; ***p<0.001(two-tailed tests).
2. Line 1: unstandardized coefficients; line 2: standard error in parentheses.
3. AIC=Akaike information criterion.
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Table 3.11

Multilevel Estimates of Globalization and SO2 Emission in China

Model 9 Model 10 Model 11 Model 12 Model 13 Model 14

Fixed-Effect
GDPPC(ln) 0.656*** 0.726*** 0.800*** 0.786*** 0.039 0.102

(0.055) (0.062) (0.064) (0.065) (0.094) (0.094)
TRADE(ln) 0.250*** 0.177*** 0.161*** 0.159*** 0.149*** 0.061*

(0.028) (0.029) (0.031) (0.032) (0.031) (0.030)
FDI(ln) 0.040* 0.017 0.016 0.048* -0.015

(0.019) (0.020) (0.021) (0.020) (0.020)
FIHTM (ln) 0.030* 0.025 0.005 0.020

(0.016) (0.016) (0.016) 0.015
FIWEST (ln) 0.009 0.016 0.012

(0.018) (0.018) (0.017)
DCIV(ln) 0.532*** 0.560***

(0.049) (0.048)
SEZOCC 0.082

(0.066)
2007 -0.091

(0.057)
2008 -0.259***

(0.058)
2009 -0.414***

(0.059)
2010 -0.542***

(0.062)
2011 -0.720***

(0.065)
2012 -0.783***

(0.069)
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Table 3.11 Continued

Model 9 Model 10 Model 11 Model12 Model 13 Model 14

2013 -0.901**
(0.072)

Control
Variables

CONSU(ln) -0.557**
* -0.640*** -0.724*** -0.710*** -0.70*** -0.224**
(0.055) (0.061) 0.061 0.061 0.060 0.060

POPSIZ(ln) 1.170*** 1.276*** 1.352*** 1.339*** 0.826*** 0.170*
(0.059) (0.062) 0.063 0.063 0.078 0.083

PUBTR(ln) 0.308*** 0.301*** 0.336*** 0.319*** 0.288*** 0.161***
(0.030) 0.030 0.030 0.0303 0.030 0.029

Constant 3.405*** 3.439*** 3.423*** 3.476*** 5.385*** 3.109***
(0.414) 0.450 0.460 0.467 0.478 0.586

Variance
Components
Regional-
level 0.055 0.057 0.073 0.076 0.049 0.023
Provincial-
level 0.864 0.880 0.777 0.773 0.680 0.733

Log
Likelihood -2789.32 -2607.41 -2485.19 -2427.32 -2369.67 -2029.46
AIC 5598.65 5236.82 4994.38 4880.65 4767.34 4102.92
Notes:
1. †p<0.1; *p<0.05; **p<0.01; ***p<0.001(two-tailed tests).
2. Line 1: unstandardized coefficients; line 2: standard error in parentheses.
3. AIC=Akaike information criterion
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Table 3.12

Multilevel Estimates of Globalization and Dust Emission in China

Model 10 Model 11 Model 12 Model 13 Model 14 Model 15

Fixed-Effect
GDPPC(ln) 0.649*** 0.746*** 0.777*** 0.763*** 0.178 0.164

(0.061) (0.069) (0.073) (0.075) (0.109) (0.111)
TRADE(ln) 0.132*** 0.062† 0.060† 0.061† 0.053 -0.005

(0.031) (0.033) (0.036) (0.036) (0.036) (0.035)
FDI(ln) 0.030 0.017 0.021 0.046† -0.001

(0.021) (0.023) (0.024) (0.024) (0.023)
FIHTM(ln) 0.034† 0.033† 0.018 0.030†

(0.018) (0.018) (0.018) (0.017)
FIWEST(ln) 0.001 0.007 0.023

(0.021) (0.020) (0.020)
DCIV(ln) 0.416*** 0.403***

(0.057) (0.056)
SEZOCC 0.405***

(0.077)
2007 -0.142*

(0.067)
2008 -0.394***

(0.068)
2009 -0.606***

(0.070)
2010 -0.798***

(0.072)
2011 -0.981***

(0.076)
2012 -0.470***

(0.081)
2013 -0.668***

(0.084)
Control Variables
CONSUM
(ln) -0.412*** -0.495*** -0.556*** -0.541*** -0.532*** -0.101

(0.061) (0.068) (0.069) (0.070) (0.069) (0.071)
POPSIZE(ln) 1.128*** 1.255*** 1.303*** 1.291*** 0.889*** 0.270**
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Table 3.12 Continued

Model 10 Model 11 Model 12 Model 13 Model 14 Model 15

(0.065) (0.070) (0.072) (0.073) (0.091) (0.098)
PUBTRA(ln) 0.099** 0.100** 0.117** 0.111** 0.087* 0.003

(0.033) (0.033) (0.034) (0.035) (0.035) (0.034)
Constant 1.716*** 1.520** 1.644** 1.666** 3.157*** 1.876**

(0.457) (0.496) (0.511) (0.522) (0.548) (0.674)
Variance Components
Regional-
level 0.116 0.095 0.100 0.010 0.081 0.039
Provincial-
level 0.626 0.663 0.616 0.616 0.545 0.508

Log
Likelihood -3012.09 -2857.18 -2760.88 -2718.84 -2692.39 -2340.49
AIC 6044.17 5736.36 5545.76 5463.68 5412.79 4724.99
Notes:
1. †p<0.1; *p<0.05; **p<0.01; ***p<0.001(two-tailed tests).
2. Line 1: unstandardized coefficients; line 2: standard error in parentheses.
3. AIC=Akaike information criterion
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Table 3.13

Multilevel Estimates of Economic Development, Industrialization, Urbanization,
Globalization and Air Pollution in China, 2004-2013

SO2 Emission Dust Emission
Model 15 Model 16 Model 15 Model 16

GDPPC(ln) 0.253*** 0.394*** 0.251** 0.309**
(0.070) (0.079) (0.085) (0.094)

MAINDU(ln) 1.213*** 0.749** 1.596*** 1.066**
(0.234) (0.244) (0.283) (0.295)

INDUSTR(ln) -0.815** -0.677* -1.446*** -1.168**
(0.274) (0.290) (0.330) (0.345)

IELECON(ln) 0.333*** 0.240*** 0.311*** 0.224***
(0.019) (0.020) (0.023) (0.024)

URBAN(ln) 0.174*** 0.039 0.048 -0.059
(0.036) (0.041) (0.044) (0.049)

POPD(ln) -0.147*** -0.025 -0.260*** -0.135***
(0.027) (0.029) (0.032) (0.034)

TRADE(ln) 0.082** 0.048* -0.008 -0.023
(0.028) (0.028) (0.034) (0.034)

FDI(ln) 0.005 -0.016 0.011 -0.008
(0.018) (0.019) (0.022) (0.022)

FIHTM(ln) 0.023 0.036* 0.042* 0.050**
(0.014) (0.015) (0.017) (0.017)

FIWEST(ln) 0.001 0.018 0.001 0.031
(0.016) (0.016) (0.019) (0.019)

RESBINDUSTC -0.320*** -0.297***
(0.035) (0.042)

CITY LEVEL 0.196** 0.102
(0.072) (0.086)

SEZOCC 0.057 0.331***
(0.064) (0.076)

2007 -0.071 -0.117†
(0.058) (0.064)

2008 -0.169* -0.292***
(0.061) (0.067)

2009 -0.279*** -0.462***
(0.064) (0.071)

2010 -0.348*** -0.645***
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Table 3.13 Continued

SO2 Emission Dust Emission
Model 15 Model 16 Model 15 Model 16

(0.067) (0.075)
2011 -0.491*** -0.786***

(0.072) (0.081)
2012 -0.517*** -0.239***

(0.078) (0.088)
2013 -0.610*** -0.440***

(0.083) (0.093)
Control Variables
CONSUM(ln) -0.593*** -0.247*** -0.429*** -0.123

(0.063) (0.069) (0.076) (0.082)
POPSIZE(ln) 1.073*** 0.664*** 1.010*** 0.607***

(0.067) (0.079) (0.081) (0.094)
PUBTRA(ln) 0.192*** 0.160*** -0.025 -0.042

(0.028) (0.029) (0.034) (0.035)
Constant 1.491 -0.048 -1.818 -2.077***

(0.942) (1.078) (1.153) (1.275)
Variance Components
Regional-level 0.000 0.037 0.047 0.041
Provincial-level 0.574 0.661 0.420 0.444

Log Likelihood -2067.45 -1869.93 -2480.52 -2206.28
AIC 4170.89 3795.86 4997.04 4468.56
Notes:
1. †p<0.1; *p<0.05; **p<0.01; ***p<0.001(two-tailed tests).
2. Line 1: unstandardized coefficients; line 2: standard error in parentheses.
3. AIC=Akaike information criterion



CHAPTER 4

THE DYNAMICS OF DEVELOPMENT AND WATER POLLUTION

Remarkable economic development in China has greatly reduced the level of

poverty and improved the quality of life since the policies of reform and opening up were

adopted in 1978. Meanwhile, rapid development during the same period posed serious

environmental challenges. According to the World Bank (2006), a water crisis in terms of

its quantity and quality is the most challenging for China. It is commonly recognized that

the health of ecosystems and humans depends heavily on the quantity and quality of the

water resources available. Water is necessary for all biological life and clean water is

essential to human health. Since there are different indicators of the adequacy of water

resources, including availability, use, quality, and access, water issues are by nature

interdisciplinary and multifaceted. Given the crucial role of water in maintaining healthy

ecosystems and human life, studies of the human impact on water resources are mostly

concentrated on water consumption, water access, flood control, and water pollution.

Water pollution is one of the more pressing environmental problems for China.

The deterioration of water quality in China began in the 1980s (Ebenstein, 2012). The

water monitoring system shows that in 1996, about 40% of the monitored river water did

not meet minimum water quality standards, while roughly 70% of the monitored river
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water was unsafe for drinking in 2006. However, it is estimated that about 115 million

farmers in rural areas still rely heavily on surface water as their main source of drinking

water (World Bank, 2006). In urban areas, approximately three-quarters of surface water

and 55% of the ground water is polluted and considered unsuitable for drinking.

According to Yale’s Environmental Performance Index 2006 & 2014, China is

one of the worst performers (116 out of 133 countries in 2006 and 109 out of 178

countries in 2014) in access to clean drinking water and sanitation. It is worth noting that

water scarcity can exacerbate water pollution. Specifically, the deterioration of water

quality in China is compounded with the scarcity and uneven distribution of water. First,

water is scarce in China. Although China has the fifth largest endowment of fresh water

resources in the world, by per capita it is about one quarter of global average (World

Bank, 2003). In a survey of more than 600 cities in China, 1 in 6 had severe water

shortage (Li, 2003). Second, water is unevenly distributed across the nation. It is

estimated that 83% of water is concentrated in South China (South of Yangze River),

while 17% of water is overexploited to support 41% of its population in North China. In

many water-scarce provinces in North China, the average annual water availability per

capita is less than one tenth of the world average (World Bank, 2006). Moreover,

Ebenstein (2012) points out that water quality in rivers and wells is greatly affected by

the amount of rainfall and the dilution of chemicals in the waterways. The striking

differences of interannual and seasonal variations in rainfall between South and North

China further exacerbate water pollution across regions.

Data from the WHO demonstrate that it is the poor, the young, the women, the

elderly, and excluded groups who suffer most from poor sanitation. Inadequate access to
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clean water and sanitation in rural areas and unhealthy water in urban areas can result in

acute waterborne diseases such as diarrhea (Bryce et al., 2005; Jalan & Ravallion, 2003)

and typhoid (Cutler & Miller 2005), and increasing infant mortality (Galiani et al., 2005).

There is a growing concern about the link between water pollution and cancer (Economy,

2004; Gulis et al., 2002). Tao et al. (1999) find that halogenated hydrocarbons, a

by-product of chlorine, result in higher rates of esophageal cancer in men in Shanghai,

China. Codd (2000) finds that polluted water becomes populated with cyanobacteria

(blue-green algae), leading to the formation of microcystins, which have been linked

directly to liver cancer. Gulis et al. (2002) estimate that overall cancer incidence and

stomach cancer is higher in polluted areas in Slovakia. Beaumont et al. (2008) confirmed

the finding that there is a higher risk ratio for stomach cancer in areas where drinking

water was contaminated. Griffiths (2007) indicated that incidents of contaminated river

water from industrial activity have led to outbreaks of cancer in rural villages in China.

It is a widely held view that human activities play a significant role in influencing

water availability and quality (Leichenko & O’brien, 2008). There are a large number of

studies interpreting the relationship between economic development and water pollution

in terms of the Environmental Kuznets Curve (Lee et al., 2010; Paudel et al., 2005;

Thompson, 2014). However, methodologically, Lin and Liscow (2013) observed that the

reduced form model of the EKC has a potential endogeneity problem. The World Bank

(2006) pointed out that rapid industrialization and urbanization generates numerous

amounts of water pollutants, lowering water quality. Broadly, there are three main

categories of water pollution emissions in China: industrial, municipal, and agricultural

(World Bank, 2006). Ebenstein (2012) examined the effect of industrialization on water
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pollution and confirmed that extensive use of fertilizers by farmers and industrial

wastewater dumping by manufacturing firms have polluted water in many rivers.

Consistent with the findings of the World Bank (2006), Conca (2006) also noted that

urban growth and industrial expansion has greatly increased water demands. Most

existing studies on the environmental impact of globalization focus on either water

pollution or water marketization (Kalami et al., 2013). For instance, Kalami et al. (2013)

found that increasing FDI leads to growth in the amount of water pollution in developing

countries. However, systematic analysis of the relationship between development and

water pollution across regions and over time is lacking. This study primarily examines

the effect of development, conceptualized as a triple process of industrialization,

urbanization, and globalization, on water pollution in China. Theoretically, as illustrated

in Chapters 1 and 2, I develop a systematic framework to understand water pollution in

China. Using longitudinal data 2004-2013, I first analyze the spatial and temporal pattern

of water pollution at the provincial level and then apply multilevel modeling analysis at

the prefecture-city level to examine the driving forces of water pollution. The findings,

based on different regression models across the cities of China, indicate that the

relationships between the dynamics of development and water pollution are complex.

Literature Review

Economic Development and Water Pollution

The inverted U-shape between economic development and environmental

degradation was first described by the World Bank (1992). Then the finding was further

explored in the pioneering empirical study of Grossman and Krueger (1995), who noted
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that the Environmental Kuznets Curve (EKC) resembles the pattern of income and

inequality described by Simon Kuznets (1955). Essentially, the EKC hypothesized that in

the earlier stage of development, economic growth increases environmental degradation,

then decreases environmental degradation after economic development reaches a turning

point. That is, economic growth is initially positively associated with environment

pollution, and then negatively associated with environmental destruction after the peak of

the inverted U-shape.

Since the initial study by Grossman and Krueger (1995), there have been a

considerable number of EKC studies published using different indicators of

environmental pollution, including air pollution (Merleyde et al., 2006), water pollution

(Paudel et al., 2005; Paudel & Schafer, 2009), deforestation (Barbier, 2004; Culas, 2007),

and regression models with cross-sectional data and time-series data. The findings are

mixed and confounding. For example, many empirical studies confirmed the EKC,

indicating that there is an inverted U-shape between economic development and air

pollution. Some other studies also found that whether the EKC is confirmed is highly

dependent on the specific indicators of air pollution that are used. In terms of the EKC

and water pollution, the findings are very controversial. Some studies confirmed the EKC

hypothesis (Cole, 2004; Torras & Boyce, 1998). For example, using nonpoint surface

water data at state level, Paudel et al. (2005) confirmed the EKC hypothesis on water

pollution in Louisiana. Meanwhile, the findings of other studies are not consistent with

the hypothesis of the EKC for water pollution. Lee et al. (2010) found there is no

evidence supporting the EKC on water pollution using global level data from 97

countries during the period 1980-2001. Based on the previous empirical studies of the
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EKC hypothesis, Dinda (2004) noted that the EKC hypothesis is more likely to hold for

short-term environmental pollution locally than long-term environmental impacts

globally. The interest of this chapter is to test the EKC hypothesis on water pollution

using prefecture-city level data across regions and over time in China. Therefore, I

propose the following hypothesis.

Hypothesis 1: The economic development level is positively associated with water

pollution over time. That is, economic development will exacerbate water quality.

The existing literature theoretically and empirically presents the underlying

mechanisms that are responsible for the EKC hypothesis. Theoretically, Environmental

Modernization Theory (EMT) highlights that the most serious environmental problems

have been caused by modernization and industrialization, and can ultimately be solved

through super-modernization and industrialization. Along with the increasing level of

economic development, EMT lays out how different agents respond to environmental

deterioration. In specific, EMT provides alternative solutions to address environmental

challenges through various technological advances and innovation and increasing

environmental consciousness of the citizens. Empirically, the EKC studies generally

found that structural change and technological progress serve as the main mechanisms for

supporting the EKC (Dinda, 2004). Ekin (1997) found that the empirical results of the

EKC greatly vary across regions. Lee et al. (2010) confirmed the regional disparities of

the EKC hypothesis on water pollution. As Jorgenson and Clark (2012) noted, the

decoupling between economic development level and environmental degradation is more

likely to occur in more developed regions. In short, environmental conditions would

greatly improve first in the regions where a higher level of economic development has
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been achieved. The corresponding second proposed hypothesis is as follows:

Hypothesis 2: There are different patterns of the relationship between economic

development level (GDP per capita) and water pollution across regions. In other words,

GDP per capita is significantly positively associated with water pollution in the least

developed regions, while negatively associated after a turning point in the more

developed regions.

Industrialization and Water Pollution

Industrialization involves both increasing human well-being by providing higher

standards of living and undermining human well-being by generating pollution.

Substantive studies show that industrial pollution is the main contributor to water

pollution. Hettige et al. (2000) note that the first stages of economic development

typically witness rapid industrial expansion and declining water quality. Using

factory-level data provided by National Environmental Protection Agency, Dasgupta et al.

(2001) assess the water pollution abatement costs for Chinese industry. They suggest that

changing to a full emissions charge system would greatly reduce overall abatement costs,

while uniform pollution charges could produce higher water quality. The report from the

World Bank (2006) show that, to a large extent, the significant deterioration of water

quality in China is linked with rapid industrialization, which generated a large amount of

water pollutants. Ebenstein (2012) concluded that industrialization has led to a severe

deterioration in water quality in the country’s lakes and rivers, leading China to become

one of the world’s worst polluters. More specifically, he found that the deterioration of

water quality is caused by both the point and nonpoint source pollution, which increase
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dramatically due to the rapid industrialization. Hettige et al. (2000) found that

material-intensive industrial production tends to be pollution-intensive. Inconsistent with

the finding, Ebenstein (2012) argues that chemical sectors are the largest polluter for

water, accounting for 19% of the dumping of the industrial wastewater. To summarize,

most prior studies extensively examined how industrialization has impacted water

pollution across sectors. However, few studies systematically explore how

industrialization differentially affects water pollution across regions in China.

Hypothesis 3: Industrialization is positively associated with water pollution. That

is, the higher the rate of industrialization, the greater the level of water pollution will be.

Urbanization and Water Pollution

By definition, urbanization refers to change in size, density, and heterogeneity of

the places where an increasing proportion of the population lives (Fernando, 2009). It is

well established that urbanization entails the expansion of energy production and

corresponding environmental degradation (increasing water and air pollution) due to

transportation and industrial activities (Gupta, 2012; York, 2007). Although living in

cities offers potential access to better health care systems, the densely populated urban

environments could introduce health hazards and concentrate health risks. The World

Health Organization (WHO, 2010) recognizes that the health challenges linked to the

process of urbanization could be related to the deterioration of water quality.

In China, the growing urban population has been accommodated through rapid

expansion of existing cities and the emergence of new cities (World Bank, 2006).

Specifically, rapid urban growth results in a rising water demand from the established
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water supply system. Areas on the edges of rapidly expanding Chinese cities, where

housing and infrastructure are often inadequate and unregulated small businesses

proliferate, are particularly likely to lack adequate sanitation and pollution controls.

According to Chinese Academy for Environmental Planning (2004), urban growth will

lead to an increase in water demand of 6.5, 32, and 35% from agricultural, industrial, and

residential consumption, respectively, from 2003 to 2020. According to Wu and Tan

(2012), due to growing domestic water consumption and limitations of industrial water

use reduction, total urban water demand will increase continuously along with

urbanization. However, with a relatively constant water supply, the increased water

demand will have to be met mainly through water savings and improved water quality

(World Bank, 2006). The increasing scale and pace of urbanization poses challenging

threats to clean water and sanitation (Holdaway, 2010; Jia et al., 2014; Zeng et al., 2015).

This suggests the following hypothesis:

Hypothesis 4: The rate of urbanization is positively associated with water

pollution. That is, the higher the rate of urbanization, the higher the level of water

pollution will be.

After controlling population size, proponents of New Urbanism argued that

population density is a vital indicator in examining urbanization and the environment

(Glaeser, 2011; Goal, 2006). Goel (2006) argued that there is a direct relationship

between population density and the level of water pollution. Sheribin et al. (2011) found

that population distribution plays a significant role in impacting the water supply and

water quality. That is, the spatial structure of water pollution should be related to spatial

pattern of the population distribution. More importantly, high population density is
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predicted to be an important risk factor for water-associated disease across the

developing countries, especially in Africa and Asia (Schmidt et al., 2011; Yang, 2012).

Accordingly, here I propose the following hypothesis.

Hypothesis 5: Population density is positively linked with water pollution. That is,

the higher the population density of a city, the higher the level of water pollution will be.

International Trade and Water Pollution

At the international level, the environment has been greatly transformed and

shaped by the accelerating pace and scale of globalization (IMF, 2002; Smith, 2006).

However, the existing literature on the environmental impact of globalization is highly

mixed theoretically and empirically (Christmann & Taylor, 2001; Lenzen et al., 2012).

Specifically, globalization itself is widely recognized as a complicated process that has

both positive and negative environmental impacts. Globalization proponents argue that

lower barriers to international trade and foreign investment encourage firms to transfer

advanced environmental technologies from developed countries with strict environmental

standards to developing countries. Moreover, the global process can also increase

self-regulation pressures on firms. In contrast, globalization opponents contended that

increasing international trade encourages governments to lower production costs within

their jurisdiction by neglecting to enact laws to protect the environment (Drezner, 2000;

Gray, 2002; Zhang & Fu, 2008).

The theory of ecologically unequal exchange posits that in the global economy,

the developed countries are more advantaged than developing countries in terms of the

environmental impact of their prosperity. In the international trade, exports flowing from
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developing countries to developed countries are often at the environmental expense of the

former. In a cross-national panel analysis of deforestation, Jorgenson (2006) found that

developed countries with “higher levels of resource consumption externalize their

consumption-based environmental costs to developing countries, which increase levels of

environmental degradation within the latter” (Jorgenson, 2006, p. 691).

In terms of water, similarly, some scholars provide evidence that developed

countries increasingly import water-intensive goods from developing countries to

alleviate pressure on domestic water resources, which in turn increases water scarcity and

pollution within the latter (Dalin et al., 2012; Lenzen et al., 2013). Therefore, to a large

extent, many of the consumer goods that people in the developed countries enjoy are

exported from developing countries that bear the environmental costs of their production.

The higher levels of commodities exported from developing to developed countries, the

greater the rates of environment degradation within the former become. Not surprisingly,

the environmental impact of globalization through international trade is uneven both

between nations and within nations (Paehlke, 2001; Roberts & Parks, 2007). Therefore,

my proposed hypothesis for international trade is as follows:

Hypothesis 6: Exports are positively linked with water pollution across China.

That is, the higher the level of exports from a city, the higher the level of water pollution

will be.

Foreign Direct Investment (FDI) and Water Pollution

There are two main hypotheses have been grouped in the numerous empirical

studies: one is the “pollution haven hypothesis,” and the other is the “pollution halo
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hypothesis.” The pollution haven hypothesis suggests that lax natural environmental

standards attract the dirtiest and most polluting industries to developing countries.

Foreign investors from developed countries are attracted by weak labor laws and weak

environmental protection regulations in developing countries, thus creating pollution

havens and propelling a global “race to the bottom” in environmental standards. The

proponents of the pollution haven hypothesis claim that the effect of FDI on

environmental degradation manifests itself in several ways. First, free trade and the

market may erode infant industry sectors in developing countries (Gilpin, 2001). Second,

unlike developed countries, the developing countries tend to have less strict domestic

environmental regulations (Frey, 2003; Redclift & Sage, 1998). For example, central and

local governments of developing countries are competing among themselves to attract

foreign investors by providing the lowest taxes and the least stringent labor and

environmental regulations (Babb, 2005).

More importantly, developing countries are generally less likely to ratify

international environmental treaties due to a disadvantageous position in the world

economy, environmental vulnerability, and domestic institutional structures (e.g., less

voice and accountability) (Jorgenson et al., 2007; Roberts, 1996; Roberts et al., 2004).

Therefore, to prevent capital flight, the developing countries are also less likely to

effectively enforce and implement the relevant domestic environmental regulations that

already exist (Frey, 2006). Eventually, a large portion of foreign direct investment

attracted to developing countries finances ecological inefficiency and concentrates in

highly polluting and labor-intensive manufacturing facilities and processes outsourced

from developed countries (Jorgenson, 2006; Jorgenson et al., 2007), which are
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significantly detrimental to the environment (especially water and air). Therefore, the

proposed hypothesis is the following:

Hypothesis 7: FDI is negatively linked to water pollution in China over time. That

is, the higher FDI in cities, the lower the level of water pollution will be.

The research findings on the effects of globalization on the environment are

inconsistent, and suggest the need for further systematic research. Some studies confirm

that globalization might have positive environmental effects because global ties increase

self-regulation pressures on firms in low-regulation countries. Using survey data from

firms, Christmann and Taylor (2001) found that multinational ownership increases

self-regulation of environmental performance. Moreover, different ownership

arrangements have different environmental effects. For instance, equity joint ventures in

highly polluting industries funded through Hong Kong, Macao, and Taiwan are attracted

by weak environmental standards. Equity joint ventures funded from nonethnic Chinese

sources are not significantly attracted by weak standards, regardless of the pollution

intensity of the industry (Dean et al., 2009). Similar to the analysis in air pollution, given

the export-oriented development strategy China adopted, it is difficult to generalize the

findings if we only take total FDI of a country into account since FDI is unevenly

distributed across the nation. Therefore, the last proposed hypothesis is to further our

understanding of whether FDI is beneficial or detrimental to the water quality depending

on the source of FDI. Following the study by Dean et al. (2009), the corresponding

hypotheses are as follows:

Hypothesis 8: The foreign capital from Hong Kong, Macao, and Taiwan are more

likely to increase water pollution. That is, the higher investment of foreign capital from
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HMT a city attracts, the more severely polluted its water will become.

Hypothesis 9: The sources of foreign capital from Western countries are more

likely to decrease water pollution. That is, the higher investment of foreign capital from

Western countries a city attracts, the less severely polluted its water will become.

Data and Methods

This study examines the effects of economic development, industrialization,

urbanization, and globalization on water pollution across China’s regions and over the

time period 2004-2013. The data mainly come from the China City Statistical Yearbook

2004-2013 and the China Regional Economy Statistical Yearbook 2006-2013.

Complementary data are from the China Statistical Yearbook 2004-2013 and the China

Environmental Statistical Yearbook 2004-2013. To test the proposed hypotheses, the data

analyzed in this study includes 287 cities (4 municipalities and 283 prefecture-level

cities), covering 31 provinces, autonomous regions, and the municipalities directly under

the central government in eastern, central, and western regions of China.

Dependent Variables

The dependent variable is water pollution. The measurement of water pollution is

total wastewater discharge, which is defined as the annual volume of wastewater

discharge (10 thousand tons per year). According to the Environmental Protection of

Agency (EPA), wastewater is the water containing wastes from agricultural, industrial,

and residential processes, and requires treatment to remove pollutants prior to discharge.

Therefore, wastewater is an important source of water pollution. It is estimated that at
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least 30% of the industrial wastewater in China is directly released into rivers and lakes

without treatment. The data come from the China City Statistical Yearbook.

Table 4.1 presents the changes of total wastewater discharges across provinces

through 2004-2013. During the past 10 years, there are different change trends of water

pollution across regions. Water pollution increased in both eastern and central regions,

while it declined in the western region. Within the region, there are different trends

across provinces. Water pollution declined in some provinces of the eastern region such

as Beijing, Tianjin, Shanghai, and Jiangsu, but increased rapidly in some other provinces

such as Hebei, Shandong, and Guangdong. Some provinces in the central region such as

Shanxi, Henan, and Jiangxi witnessed the increase of water pollution, while some other

provinces including Heilongjiang, Hubei, and Hunan witnessed the dramatic decline.

Water pollution in Chongqing and Sichuan declined dramatically, while increasing in the

rest of the western region except Ningxia.

Independent Variables

GDP per capita. The key independent variable is measured by GDP per capita

(see Table 3.3), a commonly used indicator of overall economic development level and

quality of life. Per capita GDP, as the original indicator of economic development in

terms of standard of living, has two important implications. First, per capita GDP is used

to facilitate the comparison with the existing studies in China and elsewhere (Fan & Sun,

2008; Grossman & Krueger, 1995; Jorgenson & Clark, 2012; Tsui, 2007). Second, per

capita GDP is one of the most “readily and consistently” available indicators for

economic development in longitudinal analyses (Fan & Sun, 2008). The data at
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prefecture-city level are taken from the China City Statistical Yearbook and at the

provincial level from the China Statistical Yearbook respectively, both of which are

comprehensive and authoritative yearly statistics databases on the economy and social

development. Descriptive statistics for dependent and independent variables are

presented in Table 3.4.

Industrialization. There are three measurements of industrialization. The first is

the percentage of the economy that is generated by secondary industry. According to the

data, in 2009, the two prefecture-level cities with highest level of industrialization are

Karamy (90.87%) in Xinjiang and Daqing (85.08%) in Heilongjiang province, both of

which are important oil producing and refining centers in China. The prefecture-level

cities with lowest level of industrialization in 2006 are Pingliang (9%) in Gansu province

and Heihe (15.73%) in Heilongjiang province. The second measure is the ratio of

secondary industry to the total of nonagriculture industry in terms of GDP, indicating the

shifting of the economic structure away from manufacturing industries to service

industries. The third variable is total amount of industrial electricity consumption (10,000

kwh). The prefecture-level cities with highest amount of industrial electricity

consumption are Tangshan (481 million kwh) in Hebei province and Dongguan (452

million kwh) in Guangdong province. Tangshan is an important heavy industrial city in

North China, while Dongguan is an industrial city and major manufacturing hub by

attracting foreign direct investment. The prefecture-level cities with lowest amount of

industrial electricity consumption are Zhongwei, Longnan, and Dingxi, all of which are

located in Gansu province. All of the above data are from the China City Statistical

Yearbook. Additionally, I compute a dummy variable, RESBINDUSTC, indicating
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whether a city is a resource based industrial city. Such cities, highly dependent on natural

resources, are more likely to have the single resource-based industry as the pillar industry

of the economy and more environmentally polluting (Hong et al., 2011; Mao, 2014)

Urbanization. There are three measurements of urbanization. The first is total

urban population size (the absolute size of the urban population). The second is the level

of urbanization (the relative size of urban population to total population). The

prefecture-level cities with highest level of urbanization in 2013 are Karamay (100%) in

Xinjiang and Shenzhen (100%) in Guangdong province. The prefecture-level cities with

lowest level of urbanization in 2012 are Ulanqab in Inner Mongolia and Dazhou in

Sichuan province. The third is population density (number of residents per square

kilometer). In 2013, the prefecture-level cities with highest population density are

Dongguan and Shantou in Guangdong province, while the prefecture-level cities with

lowest population density in 2013 are Jiuquan (5.10) in Gansu province and Hulunbuir

(10.51) in Inner Mongolia. The data are from the China City Statistics Yearbook. In

addition, I compute a dummy variable, CITY LEVEL, indicating whether a city is

designated as a municipality, provincial capital or sub-provincial city.

Globalization. International trade is an important part of globalization.

International trade is measured by the sum of imports and exports (10,000 dollar). The

prefecture-level city with highest amount of trade is Shenzhen (4,688 million dollars in

2013) in Guangdong, while the city with lowest amount of trade is Guyuan (200,000

dollars in 2013) in Gansu province. To further explore the composition of international

trade, I choose the variable EXPORT, measured by total amount of goods exported

(10,000 dollar). Similar to international trade, the prefecture-level cities with highest
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amount of exports is Shenzhen (2,714 million dollars in 2013) in Guangdong, while the

city with lowest amount of trade is Ankang (10,000 dollars in 2006) in Shaanxi province.

The data are from the China Regional Economy Statistical Yearbook 2006-2013.

International capital flow is another important feature of globalization. Foreign

direct investment (FDI) is a commonly used measurement of international capital flows.

In this study, FDI is measured by the total amount of realized FDI (10,000 dollar). The

prefecture-level cities with highest amount of FDI are Dalian (123 million dollars in 2013)

in Liaoning province and Suzhou (92 million dollars in 2013) in Jiangsu province. The

prefecture-level cities with lowest amount of FDI are Zhongwei ($ 20,000 in 2005) in

Gansu province and Hegang ($120,000 in 2004) in Heilongjiang province. In terms of the

sources of foreign capital, it is measured by the absolute amount (Yuan), generally

divided into foreign capital from Hong Kong, Taiwan, and Macao (HTM) and from

Western countries. The provinces with highest amount of foreign capital from HTM are

Guangdong, Jiangsu, Zhejiang, and Fujian, while with lowest amount are Gansu and

Guizhou. The prefecture-level cities with highest amount of foreign capital from HTM

are Shenzhen (5,235 million yuan in 2013) in Guangdong province and Suzhou (4,978

million dollars in 2013) in Jiangsu province. The prefecture-level cities with lowest

amount of foreign capital from HTM are Qingyang and Jiayuguan in Gansu province.

The provinces with highest amount of foreign capital from Western countries are Jiangsu,

Guangdong, and Shandong, while those with lowest amount are Gansu and Shaanxi. The

prefecture-level city with highest amount of foreign capital from Western countries is

Suzhou (140 million yuan in 2013) in Jiangsu province. The prefecture-level cities with

lowest amount of foreign capital from western countries are Jiayuguan in Gansu province
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and Chifeng in Inner Mongolia. The data are from the China City Statistical Yearbook. In

addition, I use the dummy variable SEZOCC, indicating whether a city is designated as a

special economic zone or an open coastal city. According to Huang et al. (2011) and

Zeng (2011), the cities designed as SEZ or OCC are more likely to promote international

trade and attract FDI.

Additional Dummy Variables

Region. The first additional dummy variable included was labeled as “Region,”

which quantifies if a province is located in eastern, central or western region in China.

Year. I take year as a dummy variable to indicate period-specific effect of

explanatory variables on dependent variable. At the same time, year included is

controlled as the fixed part for the linear increase of the independent variables in the

models in order to guard against spurious associations among variables with common

trends (Beckfield, 2006).

Control Variables

Consumption. Consumption, measured by the absolute value of total consumer

goods sold per year, is controlled. The existing literature in treadmill of consumption

theory shows that increased production of the amount of the goods requires increasing

consumption, which in turn has an important impact on environment. Some other

empirical studies in the context of China show that industrialization and urbanization

have significantly influenced consumption and lifestyle in urban China (Zhao & Wang,

2015). To examine the role of industrialization and urbanization, consumption is held
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constant in the study.

Population size. Population size, measured by the absolute number of registered

population, is held constant. There are a number of existing studies showing that

population size is an important predictor in environmental degradation (Jorgenson &

Clark, 2012; Rosa et al., 2004; York, 2007). Thompson (2013) provided evidence for the

significant role of population in the model of the Environmental Kuznets Curve (EKC) in

impacting the turning point. Therefore, population size is controlled in this study

Public transportation. Public transportation is defined as the indicator of

infrastructure, which is widely recognized as the basic physical structures, and provides

facilities, commodities, and services essential to enable, sustain, or enhance economic

growth and social development (Lall & Rastogi, 2007; Sullivan & Sheffrin, 2003). Roads,

ports, airports, communication networks, etc. are the key components. The study uses

public transportation as the indicator of infrastructure due to unavailability of other

components. The data come from the China City Statistical Yearbook.

Method

Methodologically, ordinary least squares (OLS) estimation is inappropriate for

such longitudinal data due to heterogeneity bias within panels. Both fixed-effects model

(FEM) and random effect models (REM) are identified as better techniques for

comparative studies with panel data (Beckfield, 2006; Jorgenson & Kuykendall, 2008).

Specifically, the estimated model in this study,

WaterPollution=a+b*lnGDPPC+c*Industrialization+d*Urbanization+e*lnTRA
DE+f*lnEXPORT+g*lnFDI +h* lnFIHTM +i*lnFIWEST + j*lnCONSUM +k*lnPOPS
+l*ln PUBTRA+e
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FEM is used to examine the effect of economic development, industrialization,

urbanization, and globalization on water pollution over the past 10 years, given that the

Hausman test is significant and net of all time-varying variables. Random effect models

(REM) not only include between/within-region variation, but also time-invariant

variables. Since one of my primary interests is the economic development,

industrialization, urbanization, and globalization on water pollution across regions,

multilevel modeling would be a better choice than REM. Thus, multilevel modeling is

applied to test the overall trend of water pollution across regions and time. More

importantly, the joint effect of economic development, industrialization, urbanization,

and globalization on water pollution is estimated.

The compiled dataset results in unbalanced, longitudinal data consisting of

clusters of observations at different time points for each city. This is referred to as a

variance component model that is designed to estimate between- and within-cluster

correlations (Rabe-hesketh & Skrondal, 2005). Typically, for longitudinal data, occasions

i is level-1 units and subject j is level-2 clusters. In this dataset, level-1 is year i, level 2 is

city j, and level 3 is province k. In other words, 10 different time points from 2004 to

2013 are nested in each city which itself is nested in provinces. The level-1 model for city

j in province k at year i is:

��th = � + �1th + ��th

Specifically, the estimated baseline model in this chapter is as follows,

Log (Total Water Pollution)=β0+β1*lnGDPpc+β2*Consumption+β3*Popsize+
β4Pubtra+β5*year2004+...+ β14*year2013 +e

The multilevel model is

Log (Total Water Pollution)=β0+β1*lnGDPpc+β2*(lnGDPpc)2+β3*lnIndustrialization
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+β4*lnUrbanization+β5*lnGloblalization+β5*lnConsump+β6lnPopSize+β7*lnPubTran+
β8*year2004+...+ β17*year2013+e

Results

Table 4.2 presents descriptive statistics of all variables, including dependent

variables, independent variables, and control variables in the analysis before

transformation. Then, results of multilevel regression analyses are reported in the

following series of tables. I present and discuss each of the findings, with a particular

focus on the effects of economic development, industrialization, urbanization, and

globalization on water pollution.

Table 4.3 reports the estimated effects of economic development on water

pollution over the period 2004-2013 with the respective 95% confidence interval, net of

region, year, consumption, population size, and public transportation. We report

unstandardized coefficients, standard errors, R-Squares between, R-Square overall, and

ICC. R-Square between is the square correlation between city-specific mean of y and the

predicted city-specific mean of y, quantifying the explained variation between cities. R2

overall is the square correlation between y itself and predicted mean of y, referring to the

explained variation overall in the model (Allison, 2009; Hamilton, 2006).

Model 1 is treated as a baseline model, consisting of consumption, population size,

and public transportation. I add the key independent variable GDP per capita in Model 2

to examine the effect of economic development on water pollution. Then I add an

additional predictor, the quadratic term of GDP per capita into Model 3. Models 3 and

Model 4 include all predictors from Model 2 as well as dummy variables. Model 5 is the

most fully saturated model reported for all outcomes investigated in the analyses,



143

consisting of all of the predictors included in Model 1 through Model 4.

Model 1, as a baseline model, obtains a crude estimate of the effects of

consumption, population size, and public transportation on water pollution. Table 4.3

shows that consumption, population size, and public transportation have positive effects

that are statistically significant, indicating that all of the control variables positively affect

water pollution. The overall fit of Model 1 is moderate (R2=.579), implying that other

variables are important as well.

In Model 2, I introduce GDP per capita to predict water pollution. Holding

constant the control variables in the baseline model, the primary finding in Model 2 is

that GDP per capita is a significant factor and positively associated with water pollution,

suggesting that the higher the level of GDP per capita, the higher is that level of water

pollution. In Model 3, I introduce the quadratic term of GDP per capita to test Hypothesis

1 that there is an inverted U-shape relationship between GDP per capita and water

pollution. Controlling the explanatory variables in Model 2, the quadratic term of GDP

per capita is not statistically significant. The result confirms the findings from Lee et al.

(2010) that there is no inverted U-shape between economic development and water

pollution. Inconsistent with Dinda’s (2004) statement that the EKC is more likely to hold

for environmental degradation locally, the primary finding in Model 3 provides no

evidence supporting the EKC hypothesis at the city level within China.

Model 4 adds dummy variables to test whether the relationship between GDP per

capita and water pollution varies given the characteristics of cities. As expected, the

variable RESBINDUSTC is negative and statistically significant, indicating water

pollution is higher in a resource-based industry city than that in a non-resource-based
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industrial city. The variable CITYLEVEL is not statistically significant, indicating there

is no difference in water pollution levels between the prefecture-level cities and other

cities. The variable SEZOCC is positive and statistically significant, indicating the water

pollution is lower in the cities which are designed as Special Economic Zones or Open

Coastal Cities than other cities.

Introducing region and year as predictors, Model 5 offers a comprehensive model

that demonstrates the effects of economic development on water pollution across regions

over time. For the variable central and western regions, none of them is statistically

significant, indicating there are no regional disparities in the impact of economic

development on water pollution. After introducing the interaction effect of region, it is

still not statistically significant for water pollution. This is inconsistent with the finding

from Lee et al. (2010), and does not support Hypothesis 2. There is no evidence that the

decoupling between economic development and water pollution occurs in more

developed regions of China. Model 5 also shows the magnitude of the effects of

economic development on water pollution varies over time. Through the year 2005-2013,

it is negative and statistically significant, indicating the effect of economic development

on water pollution decreases through time. More specifically, the estimated coefficient

for GDP per capita decreases, suggesting the decoupling between economic development

and water pollution during the period. The decoupling first occurred in 2005, and then the

coefficient decreases until 2013. However, after controlling the interaction effect of year,

it is not statistically significant. There is no difference in the effect of economic

development on water pollution from 2004-2013.

Overall, this comprehensive model provides us insight into how the impact of
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economic development on water pollution changed across regions and through time.

Compared to Model 4, it is worth noting in Model 5 that the variable CITYLEVEL

becomes positive and statistically significant, suggesting water pollution is higher in the

other cities than those that are municipality, provincial capitals, or sub-provincial cities.

In sum, recall that Hypothesis 1 and 2 predict there is an inverted U-curvilinear

relationship between the economic development level and water pollution across regions

and over time. That is, economic development (GDP per capita) initially has an adverse

effect on water quality, which then subsequently improves as national income increases

over a turning point (the peak of the inverted U-shape). Inconsistent with this hypothesis,

the results based on the longitudinal dataset at prefecture-city level show that there is a

linear positive relationship between economic development and water pollution, and no

regional disparities. These results provide no empirical evidence that there is an inverted

U-shape between the economic development and water pollution at 95% confidence level

nor that there are regional disparities in the effect of economic development on water

pollution. This study confirms the statement that the findings of the EKC hypothesis on

water pollution are confounding. Many scholars including Panayotou (1993) argued that

the structural transformation from heavy industry towards technology-intensive industries

and services, along with environmental consciousness, enforcement of environmental

regulations, higher environmental expenditures, and more advanced technology, would

result in improvement of environmental quality. Regarding why the EKC hypothesis does

not hold for water pollution, the possible explanations are that no structural change of the

economy or advanced pollution control technology are applied to lower water pollution at

higher levels of development. Moreover, the reduced form of the EKC model should
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include more predictors such as industrial expansion and urban growth to further

systematically explore the relationship between economic development and water

pollution.

Tables 4.4-4.6 present the multilevel modeling analysis of industrialization,

urbanization, globalization, and water pollution over the period 2004-2013. The Akaike

Information Criterion (AIC) determines which of the two models is preferred. The lowest

AIC is the preferred model. Specifically, Table 4.4 shows the estimates of

industrialization water pollution. Model 1, as a baseline model, obtains a crude estimate

of the effect of industrialization on water pollution, net of consumption, population size,

and public transportation. Specifically, GDP per capita, population size, and public

transportation are statistically significant, indicating all but consumption positively affect

water pollution. In Model 2, I introduce the variable MAINDU to test Hypothesis 3 that

the level of industrialization is positively associated with water pollution. Controlling the

explanatory variables in Model 1, the primary finding shows that the share of secondary

industry in GDP is positive and statistically significant, revealing that the higher the

contribution of secondary industry to overall GDP, the higher is the level of water

pollution. Unexpectedly, the variable GDP per capita becomes less statistically

significantly after controlling the level of industrialization.

To further explore the effect of the level of industrialization on water pollution, in

Model 3, I introduce two more variables, INDUSTR and IELECON, to test that the level

of industrialization is positively associated with water pollution. Controlling the

explanatory variables in Model 2, the primary result in Model 3 shows that the industrial

structure is not statistically significant, while industrial electricity consumption is positive
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and statistically significant. The finding demonstrates that the higher the level of

industrial electricity consumption, the higher the level of water pollution is. Model 4 adds

dummy variables RESBINDUSTC and year to test whether the relationship between

industrialization and water pollution varies given the characteristics of cities over time.

Inconsistent with what was expected, the variable RESBINDUSTC is negative but not

statistically significant. The result indicates that there is no difference of water pollution

between resource-based industrial city and non-resource-based industrial city. Model 4

introduces year as predictor to show how the magnitude of the effects of industrialization

on water pollution varies over time. The year 2005 is not statistically significant. Then

the decoupling between industrialization and water pollution first occurs in 2006, and

from then through 2013, the coefficient is negative and statistically significant, indicating

that the effect of industrialization on water pollution decreases over time.

In sum, Table 4.4 provides us insight into the decoupling of industrialization and

water pollution over time. The between-region standard deviation is estimated as 0.000 in

Model 1, and then it again changes to 0.000 in Model 4. The between-province

within-regions standard deviation is estimated as 0.253 in Model 1, and then it changes to

0.197 in Model 3. The value of AIC is calculated as 7150.320 in Model 1, and then it

gradually decreases to 5946.791 in Model 4, indicating Model 4 is a better model that

provides much more comprehensive understanding of the effect of industrialization on

water pollution over time.

Table 4.5 shows the estimates of urbanization on water pollution. In Model 5, I

add the variables URBAN to test Hypothesis 4. Holding constant the control variables

from Model 1 of Table 4.4, the results confirm Hypothesis 4 and shows that the level of
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urbanization is positive and statistically significant, indicating the higher the level of

urbanization, the higher the level of water pollution is.

In Model 6, I introduce the variable POPD to test Hypothesis 5 that population

density is positively associated with water pollution. Controlling the explanatory

variables in Model 5, inconsistent with the commonly held view, the primary finding in

Model 6 shows that population density is negative and statistically significant, revealing

that the higher the level of population density, the lower is the level of water pollution.

As with dust emission, this result for water pollution supports the claims of New

Urbanism that higher density is more sustainable (Glaeser, 2011).

In Model 7, I add dummy variables CITYLEVEL and year to test whether the

relationship between urbanization and water pollution varies given the characteristics of

cities over time. As expected, the variable CITYLEVEL is statistically significant. The

estimated coefficient is positive, indicating water pollution is lower in prefecture-level

cities than that in the cities which are municipality, provincial capitals, or sub-provincial

cities. Model 7 also introduces year as predictor to estimate how the effect of the

magnitude of urbanization on water pollution varies over time. In 2005, year is slightly

statistically significant. Thus, the decoupling between urbanization and water pollution

first occurred in 2005. Over 2006-2013, year is negative and statistically significant,

indicating the effect of urbanization on water pollution decreases over time.

In short, Table 4.5 provides us insight into how the effects of urbanization on

water pollution changed over time. The between-region standard deviation is estimated as

0.000 in Model 5-7, indicating there is no variation in the effects of urbanization on water

pollution between regions. The between-province within-regions standard deviation is
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estimated as 0.306 in Model 5, and then it also increases to 0.355 in Model 7. The value

of AIC is calculated as 6901.27 in Model 5, and then it gradually decreases to 6121.99 in

Model 7, indicating Model 7 is a better model that provides much more comprehensive

understanding of the effect of urbanization on water pollution over time.

Table 4.6 shows the estimates of globalization on water pollution. In Model 8, I

add the variables TRADE (EXPORT), respectively, to test Hypothesis 6. Holding

constant the explanatory variables, the primary finding is that trade has a positive and

statistically significant effect, indicating that the higher the amount of total international

trade, the higher the level of water pollution. Consistent with the existing finding,

international trade is positive and statistically significant, suggesting exports are indeed

more likely to increase water pollution.

In Model 9, I introduce the variable FDI to test that FDI is positively associated

with water pollution. Controlling the explanatory variables, the primary finding confirms

the hypothesis, and shows that FDI is positive and statistically significant, revealing that

the higher the amount of FDI, the higher is the level of water pollution.

Model 10 adds the variable FIHTM and FIWEST to test Hypothesis 8 that how

the sources of foreign capital impact water pollution. Controlling the explanatory

variables, the primary finding shows FIHTM is positive and strongly statistically

significant, revealing that the higher the amount of foreign capital from Hong Kong,

Taiwan, and Macao, the higher the level of water pollution is. Meanwhile, the results also

show that FIWEST is positive and slightly statistically significant, suggesting that the

higher the amount of foreign capital from Western countries, the higher the level of water

pollution is.
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In Model 11, I introduce the variable DCIV to test the effect of domestic capital on

water pollution. Controlling the explanatory variables, the finding shows that DCIV is

positive and strongly statistically significant, indicating the investment from domestic

capital is positively associated with water pollution.

In Model 12, I add dummy variables SEZOCC and year to test whether the

relationship between globalization and water pollution varies given the characteristics of

cities over time. The variable SEZOCC is positive and statistically significant, indicating

the water pollution is higher in the cities that are designed as Special Economic Zones or

Open Coastal Cities than other cities. Additionally, Model 12 also introduces year as

predictor to show how the effect of the magnitude of globalization on water pollution

varies over time. The year 2007 is not statistically significant. The decoupling between

globalization and total water pollution first occurred in 2008. The year from 2008

through 2013 is negative and statistically significant, indicating the effects of

globalization on water pollution decreases through time.

In short, Table 4.6 provides a comprehensive perspective of how the effects of

globalization on water pollution changed over time. The between-region standard

deviation is estimated as 0.000 through Model 8-12, indicating there is no variation

across region. The between-province within-regions standard deviation is estimated

as .299 in Model 8, and then it decreases to .188 in Model 12. The value of AIC is

calculated as 5265.46 in Model 8, and then it gradually decreases to 3908.45 in Model 12,

indicating Model 12 is a better model that provides much fuller understanding of the

effects of globalization on water pollution across regions and over time.

Table 4.7 shows the joint effects of economic development, industrialization,
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urbanization, and globalization on water pollution. In Model 13, all key independent

variables are included to examine the joint effects of economic development,

industrialization, urbanization, and globalization on water pollution. The variables

GDPPC and POPD are negative and statistically significant, indicating that economic

development level, urbanization rate, and population density are negatively associated

with water pollution. Meanwhile, the variables MAINDU, TRADE, FDI, FIHTM, and

FIWEST are positive and statistically significant, suggesting industrialization,

international trade, and foreign capital are positively associated with water pollution. The

coefficients of each variable represent the magnitude of their effect on water pollution.

Model 14 adds dummy variables to test whether the joint effects of economic

development, industrialization, urbanization, and globalization on water pollution vary

according to the characteristics of cities. As expected, the variable RESBINDUSTC is

negative and statistically significant, indicating water pollution is lower in a

resource-based industrial city than that in a non-resource-based industrial city. The

variable CITYLEVEL is positive and statistically significant, indicating water pollution

is higher in the cities that are municipality, provincial capitals, or sub-provincial cities

than prefecture-level cities. The variable SEZOCC is positive and strongly statistically

significant, suggesting water pollution is higher in the cities that are designed as Special

Economic Zones or Open Coastal Cities than other cities.

In Model 15, I add dummy variables for year to show how the effect of the

magnitude of development on water pollution changes over time. The decoupling

between development and water pollution first occurred in 2008. Year is negative and

statistically significant, indicating the magnitude of the effects of development on water
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pollution decreases through time. The between-province within-regions standard

deviation is estimated as .173 in Model 13, and then it decreases to .152 in Model 15. The

value of AIC is calculated as 3938.49 in Model 13, and then gradually decreases to

3664.22, indicating Model 15 is a better model that provides much fuller understanding

of the effect of development on water pollution across regions and over time.

Conclusion

This chapter aims to present how development within a developing country

impacts water quality across regions and over time. The chapter provides a snapshot of

how the dynamics of development influence water pollution during 2004-2013, and

examines whether industrialization, urbanization, and globalization serve as pathways in

the association between development and water pollution in a rapidly growing economy

with the largest population in the world. Empirically, this chapter examines how water

pollution is affected by the dynamics of development in China using longitudinal data at

the prefecture-city level. The objective is to test the theoretical framework proposed in

Chapter 1 and present how major factors such as economic development level,

industrialization, urbanization, and globalization have impacted water pollution across

regions and over time. Multilevel models are deployed to test for the presence of regional

disparities in the relationship between economic development and water pollution and the

variance in disparities between and within provinces/regions.

Recall that Hypothesis 1 and 2 posited an inverted U-shape relationship between

economic development and water pollution. That is, economic development initially has

an adverse effect on water quality, which then subsequently improves as the level of
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national economic development increases over a turning point (the peak of the inverted

U-shape). Both of the two hypotheses are rejected, indicating that there is no inverted

U-curve between economic development and water quality at 95% confidence level or

regional disparities in terms of the effect. However, it is worth noting that the quadratic

term of GDP per capita became from nonsignificant to significant in the joint effect.

Therefore, the changing regression results suggest that whether the EKC hypothesis holds

for water quality depends on the covariates controlled.

Recall that Hypothesis 3 suggested that industrialization is positively associated

with water pollution. That is, the higher the level of industrialization, the more water

pollution there will be. The findings from Table 4.4 confirm this hypothesis and provide

strong evidence to support the statement that the higher levels of manufacturing industry

are associated with higher levels of water pollution. The decoupling between

industrialization and water pollution first occurred around the year 2008. Specifically, the

effect of industrialization on water pollution decreased from 2008 to 2013.

Hypothesis 4 and 5 suggested that urbanization is positively associated with water

pollution. That is, the higher the level of urbanization, the higher will be the level of

water pollution. The findings from Table 4.5 confirm Hypothesis 4 that the higher rates

of urbanization are associated with higher levels of water pollution. However, Hypothesis

5 is rejected. Specifically, the findings show that population density is negatively

associated with water pollution. Similar to the effect of population density on dust

emission, this result provides strong empirical evidence for the New Urbanism claims

that the higher the population density, the more sustainable the city is.

Recall that Hypotheses 6-9 suggested that globalization is positively associated
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with water pollution. That is, the higher the level of globalization, the more likely are

increases in the level of water pollution. The findings from Table 4.6 confirm Hypothesis

6, that the higher the level of international trade (export), the higher the level of water

pollution will be. Inconsistent with the widely held view in the existing literature, it is

important to point out that exports are not significantly associated with water pollution.

Hypothesis 7 is strongly supported in this study. More specifically, the higher the amount

of FDI, the higher is the level of water pollution. Regarding the sources of foreign capital,

the findings confirm Hypothesis 8 and 9. Specifically, Table 4.6 shows that both foreign

capital from Hong Kong, Taiwan, and Macao and Western countries are positively

associated with water pollution. More importantly, there is strong empirical evidence to

show that domestic capital affects water pollution. Unlike air pollution, the effect of

foreign capital is not offset after controlling domestic capital. The decoupling between

globalization and water pollution first occurred in 2008. Specifically, the effect of

globalization on water pollution decreased from 2008 to 2013.

Overall, this empirical study is designed to respond to the demand for systematic

analysis of the relationship between development and environmental degradation in

China (Liu & Bettie, 2016). This chapter examines how the dynamics of development

impact water pollution at the city level. It provides new findings on how industrialization,

urbanization, and globalization, as driving forces, as well as economic development level,

have affected water quality. Inconsistent with Dinda’s observation that the EKC is more

likely to hold for the environmental impact locally (Dinda, 2004), the findings

demonstrate that there is no an inverted U-shape relationship between economic

development and water pollution. More importantly, the results show that the cities with
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the higher levels of industrialization and globalization have higher levels of water

pollution. In terms of urbanization, the findings are mixed. For cities with higher rates of

urban population, there are higher levels of water pollution. For cities with higher level of

population density, the levels of water pollution are lower. Regarding why higher

population density is associated with lower water pollution, the New Urbanism

perspective in urban studies provide an inspirational explanation that growth in

population density is an important determinant of increases in supply and water treatment

(Macdonald et al., 2016).

Although prior research has made valuable contributions, this study advances the

literature in several ways. First, this study focuses on the relationship between

development and water pollution at the city level within the largest developing country in

the world. In Chapter 2, I describe the development mode of China since the policies of

reform and opening up were introduced in 1978, leading to rapid industrialization,

urbanization, and globalization. Therefore, this study is a systematic empirical analysis

testing the theoretical framework of the triple process of development in China. Secondly,

the joint effects of economic development level, industrialization, urbanization, and

globalization on water pollution have been tested, while previous studies mostly examine

the effect of those factors separately with respect to water pollution. Third, multilevel

modeling is used to analyze the most recent city-level data. Up to date, this study is the

first to provide a comprehensive comparative quantitative analysis of the relationship

between development and water pollution from 287 cities across region and over time, as

prior research takes China itself or provinces within China as the units of analysis. Last

but most importantly, the findings have policy implications for development trajectories,



156

and industrialization and globalization particularly for developing countries, contributing

to the literature by examining the independent role of population density and the sources

of foreign capital in relation to water pollution locally. There are several limitations in

this study. The measurement of water pollution is total industrial wastewater, which is

not a commonly used indicator for water quality in the studies of environmental science.

The findings may not be generalizable to other indicators of water quality, particularly

residential wastewater in the cities. Secondly, the theoretical framework is constructed in

the context of China, where the role of the state and policies should be seriously taken

into account. Given the unavailability of data, this study fails to examine the effect of

such policies implemented by central and local governments on water pollution.

Therefore, the effects of specific policies should be examined in future studies. Third, the

mediation analysis between industrialization, urbanization, globalization, and economic

development is lacking in this study due to the constraint of time and length of the

analysis.
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Table 4.1

Changes of Water Pollution by Provinces, 2004-2013 (10,000 tons)

Provinces Change Percent
59795 100%

Eastern Region 85002 142.16%
Beijing -3917 -6.55%
Tianjin -2488 -4.16%
Hebei 15839 26.49%
Shandong 69307 115.91%
Liaoning -4601 -7.69%
Shanghai -13412 -22.43%
Jiangsu -11265 -18.84%
Zhejiang 4606 7.70%
Fujian 7567 12.65%
Guangdong 15460 25.86%
Guangxi 7828 13.09%
Hainan 78 0.13%

Central Region 48085 80.42%
Shanxi 15785 26.40%
Inner Mongolia 8411 14.07%
Jilin 14262 23.85%
Heilongjiang -4183 -7.00%
Anhui 3720 6.22%
Henan 22933 38.35%
Hubei -5865 -9.81%
Hunan -29316 -49.03%
Jiangxi 22338 37.36%

Western Region -73292 -122.57%
Chongqing -51362 -85.90%
Sichuan -50958 -85.22%
Guizhou 5204 8.70%
Yunnan 12617 21.10%
Tibet 333 0.56%
Shaanxi 3094 5.17%
Gansu 6129 10.25%
Qinghai 1120 1.87%
Ningxia -575 -0.96%
Xinjiang 1106 1.85%
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Table 4.2

Descriptive Statistics of the Analysis

Variables Min Max Mean Std.Dev
Dependent Variables
WaterWaste 2 88027 7606.96 10162.93
Independent Variables
GDP pc 99 182680 24939.28 21173.03
Manufacturing 9 91 48.85 11.48
IndustrialElectri 0 8057600 432689.10 730180.33
Urbanization 0 1 0.34 0.21
Popudensity 5 2662 416.22 318.80
Trade 2 46680286 866686.46 3147905.42
Export 0 27135572 468126.95 1584273.97
FDI 0 1518453 51052.65 125151.03
FI from HTM 0 54732030 1759357.92 5013512.49
FI from West 0 144700000 3120012.50 10663102.67
Domes Invest 6007 138900000 11726056.27 16486018.97
Control Variables
Consumption 11209 77028167 3851169.87 6248666.11
Population size 16 3343 425.52 303.18
Public transport 0 115 6.7395 6.69319
Note: N=2870
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Table 4.3

Multilevel Estimates of Economic Development and Water Pollution in China,

Model 1 Model 2 Model 3 Model 4 Model 5
Independent Variables
GDPPC(ln) 0.475*** 0.825** 0.586* 1.092***

(0.047) (0.317) (0.323) (0.310)
GDPPC2(ln) -0.018 -0.016 -0.024

(0.016) (0.017) (0.016)
Dummy Variables
RESBINDUSTC -0.120** 0.290***

(0.035) (0.034)
CITY LEVEL 0.017 0.065***

(0.060) (0.065)
SEZOCC 0.360*** -0.455***

(0.068) (0.067)
Central Regions -0.156

(0.110)
Western Regions 0.001

(0.120)
2005 -0.122*

(0.061)
2006 -0.396***

(0.062)
2007 -0.529***

(0.063)
2008 -0.689***

(0.065)
2009 -0.768***

(0.067)
2010 -0.918***

(0.069)
2011 -1.092***

(0.073)
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Table 4.3 Continued

Model 1 Model 2 Model 3 Model 4 Model 5
2012 -1.226***

(0.076)
2013 -1.391***

(0.079)

Control Variables
CONSUM(ln) 0.375*** -0.007 0.002 0.188*** 0.421***

(0.023) (0.044) (0.045) (0.052) (0.051)
POPSIZE(ln) 0.443*** 0.855*** 0.844*** 0.419*** 0.414***

(0.028) (0.049) (0.050) (0.063) (0.059)
PUBTRA(ln) 0.236*** 0.190*** 0.191*** 0.195*** 0.111***

(0.023) (0.023) (0.023) (0.024) (0.023)
Constant -0.024 -1.483*** -3.209** -1.686 -8.799***

(0.209) (0.251) (1.568) (1.611) (1.577)

R2 Between 0.732 0.776 0.776 0.762 0.742
R2 Overall 0.579 0.596 0.597 0.424 0.518
Between Cities 0.577 0.544 0.545 0.422 0.223
Within Cities 0.771 0.759 0.759 0.756 0.705
ICC 0.359 0.339 0.340 0.237 0.091
Notes:
1. †p<0.1; *p<0.05; **p<0.01; ***p<0.001(two-tailed tests).
2. Line 1: unstandardized coefficients; line 2: standard error in parentheses.
3. GDPPC= gross domestic product per capita; GDPPC2 =Quadratic term of gross
domestic product per capita.
4. ICC=Intraclass correlation coefficient.
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Table 4.4

Multilevel Estimates of Industrialization and Water Pollution in China

Model 1 Model 2 Model 3 Model 4
Fixed-Effect
GDPPC(ln) 0.483*** 0.045 -0.008 0.242***

(0.046) (0.052) (0.049) (0.059)
MAINDU(ln) 1.329*** 0.482* -0.243

(0.080) (0.200) (0.217)
INDUSTR(ln) 0.356 1.070***

(0.233) (0.252)
IELECON(ln) 0.308*** 0.233***

(0.014) (0.016)
RESBINDUSTC -0.044

(0.032)
2005 -0.089

(0.058)
2006 -0.259***

(0.059)
2007 -0.348***

(0.060)
2008 -0.439***

(0.062)
2009 -0.436***

(0.064)
2010 -0.507***

(0.066)
2011 -0.624***

(0.070)
2012 -0.699***

(0.074)
2013 -0.756***

(0.076)
Control Variables
CONSUM(ln) -0.012 0.224*** 0.048 0.215***

(0.044) (0.044) (0.044) (0.050)
POPSIZE(ln) 0.866*** 0.667*** 0.591*** 0.409***
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Table 4.4 Continued

Model 1 Model 2 Model 3 Model 4
(0.049) (0.048) (0.047) (0.059)

PUBTRA(ln) 0.188*** 0.148*** 0.081*** 0.046*
(0.023) (0.022) (0.021) (0.022)

Constant -1.607*** -4.591*** -1.278 -0.482
(0.267) (0.311) (0.788) (0.842)

Variance Components
Regional-level 0.000 0.005 0.002 0.000
Provincial-level 0.253 0.160 0.174 0.197

Log Likelihood -3567.216 -3436.406 -3196.947 -2952.395
AIC 7150.320 6890.813 6415.894 5946.791
Notes:
1. †p<0.1; *p<0.05; **p<0.01; ***p<0.001(two-tailed tests).
2. Line 1: unstandardized coefficients; line 2: standard error in parentheses.
3. AIC=Akaike information criterion.
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Table 4.5

Multilevel Estimates of Urbanization and Water Pollution in China

Model 5 Model 6 Model 7
Fixed-Effect
GDPPC(ln) 0.483*** 0.447*** 0.610***

(0.045) (0.046) (0.052)
URBAN(ln) 0.406*** 0.436*** 0.164***

(0.031) (0.032) (0.038)
POPD(ln) -0.136*** -0.063*

(0.026) (0.027)
CITY LEVEL 0.644***

(0.063)
2005 -0.109†

(0.061)
2006 -0.375***

(0.061)
2007 -0.496***

(0.062)
2008 -0.642***

(0.065)
2009 -0.705***

(0.068)
2010 -0.829***

(0.070)
2011 -0.989***

(0.074)
2012 -1.118***

(0.078)
2013 -1.271***

(0.082)
Control Variables
CONSUM(ln) -0.118** -0.071 0.025***

(0.044) (0.044) (0.054)
POPSIZE(ln) 1.019*** 0.987*** 0.550***

(0.049) (0.049) (0.066)
PUBTRA(ln) 0.159*** 0.157*** 0.190***

(0.022) (0.022) (0.024)
Constant -0.476† 0.183 -0.163***

(0.279) (0.306) (0.546)
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Table 4.5 Continued

Model 5 Model 6 Model 7
Variance Components
Regional-level 0.000 0.000 0.000
Provincial-level 0.306 0.353 0.355

Log Likelihood -3441.63 -3427.55 -3041.00
AIC 6901.27 6875.09 6121.99
Notes:
1. †p<0.1; *p<0.05; **p<0.01; ***p<0.001(two-tailed tests).
2. Line 1: unstandardized coefficients; line 2: standard error in parentheses.
3. AIC=Akaike information criterion.
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Table 4.6

Multilevel Estimates of Globalization and Water Pollution in China

Model 8 Model 9 Model 10 Model 11 Model 12
Fixed-Effect
GDPPC(ln) 0.461*** 0.391*** 0.412*** -0.271** -0.218*

(0.051) (0.057) (0.059) (0.085) (0.090)
TRADE(ln) 0.284*** 0.230*** 0.225*** 0.216*** 0.184***

(0.026) (0.027) (0.029) (0.028) (0.029)
FDI(ln) 0.098*** 0.048* 0.077*** 0.040*

(0.017) (0.019) (0.018) (0.019)
FIHTM(ln) 0.043** 0.025† 0.034*

(0.015) (0.014) (0.014)
FIWEST(ln) 0.032* 0.040* 0.037*

(0.016) (0.016) (0.016)
DCIV (ln) 0.486*** 0.483***

(0.044) (0.046)
SEZOCC 0.468***

(0.062)
2007 -0.073

(0.055)
2008 -0.183**

(0.056)
2009 -0.243**

(0.057)
2010 -0.305***

(0.059)
2011 -0.435***

(0.062)
2012 -0.529***

(0.066)
2013 -0.628***

(0.068)
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Table 4.6 Continued

Model 8 Model 9 Model 10 Model 11 Model 12
Control Variables
CONSUM(ln) -0.222*** -0.280*** -0.367*** -0.357*** -0.056

(0.052) (0.056) (0.056) (0.054) 0.058
POPSIZE(ln) 0.903*** 0.922*** 0.967*** 0.497*** 0.123

(0.055) (0.057) (0.058) (0.071) 0.080
PUBTRA(ln) 0.150*** 0.137*** 0.161*** 0.131*** 0.064*

(0.028) (0.027) (0.028 (0.027) 0.028
Constant -0.555 0.401 0.863* 2.604* 0.447

(0.343) (0.375) (0.380) (0.401) 0.535
Variance Components
Regional-level 0.000 0.000 0.000 0.000 0.000
Provincial-level 0.299 0.309 0.183 0.218 0.188

Log Likelihood -2622.73 -2412.62 -2152.30 -2211.25 -1932.17
AIC 5265.46 4847.24 4332.59 4448.51 3908.35
Notes:
1. †p<0.1; *p<0.05; **p<0.01; ***p<0.001(two-tailed tests).
2. Line 1: unstandardized coefficients; line 2: standard error in parentheses.
3. AIC=Akaike information criterion.
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Table 4.7

Multilevel Estimates of Economic Development, Industrialization, Urbanization,
Globalization, and Water Pollution in China, 2004-2013

Model 13 Model 14 Model 15
GDPPC(ln) -0.145* -0.210** 0.016

(0.067) (0.071) (0.076)
MAINDU(ln) 0.498* 0.298 0.019

(0.221) (0.234) (0.237)
INDUSTR(ln) 0.222 0.290 0.459

(0.258) (0.279) (0.281)
IELECON(ln) 0.278*** 0.251*** 0.233***

(0.018) (0.020) (0.020)
URBAN(ln) -0.054 -0.021 -0.101*

(0.034) (0.038) (0.040)
POPD(ln) -0.163*** -0.102*** -0.097***

(0.025) (0.028) (0.028)
TRADE(ln) 0.183*** 0.201*** 0.188***

(0.026) (0.028) (0.028)
FDI(ln) 0.055** 0.056** 0.044*

(0.017) (0.018) (0.018)
FIHTM(ln) 0.042** 0.041** 0.045**

(0.014) (0.014) (0.014)
FIWEST(ln) 0.027† 0.037* 0.025

(0.015) (0.016) (0.016)
RESBINDUSTC -0.077* 0.395*

(0.035) (0.062)
CITY LEVEL 0.155* 0.285***

(0.067) (0.069)
SEZOCC 0.388*** -0.087***

(0.063) (0.034)
2007 -0.056

(0.053)
2008 -0.130*

(0.055)
2009 -0.178**
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Table 4.7 Continued

Model 13 Model 14 Model 15
(0.058)

2010 -0.230***
(0.061)

2011 -0.345***
(0.066)

2012 -0.427***
(0.071)

2013 -0.498***
(0.076)

Control Variables
CONSUM(ln) -0.114† -0.039 0.106

(0.059) (0.064) (0.067)
POPSIZE(ln) 0.531*** 0.416*** 0.347**

(0.063) (0.076) (0.076)
PUBTRA(ln) 0.059* 0.100*** 0.059*

(0.027) (0.028) (0.029)
Constant 1.328 1.583 -0.582

(0.895) (0.991) (1.031)
Variance Components
Regional-level 0.000 0.000 0.000
Provincial-level 0.173 0.152 0.152

Log Likelihood -1952.25 -1830.80 -1804.11
AIC 3938.49 3701.60 3664.22
Notes:
1. †p<0.1; *p<0.05; **p<0.01; ***p<0.001(two-tailed tests).
2. Line 1: unstandardized coefficients; line 2: standard error in parentheses.
3. AIC=Akaike information criterion.



CHAPTER 5

CONCLUSIONS AND DISCUSSIONS

How development interacts with the environment is intensively debated in the

existing theoretical and empirical literature in the social sciences. This dissertation aimed

to contribute to our understanding of the complex dynamics between development and

the environment in a rapidly changing social setting: China. Given the size of its

population and economy, the development trajectory it adopted, and the unique

institutional context, environmental degradation at an unprecedented scale within this

country is of global concern and important to study.

Chapter 2 reviewed the paradoxically different development trajectories

(Soviet-style development strategy vs. comparative advantage development strategy) that

China adopted since the founding of the People’s Republic of China in 1949, and showed

how the country industrialized, urbanized, and globalized during the past 6 decades.

Based on this review, this chapter then proposed a theoretical framework for analyzing

the relationship between development and the environment from the perspective of

industrialization, urbanization, and globalization. Moreover, this chapter provided a

snapshot of how spatio-temporal patterns of air and water pollution have changed across

China’s provinces over the time period from 2004-2013. Specifically, for SO2 emissions,
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seven provinces (Liaoning, Hebei, Shandong, and Jiangsu in the eastern regions and

Inner Mongolia, Shanxi, and Henan in the central region) were revealed to be the most

polluted areas throughout the period 2004-2013. In terms of dust emissions, Shanxi, the

leading producer of coal in China, remained the most polluted area throughout the years

2004-2013. As for water pollution, the province Jiangsu in the eastern region has

remained the most polluted province during the period 2004-2013.

Chapter 3 empirically examined the relationship between development and air

pollution, and proposed several hypotheses. Following from the idea of an Environmental

Kuznets Curve (EKC), I argued that there is an inverted U-shape relationship between

economic development level and air pollution in China, regardless of specific indicators.

Then, I hypothesized that industrialization, urbanization, and globalization are positively

associated with air pollution. In particular, I examined how population density, the

sources of foreign capital, and domestic capital affected air quality. The findings show

that there is an inverted U-shape relationship between GDP per capita and SO2 emissions

(but not dust emissions), indicating that whether the EKC holds depends on the indicators

of air quality being used. The cities with higher levels of industrialization and

urbanization are more likely to have higher levels of air pollution. Surprisingly, the

results show that cities with higher levels of population density have lower levels of dust

emissions. More interestingly, the effects of the sources of capital on air pollution are

mixed and vary depending on which types of air pollution examined. The cities with a

higher level of foreign capital from Hong Kong, Taiwan, and Macao are more likely to

have a higher level of SO2 emissions but not dust emissions, whereas a higher level of

foreign capital from Western countries is associated with more dust emissions.
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Similarly, Chapter 4 empirically examined the relationship between development

and water pollution, proposing several corresponding hypotheses. Following from the

idea of the Environmental Kuznets Curve (EKC), I hypothesized that there is an inverted

U-shape relationship between economic development level and water pollution in China.

Then, I argued that industrialization, urbanization, and globalization are positively

associated with water pollution. In particular, I examined how population density, the

source of foreign capital, and domestic capital affected water quality. I found that there is

no inverted U-shape between GDP per capita and water pollution, indicating that the

EKC does not hold for some indicators of environmental degradation, such as water

pollution. Further, inconsistent with the existing studies, this chapter also showed that the

EKC does not hold for long-term environmental outcomes locally. I further found that the

cities with higher levels of industrialization and globalization are positively associated

with higher levels of water pollution. Surprisingly, I found that cities with higher levels

of population density have relatively lower levels of water pollution. More interestingly,

the cities with higher levels of globalization, regardless of the indicators (e.g., exports,

FDI, or different sources of foreign capital) are more likely to have higher levels of water

pollution. More interestingly, I also found that domestic capital has significant effect on

water quality.

There are several important lessons emerge from the findings reported in this

dissertation. The first is about the complexity and significance of the unique context that

China represents. As the world’s most populous nation with the world’s most dynamic

developing economy, the sustainable development of China is of global interest given its

size and unique institutional and structural characteristics. The paradoxically different
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development trajectories China adopted, originally from a centrally planned economy

followed by its transformation towards a market economy, have played crucial roles in

shaping the determinants of environmental degradation in China. Meanwhile, the

landscape and ecosystem in China have been significantly transformed at an

unprecedented pace by the large-scale industrialization, urbanization, and globalization.

In spite of an existing literature that has extensively examined how China developed and

reformed since the adoption of the opening up policy, the environmental implications of

its rapid development are not well understood. Although some scholars have started to

assess the appropriateness of the existing findings as a way of interpreting environmental

degradation in China (Mol, 2006; Yee et al., 2013), the historical and institutional context

of China’s development trajectories has rarely been systematically studied in comparative

development-environment research. This dissertation advances our understanding of the

relationship between development and the environment in terms of industrialization,

urbanization, and globalization.

Secondly, using multilevel modeling with the most recent longitudinal data

available allows greater confidence in the findings than most previous research on the

development-environment relationship in China. The previous studies take China as a

whole or provinces within China as the units of analysis. Thus, to date, exploring

environmental degradation across nationally inclusive Chinese cities has not before been

attempted. Empirically, this dissertation, as a comprehensive comparative sociological

analysis, presents the relationship between development and the environment using the

data from 287 prefecture-level cities from 2004-2013. The findings show that

environmental degradation and the effects of economic development on environmental
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degradation differ across regions and over time given different indicators of environment.

Air is most severely polluted in the less developed central and western regions, while

water is most severely polluted in more developed eastern regions. The findings show

that industrialization and urbanization negatively impact air quality, while

industrialization and globalization play significant roles in undermining water quality.

Third, this dissertation contributes to the literature by examining the independent

role of the factors that have not been studied previously within China: the source of

foreign direct investment, domestic investment, and population density. For instance, this

dissertation extensively focused on the relationship between globalization and the

environment in the most populous developing country, providing evidence that foreign

capital from HTM and Western countries, domestic capital, and population density have

different impacts on environmental degradation depending on which indicators are

analyzed.

In addition, this dissertation has several practical implications. For instance, this

dissertation has significant implications for policymakers and practitioners in addressing

economic disparities and environmental degradation in terms of regional development

strategies. In particular, it has strong policy implications for examining how the sources

of foreign capital have differentially affected the environment. This dissertation provided

evidence on whether foreign capital is beneficial or detrimental to the environment,

depending on the source and the type of environmental degradation. Moreover, this

dissertation is sensitive to the intersection between population density and environmental

degradation, and finds that higher population density is significantly positively correlated

with SO2 emission, but negatively associated with dust emission and water pollution.
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There are several limitations in this dissertation. The theoretical framework I

proposed is constructed in the context of China, where the role of the state and policies

should be seriously taken into account. Due to the unavailability of data, this study fails

to examine the effect on water pollution of policies implemented by central and local

governments. The effects of specific policies should be examined in future studies. More

importantly, the relationship between industrialization, urbanization, globalization, and

development should be articulated in a more detailed way. The mediation analysis

between the three factors and development is lacking in this dissertation due to time

constraints and length limitations. Meanwhile, the findings may not be generalizable to

other indicators of environmental degradation given that they are based on the empirical

study of only SO2 emissions, dust emissions, and wastewater discharge. Therefore, future

research is needed when the data for other indicators of air and water pollution are

available.



APPENDIX A

LISTS OF REGIONS, PROVINCES AND CITIES

IN MULTILEVEL ANALYSIS

Table A1

Regions (3) Provinces (31) Cities (287)
Eastern 12 115

Beijing 1
Tianjin 1
Shanghai 1
Hebei 11
Jiangsu 13
Zhejiang 11
Shandong 17
Guangdong 21
Fujian 9
Guangxi 14
Hainan 2
Liaoning 14

Central 9 110
Jilin 8
Heilongjiang 12
Shanxi 11
Inner Mongolia 9
Anhui 17
Hubei 12
Hunan 13
Henan 17
Jiangxi 11
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Table A1 Continued

Regions (3) Provinces (31) Cities (287)
Western 10 62

Sichuan 18
Shaanxi 10
Guizhou 4
Yunnan 8
Qinghai 1
Ningxia 5
Gansu 12
Xinjiang 2
Tibet 1
Chongqing 1

Table A2

Region Province Cities Shandong 17 Xiamen
Eastern Beijing Beijing Jinan Putian

Tianjin Tianjin Qingdao Sanming
Shanghai Shanghai Zibo Quanzhou

Hebei 11 Zao
zhuang

Zhang
zhou

Shijiazhuang Dongying Nanping
Tangshan Yantai Longyan
Qinhuangdao Weifang Ningde

Handan Jining Guang
xi 14

Xingtai Tai'an Nanning
Baoding Weihai Liuzhou
Zhangjiakou Rizhao Guilin
Chengde Laiwu Wuzhou
Cangzhou Linyi Beihai

Langfang Zhangzhou Fangchen
ggang

Hengshui Liaocheng Qinzhou
Jiangsu 13 Binzhou Guigang

Nanjing Heze Yulin
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Table A2 Continued

Wuxi Guangdong 21 Baise

Xuzhou Guang
zhou Hezhou

Changzhou Shaoguan Hechi
Suzhou Shenzhen Laibin
Nantong Zhuhai Chongzuo
Lianyungang Shantou Hainan 2
Huai'an Foshan Haikou
Yancheng Jiangmen Sanya
Yangzhou Zhanjiang Liaoning 14
Zhenjiang Maoming Shenyang
Taizhou Zhaoqing Dalian
Suqian Huizhou Anshan

Zhejiang 11 Meizhou Fushun
Hangzhou Shanwei Benxi
Ningbo Heyuan Dandong
Wenzhou Yangjiang Jinzhou
Jiaxing Qingyuan Yingkou
Huzhou Dongguan Fuxin

Shaoxing Zhongsha
n Liaoyang

Jinhua Chaozhou Panjin
Quzhou Jieyang Tieling
Zhoushan Yunfu Chaoyang
Taizhou Fujian 9 Huludao
Lishui Fuzhou

Table A3

Region Province Cities Anhui 17 Henan 17
Central Jilin 8 Hefei Zhengzhou

Changchun Wuhu Kaifeng
Jilin Bengbu Luoyang
Siping Huainan Pingdingshan
Liaoyuan Ma'anshan Anyang
Tonghua Huaibei Hebi
Baishan Tongling Xinxiang
Songyuan Anqing Jiaozuo
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Table A3 Continued

Baicheng Huangshan Puyang

Heilongjiang 12 Chuzhou Xuchang

Harbin Fuyang Luohe
Qiqihar Suzhou Sanmenxia
Jixi Chaohu Nanyang
Hegang Liu'an Shangqiu
Shuangyashan Bozhou Xinyang
Daqing Chizhou Zhoukou
Yichun Xuancheng Zhumadian
Jiamusi Hubei 12 .Jiangxi 11
Qitaihe Wuhan Nanchang
Mudanjiang Huangshi Jingdezhen
Heihe Shiyan Pingxiang
Suihua Yichang Jiujiang

Shanxi 11 Xiangfan Xinyu
Taiyuan Ezhou Yingtan
Datong Jingmen Ganzhou
Yangquan Xiaogan Ji'an
Changzhi Jingzhou Yichun
Jincheng Huanggang Fuzhou
Shuozhou Xian'ning Shangrao
Jinzhong Suizhou
Yuncheng Hunan 13
Xinzhou Changsha
Linfen Zhuzhou
Lvliang Xiangtan

Inner Mong 9 Hengyang
Hohhot Shaoyang
Baotou Yueyang
Wuhai Changde
Chifeng Zhangjiajie
Tongliao Yiyang
Ordos Chenzhou
Hulunbuir Yongzhou
Bayannur Huaihua
Ulanqab Loudi
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Table A4

Region Province Cities Shaanxi 10 Wuzhong
Western Sichuan 18 Xi'an Guyuan

Chengdu Tongchuan Zhongwei
Zigong Baoji Gansu 12
Panzhihua Xianyang Lanzhou
Luzhou Weinan Jiayuguan
Deyang Yan'an Jinchang
Mianyang Hanzhong Baiyin
Guangyuan Yulin Tianshui
Suining Ankang Wuwei
Neijiang Shangluo Zhangye
Leshan Yunnan 8 Pingliang
Nanchong Kunming Jiuquan
Meishan Qujing Qingyang
Yibin Yuxi Dingxi
Guang'an Baoshan Longnan
Dazhou Zhaotong Xinjiang 2
Ya'an Lijiang Urumqi
Bazhong Simao Karamay
Ziyang Lincang Tibet 1

Guizhou 4 Qinghai 1 Lhasa

Guiyang Xining Chongqing 1
Liupanshui Ningxia 5 Chongqing
Zunyi Yinchuan
Anshun Shizuishan



APPENDIX B

CORRELATION OF THE COVARIATES IN THE ANALYSIS

GDPPC
(ln)

MAINDU
(ln)

INDUSTR
(ln)

IELECON
(ln)

URBAN
(ln)

POPD
(ln)

GDPPC(ln) 1.000
MAINDU(ln) 0.482 1.000
INDUSTR(ln) 0.163 0.877 1.000
IELECON(ln) 0.579 0.359 0.103 1.000
URBAN(ln) 0.455 0.129 -0.119 0.446 1.000
POPD(ln) 0.143 0.201 0.098 0.272 0.098 1.000
TRADE(ln) 0.625 0.182 -0.091 0.695 0.343 0.361
EXPORT(ln) 0.591 0.170 -0.085 0.669 0.323 0.378
FDI(ln) 0.620 0.213 -0.038 0.651 0.285 0.370
FIHTM(ln) 0.570 0.253 0.041 0.603 0.212 0.428
FIWEST(ln) 0.640 0.253 -0.001 0.696 0.273 0.368
CONSUM(ln) 0.557 0.148 -0.086 0.745 0.175 0.337
POPSIZE(ln) -0.061 -0.074 -0.082 0.472 -0.215 0.240
PUBTRA(ln) 0.566 0.250 -0.028 0.510 0.302 0.101

TRADE
(ln)

EXPORT
(ln)

FDI
(ln)

FIHTM
(ln)

FIWEST
(ln)

CONSUM
(ln)

POPSIZE
(ln)

PUBTR
A(ln)

TRADE(ln) 1.000
EXPORT(ln) 0.967 1.000
FDI(ln) 0.799 0.783 1.000
FIHTM(ln) 0.809 0.808 0.803 1.000
FIWEST(ln) 0.847 0.830 0.821 0.810 1.000
CONSUM(ln) 0.790 0.773 0.806 0.759 0.825 1.000
POPSIZE(ln) 0.437 0.437 0.490 0.464 0.496 0.752 1.000
PUBTRA(ln) 0.492 0.467 0.502 0.400 0.482 0.469 0.090 1.000
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