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ABSTRACT

This dissertation develops the structure theory of the category Whittaker modules for

a complex semisimple Lie algebra. We establish a character theory that distinguishes

isomorphism classes of Whittaker modules in the Grothendieck group of the category,

then use the localization functor of Beilinson and Bernstein to realize Whittaker mod-

ules geometrically as certain twisted D-modules on the associated flag variety (so called

“twisted Harish-Chandra sheaves”). The main result of this document is an algorithm for

computing the multiplicities of irreducible Whittaker modules in the composition series of

standard Whittaker modules, which are generalizations of Verma modules. This algorithm

establishes that the multiplicities are determined by a collection of polynomials we refer

to as Whittaker Kazhdan–Lusztig polynomials.



For Val.
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CHAPTER 1

INTRODUCTION

A fundamental goal in representation theory is to understand all representations of

semisimple Lie groups. The algebraization of this problem leads to the study of modules

over complex semisimple Lie algebras. For a complex semisimple Lie algebra g, under-

standing all g-modules is a daunting task, and a full classification has only been obtained

for the simplest example: the Lie algebra sl(2, C) [Blo81]. One way to make this task

more manageable is to study subcategories of modules subject to certain restrictions, then

relax the restrictions to expand the categories and observe which aspects of the structure

carry over to the larger category. Block’s classification of irreducible sl(2, C)-modules

suggests two natural categories to consider: highest weight modules and nondegenerate

Whittaker modules. Highest weight modules have been studied extensively in the past

fifty years, and the category has been shown to have a rich underlying combinatorial

structure. A celebrated example of this structure was Beilinson–Bernstein’s [BB81] and

Brylinski–Kashiwara’s [BK81] proofs of the Kazhdan–Lusztig conjecture [KL79] which

established that multiplicities of irreducible highest weight modules in Verma modules

are determined by the Kazhdan–Lusztig polynomials. (See, for example, [Hum08] for a

survey of this and other results.) Nondegenerate Whittaker modules were introduced in

[Kos78] as an algebraic tool for determining which representations of a semisimple Lie

group admit a Whittaker model, and Kostant showed that the category of nondegenerate

Whittaker modules has a very simple structure. This dissertation is concerned with a

category of g-modules which contains both the category of highest weight modules and the

category of nondegenerate Whittaker modules as full subcategories. This is the category

of Whittaker modules. The main result of this project is the development of an algorithm

(Theorem 6.1) for computing the multiplicities of irreducible Whittaker modules in the

composition series of standard Whittaker modules (Definition 3.9). These multiplicities
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are determined by a collection of polynomials which we refer to as Whittaker Kazhdan–

Lusztig poynomials.

More specifically, let g be a complex semisimple Lie algebra, U (g) its universal envelop-

ing algebra, and Z(g) the center of U (g). Let b be a fixed Borel subalgebra of g with nilpo-

tent radical n = [b, b]. The category N of Whittaker modules contains all U (g)-modules

which are finitely generated, Z(g)-finite, and U (n)-finite. Let h be the abstract Cartan

subalgebra of g [Mil93, §2]. For a choice of λ ∈ h∗ and a Lie algebra morphism η ∈ n∗,

McDowell constructed a standard Whittaker module M(λ, η) (Definition 3.9), and showed

that all irreducible Whittaker modules L(λ, η) appear uniquely as quotients of M(λ, η)

[McD85]. When η = 0, the M(λ, 0) are Verma modules, and when η acts nontrivially on

all root subspaces of g corresponding to simple roots (we say such η are nondegenerate),

the M(λ, η) are the irreducible modules studied by Kostant in [Kos78]. McDowell also

showed that Whittaker modules have finite length composition series [McD85, §2 Thm.

2.8]1, so a natural problem is to determine the multiplicities of the irreducible constituents

of a standard Whittaker module. These multiplicities were determined for integral λ in

[MS97] and for arbitrary λ in [Bac97] by relating subcategories of Whittaker modules to

certain blocks of BGG category O. These papers established multiplicity results for Whit-

taker modules, but they did not develop the combinatorial structure of Kazhdan–Lusztig

polynomials that was established in [KL79, BB81, BK81] for the category of highest weight

modules. In this dissertation, we develop a Kazhdan–Lusztig theory for the category of

Whittaker modules by using Beilinson–Bernstein localization to realize Whittaker modules

geometrically as a certain category of twisted sheaves of D-modules on the flag variety of

g, following [MS14].

The first step in using localization to study Whittaker modules is to realize N as a

category of twisted Harish-Chandra modules. Given a connected algebraic group K with

Lie algebra k and a morphism φ : K → Int(g) inducing an injection of k into g, the pair

(g, K) is called a Harish-Chandra pair if g acts on the flag variety X of g with finitely many

orbits. For a Harish-Chandra pair (g, K) and a Lie algebra morphism η ∈ k∗, one can

define an abelian categoryM f g(g, K, η) consisting of finitely generated U (g)-modules that

1This fact follows immediately from the geometric description of Whittaker modules introduced by Miličić
and Soergel in [MS14].
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admit an algebraic action of K such that the differential of the K action differs from the

restricted g-action by η (Definition 3.7). We refer to objects in this category as η-twisted

Harish-Chandra modules. For a maximal ideal Jθ in Z(g) corresponding to a Weyl group

orbit θ ⊂ h∗, denote by Uθ the quotient of U (g) by the two-sided ideal generated by Jθ .

We denote the subcategory of M f g(g, K, η) consisting of modules with central character

determined by θ byM f g(Uθ , K, η). Let N be the unipotent subgroup of Int(g) whose Lie

algebra is n. Then (g, N) is a Harish-Chandra pair, and we can realizeN in terms of twisted

Harish-Chandra modules for this pair. Indeed, any object inM f g(Uθ , N, η) is a Whittaker

module, and each standard and irreducible Whittaker module is inM f g(Uθ , N, η) for some

orbit θ and morphism η (Lemma 3.8).

This description allows us to use the localization theory of Beilinson–Bernstein to study

Whittaker modules. For each λ ∈ h∗, Beilinson and Bernstein constructed a sheaf of

twisted differential operators Dλ on the flag variety X of g [BB81] whose global sections

Γ(X,Dλ) are equal to Uθ , where θ is the Weyl-group orbit of λ in h∗. Then the global sec-

tions functor Γ maps quasicoherent Dλ-modules into U (g)-modules with central character

determined by θ; that is, Uθ-modules. Beilinson and Bernstein also defined a localization

functor ∆λ : M(Uθ) → Mqc(Dλ) by ∆λ(V) = Dλ ⊗Uθ
V and showed that if λ is regular

and antidominant, Γ and ∆λ are inverse functors, which establishes an equivalence of the

categoryM(Uθ) withMqc(Dλ).

Applying the localization functor ∆λ to the category M f g(Uθ , N, η), we obtain a ge-

ometric category Mcoh(Dλ, N, η) of η-twisted Harish-Chandra sheaves (Section 4.2), which

are N-equivariant Dλ-modules satisfying a compatibility condition determined by η. This

category consists of holonomic Dλ-modules, so its objects have finite length composition

series and there is a well-defined duality in the category [BGK+87]. The morphism η

determines a subgroup WΘ of the Weyl group W of g, and from the parameters η ∈ n∗,

C ∈ WΘ\W, and λ ∈ h∗, we construct a standard sheaf I(wC, λ, η), costandard sheaf

M(wC, λ, η), and irreducible sheafL(wC, λ, η) (Section 4.3). Here wC is the longest element

in the coset C (Section 5.2). The precise relationship between the algebraic categoryN and

the geometric categoryMcoh(Dλ, N, η) is given by the following theorem, which appears

in Chapter 5.
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Theorem 1.1. (i) Let λ ∈ h∗ be antidominant, η ∈ n∗, and C ∈WΘ\W. Then

Γ(X,M(wC, λ, η)) = M(wCλ, η).

(ii) If λ ∈ h∗ is also regular, then for any C ∈WΘ\W, we have

Γ(X,L(wC, λ, η)) = L(wCλ, η).

These theorems let us formulate a geometric algorithm for computing the multiplicities

of composition factors of a standard η-twisted Harish-Chandra sheaf and then translate

that algorithm to the algebraic setting to determine multiplicities of irreducible Whittaker

modules in standard Whittaker modules.

The statement of the algorithm is completely combinatorial. Let W be the Weyl group of

a reduced root system Σ, Π ⊂ Σ the collection of simple roots, and S ⊂W the correspond-

ing set of simple reflections. Let Θ ⊂ Π be a subset of simple roots, and let WΘ ⊂W be the

sub-Weyl group generated by reflections through Θ. Let HΘ be the free Z[q, q−1]-module

with basis δC, C ∈ WΘ\W. For any α ∈ Π, we define a Z[q, q−1]-module endomorphism

by

Tα(δC) =


0 if Csα = C;
qδC + δCsα

if Csα > C;
q−1δC + δCsα

if Csα < C.

Here the order relation on cosets is the Bruhat order on longest coset representatives

(Section 5.2). The main result of this dissertation is a geometric proof of the following

theorem, which appears in Chapter 6.

Theorem 1.2. There exists a unique function ϕ : WΘ\W → HΘ satisfying the following proper-

ties.

(i) For C ∈WΘ\W,

ϕ(C) = δC + ∑
D<C

PCDδD,

where PCD ∈ qZ[q].

(ii) For α ∈ Π and C ∈WΘ\W such that Csα < C, there exist cD ∈ Z such that

Tα(ϕ(Csα)) = ∑
D≤C

cD ϕ(D).
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The function ϕ : WΘ\W −→ HΘ determines a unique family {PCD|C, D ∈WΘ\W, D ≤

C} of polynomials in Z[q] such that ϕ(C) = ∑D≤C PCDδD for C ∈ WΘ\W. These are the

Whittaker Kazhdan–Lusztig polynomials. To prove the theorem, we define ϕ geometrically2

by pulling back irreducible η-twisted Harish-Chandra sheaves to Bruhat cells and comput-

ing the rank of the resulting D-module (Equation 6.1). Defining ϕ in this way relates this

combinatorial statement of the theorem to multiplicities of irreducible sheaves in the cat-

egoryMcoh(DX, N, η) in the composition series of standard sheaves in the same category,

which in turn allows us to use the results in Chapter 5 to deduce multiplicity results about

Whittaker modules. Specifically, this theorem establishes an algorithm for computing

the multiplicities of irreducible Whittaker modules in standard Whittaker modules in the

following way. Using Theorem 1.2, one computes the matrix (PCD(−1))C,D∈WΘ\W , which

is lower triangular and has 1’s on the diagonal. Let (µCD)C,D∈WΘ\W be the inverse matrix.

The following corollary3 accomplishes the goal of this dissertation.

Corollary 1.3. The multiplicity of the irreducible Whittaker module L(−wDρ, η) in the standard

Whittaker module M(−wCρ, η) is µCD.

By twisting by a homogeneous invertible OX-module, we immediately obtain an ana-

logue of Corollary 1.3 for standard Whittaker modules M(µ, η) corresponding to regular

weights µ ∈ P(Σ).

This document is organized in the following way. Chapter 2 establishes preliminaries

and notation. It is split into algebraic (Lie theory) and geometric (algebraic D-modules)

preliminaries, with the emphasis on geometry. In Chapter 3, we introduce the category

of Whittaker modules and prove some fundamental structural results. In Section 3.2, we

develop a character theory for Whittaker modules which plays a critical role in establishing

their connection to twisted Harish-Chandra sheaves. Chapter 4 develops the structure of

the category of η-twisted Harish-Chandra sheaves. More background about D-modules

on homogeneous spaces is found in Section 4.1. In Chapter 5, we establish the connection

2This theorem also has a straightforward proof using purely combinatorial methods, see [Soe97, Thm. 3.1].
However, the geometric proof in this document relates Theorem 1.2 to Whittaker modules, creating a link
between the combinatorics described in [Soe97, §2 §3] and the category N .

3Here ρ is the half sum of positive roots.
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between Whittaker modules and twisted Harish-Chandra sheaves. Chapter 6 contains

the proof of the main theorem and its relationship to multiplicities of Whittaker mod-

ules. Chapter 7 reformulates Theorem 1.2 in the language of Hecke algebras to explicitly

compare the Whittaker Kazhdan–Lusztig polynomials PCD to other types of Kazhdan–

Lusztig polynomials arising in the combinatorics literature. More specifically, Chapter 7

establishes the relationship between Whittaker Kazhdan–Lusztig and Kazhdan–Lusztig

polynomials of [KL79], as well as the relationship between Theorem 6.1 and the Kazhdan–

Lusztig algorithm for generalized Verma modules established in [Milb, Ch. 6 §3 Thm. 3.5].

Chapter 8 summarizes the new results in this manuscript and describes future research

directions. For brevity, we omit proofs of results that can be found in [Milb] and [Mila],

and refer the curious reader to these very thorough resources on algebraic D-modules.



CHAPTER 2

PRELIMINARIES AND NOTATION

We begin this document by establishing some algebraic and geometric background.

The familiar reader can skip this section and use it as a reference.

2.1 Algebraic Preliminaries
We start with some basic properties of Lie algebras. We list only properties that will be

explicitly used in future arguments, and refer readers to [Bou05] for a detailed treatment

of the subject.

• For a Lie algebra L, we denote by L∗ the set of homomorphisms from L to C. For a

L-module V and λ ∈ L∗, define

Vλ = {v ∈ V|X · v = λ(X)v for all X ∈ L}, and

Vλ = {v ∈ V|(X− λ(X))k · v = 0 for all X ∈ L and some k ∈ Z≥0}.

If Vλ 6= 0, we call Vλ the L-weight space of V corresponding to λ. If Vλ 6= 0, we call

Vλ the generalized L-weight space of V corresponding to λ, and say λ is a L-weight of

V. Clearly Vλ ⊆ Vλ.

• For a Lie algebra L, denote by U (L) the universal enveloping algebra of L. If S ⊂

U (L) is a subset, we say that an L-module V is S-finite if for any v ∈ V, the orbit Sv

is finite dimensional.

• Let L be a nilpotent Lie algebra and let V be a U (L)-finite L-module. If the action of

x ∈ L on any finite dimensional L-invariant subspace of V is triangularizable, then

Vλ is a L-submodule of V and

V =
⊕

λ∈L∗
Vλ.
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• Let L be a nilpotent Lie algebra and let U, V, and W be U (L)-finite L-modules such

that the action of x ∈ L is triangularizable on every L-invariant finite dimensional

subspace of U, V, and W. If

0 −→ U −→ V −→W −→ 0

is a short exact sequence of L-modules, then there is a short exact sequence

0 −→ Uλ −→ Vλ −→Wλ −→ 0

of generalized L-weight spaces for any λ ∈ L∗ obtained by restricting the maps in

the original sequence to the generalized L-weight spaces.

• Let g be a complex semisimple Lie algebra, h a Cartan subalgebra, and h∗ its dual. Let

Σ be the root system of (g, h) in h∗, Σ+ a system of positive roots in Σ, and Π a basis of

simple roots in Σ+. The Lie algebra g decomposes into root subspaces g =
⊕

α∈Σ gα,

where gα = {X ∈ g|[H, X] = α(H)X, H ∈ h}. If n = [b, b] is the nilpotent radical of

b, then n =
⊕

α∈Σ+ gα.

• Let U (g) be the universal enveloping algebra of g, Z(g) be the center of U (g), and

U (g)0 = {X ∈ U (g)|(ad H)(X) = 0, H ∈ h} be the commutant of h in U (g). Using

the Poincare–Birkhott–Witt (PBW) theorem, one can show [Hum08, Ch. 1 §1.7] that

Z(g) ⊂ U (g)0 ⊂ U (h)⊕ U (g)n. Therefore, there is a well-defined homomorphism

γ : Z(g) → U (h) given by projection to the U (h)-coordinate. This is the (untwisted)

Harish-Chandra homomorphism.

• Let P(Σ) = {λ ∈ h∗|α∨(λ) ∈ Z} be the weight lattice of g. We say that a weight

λ ∈ h∗ is integral if λ ∈ P(Σ). We say that a weight λ ∈ h∗ is regular if α∨(λ) 6= 0

for all α ∈ R. We say that a weight λ ∈ h∗ is antidominant if α∨(λ) is not a strictly

positive integer for any α ∈ Σ+.

2.2 Geometric Preliminaries
Here we record some basic properties of twisted sheaves of differential operators and

modules over twisted sheaves of differential operators. For a detailed treatment of this

subject, see [HMSW87, Mil93, Milb].
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• Let X be a smooth complex algebraic variety and n = dim X. Denote by OX the

structure sheaf of X, DX the sheaf of differential operators on X, Tx the tangent sheaf

on X, ΩX the cotangent sheaf on X, and ωX the invertible OX-module of differential

n-forms on X. Denote by iX : OX → DX the natural inclusion.

• Assume that X admits a transitive action of a complex linear algebraic group G. We

denote the category of G-homogeneous quasicoherent OX-modules on X by

Mqc(OX, G). This category can be characterized by the following theorem [MP].

Theorem 2.1. For x ∈ X, let Bx ⊂ G be the stabilizer of x. Then the functor Tx which

assigns to an object F inMqc(OX, G) the geometric fiber Tx(F ) of F at x is an equivalence

of the category of G-homogeneous quasicoherent OX-modules with the category of algebraic

representations of Bx.

• A twisted sheaf of differential operators on X is a pair (D, i) of a sheaf D of associative

C-algebras with identity on X and a homomorphism i : OX → D of C-algebras with

identity that is locally isomorphic to the pair (DX, iX); that is, if X has a cover by

open sets U, then for each U, there is a C-algebra isomorphism ϕU : D|U → DU such

that ϕU ◦ i = iX.

• For f : Y → X a morphism of smooth algebraic varieties and D a twisted sheaf of

differential operators on X, we define

DY→X = f ∗(D) = OY ⊗ f−1OX
f−1D.

Then DY→X is a left OY-module for left multiplication and a right f−1D-module

for right multiplication on the second factor. Denote by D f the sheaf of differential

OY-module endomorphisms ofDY→X which are also f−1D-module endomorphisms.

There is a natural morphism of sheaves of algebras i f : OY → D f , and the pair

(D f , i f ) is a twisted sheaf of differential operators on Y.

• Let D be a twisted sheaf of differential operators on X and L an invertible OX-

module. The twist of D by L is the sheaf DL of differential OX-module endomor-

phisms of L ⊗OX D that commute with the right D-action. Because L ⊗OX D is an

OX-module for left multiplication, there is a natural homomorphism iL : OX → DL,
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and (DL, iL) is a twisted sheaf of differential operators on X. If f : Y → X is a

morphism of smooth algebraic varieties as above, (DL) f = (D f ) f ∗(L).

• If X is a homogeneous space for a group G with Lie algebra g, then a homogeneous

twisted sheaf of differential operators on X is a triple (D, γ, α), where D is a twisted

sheaf of differential operators on X, γ is the algebraic action of G on X, and α :

U (g) → Γ(X,D) is a morphism of algebras such that the following three conditions

are satisfied:

(i) the multiplication in D is G-equivariant;

(ii) the differential of the G-action on D agrees with the action T 7→ [α(ξ), T] for

ξ ∈ g and T ∈ D; and

(iii) the map α : U (g)→ Γ(X,D) is a morphism of G-modules.

For x ∈ X, denote by Bx the stabilizer of x in G and bx its Lie algebra. For each

Bx-invariant linear form λ ∈ b∗x, one can construct a homogeneous twisted sheaf

of differential operators DX,λ [HMSW87, App. A §1] and all homogeneous twisted

sheaves of differential operators on X occur in this way.

• If A is a sheaf of C-algebras on X, we denote by A◦ the opposite sheaf of C-algebras

on X. Then if (D, i) is a twisted sheaf of differential operators on a smooth algebraic

variety X, (D◦, i) is also a twisted sheaf of differential operators on X. In particular,

the pair (D◦X, iX) is a twisted sheaf of differential operators, and it is naturally iso-

morphic to (DωX
X , iωX ). If X is a homogeneous space and δ is the Bx-invariant linear

form which is the differential of the representation of Bx on the top exterior power of

the cotangent space at x, then (DX,λ)
◦ is naturally isomorphic to DX,−λ+δ.

• Let D be a twisted sheaf of differential operators on X. We can view left D-modules

as right D◦-modules and vice-versa. In other words, the category ML
qc(D) of qua-

sicoherent left D-modules on X is isomorphic to the categoryMR
qc(D◦) of quasico-

herent right D◦-modules on X. This relationship allows us to freely use right or left

modules depending on the particular situation.
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• For a category Mqc(D) of quasicoherent D-modules, we denote by Mcoh(D) the

corresponding subcategory of coherent D-modules. For a coherent D-module V , we

can define the characteristic variety ChV of V in the same way as the non-twisted case

[Mila, Ch. III §3]. Because this construction is local, the results in the non-twisted

case carry over to our setting. In particular, we have the following structure:

(i) ChV is a conical subvariety of the cotangent bungle T∗(X).

(ii) dim(ChV) ≥ dim(X).

If dim(ChV) = dim(X), we say that V is a holonomic D-module. Holonomic D-

modules form a thick subcategoryMhol(D) ofMcoh(D). If V inMcoh(D) is coherent

as anOX-module, we call V a connection. Connections are locally free asOX-modules

and their characteristic variety is the zero section of T∗(X), so they are holonomic.

• For an invertible OX-module L and a twisted sheaf D of differential operators on X,

we define the twist functor fromML
qc(D) intoML

qc(DL) by

V 7→ (L⊗OX D)⊗D V

for V ∈ ML
qc(D). The twist functor is an equivalence of categories. If X is a homoge-

neous space for G and L is the invertible G-homogeneous quasicoherentOX-module

determined by the character of Bx with differential µ ∈ b∗x, then (DX,λ)
L = DX,λ+µ.

• For a morphism f : Y → X of smooth algebraic varieties and a twisted sheaf D

of differential operators on X, we define the inverse image functor f+ : ML
qc(D) →

ML
qc(D f ) by

f+(V) = DY→X ⊗ f−1D f−1V

for V ∈ ML
qc(D). In general, f+ is right exact with left derived functor L f+. If f is

an open immersion, then f+ is exact and f+(V) = V|Y. If f is a submersion, then f+

is exact.

• For a morphism f : Y → X of smooth algebraic varieties and a twisted sheaf D

of differential operators on X, we define the extraordinary inverse image functor f ! :

Db(ML
qc(D))→ Db(ML

qc(D f )) by

f ! = L f+ ◦ [dimY− dimX].
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If f is an immersion, then f ! is the right derived functor of the left exact func-

tor Ldim Y−dim X f+ : ML
qc(D) → ML

qc(D f ). In this setting, we refer to the functor

Ldim Y−dim X f+ as f !, and for V ∈ Mqc(D), we refer to the ith-cohomology modules

Hk f !(D(V)) as Rk f !(V).

• For a morphism f : Y → X of smooth algebraic varieties and a twisted sheaf D of

differential operators on X, we define the direct image functor f+ : Db(MR
qc(D f )) →

Db(MR
qc(D)) by

f+(W ·) = R f•(W · ⊗L
D f DY→X),

forW · ∈ Db(MR(D f )). Here R f• is the right derived functor of the sheaf-theoretic

direct image functor f•. If f is an immersion, f+ is the right derived functor of the

left exact functor H0 ◦ f+ ◦ D : MR
qc(D f ) → MR

qc(D). In this setting, we refer to

H0 ◦ f+ ◦ D by f+. If f is an open immersion, then f+ = R f• is the sheaf-theoretic

direct image. If f is affine, then f+ is exact.

• For a module V ∈ MR
qc(D), denote by ΓY(V) the D-module of local sections of V

supported in Y. The functor ΓY : MR
qc(D) → MR

qc(D) is a left exact functor, and

we denote by RΓY : Db(MR
qc(D)) → Db(MR

qc(D)) its right derived functor. The

following equivalence of categories is very useful in computations.

Theorem 2.2. (Kashiwara) If Y is a closed smooth subvariety of a smooth algebraic variety

X, i : Y → X the natural immersion, and D a twisted sheaf of differential operators on X,

then the functor

i+ :MR
qc(Di)→MR

qc(D)

establishes an equivalence of categories betweenMR
qc(Di) and the full subcategoryMR

qc,Y(D)

ofMqc(D) consisting of modules supported in Y. The quasiinverse of i+ is i!. In particular, if

V is a quasicoherent Di-module, then i!(i+(V)) = V , and if U is a quasicoherent D-module,

then i+(i!(U )) = ΓY(U ).

The following corollary to Kashiwara’s theorem will be frequently used in future

computations.

Corollary 2.3. Let Y be a smooth subvariety of a smooth algebraic variety X and j : Y → X

the natural immersion. Then for any D j-moduleW ∈MR
qc(D j), j!(j+(D(W)) = D(W).
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Proof. Let X′ = Y − ∂Y. By construction, X′ is an open dense subset of X, and Y

is a closed subset of X′. This allows us to write j as the composition of a closed

immersion i and an open immersion k:

Y X

X′

i

j

k

Because i : Y → X′ is a closed immersion, Theorem 2.2 implies that i! ◦ i+ ' id.

Because k : X′ → X is an open immersion, k+ = Rk•, and k+ is restriction to

Y. Therefore, k+ ◦ k+ is isomorphic to the identity functor. Furthermore, because

dimX′ = dimX, k!(D(V)) = Lk+[0](D(V)) = k+(V) for V ∈ MR
qc(D). Using these

facts, we conclude that for anyW inMR
qc(D j),

j!(j+(D(W)) = i!(k!(k+(i+(D(W)))))

= i!(i+(D(W)))

= D(W).

This proves our result.

• Let i : Y → X be the immersion of a closed subvariety. If JY is the ideal of OX

consisting of germs vanishing on Y, we can define an increasing filtration of DY→X

by (left Di, right i−1OX)-modules by

FpDY→X = {T ∈ DY→X|Tϕ = 0 for ϕ ∈ (JY)
p+1},

for p ∈ Z+. We call this filtration the filtration by normal degree. By Kashiwara’s

theorem, it induces a natural OX-module filtration on D-modules supported on Y.

Namely, ifW ∈MR
qc(Di),

Fpi+(W) = i•(W ⊗Di FpDY→X).

The associated graded module has the form

Gri+(W) = i•(W ⊗OY S(NX|Y)), (2.1)

where NX|Y = i∗(TX)/TY denotes the normal sheaf of Y, and S(NX|Y) is the corre-

sponding sheaf of symmetric algebras [HMSW87, App. A §3.3].
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• The relationship between the twist functor and the direct image functor is the fol-

lowing.

Proposition 2.4. (Projection Formula) Let f : Y → X be a morphism of smooth complex

algebraic varieties, and let L be an invertible OX-module. Then the following diagram

commutes.

D(D f ) D(D)

D(DL) f ) D(DL)

f+

f ∗(L)⊗OY− L⊗OX−

f+

• The interaction between D-module functors and fiber products is captured by base

change.

Theorem 2.5. (Base Change Formula) Let f : X → Z and g : Y → Z be morphisms of

smooth complex algebraic varieties such that the fiber product X ×Z Y is a smooth algebraic

variety, and let D be a twisted sheaf of differential operators on Z. Then the commutative

diagram

X×Z Y Y

X Z

q

p g

f

determines an isomorphism

g! ◦ f+ = q+ ◦ p!

of functors from Db(M(D f )) to Db(M(Dg)).



CHAPTER 3

A CATEGORY OF n-FINITE MODULES

In this chapter, we describe our category of interest. Let g be a complex semisimple Lie

algebra, U (g) its universal enveloping algebra, and Z(g) the center of U (g). Let h be the

(abstract) Cartan subalgebra of g [Mil93, §2]. Let b be a Borel subalgebra containing h, and

[b, b] = n its nilpotent radical. Let Π ⊂ Σ+ ⊂ Σ ⊂ h∗ be the corresponding set of simple

roots and positive roots (respectively) inside the root system of g. Let W be the Weyl group

of g, and denote by ρ ∈ h∗ the half-sum of positive roots. We are interested in the following

category of g-modules.

Definition 3.1. Let N be the category of g-modules which are

(i) finitely generated as U (g)-modules,

(ii) Z(g)-finite, and

(iii) U (n)-finite.

We refer to objects in this category as Whittaker modules.

This category is a natural generalization of Bernstein–Gelfand–Gelfand’s (BGG) cate-

gory O. Indeed, if condition (ii) is replaced by a h-semisimplicity condition, the resulting

category is exactly BGG category O [Hum08]. A key difference between N and O is that

when the h-semisimplicity condition is relaxed to Z(g)-finiteness, the existence of weight

space decompositions is lost. However, the finiteness conditions (ii) and (iii) provide us

with other useful decompositions of N that lead to structural results reminiscent of those

in BGG category O. The goal of this section is to describe these decompositions.

Condition (ii) in Definition 3.1 leads to our first categorical decomposition of N . We

start by recalling some standard terminology. A central character is algebra morphism

χ : Z(g) → C. If a g-module V has the property that z · v = χ(z)v for z ∈ Z(g), v ∈ V,
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then we say V has central character χ. If for any z ∈ Z(g), z− χ(z) acts locally nilpotently

on a g-module V, we say V has generalized central character. The finite-generation and

Z(g)-finiteness conditions in Definition 3.1 imply that the annihilator IV ⊂ Z(g) of a

Whittaker module V is an ideal of finite codimension in Z(g). Therefore, there exists a

finite dimensional commuting family of operators Z(g)/IV acting on V which leads to a

decomposition of V into infinitesimal blocks

V =
⊕
χ∈S

Vχ.

Here S is a finite indexing set, Vχ = {v ∈ V|(z− χ(z))k · v = 0, z ∈ Z(g), for some k ∈ N}

and χ : Z(g) −→ C is a central character. Note that because the action of Z(g) commutes

with the action of g, each Vχ is a g-submodule of V.

We can rephrase this decomposition in terms of Weyl group orbits in h∗. Fix λ ∈ h∗, and

let θ = W · λ be the Weyl group orbit of λ in h∗. We can uniquely associate a maximal ideal

Jθ ⊂ Z(g) to θ in the following way. The Harish-Chandra homomorphism γ : Z(g) →

U (h) (Section 2.1) leads to an isomorphism of the center of U (g) with Weyl group invariant

polynomials on h∗,

Z(g) ' P(h∗)W .

(See, for example, [Hum08] for a detailed description of how this isomorphism is con-

structed from γ.) This induces a bijection between maximal ideals of Z(g) and maximal

ideals of P(h∗)W . By Hilbert’s Nullstellensatz [Har77, Ch. I Thm. 1.3A], maximal ideals

in P(h∗) correspond to elements of h∗, and maximal ideals in P(h∗)W correspond to Weyl

group orbits of these elements. So to a Weyl group orbit θ, we can associate a unique

maximal ideal Jθ ofZ(g). In particular, Jθ = kerχθ for the central character χθ : Z(g) −→ C

defined by z 7→ (λ− ρ)(γ(z)).

Let Nθ be the full subcategory of N consisting of modules annihilated by Jθ ; that

is, modules with central character χθ . Let Nθ̂ be the full subcategory of N consisting

of modules annihilated by some power of Jθ ; that is, modules with generalized central

character χθ . Our decomposition of V into Vχ above is a decomposition of a Whittaker

module into the direct sum of finitely many submodules which are objects in Nθ̂ for

distinct θ. This implies the following lemma.
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Theorem 3.2. There is a categorical decomposition

N =
⊕

θ∈h∗/W

Nθ̂ .

In particular, every object in N can be decomposed into the direct sum of finitely many objects in

different Nθ̂ .

There is another categorical decomposition of N that follows from condition (iii) in

Definition 3.1. For V ∈ N and η ∈ n∗, let Vη be the generalized η-weight space (Section

2.1). Such a Vη is non-zero only if η|[n,n] = 0; that is, if η is a Lie algebra morphism [Bou05,

Ch. VII, §1, no. 3, Prop. 9.(iii)]. We refer to η ∈ n∗ with this property as n-characters.

Because n is a nilpotent Lie algebra and any module V ∈ N is U (n)-finite, we have the

following lemma by [Bou05, Ch. VII, §1, no. 3, Prop. 8.(i)].

Lemma 3.3. Let V be an object in the category N . Then

V =
⊕
η∈n∗

Vη .

Conditions (i) and (ii) in Definition 3.1 imply that the generalized n-weight spaces Vη

are invariant under the action by n [Bou05, Ch. VII, §1, no. 3, Prop. 9.(i)]. In this setting,

they are also invariant under the action of g.

Lemma 3.4. Let V be an object in N . For any η ∈ n∗, Vη is a g-module.

Proof. Consider the action map

a : g⊗C V −→ V

X⊗ v 7−→ X · v

The tensor product of the adjoint action on g with the g-action on V gives g ⊗C V the

structure of a g-module. The following calculation shows that a is a g-module morphism.

For X, Y ∈ g and v ∈ V,
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a(X · (Y⊗ v)) = a(X ·Y⊗ v + Y⊗ X · v)

= a([X, Y]⊗ v + Y⊗ X · v)

= [X, Y] · v + Y · X · v

= X ·Y · v−Y · X · v + Y · X · v

= X ·Y · v

= X · a(Y⊗ v).

Thus by restriction, a is also a n-module morphism, and for any n-weight η ∈ n∗, the action

map descends to a morphism of generalized n-weight spaces

a : (g⊗C V)η −→ Vη .

Because n is a nilpotent Lie algebra, every element of n is ad-nilpotent by Engel’s theorem

[Hum72, Ch. I §3 Thm. 3.1]. This implies that the generalized n-weight space of g

corresponding to η = 0 is all of g. That is,

g0 = {X ∈ g| ad(Y)kX = 0 for some k ∈ Z≥0 for all Y ∈ n} = g.

For any two U (n)-finite modules V and W and η, η′ ∈ n∗, a standard calculation shows

that Vη ⊗Wη′ ⊂ (V ⊗W)η+η′ . Therefore,

g⊗C Vη = g0 ⊗C Vη ⊆ (g⊗C V)0+η = (g⊗C V)η .

Hence, a maps g⊗C Vη into Vη so Vη is g-stable.

Our next result is that the sum in Lemma 3.3 is finite.

Lemma 3.5. Let V be an object in N . Then there is some finite set S ⊂ n∗ so that

V =
⊕
η∈S

Vη

Proof. Conditions (i) and (iii) of Definition 3.1 imply that V is generated by an n-invariant

finite dimensional subspace U. Consider the n-module U (g) ⊗C U, where n acts by the

tensor product of the adjoint action on U (g) and restriction of the g action on U to n. The

n-weights of U (g) ⊗C U are sums of n-weights of U (g) and n-weights of U. Because U

is finite dimensional, it has finitely many n-weights. Because n is a nilpotent Lie algebra,
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Engel’s theorem [Hum72, Ch. I §3 Thm. 3.1] implies that ad n acts nilpotently on U (n),

so the only n-weight of U (g) is η = 0. Thus, the n-weights of U (g)⊗C U are exactly the

finitely many n-weights of U.

There is a surjective action map of g-modules given by

U (g)⊗C U −→ U (g)U = V

X⊗ u 7−→ X · u.

This is a n-module morphism by the calculation in the proof of Lemma 3.4, and it descends

to a morphism of generalized n-weight spaces which is also surjective. Thus, any n-weight

of V is a n-weight of U (g)⊗C V, and there are only finitely many such n-weights.

Denote by Nη the full subcategory of Whittaker modules V with the property that

V = Vη . Lemma 3.3, Lemma 3.4, and Lemma 3.5 imply the following theorem.

Theorem 3.6. There is a categorical decomposition

N =
⊕
η∈n∗
Nη .

In particular, every object in N can be decomposed into the direct sum of finitely many objects in

different Nη .

Let Nθ,η = Nθ ∩ Nη . By Schur’s lemma [Hum72, Ch. II §6 Lem. 6.1], any irreducible

g-module V has a central character, so any irreducible object in N lies in some Nθ . Ad-

ditionally, because the Vη are g-submodules of V, any irreducible object of N also lies in

some Vη . Therefore, any irreducible Whittaker modules lies in Nθ,η for some Weyl group

orbit θ and some η ∈ n∗.

Next we explore a different perspective of the category Nθ,η . Let K be a connected

algebraic group with Lie algebra k, and φ a morphism of K onto the group of inner auto-

morphisms Int(g) such that the differential of φ induces an injection of k into g. In this way,

we can view k as a subalgebra of g. We say that (g, K) is a Harish-Chandra pair if K acts on

the flag variety X of g with finitely many orbits.

Fix a Harish-Chandra pair (g, K), and a n-character η ∈ n∗.

Definition 3.7. An η-twisted Harish-Chandra module is a triple (π, ν, V) such that
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(i) (π, V) is a finitely generated U (g)-module,

(ii) (ν, V) is an algebraic representation of K, and

(iii) the differential of the K-action on V induces a U (k)-module structure on V such that

for any ξ ∈ k,

π(ξ) = ν(ξ) + η(ξ).

Denote byM f g(g, K, η) the category of η-twisted Harish-Chandra modules.

Let λ ∈ h∗ and θ = W · λ be the Weyl group orbit of λ. Let Jθ be the corresponding

maximal ideal of Z(g) described previously. Define Uθ = U (g)/JθU (g). Then denote

by M f g(Uθ , K, η) the full subcategory of M f g(g, K, η) consisting of modules which are

actually Uθ-modules; that is, modules annihilated by Jθ . These are precisely the objects of

M f g(g, K, η) with central character χθ .

Let G be a Lie group such that G =Int(g), and N ⊂ G a subgroup such that Lie(N) = n.

We will show that the categoryM f g(Uθ , N, η) is equivalent to Nθ,η . Let V be an object in

Nθ,η , and C−η the one-dimensional n-module where n acts by −η. Consider the induced

g-module V ⊗C−η . This module is U (n)-finite and V ⊗C−η = (V ⊗C−η)0; that is, for any

v ∈ V ⊗C−η , nk · v = 0 for sufficiently large k ∈ N. This implies that we can exponentiate

the n-action to get an algebraic N-action on V ⊗ C−η whose differential is the n-action.

There is a natural isomorphism V −→ V⊗C−η given by sending v ∈ V to v⊗ 1 ∈ V⊗C−η .

This isomorphism gives us an algebraic action of N on V whose differential differs from

the original action of n by η. Thus, V ∈ M(Uθ , N, η). This proves the following lemma.

Lemma 3.8. We have an equivalence of categories.

Nθ,η =M(Uθ , N, η).

This association lets us use the localization functor of Beilinson and Bernstein to study

the category of Whittaker modules geometrically. In particular, by localizing objects in

M(UΘ, N, η), one obtains a category of η-twisted holonomic D-modules which are equiv-

ariant for the action of N. We will discuss the details of this construction in Section 4.2,

but we remark here that this correspondence immediately implies that objects in N have
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finite length composition series. This fact was also proven algebraically by McDowell in

[McD85, §2 Thm. 2.8].

3.1 Standard and Simple Modules
In [McD85], McDowell introduced a class of induced modules inN that generalize the

Verma modules of BGG category O, and showed that all irreducible objects in N arise

as quotients of these “standard modules.” In this section, we review this construction

following [Luk04]. We show that standard modules decompose into hΘ-weight spaces for

the action of a certain subalgebra hΘ ⊂ h determined by a character η ∈ n∗, and that these

hΘ-weight spaces have finite length composition series. Then we show that all modules in

Nη admit generalized hΘ-weight space decompositions, which is the key piece of structure

needed in Section 3.2 to establish a character theory for N .

For the remainder of this subsection, fix a character η ∈ n∗. For α ∈ Σ, let gα be the root

space corresponding to α (Section 2.1). The character η determines a subset Θ ⊂ Π of the

simple roots in the following way:

Θ = {α ∈ Π : η|gα 6= 0}.

Because η|[n,n] = 0, η only acts nontrivially on weight spaces corresponding to simple

roots, so Θ is indeed a subset of simple roots. If Θ = Π, we say that η is nondegener-

ate. We call a Whittaker module V ∈ Nη for η nondegenerate a nondegenerate Whittaker

module. The cyclically generated “Whittaker modules” studied by Kostant in [Kos78] are

nondegenerate Whittaker modules in our terminology.

Let ΣΘ ⊂ Σ be the sub-root system generated by Θ, and Σ+
Θ = Σ+ ∩ ΣΘ the corre-

sponding set of positive roots. Let WΘ be the Weyl group of ΣΘ, and ρΘ = 1
2 ∑α∈Σ+

Θ
α.

Let

nΘ =
⊕

α∈Σ+
Θ

gα, uΘ =
⊕

α∈Σ+\Σ+
Θ

gα, n̄Θ =
⊕

α∈−Σ+
Θ

gα, and ūΘ =
⊕

α∈−Σ+\−Σ+
Θ

gα.

In this way, the character η determines a reductive subalgebra `Θ = n̄Θ ⊕ h⊕ nΘ of g and a

parabolic subalgebra pΘ = `Θ ⊕ uΘ. The reductive subalgebra decomposes into the direct

sum of a semisimple subalgebra sΘ and its center zΘ. The semisimple subalgebra sΘ in this

decomposition is the derived subalgebra [`Θ, `Θ] [Hum72, Ch. V §19 Prop. 1.(a)], and it is

easy to check that the center zΘ is the subalgebra hΘ = {H ∈ h | α(H) = 0, α ∈ Θ} ⊂ h.
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Let γΘ : Z(`Θ) → U (h) be the untwisted Harish-Chandra homomorphism of Z(`Θ)

[Hum08, Ch. 1 §7]. Fix λ ∈ h∗, and define ϕΘ,λ : U (h) −→ C to be the homomorphism

sending H ∈ h to (λ− ρΘ)(H) ∈ C. The homomorphism

ΩΘ,λ = ϕΘ,λ ◦ γΘ : Z(`Θ) −→ C (3.1)

is a central character ofZ(`Θ). As explained in the preceding section, there is a correspond-

ing maximal ideal in Z(`Θ). This gives us a map associating elements of h∗ to maximal

ideals in Z(`Θ):

ξΘ : h∗ −→ MaxZ(`Θ)

λ 7→ ker(ΩΘ,λ)

From the data (λ, η) ∈ h∗ × n∗, we construct a `Θ-module

Y(λ, η) = U (`Θ)/ξΘ(λ)U (`Θ)⊗U (nΘ) Cη .

Here Cη is the one-dimensional U (nΘ)-module where nΘ acts by η. This induced module

Y(λ, η) is irreducible. Indeed, if we restrict η to nΘ, it is nondegenerate, so as an sΘ-module,

Y(λ, η) is isomorphic to the nondegenerate Whittaker module Yξ,η defined in [Kos78, 3.6.1]

for ξ = ΩΘ,λ. One of Kostant’s primary results in [Kos78] is that all nondegenerate

Whittaker modules constructed in this way are irreducible. McDowell shows in [McD85,

Prop. 2.3] that Y(λ, η) is also irreducible as an `Θ-module. We use Y(λ, η) to construct

standard modules in N .

Definition 3.9. The standard Whittaker module in N associated to λ ∈ h∗ and the character

η ∈ n∗ is the g-module

M(λ, η) = U (g)⊗U (pΘ) Y(λ− ρ + ρΘ, η).

Here Y(λ − ρ + ρΘ, η) is a U (pΘ)-module by letting uΘ act trivially and M(λ, η) is a g-

module by left multiplication on the first coordinate.

To get a sense for this construction, it is useful to examine extreme values of η. If η = 0,

then Θ is empty, and M(λ, 0) = U (g)⊗U (b) Y(λ− ρ, 0) is a Verma module of highest weight

λ− ρ. If η is nondegenerate, then M(λ, η) = Y(λ, η) is an irreducible Whittaker module

with central character χθ , as in [Kos78]. Here θ = w · λ.



23

Next we analyze the action of the center hΘ of `Θ on M(λ, η). We will show that it acts

semisimply. For a module V inNη and linear functional µ ∈ hΘ∗, let Vµ be the correspond-

ing hΘ-weight space, and Vµ the corresponding generalized hΘ-weight space (Section 2.1).

As in Section 2.1, if Vµ 6= 0, we say µ is a hΘ-weight of V. As `Θ-modules, M(λ, η) '

U (ūΘ)⊗C Y(λ− ρ + ρΘ, η), where U (ūΘ)⊗C Y(λ− ρ + ρΘ, η) is a `Θ-module by the tensor

product of the adjoint action of `Θ on U (uΘ) with the action of `Θ on Y(λ − ρ + ρΘ, η).

Indeed, the map

p : U (ūΘ)⊗C Y(λ− ρ + ρΘ, η) −→ M(λ, η)

Y⊗ y 7−→ Y⊗ y

gives an isomorphism between the two vector spaces, and one can check that p is an

`Θ-module morphism, and thus a hΘ-module morphism. This implies that p induces

an isomorphism of hΘ-weight spaces, and all hΘ-weights of M(λ, η) are hΘ-weights of

U (ūΘ) ⊗C Y(λ − ρ + ρΘ, η). This observation allows us to describe the hΘ-weights and

hΘ-weight spaces of standard Whittaker modules very explicitly.

The irreducible `Θ-module Y(λ− ρ + ρΘ, η) has central character ΩΘ,λ−ρ+ρΘ (equation

3.1). Because hΘ is isomorphic to the center of `Θ, it is a subset of Z(`Θ). In particular, we

can apply the Harish-Chandra homomorphism γΘ to elements of hΘ, and because γΘ is a

projection onto the U (h)-component, elements of hΘ are fixed by γΘ. So for any H ∈ hΘ,

and Y ∈ Y(λ− ρ + ρΘ, η),

H ·Y = ΩΘ,λ−ρ+ρΘ(H)Y = ((λ− ρ)(H))Y.

For any ν ∈ h∗, we use bold to denote the restriction of ν to hΘ∗; that is, ν = ν|hΘ ∈ hΘ∗. By

the discussion above, we see that hΘ acts on the irreducible `Θ-module Y(λ− ρ + ρΘ, η) by

λ − ρ ∈ hΘ∗; i.e.

Y(λ− ρ + ρΘ, η) = Y(λ− ρ + ρΘ, η)λ−ρ.

Next we define an order relation on hΘ∗. Let Π−Θ = {α1, α2, · · · , αp}. Then {α1, · · · , αp}

is a basis for hΘ∗. For α, β ∈ hΘ∗, say that α ≤ β if

β− α = c1α1 + c2α2 + · · ·+ cpαp
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for ci ∈ Z≥0. This defines a partial order on hΘ∗ [McD85, §1 Prop. 1.8(a)]. Now, we are

ready to show that M(λ, η) decomposes into hΘ-weight spaces. First we can analyze the

action of hΘ on U (ūΘ).

Lemma 3.10. hΘ acts semisimply on U (ūΘ).

Proof. Let Yi ∈ g−αi for αi ∈ Π\Θ. By the PBW theorem, Yk1
1 · · ·Y

kp
p form a basis of U (ūΘ),

where ki ∈ Z≥0. For H ∈ hΘ,

H ·Yk1
1 · · ·Y

kp
p = [H, Yk1

1 ]Yk2
2 . . . Ykp

p + Yk1
1 [H, Yk2

2 ] . . . Ykp
p + . . . + Yk1

1 . . . Y
kp−1
p−1 [H, Ykp

p ]

= (−k1α1 − k2α2 − . . .− kpαp)(H)Yk1
1 · · ·Y

kp
p .

So hΘ acts on any element of U (ūΘ) by a scalar, and the possible hΘ-weights are

µ = −k1α1 − . . .− kpαp

for ki ∈ Z≥0. This implies that in the ordering described above, µ ≤ 0, with equality if and

only if ki = 0 for all i. Therefore,

U (ūΘ) =
⊕
µ≤0

U (ūΘ)µ

for µ = −∑
p
i=1 kiαi.

The fact that hΘ acts semisimply on both U (ūΘ) and Y(λ − ρ + ρΘ, η) implies that

M(λ, η) decomposes into hΘ-weight spaces. In particular,

M(λ, η) =
⊕

ν≤λ−ρ

M(λ, η)ν

where M(λ, η)λ−ρ ' Y(λ− ρ+ ρΘ), and M(λ, η)ν ' U (ūΘ)µ⊗C Y(λ− ρ+ ρΘ, η) for µ ≤ 0

in hΘ∗. The following proposition lists the basic properties of standard Whittaker modules.

Proposition 3.11. (i) M(λ, η) = M(µ, η) if and only if WΘ · λ = WΘ · µ.

(ii) M(λ, η) has a unique irreducible quotient L(λ, η).

(iii) L(λ, η) = L(µ, η) if and only if WΘ · λ = WΘ · µ.

Proof. By [Kos78, Thm. 3.6.1], Y(λ − ρ + ρΘ, η) is completely determined by its central

character ΩΘ,λ−ρ+ρΘ , and two weights determine the same central character if and only if
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they lie in the same Weyl group orbit [Hum08, Ch. 1 §10 Thm. 1.10]. This establishes (i).

Any submodule N ⊂ M(λ, η) is the sum of hΘ-weight spaces,

N =
⊕

Nµ.

Each Nµ ⊂ M(λ, η)µ is a `Θ-submodule. The highest hΘ-weight space of M(λ, η), M(λ, η)λ−ρ,

is irreducible over `Θ, and generates M(λ, η) over g. This implies that any submodule N

must be contained in the sum of hΘ-weight spaces corresponding to µ < λ − ρ. We can

consider the sum of all proper submodules, which is itself a proper submodule, and is

necessarily the unique maximal submodule. This implies that M(λ, η) has a unique irre-

ducible quotient. To prove (iii), it is enough to observe that L(λ, η) is uniquely determined

by M(λ, η), which is uniquely determined by Y(λ − ρ + ρΘ, η). By our remarks earlier,

Y(λ− ρ + ρΘ, η) = Y(µ− ρ + ρΘ, η) if and only if λ ∈WΘ · µ.

McDowell showed that every irreducible object in N is obtained in this way [McD85,

§2 Thm. 2.9].

Proposition 3.12. Every simple object inN is isomorphic to L(λ, η) for some λ ∈ h∗ and η ∈ n∗.

The hΘ-weight spaces of M(λ, η) have a richer structure than just that of hΘ-modules.

We will explore this structure in the following proposition, but first we must introduce

some notation. For any `Θ-module V, we can restrict the action of `Θ on V to an action

of the semisimple Lie algebra sΘ ⊂ `Θ, and we denote the corresponding sΘ-module by

V. Note that as vector spaces, V = V. The bar is used to indicate that we are considering

the space as an sΘ-module and results about modules over semisimple Lie algebras can

be applied. Let N (sΘ) be the category of finitely generated, Z(sΘ)-finite, U (nΘ)-finite

sΘ-modules. In other words, this is the category N for the semisimple Lie algebra sΘ.

Proposition 3.13. Let M(λ, η) =
⊕

ν≤λ−ρ M(λ, η)ν be the decomposition of a standard Whit-

taker module in Nη into hΘ-weight spaces. For each ν ∈ hΘ∗,

(i) M(λ, η)ν is a finite length `Θ-module, and

(ii) M(λ, η)ν is an object in N (sΘ).

Proof. If η = 0, then hΘ = ∅ and sΘ = g. In this setting, the assertion is trivially true, so

we assume η 6= 0. The action of `Θ commutes with the action of hΘ, so the n-weight spaces
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of M(λ, η) are `Θ-stable. This proves that M(λ, η)ν are `Θ-modules. The vector space

U (ūΘ)µ is finite dimensional because there are only finitely many ways that we can express

a given µ ≤ 0 in hΘ∗ as a negative sum of roots in Π\Θ. This implies that M(λ, η)ν is the

tensor product of a finite dimensional `Θ-module with an irreducible Whittaker module.

Such modules are of finite length and have composition factors which are irreducible

Whittaker modules (for η|nΘ ) by [Kos78, §4 Thm. 4.6], which proves (i). Because categories

of Whittaker modules are closed under extensions [MS97, §1], this in turn implies that

M(λ, η)ν is an object in N (sΘ).

The hΘ-weight space structure of M(λ, η) described in proposition 3.13 is also inherited

by its unique irreducible quotient L(λ, η). Additionally, because the unique maximal

submodule N ⊂ M(λ, η) described in the proof of Proposition 3.11 has hΘ-weights which

are strictly less than λ− ρ, L(λ, η) has a unique maximal hΘ-weight, λ− ρ, with respect to

the partial order on hΘ∗, and all other weights of L(λ, η) lie in a cone below this “highest”

weight. The highest hΘ-weight space of a standard module inN and the highest hΘ-weight

space of its unique irreducible quotient are both isomorphic to an irreducible Whittaker

module: M(λ, η)λ−ρ = L(λ, η)λ−ρ = Y(λ− ρ + ρΘ, η).

We finish this section by showing that all modules in Nη decompose into generalized

hΘ-weight spaces, and these weight spaces are modules in N (sΘ). As above, we use an

overline to indicate that we are considering an `Θ-module to be an sΘ-module, and before

stating the theorem, we will describe this relationship more explicitly for generalized hΘ-

weight spaces. Let V inNη and µ ∈ hΘ∗ be a hΘ-weight of V. Let Cµ be the one dimensional

irreducible hΘ-module where hΘ acts by µ. We have an isomorphism of `Θ-modules Vµ '

Vµ ⊗C Cµ, where the tensor module is defined by the action

(Y + H) · v⊗ z = g · v⊗ z + v⊗ h · z

for Y ∈ sΘ, H ∈ hΘ, v ∈ Vµ and z ∈ Cµ. Because hΘ acts by scalars on generalized hΘ-

weight spaces, it is clear that Vµ is irreducible if and only if Vµ is irreducible. Additionally,

for irreducible sΘ-modules V and W, V ' W if and only if V ' W as `Θ-modules. Now

we are ready to state the main theorem of this section.
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Lemma 3.14. Any object V in Nη admits a decomposition

V =
⊕

µ∈hΘ∗

Vµ

where the generalized hΘ-weight spaces Vµ are finite length `Θ-modules. Moreover, if we restrict

the `Θ-action to the semisimple part sΘ ⊂ `Θ and denote the resulting sΘ-module by Vµ, the

generalized hΘ-weight spaces Vµ of V are objects in N (sΘ).

Proof. By Theorem 3.2, it is enough to consider V ∈ Nθ,η . By [MS97, §1], these categories

are stable under subquotients and extensions. The hΘ-semisimplicity of irreducible mod-

ules inNθ,η implies that all modules inNθ,η are U (hΘ)-finite. Because objects inN are finite

length and exact sequences of g-modules in Nθ,η descend to exact sequences of hΘ-weight

spaces, the assertion follows from induction in the length of V.

3.2 Character Theory
In this section, we use the decomposition of a module inNη into generalized hΘ-weight

spaces to define a character theory in the category of Whittaker modules. Our main

result is that the character of a module V in Nη completely determines its class in the

Grothendieck group KNη .

We begin by recalling the Grothendieck group of an abelian category. Let C be an

abelian category. Let FC be the free abelian group on the set of isomorphism classes of

objects in C. For an object C ∈ C, let [C] be the corresponding element in FC. Let E ⊂ FC

be the subgroup generated by {[B]− [A]− [C]} for all short exact sequences

0 −→ A −→ B −→ C −→ 0

of objects in C. The Grothendieck group KC of the category C is the quotient group FC/E .

Let {Ai : i ∈ I} be a set of nonisomorphic representatives of simple objects in C. Assume

in addition that objects in C have finite length. Then

KC '
⊕
i∈I

Z[Ai]

as abelian groups. For two objects B, C ∈ C, [B]=[C] in KC if and only if B and C have the

same composition factors.

Fix a character η 6= 0, and let KN (sΘ) be the Grothendieck group of the category

N (sΘ).
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Definition 3.15. Let V be an object in Nη . The character of V is

ch V = ∑
µ∈hΘ∗

[Vµ]eµ

where [Vµ] is the element 1⊗ [Vµ] ∈ C⊗Z KN (sΘ) and eµ is a formal variable parameter-

ized by µ ∈ hΘ∗.

If η = 0 and V ∈ N0, then we define

ch V = [V] ∈ KN .

A standard Whittaker module is completely determined by its character.

Proposition 3.16. The following are equivalent.

(i) ch M(λ, η) = ch M(ν, η).

(ii) M(λ, η) = M(ν, η).

Proof. It is clear that (ii) implies (i). Assume that ch M(λ, η) = ch M(ν, η). Then M(λ, η)

and M(ν, η) have the same hΘ-weights, and [M(λ, η)µ] = [M(ν, η)µ] for any such hΘ-

weight µ. This implies that λ − ρ is an hΘ-weight of M(ν, η), so λ − ρ ≤ ν − ρ. But also,

ν − ρ is an hΘ-weight of M(λ, η), so ν − ρ ≤ λ − ρ and thus λ − ρ = ν − ρ. Because

M(λ, η)λ−ρ = Y(λ− ρ + ρΘ, η) and M(ν, η)ν−ρ = Y(ν− ρ + ρΘ, η), we have

[Y(λ− ρ + ρΘ, η)] = [Y(ν− ρ + ρΘ, η)] ∈ C⊗Z KN (sΘ).

Because Y(λ− ρ + ρΘ) and Y(ν− ρ + ρΘ) are irreducible sΘ-modules, [Y(λ− ρ + ρΘ, η)] =

[Y(ν− ρ + ρΘ, η)] implies that Y(λ− ρ + ρΘ, η) ' Y(ν− ρ + ρΘ, η) as sΘ-modules. Ir-

reducible Whittaker modules for a fixed η are completely determined by their central

character [Kos78, §3 Thm. 3.6.1], so both modules have central character ΩΘ,λ−ρ+ρΘ . This

is only possible if WΘ · λ = WΘ · ν, which implies by Proposition 3.11 (i) that M(λ, η) =

M(ν, η).

Because any module V in Nθ,η has central character χθ , there are only finitely many

irreducible modules in the category Nθ,η . Let {L(λ1, η), . . . , L(λm, η)} be the distinct irre-

ducible modules inNθ,η . Any module V inNθ,η must have composition factors on this list,
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so by Lemma 3.14, the hΘ-weights µ of V that show up in the character must be of the form

µ = λi − ρ−∑
p
j=1 mjαj for 1 ≤ i ≤ m and mj ∈ Z≥0. Let S0 = {λ1 − ρ, . . . , λm − ρ} ⊂ hΘ∗

be the collection of highest weights of irreducible objects in Nθ,η .

If V and W are isomorphic objects in Nθ,η , then ch V = ch W. Hence we have a well-

defined map

ch : FNθ,η −→ ∏
µ≤S0

C⊗Z KN (sΘ)eµ

given by ch[V] = ch V. Here, µ ≤ S0 means that µ ≤ λi − ρ for some λi − ρ ∈ S0.

Because the coefficients of eµ in the character of a module V are tensor products of

complex numbers with isomorphism classes in the Grothendieck group KN (sΘ), for any

short exact sequence

0 −→ U −→ V −→W −→ 0

of objects in Nθ,η , ch V = ch U + ch W. Therefore, ch descends to a homomorphism

ch : KNθ,η −→ ∏
µ≤S0

C⊗Z KN (sΘ)eµ

which we call by the same name. Our main result of this section is the following.

Theorem 3.17. ch : KNθ,η −→ ∏µ≤S0
C⊗Z KN (sΘ)eµ is an injective homomorphism.

Proof. Because modules inN have finite length, an isomorphism class in the Grothendieck

group of an object V in Nθ,η is the sum of the isomorphism classes of its composition fac-

tors. If {L(ν1, η), . . . , L(νk, η)} is a set of non-isomorphic composition factors of a module

V ∈ Nθ,η , then because ch is a homomorphism,

ch[V] =
k

∑
i=1

ai ch[L(νi, η)],

where ai is the multiplicity of L(νi, η) in V and [V] ∈ KNθ,η . An element [V] ∈ KNθ,η is in

the kernal of ch when

ch[V] =
k

∑
i=1

ai ch[L(νi, η)] = 0.

Therefore, to show that ch is injective, it is enough to show that the set

{ch[L(λ1, η)], . . . , ch[L(λm, η)]} is linearly independent.
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Consider a nontrivial linear combination

b1 ch[L(λ1, η)] + · · ·+ bm ch[L(λm, η)] = 0.

As before, let S0 = {λ1 − ρ, . . . , λm − ρ} ⊂ hΘ∗ be the collection of the highest hΘ-weights

of the irreducible objects in Nθ,η . Note that the elements {λi}m
i=1 ⊂ h∗ are distinct, but it

is possible that when restricted to hΘ, λi = λj for some i 6= j, so S0 might have repeated

elements. Choose a maximal element of this set, λj − ρ. Because λj − ρ is a maximal

element of S0, it can only appear as a highest weight of modules in {L(λ1, η), . . . , L(λm, η)}.

Because the linear combination of irreducible characters vanishes, the coefficient of

eλj−ρ must vanish as well. That coefficient is

bi1 [L(λi1 , η)λj−ρ] + · · ·+ bin [L(λin , η)λj−ρ] = 0

where {λi1 , . . . , λin} ⊂ {λ1, . . . , λm} are the elements of h∗ so that λi1 − ρ = · · · = λin −

ρ = λj − ρ. The highest hΘ-weight space of an irreducible module in N is an irreducible

Whittaker module for sΘ, namely

L(λi, η)λi−ρ = Y(λi − ρ + ρΘ, η).

Therefore, we have a vanishing linear combination of isomorphism classes of irreducible

objects in C⊗Z KN (sΘ):

bii [Y(λi1 − ρ + ρΘ, η)] + · · ·+ bin [Y(λin − ρ + ρΘ, η)] = 0

Each of the classes in the above sum must be distinct because the corresponding irreducible

modules are non-isomorphic. Distinct isomorphism classes of irreducible objects in a

Grothendieck group must be linearly independent, so we conclude that bi1 = · · · = bin = 0.

This contradicts the assumption that bi 6= 0, so a nontrivial linear combination of irre-

ducible characters cannot exist, and ch must be injective.

This immediately implies the following corollary.

Corollary 3.18. Let V and W be objects in Nθ,η . Then the following are equivalent:

(i) ch V = ch W.

(ii) V and W have the same composition factors.
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We complete this section with an explicit calculation of the character of a standard

Whittaker module. Let M(λ, η) be the standard Whittaker module determined by λ ∈ h∗

and η ∈ n∗. Recall that as `Θ-modules, M(λ, η) = U (ūΘ)⊗C Y(λ− ρ + ρΘ, η). The Cartan

subalgebra h acts semisimply on U (ūΘ), and the collection of h-weights of U (ūΘ) are

Q =

− ∑
α∈Σ+\Σ+

Θ

mαα

∣∣∣∣∣∣mα ∈ Z≥0

 .

As described in Section 3.1, M(λ, η) decomposes into hΘ-weight spaces of the form

M(λ, η)ν = U (ūΘ)µ ⊗C Y(λ− ρ + ρΘ, η)

for µ ≤ 0 in hΘ∗. The hΘ-weight space of U (ūΘ) corresponding to a hΘ-weight µ ≤ 0 is the

sum of the h-weight spaces of U (ūΘ) corresponding to h-weights that restrict to µ on hΘ;

i.e. for µ ∈ hΘ,

U (ūΘ)µ = ∑
κ∈Q,κ|

hΘ=µ

U (ūΘ)κ.

We define a function p : Q→N by p(κ) = dimU (ūΘ)κ.1 By [McD85, §2 Lem. 2.2(b)], each

U (ūΘ)µ is a finite-dimensional `Θ-module, so the sΘ-module M(λ, η)ν is the direct sum

of a finite-dimensional sΘ-module and an irreducible sΘ-module. This allows us to apply

[Kos78, §4 Thm. 4.6] and conclude that nΘ acts on M(λ, η)ν by the nondegenerate character

η|nΘ and that M(λ, η)ν has composition series length equal to dimU (ūΘ)µ = ∑
κ∈Q,κ|

hΘ=µ

p(κ).

Furthermore, [Kos78, §4 Thm. 4.6] implies that the composition factors of M(λ, η)ν are

{Y(λ− ρ + ρΘ + κ, η) | κ ∈ Q and κ = µ}.

This implies that in the Grothendieck group KN (sΘ),

[M(λ, η)ν] = ∑
κ∈Q,κ|

hΘ=µ

p(κ)[Y(λ− ρ + ρΘ + κ, η)].

Therefore,

ch M(λ, η) = ∑
ν∈hΘ∗

[M(λ, η)ν)]eν = ∑
κ∈Q

p(κ)[Y(λ− ρ + ρΘ + ν, η)]eλ−ρ+κ. (3.2)

1This function can be interpreted combinatorially as counting the number of distinct ways that ν ∈ h∗ can
be expressed as a sum of roots in Σ+\Σ+

Θ . This is a slight modification of Kostant’s partition function.



CHAPTER 4

A CATEGORY OF TWISTED SHEAVES

In this chapter, we introduce the geometric objects that correspond to Whittaker mod-

ules. Throughout this chapter, g is a complex reductive Lie algebra, h is the abstract Cartan

subalgebra of g [Mil93, §2], and X is the flag variety of g. Denote by Σ+ ⊂ Σ ⊂ h∗ the

corresponding set of positive roots in the root system of g and by W the Weyl group of Σ.

4.1 D-modules on Flag Varieties
We start by recalling a few essential facts about D-modules on flag varieties. This

section includes background that will be used in the main arguments of Chapters 5 and 6.

4.1.1 Beilinson–Bernstein Localization

A key ingredient in this story is the localization theory of Beilinson and Bernstein,

which we briefly review here. Full details can be found in [BB81, Milb]. In [BB81], Beilinson

and Bernstein construct a twisted sheaf of differential operators Dλ on X for each λ ∈ h∗.

(In the notation of Section 2, Dλ = DX,λ+ρ.) They show that for any µ ∈ θ = W · λ, the

global sections Γ(X,Dµ) ofDµ are equal to Uθ . This implies that the global sections functor

Γ maps quasicoherent Dλ-modules into U (g)-modules with central character χθ ; that is,

there is a left exact functor

Γ :Mqc(Dλ)→M(Uθ).

Beilinson and Bernstein define a localization functor

∆λ :M(Uθ)→Mqc(Dλ)

by ∆λ(V) = Dλ ⊗Uθ
V for V ∈ M(Uθ). This functor is right exact and is a left adjoint

to Γ. In [BB81], it is shown that for antidominant regular λ ∈ h∗, ∆λ is an equivalence of

categories, and its inverse is Γ.
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4.1.2 Translation Functors

Fix λ ∈ h∗, and let Dλ be the corresponding homogeneous twisted sheaf of differ-

ential operators. Any µ in the weight lattice P(Σ) (Section 2.1) naturally determines a

G-homogeneous invertible OX-module O(µ) on X. Twisting by such OX-modules defines

a functor

−(µ) :M(Dλ)→M(Dλ+µ)

by V(µ) = O(µ) ⊗OX V for V ∈ M(Dλ). We call this functor the geometric translation

functor. It is evidently an equivalence of categories, and it also induces an equivalence of

categories onMqc(Dλ) (resp.Mcoh(Dλ)) withMqc(Dλ+µ) (resp.Mcoh(Dλ+µ)).

4.1.3 Intertwining Functors

Let θ be a Weyl group orbit in h∗ consisting of regular elements. Then by Section 4.1.1,

the bounded derived category Db(M(Uθ)) of Uθ-modules is equivalent to the bounded

derived category Db(Mqc(Dλ)) of quasicoherent Dλ-modules for any λ ∈ θ. In particular,

for any λ, µ ∈ h∗, Db(Mqc(Dλ)) and Db(Mqc(Dµ)) are equivalent, and this equivalence

is given by the functor L∆µ ◦ RΓ from Db(Mqc(Dµ)) into Db(Mqc(Dλ)). In this section,

we give a geometric construction of a functor isomorphic to this functor. We follow the

construction in [Milb, Ch. 3 §3] and for brevity, we omit proofs that can be found in that

document.

Define an action of G = Int(g) on X× X by

g(x, y) = (gx, gy)

for g ∈ G and x, y,∈ X. The G-orbits are smooth subvarieties of X × X, and can be

parameterized in the following way. Given x, y in X and corresponding Borel subalgebras

bx, by, we can choose a Cartan subalgebra c contained in bx ∩ by. Let nx = [bx, bx] and

ny = [by, by]. Then bx and by determine a specialization [Mil93, §2] of (h∗, Σ, Σ+) into

(c∗, R, R+
x ), and (c∗, R, R+

y ), respectively, where R is the root system of (g, c), R+
x ⊂ R is

the collection of positive roots determined by nx, and R+
y ⊂ R is the collection of positive

roots determined by ny. The positive root systems R+
x and R+

y are related by w(R+
x ) = R+

y

for some Weyl group element w ∈ W, and this w does not depend on choice of Cartan

subalgebra in bx ∩ by. We say that by is in relative position w with respect to bx. Let
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s : h∗ → c∗ be the specialization determined by bx, and s′ : h∗ → c∗ be the specialization

determined by by. Then s′ = s ◦ w, so bx is in relative position w−1 to by. For w ∈W, let

Zw = {(x, y) ∈ X× X|by is in relative position w with respect to bx}. (4.1)

This gives us a parameterization of G-orbits in X× X [Milb, Ch. 3 §3 Lem. 3.1].

Lemma 4.1. (i) Sets Zw for w ∈W are smooth subvarieties of X× X.

(ii) The map w 7→ Zw is a bijection of W onto the set of G-orbits in X× X.

Denote by p1 and p2 the projections of Zw onto the first and second factors of X × X,

respectively. Then pi for i = 1, 2 are locally trivial fibrations with fibers isomorphic to

affine spaces of dimension `(w). Additionally, they are affine morphisms [Milb, Ch. 3 §3

Lem. 3.2]. Let ωZw|X be the invertibleOZw -module of top degree relative differential forms

for the projection p1 : Zw → X and let Tw be its inverse sheaf. Then Tw = p∗1(O(ρ− wρ)),

and there is a natural isomorphism [Milb, Ch. 3 §3 Lem. 3.3]

(Dwλ)
p1 = (Dp2

λ )Tw .

The morphism p2 : Zw → X is a surjective submersion, so the inverse image functor

p+2 :M(Dλ)→M(Dp2
λ )

is exact. Because twisting by an invertible sheaf is also an exact functor, we can define a

functor

LIw : Db(M(Dλ))→ Db(M(Dwλ))

by the formula

LIw(V ·) = p1+(Tw ⊗Zw p+2 (V
·))

for V · ∈ Db(M(Dλ)). This is the left derived functor of the functor

Iw :M(Dλ)→M(Dwλ),

where for V ∈ M(Dλ),

Iw(V) = H0 p1+(Tw ⊗OZw
p+2 (V)).

We call the right exact functor Iw the intertwining functor attached to w ∈ W. This functor

is the geometric analogue to the functor described at the beginning of this section. It

establishes our desired equivalence of derived categories [Milb, Ch. 3 §3 Thm 3.20].
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Proposition 4.2. Let w ∈W and λ ∈ h∗. Then LIw is an equivalence of the category Db(M(Dλ))

with Db(M(Dwλ)).

We complete this section by describing a useful “product formula,” [Milb, Ch. 3 §3 Cor.

3.8, Lem. 3.15] and an estimate on cohomological dimension of intertwining functors.

Proposition 4.3. Let w, w′ ∈W be such that `(w′w) = `(w′) + `(w). Then

LIw′w = LIw′ ◦ LIw

and

Iw′w = Iw′ ◦ Iw.

Given w ∈W, put

Σ+
w = {α ∈ Σ+|wα ∈ −Σ+},

and given λ ∈ h∗, put

Σλ = {α ∈ Σ|α∨(λ) ∈ Z}.

This gives us a useful estimate on the left cohomological dimension of intertwining func-

tors [Milb, Ch. 3 §3 Thm. 3.21].

Proposition 4.4. Let w ∈W and λ ∈ h∗. Then the left cohomological dimension of Iw is less than

or equal to |Σ+
w ∩ Σλ|.

A corollary to this is the following [Milb, Ch. 3 §3 Cor. 3.22].

Corollary 4.5. Let w ∈W and λ ∈ h∗ be such that Σ+
w ∩ Σλ = ∅. Then

Iw :M(Dλ)→M(Dwλ)

is an equivalence of categories.

Recall that for any S ⊂ Σ+, we say that λ ∈ h∗ is S-antidominant if it is α-antidominant

for all α ∈ S. The following theorem [Milb, Ch. 3 §3 Thm. 3.23] will play a role in future

arguments.

Theorem 4.6. Let w ∈ W and λ ∈ h∗ be Σ+
w -antidominant. Then the functors RΓ ◦ LIw and RΓ

from Db(M(Dλ)) into Db(M(UΘ)) are isomorphic.
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4.1.4 Intertwining Functors for Simple Reflections and U-functors

In this section, we examine intertwining functors Isα attached to simple reflections

α ∈ Π, and define related U-functors, following [Milb, Ch. 3 §8]. These functors will

be critical to the arguments in Chapter 6. By Corollary 4.5, if α∨(λ) is not an integer, Isα

is an equivalence of the categories Mqc(Dλ) and Mqc(Dsαλ). A more interesting case is

when α∨(λ) is an integer. This is what we will examine now.

Let α ∈ Π be a simple root, and denote by Xα the variety of parabolic subalgebras of

type α. Let pα be the natural projection of X onto Xα, and let Yα = X ×Xα X be the fiber

product of X with X relative to the morphism pα. Denote by q1 and q2 the projections of Yα

onto the first and second factors, respectively. Then we have the following commutative

diagram.

Yα X

X Xα

q2

q1 pα

pα

There is a natural embedding of Yα into X×X that identifies Yα with the closed subvariety

Z1 ∪ Zsα of X × X. Under this identification, Z1 is a closed subvariety of Yα, and Zsα is an

open, dense, affinely imbedded subvariety of Yα [Milb, Ch. 3 §8 Lem. 8.1].

Let λ ∈ h∗ be such that p = −α∨(λ) is an integer. Let L be the invertible OYα
-module

on Yα given by

L = q∗1(O((−p + 1)sαρ + α)⊗OYα
q∗2(O((−p + 1)ρ))−1.

This allows us to define functors

U j :Mqc(Dλ)→Mqc(Dsαλ)

by the formula

U j(V) = H jq1+(q+2 (V)⊗OYα
L)

for V ∈ Mqc(Dλ) [Milb, Ch. 3 §8, Lem. 8.2]. These functors first appeared in [Milb]

as geometric analogues to the Uα functors in [Vog79], and they play a critical role in the

algorithm of Chapter 6 for their semisimplicity properties. Because the fibers of q1 are

one-dimensional, U j = 0 for j 6= −1, 0, 1. If V is irreducible, the relationship between

U j(V) and Isα(V) is captured in the following theorem [Milb, Ch. 3 §8 Thm. 8.4].



37

Theorem 4.7. Let λ ∈ h∗ be such that p = −α∨(λ) is an integer, and V ∈ Mqc(Dλ) an

irreducible Dλ-module. Then either

(i) U−1(V) = U1(V) = V(pα) and U0(V) = 0, and in this case Isα(V) = 0 and L−1 Isα(V) =

V(pα); or

(ii) U−1(V) = U1(V) = 0, and in this case L−1 Isα(V) = 0 and the sequence

0→ U0(V)→ Isα(V)→ V(pα)→ 0

is exact. The module U0(V) is the largest quasicoherent Dsαλ-submodule of Isα(V) different

from Isα(V).

4.1.5 Holonomic Duality

In this section, we list some results on duality of coherent D-modules. Let λ ∈ h∗ and

θ = W · λ. Let Db
coh(M(Dλ)) be the derived category of bounded complexes of coherent

Dλ-modules. For any complex V ·, we have a duality functor

D : Db
coh(M(Dλ))→ Db

coh(M(D−λ))

given by the formula

D(V ·) = RHomDλ
(V ·, D(Dλ))[dim X].

This operation commutes with translation functors.

Lemma 4.8. For any weight ν ∈ P(Σ), the following diagram of functors is commutative

Db
coh(M(Dλ)) Db

coh(M(D−λ))

Db
coh(M(Dλ+ν)) Db

coh(M(D−λ−ν))

D

−(ν) −(−ν)

D

.

Proof. Let V · be a complex in Db
coh(M(Dλ)). Then V(ν) is a complex in Db

coh(M(Dλ+ν))

and
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D(V ·(ν)) = R HomDλ+ν
(V ·(ν), D(Dλ+ν))[dim X]

= R HomDλ+ν
(O(ν)⊗OX V

·,O(ν)⊗OX D(Dλ)⊗OX O(−ν))[dim X]

= R HomDλ+ν
(O(ν)⊗OX V

·,O(ν)⊗OX D(Dλ))[dim X]⊗OX O(−ν)

= R HomDλ
(V ·, D(Dλ))[dim X]⊗OX O(−ν)

= D(V ·)(−ν).

This completes the proof.

In the case of holonomic Dλ-modules, we can use this duality on derived categories to

define a notion of duality on modules. LetMhol(Dλ) be the thick subcategory ofMcoh(Dλ)

consisting of holonomic Dλ-modules. If V is an object in Mhol(Dλ), then D(D(V)) is a

complex in Db
coh(D−λ) with holonomic cohomology, and Hp(D(D(V))) = 0 for p 6= 0.

Therefore, we can define a functor

∗ :Mhol(Dλ)→Mhol(D−λ)

by

V∗ = H0(D(D(V))).

This is the holonomic duality functor. We have the following result.

Theorem 4.9. (i) The functor V 7→ V∗ fromMhol(Dλ) toMhol(D−λ) is an antiequivalence

of categories.

(ii) The functor V 7→ (V∗)∗ is isomorphic to the identity functor onMhol(Dλ).

4.1.6 Inverses of Intertwining Functors

In this section, we use the duality functors introduced in Section 4.1.5 to describe

inverses of the intertwining functors of Section 4.1.3, following [Milb, Ch. 3 §4]. As in

earlier sections, we omit proofs that can be found in that document. Our first result is the

following [Milb, Ch. 3 §4 Lem. 4.2].

Lemma 4.10. Let λ ∈ h∗ and θ = W · λ. For any V · ∈ Db
coh(M(Dλ)),

RΓ(D(V ·)) = R HomDλ
(V ·, D(Dλ))[dim X].
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In other words, the functors RΓ ◦D and R HomDλ
(−, D(Dλ))[dim X] from Db

coh(M(Dλ))

into Db(M(Uθ)) are isomorphic.

Let θ be a regular orbit. For such orbits θ, the homological dimension of the ring Uθ

is finite [Milb, Ch. 3 §1 Thm. 1.4], and the principal antiautomorphism of U (g) induces

an isomorphism of the ring opposite to Uθ with U−θ , where −θ = W · −λ for λ ∈ θ.

Let Db(M f g(Uθ)) be the bounded derived category of finitely generated Uθ-modules. We

define a covariant duality functor from Db(M f g(Uθ)) into Db(M f g(U−θ)) by

Dalg(V ·) = R HomUθ
(V ·, D(Uθ)).

By construction, we have D2
alg ' id. The relationship between this algebraic duality and

the functor D defined in Section 4.1.5 is given by the following lemma [Milb, Ch. 3 §4 Lem.

4.3].

Lemma 4.11. Let λ ∈ h∗ be regular. Then the following diagram of functors commutes.

Db(Mcoh(Dλ)) Db(Mcoh(D−λ))

Db(M f g(Uθ)) Db(M f g(U−θ))

D

RΓ RΓ

Dalg[dim X]

.

We will use this relationship to compute an inverse for intertwining functors. Let α be

a simple root and V · a complex in Db(Mcoh(Dλ)). If λ is α-antidominant, then by Theorem

4.6

RΓ(V ·) = RΓ(LIsα(V ·)).

This implies that

RΓ(D(V ·)) = Dalg(RΓ(V ·))[dim X] = Dalg(RΓ(LIsα(V ·)))[dim X] = RΓ(D(LIsα(V ·))).

Here D(V ·) is in Db(Mcoh(D−λ)) and D(LIsα(V ·)) is in Db(Mcoh(D−sαλ)). Therefore,

−sαλ is α-antidominant, and so

RΓ(D(V ·)) = RΓ(LIsα(D(LIsα(V ·)))).

Because D(V ·) and LIsα(D(LIsα(V ·))) are in Db(Mcoh(D−λ)) and RΓ is an equivalence of

categories, we have

D(V ·) = LIsα(D(LIsα(V ·))).



40

Therefore,

LIsα ◦ (D ◦ LIsα ◦D) ' 1

on Db(Mcoh(D−λ)). All of these functors commute with twists, so this relationship holds

in general; i.e. for w ∈W,

LIw ◦ (D ◦ LIw−1 ◦D) ' 1.

This proves the main result of this section.

Theorem 4.12. The quasiinverse of the intertwining functor LIw : Db(Mcoh(Dλ)) →

Db(Mcoh(Dwλ)) is equal to

D ◦ LIw−1 ◦D : Db(Mcoh(Dwλ))→ Db(Mcoh(Dλ)).

4.2 Twisted Harish-Chandra Sheaves
The geometric category that emerges as an analogue to the category of Whittaker mod-

ules is a certain subcategory ofMqc(Dλ). Fix a Harish-Chandra pair (g, K) and linear form

λ ∈ h∗. Let η : k→ C be a Lie algebra morphism; that is, a linear form on k which vanishes

on [k, k]. We say that V is a (Dλ, K, η)-module if

(i) V is a coherent Dλ-module,

(ii) V is a K-homogeneous OX-module, and

(iii) π(ξ) = µ(ξ) + η(ξ) for all ξ ∈ k, and the morphism

Dλ ⊗ V → V

is K-equivariant. Here π is induced by the Dλ-action and µ is the differential of the

K-action.

We denote byMcoh(Dλ, K, η) the category of (Dλ, K, η)-modules, and we refer to the ob-

jects in this category as η-twisted Harish-Chandra sheaves. Clearly the cohomology modules

of η-twisted Harish-Chandra sheave are η-twisted Harish-Chandra modules. Moreover,

the localization functor ∆λ maps η-twisted Harish-Chandra modules to η-twisted Harish-

Chandra sheaves. This category of twisted Harish-Chandra sheaves carries much of the

same structure as the non-twisted category described in [Milb, Ch. 4]. The next two results

are proven exactly as in the non-twisted case [MS14, §1 Lem. 1.1, Cor. 1.2].
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Lemma 4.13. Any η-twisted Harish-Chandra sheaf is holonomic.

In particular, this immediately implies that any η-twisted Harish-Chandra sheaf has

finite length.

Corollary 4.14. Any η-twisted Harish-Chandra sheaf is of finite length.

This in turn implies that any η-twisted Harish-Chandra module is of finite length.

Corollary 4.15. Any η-twisted Harish-Chandra module is of finite length.

The first example of twisted Harish-Chandra modules arose in the localization theory

of Harish-Chandra modules for semisimple Lie groups with infinite center. An analysis of

this example can be found in Appendix B of [HMSW87].

4.3 Standard and Simple Sheaves
In this section, we describe the classification of irreducible η-twisted Harish-Chandra

sheaves for a Harish-Chandra pair (g, K). To do this, we define standard η-twisted Harish-

Chandra sheaves and show that all irreducible objects in Mcoh(Dλ, N, η) are subsheaves

of such standard sheaves. This classification mirrors the untwisted case [Milb, Ch. 4 §5].

We begin with a preliminary result.

Lemma 4.16. Let V be an irreducible object in the categoryMcoh(Dλ, K, η). Then the support of

V is the closure of a unique K-orbit Q in X.

Proof. Because K is connected, the η-twisted Harish-Chandra sheaf V is irreducible if and

only if it is irreducible as a Dλ-module. Therefore, the support of V is an irreducible

closed subvariety of X. The support of V must also be K-invariant, so it is a union of

K-orbits. Because K acts on X with finitely many orbits, there must be a unique orbit Q in

supp(V) such that dimQ = dim(supp(V)). Because supp(V) is closed, we conclude that

Q = supp(V).

Let V be an irreducible η-twisted Harish-Chandra sheaf and Q the K-orbit such that

Q = supp(V). Let i : Q → X be the natural inclusion. Then (Dλ)
i is a K-homogeneous

twisted sheaf of differential operators on Q. Fix x ∈ Q, and let bx be the corresponding



42

Borel subalgebra of G. Let Sx denote the stabilizer in K of x. Then the Lie algebra of Sx is

k ∩ bx. Let c be a Cartan subalgebra in g contained in bx, and s : h∗ → c∗ the specialization

at x. Let µ denote the restriction of the specialization of λ + ρ to k∩ bx. Then (Dλ)
i = DQ,µ

[HMSW87, App. A].

Lemma 4.17. i!(V) is an irreducible (DQ,µ, K, η)-module.

Proof. By Kashiwara’s equivalence of categories (Theorem 2.2), the inverse image i!(V) is

an irreducible DQ,µ-module. By the compatibility condition in the definition of η-twisted

Harish-Chandra sheaves, i!(V) is also a K-homogeneous OQ-module such that the differ-

ential of the K action differs from the action of k through DQ,µ by η. Therefore, i!(V) is an

irreducible object inMcoh(DQ,µ, K, η).

Because V is holonomic by Lemma 4.13, and i! preserves holonomicity [Mila, Ch. V §6],

i!(V) is a holonomic DQ,µ-module with support equal to Q. This implies that there is some

open dense subset U ⊂ Q so that i!(V)|U is a connection, and thus a coherent OU-module.

Because i!(V) is also K-invariant, i!(V) must be coherent as an OQ-module on all of Q,

hence a connection on Q. (Generally, we can see by this argument that any irreducible

(DQ,µ, K, η)-module is a K-homogeneous DQ,µ-connection on Q.)

Therefore, to each irreducible object V in Mcoh(Dλ, K, η), we can attach a pair (Q, τ)

consisting of a K-orbit Q and an irreducible (DQ,µ, K, η)-module τ such that

(i) suppV = Q, and

(ii) i!(V) = τ.

We call the pair (Q, τ) the standard data attached to V .

Definition 4.18. Let Q be a K-orbit in X, i : Q → X be the natural inclusion, and τ

an irreducible M(DQ,µ, K, η)-module. Then I(Q, τ) = i+(τ) is a coherent holonomic

(Dλ, K, η)-module. We call I(Q, τ) the standard η-twisted Harish-Chandra sheaf attached

to (Q, τ).

As in the untwisted case [Milb, Ch. 4 §5 Thm. 5.3], standard η-twisted Harish-Chandra

sheaves have unique irreducible subsheaves.
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Lemma 4.19. Let Q be a K-orbit in X, i : Q → X be the natural inclusion, and τ an irreducible

M(DQ,µ, K, η)-module. Then the standard η-twisted Harish-Chandra sheaf I(Q, τ) has a unique

irreducible subsheaf L(Q, τ).

Moreover, the quotient I(Q, τ)/L(Q, τ) is an η-twisted Harish-Chandra sheaf sup-

ported in the boundary of Q. The classification of irreducible η-twisted Harish-Chandra

sheaves is given in the following result [MS14, §3].

Theorem 4.20. (i) Any irreducible object in Mcoh(Dλ, K, η) with standard data (Q, τ) is

isomorphic to L(Q, τ).

(ii) Let Q and Q′ be K-orbits in X, and i : Q → X and i′ : Q′ → X the natural inclusions.

Let µ′ be the restriction of the specialization λ + ρ to k ∩ bx′ for a fixed x′ ∈ Q′, and let τ

and τ′ be irreducible (DQ,µ, K, η) and (DQ′,µ′ , K, η)-modules, respectively. Then L(Q, τ) =

L(Q′, τ′) if and only if Q = Q′ and τ = τ′.

By this classification, we see that understanding irreducible η-twisted Harish-Chandra

sheaves reduces to understanding irreducible (DQ,µ, K, η)-modules on every K-orbit Q.

By the argument below the proof of Lemma 4.17, any irreducible (DQ,µ, K, η)-module

is an irreducible DQ,µ-connection on Q. We can describe all η-twisted irreducible DQ,µ-

connections in the following way. Let x ∈ Q. Let Bx be the Borel subgroup of Int(g) with

Lie algebra bx. Any K-homogeneous OQ-module is completely determined by the action

of the stabilizer Sx = φ−1(φ(K) ∩ Bx) in the geometric fiber at x. If τ is an irreducible

(DQ,µ, K, η)-module, it must also be irreducible as a K-homogeneous OQ-module by the

compatibility condition, so the representation of Sx in the geometric fiber of τ is irreducible.

Moreover, its differential is a direct sum of a number of copies of the linear form µ− η|k∩bx

on k∩ bx.

Therefore, our problem reduces to finding irreducible K-homogeneousDQ,µ-connections

on K-orbits Q where the η-compatibility condition on the actions of K andDQ,µ is satisfied.

By the argument above, the following condition describes such modules.

If τ is a K-homogeneous OQ-module, then we say that τ is compatible with (λ, η) ∈

h∗ × η∗ if

µ(ξ) = ν(ξ) + η(ξ)
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for any ξ ∈ k ∩ bx, where ν is the differential of the S-action on the geometric fiber Tx(τ).

We have proven the following proposition.

Proposition 4.21. The following statements are equivalent.

(i) τ is an irreducible (DQ,µ, K, η)-module.

(ii) τ is an irreducible K-homogeneous OQ-module compatible with (λ, η) ∈ h∗ × k∗.

4.4 Costandard Sheaves
In this section, we construct costandard objects in the category Mcoh(Dλ, K, η) using

the holonomic duality functor defined in Section 4.1.5. Let Q be a K-orbit in X and τ

an irreducible K-homogeneous connection on Q compatible with (λ + ρ, η) ∈ h∗ × k∗. Let

L(Q, τ) be the corresponding irreducible η-twisted Harish-Chandra sheaf, and I(Q, τ) the

corresponding standard η-twisted Harish-Chandra sheaf. Then L(Q, τ) is an irreducible

holonomicDλ-module supported on the closure of the orbit Q by Lemma 4.13 and Lemma

4.19. Therefore, by Theorem 4.9, L(Q, τ)∗ is an irreducible holonomic D−λ-module whose

support is contained in the closure of Q.

Let X′ = X − ∂Q. Then j : Q → X′ is a closed immersion, and k : X′ → X is an open

immersion. We have an exact sequence of η-twisted Harish-Chandra sheaves

0→ L(Q, τ)→ I(Q, τ)→ Q → 0,

where Q = I(Q, τ)/L(Q, τ) is supported on ∂Q. Because k is an open immersion, k+ is

exact, and for any Dλ-module V , k+(V) = V|X′ . Therefore, by restricting to X′, we see that

L(Q, τ)|X′ = I(Q, τ)|X′ . Because duality is local, we have

L(Q, τ)∗|X′ = (L(Q, τ)|X′)∗ = (I(Q, τ)|X′)∗ = j+(τ)∗.

Moreover, by Kashiwara’s equivalence of categories, j+ commutes with duality, so we have

L(Q, τ)∗|X′ = j+(τ∗).

On the other hand, τ∗ is an irreducible η-twisted K-homogeneous connection on Q com-

patible with (−λ + ρ, η). Hence,

L(Q, τ)∗|X′ = j+(τ∗) = L(Q, τ∗))|X′ ,

and we have the following result.
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Lemma 4.22.

L(Q, τ)∗ = L(Q, τ∗).

Dualizing, we get

L(Q, τ∗)∗ = L(Q, τ).

Denote by M(Q, τ) the η-twisted Harish-Chandra sheaf I(Q, τ∗)∗. We call this the co-

standard η-twisted Harish-Chandra sheaf attached to the geometric data (Q, τ). There is

a natural inclusion L(Q, τ∗) → I(Q, τ∗). By dualizing, we get a natural epimorphism

M(Q, τ) → L(Q, τ), so L(Q, τ) is a quotient ofM(Q, τ). The main properties of costan-

dard η-twisted Harish-Chandra sheaves are the following.

Proposition 4.23. (i) The length ofM(Q, τ) is equal to the length of I(Q, τ).

(ii) The irreducible η-twisted Harish-Chandra sheaf L(Q, τ) is the unique irreducible quotient

ofM(Q, τ). The kernal of this projection is supported on the boundary ∂Q of Q.

Proof. Because duality preserves irreducibility, the composition series of M(Q, τ) is ob-

tained by dualizing the composition series of I(Q, τ∗). Because L(Q′, τ′∗)∗ = L(Q′, τ′)

for any irreducible η-twisted Harish-Chandra sheaf L(Q′, τ′), the composition factors of

M(Q, τ) must be equal to those of I(Q, τ). This proves (i).

We have a short exact sequence of D−λ-modules

0→ L(Q, τ∗)→ I(Q, τ∗)→ Q → 0,

where Q is a holonomic D−λ-module supported in ∂Q. Applying holonomic duality to

this, we get a short exact sequence of Dλ-modules

0→ Q∗ →M(Q, τ)→ L(Q, τ)→ 0.

Because duality preserves support, this implies that the kernel Q∗ of the projection map

M(Q, τ)→ L(Q, τ) is supported in ∂Q.

If U ⊂ M(Q, τ) is a maximal Dλ-submodule different from Q∗, then L(Q′, τ′) =

M(Q, τ)/U is an irreducible Dλ-module that is not isomorphic to L(Q, τ). By dualiz-

ing, this implies that L(Q′, τ′∗) is an irreducible Dλ-submodule of I(Q, τ∗) which is not

isomorphic to L(Q, τ∗), but L(Q, τ∗) is the unique irreducible Dλ-submodule of I(Q, τ∗),

so this is impossible. This implies (ii).
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4.5 Standard and Simple Sheaves for the Pair (g, N)

Let K = N. Let b be the unique Borel subalgebra of g containing n = LieN. The

pair (g, N) is a Harish-Chandra pair. This section is dedicated to describing the standard

η-twisted Harish-Chandra sheaves in the category Mcoh(Dλ, N, η) using the classifica-

tion described in Section 4.3. The category Mcoh(Dλ, N, η) is the geometric analogue of

the category Nθ,η . (We will make this statement precise in the following section.) By

the discussion in Section 4.3, standard objects in Mcoh(Dλ, N, η) are parameterized by

pairs (Q, τ), where Q is an N-orbit and τ is an irreducible N-homogeneous connection

inMcoh(DQ,µ, N, η). (Recall that µ is the restriction of the specialization of λ + ρ at a point

x ∈ Q to n∩ bx.) We can describe these pairs more explicitly.

The N-orbits on X are Bruhat cells C(w), w ∈W. The Bruhat cell C(w) contains all Borel

subalgebras in relative position w to b. Now we will describe the previous compatibility

condition in this special case. Assume that a Bruhat cell C(w) admits an irreducible N-

homogeneous connection τ. Let bw be a fixed Borel subalgebra in C(w), and nw = [bw, bw].

Fix a Cartan subalgebra c of g contained in b ∩ bw. Let R be the root system of (g, c), and

R+ the set of positive roots determined by n. Denote by s : h∗ → c∗ the specialization

determined by b. Then nw is spanned by the root subspaces corresponding to roots in

s(w(Σ+)). We make two key observations:

• Because n∩ bw ⊂ nw, µ = 0.

• Because the stabilizer Sw of bw in N is unipotent, the only irreducible algebraic

representation of Sw is the trivial representation. This implies that the only possible

action of Sw on the geometric fiber of τ is the trivial action, so the only irreducible

N-homogeneous OC(w)-module on C(w) is OC(w).

Therefore, a connection with the properties described in Proposition 4.21 exists on C(w) if

and only if η|n∩nw = 0. Moreover, if such a connection τ exists, it is isomorphic to OC(w).

For each α ∈ Σ, we denote by gα the root subspace in g corresponding to the root s(α) ∈

R.1 Then the subalgebra n ∩ nw is spanned by the root subspaces gα for α ∈ Σ+ ∩ w(Σ+).

1Note that this differs from the usual convention.
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Hence, η|n∩nw = 0 if and only if η|gα = 0 for all α ∈ Σ+ ∩w(Σ+). Let Π be the set of simple

roots in Σ corresponding to Σ+, and let

Θ = {α ∈ Π|η|gα 6= 0}.

This leads us to the following result.

Lemma 4.24. The following statements are equivalent.

(i) η|n∩nw = 0.

(ii) Θ ∩ w(Σ+) = ∅.

Proof. From the discussion above, we have that η|n∩nw = 0 if and only if η|gα = 0 for all

α ∈ Σ+ ∩ w(Σ+). Then by the definition of Θ, η|gα = 0 for all α ∈ Σ+ ∩ w(Σ+) if and only

if Θ ∩ (Σ+ ∩ w(Σ+)) = Θ ∩ w(Σ+) = ∅.

Let PΘ be the standard parabolic subgroup of Intg corresponding to Θ. The following

result relates conditions (i) and (ii) of Lemma 4.24 to PΘ-orbits in X and appears in [MS14,

§4 Lem. 4.1].

Lemma 4.25. The following conditions are equivalent.

(i) Θ ∩ w(Σ+) = ∅.

(ii) C(w) is the Bruhat cell open in one of the PΘ-orbits in X.

(iii) w is the longest element in one of the right WΘ-cosets of W.

This allows us to classify irreducible and standard objects in Mcoh(Dλ, N, η). For a

coset C ∈ WΘ\W, let wC be the longest element in C. By [Milb, Ch. 6 §1 Thm. 1.4], this

longest element is unique. Then by Lemma 4.24 and Lemma 4.25, there exists a compatible

irreducible connection OC(wC) on the Bruhat cell C(wC), and we denote by I(wC, λ, η)

the corresponding standard η-twisted Harish-Chandra sheaf in Mcoh(Dλ, N, η), and by

L(wC, λ, η) the unique irreducible subsheaf ofL(wC, λ, η). We’ve established the following

theorem.

Theorem 4.26. The irreducible objects in the category Mcoh(Dλ, N, η) are the modules

L(wC, λ, η), where wC is the longest element in a coset C ∈WΘ\W.
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We complete this section by computing inverse images of standard and irreducible

η-twisted Harish-Chandra sheaves to obtain a result that will be of use to us in future

sections. Fix parameters λ ∈ h∗, η ∈ n∗, and C ∈ WΘ\W. Let C(wC) be the corresponding

Bruhat cell that admits an irreducible compatible connectionOC(wC). Let X′ = X− ∂C(wC),

iwC : C(wC) → X the canonical immersion, and jwC : C(wC) → X′. The following diagram

is commutative.

C(wC) X

X′
jwC

iwC

kwC

Here jwC is a closed immersion and kC
w is an open immersion. For a coherent Dλ-module

V on X, k+wC(V) = V|X′ , and i+wC(V) = j+wC(V|X′). Denote by I the standard η-twisted

Harish-Chandra sheaf I(wC, λ, η) and by L its irreducible subsheaf L(wC, λ, η). Then we

have a short exact sequence of η-twisted Harish-Chandra sheaves

0→ L → I → Q → 0,

where Q = I/L, and suppQ = ∂C(wC). Because kwC is an open immersion, k+wC is exact,

so by applying k+wC , we get another short exact sequence

0→ L|X′ → I|X′ → Q|X′ → 0.

Because suppQ = ∂C(wC), Q|X′ = 0, and we conclude that

L|X′ ' I|X′ .

Furthermore, because dimC(wC) = `(wC), for any k ∈ Z, we have the relationship

Rn−`(wC)−ki!
wC = L−ki+wC ,

where n = dimX. So for a Dλ-module V on X and m ∈ Z, Rmi!
wC(V) = Rm j!

wC(V|X′).

Therefore, we conclude that

Rmi!
wC(I) = Rmi!

wC(I|X′) = Rm j!
wC(L|X′) = Rmi!

wC(L).

We have proven the following lemma.
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Lemma 4.27. Let λ ∈ h∗, η ∈ n∗, and C ∈ WΘ\W. Let C(wC) be the corresponding Bruhat cell

and iwC : C(wC)→ X the canonical immersion. Then for any m ∈ Z,

Rmi!
wC(I(wC, λ, η)) = Rmi!

wC(L(wC, λ, η)).

4.6 Intertwining Functors on Standard and
Costandard Sheaves

In this section, we examine the action of intertwining functors on standard and costan-

dard η-twisted Harish-Chandra sheaves in the categoryMcoh(Dλ, N, η). These results will

be critical in establishing the relationship between Nθ,η and Mcoh(Dλ, N, η). Let α ∈ Π,

w ∈ W, and pi for i = 1, 2 the projections of Zsα (equation 4.1) onto the first and second

coordinates, respectively. As in Section 4.5, let b be the unique Borel subalgebra of g

containing n = LieN. We start with a useful lemma.

Lemma 4.28. The projection p1 : Zsα → X induces an immersion of p−1
2 (C(w)) into X, and its

image is equal to C(wsα).

Proof. Using the definition of Zsα , and the set-up below Proposition 4.21, we see that

p−1
2 (C(w)) = {(x, y) ∈ X× X|y ∈ C(w) and by is in relative position sα to bx}

= {(x, y) ∈ X× X|by is in relative position w to b

and bx is in relative position sα to by}

= {(x, y) ∈ X× X|by is in relative position w to b

and bx is in relative position wsα to b}

= C(wsα)× C(w).

Therefore, p1 induces an immersion of p−1
2 (C(w)) into X and its image is equal to C(wsα).

Our first result is the following proposition.

Proposition 4.29. Let C ∈ WΘ\W and α ∈ Π be such that Csα > C and let λ ∈ h∗ be arbitrary.

Then

LIsα(D(I(wC, λ, η))) = D(I(wCsα, sαλ, η)).
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Proof. By Theorem 2.5, we have the following commutative diagram.

p−1
2 (C(wC)) Zsα

C(wC) X

j

pr2 p2

iwC

Here p2 and pr2 = p2|p−1
2 (C(wC)) are surjective submersions and j and iwC are affine immer-

sions, so p+2 , pr+2 , iwC+, and j+ are all exact. Then, using the definition of I(wC, λ, η), the

fact that dimZsα − dimX = dimp−1
2 (C(wC))− dimC(wC), and Theorem 2.5, we see that

p+2 (I(w
C, λ, η)) = p+2 (iwC+(OC(wC)))

= j+(pr+2 (OC(wC)))

= j+(Op−1
2 (C(wC))).

Applying the projection formula of Proposition 2.4 to the morphism p1, the line bundle

L = O(ρ − sαρ), and the twisted sheaf of differential operators Dλ on X, we have the

following commutative diagram.

D(Dp1
λ ) D(Dλ)

D((DLλ )p1) D(DLλ )

p1+

p∗1(L)⊗OZα
− L⊗OX−

p1+

Using this commutative diagram, the definition of intertwining functors, and the fact that

Tsα = p∗1(O(ρ− sαρ)), we compute

LIsα(D(I(wC, λ, η)) = p1+(Tsα ⊗OZsα
p+2 (I(w

C, λ, η)))

= p1+(Tsα ⊗OZsα
j+(Op−1

2 (C(wC))))

= p1+(p∗1(O(ρ− sαρ))⊗OZsα
j+(Op−1

2 (C(wC))))

= O(ρ− sαρ)⊗OX p1+(j+(Op−1
2 (C(wC)))).

By Lemma 4.28, the diagram

p−1
2 (C(wC)) Zsα

C(wCsα) X

j

pr1 p1

iwCsα
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commutes. Picking up our previous computation, this lets us further conclude that

O(ρ− sαρ)⊗OX p1+(j+(Op−1
2 (C(wC)))) = O(ρ− sαρ)⊗OX iwCsα+(pr1+(Op−1

2 (C(wC))))

= O(ρ− sαρ)⊗OX iwCsα+(OC(wCsα))

= D(I(wCsα, sαλ, η)).

This completes the proof.

For C ∈ WΘ\W, let M(wC, λ, η) be the corresponding costandard η-twisted Harish-

Chandra sheaf in the categoryMcoh(Dλ, N, η). Our second result is the following.

Proposition 4.30. Let C ∈ WΘ\W and α ∈ Π be such that Csα < C, and λ ∈ h∗ be arbitrary.

Then

Isα(M(wC, λ, η)) =M(wCsα, sαλ, η),

and

Lp Isα(M(wC, λ, η)) = 0 for p 6= 0.

Proof. By Proposition 4.29 applied to the coset Csα and linear form −λ ∈ h∗, we have

D(I(wC,−λ, η)) = LIsα(D(I(wCsα,−sαλ, η))).

Applying holonomic duality, we get

D(M(wC, λ, η)) = D(LIsα(D(I(wCsα,−sαλ, η))))

= (D ◦ LIsα ◦D)(D(M(wCsα, sαλ, η)))

By Theorem 4.12, D ◦ LIsα ◦D is the inverse of the intertwining functor LIsα , so applying

LIsα to both sides of the above equation proves the proposition.

Combined with Theorem 4.6, this implies the following result.

Theorem 4.31. If λ ∈ h∗ is α-antidominant, and C ∈WΘ\W is such that Csα < C, we have

Hp(X,M(wC, λ, η)) = Hp(X,M(wCsα, sαλ, η))

for any p ∈ Z+.



CHAPTER 5

GEOMETRIC DESCRIPTION OF WHITTAKER

MODULES

In this chapter, we establish the connection between the category of Whittaker modules

and the category of twisted Harish-Chandra sheaves. We begin by reviewing the existing

results in the nondegenerate setting.

5.1 The Nondegenerate Case
Let η ∈ n∗ be a nondegenerate character. Then Θ = Π, PΘ = G, and `Θ = g. In

this section, we review the existing results on nondegenerate Whittaker modules and

nondegenerate twisted Harish-Chandra sheaves. This setting was examined algebraically

by Kostant in [Kos78], and geometrically by Miličić and Soergel in [MS14].

By Theorem 4.26, there exists only one irreducible object L(w0, λ, η) inMcoh(Dλ, N, η)

corresponding to the compatible irreducible connection on the open Bruhat cell C(w0).

Let I(w0, λ, η) be the corresponding standard twisted Harish-Chandra sheaf. Because

the quotient I(w0, λ, η)/L(w0, λ, η) is supported in the complement of C(w0), it must be

zero. Therefore, I(w0, λ, η) = L(w0, λ, η) is irreducible. Furthermore, Γ(X, I(w0, λ, η))

is equal to the space R(C(w0)) of regular functions on the affine variety C(w0) ' C`(w0).

Therefore, if λ ∈ h∗ is antidominant, Γ(X, I(w0, λ, η)) is an irreducible Whittaker module.

This implies that there exists a unique irreducible object in the category Nθ,η . The unique

irreducible objects in the categoriesMcoh(Dλ, N, η) and Nθ,η were described explicitly in

[MS14, §5 Thm. 5.1, Thm. 5.2]

Theorem 5.1. Let η ∈ n∗ be nondegenerate and λ ∈ h∗. Then the only irreducible object in

Mcoh(Dλ, N, η) is Dλ ⊗U (n) Cη .

The corresponding theorem in the algebraic category was originally proven by Kostant

in [Kos78, §3 Thm. 3.6.1], but falls immediately from the geometric result.
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Theorem 5.2. Let η ∈ n∗ be nondegenerate. Then the only irreducible module inNθ,η is Uθ ⊗U (n)
Cη .

These theorems demonstrate that for nondegenerate η, the categoriesMcoh(Dλ, N, η)

and Nθ,η are extremely simple. Indeed, if V is an arbitrary object inMcoh(Dλ, N, η), then

its restriction to the open cell C(w0) is an N-homogeneous connection. For a generic point

x ∈ C(w0), the stabilizer in N of x is trivial, so this connection is equal to a sum of copies

of the irreducible connection on C(w0). Moreover, there is a natural morphism ϕ of V into

a sum of copies of I(w0, λ, η) = L(w0, λ, η) because restriction is a left adjoint to direct

image. The kernal and cokernal of ϕ are supported in the complement of C(w0), so they

must be zero, which leads to the following semisimplicity results [MS14, §5 Thm. 5.5, Thm

5.6].

Theorem 5.3. Let η ∈ n∗ be nondegenerate. Then all objects inMcoh(Dλ, N, η) are finite sums

of irreducible objects Dλ ⊗U (n) Cη .

Theorem 5.4. Let η ∈ n∗ be nondegenerate. Then all objects in Nθ,η are finite sums of irreducible

objects Uθ ⊗U (n) Cη .

5.2 Cosets in the Weyl Group
Before analyzing the degenerate case, we list some combinatorial properties of cosets

in Weyl groups that will be essential in future arguments. For brevity, we omit the proofs

that can be found in [Milb, Ch. 6 §1].

Let Σ be a reduced root system and Σ+ a set of positive roots. Let Π be the correspond-

ing set of simple roots, and for w ∈W, let

Σ+
w = Σ+ ∩ {−w−1(Σ+)} = {α ∈ Σ+|wα ∈ −Σ+}.

Let Θ ⊂ Π, and let ΣΘ ⊂ Σ be the root subsystem generated by Θ. Let SΘ = {sα|α ∈ Θ}

be the set of simple reflections corresponding to Θ, and denote the Weyl group generated

by these reflections by WΘ. Then WΘ ⊂ W is a subgroup. The length function ` on W

restricted to WΘ gives the length function on WΘ. We define

WΘ = {w ∈W|Σ+
w ∩Θ = ∅} = {w ∈W|Θ ⊂ w−1(Σ+)}.



54

Theorem 5.5. Every element w ∈ W has a unique decomposition in the form w = w′t, with

w′ ∈WΘ and t ∈WΘ. Additionally, `(w) = `(w′) + `(t).

Let wΘ be the longest element in WΘ.

Theorem 5.6. (i) Each left WΘ-coset in W has a unique shortest element.

(ii) If w is the shortest element in a left WΘ-coset C, wwΘ is the unique longest element in this

coset.

(iii) Each right WΘ-coset in W has a unique shortest element.

(iv) If w is the shortest element in a right WΘ-coset C, wΘw is the unique longest element in this

coset.

The antiautomorphism w 7→ w−1 preserves WΘ, wΘ, and the length function ` : W →

Z+. It also maps left WΘ-cosets to right WΘ-cosets. Therefore, the set WΘ is the section of

the left WΘ-cosets in W consisting of the shortest elements of each coset. This implies that

the shortest elements of right WΘ-cosets in W are the elements of the set

WΘ
R = {w ∈W|w−1 ∈WΘ} = {w ∈W|Θ ⊂ w(Σ+)}.

This implies the following result.

Lemma 5.7. The set
ΘW = {w ∈W|Θ ⊂ −w(Σ+)}

is the section of the of right WΘ-cosets in W consisting of the longest elements of each coset.

This also gives us an analogue to Theorem 5.5.

Theorem 5.8. Every element w ∈W has a unique decomposition in the form w = tw′ for t ∈WΘ

and w′ ∈WΘ
R . In addition, `(w) = `(t) + `(w′).

Proof. Let w ∈ W. Then by 5.5, there is unique decomposition w−1 = v′s for v′ ∈ WΘ and

s ∈ WΘ, and `(w−1) = `(v′) + `(s). So w = s−1v′−1, where s−1 ∈ WΘ and v′−1 ∈ WΘ
R , and

this decomposition is unique. Furthermore,

`(w) = `(w−1) = `(v′) + `(s) = `(s−1) + `(v′−1).
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This completes the proof.

For a right WΘ-coset C, we denote by wC the unique longest element in C. We define

an order relation on the set WΘ\W by transferring the Bruhat order on the collection of

longest coset elements. Specifically, we say that C < D for two cosets C, D ∈ WΘ\W if

wC < wD in the Bruhat order on W. The key result on this order relation is the following.

Proposition 5.9. Let C be a right WΘ-coset in W and α ∈ Π. Then we have the following three

possibilities:

(i) Csα = C;

(ii) Csα > C, and in this case, wCsα = wCsα, and `(wsα) = `(w) + 1 for any w ∈ C;

(iii) Csα < C, and in this case wCsα = wCsα, and `(wsα) = `(w)− 1 for any w ∈ C.

Let C be a right WΘ-coset and w ∈ C its shortest element. Then wC = wΘw by 5.6, and

`(wC) = `(w) + `(wΘ) by 5.8. This implies that wΘ < wΘw = wC in the Bruhat order, so

WΘ < C in the order relation on WΘ\W. This implies that WΘ is the smallest element in

WΘ\W. Furthermore, WΘ is the unique smallest element in WΘ\W:

Proposition 5.10. Let C ∈ WΘ\W. Assume that for any α ∈ Π, we have either Csα = C, or

Csα > C. Then C = WΘ.

In particular, for any coset C 6= WΘ, there exists a simple root α such that Csα < C. This

implies that the set ΘW contains Weyl group elements of every length greater `(wΘ).

Theorem 5.11. Let j = `(wΘ), and let m be the length of the longest element of W. Then for any

n with j ≤ n ≤ m, the set ΘW≤n = {wC ∈ ΘW|`(wC) ≤ n} contains an element of length k for

every j ≤ k ≤ n.

Proof. We proceed by induction in n. The base case is when n = j. In this case, wΘ has

length j and by 5.10, ΘW = {wΘ}, so the theorem holds. Let n be such that j < n < m,

and assume that ΘW≤n contains an element of length k for every j ≤ k ≤ n. Choose

wC ∈ ΘW of length n. Then because n 6= m, there exists some α ∈ Π such that `(wCsα) =

`(wC) + 1 = n + 1. We claim that wCsα is the longest element in a coset. By 5.9, we have

three possibilities: either Csα = C, Csα < C, or Csα > C. Because wC is the longest element
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of C, and `(wCsα) > `(wC), wCsα 6∈ C, so the first possibility cannot happen. If Csα < C,

then 5.9 implies that wCsα = wCsα, and `(wCsα) = `(wC)− 1. But this is not the case, so

the second possibility cannot happen. We conclude that Csα > C, and wCsα = wCsα; i.e.

wCsα ∈ ΘW≤n+1. We are done by induction.

In particular, the set ΘW contains elements of length k for every `(wΘ) ≤ k ≤ m, so

we can apply inductive arguments to the length of elements of ΘW. Finally, we record the

following fact.

Lemma 5.12. If w ∈ ΘW and t ∈WΘ, we have

`(tw) = `(w)− `(t).

Let B be a Borel subgroup of G, and PΘ the standard parabolic subgroup of G of type

Θ containing B. Then the PΘ-orbits in the flag variety X are B-invariant, so they must

be unions of Bruhat cells. We end this section by describing how the structure of WΘ\W

determines the structure of PΘ-orbits in X.

Lemma 5.13. Let O be a PΘ-orbit in X and C(w) ⊂ O. Then

O =
⋃

t∈WΘ

C(tw).

This result establishes a bijection between WΘ\W and the set of PΘ-orbits in X. Let

C ∈WΘ\W and let O be the corresponding PΘ-orbit in X. Then by Lemma 5.12,

dimO = max
t∈WΘ

dimC(twC) = max
t∈WΘ

`(twC) = `(wC).

Therefore, C(wC) is the open Bruhat cell in O. This implies the following result.

Proposition 5.14. The map attaching to a PΘ-orbit O in the flag varitey X the unique Bruhat cell

C(w) open in O is a bijection between the set of all PΘ-orbits in X and the set of Bruhat cells C(w)

with w ∈ ΘW.

We end this section with a geometric interpretation of the order relation on WΘ\W.

Proposition 5.15. Let C ∈ WΘ\W, and let O be the corresponding PΘ-orbit in X. Then the

closure of O consists of all PΘ-orbits in X corresponding to D ≤ C.
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5.3 Global Sections of Twisted Harish-Chandra Sheaves
In this section, we prove that global sections of costandard twisted Harish-Chandra

sheaves are standard Whittaker modules. This allows us to use geometric arguments

to draw conclusions about our algebraic category of Whittaker modules, which will be

essential in the interpretation of the algorithm developed in Chapter 6. Our main tool in

this section is the character theory developed in Section 3.2.

We begin by examining the nondegenerate case. Let w0 be the longest element of the

Weyl group W of g.

Proposition 5.16. Let η ∈ n∗ be nondegenerate and λ ∈ h∗. Then

Γ(X,M(w0, λ, η)) = M(w0λ, η).

Proof. If η is nondegenerate, then W = WΘ, so by Theorem 5.1, there exists a unique irre-

ducible object L(w0, λ, η) = I(w0, λ, η) =M(w0, λ, η) = Dλ ⊗U (n) Cη inMcoh(Dλ, N, η).

Assume λ is antidominant, and let θ = W · λ. Then by Theorem 5.2,

Γ(X,M(w0, λ, η)) = Uθ ⊗U (n) Cη = M(w0λ, η).

Now, let w ∈W be arbitrary. By Theorem 4.6 and the preceeding argument, we have

D(M(w0λ, η)) = RΓ(D(M(w0, λ, η))) = RΓ(LIw(D(M(w0, λ, η)))) = RΓ(C ·),

where C · is a complex in Db(Dwλ) such that for any i ∈ Z, C i is a finite sum of copies of

the unique irreducible objectM(w0, wλ, η). (See Theorem 5.1.) Because D(M(w0λ, η)) is

a complex with a single irreducible object in the zero degree and zeros elsewhere and RΓ

is an equivalence of derived categories, the equality above implies that

LIw(D(M(w0, λ, η))) = D(M(w0, wλ, η)).

Therefore,

Γ(X,M(w0, wλ, η)) = M(w0λ, η) = M(w0wλ, η).

This completes the proof of the proposition.

Next, we prove the result for the costandard twisted Harish-Chandra sheaf correspond-

ing to the smallest PΘ-orbit. This is the bulk of the argument.
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Lemma 5.17. Let η ∈ n∗ be arbitrary and λ ∈ h∗. Then

Γ(X,M(wΘ, λ, η)) = M(wΘλ, η).

Here wΘ is the longest element in the Weyl group WΘ determined by Θ. We will prove

the lemma in a series of steps. Our first step is to realize the standard sheaf corresponding

to the smallest PΘ-orbit as the direct image of a twisted Harish-Chandra sheaf for the flag

variety of `Θ. Let P(wΘ) be the PΘ-orbit with open Bruhat cell C(wΘ) ⊂ P(wΘ) (see Section

4.5). Because wΘ is minimal in set ΘW of longest coset elements by Proposition 5.10, P(wΘ)

is a closed subvariety of X. Because P(wΘ) is an orbit of an algebraic group action, it is

also a smooth subvariety of X. In fact, PΘ-orbit P(wΘ) is isomorphic to the flag variety of

`Θ. (Indeed, by Lemma 5.13, P(wΘ) =
⋃

t∈WΘ
C(twΘ) =

⋃
w∈WΘ

C(w).) Let

iwΘ : C(wΘ)→ P(wΘ), j : P(wΘ)→ X, and i : C(wΘ)→ X

be the natural inclusions. This expresses i = j ◦ iwΘ as the composition of an open immer-

sion and a closed immersion. By definition, I(wΘ, λ, η) = j+(F ), whereF = iwΘ+(OC(wΘ)),

and OC(WΘ) is the N-homogeneous connection inMcoh(Di
λ, N, η) described in Section 4.5.

Lemma 5.18. F = I(wΘ, λ + ρ− ρΘ, η|nΘ) is the standard object in the category

Mcoh(DP(wΘ),λ+ρ, NΘ, η|nΘ) corresponding to the open Bruhat cell C(wΘ) ⊂ P(wΘ).

Proof. As described above, we can view P(wΘ) as the flag variety for `Θ, and the character

η|nΘ is nondegenerate on `Θ. The irreducible N-homogeneous connection OC(wΘ) is com-

patible with (λ, η) ∈ h∗ × n∗ by construction (Section 4.3). We can restrict the N-action to

NΘ ⊂ N, and consider OC(wΘ) as an irreducible NΘ-homogeneous connection compatible

with (λ, η|nΘ) ∈ h∗ × n∗Θ. This allows us to interpret F = iwΘ+(OC(wΘ)) as the standard

sheaf on the flag variety of `Θ induced from the irreducible NΘ-homogeneous connection

OC(wΘ) on C(wΘ) inMcoh((D
j
λ)

i, NΘ, η|nΘ). (Note that because η|nΘ is nondegenerate, this

is the only standard η|nΘ -twisted Harish-Chandra sheaf in the categoryMcoh(D
j
λ, NΘ, η|nΘ)

by the results in Section 5.1.) Because

D j
λ = (DX,λ+ρ)

j = DP(wΘ),λ+ρ = Dλ+ρ−ρΘ ,

we have that

F = I(wΘ, λ + ρ− ρΘ, η|nΘ).
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This completes the proof.

Our next step is to use the normal degree filtration introduced in Section 2.2 to analyze

the global sections of the standard sheaf I(wΘ, λ, η). We will do so using the character

theory established in Section 3.2. By Lemma 5.18, we can express our standard sheaf

I(wΘ, λ, η) = j+(F ), where F = I(wΘ, λ + ρ − ρΘ, η|nΘ). Because j : P(wΘ) → X

is a closed immersion, this implies that I(wΘ, λ, η) has a filtration by normal degree,

FnI(wΘ, λ, η). Let GrI(wΘ, λ, η) be the corresponding graded sheaf. Let ch : Nθ,η −→

∏µ≤S0
C⊗Z KN ([`Θ, `Θ])eµ be the character function described in Section 3.2.

Lemma 5.19. chΓ(X, GrI(wΘ, λ, η)) = chΓ(X, I(wΘ, λ, η)).

Proof. By construction (see [Har77]), we have

Γ(X, I(wΘ, λ, η)) = lim−→ Γ(X, FnI(wΘ, λ, η)).

For each n ∈ Z+, we have an exact sequence

0→ Fn−1I(wΘ, λ, η)→ FnI(wΘ, λ, η)→ GrnI(wΘ, λ, η)→ 0.

We claim that Hp(X, GrnI(wΘ, λ, η)) = 0 for p > 0. To see this, recall that by construction,

GrnI(wΘ, λ, η) is the sheaf-theoretic direct image of a sheaf on P(wΘ) which has a finite

filtration such that the graded pieces are standard η|nΘ -twisted Harish-Chandra sheaves on

the flag variety P(wΘ) of `Θ. These have vanishing cohomologies by Lemma 5.16, which

implies the claim. The short exact sequence above gives rise to a long exact sequence

0→ Γ(X, Fn−1I(wΘ, λ, η))→ Γ(X, FnI(wΘ, λ, η))→ Γ(X, GrnI(wΘ, λ, η))→

→ H1(X, Fn−1I(wΘ, λ, η))→ H1(X, FnI(wΘ, λ, η))→ H1(X, GrnI(wΘ, λ, η))→ · · ·

Using induction and the preceding paragraph, we see that Hp(X, FnI(wΘ, λ, η)) = 0 for

p > 0 (and therefore, Hp(X, I(wΘ, λ, η)) = 0 for p > 0). This implies that for each n ∈ Z+,

we have a short exact sequence

0→ Γ(X, Fn−1I(wΘ, λ, η))→ Γ(X, FnI(wΘ, λ, η))→ Γ(X, GrnI(wΘ, λ, η))→ 0.
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(If λ ∈ h∗ is antidominant, the existence of this short exact sequence falls from the exactness

of Γ, but notice that the argument above holds for arbitrary λ ∈ h∗.) This gives us a

filtration of Γ(X, I(wΘ, λ, η)), with corresponding graded module

Γ(X, GrI(wΘ, λ, η)) =
⊕

Γ(X, GrnI(wΘ, λ, η))

=
⊕

Γ(X, FnI(wΘ, λ, η))/Γ(X, Fn−1I(wΘ, λ, η)).

Because character sums over short exact sequences, we have

chΓ(X, GrnI(wΘ, λ, η)) = chΓ(X, FnI(wΘ, λ, η))− ChΓ(X, Fn−1I(wΘ, λ, η)).

Now we compute character, using the fact that character distributes through direct sums.

chΓ(X, GrI(wΘ, λ, η)) = ch
⊕

n∈Z+

Γ(X, GrnI(wΘ, λ, η))

=
⊕

n∈Z+

chΓ(X, GrnI(wΘ, λ, η))

= ∑
n∈Z+

(chΓ(X, FnI(wΘ, λ, η))− chΓ(X, fn−1I(wΘ, λ, η)))

= chΓ(X, I(wΘ, λ, η)).

This completes the proof.

This reduces our calculation of the character of Γ(X, I(wΘ, λ, η)) to the calculation of

the character of Γ(X, GrI(wΘ, λ, η)). Before completing this calculation, we need a few

more supporting lemmas.

The Borel subalgebra b acts on uΘ by the adjoint action, and this extends to an action of

b on the universal enveloping algebra U (uΘ). The h-weights of this action are

Q =

− ∑
α∈Σ+\Σ+

Θ

mαα

∣∣∣∣∣∣mα ∈ Z≥0

 .

Let NX|P(wΘ) = j∗(TX)/TP(wΘ) be the normal sheaf of P(wΘ) and S(NX|P(wΘ)) the corre-

sponding sheaf of symmetric algebras.

Lemma 5.20. As OP(wΘ)-modules,

S(NX|P(wΘ)) =
⊕
µ∈Q

O(µ).
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Proof. The normal sheaf NX|P(wΘ) is a PΘ-homogeneous OP(wΘ)-module. For any x ∈

P(wΘ), there is an equivalence of categories between Mqc(OP(wΘ), PΘ) and the category

of algebraic representations of Bx = stabPΘ{x} given by taking the geometric fiber of a

sheaf F in Mqc(OP(wΘ), PΘ) (Theorem 2.1). Let x0 ∈ X be the point corresponding to B.

The PΘ-orbit of x0 in X is the unique closed PΘ-orbit [Bor91, Ch. IV], so it must be equal

to P(wΘ). In particular, x0 ∈ P(wΘ), so the functor Tx0 is an equivalence of the category

Mqc(OP(wΘ), PΘ) with the category of algebraic representations of B. The tangent space

Tx0(X) is isomorphic to g/b, and the subspace Tx0(P(wΘ)) is equal to pΘ/b under this

isomorphism. Therefore, the geometric fiber of the normal bundle at x0 is isomorphic to

g/pΘ ' uΘ. We conclude from this discussion that NX|P(wΘ) corresponds to the Adjoint

representation of B on uΘ, or, equivalently, the adjoint representation of b on uΘ.

Therefore, to analyze the OP(wΘ)-module S(NX|P(wΘ)), we can examine the symmetric

algebra S(uΘ), viewed as a b-module under the inherited action of the adjoint representa-

tion of b on uΘ. The universal enveloping algebra U (uΘ) has a PBW filtration such that the

corresponding graded module GrU (uΘ) is isomorphic to S(uΘ). Under the adjoint action,

U (uΘ) decomposes into h-weight spaces corresponding to weights in Q. Therefore, the

b-module S(uΘ) decomposes into h-weight spaces corresponding to the same weights in

Q.

For k ∈ Z≥0, consider V = Sk(uΘ). There is a b-invariant filtration

0 = f0V ⊂ F1V ⊂ · · · ⊂ FnV = V

such that FiV/Fi−1V = Cµ, where µ ∈ Q is an h-weight of Sk(uΘ). This induces a filtration

of V = Sk(NX|P(wΘ))

0 = f0V ⊂ F1V ⊂ · · · ⊂ FnV = V

where each FiV is a PΘ-homogeneous subsheaf and FiV/Fi+1V = OP(wΘ)(µ). This proves

the result.

Lemma 5.21. For λ, µ ∈ h∗,

I(wΘ, λ, η|nΘ)⊗OP(wΘ)
O(µ) = I(wΘ, λ + µ, η|nΘ).
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Proof. The twist functor (Section 2.2)

V 7→ V ⊗OP(wΘ)
O(µ)

is an equivalence of the categories Mcoh(Dλ, NΘ, η|nΘ) and Mcoh(Dλ+µ, NΘ, η|nΘ). Each

of these categories has a unique irreducible object (because η|nΘ is nondegenerate, Theo-

rem 5.1), so twisting must take the unique irreducible object inMcoh(Dλ, NΘ, η|nΘ) to the

unique irreducible object inMcoh(Dλ+µ, NΘ, η|nΘ). This proves the lemma.

Lemma 5.22. As a left Dλ-module, the graded sheaf has a decomposition

GrI(wΘ, λ, η) = j•(F ⊗OP(wΘ)
S(NX|P(wΘ))⊗OP(wΘ)

O(2ρΘ − 2ρ)).

Proof. Recall that the direct image functor j+ : MR(D j
λ) → MR(Dλ) is naturally defined

on right modules. We can apply equation 2.1 to the left D j
λ-module F by first twisting by

ωP(wΘ). Then the graded module (which is naturally a rightDλ-module) can be considered

a left Dλ-module with a second twist by ωX; that is,

GrI(wΘ, λ, η) = j•(F ⊗OP(wΘ)
S(NX|P(wΘ))⊗OP(wΘ)

ωP(wΘ)|X),

where ωP(wΘ)|X = ωP(wΘ) ⊗OP(wΘ)
j∗(ω−1

X ) is the invertible OP(wΘ)-module of top degree

relative differential forms for the morphism j. The result then follows from the fact that

ωP(wΘ)|X = O(2ρΘ − 2ρ).

Now we are ready to prove Lemma 5.17.

Proof. Using the preceding lemmas, Kashiwara’s theorem, and equation 3.2, we can show

that the character of Γ(X, I(wΘ, λ, η)) is equal to the character of M(wΘλ, η). Here λ ∈ h∗

and η ∈ n∗ are arbitrary.
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chΓ(X, I(wΘ, λ, η)) = chΓ(X, GrI(wΘ, λ, η))

= chΓ(X, j∗(F ⊗OP(wΘ)
S(NX|P(wΘ))⊗OP(wΘ)

O(2ρΘ − 2ρ)))

= chΓ(P(wΘ),F ⊗OP(wΘ)
S(NX|P(wΘ))⊗OP(wΘ)

O(2ρΘ − 2ρ))

= chΓ(P(wΘ),F ⊗OP(wΘ)

⊕
µ∈Q

O(µ)⊗OP(wΘ)
O(2ρΘ − 2ρ))

= chΓ(P(wΘ),
⊕
µ∈Q

I(wΘ, λ + ρ− ρΘ + µ + 2ρΘ − 2ρ, η|nΘ))

= ch
⊕
µ∈Q

Y(λ− ρ + ρΘ + µ, η|nΘ)

= ∑
µ∈Q

[Y(λ− ρ + ρΘ + µ, η)]eλ−ρ+µ

= chM(λ, η)

= chM(wΘλ, η).

Because I(wΘ, λ, η) is irreducible, Γ(X, I(wΘ, λ, η)) is irreducible or zero. Because it has

nonzero character, it cannot be zero, and must be irreducible. Also, M(wΘλ, η) is ir-

reducible. Irreducible Whittaker modules are completely determined by their character

(Corollary 3.18), so we conclude that

Γ(X, I(wΘ, λ, η)) = M(wΘλ, η).

This completes the proof of the lemma.

Finally, we are ready to prove our desired result.

Theorem 5.23. Let λ ∈ h∗ be antidominant, C ∈WΘ\W, and η ∈ n∗ be arbitrary. Then

Γ(X,M(wC, λ, η)) = M(wCλ, η).

Proof. By Proposition 4.30, if α ∈ Π is such that Csα < C,

Isα(M(wC, λ, η)) =M(wCsα, sαλ, η),

and

Lp Isα(M(wC, λ, η)) = 0 for p 6= 0.

Therefore, if α ∈ Π is such that Csα > C,

Isα(M(wCsα, λ, η)) =M(wC, sαλ, η).
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If α ∈ Π−Θ, then `(wΘsα) = `(wΘ) + 1 and WΘsα > WΘ, so

Isα(M(wΘsα, λ, η)) =M(wΘ, sαλ, η).

We will now expand this result to a larger class of w ∈ W. For a coset C ∈ WΘ\W, let

wC ∈ C be the longest coset element, and let wC ∈ C be the unique shortest coset element.

(See Theorem 5.6.) Then by Theorem 5.6 and Theorem 5.5, we have wΘwC = wC, and

`(wΘwC) = `(wΘ) + `(wC) = `(wC).

Lemma 5.24. For any C ∈WΘ\W,

IwC(M(wC, λ, η)) =M(wΘ, wCλ, η),

and

Lp IwC(M(wC, λ, η)) = 0 for p < 0.

Proof. We proceed by induction in `(wC). If `(wC) = 0, then C = WΘ, and the assertion is

trivially true. If `(wC) = 1, then wC is a simple reflection sα and the assertion is true by the

preceding remarks. Let D ∈WΘ\W and assume that

IwD(M(wD, λ, η)) =M(wΘ, wDλ, η) and Lp IwD(M(wD, λ, η)) = 0 for p < 0.

Let α ∈ Π be such that Dsα > D. By Proposition 5.9, the shortest element wDsα in Dsα is

wDsα. Thus,

IwDsα(M(wDsα, λ, η)) = IwD(Isα(M(wDsα, λ, η))

= IwD(M(wD, sαλ, η))

=M(wΘ, wdsαλ, η).

Here the first equality falls from Proposition 4.3 and the second equality from Proposition

4.30. This completes the proof of the lemma by induction.

Now we return to the proof of Theorem 5.23. Lemma 5.24 implies that for C ∈WΘ\W,

LIwC(D(M(wC, λ, η)) = D(M(wΘ, wCλ, η))

and

RΓ(LIwC(D(M(wC, λ, η))) = RΓ(D(M(wΘ, wCλ, η))).
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If λ ∈ h∗ is antidominant, then by Theorem 4.6,

RΓ(D(M(wC, λ, η))) = RΓ(D(M(wΘ, wCλ, η))),

and

Hp(X,M(wC, λ, η)) = 0 for p > 0.

Therefore, by Lemma 5.17,

Γ(X,M(wC, λ, η)) = Γ(X,M(wΘ, wCλ, η)) = M(wCλ, η),

which completes the proof of the Theorem.

It is now straightforward to calculate the global sections of irreducible modules.

Theorem 5.25. Let λ ∈ h∗ be regular antidominant. Then, for any C ∈WΘ\W, we have

Γ(X,L(wC, λ, η)) = L(wCλ, η).

Proof. Because λ is regular antidominant, the global sections functor Γ(X,−) is an equiva-

lence of categories. Therefore, by Theorem 5.23, the unique irreducible quotientL(wC, λ, η)

ofM(wC, λ, η) must be mapped to the unique irreducible quotient L(wCλ, η) of M(wCλ, η)

by Γ(X,−).

These results explicitly establish the connection between the category of Whittaker

modules and the category of twisted Harish-Chandra sheaves.



CHAPTER 6

A KAZHDAN–LUSZTIG ALGORITHM

The main result of this document is an algorithm to calculate the multiplicity of an

irreducible Whittaker module in a standard Whittaker module. This chapter develops the

algorithm. This algorithm is inspired by Beilinson and Bernstein’s algorithm for calcu-

lating the multiplicity of an irreducible g-module in a Verma module in [BB81]. We base

notation and proof structure off of Miličić’s interpretation of the Verma module algorithm

in [Milb, Ch. 5 §2].

The statement of the algorithm is completely combinatorial. Let W be the Weyl group

of a reduced root system Σ. Let Π ⊂ Σ be the collection of simple roots, and let S ⊂ W be

the corresponding set of simple reflections. Let Θ ⊂ Π be a subset of simple roots, and let

WΘ ⊂ W be the sub-Weyl group generated by reflections through Θ. Let HΘ be the free

Z[q, q−1]-module with basis δC, C ∈ WΘ\W. Here Z[q, q−1] is the ring of finite Laurent

series in q. Let α ∈ Π. Then for C ∈WΘ\W, there are three possibile relationships between

α and C: either Csα = C, Csα > C, or Csα < C (Section 5.2). For any α ∈ Π, we define a

Z[q, q−1]-module endomorphism by

Tα(δC) =


0 if Csα = C;
qδC + δCsα

if Csα > C;
q−1δC + δCsα

if Csα < C.

The main result is the following theorem.

Theorem 6.1. There exists a unique function ϕ : WΘ\W → HΘ satisfying the following proper-

ties.

(i) For C ∈WΘ\W,

ϕ(C) = δC + ∑
D<C

PCDδD,

where PCD ∈ qZ[q].
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(ii) For α ∈ Π and C ∈WΘ\W such that Csα < C, there exist cD ∈ Z such that

Tα(ϕ(Csα)) = ∑
D≤C

cD ϕ(D).

The function ϕ : WΘ\W −→ HΘ determines a unique family {PCD|C, D ∈WΘ\W, D ≤

C} of polynomials in Z[q] such that ϕ(C) = ∑D≤C PCDδD for C ∈WΘ\W. We refer to these

polynomials as Whittaker Kazhdan–Lusztig polynomials to emphasize the analogy between

the relationship of these polynomials and Whittaker modules and the relationship between

the Kahdan–Lusztig polynomials and Verma modules. We will discuss the combinatorial

properties of these polynomials in Chapter 7.

We prove uniqueness of the function ϕ using a straightforward combinatorial argu-

ment. However, to prove existence of the function, we appeal to geometry1. Defining ϕ

geometrically allows us to use the results in Chapter 5 to deduce multiplicity results about

Whittaker modules from Theorem 6.1. This is done explicitly in Section 6.1. We begin with

uniqueness, and we prove a slightly stronger form. Denote by WΘ\W≤k the set of cosets

C ∈WΘ\W such that `(wC) ≤ k.

Lemma 6.2. Let k ∈ N. Then there exists at most one function ϕ : WΘ\W≤k −→ HΘ such that

the following properties are satisfied.

(i) For C ∈WΘ\W≤k,

ϕ(C) = δC + ∑
D<C

PCDδD,

where PCD ∈ qZ[q].

(ii) For α ∈ Π and C ∈WΘ\W≤k such that Csα < C, there exist cD ∈ Z such that

Tα(ϕ(Csα)) = ∑
D≤C

cD ϕ(D).

Proof. We proceed by induction in k. Our base case is when k = `(wC) for C ∈ WΘ\W

which is minimal in the order relation on WΘ\W. By Proposition 5.10, the unique minimal

coset is C = WΘ, so k = `(wΘ) is our base case. In this case, WΘ\W≤k = {WΘ}. The only

possible function ϕ : WΘ\W −→ HΘ which satisfies (i) is ϕ(WΘ) = δWΘ , and (ii) is void.

1There is also a straightforward combinatorial argument to prove existence of ϕ, as demonstrated in [Soe97,
Thm. 3.1]. However, our geometric proof provides the critical link between these combinatorial objects and
Whittaker modules, which is the main intention of this project.
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Assume that for k > `(wΘ), there exists ϕ : WΘ\W≤k −→ HΘ which satisfies (i) and

(ii). Our induction assumption is that ϕ|WΘ\W≤k−1
is unique. Let C ∈ WΘ\W≤k be such that

`(wC) = k. (We know that such a C exists for any k > `(wΘ) by Theorem 5.11.) Then by

Proposition 5.10, there exists α ∈ Π such that Csα < C. By (ii),

Tα(ϕ(Csα)) = ∑
D≤C

cD ϕ(D).

Evaluating at q = 0 and using (i), we have

Tα(ϕ(Csα))(0) = ∑
D≤C

cD

(
δD + ∑

E<D
PDE(0)δC

)
= ∑

D≤C
cDδD.

Because `(wCsα) = k− 1, the induction assumption implies that the coefficients cD in this

sum are uniquely determined. On the other hand, using the definition of ϕ and Tα, we

compute

Tα(ϕ(Csα)) = Tα

(
δCsα

+ ∑
D<Csα

PCsαDδD

)
= Tα(δCsα

) + ∑
D<Csα

PCsαDTα(δD)

= qδCsα
+ δC + ∑

D<Csα

PCsαDTα(δD).

Because all cosets D appearing in the sum are less than Csα in the coset order, `(wD) <

k − 1 for any such D. In particular, δC does not show up in this sum. Evaluating at zero

and setting this equal to our first computation, we conclude that cC = 1. Therefore,

ϕ(C) = T(ϕ(Csα))− ∑
D<C

cD ϕ(D).

The quantities ϕ(Csα) and ϕ(D) are uniquely determined by the induction assumption,

and the coefficients cD for D < C are uniquely determined by our previous argument, so

the left-hand side must be uniquely determined as well. This shows that the Lemma holds

for WΘ\W≤k , and we are done by induction.

The uniqueness of Theorem 6.1 follows immediately from Lemma 6.2. Before we show

the existence of the function ϕ, we will establish a “parity” condition on solutions of

Lemma 6.2. This condition will be critical in the upcoming geomtric computations.
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We define additive involutions i on Z[q, q−1] and ι onHΘ by

i(qm) = (−1)mqm, for m ∈ Z, and

ι(qmδC) = (−1)m+`(wC)qmδC, for m ∈ Z and C ∈WΘ\W.

Then ιTαι is a Z[q, q−1]-linear endomorphism ofHΘ, and

(ιTαι)(δC) = (−1)`(w
C)ι(Tα(δC)).

If Csα = C, then

(ιTαι)(δC) = (−1)`(w
C)ι(Tα(δC)) = 0 = −Tα(δC).

If Csα > C, then

(ιTαι)(δC) = (−1)`(w
C)ι(Tα(δC)) = (−1)`(w

C)ι(qδC + δCsα
)

= (−1)`(w
C)(ι(qδC) + ι(δCsα

)) = (−1)`(w
c)((−1)1+`(wC)qδC + (−1)`(w

C)+1δCsα
)

= (−1)1+2`(wC)(qδC + δCsα
) = −(qδC + δCsα

) = −Tα(δC).

Here, the fact that ι(δCsα
) = (−1)`(w

C)+1δCsα
follows from Proposition 5.9. Finally, if Csα <

C,

(ιTαι)(δC) = (−1)`(w
C)ι(Tα(δC)) = (−1)`(w

C)ι(q−1δC + δCsα
)

= (−1)`(w
C)(ι(q−1δC) + ι(δCsα

)) = (−1)`(w
c)((−1)−1+`(wC)q−1δC + (−1)`(w

C)−1δCsα
)

= (−1)2`(wC)−1(q−1δC + δCsα
) = −(q−1δC + δCsα

) = −Tα(δC).

We conclude from this calculation that ιTαι = −Tα.

Lemma 6.3. Let k ∈ N. Let ϕ : WΘ\W≤k −→ HΘ be a function satisfying properties (i) and (ii)

of Lemma 6.2. Then

PCD = q`(w
C)−`(wD)QCD,

where QCD ∈ Z[q2, q−2].
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Proof. Define a function ψ : WΘ\W≤k → HΘ by ψ(C) = (−1)`(w
C)ι(ϕ(C)). Then

ψ(C) = (−1)`(w
C)ι

(
δC + ∑

D<C
PCDδD

)
= (−1)2`(wC)δC + ∑

D<C
(−1)`(w

C)−`(wD)i(PCD)δD

= δC + ∑
D<C

(−1)`(w
C)−`(wD)i(PCD)δD.

The polynomials (−1)`(w
C)−`(wD)i(PCD) are in qZ[q], so ψ satisfies (i). We will show that ψ

also satisfies (ii), then use Lemma 6.2 to conclude that ψ = ϕ. Let C ∈WΘ\W≤k and α ∈ Π

such that Csα < C. Then

Tα(ψ(Csα)) = Tα

(
(−1)`(w

C)−1ι(ϕ(Csα))
)

= (−1)`(w
C) (−Tα(ι(ϕ(Csα))))

= (−1)`(w
C)ιTαι(ι(ϕ(Csα)))

= (−1)`(w
C)ιTα(ϕ(Csα))

= (−1)`(w
C)ι

(
∑

D≤C
cD ϕ(D)

)
= (−1)`(w

C) ∑
D≤C

cDι(ϕ(D))

= ∑
D≤C

(−1)`(w
C)−`(wD)cDψ(D).

This shows that ψ satisfies (ii), so Lemma 6.2 implies that ϕ = ψ; that is, that

PCD = (−1)`(w
C)−`(wD)i(PCD).

This relationship implies the result. Indeed, if `(wC)− `(wD) is even, then we can conclude

that PCD has no odd-degree terms, so PCD ∈ q2Z[q2]. Therefore, we can pull out an even

power of q and are left with an element of Z[q−2, q2]; i.e. PCD = q`(w
C)−`(wD)QCD, for some

QCD ∈ Z[q−2, q2]. If `(wC)− `(wD) is odd, then the relationship above implies that PCD

has no even-degree terms, so we can pull out an odd power of PCD and are left with an

element of Z[q−2, q2]; i.e. PCD = q`(w
C)−`(wD)QCD for QCD ∈ Z[q−2, q2].

Now we are ready to prove existence of ϕ. Let F ∈ Mcoh(DX, N, η). For w ∈ W, let

iw : C(w) −→ X be the canonical immersion of the corresponding Bruhat cell into the flag

variety. We note the following facts.



71

• For any k ∈ Z, L−ki+w (F ) is an η-twisted N-equivariant connection on C(w), so it is

isomorphic to a sum of copies of OC(w). (See Section 4.3.) We refer to the number of

copies of OC(w) that appear in this decomposition as the O-dimension, and denote it

dimO(L−ki+w (F )).

• Because the dimension of C(w) is `(w), for any k ∈ Z,

Rn−`(w)−ki!
w(F ) = L−ki+w (F ).

Here n = dim X.

We define a map ν :Mcoh(DX, N, η) −→ HΘ by

ν(F ) = ∑
C∈WΘ\W

∑
m∈Z

dimO(Rmi!
wC(F ))qmδC. (6.1)

For C ∈ WΘ\W, let IC = I(wC,−ρ, η) be the standard sheaf in Mcoh(DX, N, η) corre-

sponding to the coset C and LC = L(wC,−ρ, η) its unique irreducible subsheaf.

Proposition 6.4. Let ϕ(C) = ν(LC). Then ϕ satisfies conditions (i) and (ii) in Theorem 6.1.

Checking that ϕ satisfies 6.1 (i) is straightforward.

Lemma 6.5. Let ϕ(C) = ν(LC). Then

ϕ(C) = δC + ∑
D<C

PCDδD,

where PCD ∈ qZ[q].

Proof. We need to show three things:

(a) If D 6≤ C, dimO(Rmi!
wD(LC)) = 0 for all m ∈ Z,

(b) dimO(Rmi!
wC(LC)) =

{
1 if m = 0
0 otherwise

, and

(c) if D < C, dimO(Rmi!
wD(LC)) = 0 for all m ≤ 0.
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Part (a) follows immediately from the fact that suppLC = C(wC) and D ≤ C in the coset

order if and only if C(wD) ⊂ C(wC) (Proposition 5.15). To see part (b), we first observe

that by Lemma 4.27 and Corollary 2.3,

R0i!
wC(LC) = R0i!

wC(IC) = R0i!
wC(iwC+(OC(wC))) = OC(wC).

So dimO(R0i!
wC(LC)) = 1. Furthermore, for m 6= 0,

Rmi!
wC(LC) = Rmi!

wC(IC) = Rmi!
wC(iwC+(OC(wC))) = 0.

This proves (b). We end by showing (c). Let D ∈ WΘ\W be a coset so that D < C.

Because iw is an immersion, i!
wD is a right derived functor, so for any m < 0, Rmi!

wD(V) = 0

for any D-module V on X, so all that remains is to show that R0i!
wD(LC) = 0. Let X′ =

X− ∂C(wD), and let jwD : C(wD)→ X′ be the natural closed immersion, and kwD : X′ → X

the natural open immersion. Then we have a commutative diagram.

C(wD) X

X′
jwD

iwD

kwD

Then, we can see that

R0 jwD+(R0i!
wD(LC)) = R0 jwD+(R0 j!

wD(R0k!
wD(LC)))

= R0 jwD+(R0 j!
wD(L0k+wD(LC)))

= R0 jwD+(R0 j!
wD(LC|X′))

= R0ΓC(wD)(LC|X′).

Here the second equality falls from the fact that dimX = dimX′, the third equality holds

because kwD is an open immersion, and the final equality is from Kashiwara’s Theorem

(Theorem 2.2). From this calculation, we see that R0 jwD+(R0i!
wD(LC)) is the submodule

of LC|X′ consisting of sections supported on C(wD). However, because X′ is open, L|X′

is irreducible, so this submodule must be zero. We conclude that R0i!
wD(LD) = 0, which

completes the proof of the lemma.

Our final step in proving Theorem 6.1 is establishing that ϕ satisfies Theorem 6.1(ii).

This is the bulk of the argument. First, we need to introduce another useful functor.
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Fix α ∈ Π, and let pα : X −→ Xα be projection onto the flag variety of parabolic

subalgebras of type α. If Pα ⊂ G is the standard parabolic of type α, then Pα = B ∪ BsαB.

Let C(v) be the Bruhat cell corresponding to v ∈W. Then we have the following facts:

• C(v) ' C`(v), so iv : C(v) −→ X is an affine morphism.

• pα(C(v)) is also affine, so it is an affine subvariety of Xα.

• pα is locally trivial, so p−1
α (pα(C(v)) is a smooth, affinely imbedded subvariety of X.

We conclude that p−1
α (pα(C(v))) = C(v) ∪ C(vsα). One of these orbits is closed in the

variety p−1
α (pα(C(v))) and the other is open and dense. We have two possible scenarios:

1. `(vsα) = `(v) + 1. Then dim(C(vsα)) > dim(C(v)), and so

• C(vsα) is open and dense in p−1
α (pα(C(v))),

• C(v) is closed in p−1
α (pα(C(v))), and

• pα : C(v) −→ pα(C(v)) is an isomorphism.

2. `(vsα) = `(v)− 1. Then dim(C(vsα)) < dim(C(v)), and so

• C(vsα) is closed in p−1
α (pα(C(v))),

• C(v) is open and dense in p−1
α (pα(C(v))), and

• pα : C(v) −→ pα(C(v)) is a fibration with fibers ismorphic to an affine line.

We define a family of functors Uk
α :Mqc(DX) −→Mqc(DX) by

Uk
α(F ) = p+α (Hk pα+(F )).

Because the fibers of the projection map pα : X → Xα are one-dimensional, Uk
α can be

non-zero only for k ∈ {−1, 0, 1}. These functors are closely related to the U-functors dis-

cussed in Section 4.1.4. Their main utility in our argument comes from their semisimplicity

properties.

Lemma 6.6. Let C ∈WΘ\W and α ∈ Π be such that Csα < C. Then

(i) Uk
α(LCsα

) = 0 for all k 6= 0, and
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(ii) U0
α(LCsα

) is a direct sum of LD for D ≤ C.

Proof. By construction, U0
α(LCsα

) are holonomic (DX, N, η)-modules supported inside

C(wC) ∪ C(wCsα)) = C(wC). This implies that U0
α(LCsα

) has finite length, and its compo-

sition factors must be in the set {LD|D ∈ WΘ\W and D ≤ C}. Because pα is a locally

trivial fibration with fibers isomorphic to P1 (in particular, it is a projective morphism

of smooth quasi-projective varieties), and LCsα
is a semisimple holonomic D-module, the

decomposition theorem [Moc11, §1 Thm. 1.4.1] implies that Hk pα+(LCsα
) are semisimple.

By the local triviality of pα, this in turn implies that U0
α(LCsα

) are semisimple, which

completes the proof of (ii).

To prove (i), we establish the connection between U0
α and the results in Section 4.1.4.

Let Yα = X×Xα X be the fiber product of X with itself relative to the morphism pα. Denote

by q1 and q2 the projections of Yα onto the first and second factors, respectively. Then the

following diagram

Yα X

X Xα

q2

q1 pα

pα

is commutative. By base change (Theorem 2.5),

U0
α(LCsα

) = p+α (Hk pα+(LCsα
)) = Hkq1+(q+2 (LCsα

)).

Because DX = D−ρ, we have Uq
α(LCsα

)(α) = Uq(LCsα
). This establishes the connection

with the U-functors of Section 4.1.4, and to complete the proof, we need to show that we

are in case (ii) of Theorem 4.7; i.e. that L−1 Isα(LCsα
) = 0. Because Csα < C, we can apply

Proposition 4.29 to the coset Csα and conclude that

LIsα(D(I(wCsα, λ, η))) = D(I(wC, sαλ, η)).

In particular, this implies that L−1 Isα(I(wcsα, λ, η)) = 0, and because LCsα
is a submodule

of I(wcsα, λ, η), L−1 Isα(LCsα
) = 0 as well.

We are working toward showing that ϕ(C) = ν(LC) satisfies (ii). We will do so by re-

lating Tα(ϕ(Csα)) to U0
α(LCsα

) and using Lemma 6.6 to obtain our desired decomposition.

Let C ∈ WΘ\W and α ∈ Π be such that Csα < C. Then if wC is the longest element in C,
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Proposition 5.9 implies that wCsα is the longest element of Csα, and `(wCsα) = `(w)− 1.

Let D ≤ C. Then by Proposition 5.9, `(wD) ≤ `(wC), so C(wD) ⊂ C(wC). By assumption,

C(wC) is open and dense in p−1
α (pα(C(wC))) = C(wC) ∪ C(wCsα), so p−1

α (pα(C(wC))) =

C(wC). Because C(wD) ⊂ C(wC), pα(C(wD)) ⊂ pα(C(wC)), so

C(wD) ∪ C(wDsα) = p−1
α (pα(C(wD))) ⊂ p−1

α (pα(C(wC))) ⊂ p−1
α (pα(C(wC))) = C(wC).

We conclude that both wDsα ≤ wC and wD ≤ wC. Because both elements are less than

or equal to wC in the Bruhat order, we can assume without loss of generality that wDsα ≤

wD; i.e. `(wDsα) = `(wD) − 1 and C(wD) is open in Zα = p−1
α (pα(C(wD))) = C(wD) ∪

C(wDsα).

Here we pause, and address the two possibilities of the relationship between D and α.

Either

(a) wDsα ∈ D, or

(b) wDsα 6∈ D.

The rest of our argument will address each case separately. The following lemma describes

the key result in case (a).

Lemma 6.7. Let v ∈ W be a Weyl group element such that v 6= wC is not a longest coset element

for any coset C ∈WΘ\W. Let F ∈ Mcoh(DX, N, η) be irreducible. Then

Rki!
v(F ) = 0

for all k ∈ Z.

Proof. Let X′ = X − ∂C(v), and express the canonical immersion iv as the composition of

a closed immersion and an open immersion in the following way.

C(v) X′ X
jv

iv

kv

Then, if F is an irreducible (DX, N, η)-module,

i!
v(D(F )) = j!

v(k
!
v(D(F )))

= i!
v(iv+(j!

v(k
!
v(D(F )))))
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= i!
v(kv+(jv+(j!

v(k
!
v(D(F ))))))

= i!
c(kv+(RΓC(v)(k

!
v(D(F )))))

= i!
v(kv+(RΓC(v)(D(F|X′))))

Here the second equality falls from Corollary 2.3, the fourth equality from Theorem 2.2,

and the final equality from the fact that dim X = dim X′ and kv is an open immersion.

Because X′ is open in X and F is irreducible, F|X′ is irreducible as well. For all k ∈ Z,

RkΓC(v)F|X′ is a submodule of F|X′ , so either

(a) RkΓC(v)F|X′ = 0, or

(b) RkΓC(v)F|X′ = F|X′ .

In case (a), the preceding calculation implies that Rki!
v(F ) = 0, and we are done. In case

(b), we have suppF|X′ = suppRkΓC(v)F|X′ ⊆ C(v). By [Mila, Ch. V §4 Cor. 4.2], F is the

unique irreducible holonomicDX-module that restricts toF|X′ , and suppF = suppF|X′ ⊆

C(v). There are no irreducible objects in Mcoh(DX, N, η) with support equal to C(v)

because v is not a longest coset element, so we must have suppF ⊆ ∂C(v) = C(v)− C(v).

This implies that in case (b),

Rki!
v(F ) = 0

for all k ∈ Z.

Now, we return to our previous setting. Let D ≤ C, and α ∈ Π such that Csα < C,

and assume that C(wD) is open in Zα = p−1
α (pα(C(wD))). We do not specify at this time

whether Dsα = D or Dsα 6= D. Let j : Zα −→ X and jD : pα(C(wD)) −→ Xα be natural

inclusions. Let qα : Zα −→ pα(C(wD)) be the restriction of pα to Zα. Then we have the

following fiber product diagram [Mila, Ch. IV §10].

Zα X

pα(C(wD)) Xα

j

qα pα

jD

Note that because pα and qα are surjective submersions, p+α and q+α are exact, so they both

lift to functors on the respective derived categories Db(M(DX)) and Db(M(DZα)). In the

calculations below, we denote both the functors on the derived category and the functors
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on modules by the same name, either p+α or q+α . Let d be the codimension of Zα in X.

Note that the codimension of pα(C(wD)) = pα(Zα) in Xα is also d. Recall that for any

immersion i : Y → X of smooth algebraic varieties, the extraordinary inverse image and

the D-module inverse image are related by i![codim(Y)] = Li+. By base change (Theorem

2.5), Lemma 6.6, and the relationship described in the previous sentence, we get

Rk j!(U0
α(LCsα

)) = Hk(j!(p+α (pα+(D(LCsα
)))))

= Hk+d(Lj+(p+α (pα+(D(LCsα
)))))

= Hk+d(L(pα ◦ j)+(pα+(D(LCsα
))))

= Hk+d(L(jD ◦ qα)
+(pα+(D(LCsα

))))

= Hk+d(q+α (Lj+D(pα+(D(LCsα
)))))

= Hk(q+α (j!
D(pα+(D(LCsα

)))))

= q+α (Hk(j!
D(pα+(D(LCsα

)))))

= q+α (Hk(qα+(j!(D(LCsα
))))).

Our next step is to analyze the complex j!(D(LCsα
)). Denote by i : C(wD) −→ Zα and

i′ : C(wDsα) −→ Zα the canonical affine immersions. Note that i is an open immersion,

and i′ is a closed immersion. We have the following commutative diagram.

C(wD)

Zα X

C(wDsα)

i

iwD

j

i′

iwDsα

For any complex F · ∈ Db(M(DZα)), we have the following distinguished triangle [Mila,

Ch. IV §9].

i′+(i
′!(F ·)) −→ F · −→ i+(F ·|C(wD)).

Applying this to F · = j!(D(LCsα
)), we get the distinguished triangle

i′+(i
′!(j!(D(LCsα

)))) −→ j!(D(LCsα
)) −→ i+(j!(D(LCsα

))|C(wD)).

Now, since j!(D(LCsα
))|C(wD) = i+(j!(D(LCsα

))) = i!(j!(D(LCsα
))) = i!

wD(D(LCsα
)) be-

cause i is an open immersion and i′! ◦ j! = i!
wDsα

, we simplify this distinguished triangle
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to

i′+(i
!
wDsα

(D(LCsα
))) −→ j!(D(LCsα

)) −→ i+(i!
wD(D(LCsα

))).

Applying the functor qα+ and using the fact that (qα ◦ i)+ = qα+ ◦ i+ and (qα ◦ i′)+ =

qα+ ◦ i+ we get the following distinguished triangle in Db(M(Dpα(C(wD)))):

(qα ◦ i′)+(i!
wDsα

(D(LCsα
)))) −→ qα+(j!(D(LCsα

))) −→ (qα ◦ i)+(i!
wD(D(LCsα

)))).

Because pα(C(wD)) is an N-orbit in Xα and all D-modules in the arguments above are

N-equivariant, the cohomologies of the complexes in this triangle are all sums of copies of

Opα(C(wD)). Additionally, the map

qα ◦ i′ : C(wDsα) −→ pα(C(wD))

is an isomorphism, and the map

qα ◦ i : C(wD) −→ pα(C(wD))

is a locally trivial projection with one-dimensional fibers. We conclude that

dimOHk((qα ◦ i′)+(i!
wDsα

(D(LCsα
)))) = dimORki!

wDsα
(LCsα

), and

dimOHk((qα ◦ i)+(i!
wD(D(LCsα

)))) = dimRk+1i!
wD(LCsα

).

From the final distinguished triangle above, we also obtain the long exact sequence in

cohomology:

· · · →Hk−1((qα ◦ i)+(i!
wD(D(LCsα

)))→ Hk((qα ◦ i′)+(i!
wDsα

(D(LCsα
))))→

Hk(qα+(j!(D(LCsα
)))→ Hk((qα ◦ i)+(i!

wD(D(LCsα
)))→

Hk+1((qα ◦ i′)+(i!
wDsα

(D(LCsα
))))→ · · ·

This is a sequence of Dpα(C(wD))-modules which are sums of copies of Opα(C(wD)).

Now we are ready to prove that ϕ(C) = ν(LC) satisfies 6.1 (ii) by induction in the

length of wC. The base case is when wC = wΘ. In this case, for any α ∈ Π, either Csα = C,

or Csα > C, because wΘ is minimal length in the set of longest coset elements. Therefore,

by 5.10, we conclude that C = WΘ, and 6.1 (ii) is void. Assume that ϕ(C) = ν(LC) satisfies

6.1 (ii) for C ∈ WΘ\W≤k and some k ∈ N. By 6.3, ϕ(C) = ν(LC) satisfies the parity
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condition on WΘ\W≤k; that is, for C ∈ WΘ\W≤k and D ∈ WΘ\W, PCD = q`(w
C)−`(wD)QCD,

for QCD ∈ Z[q2, q−2]. Because

PCD(q) = ∑
m∈Z

dimO(Rmi!
wD(LC))qm,

we conclude that for any C ∈WΘ\W≤k and D ∈WΘ\W, if m ≡ `(wC)− `(wD)− 1(mod 2),

then Rmi!
wD(LC) = 0.

Let C ∈ WΘ\W be such that `(wC) = k + 1. Then C 6= WΘ, and so we know by 5.10

there exists α ∈ Π such that Csα < C. By 5.9, the longest element in Csα is wCsα. For any

D ∈WΘ\W, we have either

(a) k ≡ `(wD)− `(wCsα) (mod 2); or

(b) k ≡ `(wD)− `(wCsα)− 1 (mod 2).

In case (a), we have k + 1 ≡ `(wD) − `(wCsα) − 1 (mod 2), so the parity condition

implies that

Rk+1i!
wD(LCsα

) = 0.

Similarly, in this case, we have k ≡ `(wDsα)− `(wCsα)− 1 (mod 2). If D ∈ WΘ\W has the

property that Dsα 6= D (i.e. wDsα is the longest element in some coset), then we can apply

the parity condition again to conclude that

Rki!
wDsα

(LCsα
) = 0.

If D ∈ WΘ\W has the property that Dsα = D, then we can use Lemma 6.7 to draw the

same conclusion: Rki!
wDsα

(LCsα
) = 0. Either way, we are able to conclude that in case (a),

Hk((qα ◦ i)+(i!
wD(D(LCsα

)))) = 0, and Hk((qα ◦ i′)+(i!
wDsα

(D(LCsα
)))) = 0.

Then, by the long exact sequence in cohomology, this implies that

Hk(qα(j!(D(LCsα
)))) = 0 for k ≡ `(wD)− `(wCsα) (mod 2).

In case (b), we have k ≡ `(wDsα) − `(wCsα) − 1 (mod 2), and k + 1 ≡ `(wDsα) −

`(wCsα)− 1 (mod 2). We can conclude immediately from the parity condition that

Rki!
wD(LCsα

) = 0, and Hk−1((qα ◦ i)+(i!
wD(D(LCsα

)))) = 0.
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As above, if Dsα 6= D, then wDsα is the longest element in some coset, and we can use the

parity condition again to conclude that

Rk+1i!
wDsα

(LCsα
) = 0, and Hk+1((qα ◦ i′)+(i!

wDsα
(D(LCsα

)))) = 0.

If Dsα = D, then applying Lemma 6.7 leads us to the same conclusion. We see from these

two arguments that the long exact sequence in cohomology has the form

· · · → 0→ 0→ 0→ ∗ → ∗ → ∗ → 0→ 0→ 0→ ∗ → ∗ → ∗ → 0→ 0→ 0→ · · ·

Therefore, if k ≡ `(wD)− `(wCsα)− 1 (mod 2), then

dimOHk(qα+(j!(D(LCsα
)))) = dimORki!

wDsα
(LCsα

) + dimORk+1i!
wD(LCsα

).

Recall that because qα is a surjective submersion, q+α is exact, and we showed previously

that Rk j!(U0
α(LCsα

)) = q+α (Hk(qα+(j!(D(LCsα
))))). We conclude that

(a) If k ≡ `(wD)− `(wCsα) (mod 2), then dimORk j!(U0
α(LCsα

)) = 0; and

(b) If k ≡ `(wD)− `(wCdα)− 1 (mod 2), then

dimORk j!(U0
α(LCsα

)) = dimORki!
wDsα

(LCsα
) + dimORk+1i!

wD(LCsα
).

By restricting further to C(wD) and C(wDsα), we finally obtain our desired parity result.

For all k ∈ Z+, D ∈WΘ\W, and α ∈ Π such that Csα < C, we have

dimORki!
wD(U0

α(LCsα
)) = dimORk+1i!

wD(LCsα
) + dimORki!

wDsα
(LCsα

), and

dimORki!
wDsα

(U0
α(LCsα

)) = dimORki!
wD(LCsα

) + dimORk−1i!
wDsα

(LCsα
).

In addition, if D ∈WΘ\W has the property that Dsα = D, we can use Lemma 6.7 to further

reduce the formulas above. Indeed, by Lemma 6.7, in this case,

dimORk−1i!
wDsα

(D(LCsα
)) = 0, and

dimORki!
wDsα

(D(LCsα
)) = 0

for all k ∈ Z+. By Lemma 6.6, U0
α(LCsα

) =
⊕

D≤C mCDLD for some mCD ∈ Z+, hence

Lemma 6.7 also implies that

dimORki!
wDsα

(U0
α(LCsα

)) = 0.
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Combining this with the relationships above, which hold for all D ∈ WΘ\W regardless of

relationship between D and sα, we conclude that for D ∈WΘ\W such that Dsα = D,

dimORki!
wD(U0

α(LCsα
)) = 0

for all k ∈ Z+.

We conclude the proof of the theorem with the following computation.

ν(U0
α(LCsα

)) = ∑
D∈WΘ\W

∑
m∈Z

dimO(Rmi!
wD(U0

α(LCsα
)))qmδD

= ∑
Dsα>D

∑
m∈Z

dimO(Rmi!
wD(U0

α(LCsα
)))qmδD

+ ∑
Dsα<D

∑
m∈Z

dimO(Rmi!
wD(U0

α(LCsα
)))qmδD

+ ∑
Dsα=D

∑
m∈Z

dimO(Rmi!
wD(U0

α(LCsα
)))qmδD

= ∑
Dsα<D

∑
m∈Z

dimO(Rmi!
wDsα

(U0
α(LCsα

)))qmδDsα

+ ∑
Dsα<D

∑
m∈Z

dimO(Rmi!
wD(U0

α(LCsα
)))qmδD

= ∑
Dsα<D

∑
m∈Z

(dimORmi!
wD(LCsα

) + dimORm−1i!
wDsα

(LCsα
))qmδDsα

+ ∑
Dsα<D

∑
m∈Z

(dimORm+1i!
wD(LCsα

) + dimORmi!
wDsα

(LCsα
))qmδD

= ∑
Dsα<D

∑
m∈Z

(dimORm+1i!
wD(LCsα

) + dimORmi!
wDsα

(LCsα
))qm(δD + qδDsα)

= ∑
Dsα<D

∑
m∈Z

dimORm+1i!
wD(LCsα

)qm+1(q−1δD + δDsα)

+ ∑
Dsα>D

∑
m∈Z

dimORmi!
wD(LCsα

))qm(δDsα + qδD)

=Tα(ν(LCsα
)) = Tα(ϕ(Csα)).

Therefore, for C ∈WΘ\W≤k and α ∈ Π such that Csα < C,

Tα(ϕ(Csα)) = ν(U0
α(LCsα

)) = ν(
⊕
D≤C

cDLD) = ∑
D≤C

cDν(LD) = ∑
D≤C

cD ϕ(D).

This shows that 6.1 (ii) holds on WΘ\W≤k+1. By induction, we see that ϕ satisfies 6.1 (ii),

and this completes the proof of Proposition 6.4. It also completes the proof of Theorem 6.1.
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6.1 Multiplicities of Irreducible Whittaker Modules
in Standard Whittaker Modules

Finally, we will establish the connection between the polynomials PCD and the multi-

plicities of irreducible Whittaker modules in the composition series of standard Whittaker

modules. We start with two preliminary lemmas.

Lemma 6.8. The evaluation ν(−1) of the map ν at −1 factors through the Grothendieck group

K(Mcoh(DX, N, η)) ofMcoh(DX, N, η).

Proof. For an object F inMcoh(DX, N, η),

ν(F )(−1) = ∑
C∈WΘ\W

∑
m∈Z

(−1)m dimO(Rmi!
wC(F ))δC.

If 0 → F1 → F2 → F3 → 0 is a short exact sequence in Mcoh(DX, N, η), then for each

C ∈WΘ\W, we have a long exact sequence

· · · ∂m−1−−→ Rmi!
wC(F1)

fm−→ Rmi!
wC(F2)

gm−→ Rmi!
wC(F3)

∂m−→ Rm+1i!
wC(F1)→ · · ·

of N-homogeneous η-twisted connections on C(wC). For each m ∈ Z, we have short exact

sequences

0→ ker fm → Rmi!
wC(F1)→ im fm → 0,

0→ ker gm → Rmi!
wC(F2)→ im gm → 0, and

0→ ker ∂m → Rmi!
wC(F3)→ im ∂m → 0.

The O-dimension sums over short exact sequences, so we have

dimO Rmi!
wC(F1) = dimO ker fm + dimO im fm,

dimO Rmi!
wC(F2) = dimO ker gm + dimO im gm, and

dimO Rmi!
wC(F3) = dimO ker ∂m + dimO im ∂m.

Therefore, by multiplying the second equality above by −1, summing over m ∈ Z, and

using the relationships ker fm = im ∂m−1, ker gm = im fm, and ker ∂m = im gm, we have
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∑
m∈Z

(−1)m dimO(Rmi!
wC(F2)) = ∑

m∈Z

(−1)m dimO(Rmi!
wC(F1))− ∑

m∈Z

(−1)m dimO ker fm

+ ∑
m∈Z

(−1)m dimO(Rmi!
wC(F3))− ∑

m∈Z

(−1)m dimO ker ∂m

= ∑
m∈Z

(−1)m dimO(Rmi!
wC(F1))

+ ∑
m∈Z

(−1)m dimO(Rmi!
wC(F3)).

This implies the result.

Lemma 6.9. ν(IC) = δC.

Proof. By definition, IC = iwC+(OC(wC)). By Kashiwara’s theorem (more specifically, Corol-

lary 2.3),

R0i!
wC(IC) = R0i!

wC(iwC+(OC(wC))) = OC(wC),

and for m 6= 0,

Rmi!
wC(IC) = Rmi!

wC(iwC+(OC(wC))) = 0.

Let D 6= C be another coset in WΘ\W. Then i−1
wD(C(wC)) = 0, so by base change (Theorem

2.5),

Rmi!
wD(IC) = Rmi!

wD(iwC+(OC(wC))) = 0

for all m ∈ Z.

Let χ : Mcoh(DX, N, η) → K(Mcoh(DX, N, η)) be the natural map of the category

Mcoh(DX, N, η) into its Grothendieck group K(Mcoh(DX, N, η)).

Theorem 6.10. Let PCD, C, D ∈WΘ\W be the polynomials in Theorem 6.1. Then

χ(LC) = χ(IC) + ∑
D<C

PCD(−1)χ(ID).

Proof. By definition, the set {χ(LC)}C∈WΘ\W forms a basis for the Grothendieck group

K(Mcoh(DX, N, η)). Because IC contains LC as a unique irreducible submodule, and the

other composition factors of IC are LD for D < C, we can see that χ(IC), C ∈WΘ\W form

another basis for the Grothendieck group. Therefore, there exist λCD ∈ Z such that

χ(LC) = ∑
D≤C

λCDχ(ID).
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By Lemma 6.8, ν(−1) factors through K(Mcoh(DX, N, η)) and by Lemma 6.9, ν(ID) = δD,

so

ν(LC)(−1) = ∑
D≤C

λCDν(ID)(−1) = ∑
D≤C

λCDδD.

By construction, PCC = 1 for any C ∈WΘ\W, so λCC = 1 and PCD(−1) = λCD. This proves

the theorem.

This theorem gives an algorithm for calculating the multiplicities of irreducible Whit-

taker modules in standard Whittaker modules. One starts by ordering elements of WΘ\W

by the Bruhat order on longest coset representatives. Then the matrix (λCD)C,D∈WΘ\W is

lower triangular and has 1’s on the diagonal. Let (µCD)C,D∈WΘ\W be the inverse matrix.

From Theorem 6.10, we have

χ(IC) = ∑
D∈WΘ\W

∑
E∈WΘ\W

µCEλEDχ(ID)

= ∑
E∈WΘ\W

µCE

(
∑

D∈WΘ\W
λEDχ(ID)

)
= ∑

E∈WΘ\W
µCDχ(LE)

= ∑
E≤C

µCEχ(LC).

By Theorem 5.23 and Theorem 5.25, we have established the main result of this disserta-

tion.

Corollary 6.11. The multiplicity of the irreducible Whittaker module L(−wDρ, η) in the standard

Whittaker module M(−wCρ, η) is µCD.

We can get theorems analogous to Theorem 6.10 and Corollary 6.11 for regular weights

µ ∈ P(Σ) by twisting by a homogeneous invertible OX-module. To establish the same

multiplicity results for standard Whittaker modues of arbitrary central character requires

further analysis, which we will examine in future work. (See Chapter 8.)

We complete this section with the following observation about the polynomials PCD.

Corollary 6.12. The coefficients of the polynomials PCD from Theorem 6.1 are non-negative inte-

gers.

Proof. This follows immediately from Proposition 6.4 and the definition of ν.



CHAPTER 7

WHITTAKER KAZHDAN–LUSZTIG

POLYNOMIALS

This chapter relates the Whittaker Kazhdan–Lusztig polynomials PCD of Theorem 6.1

to the combinatorics of Kazhdan–Lusztig polynomials appearing in [Soe97] and [Milb, Ch.

5 §2 §3]. We also establish the relationship between Whittaker Kazhdan–Lusztig polynomi-

als and the polynomials arising in the Kazhdan-Lusztig algorithm for generalized Verma

modules in [Milb, Ch. 6 §3 Thm. 3.5], following the philosophy of dual Hecke algebra

modules laid out in [Vog82, §12 §13]. To make these associations, we need to introduce the

Hecke algebra into our story.

7.1 The Hecke Algebra
Let (W, S) be a Coxeter system with length function ` : W →N.

Definition 7.1. The Hecke algebra1 H = H(W, S) of the Coxeter system (W, S) is the asso-

ciative algebra over Z[q, q−1] with generators {Hs}s∈S satisfying the relations

(i) (quadratic)

(Hs + q)(Hs − q−1) = 0 for all s ∈ S, and

(ii) (braid) for s, t ∈ S,

HsHt · · ·Hs = HtHs · · ·Ht if st · · · s = ts · · · t

HsHtHs · · ·Ht = HtHsHt · · ·Hs if sts · · · t = tst · · · s.

All Hs for s ∈ S are invertible with H−1
s = Hs + (q − q−1). For w ∈ W, we choose

a reduced expression rs · · · t of w and define Hw ∈ H by Hr Hs · · ·Ht. This element is

1As Z[q, q−1]-modules, H =
⊕

w∈W Z[q, q−1]Tw where Tw := q−1Hw. The algebra structure defined above
is the unique associative algebra structure on the Z[q, q−1]-module

⊕
w∈W Z[q, q−1]Tw such that TwTv = Twv

if `(w) + `(v) = `(wv) and T2
s = q−2Te + (q−2 − 1)Ts for s ∈ S [Bou05, Ch. IV §2 Ex. 23].
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independent of choice of reduced expression. If `(w) + `(v) = `(wv), then we have

HwHv = Hwv. There is exactly one ring homomorphism

d : H → H

H 7→ H

such that q = q−1 and Hw = (Hw−1)−1. This is clearly an involution. We say that H ∈ H

is self-dual if H = H. For each s ∈ S, the element Cs := Hs + q is self-dual. Indeed,

Cs = (Hs)−1 + q−1 = Hs + (q− q−1) + q−1 = Cs.

7.2 HΘ is a Hecke Algebra Module
Now we return to the setting of Chapter 6. Let W be the Weyl group of a reduced

root system Σ with simple roots Π ⊂ Σ and corresponding simple reflections S ⊂ W.

Then (W, S) is a Coxeter system. Let Θ ⊂ Π be a fixed subset of simple roots and let

HΘ =
⊕

C∈WΘ\W Z[q, q−1]δC be the Z[q, q−1]-module from Theorem 6.1. Recall that for

each α ∈ Π, we defined a Z[q, q−1]-linear endomorphism Tα ofHΘ by

Tα(δC) =


0 if Csα = C
qδC + δCsα

if Csα > C
q−1δC + δCsα

if Csα < C
.

Our first observation is that the operators {Tα}α∈Π generate a Hecke algebra under com-

position. Indeed, if we define Sα := Tα − q, then a computation shows that

(i) (Sα + q)(Sα − q−1) = 0, and

(ii) SαSβSα = SβSαSβ if sαsβsα = sβsαsβ ∈W.

We conclude that 〈Tα〉α∈Π ⊂ EndZ[q,q−1](HΘ) is isomorphic to the Hecke algebra H of

(W, S) under the isomorphism Sα 7→ Hsα . Under this isomorphism, Tα 7→ Csα , where Csα is

the self-dual element described in the preceding section. This gives HΘ the structure of a

Hecke algebra module with action given by

H×HΘ → HΘ

(Hsα , δC) 7→ Sα(δC).

This extra structure will allow us to relate Theorem 6.1 to the results in [Soe97, §2 §3].

Our first step is to recognize HΘ as a certain induced module (the antispherical module



87

for the Hecke algebra) in order to extend the duality in H given by the involution d to a

duality in HΘ. If SΘ ⊂ S is the subset of simple reflections corresponding to Θ ⊂ Π, then

the subalgebra HΘ of H generated by {Hsα} for α ∈ Θ is isomorphic to the Hecke algebra

of the Coxeter system (WΘ, SΘ). The surjection HΘ � Z[q, q−1] sending Hsα 7→ −q gives

Z[q, q−1] the structure of a HΘ-bimodule, and with this bimodule structure, we can form

the induced rightH-module

N Θ := Z[q, q−1]⊗HΘ H.

This is the antispherical module of the Hecke algebraH. Note that in the special case Θ = ∅,

N Θ is just the Hecke-algebraH. The set {Nw := 1⊗Hw} for minimal coset representatives

w ∈ C ∈WΘ\W forms a basis for N Θ as a Z[q, q−1]-module.

Remark 7.2. By instead using the surjection HΘ � Z[q, q−1] given by Hsα 7→ q−1 to form

the HΘ-bimodule structure on Z[q, q−1], it is possible to construct another induced right

H-module MΘ := Z[q, q−1]⊗HΘ H [Soe97, §3]. This is the spherical module of the Hecke

algebra H. This module also has the property thatM∅ = H. By an analogous argument

to the one below, one can show that the H-module that appears in the Kazhdan–Lusztig

algorithm for generalized Verma modules in [Milb, Ch. 6 §3] is isomorphic to the spherical

module.

One can compute [Soe97] that the action of Cs on N Θ for s ∈ S is given by

NwCs =


0 if ws ∈ C
qNw + Nws if ws > w and ws 6∈ C
q−1Nw + Nws if ws < w and ws 6∈ C

.

From this, we conclude thatHΘ is isomorphic as anH-module to the antispherical module

N Θ under the isomorphism

φ : HΘ → N Θ

δC 7→ NwΘw.

Here wΘ is the longest element in WΘ. Note that in the special case Θ = ∅, this provides

an H-module isomorphism between H∅ and the Hecke algebra H, viewed as a module

over itself with the right regular action.2 The benefit of viewingHΘ as an induced module

2This justifies the notational choice in [Milb, Ch. 5 §2], where the Z[q, q−1]-moduleH∅ is referred to asH.
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is that it allows us to use the involution d of H to construct an involution of the induced

module, which we can then use to define self-duality inHΘ. There is a homomorphism of

additive groups

N Θ → N Θ

a⊗ H 7→ a⊗ H := a⊗ H.

This homomorphism has the property that Ne = Ne and

NH = N H (7.1)

for all N ∈ N Θ and H ∈ H. We say that an element E ∈ HΘ is self-dual if the corresponding

element in N Θ is fixed under this involution; that is, if φ(E) = φ(E). Since φ(Tα(E)) =

φ(E)Csα for any α ∈ Π and E ∈ HΘ and Csα is self-dual inH, property (7.1) implies that Tα

preserves self-duality.

7.3 The Recursion Relation in Theorem 6.1 Is
Equivalent to Self-duality

The main content of this chapter is a proof that condition (ii) in Theorem 6.1 is equiva-

lent to ϕ(C) being self-dual in the sense of the preceding section.

Theorem 7.3. Let ϕ : WΘ\W → HΘ be a function satisfying

ϕ(C) = δC + ∑
D<C

PCDδD for PCD ∈ qZ[q] (7.2)

for all C ∈WΘ\W. Then the following are equivalent.

(i) If α ∈ Π and C ∈WΘ\W are such that Csα < C, then there exist mD ∈ Z such that

Tα(ϕ(Csα)) = ∑
D≤C

mD ϕ(D).

(ii) All ϕ(C) are self-dual.

Proof. Assume that (i) holds. Using the definition of Tα, we compute

Tα(ϕ(Csα)) = Tα(δCsα
+ ∑

E<Csα

PCsαEδE)

= δC + qδCsα
+ ∑

E<Csα

PCsαETα(δE)

= δC + ∑
D<C

QCDδC
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for some QCD ∈ Z[q]. Therefore, mC = 1. Thus, for any α ∈ Π such that Csα < C (for

C 6= WΘ such an α must exist by Theorem 5.9),

ϕ(C) = Tα(ϕ(Csα))− ∑
D<C

mD ϕ(D). (7.3)

Now we show that all ϕ(C) are self-dual by induction in `(wC). If C = WΘ, then ϕ(WΘ) =

δWΘ is self-dual because φ(δWΘ) = 1⊗ He and He = He in H. Assume ϕ(D) is self-dual

for all D < C. Then because Tα preserves self-duality, equation (7.3) implies that ϕ(C) is

self-dual. We conclude that (i) implies (ii).

Assume that (ii) holds. In [Soe97, §3 Thm. 3.1], Soergel constructs such a ϕ(C) for

each C ∈ WΘ\W and proves that ϕ must be unique. His construction goes as follows. We

prove existence of a self-dual ϕ(C) satisfying equation (7.2) by induction in `(wC). For

C = WΘ, equation (7.2) can only be satisfied by ϕ(WΘ) = δWΘ , which is self-dual by the

argument above. Assume inductively that for D < C, a self-dual ϕ(D) satisfying equation

(7.2) exists. Then, there exists some α ∈ Π such that Csα < C (Theorem 5.9). For this α, we

have

Tα(ϕ(Csα)) = δC + ∑
D<C

QCDδD

for appropriately chosen QCD ∈ Z[q]. Define

ϕ(C) := Tα(ϕ(Csα))− ∑
D<C

QCD(0)ϕ(D).

This satisfies equation (7.2) and is self-dual by the induction assumption and the fact

that Tα preseves self-duality. This proves the existence of a ϕ satisfying equation (7.2)

and (ii). The uniqueness of such a ϕ follows from the observation that for any E ∈

∑C∈WΘ\W qZ[q]δC, self-duality implies E = 0. Indeed, if E = ∑C∈WΘ\W RCδC and we

let C be maximal such that RC 6= 0, then φ(E) = φ(E) implies that RC = RC, which

is impossible because RC ∈ qZ[q]. This fact immediately implies uniqueness of the ϕ

constructed above, because for any other ϕ′ : WΘ\W → HΘ satisfying equation (7.2) and

(ii), ϕ(C)− ϕ′(C) ∈ ∑C∈WΘ\W qZ[q]δC is self-dual, so ϕ(C)− ϕ′(C) = 0.

Therefore, any ϕ satisfying equation (6.1) and (ii) must be of the form

ϕ(C) := Tα(ϕ(Csα))− ∑
D<C

QCD(0)ϕ(D)
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for some α ∈ Π, so

Tα(ϕ(Csα)) = ∑
D≤C

mD ϕ(D) for mD =

{
QCD(0) if D < C
1 if D = C

.

We conclude that (ii) implies (i).

This establishes the relationship between the results in this dissertation and the re-

sults in [Soe97, §2 §3]. In particular, it establishes the relationship between the Whittaker

Kazhdan–Lusztig polynomials PCD and polynomials that have shown up elsewhere in the

combinatorics literature under the name “parabolic Kazhdan–Lusztig polynomials.” We

explicitly list these relationships now.

Remark 7.4. 1. The Whittaker Kazhdan–Lusztig polynomials PCD are equal to the poly-

nomials nxy in [Soe97] for x = wΘwC and y = wΘwD.

2. A normalization of PCD gives the parabolic Kazhdan–Lusztig polynomials in [Deo87].

Indeed, the polynomials

(q`(wΘwD) − q`(wΘwC))PCD

are polynomials in the variable v := q−2, and they are precisely the polynomials

PI
(wΘwD)−1,(wΘwD)−1 in [Deo87] for u = v and WΘ = WI .

3. In the special case where Θ = ∅, the polynomials

(q`(v) − q`(w))Pwv

are the Kazhdan–Lusztig polynomials as defined in [KL79].

7.4 Combinatorial Duality of Whittaker Modules and
Generalized Verma Modules

We conclude this chapter by listing some results established in [Soe97] relating the

Whittaker Kazhdan–Lusztig polynomials PCD to the polynomials arising in the Kazhdan–

Lusztig algorithm for generalized Verma modules established in [Milb, Ch. 6 §3]. These re-

sults recover the Kazhdan–Lusztig inversion formulas of [KL79] as a special case. We also

establish a formula relating the Whittaker Kazhdan–Lusztig polynomials to the Kazhdan–

Lusztig polynomials in [Milb]. We refer the reader to [Soe97] for omitted proofs.
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We start by discussing inversion formulas. Let

H∗Θ = HomZ[q,q−1](HΘ, Z[q, q−1])

N Θ∗ = HomZ[q,q−1](N Θ, Z[q, q−1])

be the dual Z[q, q−1]-modules to HΘ and N Θ, respectively. The isomorphism φ : HΘ →

N Θ induces an isomorphism of

φ∗ : N Θ∗ → H∗Θ

N 7→ φ ◦ N.

We refer to the inverse of this isomorphism by φ′.

We can extend the involution on N Θ to a Z[q, q−1]-skew linear involution on N Θ∗ in

the following way. For F ∈ N Θ∗, define

F(N) := F(N).

We say an element E ∈ H∗Θ is self-dual if the corresponding element inN Θ∗ is self-dual; that

is, if φ′(E) = φ′(E). We define a basis {δC} forH∗Θ as a Z[q, q−1]-module by the formula

δC(δD) =

{
(−1)`(wΘwC) if C = D
0 if C 6= D

.

The following theorem guarantees the existence of inverse Whittaker Kazhdan–Lusztig

polynomials.

Theorem 7.5. [Soe97, §3 Thm. 3.6] There exists a unique function ψ : WΘ\W → H∗Θ satisfying

(i) ψ(C) = δC + ∑D>C PCDδD for PCD ∈ qZ[q], and

(ii) ψ(C) is self-dual.

Proof. We define ψ by the formula

ψ(C)(ϕ(D)) =

{
(−1)`(wΘwC) if C = D
0 if C 6= D

where ϕ : WΘ\W → HΘ is the unique function from Theorem 6.1. The self-duality of

ϕ(C) (Theorem 7.3) implies that ψ(C) is self-dual. Since {δD} form a basis for H∗Θ, we can

express ψ(C) = ∑D∈WΘ\W PCDδD for some PCD ∈ Z[q, q−1], and the relationship

ψ(C)(ϕ(D)) =

(
∑

E∈WΘ\W
PCEδE

)(
δD + ∑

F<D
PDFδF

)
=

{
(−1)`(wΘwC) if C = D
0 if C 6= D
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implies that PCC = 1, PCE = 0 for E < C and PCE ∈ qZ[q]. This completes the proof of the

theorem.

From the construction of ψ, it follows that the polynomials PCD and PCD are “inverse

polynomials” in the following sense3.

∑
E∈WΘ\W

(−1)`(w
E)+`(wC)PCEPDE =

{
1 if C = D
0 if C 6= D

. (7.4)

Note that by Lemma 5.12, `(wΘwC) = `(wC)− `(wΘ), so `(wΘwE) + `(wΘwC) = `(wE) +

`(wC).

In [Milb, Ch. 6 §3], Miličić establishes a Kazhdan–Lusztig algorithm for generalized

Verma modules. We review his results here to establish their relationship with the Whit-

taker Kazhdan–Lusztig algorithm of this document. Let HΘ =
⊕

C∈WΘ\W Z[q, q−1]δC

be the Z[q, q−1]-module from the preceding section. We can realize HΘ as a Z[q, q−1]-

submodule of the Z[q, q−1]-module4 H∅ =
⊕

w∈W Z[q, q−1]δw by setting

δC = ∑
w∈WΘ

q`(v)δvwC .

For α ∈ Π, let T∅
α : H∅ → H∅ be the endomorphism defined by

T∅
α (δw) =

{
qδw + δwsα if wsα > w
q−1δw + δwsα if wsα < w

,

as in Section 7.2. We introduce ∅ into the notation here to emphasize that T∅
α is an endo-

morphism of H∅. A computation shows that the endomorphism T ∅
α transforms δC in the

following way:

T∅
α (δC) =


(q + q−1)δC if Csα

qδC + δCsα
if Csα < C

q−1δC + δCsα
if Csα > C

.

Miličić showed thatHΘ is stable under T∅
α , soHΘ is anH-submodule ofH∅. With thisH-

module structue, HΘ is isomorphic to Soergel’s spherical module (Remark 7.2). In [Milb,

Ch. 6 §3], Miličić proves the following Kazhdan-Lusztig algorithm for generalized Verma

modules.

3If Θ = ∅, the PCD are the inverse Kazhdan–Lusztig polynomials as in [Soe97].

4Recall that this module is isomorphic as an H-module to the Hecke algebra H, with module structure
given by the right regular action. In [Milb, Ch. 5 §2], this module is referred to as H, but here we choose to
use the notationH∅ as a reminder that it is a special case ofHΘ.
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Theorem 7.6. [Milb, Ch. 6 §3 Thm. 3.5] There exists a unique function ϕ′ : WΘ\W → HΘ

satisfying the following.

(i) For C ∈WΘ\W,

ϕ′(C) = δC + ∑
D<C

P′CDδD

for P′CD ∈ qZ[q], and

(ii) for α ∈ Π such that Csα < C, there exist integers m′D such that

T∅
α (ϕ′(Csα)) = ∑

D≤C
m′D ϕ′(D).

Furthermore, the polynomials P′CD are given by the Kazhdan–Lusztig polynomials for (W, S) by

P′CD = PwCwD .

In [Milb, Ch. 6 §3], Miličić establishes that the unique function ϕ′ : WΘ\W → HΘ

satisfying Theorem 7.6 is the function ϕ′(D) := ϕ(wD), where ϕ : W → H∅ is the unique

function guaranteed by Theorem 6.1 in the special case Θ = ∅. The Kazhdan–Lusztig

polynomials P′CD of Theorem 7.6 describe the multiplicities of irreducible highest weight

modules in generalized Verma modules [Milb, Ch. 6 §3 Cor. 3.7].

For arbitrary Θ ⊂ Π, the inverse Whittaker Kazhdan–Lusztig polynomials are equal

to the polynomials appearing in Theorem 7.6. The following theorem appears in [Soe97],

where it is originally attributed to Douglass [Dou90].

Proposition 7.7. [Soe97, §3 Prop. 3.9] Let Θ ⊂ Π be arbitrary, and C, D ∈WΘ\W. Then

PCD = P′Cw0Dw0

where w0 is the longest element of W and P′Cw0Dw0
for C, D ∈ WΘ\W are the unique polynomials

from Theorem 7.6.

If we specialize to Θ = ∅, this recovers the Kazhdan–Lusztig inversion formulas.

∑
u∈W

(−1)`(u)+`(w)PwuPvw0 uw0 =

{
1 if v = w
0 if v 6= w

. (7.5)

We complete this chapter by describing the relationship between the Whittaker Kazhdan–

Lusztig polynomials PCD and the Kazhdan–Lusztig polynomials in [Milb]. If Θ = ∅, then
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WΘ\W = W, and each coset contains a single Weyl group element. In this setting, Theorem

6.1 specializes the algorithm in [Milb, Ch. 5 §2 Thm. 2.1], and the polynomials Pwv are the

Kazhdan–Lusztig polynomials in the sense of [Soe97] and [Milb]5. The following formula

relates Whittaker Kazhdan–Lusztig polynomials to Kazhdan–Lusztig polynomials.

Proposition 7.8. For Θ ⊂ Π arbitrary,

PCD = ∑
v∈WΘ

(−q)`(v)PwΘwC vwΘwD .

Proof. Pick a total order compatible with the partial order on WΘ\W. From Theorem 7.6

we see that P′CD = 0 for D > C and PCD = 1 if C = D, so the matrix P = (P′CD) of

polynomials with respect to our total order is lower triangular with 1’s on the diagonal

and coefficients in Z[q]. The inverse matrix Q = (QCD) is also lower triangular with 1’s

on the diagonal and coefficients in Z[q]. From equation (7.4) and Proposition 7.7 we see

that the coefficients QCD of the inverse matrix are related to Whittaker Kazhdan–Lusztig

polynomials in the following way:

QCD = (−1)`(w
C)+`(wD)PDw0Cw0 . (7.6)

Then, if ϕ : W → H∅ is the unique function from Theorem 6.1 in the special case Θ = ∅,

we have

∑
D∈WΘ\W

QCD ϕ(wD) = ∑
D∈WΘ\W

QCD

(
∑

E∈WΘ\W
P′DEδE

)

= ∑
E∈WΘ\W

(
∑

D∈WΘ\W
QCDP′DE

)
δE

= δC.

In the special case Θ = ∅, this implies

∑
v∈W

Qwv ϕ(v) = δw. (7.7)

Then, because

δC = ∑
v∈WΘ

q`(v)δvwC ,

5These polynomials differ in normalization from the Kazhdan–Lusztig polynomials appearing in [KL79].
See Remark 7.4.
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we have the following relationship:

∑
D∈WΘ\W

QCD ϕ(wD) = ∑
v∈WΘ

q`(v)δvwC

= ∑
v∈WΘ

q`(v)
(

∑
u∈W

QvwC u ϕ(u)

)

= ∑
u∈W

(
∑

w∈WΘ

q`(v)QvwC u

)
ϕ(u).

Here the second equality follows from equation (7.7). Since {ϕ(u) : u ∈ W} form a basis

forH∅ by Theorem 6.1, this implies that

QCD = ∑
v∈WΘ

q`(v)QvwC wD .

Thus, since `(vwC) = `(wC)− `(v) by Theorem 5.12, an application of equation (7.6) for

the special case Θ = ∅ results in the following formula:

QCD = (−1)`(w
C)+`(wD) ∑

v∈WΘ

(−1)`(v)q`(v)PwDw0 vwCw0
.

The proposition then follows by combining this formula with equation (7.6) and using the

fact that wCw0 is the shortest element of the coset Cw0, so it is equal to wΘwCw0 by Theorem

5.6.



CHAPTER 8

CONCLUSION

The results of Section 6.1 (in particular Corollary 6.11) accomplish the main goal of

this dissertation by computing the multiplicity of an irreducible Whittaker module in the

composition series of a standard Whittaker module. Furthermore, in arriving to Corollary

6.11 by means of the algorithm in Theorem 6.1, we have computed these multiplicities

without reference to the established Kazhdan–Lusztig algorithm for Verma modules. This

method is distinct from the methods for computing multiplicities established in [MS97]

and [Bac97], and it has several advantages. The primary advantage of this approach

is the establishment of Whittaker Kazhdan–Lusztig polynomials. These polynomials re-

veal the underlying combinatorics of the category of Whittaker modules and provide a

concrete combinatorial description that can be used to compare Whittaker modules to

other mathematical objects. The explicit conversions between Whittaker Kazhdan–Lusztig

polynomials and other types of Kazhdan–Lusztig polynomials from the combinatorics

literature in Chapter 7 lay the groundwork for such future combinatorial comparisons.

In addition to this, the algorithm of Theorem 6.1 is more efficient than the methods for

calculating multiplicities that were established in [MS97] and [Bac97]. These methods com-

pared Whittaker modules to singular blocks of categoryO, so computing multiplicities in-

volved performing the Kazhdan–Lusztig algorithm for Verma modules with non-singular

central character, then using translation functors to determine which irreducible subquo-

tients vanish when λ pairs singularly with certain roots. This amounts to computing the

|W| × |W| (upper triangular) matrix of Kazhdan–Lusztig polynomials and deleting certain

rows and columns. In contrast, the method for computing multiplicities established in this

manuscript directly computes the |WΘ\W| × |WΘ\W|matrix of polynomials to determine

multiplicities without providing any superfluous information, so its implementation is

more efficient.
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In addition to answering multiplicity questions in the category of Whittaker mod-

ules, another accomplishment of this project is the systematic development of the geomet-

ric categoryMcoh(Dλ, N, η) of η-twisted Harish-Chandra sheaves. Ever since Beilinson–

Bernstein’s [BB81] and Brylinski–Kashiwara’s [BK81] celebrated proofs of the Kazhdan–

Lusztig conjectures introduced the possibility of using algebraic geometry to address ques-

tions in representation theory, geometric descriptions of categories of g-modules have been

recognized as a powerful tool. However, geometric descriptions of g-modules are often in

terms of perverse sheaves instead of D-modules. For example, in [BB81] and [BK81], the

main geometric arguments were performed using categories of perverse sheaves and the

D-module description of these categories was primarily used as an intermediate tool for

comparing categories of perverse sheaves to categories of g-modules. Because the category

of D-modules which is obtained by localizing highest weight modules (the category of

“Harish-Chandra sheaves” [Milb]) consists of holonomic D-modules with regular singu-

larities, the Riemann–Hilbert correspondence makes it possible to convert that category

of D-modules to a category of perverse sheaves. However, the category Mcoh(Dλ, N, η)

which we obtain by localizing Whittaker modules contains holonomic D-modules with

irregular singularities, which means that the Riemann–Hilbert correspondence does not

apply. Therefore, geometric descriptions of Whittaker modules must be in terms of D-

modules instead of perverse sheaves, and this document establishes the structure and tools

necessary for working within this category of D-modules.

The results established in Chapters 1-7 of this manuscript open the door to many other

questions about the structure theory of the category of Whittaker modules. In the final

section of this document, we outline some natural future directions of this project.

8.1 Future Directions
This manuscript develops tools for analyzing the category N both algebraically and

geometrically, and these tools can be used to address other questions about this category.

The most obvious of these questions is computation of multiplicities in the case of singular

and non-integral central character.

Question 8.1. Can Corollary 6.11 be generalized to standard Whittaker modules with arbi-

trary central character?
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For Verma modules, the Kazhdan–Lusztig algorithm can be extended to arbitrary λ ∈

h∗ by reducing the algorithm to the integral Weyl group, which is constructed from the

roots with which λ pairs integrally. (See, for example, [Soe90, KT00].) However, the Whit-

taker setting requires a subtler approach which relates the sub-Weyl group determined

by η and the integral Weyl group. By using translation functors and Theorem 5.23, one

can establish combinatorial conditions that dictate when the global sections of irreducible

η-twisted Harish-Chandra sheaves with singular central character vanish, and this can be

used to compute multiplicities for singular λ. To address the non-integral case, a parabolic

set of roots can be constructed by taking the union of the root system determined by η and

the positive roots. When intersected with the integral root system, this yields a smaller

parabolic set of roots, which determines a subset of simple roots depending on both η

and λ. I conjecture that the Kazhdan–Lusztig polynomials for non-integral Whittaker

modules are the polynomials corresponding to this subset. The conditions on irreducibility

of standard Whittaker modules established in [Luk04] support this conjecture.

An interesting consequence of the algorithm in Theorem 6.1 is its relationship to the

Kazhdan–Lusztig algorithm for generalized Verma modules in [Milb] as described in Sec-

tion 7.4. This relationship leads to the following question.

Question 8.2. Is the combinatorial duality present in the Kazhdan–Lusztig polynomials for

generalized Verma modules and the Kazhdan–Lusztig polynomials for Whittaker modules

a shadow of a deeper duality between these two categories?

The equivalence between blocks of N and singular blocks of category O established

in [MS97] and the “parabolic-singular” duality between singular blocks of O and regu-

lar blocks of parabolic category Op described in [BGS96] indicate that a duality between

Whittaker modules and generalized Verma modules should exist, but this relationship

has not yet been made precise in the literature. A first step in formalizing this idea is

to examine the role of projective objects in N in an attempt to realize blocks of N as

module categories over the endomorphism ring of some projective generator, following

the approach of Soergel in [BGS96]. This introduces a Koszul ring, and we can calculate

the corresponding Koszul dual ring, with the final goal of realizing blocks of parabolic

category Op as modules over the Koszul dual ring.
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In addition to these questions, it is natural to ask whether other well-established results

of the category of highest weight modules extend to N . In [Jan79], Jantzen introduced a

canonical filtration of Verma modules which provided a beautiful conceptual proof of BGG

reciprocity for highest weight modules, and he conjectured that this filtration is compatible

in a natural way with embeddings of Verma modules. This became known as the Jantzen

Conjecture. It was discovered by Gabber and Joseph [GJ81] that this conjecture establishes

detailed information about the coefficients of the Kazhdan–Lusztig polynomials, and a

proof of it implies the Kazhdan–Lusztig conjectures. The standard Whittaker modules in

N have similar structural properties to Verma modules, so it is reasonable to consider the

following problem.

Question 8.3. Can one define Jantzen filtrations in N in order to develop and prove a

conjecture analogous to the Jantzen conjecture for N ?

In [BB93], Beilinson and Bernstein provide a proof of the Jantzen conjectures using

weight filtrations on the corresponding perverse sheaves. However, as described above,

the irregular singularities of the D-modules inMcoh(Dλ, N, η) make methods of perverse

sheaves intractable for N . Therefore, the geometric development of Jantzen filtrations

for Whittaker modules would require detailed analysis of holonomic D-modules with

irregular singularities, building on the structure established in [Moc11]. In this setting,

the interactions between Hodge theory and representation theory have not yet been thor-

oughly studied, and there are many possibilities for future development. Furthermore,

there is an alternate algebraic approach to this problem using Soergel bimodules, which is

described below.

The category of Whittaker modules could also be approached using a different set of

tools. Inspired by the celebrated algebraic proof of the Kazhdan-Lusztig conjectures by

Elias-Williamson in [EW14], one could examine categoryN using Soergel bimodules with

the goal of providing a purely algebraic proof of Corollary 6.11 that does not appeal to

geometry. Indeed, Theorem 6.1 can be reformulated in terms of the anti-spherical module

for the Hecke algebra associated to W by the results in Chapter 7. In [LW17], Libedinsky–

Williamson use a diagrammatic category of Soergel bimodules (which they refer to as the

‘anti-spherical category’) to categorify the anti-spherical module, and this categorification
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establishes positivity of coefficients of parabolic Kazhdan–Lusztig polynomials. This leads

to the following question.

Question 8.4. Can the anti-spherical category of Libedinsky-Williamson be used to provide

a purely algebraic proof of Corollary 6.11?

In [RW15], Riche–Williamson relate the anti-spherical category of the affine Weyl group

to representations of algebraic groups, establishing the importance of this category in mod-

ular representation theory. Therefore, an answer to Question 8.4 would also illuminate the

role of Whittaker modules in modular representation theory. Additionally, this approach

could present an alternate avenue to Question 8.3 by building on Williamson’s recent

algebraic proof of the Jantzen Conjecture for Verma modules using Soergel bimodules

[Wil16].
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