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ABSTRACT 

 

 Adenosine deaminases that act on RNA (ADARs) catalyze adenosine-to-inosine 

(A-to-I) conversion within double-stranded RNA (dsRNA). Since inosine prefers to base-

pair with cytidine, it is read by cellular machinery like the ribosome as guanosine. Thus, 

A-to-I RNA editing can alter the translation of edited codons in cellular mRNAs. 

However, genome-wide A-to-I editing studies have demonstrated that editing in coding 

regions is exceedingly rare in most organisms. Instead, ADAR editing is abundant in 

noncoding sequences associated with protein-coding genes, particularly in introns and 

untranslated regions (UTRs). By extension, dsRNA structures must also be prevalent in 

such noncoding regions. These observations raise questions as to the purpose of RNA 

editing and dsRNA structure in gene-associated sequences. In this dissertation, I explore 

the physiological functions of ADAR enzymes and their noncoding dsRNA substrates in 

the nematode Caenorhadbitis elegans. 

 First, I describe in Chapter 2 how ADARs prevent processing and silencing of 

cellular dsRNAs by the antiviral RNA interference (RNAi) machinery. Using RNAseq, I 

defined ADAR-edited dsRNAs, or editing-enriched regions (EERs), expressed during 

four stages of C. elegans development. I found that, in adr-1;adr-2 mutants, EERs gave 

rise to abundant ~23 nucleotide (nt) small interfering RNAs (siRNAs), and were involved 

in silencing their associated genes by an RNAi-dependent mechanism. Additionally, 

disruption of the 26G endogenous siRNA (endo-siRNA) pathway in adr-1;adr-2 mutant 



 iv 

backgrounds caused a synthetic phenotype that was rescued by deleting factors involved 

in antiviral RNAi. These results suggest that ADARs limit RNAi activity against cellular 

dsRNAs, presenting a striking functional parallel to mammalian ADAR1, which prevents 

aberrant innate immune signaling by the antiviral dsRNA sensor MDA5. 

 Though the work in Chapter 2 suggests that gene-associated dsRNAs can effect 

transcriptional silencing, in Chapter 3, I detail analyses suggesting that dsRNA-associated 

genes in fact exhibit higher-than-expected expression. I used three computational 

methods to define genome-wide loci in C. elegans encoding dsRNA structures, observing 

their enrichment on autosome distal arms. Despite that genes in distal arm regions are 

overall less highly expressed and less likely to be essential than genes in autosome 

centers, dsRNAs in these regions were enriched within essential and highly expressed 

genes. These analyses could not explicitly determine if gene expression patterns 

correlated with dsRNA formation or another property common to these loci. However, 

they suggest that dsRNA structures may function as important gene regulatory elements. 

In Chapter 4, I propose additional experiments to test contributions of dsRNA structure to 

gene expression regulation. 
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CHAPTER 1 

 

INTRODUCTION 

 

In the cell, RNAs perform diverse functions dictated by their distinct forms and 

sequences. RNA processing and modification activities often alter the sequence of a 

transcript, in turn modifying its structure and functions. For instance, splicing and 

polyadenylation dramatically modify RNA sequence by removing and adding large 

blocks of sequence. Other types of RNA modification may change only a single 

nucleotide (nt). Adenosine deaminases that act on RNA (ADARs) catalyze the covalent 

conversion of adenosine (A) to inosine (I) in double-stranded RNAs (dsRNAs), a type of 

RNA modification known as RNA editing (Nishikura, 2016). Inosine has similar base-

pairing properties to guanosine (G), so A-to-I editing can alter RNA structure, binding 

partners, and translation, depending on where editing occurs. A-to-I conversion is the 

most common form of RNA editing in metazoans, impacting thousands of sites in diverse 

organisms (Bazak et al., 2014; Blango and Bass, 2016; Porath et al., 2017; Zhao et al., 

2015). Given its wide range of effects and locations, ADAR editing is highly pleiotropic, 

and deciphering the mechanistic and functional impact of editing has remained a major 

challenge in the field.  

 In this dissertation, I describe studies of the physiological functions of ADAR 

editing in the model invertebrate Caenorhadbitis elegans. I define endogenous edited 
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dsRNAs expressed during C. elegans development and show how editing prevents their 

recognition by antiviral RNA interference (RNAi) machinery. Further, I explore how 

edited dsRNAs correlate with properties of associated genes in different domains of the 

C. elegans genome.  These studies shed light on the ancestral functions of ADAR and 

may suggest novel roles for cellular dsRNAs. 

 

The ADAR protein family 

To date, ADARs have been found in all multicellular animals with sequenced and 

annotated genomes, possibly excepting the basal metazoan Trichoplax adhaerens (Grice 

and Degnan, 2015). ADARs have a conserved domain organization that includes one or 

more N-terminal dsRNA-binding motifs (dsRBMs) and a C-terminal deaminase domain. 

The ADAR deaminase domain shows homology to adenosine deaminases that act on 

tRNA (ADATs), eukaryotic enzymes that convert adenosine 37 to inosine in tRNAAla 

(Gerber et al., 1998; Macbeth et al., 2005), suggesting that ADAR editing originated from 

a tRNA modifying activity. ADARs likely arose when an ancestral protein orthologous to 

yeast ADAT1 acquired one or more dsRBMs, conferring specificity for dsRNA 

substrates. 

 Mammals encode three ADAR genes, ADAR1, ADAR2, and ADAR3, and two 

ADAR-like genes, TENR and TENRL (also called ADAD1 and ADAD2) (Nishikura, 

2016). Of these, only ADAR1 and ADAR2 encode enzymatically active proteins, as no 

activity has been reported for ADAR3, while TENR and TENRL lack residues essential 

for catalysis (Chen et al., 2000; Nishikura, 2016; Oakes et al., 2017). ADAR1 produces 

two major protein isoforms (Patterson and Samuel, 1995). The 110-kiloDalton (kD) 
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isoform, ADAR1p110, is expressed constitutively and contains three dsRBMs and the 

deaminase domain. Expression of the longer 150-kD isoform, ADAR1p150, is driven by 

an alternative upstream, interferon (IFN)-inducible promoter. In addition to the domains 

found in ADAR1p110, ADAR1p150 includes two N-terminal Z-DNA-binding domains. 

ADAR1 Z-DNA binding domains are poorly understood, but they have been implicated 

in localization to cytoplasmic stress granules (Ng et al., 2013). Other groups hypothesize 

that Z-DNA binding domains are important to recruit ADAR1p150 to regions of active 

transcription (Herbert and Rich, 1999) or promote transcription by maintaining open 

chromatin (Oh et al., 2002). ADAR2, the other enzymatically active ADAR protein in 

mammals, carries two dsRBMs and a deaminase domain (Nishikura, 2016), and is 

expressed broadly, with highest expression in the brain (Melcher et al., 1996). Consistent 

with its elevated expression in neural tissue, ADAR2 is required in mammals to recode a 

glutamine residue to an arginine (Q/R) in the GRIA2 (also called GluR-B or GluA2) pre-

mRNA, which encodes a subunit of neuronal glutamate receptors (Higuchi et al., 2000).  

Other vertebrates express orthologs of mammalian ADAR proteins (Li et al., 

2014), but nonvertebrate metazoa express different sets of ADAR enzymes. For instance, 

Drosophila encode a single ADAR, most similar in primary sequence to mammalian 

ADAR2. ADAR1-like enzymes containing N-terminal Z-DNA-binding domains have 

been observed in the genomes of sea urchin, sea anemone, and certain sponges (Grice and 

Degnan, 2015). C. elegans have two ADAR genes, adr-1 and adr-2 (Tonkin et al., 2002). 

ADR-2 contains a single dsRBM and is the only active editing enzyme of the two; its 

mutation abolishes all editing in the organism. The ADR-1 protein lacks residues critical 

for catalysis, but it contains two dsRBMs and binds dsRNA substrates to regulate editing 
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(Washburn et al., 2014), possibly by interacting with ADR-2 (H. Hundley, personal 

communication). Mutants lacking adr-1 have lower overall editing, though editing at 

some sites increases in adr-1 mutants (Tonkin et al., 2002; Zhao et al., 2015). 

 

ADAR activity and specificity 

Originally identified as a “dsRNA unwinding” activity (Bass and Weintraub, 

1987; Rebagliati and Melton, 1987), ADAR editing acts specifically on dsRNA 

substrates. However, rather than unwinding its substrates, ADARs covalently modify 

them, weakening the association of complementary sequences by converting A-U 

(uridine) base-pairs to I-U mismatches (Bass and Weintraub, 1988; Wagner et al., 1989). 

ADAR dsRBMs provide high affinity for dsRNA with dissociation constants in the low 

nM range (Kim et al., 1994; Lai et al., 1995; Ohman et al., 2000). However, very high 

levels of dsRNA inhibit ADAR1 activity (Hough and Bass, 1994), though the mechanism 

of substrate inhibition is not well understood. Several studies have suggested that 

ADAR1p150 and ADAR2 homodimerize in order to edit dsRNA (Cho et al., 2003; 

Poulsen et al., 2006), but this is still subject to debate, since earlier work from our lab 

observed recombinant ADAR2 only in a monomeric state (Macbeth and Bass, 2007). 

Though editing destabilizes RNA duplexes by converting A-U base-pairs to I-U 

mismatches, ADARs can edit up to 50% of adenosines in a perfectly base-paired RNA 

(Nishikura et al., 1991), indicating ADARs still bind and edit dsRNAs containing 

unpaired regions. Indeed, many natural ADAR substrates contain mismatches, loops, and 

bulges (Higuchi et al., 1993; Morse et al., 2002; Rieder et al., 2013), which often direct 

site-specific editing. As is the case with other dsRNA-binding proteins (dsRBPs) (Ramos 
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et al., 2000; Ryter and Schultz, 1998; Tian et al., 2004), ADARs bind A-form dsRNA 

primarily through interactions with the phosphodiester backbone (Barraud et al., 2012; 

Matthews et al., 2016; Stefl et al., 2006). RNA-DNA hybrids also form A-form helices, 

and a recent report suggests ADARs can deaminate deoxyadenosine in RNA-DNA 

duplexes (Zheng et al., 2017). Since ADAR-substrate interactions are structure-

dependent, ADARs bind their substrates sequence-indiscriminately. As an exception to 

this rule, human ADAR2 dsRBMs also make sequence-specific contacts within the minor 

groove of a model substrate, the GRIA2 R/G hairpin (Stefl et al., 2010). Sequence-

specific interactions, which contribute to binding and editing the R/G hairpin, are thought 

to promote a specific binding register to facilitate efficient editing. However, a structure 

of the ADAR2 deaminase domain in complex with the same substrate suggested the 

deaminase domain would sterically clash with dsRBMs making sequence-specific 

interactions, raising questions as to the relevance of these interactions in vivo (Matthews 

et al., 2016). Still, ADAR2 residues that mediate sequence-specific binding are not 

conserved in ADAR1, providing one potential explanation for the different substrate 

specificities of ADAR1 and ADAR2 (Lehmann and Bass, 2000; Tan et al., 2017). 

Chimeric proteins containing the ADAR1 deaminase domain and PKR dsRBMs also 

exhibit altered substrate specificity from wildtype ADAR1, demonstrating that ADAR 

dsRBMs confer distinct binding preferences (Liu et al., 2000). 

 The ADAR deaminase domain catalyzes conversion of adenosine to inosine by 

hydrolytic deamination (Polson et al., 1991). Within the deaminase domain, the catalytic 

pocket, containing a critical zinc ion, coordinates a water molecule for nucleophilic attack 

at adenine C6 (Macbeth et al., 2005; Matthews et al., 2016). To access this ordered water 
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within the catalytic pocket, target adenosines must completely flip out of the RNA 

duplex, a mechanism demonstrated in biochemical and structural studies (Kuttan and 

Bass, 2012; Matthews et al., 2016; Stephens et al., 2000; Yi-Brunozzi et al., 2001). 

ADAR inserts a small loop into the dsRNA minor groove to flip out the target adenosine 

and occupy its space. In doing so, the flipping loop makes contacts with neighboring 

bases, but minorly clashes with 5’G or C. These interactions and clashes with adjacent 

nucleotides result in editing site nearest neighbor preferences, causing ADARs to prefer 

to edit adenosines with a 5’ U (or A) and 3’ G, but disfavor those with a 5’ G and 3’ U or 

C (Eggington et al., 2011; Lehmann and Bass, 2000; Polson and Bass, 1994). 

 The combination of structural elements and neighboring nucleotides dictates 

ADAR editing patterns. Properties of dsRNA structures, specifically their length and 

presence of unpaired sequences, promote editing in either selective or nonselective modes 

(Deffit and Hundley, 2016). ADARs edit long, perfectly base-paired dsRNAs 

nonselectively, deaminating many adenosines largely at random, though influenced by 

nearest neighbor preferences. In contrast, short (15-40 base-pair) RNA duplexes often 

show editing at one or several specific adenosines, but not others. Loops, mismatches, 

and bulges often direct such selective editing by promoting ADAR binding and editing at 

specific sites (Higuchi et al., 1993; Rieder et al., 2013). Further, unpaired adenosines 

opposite cytosines can be preferentially edited to produce a more stable I-C base pair 

(Kallman et al., 2003; Wong et al., 2001). In many cases, structural elements direct 

selective editing at mRNA recoding sites (Higuchi et al., 1993; Wahlstedt and Ohman, 

2011). Regulation of editing within coding sequences is important to promote specific, 

functional amino acid substitutions, but prevent promiscuous recoding that might 
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generate nonfunctional proteins. 

 

Endogenous ADAR substrates 

The first in vivo ADAR-edited RNAs were discovered serendipitously by Sanger 

sequencing cDNAs (Burns et al., 1997; Cattaneo et al., 1988; Kimelman and Kirschner, 

1989; Sommer et al., 1991). These edited RNAs were all protein-coding transcripts, 

including those encoding measles virus proteins, Xenopus basic Fibroblast Growth 

Factor, and mammalian neuronal receptor proteins. Since the ribosome interprets inosine 

as guanosine, editing in these protein-coding RNAs was predicted, and in some cases 

shown, to cause amino acid substitutions. Later, unbiased methods to identify inosine in 

cellular RNAs without amplifying specific cDNAs recognized that ADAR editing 

frequently occurs in noncoding sequences, particularly pre-mRNA introns and 3’ 

untranslated regions (UTRs) (Morse et al., 2002; Morse and Bass, 1999). Following 

publication of the human genome sequence, multiple groups in parallel used libraries of 

cDNAs and expressed sequence tags to identify thousands of A-to-I edited sites in human 

RNAs, observing abundant editing in repetitive Alu elements (Athanasiadis et al., 2004; 

Blow et al., 2004; Kim et al., 2004; Levanon et al., 2004). These early efforts to define 

endogenous ADAR-edited RNAs provided the framework and tools to understand where 

editing occurs in the cell. 

Modern high-throughput sequencing technologies provide powerful methods to 

identify edited RNAs and describe patterns of editing. Like the ribosome, reverse 

transcriptases interpret inosine as guanosine, so ADAR-edited transcripts appear with A-

to-G mismatches in RNA sequencing (RNAseq) data (Diroma et al., 2017; Eisenberg, 
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2012). Approaches to identify A-to-G changes by RNAseq have been used to define 

editing sites in more than two dozen metazoan species (Hung et al., 2017; Liscovitch-

Brauer et al., 2017; Porath et al., 2014; Porath et al., 2017), and more than 50 human 

tissues (Tan et al., 2017). Because ADARs nonselectively edit highly base-paired 

dsRNAs, our laboratory and others have used clusters of A-to-G changes, called editing-

enriched regions (EERs), to identify long cellular dsRNAs, mapping what we call the 

“dsRNAome” (Blango and Bass, 2016; Whipple et al., 2015).  

RNAseq-based editing studies have validated many of the patterns observed by 

early methods. For instance, it is well established that the vast majority of editing occurs 

in noncoding sequences, especially introns and UTRs, while editing in coding sites is rare 

(Blango and Bass, 2016; Porath et al., 2017; Whipple et al., 2015; Zhao et al., 2015). 

Coleoid cephalopods pose an interesting exception to this observation: though editing 

still occurs more frequently outside coding sequences in these organisms, squid, 

octopuses, and cuttlefish show thousands of editing-dependent mRNA recoding events 

(Liscovitch-Brauer et al., 2017), which may underlie adaptation to different temperatures 

and environments (Garrett and Rosenthal, 2012). As observed in early studies of human 

cDNAs and ESTs, editing most often occurs in sequences derived from repetitive 

elements (Blango and Bass, 2016; Porath et al., 2017; Zhao et al., 2015). Because 

repetitive elements can be copied thousands or millions of times in metazoan genomes, 

complementary sequences from these elements often pair to generate dsRNA, such as 

when two nearby repeats occur in an inverted orientation (Bazak et al., 2014; Porath et 

al., 2017). Most human and C. elegans edited sequences are predicted to form 

intramolecular dsRNA structures in this manner (Blango and Bass, 2016; Whipple et al., 
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2015), though separate sense and antisense RNAs can form intermolecular dsRNAs that 

are also ADAR substrates (Fischer et al., 2013; Kimelman and Kirschner, 1989). 

 

ADAR regulation 

Differences in editing patterns between cell types and conditions indicate that A-

to-I editing is subject to regulation. For instance, editing frequency varies substantially 

between human tissues, and tissue-specific editing levels inversely correlate with 

expression of AIMP2, which encodes a negative regulator of ADAR editing (Tan et al., 

2017). Temperature-dependent changes in editing patterns are thought to contribute to 

temperature adaptation in Drosophila and octopus (Buchumenski et al., 2017; Garrett and 

Rosenthal, 2012; Rosenthal, 2015), suggesting these organisms regulate ADAR in 

response to environmental perturbation. Additionally, misregulated editing may 

contribute to human disease, such as cancer, where alterations in both nonselective 

editing patterns and mRNA recoding occur (Baysal et al., 2017; Gallo et al., 2017). All of 

these observations emphasize that editing must be tightly regulated in the cell. 

ADAR is subject to regulation by both transcriptional and post-translational 

mechanisms. Transcripts of both C. elegans ADAR genes, adr-1 and adr-2, display 

developmental regulation marked by elevated levels in embryo stages (Hundley et al., 

2008). As mentioned above, alternative promoters dictate mammalian ADAR1 isoform-

specific expression, including induction of the long p150 isoform upon IFN stimulation 

(Patterson and Samuel, 1995). While both ADAR1p110 and ADAR1p150 shuttle 

between the nucleus and cytoplasm, the p110 isoform predominates in the nucleus while 

the long isoform primarily localizes to the cytoplasm due to a nuclear export signal 
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included only in the p150 isoform (Fritz et al., 2009; Poulsen et al., 2001). Regulation of 

ADAR1 isoform expression further underscores that ADAR subcellular localization is 

tightly controlled. ADAR2’s nuclear localization is mediated by a phosphorylation-

dependent interaction with the prolyl isomerase Pin1 and cytoplasmic ubiquitination by 

the E3 ligase WWP2 (Marcucci et al., 2011). ADAR nuclear localization likely facilitates 

editing of pre-mRNA substrates, including structures formed by intron-exon base-pairing 

(Aruscavage and Bass, 2000; Higuchi et al., 1993; Hoopengardner et al., 2003). Indeed, 

ADAR-dependent A-to-G changes are also observed in cDNAs from nascent Drosophila 

transcripts (Rodriguez et al., 2012), suggesting many editing events occur co-

transcriptionally. Thus, regulation of ADAR subcellular localization impacts the 

transcripts it can access to edit. 

Other regulatory mechanisms alter editing patterns by influencing ADAR 

substrate selection, but do not act on ADAR proteins directly. For instance, several 

mRNA recoding sites, including the GRIA2 Q/R and Gabra-3 I/M sites in mammals, use 

separate, proximal dsRNA structures to promote high-efficiency editing in RNA hairpins 

containing the recoding sites (Daniel et al., 2012; Daniel et al., 2017). These proximal 

structures, called editing-inducer elements (EIEs), are thought to increase ADAR local 

concentration around functionally important edited structures to facilitate binding and 

editing (Daniel et al., 2014; Ramaswami et al., 2015). Other factors regulate ADAR 

activity by competing for substrates or altering dsRNA structures to preclude ADAR 

binding. The C. elegans protein TDP-1, whose mammalian ortholog TDP-43 shows RNA 

strand dissociation activity, restricts dsRNA accumulation and limits editing at many sites 

in vivo, presumably by preventing dsRNA formation through duplex unwinding or 
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stabilizing single-stranded RNA (Saldi et al., 2014). N6-methyladenosine (m6A) 

modification in cellular RNAs affects ADAR1 binding and editing patterns in m6A-

modified transcripts (Xiang et al., 2018), though the mechanism is as-yet-undetermined. 

Cellular dsRNAs may also influence editing by competing for ADAR. The C. elegans 

noncoding RNA rncs-1 forms a long, edited dsRNA hairpin and is robustly induced 

during starvation (Hellwig and Bass, 2008). Though existing studies suggest that rncs-1 

regulates Dicer/DCR-1 activity (Hellwig and Bass, 2008; Rybak-Wolf et al., 2014), no 

studies to date have investigated C. elegans editing patterns under starvation, leaving 

open the possibility that rncs-1 induction impacts ADAR activity. 

 

Genetic analyses of ADAR function 

Loss-of-function genetic studies in metazoan model organisms have provided 

substantial insight into physiological functions of ADARs. ADAR loss-of-function 

mutants have been described in C. elegans (Tonkin et al., 2002), Drosophila 

melanogaster (Palladino et al., 2000), and mice (Higuchi et al., 2000; Wang et al., 2000). 

Additionally, zebrafish adar2 has been studied using morpholino disruption (Li et al., 

2014), and genetic studies have linked ADAR1 mutations to two human diseases, 

Aicardi-Goutières syndrome and dyschromatosis symmetrica hereditaria, caused by 

homozygous and heterozygous ADAR1 loss-of-function, respectively (Miyamura et al., 

2003; Rice et al., 2012). Phenotypes associated with ADAR loss-of-function are highly 

variable and their fitness effects range from very mild to severe and lethal (Nishikura, 

2016). Understanding these pleiotropic effects has remained a challenge for the field, but 

ongoing studies into ADAR substrates and the cellular pathways impacted by A-to-I 
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editing provide a fuller picture of the roles that ADAR plays in the cell. 

Editing-dependent mRNA recoding (Fig. 1.1A) is a critical ADAR function in 

several organisms. Many early-identified ADAR substrates were mRNAs encoding 

neuronal receptor subunits whose editing led to amino acid substitutions at functionally 

important residues (Burns et al., 1997; Hanrahan et al., 2000; Semenov and Pak, 1999; 

Sommer et al., 1991). For instance, editing of mouse GRIA2 causes Q/R recoding in 

nearly 100% of transcripts (Sommer et al., 1991). In mice and Drosophila, genetic 

ablation of ADARs induces neuronal phenotypes, including frequent seizures in ADAR2-/- 

mice (Higuchi et al., 2000) and tremors, uncoordinated movement, temperature-sensitive 

paralysis, and brain degeneration in Drosophila ADAR mutants (Palladino et al., 2000). 

Strikingly, the phenotypes of murine ADAR2-/- mutants are rescued by genetically 

encoding an arginine residue at the GRIA2 Q/R recoding site (Higuchi et al., 2000), 

demonstrating that mRNA recoding is an essential function of mouse ADAR2. Though 

Drosophila ADAR mutant phenotypes have not been traced to specific recoding deficits, 

ADAR recoding occurs in dozens of neuronal factor mRNAs (Hoopengardner et al., 

2003), and pan-neuronal ADAR knockdown induces locomoter defects (Jepson and 

Reenan, 2009). Unlike in other organisms (discussed below), mutating antiviral response 

genes, like dicer2 and ago2, fails to rescue ADAR mutant phenotypes in Drosophila 

(Jepson and Reenan, 2009). Thus, mRNA recoding is though to be one of Drosophila 

ADAR’s central functions.  

Though mRNAs are important ADAR substrates, most A-to-I editing occurs in 

noncoding regions, and genetic evidence indicates that ADARs edit these sequences to 

prevent activation of dsRNA-mediated immune mechanisms (Fig. 1.1B) (O'Connell et 
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al., 2015; Walkley and Li, 2017). In mice, loss-of-function mutations in ADAR1 cause 

embryonic lethality between embryonic day E11.5 and E14.5, depending on the nature of 

the mutation (Hartner et al., 2004; Liddicoat et al., 2015). ADAR1-/- mutants robustly 

induce interferon (IFN)-stimulated genes, which are normally expressed during innate 

immune responses to pathogenic infection (Liddicoat et al., 2015; Mannion et al., 2014; 

Pestal et al., 2015). Increased IFN signaling is also observed in human patients with 

Aicardi-Goutières syndrome and dyschromatosis symmetrica hereditaria (Rice et al., 

2012), so ADAR1 immune suppression is likely conserved among mammals. 

Importantly, deleting the innate immune genes Mavs or Ifih1 (MDA5) rescues mouse 

ADAR1-/- mutants to birth, demonstrating that overactive immune signaling causes 

ADAR1-/- mutant lethality (Liddicoat et al., 2015; Mannion et al., 2014; Pestal et al., 

2015). The requirement for MDA5, a RIG-I-like helicase that senses viral dsRNA, 

suggests that ADAR1-/- mutant mice activate immune signaling due to aberrant dsRNA 

sensing. Wildtype suppression of immune signaling is attributed to the IFN-induced 

ADAR1 isoform, ADAR1p150, since a deletion that specifically disrupts this isoform, 

but not ADAR1p110, induces lethality and IFN-stimulated gene expression (Pestal et al., 

2015). However, ADAR1-/-; MAVS-/- mice lacking both ADAR1 isoforms display kidney 

patterning defects not observed in ADAR1p150-/-;MAVS-/- mutant mice, suggesting that 

ADAR1p110 contributes to kidney development. Likewise, patterning of intestine, 

spleen, and lymph node tissue is compromised in ADAR1-/-;MAVS-/- and ADAR1p150-/-

;MAVS-/- neonates, suggesting that ADAR1p150 promotes normal development of these 

organs through an undetermined MAVS-independent mechanism. 

Similar to mammalian ADAR1 mutants, C. elegans mutants lacking ADARs 



14 

display phenotypes dependent on the antiviral RNAi pathway (Knight and Bass, 2002; 

Sebastiani et al., 2009; Tonkin and Bass, 2003), a central innate immune mechanism in 

invertebrates. Deleting either adr-1 or adr-2 in C. elegans causes transgene silencing, 

reduced lifespan, and chemotaxis defects. All of these phenotypes require the RNAi 

factors rde-1 or rde-4, suggesting that loss of C. elegans ADARs causes aberrant RNAi 

activity that leads to mutant phenotypes. In the C. elegans antiviral RNAi response, 

a complex containing the RIG-I-like helicase DRH-1, the dsRBP RDE-4, and 

the endoribonuclease DCR-1 senses and processes viral dsRNAs into small interfering 

RNAs (siRNAs) that are loaded into the Argonaute protein RDE-1 and silence viral 

transcripts (Ashe et al., 2013; Guo and Lu, 2013). As detailed in Chapter 2, C. elegans 

ADARs edit dsRNAs in introns and UTRs of protein-coding genes. In adr-1;adr-2 

mutants, gene-associated dsRNAs are processed into siRNAs and cause silencing of 

their associated genes, analogous to the silencing of viral dsRNAs. This work indicates 

that adr-1;adr-2 mutant phenotypes relate to silencing of specific genes containing 

dsRNA structures. Indeed, a recent study found that neuronal silencing of clec-41, 

which has an edited 3’UTR, causes the chemotaxis defects of adr-1;adr-2 mutants, 

since neuronal clec-41 re-expression rescues these defects (Deffit et al., 2017). Thus, 

analogous to mammalian ADAR1 antagonism of MDA5-dependent IFN signaling, C. 

elegans ADARs prevent cellular dsRNAs from being processed and silenced by 

antiviral RNAi.  

Since dsRBPs bind their substrates without sequence specificity (Tian et al., 

2004), antiviral dsRNA sensors like mammalian MDA5 and invertebrate Dicer cannot 

distinguish cellular (self) dsRNAs from viral (nonself) dsRNAs by their sequence. 

Mounting evidence indicates that ADARs provide a critical distinction between self and 
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nonself dsRNAs (Liddicoat et al., 2015; Mannion et al., 2014; Pestal et al., 2015; Reich et 

al., 2018). Since ADARs primarily act in the nucleus on nascent transcripts (Nishikura, 

2016; Rodriguez et al., 2012), A-to-I editing should largely occur in cellular dsRNAs, but 

be absent from cytoplasmic viral dsRNAs, at least during initial stages of infection. 

Editing converts A-U base-pairs to I-U mismatches (Nishikura, 2016; O'Connell et al., 

2015), so ADARs may reduce the double-stranded character of cellular dsRNAs to 

distinguish them from viral dsRNAs. Both MDA5 and Dicer have reduced activity 

towards I-U-containing dsRNAs, indicating these proteins do not mount robust responses 

to edited substrates (Scadden and Smith, 2001; Vitali and Scadden, 2010). Our work in C. 

elegans, together with studies of mammalian ADAR1, strongly indicates that a 

fundamental role of ADARs is to mark cellular dsRNAs as self to facilitate 

discrimination between self and nonself transcripts. 

ADARs regulate other cellular RNA-mediated processes 

By editing cellular transcripts, ADARs modulate RNA sequence- and structure-

dependent interactions, thereby altering RNA properties and functions in diverse 

processes. This is clearly demonstrated in ADAR’s essential roles in mRNA recoding and 

suppression of innate immune signaling. However, since essentially all RNA-mediated 

processes involve sequence- and/or structure-dependent interactions, it is no surprise that 

ADARs can also affect cellular activities such as pre-mRNA splicing, mRNA stability, 

and miRNA-mediated regulation (Nishikura, 2016; Walkley and Li, 2017). 

Several lines of evidence suggest that A-to-I editing regulates alternative splicing 

of pre-mRNAs (Fig. 1.1C). Most directly, since splicing relies on sequence-dependent 
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interactions with spliceosomal snRNAs to identify splicing donor, acceptor, and branch 

point sites (Lee and Rio, 2015), editing-dependent sequence alterations can change 

existing splice sites or generate new ones. Indeed, editing of an intronic AA dinucleotide 

in the rat ADAR2 pre-mRNA generates a new AI 3’ splice acceptor site that facilitates 

inclusion of a 47-nt cassette (Rueter et al., 1999). Editing can likewise create or destroy 

splicing regulatory sequences to change where splicing factors bind, thereby altering 

splicing (Lev-Maor et al., 2007; Solomon et al., 2013). RNAseq of human ADAR1 

knockdown cells showed hundreds of genes with altered splicing patterns, which the 

authors attributed primarily to editing within splicing regulatory elements (Solomon et 

al., 2013). RNA structural elements likewise contribute to splicing regulation (Warf and 

Berglund, 2010), suggesting that ADARs could in theory impact splicing through effects 

on RNA secondary structure. In addition to splicing regulation, ADARs may promote 

alternative 3’UTR usage, as >2000 genes have altered 3’UTR lengths in human ADAR1 

knockdown cells (Bahn et al., 2015), and alternative polyadenylation sites are enriched 

among mouse and human EER-associated genes (Blango and Bass, 2016). While ADAR 

regulation of splicing and polyadenylation is not known to be essential in vivo, studies 

demonstrating that ADARs modulate pre-mRNA processing suggest that this could be a 

physiologically important function. 

ADARs further impact mRNA stability and translation. For instance, editing in 

the 3’UTR of human CTSS recruits the HuR RNA-binding protein to promote mRNA 

stability (Stellos et al., 2016). How editing recruits HuR is less clear, though the authors 

propose that editing destabilizes dsRNA formed by Alu inverted repeats to uncover  

sequences containing HuR binding sites. Previous work from our own lab shows that C. 
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elegans mRNAs containing 3’UTR dsRNA structures are loaded with fewer ribosomes, 

suggesting that such structures decrease translation efficiency, though this effect was not 

impacted by ADARs (Hundley et al., 2008). ADAR-dependent gene expression 

differences are often attributed to effects on miRNA-mediated regulation (Fig. 1.1D) (Qi 

et al., 2017; Warf et al., 2012) through several proposed mechanisms (Nishikura, 2016). 

By editing 3’UTRs, ADARs can create or disrupt miRNA binding sites (Deffit and 

Hundley, 2016). Alternatively, editing within primary miRNA transcripts can inhibit 

processing by Drosha enzymes (Yang et al., 2006) or, if the miRNA precursor is still 

processed, alter the transcripts the mature miRNA targets (Kawahara et al., 2007). One 

study even suggested that mammalian ADAR1 promotes miRNA biogenesis by forming 

a complex with Dicer that more efficiently processes miRNA precursors (Ota et al., 

2013). Thus, ADARs have the potential to impact gene expression through effects on 

RNA processing, stability, and translation, though it is not clear that such mechanisms are 

important to metazoan biology. At any rate, these activities further complicate the 

interpretation of ADAR mutant phenotypes, since they suggest that important ADAR 

functions could involve both direct and indirect mechanisms. 

A central challenge to the field 

As described in this chapter, ADARs affect a wide range of substrates and 

activities through diverse mechanisms of action (Fig. 1.1). As a result, ADAR loss-of-

function phenotypes can be highly pleotropic and difficult to interpret. Molecular and 

genetic studies have begun to reveal the processes, and in some cases the specific RNA 

substrates, that underlie ADAR mutant phenotypes, like mammalian ADAR1 and ADAR2 
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mutant lethality and C. elegans adr-1;adr-2 mutant chemotaxis deficiencies (Deffit et al., 

2017; Higuchi et al., 2000; Liddicoat et al., 2015; Mannion et al., 2014; Pestal et al., 

2015). However, researchers continue to describe new ways in which ADARs regulate 

additional RNA-dependent processes. It remains to be determined if ADAR activities 

observed in cultured cells have physiological relevance in whole organisms. Still, many 

ADAR mutant phenotypes, like murine ADAR1-/- organ patterning defects, lack 

mechanistic explanation, presenting new avenues of future research. 

Understanding how ADAR loss-of-function phenotypes and pathologies relate to 

discrete substrates and editing events represents a fundamental challenge, but it is a 

critical problem to address. By dissecting functionally important ADAR-substrate 

relationships, we can develop methods to manipulate particular aspects of ADAR biology 

without perturbing other core functions. This might facilitate, for instance, clinical 

treatments that address aberrant mRNA recoding in cancer without interrupting ADAR’s 

role in distinguishing self and nonself dsRNAs. By studying the effects of A-to-I editing, 

we also learn more about the mechanisms that regulate cellular trancripts. In turn, 

understanding ADARs teaches us about life in the modern cell and in cells of the past. 

In this work, we describe our efforts to determine ADAR substrates and functions 

in the nematode C. elegans. In Chapter 2, we define edited dsRNAs expressed during C. 

elegans development and demonstrate that ADARs are critical to prevent the recognition 

and processing of these dsRNAs by the antiviral RNAi machinery. In Chapter 3, we 

describe observations that dsRNA structures are associated with essential and highly 

expressed genes on distal autosome arms, suggesting potentially novel ADAR functions. 

Lastly, in Chapter 4, we discuss the implications of our findings and describe prospective 
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areas of future research. 
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Figure 1.1 Mechanisms of ADAR function. (A) Coding sequence in a pre-mRNA base-
pairs with an exon complementary sequence (ECS) in a proximal intron. ADAR edits an 
adenosine, converting a genomically encoded CAG codon to the edited form CIG. 
Following splicing, the unedited and edited codons are translated Q or R, respectively. 
(B) Transposable elements (TEs) in opposite orientations form highly base-paired 
dsRNA. ADAR nonselectively edits adenosines to inosines, introducing I-U mismatches. 
The unedited dsRNA, but not the edited duplex, triggers an immune response through the 
antiviral dsRNA sensor MDA5. (C) Duplex RNA in a pre-mRNA intron is edited by 
ADAR, converting an AA dinucleotide to AI and creating an alternative 3’ splice site. 
Without editing, splicing occurs at the normal downstream AG 3’ splice site, but the 
edited transcript is spliced at the alternative AI site, incorporating additional sequences 
(orange, red, black) in the mature mRNA. (D) ADARs impact miRNA regulation by 
several mechanisms. Editing in a primary miRNA typically inhibits Drosha processing, 
but it can also alter mature miRNA target specificity. Mammalian ADAR1 forms a 
complex with Dicer to promote efficient processing of pre-miRNAs. 
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C. elegans ADARs antagonize silencing
of cellular dsRNAs by the antiviral
RNAi pathway
Daniel P. Reich, Katarzyna M. Tyc,1 and Brenda L. Bass
Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA

Cellular dsRNAs are edited by adenosine deaminases that act on RNA (ADARs). While editing can alter mRNA-
coding potential, most editing occurs in noncoding sequences, the function of which is poorly understood. Using
dsRNA immunoprecipitation (dsRIP) and RNA sequencing (RNA-seq), we identified 1523 regions of clustered A-to-I
editing, termed editing-enriched regions (EERs), in four stages of Caenorhabditis elegans development, often with
highest expression in embryos. Analyses of small RNA-seq data revealed 22- to 23-nucleotide (nt) siRNAs, remi-
niscent of viral siRNAs, that mapped to EERs and were abundant in adr-1;adr-2 mutant animals. Consistent with
roles for these siRNAs in silencing, EER-associated genes (EAGs) were down-regulated in adr-1;adr-2 embryos, and
this was dependent on associated EERs and the RNAi factor RDE-4. We observed that ADARs genetically interact
with the 26G endogenous siRNA (endo-siRNA) pathway, which likely competes for RNAi components; deletion of
factors required for this pathway (rrf-3 or ergo-1) in adr-1;adr-2 mutant strains caused a synthetic phenotype that
was rescued by deleting antiviral RNAi factors. Poly(A)+ RNA-seq revealed EAG down-regulation and antiviral gene
induction in adr-1;adr-2;rrf-3 embryos, and these expression changes were dependent on rde-1 and rde-4. Our data
suggest that ADARs restrict antiviral silencing of cellular dsRNAs.

[Keywords: self–nonself; RNA editing; siRNA; Dicer; deaminase]
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Adenosine deaminases that act onRNA (ADARs) catalyze
conversion of adenosine (A) to inosine (I) within double-
stranded regions of cellular RNAs (Hundley and Bass
2010; Nishikura 2016). Like guanosine (G), inosine prefers
to pair with cytosine, and thus A-to-I RNA editing can al-
ter mRNA-coding capacity. Recoding events are critical
for normal function of the nervous system in vertebrates,
squid, and Drosophila (Deffit and Hundley 2016; Nishi-
kura 2016). However, in all organisms examined to date,
themajority of A-to-I editing is outside of coding sequenc-
es, mostly in introns and 3′ untranslated regions (UTRs)
(Whipple et al. 2015; Blango and Bass 2016; Walkley and
Li 2017). In some cases, noncoding A-to-I changes in pre-
mRNAs impact splicing and mRNA processing (Nishi-
kura 2016). However, the function of most editing in non-
coding regions is not well understood.
In mammals, ADARs are essential to prevent aberrant

immune signaling by antiviral dsRNA sensor proteins
(Mannion et al. 2014; Liddicoat et al. 2015; Pestal et al.
2015; George et al. 2016). Loss of mouse ADAR1 causes

embryonic lethality characterized by interferon (IFN)
overproduction and up-regulation of IFN-inducible
transcripts (Hartner et al. 2004; Mannion et al. 2014; Lid-
dicoat et al. 2015). IFN-stimulated gene expression in
ADAR1−/−;p53−/− mutant fibroblasts is partially rescued
by an editing-deficient ADAR1 point mutant but more
completely rescued by a catalytically active ADAR1, sug-
gesting that both binding and editing contribute to
ADAR1 antagonism of IFN signaling (Mannion et al.
2014; O’Connell et al. 2015). Strikingly, mutations in
the immune signaling genesMavs or Ifih1 (MDA5) rescue
ADAR1−/− mutant embryonic lethality and IFN hyperac-
tivation (Mannion et al. 2014; Pestal et al. 2015). Thus,
mammalian ADAR1 is thought to prevent cellular
dsRNAs from activating RIG-I-like receptors, although
it is unclear whether this is a conserved ADAR function.
The nematode Caenorhabditis elegans lacks an IFN

response and instead uses RNAi to sense viral dsRNA
and silence viral transcripts (Ashe et al. 2013; Guo
et al. 2013). C. elegans ADARs inhibit RNAi-mediated
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Results  

transgene silencing (Knight and Bass 2002) and small RNA
biogenesis (Warf et al. 2012), suggesting that, by analogy
to vertebrates, ADARs could mark cellular dsRNA as
self. C. elegans have two genes encoding ADARs, adr-1
and adr-2, and deletion of either gene causes chemotaxis
defects, transgene silencing, and shortened life span
(Knight and Bass 2002; Tonkin et al. 2002; Sebastiani
et al. 2009). Consistent with the notion that these pheno-
types relate to altered dsRNA-mediated silencing, these
adr mutant phenotypes are rescued by additional loss of
function of RNAi factors (Knight and Bass 2002; Tonkin
and Bass 2003; Sebastiani et al. 2009).

The sole C. elegans Dicer enzyme, DCR-1, is required
for biogenesis of microRNAs (miRNAs) as well as viral
and endogenous siRNAs (endo-siRNAs) (Supplemental
Fig. S1). Studies in C. elegans extracts indicate that
DCR-1 cleaves dsRNA to produce siRNAs that are pre-
dominantly 23 nucleotides (nt) in length with a 5′ mono-
phosphate (Welker et al. 2011). While such products
arise during viral infection, they have not been observed
among endo-siRNAs in wild-type C. elegans (Ruby et al.
2006; Ashe et al. 2013; Billi et al. 2014). Rather, character-
ized DCR-1-dependent endo-siRNAs are 26 nt, have a 5′

guanosine monophosphate (26G siRNAs), and are pro-
duced by DCR-1 acting in concert with the RNA-depen-
dent RNA polymerase (RdRP) RRF-3 (Thivierge et al.
2012; Blumenfeld and Jose 2016). 26G siRNAs occur in
embryos and germline tissues and exist in two classes
bound to distinct Argonaute proteins. In sperm, 26G
siRNAs bind ALG-3 and ALG-4, while ERGO-1 binds
26G siRNAs in oocytes and embryos. To effect silencing,
26G siRNAs and siRNAs from exogenous dsRNAs, such
as those introduced by feeding, injection, or viral infec-
tion, trigger the RdRP-mediated production of 22-nt
siRNAs with a 5′ triphosphorylated guanosine (22G siR-
NAs) antisense to target transcripts (Ruby et al. 2006;
Pak and Fire 2007; Sijen et al. 2007; Vasale et al. 2010;
Ashe et al. 2013; Billi et al. 2014).

Here we define the editing-enriched regions (EERs),
ADAR-edited long dsRNAs, expressed in four stages of
C. elegans development. EERs and their associated genes
show highest expression in embryos and give rise to 23-nt
5′ monophosphorylated siRNAs that are abundant in adr-
1;adr-2 mutant animals. Using quantitative RT–PCR
(qRT–PCR), we show that EER-associated genes (EAGs)
are down-regulated in adr-1;adr-2 mutant embryos but
not L3 larvae. Down-regulation of EAGs in adr-1;adr-2
embryos requires both RDE-4 and an associated double-
stranded EER. Analysis of a siRNA-sensitive GFP::
NRDE-3 transgene indicates that ADARs antagonize
siRNA biogenesis independent of the 26G pathway. How-
ever, in adr-1;adr-2 mutant backgrounds, 26G loss of
function causes a synthetic phenotype dependent on the
antiviral RNAi pathway. Transcriptomes of adr-1;adr-2;
rrf-3mutant embryos reveal robust EAG down-regulation
and increased expression of genes induced during Orsay
virus infection, both of which are rescued by rde-1 and
rde-4 deletion. Together, our results suggest a conserved
role forC. elegansADARs in antagonizing the antiviral re-
sponse to self dsRNAs.

Results

Clustered ADAR-editing sites define dsRNAs expressed
during C. elegans development

To identify dsRNAs expressed during C. elegans develop-
ment, we performed high-throughput RNA sequencing
(RNA-seq) on total and dsRNA-enriched rRNA-depleted
RNA samples from embryos, early larval stages (L1 and
L2), late larval stages (L3 and L4), and young adults. We
used a previously developed pipeline (Whipple et al.
2015) to define dsRNAs by scanning for clusters of A-to-I
RNA editing (Supplemental Fig. S2). From combined
dsRNA immunoprecipitation (dsRIP) and input data sets
of all stages,wedefined1523EERs in total (Fig. 1A; Supple-
mental File S1). We found more than twice as many EERs
in dsRIP samples than input, suggesting that the dsRIP en-
riched for dsRNA. Across developmental stages, we de-
fined the greatest number of EERs in embryos, in
contrast to a previous study that observed more clusters
in L1 larvae (Zhao et al. 2015). This discrepancy may re-
flect differences in populations sequenced, since the previ-
ous study used L1s aged 4 h after diapause, while we
sequenced mixed L1–L2 larvae aged 6–20 h after diapause
(Materials andMethods).Many EERswere defined inmul-
tiple stages (Fig. 1B),with 81EERs common to all four stag-
es and 406 unique to one stage. Stage-specific EERs
generallyweremost highly expressed at the stage inwhich
they were defined (Supplemental Fig. S3). Since our pipe-
line required at least five reads to call an EER, expression
primarily determined the stages where an EER was found.

The EERs defined in our study had properties similar to
previously defined C. elegans editing clusters (Wu et al.
2011; Whipple et al. 2015; Zhao et al. 2015). EER loci
were enriched on autosome distal arms (Supplemental
Fig. S4) and largely derived from repetitive elements, par-
ticularly transposons (Supplemental Fig. S5). EERsmostly
overlapped gene-associated noncoding sequences, while a
control set of random expressed regions mapped to more
exonic and intergenic sequences (Supplemental Fig.
S6A). Specifically, 72.3% of EER nucleotides mapped to
introns and 10.2%mapped to 5′ UTRs, 3′ UTRs, or regions
within 1 kb of a gene on the same strand.Many EERswere
predicted by UNAFold to form long stable intramolecular
structures, in contrast to random regions (Supplemental
Fig. S6B;Markham and Zuker 2008). Previously, we found
significant overlap between human EERs and circular
RNAs (circRNAs) (Blango and Bass 2016), and, similarly,
in C. elegans, 78 EERs overlapped circRNAs (78 observed
and 56 expected; P = 0.0033 by χ2 test) (http://www.
circbase.org; Supplemental File S2).

EER abundance, but not editing, varies during
development

We next examined developmental patterns of EER abun-
dance and editing. The heat map in Figure 1C shows rela-
tive abundance in each stage for the 250mosthighly edited
EERs. Of the 1523 EERs, 1336 overlapped or werewithin 1
kb of one of 955 unique EAGs (Supplemental File S3). For
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each gene-associatedEER,wecalculated aPearson correla-
tion coefficient (PCC) comparing EER abundance with
EAG expression across all stages. We found that the
mean EER–EAG PCC was 0.396 and the median PCC
was 0.591, demonstrating that EER and EAG expression
between developmental stages is correlated.
Strikingly, more than half of EERs (50.4%; 768 out of

1523) and EAGs (53.1%; 507 out of 955) displayed highest
expression in embryos. We plotted the abundance of all
1523 EERs in each developmental stage and treatment
(Fig. 1D), observing the highest collective expression in
embryos, with decreased expression in subsequent stages.
We compared EERs with length-matched random regions
(Supplemental Fig. S7A) and observed greater differences
in EER abundance between developmental stages than
random regions (Supplemental Fig. S7B–D), suggesting
that EER expression patterns are distinct from most
transcripts.
Next, we assessed EER-editing levels during develop-

ment. We made a list of adenosines within EERs edited
>1% in all input and dsRIP samples pooled (referred to
here as EER-editing sites). For each individual RNA-seq
replicate, we determined the total number of A-to-G
changes (#Ed) observed at EER-editing sites (Supplemental
Fig. S8). In both input and dsRIP samples, we observed the
greatest #Ed in embryos. For each replicate,we then count-
ed the total reads covering eachEER-editing site (#Tot) and
calculated fraction editing as #Ed/#Tot (Materials and
Methods). Finally, we calculated the average fraction edit-
ing across the three replicates in each stage and treatment
(Fig. 1E). Editing frequency changed only minorly across
development, in agreement with previous work (Zhao
et al. 2015).Weconclude that EERabundance changes dur-
ing normal development, while editing within EERs re-
mains stable.
We tested whether ADARs impacted development or

viability by determining the fraction of wild-type and
adr-1;adr-2 mutant embryos that developed to adulthood
over 3 d. We used three independently derived sets of adr-

1;adr-2 deletion alleles: two sets of previously described
EMS-induced mutants (Tonkin et al. 2002; Hundley
et al. 2008) and one that we created by injection of
CRISPR/Cas9 ribonucleoparticles (Cho et al. 2013; Paix
et al. 2015). Although the CRISPR mutant (adr-1(uu49);
adr-2(uu28)) and adr-1(tm668);adr-2(ok735) strains were
no different from wild type, the adr-1(gv6);adr-2(gv42)
strain displayed a low-penetrance larval arrest phenotype
(Supplemental Fig. S9), possibly due to background muta-
tions. Since two mutant lines did not differ from wild
type, we conclude that development occurs normally in
adr-1;adr-2mutants, consistent with previous work (Ton-
kin et al. 2002; Sebastiani et al. 2009).

Abundant siRNAs mapping to EERs in adr-1;adr-2
mutants suggest EER processing by DCR-1

Since ADARs edit only dsRNAs, EERs must be double-
stranded, and we hypothesized that EERs would also be
substrates for other dsRNA-binding proteins (dsRBPs),
particularly in the absence of ADARs. Like other Dicer
enzymes, C. elegans DCR-1 cleaves dsRNA to produce
primary siRNAs that have 5′ monophosphates and 3′ hy-
droxyls (Ruby et al. 2006). To distinguish primary siRNAs
from secondary siRNAs that have 5′ triphosphates, small
RNAs are typically sequenced using 5′ phosphate (5′P)-de-
pendent protocols that capture only primary siRNAs and
5′P-independent protocols that capture both primary and
secondary siRNAs (Ruby et al. 2006; Pak and Fire 2007).
To determine whether EERs were DCR-1 substrates, we
analyzed published 5′P-dependent small RNA-seq data
sets from mixed-stage wild-type or adr-1(tm668);adr-2
(ok735) worms (Warf et al. 2012). We found that siRNAs
mapped sense to 74.1% (1128 out of 1523) of EERs. Strik-
ingly, 94.0% (1060 out of 1128) of these EERs showed in-
creased siRNA abundance in adr-1;adr-2 mutant animals
compared with wild type (Fig. 2A,B; Supplemental File
S1). Length-matched random regions did not show similar
siRNA enrichment in adr-1;adr-2 samples.

Figure 1. EER abundance, but not editing, changes
during development. (E) Early; (L) late; (Y) young. (A)
The number of EERs defined from each group of data
sets. (B) Venn diagram of EERs defined in each develop-
mental stage. (C ) Heat map of relative abundance in in-
put RNA-seq samples for the 250 EERs with the
greatest number of edited windows. (D) Distribution
of mean EER abundance in each stage and treatment.
(∗∗∗∗) P < 0.0001, Mann-Whitney U-test. (E) Fraction of
all EER-editing sites that appeared as guanosines in
each stage and treatment.While individual sites ranged
from 1% to 99% edited, all sites together were ∼15%
edited in each sample. Error bars show standard devia-
tion (SD) of three biological replicates. (∗) P < 0.05, Stu-
dent’s t-test.
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To determine the origin of EER-mapped 5′ monophos-
phate siRNAs, we analyzed their length distribution and
5′ nucleotide preferences (Fig. 2C). In wild-type worms,
EER-mapped siRNAs showed a small peak at 21 nt with
a preference for 5′ U, typical of C. elegans 21U-RNAs/pi-
RNAs (Ruby et al. 2006). We suspect that we observed
this 21U peak because 18 21U-RNA loci overlap EERs
(Supplemental File S2), 21U-RNAs are abundantly ex-
pressed in embryonic and germline tissue, and 5′P-depen-
dent protocols include these small RNAs (Batista et al.
2008). In contrast to wild type, EER-siRNAs from adr-1;
adr-2 animals showed a peak at 23 nt with a 5′ nucleotide
bias against G (abbreviated H) (Cornish-Bowden 1985).
This 5′ nucleotide preference is also seen in C. elegans
miRNAs (Warf et al. 2011) and primary antiviral siRNAs
(Ashe et al. 2013), suggesting that EER-mapped siRNAs
in adr-1;adr-2 mutants, which we refer to as EER-23H si-
RNAs, are produced by direct DCR-1 cleavage of EERs.

A previous study identified 454 regions (termed ADAR-
modulated RNA loci) that give rise to abundant 23- to 24-
nt primary siRNAs and 22-nt secondary siRNAs in adr-1
(gv6);adr-2(gv42) animals (Wu et al. 2011). Of these
454 loci, 93 overlapped EERs (85 EERs observed and
four expected; P < 0.0001 by χ2 test) (Supplemental File
S2), suggesting that EERs and ADAR-modulated loci rep-
resent related but mostly distinct regions. ADAR-modu-
lated RNA loci display markedly lower coverage than
EERs in all stages (Supplemental Fig. S10), suggesting
that these regions have different rates of transcription or
degradation.

Like the 23- to 24-nt primary siRNAs fromADAR-mod-
ulated loci, we reasoned that EER-23H siRNAs may pro-
mote the production of secondary siRNAs. We thus
analyzed siRNAs antisense to EERs from published 5′P-
independent small RNA-seq data sets from wild-type
and adr-1(gv6);adr-2(gv42) embryos and L4 larvae (Sup-
plemental Fig. S11;Wu et al. 2011). Although 5′P-indepen-
dent siRNAs often mapped both sense and antisense to
EERs when allowed to map multiple locations, we found
that uniquely aligned reads mostly mapped antisense. In
all samples, siRNAs antisense to EERs were primarily
22 nt with a 5′ G, suggesting an RdRP-dependent origin
(Billi et al. 2014). We refer to these antisense secondary
siRNAs as EER-22G siRNAs. Like EER-23H siRNAs,
most EERs showed increased EER-22G siRNA abundance
in adr-1;adr-2 mutants relative to wild type in both em-
bryo and L4 larval samples (Supplemental Fig. S12A,B;

Supplemental File S1). Control random regions did not
show similar enrichment. The RNAi genes rde-1 and
rde-4 promote secondary and primary siRNA biogenesis,
respectively, in response to viral dsRNA (Ashe et al.
2013). In embryos, most EERs showed reduced EER-22G
siRNA abundance in adr-1(gv6);adr-2(gv42);rde-1(ne219)
and adr-1(gv6);adr-2(gv42);rde-4(ne299) triple mutants
relative toadr-1(gv6);adr-2(gv42) doublemutants (Supple-
mental Fig. S12C–F). However, EER-22G siRNA abun-
dance in L4 larvae was reduced only marginally in adr-1;
adr-2;rde-4 and was no different from control regions in
adr-1;adr-2;rde-1. Thus, rde-1 and rde-4 mediate EER-
22G siRNA accumulation in embryos but not in L4 ani-
mals. These data suggest that abundant EER-23H siRNAs
in adr-1;adr-2 mutants promote the production of anti-
sense secondary siRNAs.

In embryos, ADARs prevent down-regulation of EAGs via
RNAi against EERs

We next sought to determine whether EER-siRNAs regu-
late expression of EAGs and first identified EAGs that
were the best candidates for such regulation. Since adr-
1, adr-2, and most EAGs are maximally expressed in em-
bryos, we used input RNA-seq data to identify 452
EAGs with ≥50% higher gene expression in embryos
than late stage larvae (Supplemental File S4). Using exist-
ing data sets from mixed-stage animals (Warf et al. 2012),
we selected genes with more EER-23H siRNAs in adr-1
(tm668);adr-2(ok735) mutants than wild type and finally
narrowed our list to genes down-regulated in adr-1
(tm668);adr-2(ok735)mutants relative towild type bymi-
croarray analyses. This analysis revealed 53 EAGs as
strong candidates for ADAR-mediated gene regulation.

From our 53 candidates, we assayed expression of eight
EAGs in three adr-1;adr-2 double-mutant strains relative
to wild-type embryos (Supplemental Fig. S13). For all
genes, we observed a modest reduction in at least two
strains tested. The adr-1(gv6);adr-2(gv42) strain had
more substantial differences comparedwith others tested,
again suggesting that it harbors additional mutations. All
further experiments were performed using adr-1(uu49);
adr-2(uu28) deletions created for this study.

We next tested EAG expression in embryos and L3 lar-
vae of adr-1;adr-2 mutants with or without additional
mutations in rde-1 or rde-4. Six EAGs displayed signifi-
cantly decreased expression in adr-1;adr-2 embryos

Figure 2. EER-23H siRNAs are abundant in adr-1;
adr-2 double mutants. (A) Genome browser view of
5′P-dependent small RNA-seq reads from mixed-
stage wild-type (WT) and adr-1(tm668);adr-2(ok735)
mutant animals mapping sense to EER1380. (B)
EER-23H siRNA enrichment in adr-1(tm668);adr-2
(ok735) mutants. Plots show the log2 ratio of siRNA
abundance in adr-1;adr-2 mutants over wild type for
EERs (black solid line) and control regions (gray
dashed line). (C ) Analysis of 5′ nucleotide and length
distribution of all EER-23H siRNAs from adr-1;adr-2
mutant and wild-type animals.
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relative to wild type (Fig. 3A). Although the differences
were small (∼20% below wild type on average), we ob-
served these differences reproducibly across many inde-
pendent biological replicates (n≥ 8). A recent study
observed small but reproducible down-regulation of pseu-
dogenes and genes with edited 3′ UTRs in adr-1;adr-2 em-
bryos (Goldstein et al. 2017). When we measured EAG
expression in L3 larvae, we observed no significant differ-
ence in expression betweenwild type and adr-1;adr-2mu-
tants for all genes down-regulated in embryos (Fig. 3B).
This suggests that ADARs promote EAG expression early
in development but not at later stages. Importantly, delet-
ing rde-4 in adr-1;adr-2 mutants with CRISPR protocols
(Cho et al. 2013; Paix et al. 2015) completely or partially
rescued the reduced gene expression in embryos for four
of six EAGs, suggesting that these EAGs are down-regulat-
ed by RNAi in adr-1;adr-2 embryos. Curiously, deleting
rde-1 did not strongly affect the expression of the EAGs
tested. C. elegans encode 27 Argonaute proteins, and we
speculate that some of these act redundantly with RDE-
1 (Billi et al. 2014). Altogether, these data suggest that
ADARs antagonize RNAi activity in embryos to promote
normal EAG expression.
To confirm that EERs are required for EAG regulation

by ADARs, we used CRISPR protocols (Cho et al. 2013;
Paix et al. 2015) to remove intronic EER sequences
(ΔEER) in three EAGs: efa-6, ccb-1, and egl-8 (Fig. 3C,D;
Supplemental Fig. S14). We chose genes with a single
intronic EER that gave rise to abundant siRNAs in adr-
1;adr-2 strains (Supplemental File S4). All ΔEER mutants
were viable without obvious morphological and develop-
mental abnormalities, and we observed no expression dif-
ferences in ΔEER mutants compared with wild type. If
EERs are required to down-regulate associated EAGs in

adr-1;adr-2 mutant embryos, we predicted that EER dele-
tion would abrogate this expression change. Indeed, for
two of the three genes tested, EER deletion rescued EAG
down-regulation in adr-1;adr-2 embryos (Fig. 3C). We
did not observe rescue of ccb-1 expression upon EER dele-
tion, although ccb-1 expression was only slightly affected
in adr-1;adr-2 mutants, making it more difficult to estab-
lish significance. In L3 larvae, EAGmRNA levels in adr-1;
adr-2 double mutants and adr-1;adr-2;ΔEER triple mu-
tants did not differ significantly from wild type (Fig. 3D).
We conclude that ADARs antagonize RNAi-mediated
down-regulation of EAGs via their EERs.

ADARs regulate a siRNA-sensitive reporter independent
of the 26G endo-siRNA pathway

While ADARs impacted EAG expression, we were puz-
zled about why expression differences were so minor.
Since EAG down-regulation in adr-1;adr-2 mutants is
RNAi-dependent, we considered that a parallel RNAi
pathway might restrict EAG silencing by competing for
common factors. The 26G endo-siRNA pathway was a
prime candidate for such competition, since it uses factors
required for robust RNAi, and its loss of function causes
enhanced RNAi phenotypes (Vasale et al. 2010; Billi
et al. 2014). In the 26G pathway, the ERI complex (con-
taining DCR-1, RDE-4, and the RdRP RRF-3) couples
dsRNA synthesis and cleavage to produce 26G siRNAs
that promote secondary 22G siRNA biogenesis and si-
lence target genes (Supplemental Fig. S1; Thivierge et al.
2012).
We first determined whether the 26G pathway was re-

quired for ADAR-antagonized siRNA biogenesis using a
GFP::NRDE-3 reporter whose localization depends on

Figure 3. EAGexpression decreases in adr-1(uu49);adr-2(uu28) embryos in anRNAi- and EER-dependentmanner. Expression of EAGs in
embryos (A; n≥ 8) and L3 larvae (B; n = 5) of four genotypes, measured by qRT–PCR. Expression levels for three EAGs in embryos (C; n≥ 6)
and L3 larvae (D; n = 5) in strains where each EAG’s sole EER was deleted by CRISPR (ΔEER). All panels show expression as mean. Error
bars show SD. (∗) P < 0.05; (∗∗) P < 0.01; (∗∗∗) P < 0.001; (∗∗∗∗) P < 0.0001, Student’s t-test.
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22G secondary siRNA binding (Guang et al. 2008). When
the 26G pathway is active, 26G siRNAs stimulate 22G
siRNA production, causing NRDE-3 to localize to the nu-
cleus. However, in rrf-3mutants, 26G siRNAs are absent,
precluding downstream 22G synthesis, and NRDE-3 lo-
calizes to the cytoplasm. To test interactions between
ADARs and the 26G pathway, we introduced the GFP::
NRDE-3 transgene into adr-1;adr-2, rrf-3, and adr-1;adr-
2;rrf-3 deletion strains. While GFP::NRDE-3 was primari-
ly cytoplasmic in the rrf-3 background, it localized to the
nucleus in adr-1;adr-2;rrf-3 animals (Fig. 4A), suggesting
that ADARs antagonize siRNA production independent
of the 26G pathway. Furthermore, these data support
the conclusion that ADARs antagonize production of
both primary and secondary siRNAs.

ADARs genetically interact with the 26G pathway
in a manner dependent on antiviral RNAi

In testing GFP::NRDE-3 subcellular localization, we no-
ticed that adr-1;adr-2;rrf-3 mutants displayed defects not
present in adr-1;adr-2 and rrf-3 mutants, suggesting a
synthetic genetic interaction. While adr-1;adr-2 double
mutants are healthy, and rrf-3 single mutants show tem-
perature-sensitive sterility and reduced brood size
(Simmer et al. 2002), adr-1;adr-2;rrf-3 triple mutants dis-
played a phenotype marked by frequent adult bursting
(Fig. 4B; Supplemental Fig. S15A). In addition, adr-1;adr-
2;rrf-3 mutants had markedly lower brood sizes than rrf-
3 single mutants (Fig. 4C). We confirmed the adr-1;adr-
2;rrf-3 genetic interaction using three independent rrf-3
deletions and two sets of adr-1;adr-2 deletions (Supple-
mental Fig. S15B,C), implying that it is specific to our
genes of interest. Both adr-1 and adr-2 contributed to

the bursting phenotype, as 37.9% of adr-1;adr-2;rrf-3
worms burst by day 5 after egg lay compared with 10.0%
of adr-2;rrf-3 and 0.4% of adr-1;rrf-3 worms. Since ADR-
1 binds dsRNA but lacks catalytic activity, while ADR-2
catalyzes A-to-I editing (Tonkin et al. 2002; Washburn
et al. 2014), our observations suggest that both binding
and editing contribute to ADAR functions in vivo. We ob-
served the same phenotypes in adr-1;adr-2;ergo-1 mu-
tants lacking both ADARs and the ERGO-1 Argonaute
required in the oocyte/embryo arm of the 26G pathway
(Fig. 4B,C), suggesting that C. elegans ADARs genetically
interact with the 26G pathway broadly, not with rrf-3
alone.

Since ADARs limit RNAi against EAGs and since 26G
loss of function causes enhanced RNAi, we hypothesized
that the adr-1;adr-2;rrf-3 synthetic phenotype resulted
from increased RNAi activity against EAGs. To test
this, we crossed rde-1 and rde-4 deletions into the adr-1;
adr-2;rrf-3 mutant background (Fig. 4D; Supplemental
Fig. S15D). Loss of either rde-1 or rde-4 rescued the fre-
quent bursting and reduced brood sizes of adr-1;adr-2;
rrf-3 mutants, suggesting that these genes are required
for the adr-1;adr-2;rrf-3 synthetic defects. Both RDE-1
and RDE-4 function in RNAi-mediated antiviral immuni-
ty (Ashe et al. 2013), sowe tested additional antiviral com-
ponents by deleting them with CRISPR in an adr-1;adr-2;
rrf-3 triple-mutant background. Intriguingly, adr-1;adr-2;
rrf-3 defects were fully rescued by mutating drh-1, which
encodes a RIG-I-like helicase required for processing viral
dsRNA into primary siRNAs, and largely rescued by de-
leting rrf-1, which encodes a somatic RdRP that makes
secondary siRNAs (Ashe et al. 2013; Guo et al. 2013). De-
leting nrde-3, the nucleocytoplasmic shuttling Argo-
naute, also rescued adr-1;adr-2;rrf-3 bursting and brood

Figure 4. The 26G endo-siRNA pathway genetically
interacts with ADARs. (A) GFP::NRDE-3 visualized
in L3 larvae seam cells (arrowheads) of the indicated
mutant genotypes. Numbers in the bottom left of
each panel report the fraction of worms with nuclear-
enriched (N) GFP::NRDE-3 in seam cells. Bar, 10 µm.
(B) Bursting assay shows the fate of embryos laid by
each genotype 5 d after egg lay. Error bars show SD.
n≥ 6 assays. (∗∗) P < 0.01; (∗∗∗∗) P < 0.0001. Asterisk col-
ors show categories compared by two-way ANOVA
with Tukey’smultiple comparisons correction. (C ) Av-
erage brood size for each genotype in B, with individual
broods shown as dots. Error bars show SD. n≥ 6 assays.
(∗∗) P < 0.01; (∗∗∗∗) P < 0.0001, Student’s t-test. (D)
Developmental fates, as in B, of adr-1(uu49);adr-2
(uu28);rrf-3(uu56) mutant strains with additional mu-
tations in genes encoding RNAi-related factors. Error
bars show SD. n≥ 6 assays. (∗∗∗∗) P < 0.0001. Asterisk
colors show categories compared by two-way ANOVA
with Tukey’s multiple comparisons correction.
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size defects. However, loss of set-25, which encodes a his-
tone H3 Lys9 methylase, had no effect. Deleting ergo-1 in
the adr-1;adr-2;rrf-3 mutant background also had no ef-
fect, consistent with ergo-1 acting downstream from rrf-
3 in the 26G pathway. We conclude that antiviral RNAi
activity causes bursting and small brood size when
ADARs and the 26G pathway are inactive.

EAGs and virus-induced genes are misregulated in adr-1;
adr-2;rrf-3 mutants

To gain insight into gene expression changes underlying
adr-1;adr-2;rrf-3 mutant phenotypes, we sequenced
poly(A)+ RNA from four biological replicates of embryos
of six genotypes: wild type, adr-1;adr-2, rrf-3, adr-1;adr-
2;rrf-3, adr-1;adr-2;rrf-3;rde-1, and adr-1;adr-2;rrf-3;rde-
4. Using DESeq2 (Love et al. 2014), we analyzed differen-
tial gene expression between genotypes (Supplemental
File S5).
Consistentwith our predictions, collective EAGexpres-

sion decreased in adr-1;adr-2 mutant embryos and de-
creased further in adr-1;adr-2;rrf-3 embryos in a manner
dependent on both rde-1 and rde-4 (Fig. 5A). As observed
by qRT–PCR (Fig. 3A), rde-1 mutation did not rescue
EAG expression as robustly as loss of rde-4. EAG expres-
sion also decreased in the rrf-3 mutant, similar to the
adr-1;adr-2 mutant, indicating that the 26G pathway in-
fluences EAG expression even with ADARs present. Ex-
pression differences of most individual EAGs were
small, <20% below wild type, and we hypothesize that
the collective down-regulation of many EAGs—rescued
by loss of rde-1 or rde-4—causes adr-1;adr-2;rrf-3 mutant

phenotypes. Indeed, gene ontology (GO) analysis on EAGs
revealed enrichment for terms associated with morpho-
genesis and development, suggesting that EAGmisregula-
tion could result in developmental defects that cause
bursting (Supplemental File S6). A recent RNA-seq analy-
sis revealed expression changes in isolated neurons from
adr-1;adr-2 animals that are not observed in whole worms
(Deffit et al. 2017), suggesting that EAG misregulation
could be more substantial in specific tissues.
Our analyses involved 920 EAGs, andwe considered the

possibility that this large number of genes might mask
certain trends. Thus, we divided EAGs into three groups:
genes that were significantly down-regulated (231 genes),
significantly up-regulated (50 genes), or not significantly
changed (639 genes) in adr-1;adr-2;rrf-3 triplemutants rel-
ative to wild type (Fig. 5B). Compared with all EAGs to-
gether, down-regulated EAGs displayed more robust
silencing in all mutant genotypes relative to wild type
(Fig. 5C). Up-regulated EAGs showed rrf-3-dependent in-
creased expression but were largely unchanged in adr-1;
adr-2 doublemutants (Fig. 5D). EAGs thatwere not signif-
icantly misexpressed in adr-1;adr-2;rrf-3mutants showed
modest down-regulation in all mutant strains (Fig. 5E) in a
pattern resembling that in Figure 5A. Potentially inform-
ing why down-regulated EAGs were robustly silenced, we
found that these genes often hadmore than one EER-asso-
ciated intron or UTR and had longer EERs than other
genes (Supplemental Fig. S16A,B). In contrast, up-regulat-
ed EAGs tended to have a single shorter EER that was less
likely to occur in an intron (Supplemental Fig. S16A–C).
We next determined differentially expressed genes

(DEGs) in pairwise comparisons between genotypes. We

Figure 5. EAGs and Orsay virus-induced
genes are misregulated when ADARs and
the 26G pathway are disrupted. (A) Tukey
box plots show distributions of log2-
(expression fold change compared with
wild type) for EAGs in each mutant geno-
type analyzed by RNA-seq. (∗) P < 0.05;
(∗∗∗∗) P < 0.0001, Mann-Whitney U-test. (B)
Venn diagram showing the overlap between
differentially expressed genes (DEGs) up-
regulated and down-regulated in adr-1
(uu49);adr-2(uu28);rrf-3(uu56) mutants
compared with wild type as well as EAGs
expressed in RNA-seq samples (>10 reads
total). Tukey box plots as in A show expres-
sion fold change in mutant genotypes for
significantly down-regulated EAGs (down)
(C ), significantly up-regulated EAGs (up)
(D), and EAGs not significantly changed
(NS) (E) in adr-1;adr-2;rrf-3mutant embryos
relative to wild type. Adjusted P-value cut-
off was 0.05. (ns) P > 0.05; (∗) P < 0.05; (∗∗) P
< 0.01; (∗∗∗∗) P < 0.0001, Mann-Whitney U-
test. (F) Genes analyzed by poly(A)+ RNA-
seq are plotted by log2(expression fold

change compared with wild type) against −10log10(adjusted P-value) in adr-1;adr-2;rrf-3 mutants compared with wild type (i.e., higher
y-values indicate more significant differences). The horizontal dotted line designates the adjusted P-value cutoff of 0.05 used to define
DEGs. (G) Tukey box plots as in A showing Orsay-induced gene expression fold change in mutants. (∗∗) P < 0.01; (∗∗∗∗) P < 0.0001,
Mann-Whitney U-test.

ADARs prevent RNAi against self dsRNAs

GENES & DEVELOPMENT 277

 Cold Spring Harbor Laboratory Press on February 28, 2018 - Published by genesdev.cshlp.orgDownloaded from 



39 
 

 
 

 Discussion 

observed 2269 genes significantly up-regulated and 2797
down-regulated inadr-1;adr-2;rrf-3 triple-mutantembryos
compared with wild type (Fig. 5B,F). EAGs were sig-
nificantly enriched among down-regulated DEGs and de-
pleted from up-regulated DEGs (P < 0.0001, χ2 test). In
adr-1;adr-2 double mutants compared with wild type, we
observed only nine DEGs up and 15 down, excluding adr-
1 and adr-2 (Supplemental File S5). The 15 down-regulated
DEGs included four EAGs and other geneswith properties
suggesting that they form dsRNA: Twowere transposons,
three were antisense to other genes, and two were edited
in introns covered by too few reads in our original analysis
to be defined as EERs. We observed only three DEGs com-
paring adr-1;adr-2;rrf-3 triple-mutant embryoswith adr-1;
adr-2;rrf-3;rde-1 or adr-1;adr-2;rrf-3;rde-4 quadruple mu-
tants, and only one gene, the TURMOIL1 transposon
Y48G1BL.4, was rescued by both rde-1 and rde-4 deletion
(Supplemental Fig. S17A,B). As Y48G1BL.4 is silenced in
adr-1;adr-2 mutants that do not burst, we conclude that
it doesnotmediateadr-1;adr-2;rrf-3bursting.Wespeculat-
ed that the reason thatwe identified so fewDEGs in adr-1;
adr-2 samples was that expression differences were too
small or variable to achieve statistical significance. Thus,
weperformedgene set enrichment analysis (GSEA) (Subra-
manian et al. 2005) to find overrepresented gene classes al-
tered in rde-1- and rde-4-rescued quadruple mutants
relative to adr-1;adr-2;rrf-3. In both cases, the most en-
riched class of up-regulated genes was the 231 EAGs
down inadr-1;adr-2;rrf-3 relative towild type (Supplemen-
tal Fig. S17C,D; Supplemental File S7), supporting the idea
that rde-1- and rde-4-dependent EAG silencing mediates
adr-1;adr-2;rrf-3 defects.

We hypothesized that ADARs prevent antiviral path-
ways from recognizing self EERs as viral dsRNAs, so we
next examined whether genes induced during viral infec-
tion were changed in adr-1;adr-2;rrf-3 triple mutants. A
previous study identified 320 genes (many with predicted
functions in degradation and innate immunity) differen-
tially expressed duringOrsay virus infection, 298 of which
increased in expression (Chen et al. 2017).We analyzed ex-
pression of these Orsay virus-induced genes and found
that, of 268 genes expressed, 157were significantly up-reg-
ulated in adr-1;adr-2;rrf-3mutant embryos (Fig. 5F). These
differences were primarily rrf-3-dependent, as expression
in adr-1;adr-2 mutants was largely unchanged (Fig. 5G).
Thus, unlike mammals, where unedited dsRNAs are
thought to induce IFN-stimulated genes (Liddicoat et al.
2015), we did not see strong evidence that unedited
dsRNAs drive Orsay virus-induced gene expression, as
rrf-3 deletion is not predicted to increase dsRNA levels.
However, expression of virus-induced genes in rrf-3 mu-
tants was further increased in adr-1;adr-2;rrf-3 mutants,
suggesting that ADARs still impact their regulation.
Loss of rde-1 and rde-4 in adr-1;adr-2;rrf-3 mutants re-
duced expression of antiviral genes. Furthermore, by
GSEA, Orsay-induced genes were the most enriched gene
class down-regulated in quadruple mutants relative to
adr-1;adr-2;rrf-3 (Supplemental Fig. S17E,F; Supplemental
File S7), suggesting that RNAi contributes to antiviral
gene induction in adr-1;adr-2;rrf-3 mutants.

Discussion

Here we present evidence thatC. elegansADARs prevent
silencing of self dsRNAs by antiviral RNAi (Fig. 6). We
identify 1523 EERs (edited structures in gene introns
and 3′ UTRs) that give rise to abundant 23H siRNAs and
promote RDE-4-dependent gene silencing when ADARs
are absent. Genetic analyses suggest that the 26G endo-
siRNA pathway restricts antiviral RNAi activity in adr-
1;adr-2 mutants. Robust EAG silencing and antiviral
gene induction seen in adr-1;adr-2;rrf-3 mutants empha-
size that ADARs and the 26G pathway limit antiviral ac-
tivity in the absence of viral infection.

ADARs and the 26G pathway limit antiviral RNAi
responses to self dsRNAs

Antiviral RNAi is initiated when viral dsRNA is cleaved
into primary siRNAs by DCR-1 in association with the
dsRBP RDE-4 and the RIG-I-like helicase DRH-1 (Ashe
et al. 2013). The Argonaute RDE-1 uses primary siRNAs

Figure 6. ADARs and the 26G pathway prevent antiviral RNAi-
mediated silencing of self dsRNAs. During viral infection, viral
replication generates dsRNAs that are processed into 23H si-
RNAs by a complex of DCR-1, RDE-1, RDE-4, and DRH-1.
RDE-1 binds 23H siRNAs and stimulates 22G siRNA production
by RRF-1. 22G siRNAs bind NRDE-3 and SAGO Argonautes to
effect silencing. ADARs bind and edit EERs to prevent recogni-
tion as viral dsRNA and processing to 23H siRNAs by the antivi-
ral DCR-1 complex. In the 26G pathway, the ERI complex
(containing RRF-3, DCR-1, and RDE-4) generates 26G siRNAs,
which bind ERGO-1, promote 22G siRNA synthesis, and silence
targets through NRDE-3 and SAGO proteins. Thus, absent viral
infection, antiviral RNAi is kept inactive by ADARs binding
and editing self dsRNAs and by 26G pathway sequestration of
common RNAi factors (green). For simplicity, we show only fac-
tors relevant to this study (see Supplemental Fig. S1); complexes
containing additional components are noted with asterisks.
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to promote production of antisense secondary 22G si-
RNAs that silence viral transcripts (Pak and Fire 2007;
Sijen et al. 2007; Guo et al. 2013). By analyzing small
RNAs in wild-type and adr-1;adr-2 mutant worms, we
found that primary and secondary siRNAs mapping to
EERs are more abundant in the absence of ADARs. Like
primary siRNAs from viral dsRNA, sense primary EER-
siRNAs are 22–23 nt with a bias against 5′ G (Ashe et al.
2013), suggesting that they result from DCR-1 cleavage
of EERs. EER-23H siRNAs promote secondary siRNA pro-
duction, as evidenced by increased EER-22G siRNAs in
adr-1;adr-2 mutants and nuclear GFP::NRDE-3 in adr-1;
adr-2;rrf-3 mutants. ADAR-antagonized EER-siRNAs
are functional, since EAGs are down-regulated in adr-1;
adr-2 embryos, and this requires RDE-4 and EERs. Thus,
ADARs prevent EER cleavage and EAG silencing by an
RNAimechanism analogous to the processing and silenc-
ing of viral dsRNAs.
The 26G pathway further limits antiviral RNAi activi-

ty. While adr-1;adr-2, rrf-3, and ergo-1 mutant strains
are largely healthy, deleting either rrf-3 or ergo-1 in the
adr-1;adr-2 deletion strain caused bursting and reduced
brood size. These phenotypes required rde-1, rde-4, drh-
1, and rrf-1, components also required for antiviral RNAi
during Orsay virus infection, suggesting that antiviral
RNAi activity causes adr-1;adr-2;rrf-3 mutant pheno-
types. The 26G and antiviral pathways compete for
common sets of proteins (Vasale et al. 2010; Thivierge
et al. 2012; Ashe et al. 2013), including the Argonautes
NRDE-3, SAGO-1, and SAGO-2 that are limiting factors
in RNAi (Yigit et al. 2006; Zhuang et al. 2013). The burst-
ing of adr-1;adr-2;ergo-1 triple mutants suggests that the
26G pathway primarily restricts antiviral RNAi activity
by competing for these downstream factors rather than
DCR-1 and RDE-4, which would still act upstream in
26G biogenesis in adr-1;adr-2;ergo-1 mutants.
ADAR antagonism ofC. elegans antiviral RNAi clearly

parallels mammalian ADAR1 antagonism of MDA5-de-
pendent IFN signaling (Mannion et al. 2014; Liddicoat
et al. 2015; Pestal et al. 2015). We conclude that ADARs
perform a conserved role in preventing antiviral responses
to self dsRNAs. The role of the 26G pathway in further
limiting antiviral RNAi underscores the importance of re-
stricting immune signaling to appropriate contexts.

How do ADARs prevent recognition of cellular dsRNAs
as nonself?

Editing converts A–U base pairs in dsRNA to I–U mis-
matches (Hundley and Bass 2010; Nishikura 2016), mak-
ing dsRNAs less “double-stranded” and less ideal
substrates for Dicer and other dsRBPs. Indeed, edited
dsRNAs are poorly processed into siRNAs in Drosophila
extracts (Scadden and Smith 2001), while, in HeLa cells,
dsRNAs containing I–U mismatches fail to activate
MDA5 like control dsRNA (Vitali and Scadden 2010).
We found that ADR-1, which binds but does not edit
dsRNA (Washburn et al. 2014), restricts antiviral RNAi,
since adr-2;rrf-3 doublemutants that lack all editing burst
less frequently than adr-1;adr-2;rrf-3 triple mutants. Still,

adr-1;rrf-3 double mutants retain ADR-2 editing and rare-
ly burst, suggesting that the loss of editing is more delete-
rious than losing ADR-1 binding. Abundant intron editing
suggests that ADARs act in the nucleus, consistent with
nuclear localization of most mammalian ADARs (Nishi-
kura 2016) andA-to-I editing of nascent transcripts (Rodri-
guez et al. 2012). Nuclear localization likely allows
ADARs to bind and edit EERs soon after transcription to
preempt processing by DCR-1.

How does EER-mediated silencing occur?

EERs are predominantly intronic and thus likely nuclear,
while DCR-1 and RRF-1 act primarily in the cytoplasm
(Aoki et al. 2007;Drake et al. 2014). However,we observed
primary and secondary siRNAsmapping to intronic EERs,
and our expression analyses indicate that EAGs can be si-
lenced via intronic EERs (Fig. 3C). Thus, either DCR-1
and RRF-1 act in the nucleus or EERs go to the cytoplasm.
In somatic and germline tissues, secondary siRNAproduc-
tion occurs in perinuclear foci (Phillips et al. 2012; Yang
et al. 2014) that conceivably could facilitate nucleocyto-
plasmic exchange of RNAi factors and/or EERs. Alterna-
tively, mitotic nuclear breakdown may provide a window
for EER processing and secondary amplification. A mito-
sis-dependent mechanism may explain why EAGs are
down-regulated in adr-1;adr-2 mutant embryos but not
L3 larvae, sincenonproliferative larval cellswouldnotgen-
erate EER-siRNAs. Still, EER-22G siRNAs aremore abun-
dant in adr-1;adr-2 mutants than wild type at both the
embryo and L4 stages. Perhaps adr-1;adr-2 L3 larvae do
not silence EAGs because Argonautes at this stage bind
fewer EER-siRNAs either because they comprise a smaller
proportion of total siRNAs or becauseArgonautes become
less abundant or tissue-restricted. Our future work aims
to establish precise mechanisms of EER silencing.

What causes adr-1;adr-2;rrf-3 mutant phenotypes?

Like bursting and brood size defects, EAG misregulation
in adr-1;adr-2;rrf-3mutants is rde-1- and rde-4-dependent.
GO terms associated with development andmorphogene-
sis are enriched among EAGs, and we suspect that EAG
misexpression compromises vulval morphogenesis,
althoughwe did not test this. Bursting is a frequent pheno-
type of miRNA mutants, attributed to lin-41 misregula-
tion by let-7 (Parry et al. 2007; Ecsedi et al. 2015), and
adr-1;adr-2 mutants show altered miRNA networks
(Warf et al. 2012). Still, we saw no evidence of lin-41 mis-
expression in adr-1;adr-2;rrf-3 mutant embryos, although
we did not test later stages. Importantly, the fact that dis-
rupting RNAi factors rescued adr-1;adr-2;rrf-3 bursting
suggests that siRNA, notmiRNA, regulation is perturbed.
Orsay virus-induced genes are robustly induced in adr-

1;adr-2;rrf-3 triple mutants, partly through rde-1 and rde-
4, suggesting that activation of an antiviral transcriptional
program could contribute to bursting. While we predicted
that unedited EERs in adr-1;adr-2 mutants might induce
antiviral gene transcription, we instead saw Orsay-in-
duced genes induced in rrf-3 but not adr-1;adr-2mutants,
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suggesting that 26G inactivity is associated with antiviral
gene expression. Still, expression of virus-induced genes
further increases in adr-1;adr-2;rrf-3 mutants, suggesting
that ADARs limit their induction. Although the 26G
pathway has not been implicated in the antiviral response,
we suspect that its inhibition could help combat viral in-
fection by relieving competition with antiviral RNAi.

What triggers the virus-induced transcriptional pro-
gram remains unclear. Generalized stresses such as heat
shock, oxidative stress, and translation inhibition trigger
innate immune signaling (Kim and Ewbank 2015), so
adr-1;adr-2;rrf-3 mutant antiviral gene induction could
indicate nonspecific cellular dysfunction. However, a sub-
set of genes expressed during Orsay infection is not in-
duced in drh-1 mutant JU1580 worms (Sarkies et al.
2013), suggesting the intriguing possibility that DRH-1
may activate antiviral gene transcription in response to vi-
ral dsRNA.

Materials and methods

C. elegans maintenance and strains used in this study

All C. elegans strains were cultured at 20°C under standard
conditions (Brenner 1974). Strains used in the study are listed in
Supplemental Table S1.

Sample collection and RNA isolation

Embryos were obtained by sodium hypochlorite treatment
(Emmons et al. 1979) of well-fed worms grown 4–5 d in S-Com-
plete liquid medium, washed three times in M9 buffer, and
then collected or hatched overnight without food. Synchronized
L1 larvae were filtered over two layers of Miracloth (Calbiochem)
and cultured in S-Complete liquidmedium tomid-L1 (6–8 h), L1/
L2molt (12–14 h),mid-L2 (18–20 h),mid-L3 (28–30 h), L3/L4molt
(34–36 h), mid-L4 (40–42 h), or young adulthood (50–54 h). Early
larval samples were prepared by mixing mid-L1, mid-L2, and
L1/L2 molt populations at a 5:5:2 volumetric ratio, respectively.
Late larval samples were similarly prepared with mid-L3, mid-
L4, and L3/L4 molt populations.
Samples were lysed by three freeze–thaw cycles in Trizol re-

agent. RNAwas extracted with chloroform, ethanol-precipitated,
treated for 1 h at 37°C with TURBO DNase, and isolated using
Zymo Research RNA clean and concentrator columns.

RNA-seq and data preparation

For developmental RNA-seq, we prepared three biological repli-
cates of each stage as described above. For each sample, we treated
40 µg of total RNA with Ribo-Zero human–mouse–rat rRNA re-
moval kit and took 10% of the output for input cDNA libraries.
The remaining RNA was incubated overnight at 4°C with 10 µg
of J2 anti-dsRNA antibody (English Scientific and Consulting
Kft.) in 50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1 mM EDTA,
and 1% NP-40. J2-bound RNA was collected with Protein-A/G
agarose beads for 4 h at 4°C and isolatedwithTrizol. cDNA librar-
ies were prepared with the Illumina TruSeq stranded total RNA
sample preparation LS protocol modified by addition of 2.5%
DMSOto reverse transcription reactions. cDNA librarieswere se-
quenced by paired-end 101-cycle sequencing on an Illumina
HiSeq 2000 platform by the Microarray and Genome Analysis

Core Facility at the University of Utah Huntsman Cancer
Institute.
For poly(A)+ RNA-seq of the adr-1;adr-2;rrf-3 triple-mutant and

related strains, we collected four biological replicates of embryos
of each genotype. Each library was prepared from 1 µg of total
RNAby theUniversity of UtahMicroarray andGenomeAnalysis
Core Facility using the Illumina TruSeq stranded mRNA library
preparation kit. cDNA libraries were sequenced by paired-end
125-cycle sequencing on an Illumina HiSeq 2500 platform.
The Novoalign alignment package (http://www.novocraft.

com) was used to trim adaptor sequences and align reads to the
C. elegans genome (ce10/WS220). Reads were filtered to allow
up to four mismatches with the USeq (http://useq.sourceforge.
net) application SamTranscriptomeParser using parameters “-a
120 -n 1 –p –r –b.” The USeq AligmentEndTrimmer application
was used to remove reads with more than one non-A-to-G mis-
match and trim read ends of low-quality bases.

Detection of EERs

We detected EERs as described in Whipple et al. (2015). Sequence
variants were called with SAMtools mpileup (http://samtools.
sourceforge.net). USeq applications RNAEditingPileupParser,
RNAEditingScanSeqs, and EnrichedRegionMaker were used to
define 50-nt strand-specific windows covered by five or more se-
quencing reads that contained three or more adenosines edited
in >1% of reads. Overlapping edited windows and windows with-
in 1 kb were merged to define EERs. EERs comprised of a single
50-nt window were excluded.

RNA-seq expression and editing analyses

A RefFlat table of C. elegans genes (ce10) was downloaded from
the University of California at Santa Cruz (UCSC) genome
browser (https://genome.ucsc.edu), and EER coordinates were
added. Expression was quantified for RefFlat table entries using
the USeq application DefinedRegionDifferentialSeq, which also
identified DEGs via the R package DESeq2 (Love et al. 2014).
For editing analyses, we determined A-to-G mismatches from

.bar files outputted by the USeq application RNAEditingPileup-
Parser. Restricting our analyses to adenosines edited >1% and
<99%within EERs, for each RNA-seq replicate, we calculated to-
tal A-to-G mismatches (Supplemental Fig. S8) and divided by the
total reads covering each base (i.e., if a read covered X edited bas-
es, it was counted X times, once for each base).

Small RNA-seq analyses

Published small RNA-seq data sets, alignment parameters, read
filtering, andanalyses aredescribed in theSupplementalMaterial.

qRT–PCR

For each sample, 2 µg of total RNAwas reverse-transcribed with
the Applied Biosystems high-capacity cDNA reverse transcrip-
tion kit. qPCR was performed with Roche LightCycler 480
SYBRGreenmastermix on a Roche LightCycler 480 platform us-
ing primers listed in Supplemental Table S2. Transcript abun-
dance was determined by the ΔΔCt method and normalized to
the geometric mean of Y45F10D.4, cdc-42, ama-1, and pmp-3
mRNAs. Relative values were determined by normalizing to
wild type in each individual trial. Outliers were determined by
the ROUT method with Q = 1% and excluded (Motulsky and
Brown 2006).
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Protocols for recombinant Cas9 purification and design and syn-
thesis of guide RNAs and homology-directed repair (HDR) tem-
plates are described in the Supplemental Material. For each
targeting event, 8 mg/mL recombinant Cas9 was complexed for
15 min at 37°C with an equal volume of a 2:2(:2):1:1 mixture of 4
µg/µL target sgRNA 1, 4 µg/µL target sgRNA 2 (0.5 µg/µL HDR
template DNA; efa-6 only), 4 µg/µL dpy-10 sgRNA, and 40 µM
dpy-10 HDR DNA oligonucleotide to induce the Roller pheno-
type (Paix et al. 2015). Cas9 complexes were then injected into
the distal gonads of 20 wild-type young adults. After 3–4 d, Rol
F1s were isolated and screened by PCR (primers in Supplemental
Table S3) for the desired genome modifications. All mutations
were confirmed by Sanger sequencing (Supplemental Table S4).

Bursting assay

For each sample, eight gravid adults were placed on a seeded plate
of nematode growth medium (NGM) to lay eggs for 90 min, after
which adultswere removed and the eggs laidwere counted. Plates
were incubated for 5 d at 20°C followed by counting of healthy,
burst, or dead adults on the plate. The difference between total
number of adults and the original egg count was recorded as num-
ber of progeny that did not reach adulthood.

Brood size assay

For each trial, one healthy L4 larva was placed on a seeded
NGMplate and allowed to develop for 5 d at 20°C.Hatched larvae
were picked off plates and counted before they reached reproduc-
tive age.

Accession numbers

RNA-seq data and reanalyses of published small RNA data were
deposited in the NCBI Gene Expression Omnibus database
(http://www.ncbi.nlm.nih.gov/geo) under superseries accession
number GSE89890.
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Supplemental Material: C. elegans ADARs antagonize silencing of cellular dsRNAs by the 

antiviral RNA interference pathway 
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Supplemental Inventory: 

Supplemental Materials and Methods – Materials and methods related to data presented in 

Supplemental Figures, Tables, or Files, or not included in the primary Materials and Methods 

section due to lack of space. 

Supplementary References – References in Supplemental Material that are not included in  

primary References section. 

Supplemental Fig. S1 – Model of Dicer-dependent siRNA pathways in C. elegans. 

Supplemental Fig. S2 – Schematic of the EER detection pipeline. 

Supplemental Fig. S3 – Developmental expression of stage-specific EERs. 

Supplemental Fig. S4 – EER genomic locations. 

Supplemental Fig. S5 – EER repeat content and associated transposon classes. 

Supplemental Fig. S6 – EER genomic annotation and predicted structural stabilities. 

Supplemental Fig. S7 – EER expression in each developmental stage compared to random 

regions. 

Supplemental Fig. S8 – Average EER editing events per developmental stage. 

Supplemental Fig. S9 – Viability and development of three adr-1;adr-2 double mutant strains. 

Supplemental Fig. S10 – EER abundance compared to ADAR-modulated RNA loci in each 

developmental stage. 

Supplemental Fig. S11 – Length and 5’ nucleotide preferences of 5’P-independent siRNAs 

from wildtype and adr-1(gv6);adr-2(gv42) mutant animals that map to EERs. 
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Supplemental Fig. S12 – Relative EER-22G siRNA abundance for EERs and random regions 

in wildtype, adr-1(gv6);adr-2(gv42), adr-1(gv6);adr-2(gv42);rde-1(ne219), and adr-1(gv6);adr-

2(gv42);rde-4(ne299) strains. 

Supplemental Fig. S13 – Expression of eight EAGs in embryos of three independent adr-

1;adr-2 double mutant strains. 

Supplemental Fig. S14 – Cas9 targeting schemes used to generate ΔEER mutations. 

Supplemental Fig. S15 – Additional data on bursting and brood size phenotypes of adr-1;adr-

2;rrf-3 triple mutant lines, not shown in Figure 4. 

Supplemental Fig. S16 – Analyses of EER properties for three group of EAGs.  

Supplemental Fig. S17 – Differential expression analysis and GSEA of adr-1(uu49);adr-

2(uu28);rrf-3(uu56);rde-1(uu51) and adr-1(uu49);adr-2(uu28);rrf-3(uu56);rde-4(uu53) 

quadruple mutant embryos compared to adr-1(uu49);adr-2(uu28);rrf-3(uu56) triple mutants. 

Supplemental Table S1 – Strains used in this study 

Supplemental Table S2 – Primers used in qRT-PCR analyses. 

Supplemental Table S3 – Primers used for sgRNA synthesis and genotyping of new 

mutations generated for this study. 

Supplemental Table S4 – Mutations generated by CRISPR protocols for this study. 

Supplemental File S1 – List of EERs, with genomic properties and siRNA abundance 

measurements. 

Supplemental File S2 – Lists of circRNAs, ADAR-modulated RNA loci, and 21U/piRNA loci 

that overlap EERs. 

Supplemental File S3 – Table describing EER-EAG expression correlation across 

developmental stages. 
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Supplemental File S4 – List of EAGs with associated EER-23H siRNA abundance and 

expression data. 

Supplemental File S5 – Differential gene expression in adr-1(uu49);adr-2(uu28);rrf-3(uu56) 

triple mutant embryos and related strains. 

Supplemental File S6 – EAG enriched GO categories. 

Supplemental File S7 – Gene set enrichment analysis comparing adr-1(uu49);adr-2(uu28);rrf-

3(uu56);rde-1(uu51) and adr-1(uu49);adr-2(uu28);rrf-3(uu56);rde-4(uu53) quadruple mutants 

to adr-1(uu49);adr-2(uu28);rrf-3(uu56) triple mutants. 

 

Supplemental Materials and Methods 

EER annotation 

Tables of annotated C. elegans (ce10/WS220) protein coding genes, introns, 3’ UTRs, 5’ 

UTRs, ncRNAs, and pseudogenes and their genomic coordinates were downloaded from 

UCSC Genome Browser in .bed format (https://genome.ucsc.edu/). We merged ncRNA and 

pseudogene annotations into a single “ncRNA” annotation. The bedtools2 

(https://github.com/arq5x/bedtools2) application annotateBed defined the number of 

overlapping bases shared between EERs and annotated features. To annotate EERs within or 

further than 1kb from genes, we combined annotations of protein-coding genes and ncRNAs, 

and then extended the start and stop coordinates 1000 nt away from gene boundaries.  

 

EER overlap with other annotated regions 

The USeq application IntersectRegions was used to overlap EERs with .bed files for C. 

elegans circRNAs (circBase.org) or ADAR-modulated RNA loci (from Wu et al. 2011) and 

calculate enrichment significance by Χ2 approximation. A .bed file of genomic regions covered 
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by at least 5 reads in combined developmental RNAseq datasets (i.e. genomic space with 

sufficient coverage to define EERs) was used with parameters “-r” and “-n 10000” to make 

10,000 randomized expressed regions used to approximate the likelihood of random 

intersection with circRNAs or ADAR-modulated RNA loci.  

 

Annotation of EER-associated genes (EAGs) 

EAGs were defined as genes containing one or more EERs within the gene on the same 

strand or else the closest gene within 1kb of an EER on the same strand. Using gene tables for 

protein coding genes and pseudogenes downloaded from UCSC (see Methods), we used the 

bedtools application intersectBed to identify genes overlapping EERs, and the Useq 

application FindNeighboringGenes, to find the closest gene to EERs within 1kb.  

 

Small RNAseq data preparation and analysis 

Mixed-stage 5’P-dependent small RNAseq datasets were downloaded from Gene Expression 

Omnibus record GSE28888. Small RNAseq 5’P-independent datasets of wildtype, adr-

1(gv6);adr-2(gv42), adr-1(gv6);adr-2(gv42);rde-1(ne219), and adr-1(gv6);adr-2(gv42);rde-

4(ne299) embryos and L4 larvae from Wu et al. (2011) were provided by Diane Wu and 

Andrew Fire. Small RNAseq reads were aligned to the C. elegans ce10/WS220 genome with 

Novoalign, parameters: -o SAM -a ATCTCGTATGCCGTCTTCTGCTTG -r All). We used the 

USeq application SamTranscriptomeParser (parameters -n 1000000 –a 30) to parse 

alignments into bam files. For uniquely mapping reads, we parsed reads with the samtools 

application view (parameters –F 4 –q 10). Small RNA libraries were normalized to the total 

number of mapped reads in each alignment file. For Supplemental Fig. S11, reads mapping 

sense or antisense to EERs were extracted with the bedtools2 application intersectBed 



48 
 

 
 

 
 
 

Reich et al.  

!

(https://github.com/arq5x/bedtools2) and analyzed by custom bash scripts. Repetitively 

mapped reads were used for relative siRNA abundance plots shown in Supplemental Fig. S12. 

 

Viability assays 

To quantify development of adr-1;adr-2 mutants, we modified the bursting assay described in 

Materials and Methods as follows. After adults were removed and eggs laid on Day 0 were 

counted, embryos were allowed to hatch and mature for 24 hrs, after which unhatched eggs 

were counted. 64-70 hrs after egg lay, worms on the plate were scored and counted as L3-

adults or L1-L2 larvae. If the sum of unhatched eggs, L1-L2 larvae, and L3-adults was less 

than the initial egg count, the difference was added to the subset of unhatched eggs. All steps 

and incubations were performed at 20°C. 

 

Recombinant Cas9 purification 

To express Cas9 in E. coli, we used a human codon-optimized Streptococcus pyogenes Cas9 

gene with N-terminal HA-SV40, NLS, and TEV protease site cloned into pET28b with N- and 

C-terminal 6xHis tags (a generous gift of Dr. Jin-Soo Kim, Seoul National University). pET28b-

Cas9-N3T (KanR) was transformed into BL21(DE3) cells. A 500 mL culture of LB-Kan (50 mg/L 

Kan) was inoculated with a 5 mL overnight culture and grown at 37°C to an OD of 0.4-0.5. We 

added IPTG to 0.5 mM and induced Cas9 expression for 4 hrs at 25°C. 

Cells were pelleted, resuspended in lysis buffer (50 mM NaH2PO4 pH 8.0, 10 mM 

imidazole, 300 mM NaCl, 10% glycerol, 1 mM β-mercaptoethanol), and lysed by 

homogenization followed by sonication. Clarified lysate was batch bound to Qiagen Ni-NTA 

agarose resin for 45 min at 4°C. Resin was washed 3x in 1 M NaCl, 1x in 300 mM NaCl, and 

protein was eluted with 125 mM imidazole. Protein was dialyzed into 20 mM HEPES pH 7.5, 
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150 mM KCl, 1 mM DTT, 10% glycerol, and concentrated to 8 mg/mL. Protein was stored long 

term in 25% glycerol at -80°C. 

 

sgRNA design and synthesis 

We used the Broad Institute sgRNA Design Tool (http://portals.broadinstitute.org/gpp/public 

/analysis-tools/sgrna-design-v1) to identify S. pyogenes Cas9 target sites in regions of interest. 

We chose guide sequences with a 5’G (to facilitate T7 RNA polymerase in vitro transcription) 

scoring >0.1 and BLASTed them against the C. elegans genome, eliminating candidates with 

<4 mismatches that contained the NGG protospacer adjacent motif needed for cleavage. 

For each CRISPR/Cas9 mutation, we designed two guide RNAs. For whole-gene 

disruptions, we selected sgRNAs situated ~1 kb or more apart to induce large deletions. To 

delete the EERs in ccb-1 and egl-8, we chose guide RNAs to target Cas9 to sequences 

flanking each EER within the intron far enough from 5’ and 3’ splice sites and consensus 

splicing signals to prevent disruption. The EER-containing intron of efa-6 was too repetitive to 

delete without likely off-target mutations, so we directed Cas9 to cleave within the efa-6 exonic 

sequences flanking the intron, and provided a single-stranded DNA template to replace the 

entire intron with a 60 nt synthetic intron lacking the predicted double-stranded structure 

(Materials and Methods; Supplemental Fig. S14C; Supplemental Table S3). 

 Primers of the form TAATACGACTCACTATA-N19-22-GTTTTAGAGCTAGAAATAG, 

where N19-22 represented the guide target sequence, were used with the reverse primer 

CRISPR_sgRNA_R1 (Supplemental Table S3) to amplify the sgRNA transcription template 

from the plasmid DR274! (Hwang et al. 2013). In vitro transcription reactions were incubated 

overnight at 37°C in 100 μl containing 10 μg PCR template, 20 U T7 RNA polymerase, 3 mM 
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ATP, 3 mM UTP, 3 mM CTP, 3 mM GTP, 40 mM Tris pH 7.8, 2 mM spermidine, 15 mM DTT, 

and 15 mM MgCl2. Reactions were DNase-treated 1 hr at 37°C, and RNA was extracted in 

phenol-chloroform, ethanol precipitated, and resuspended in 10 mM Tris, 1 mM EDTA to a 

concentration of ~4 μg/μl. 

 

Imaging GFP::NRDE-3 localization 

L3 worms of each genotype were anesthetized in M9 buffer containing 5 mM levamisole and 

mounted on 2% agarose pads. Images in Figure 4A and Supplemental Fig. S15A were taken 

using a QImaging Retiga 2000R camera on a fluorescent Zeiss Axioskop 2 MOT microscope. 

 

Gene Ontology (GO) analysis 

A background list of genes was determined by calculating all genes overlapping a .bed file of 

genomic regions covered by at least 5 reads in our developmental RNAseq experiment (i.e. all 

genes with sufficient coverage to define an EER). The lists of background genes and EAGs 

(see Supplemental File S3) were provided to the GOMiner web interface 

(https://discover.nci.nih.gov/gominer/htgm.jsp) to calculate enriched GO categories with a 

False Discovery Rate < 0.05 (Zeeberg et al. 2003; Zeeberg et al. 2005). 

 

Gene set enrichment analysis (GSEA) 

Gene sets for 877 biological process high quality GO annotations were downloaded from 

http://www.go2msig.org/cgi-bin/prebuilt.cgi?taxid=6239, to which were added gene sets of 298 

Orsay virus-induced genes and 231 EAGs significantly downregulated in adr-1;adr-2;rrf-3 
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mutants relative to wildtype (Fig. 5B). GSEA software was downloaded from 

http://software.broadinstitute.org/gsea/index.jsp. Poly(A)+ RNAseq rlog-normalized expression 

values outputted by DESeq2 were used for analysis. Default parameters were used for GSEA, 

with the exception that we used permutation type “gene_sets,” since “phenotype” permutation 

recommends seven samples per condition. Note that we also included the full set of 965 

EAGs, but GSEA was unable to calculate normalized enrichment scores for a gene set this 

large. 

 

Supplementary References 
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Reich et al. Reich_SuppFigS1 
factors have not been tested (noted by asterisks). RIGHT: In a poorly understood manner, 
certain mRNAs are targeted for silencing by the 26G endogenous siRNA pathway (Vasale et al. 
2010; Thivierge et al. 2012; Billi et al. 2014). In contrast to the antiviral pathway, Steps 1 and 2 
likely occur concomitantly (Blumenfeld and Jose, 2016), with synthesis of dsRNA by the RdRP 
RRF-3 followed closely by its cleavage by DCR-1. RDE-4, DRH-3 and ERI-1, 3 and 5 are also 
required for Steps 1 and 2 to produce 26 nt siRNAs, which have a 5’ monophosphorylated 
guanosine (26G siRNAs) and are primarily antisense to the mRNA. 26G siRNAs are loaded 
into tissue-specific Argonautes (ERGO-1 or ALG-3 or ALG-4, see main text) that promote 
production of secondary 22G siRNAs, by a complex containing the RdRP RRF-1 or EGO-1 (in 
the soma and germline, respectively). For both pathways, loading and silencing (Step 5) 
involves additional Argonautes (WAGO and SAGO). 
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Supplemental Figure S2. Flowchart outlining the bioinformatics pipeline used to identify 
Editing-Enriched Regions, adapted from Whipple et al. (2015). Additional details are provided in 
Materials and Methods. 
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Supplemental Figure S3. Tukey boxplots show expression in each developmental stage of (A) 
embryo-specific EERs, (B) early larval-specific EERs, (C) late larval-specific EERs, and (D) young 
adult-specific EERs. For all panels, expression values are calculated from input RNAseq samples 
only. Note for all plots that quartile boundaries with value of 0 are set at 0.1 FPKM due to the 
logarithmic scale.  
!
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Supplemental Figure S4. Genomic locations of all 1523 EERs. Vertical black lines indicate EER 
locations, while the total number of EERs on each chromosome are shown to the right.  
!
!
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Supplemental Figure S5. EER repeat content. (A) Classification of EER sequences by the % 
of EER nucleotides that overlapped annotated RepeatMasker repetitive sequences. (B) 
Classification of the ten most abundant transposon classes represented in EER sequences.  
!
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Supplemental Figure S6. EER genomic annotation and predicted structure stabilities. (A) The 
percent of nucleotides from random regions or EERs from each set of developmental stages 
that overlap specified genomic annotations. (B) UNAFold-predicted folding free energies (ΔG) 
of sequences from EERs (blue) or length-matched expressed random regions (red) plotted 
against length. A slope test on the linear regressions of each set of regions shows they are 
significantly different (p<0.0001). 
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Supplemental Figure S7. EERs display expression patterns distinct from random regions. (A) 
Distributions of EER abundance and length-matched expressed random region (Random) 
abundance in each stage of development measured. Solid black lines report median abundance. 
(B-D) Tukey boxplots show log2(abundance fold-change) of all EERs and random regions in the 
transitions between each developmental stage and the subsequent stage. ns: not significant; ****: 
p < 0.0001; Mann-Whitney U test. 
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Supplemental Figure S8. EER editing events per stage. Plot shows the average number of A-
to-G changes observed in reads covering all EER editing sites (edited >1% and <99%) in each 
developmental stage for each treatment (three biological replicates each). Error bars reflect 
standard deviation of three RNAseq replicates; *: p<0.05, **: p<0.01; Student’s T-test. 
!
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Supplemental Figure S9. Viability and development of progeny in three independent adr-
1;adr-2 mutant strains. Shown are the fraction of embryos laid on Day 0 that were found on 
Day 3 as L3-adults (green), L1-L2 larvae (blue), or which were lost or failed to hatch (red). 
Error bars represent standard deviation over n=3 assays; **: p<0.01; ****: p<0.0001, 
significance determined by two-way ANOVA with Tukey’s multiple comparisons correction, 
asterisk colors indicate the categories compared between genotypes. 
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Supplemental Figure S10. EERs are more abundant than ADAR-modulated RNA loci in 
wildtype animals. Tukey boxplots show distributions of ADAR-modulated RNA loci (ARL) and 
EER abundance (FPKM) in input RNAseq samples from each developmental stage (E: Early, 
L: Late, Y: Young). ****: p < 0.0001; Mann-Whitney U test. 
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Supplemental Figure S11. EER-22G siRNAs in wildtype and adr-1(gv6);adr-2(gv42) mutant 
animals. Sense (positive) and antisense (negative) EER-mapped siRNAs in wildtype and adr-
1(gv6);adr-2(gv42) embryo and L4 stage 5’P-independent small RNAseq samples from Wu et 
al. (2011) are plotted by length (nt) and 5’ nt (see color key in top right panels). Small RNA 
reads were aligned either to allow reads to map in multiple locations (repetitively mapped) or to 
only include reads that mapped to a single location (uniquely mapped). !
!
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Supplemental Figure S12. EER-22G siRNAs require rde-1 and rde-4 for embryonic 
accumulation in adr-1;adr-2 double mutant animals. In all panels, abundance of siRNAs 
antisense to 1523 EERs (black line) or control random regions (dotted grey line) are plotted as 
log2 ratio of siRNA reads in one genotype over siRNA reads in the control genotype. For top 
panels, EER-22G siRNA enrichment in adr-1(gv6);adr-2(gv42) double mutants are plotted 
relative to wildtype in (A) embryo or (B) L4 larval stages. In middle panels, EER-22G siRNAs in 
adr-1(gv6);adr-2(gv42);rde-1(ne219) triple mutants are plotted relative to adr-1(gv6);adr-
2(gv42) double mutants in (C) embryo or (D) L4 larval stages. In the two bottom panels, EER-
22G siRNA abundance in adr-1(gv6);adr-2(gv42);rde-4(ne299) triple mutants is plotted relative 
to adr-1(gv6);adr-2(gv42) double mutants in (E) embryo or (F) L4 larval stages.  
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Supplemental Figure S13. EAG expression is decreased in adr-1;adr-2 double mutant 
strains. Plots show EAG expression, determined by qRT-PCR, in three independent sets of 
adr-1;adr-2 deletions. Each EAG was normalized to the geometric mean of four control genes 
(Y45F10D.4, cdc-42, pmp-3, and ama-1). Plot shows mean expression relative to the 
expression of the wildtype strain in each experiment (n=8); error bars represent SD. 
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Supplemental Figure S14. Cas9 targeting schemes used to generate three ΔEER mutations. 
Genome browser views of (A) ccb-1, (B) egl-8, and (C) efa-6 are shown with the location of 
EERs (green) in each gene and the editing frequency (orange) of edited adenosines in all 
developmental stages combined. Regions targeted for cleavage by Cas9 are marked with 
arrows. For (A) and (B), deleted sequences are shown in red. A schematic of the HDR 
template and recombination pattern (red crossed lines) are shown for efa-6(ΔEER) in (C). See 
Supplemental Table S4 for specific information on each mutation. 
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Supplemental Figure S15. Synthetic phenotypes of adr-1;adr-2;rrf-3 mutants are consistent 
across multiple alleles and two assays. (A) A representative burst adr-1(uu49);adr-2(uu28);rrf-
3(uu56) adult. Scale bar = 100 μm. (B) Bursting assay of adr-1;adr-2;rrf-3 triple mutant strains 
and parent strains using multiple independently-derived deletions of each gene. Allele 
designations for each gene are listed in the order of the genes listed below them (i.e. the first 
listed allele corresponds to the first listed gene below it). See Supplemental Table S4 for 
specific information on uu alleles; n ≥ 6 assays. (C) Brood sizes of the lines used in (B); n ≥ 6 
assays. (D) Brood sizes of adr-1;adr-2;rrf-3 rescue strains characterized in Fig. 5D; n ≥ 6 
assays. Individual broods are shown as dots. In all panels, error bars represent SD. 
!
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Supplemental Figure S16. Characteristics of EERs associated with misregulated EAGs. (A) 
The number of introns or UTRs that overlap EERs in each gene (EER features; gray circles) 
are plotted for EAG categories shown in Fig. 5C-E. Note that we counted strand-specific 
unannotated regions <1kb from a gene as a UTR, but only if an annotated UTR did not also 
overlap an EER. Horizontal lines plot the average #EER features per gene and error bars show 
SD. Mann-Whitney U test: **, p < 0.01; ***, p < 0.001. (B) Tukey boxplots show the lengths of 
EERs associated with EAGs in each category. Mann-Whitney U test: *, p < 0.05. (C) 
Annotation of EER nucleotides associated with EAGs in each category. 
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Supplemental Figure S17. EAG and Orsay virus-induced gene misregulation in adr-
1(uu49);adr-2(uu28);rrf-3(uu56) triple mutants partly depends on rde-1 and rde-4. Volcano 
plots show the fold change and significance of gene expression changes in (A) adr-
1(uu49);adr-2(uu28);rrf-3(uu56);rde-1(uu51) quadruple mutant embryos and (B) adr-
1(uu49);adr-2(uu28);rrf-3(uu56);rde-4(uu53) quadruple mutant embryos relative to adr-
1(uu49);adr-2(uu28);rrf-3(uu56) triple mutant embryos. Since the vast majority of gene 
expression changes had -10log10(adjusted p-value) close to 0, most genes are not shown. 
Horizontal dotted line represents adjusted p-value cutoff of 0.05, where genes above this line 
were considered significantly differentially expressed. GSEA enrichment plots for 231 EAGs 
downregulated in adr-1;adr-2;rrf-3 to wildtype show expression enrichment in (C) adr-1;adr-
2;rrf-3;rde-1 and (D) adr-1;adr-2;rrf-3;rde-4 embryos compared to adr-1;adr-2;rrf-3. Vertical 
black lines (center of each plot) indicate the position of EAGs in a gene list sorted highest to 
lowest by expression in adr-1;adr-2;rrf-3;rde-1 (or adr-1;adr-2;rrf-3;rde-4) relative to expression 
in adr-1;adr-2;rrf-3, with the most upregulated genes to the left and most downregulated genes 
to the right. Green traces show the enrichment score, described in Subramanian et al. (2005), 
calculated for the EAG gene set. (E-F) Orsay virus-induced gene enrichment plots are shown 
for the same genotype comparisons as in (C-D). 
!
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Supplemental Table S1. Strains used in this study. Citations are listed in the References 
section of the main text. 
Strain Genotype Citation 
Bristol N2 Wildtype (Brenner 1974) 
BB4 adr-1(gv6);adr-2(gv42) (Tonkin et al. 2002) 
BB21 adr-1(tm668);adr-2(ok735) (Hundley et al. 2008) 
BB204 ccb-1(uu35) This study 
BB234 efa-6(uu46; Δefa-6 intron 8 + 60 nt syntron) This study 
BB235 egl-8(uu47) This study 
BB239 adr-1(uu49);adr-2(uu28) This study 
BB242 adr-1(uu49);adr-2(uu28);rde-1(uu51) This study 
BB244 adr-1(uu49);adr-2(uu28);rde-4(uu53) This study 
BB245 adr-1(uu49);adr-2(uu28);ccb-1(uu35) This study 
BB246 adr-1(uu49);adr-2(uu28);efa-6(uu46; Δefa-6 intron 8 

+ 60 nt syntron) 
This study 

BB247 adr-1(uu49);adr-2(uu28);egl-8(uu47) This study 
BB250 rrf-3(uu56) This study 
BB251 rrf-3(uu57) This study 
BB259 adr-1(uu49);adr-2(uu28);ggIs1[nrde-

3p::3xFlag::gfp::nrde-3 CDS + unc-119(+)] 
This study 

BB260 adr-1(uu49);adr-2(uu28);rrf-3(pk1426) This study 
BB261 adr-1(uu49);adr-2(uu28);rrf-3(uu56) This study 
BB265 adr-1(uu49);adr-2(uu28);rrf-3(uu57) This study 
BB266 adr-1(uu49);rrf-3(uu56) This study 
BB267 adr-2(uu28);rrf-3(uu56) This study 
BB270 adr-1(uu49);adr-2(uu28);;rrf-3(uu56);rde-1(uu51) This study 
BB272 adr-1(uu49);adr-2(uu28);rrf-3(uu56);rde-4(uu53) This study 
BB273 adr-1(uu49);adr-2(uu28);rrf-3(uu56);drh-1(uu60) This study 
BB277 rrf-3(uu56); ggIs1[nrde-3p::3xFlag::gfp::nrde-3 CDS 

+ unc-119(+)] 
This study 

BB278 adr-1(uu49);adr-2(uu28);rrf-3(uu56);ggIs1[nrde-
3p::3xFlag::gfp::nrde-3 CDS + unc-119(+)] 

This study 

BB279 adr-1(uu49);adr-2(uu28);rrf-3(uu56);nrde-3(uu64) This study 
BB280 adr-1(uu49);adr-2(uu28);rrf-3(uu56);rrf-1(uu65) This study 
BB283 adr-1(uu49);adr-2(uu28);ergo-1(uu68) This study 
BB286 adr-1(uu49);adr-2(uu28);rrf-3(uu56);set-25(uu66) This study 
BB288 ergo-1(uu68) This study 
BB289 adr-1(uu49);adr-2(uu28);rrf-3(uu56);ergo-1(uu68) This study 
NL2099 rrf-3(pk1426) (Simmer et al. 2002) 
YY178 ggIs1[nrde-3p::3xFlag::gfp::nrde-3 CDS + unc-

119(+)] 
(Guang et al. 2008) 

!
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Supplemental Table S2. Primers used for qRT-PCR analysis. 
Primer name Sequence 
ama1_RTPCR_F1 GTCAATGATGGGACATCGTGTC 
ama1_RTPCR_R1 GTGATGAGTTGTCTCGGCACC  
Y45F10D4_RTPCR_F1 CGAGAACCCGCGAAATGTCGGA 
Y45F10D4_RTPCR_R1 CGGTTGCCAGGGAAGATGAGGC 
cdc42_RTPCR_F1 AGCCATTCTGGCCGCTCTCG 
cdc42_RTPCR_R1 GCAACCGCTTCTCGTTTGGC 
pmp3_RTPCR_F2 TGGAATTGTTTCACGGAATGC 
pmp3_RTPCR_R2 TTCAGCTCTTCGTGAAGTTCC 
daf2_RTPCR_F1 GCTACTATACGCCTGATCCTC 
daf2_RTPCR_R1 TTGTGTAATGCGTGAGGTCTC 
hmr1_RTPCR_F1 ATGTGTTCTCCGTTCAGGTCG 
hmr1_RTPCR_R1 TGAGTCCATTCAGTTGAGCTG 
efa6_RTPCR_F1 GTTGATCCAGATTCAGTTGTC 
efa6_RTPCR_R1 TCTGTGTCAAAGTAGAGAACG 
mdt17_RTPCR_F1 GAACTCGATGATGAGAACGTC 
mdt17_RTPCR_R1 CTGATTTAGGGATTCATGCAG 
ceh100_RTPCR_F1 ACCAGAAATCGAGGAACTTCC 
ceh100_RTPCR_R1 GGAACCATTCGCGTATCTGTG 
ergo1_RTPCR_F1 TCCACACTCAAGGAATTCTCG  
ergo1_RTPCR_R1 GTTCCGACTTTTCCGAGCAC 
ogt1_RTPCR_F1 CGTTGTGCTTCGATAAGGTTC 
ogt1_RTPCR_R1 TCTACTCGACTCCTATCATGC 
rhgf2_RTPCR_F1 CCACTCGATGAGTATGGAAGG 
rhgf2_RTPCR_R1 GAGCTTCGGTGCATGTAGTTC 
ccb1_RTPCR_F1 ACTCGAATTTCAGTCATCACG 
ccb1_RTPCR_R1 CCACCGGTTTATACTTGGCTC 
egl8_RTPCR_F1 CAGACGTGTTCTTCAAGGACG 
egl8_RTPCR_R1 TTGGACAGCAGCATATCTCC 
!
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Supplemental Table S3. Primers used for CRISPR/Cas9 gene targeting and genotyping. For 
primers encoding sgRNA transcription templates used for gene disruptions, sgRNA target 
sequences are shown in lowercase letters. 
Primer name Sequence 
CRISPR_sgRNA_R1 AAA AGC ACC GAC TCG GTG CCA C 
T7_sgRNA_ccb1_Int5_A TAATACGACTCACTATAgttattttgagatagggaagGTTTTAGAGCTA

GAAATAG 
T7_sgRNA_ccb1_Int5_B TAATACGACTCACTATAgtaagacccccaagtgagaaGTTTTAGAGCT

AGAAATAG 
ccb1_Ex5_F1 GAT GCC AAG AAG TGG ATC ACG 
ccb1_Ex6_R1 CTT TTG TTG GAG GCG TCG TAA C 
ccb1_Int5_F2 TTG CAG TGC AAG ACG ATT ACC 
T7_sgRNA_efa6_Ex8  TAATACGACTCACTATAgtatgttagagagactgatggGTTTTAGAGCT

AGAAATAG 
T7_sgRNA_efa6_Ex9 TAATACGACTCACTATAgctccattcggacgtcgcagtGTTTTAGAGCT

AGAAATAG 
efa6_Int8_F1 AAC ACC ATT CCC TAG TGA GTG 
Syntron_sense GTA AGT TTA AAC AGT TCG GTA CTA ACT AAT CCA TGG 

ACA TAG ATA TCT TTA AAT TTT CAG 
efa6_Ex8_Synt_F1 GGA TTT CTT ATG CGA AAA TAT GTT AGA GAa ACc GAc 

GGT GGA AAG AGT AAG TTT AAA CAG 
efa6_Ex9_Synt_R1 CGA AGA CGA GCG TAT ACC ATT CTC CAg gaG CGA CGT 

CCG AAT GGA GCT GAA AAT TTA AAG 
T7_egl8_Int11_sgRNA_A_
F1 

TAATACGACTCACTATAggcagcagccaacacccataGTTTTAGAGC
TAGAAATAG 

T7_egl8_Int11_sgRNA_B_
F1 

TAATACGACTCACTATAggagttacaggaaatacaaaGTTTTAGAGCT
AGAAATAG 

egl8_Ex11_F1 CCA AGG AAA ACG ACG AAG CAC 
egl8_Ex12_R1 GCG AAA ATC CGC TCC TCT TC 
egl8_Int11_F1 TCG AAA ATG TGG GAA ATG CTC 
T7_sgRNA_adr2_5p_A TAATACGACTCACTATAggaacaaaaagtccacatgGTTTTAGAGCT

AGAAATAG 
T7_sgRNA_adr2_3p_B TAATACGACTCACTATAggtgattcgagttacttatctGTTTTAGAGCTA

GAAATAG 
adr2_5p_F2 GTTCACTAGTCGATGTTGCTC 
adr2_3p_R2 AATCACATGGGTCACTGATGC 
adr2_WT_R1 ACAGTTTCCTTCACAAAGTCG 
T7_adr1_Start_sgRNA_A TAATACGACTCACTATAggtaatttatttgactacgaaaGTTTTAGAGCT

AGAAATAG 
T7_adr1_Ex11_sgRNA TAATACGACTCACTATAggccgttgtgaattatgcgaGTTTTAGAGCTA

GAAATAG 
adr1_5p_F1 GTGTCTACTTAAGAACGTGGAG 
adr1_Ex12_R1 CGAAAGCAGCAAGAGTGAAGG 
T7_rde1_5p_sgRNA_A TAATACGACTCACTATAggacatgtttcatcactttgGTTTTAGAGCTAG

AAATAG 
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T7_rde1_Ex10_sgRNA_B TAATACGACTCACTATAggaattgtgaacccatcatcGTTTTAGAGCTA
GAAATAG 

rde1_5p_F1 AGA GTG GTT CTG CAA ACA CG 
rde1_WT_F2 CTA CGT GTT AGT CAT GAT GAG C 
rde1_Ex11_R1 CTA GCA GAG AGA AAA GCA AGT C 
T7_rde4_Ex1_sgRNA_A  TAATACGACTCACTATAggtactagaagaggctgctaGTTTTAGAGCT

AGAAATAG 
T7_rde4_Ex4_sgRNA_B  TAATACGACTCACTATAggtctggagaaactagacgcGTTTTAGAGCT

AGAAATAG 
rde4_Ex1_F1 AAG CGT TTT CGG TGG ATC AG 
rde4_WT_F2 AAG ACG GTA TCG AAT CTC TGG 
rde4_Ex4_R1 ACA AGC ACA CTG TTT AGC CTC 
T7_rrf3_sgRNA_A TAATACGACTCACTATAgctcaaatctcgcatacgagGTTTTAGAGCTA

GAAATAG 
T7_rrf3_Ex8_sgRNA_C TAATACGACTCACTATAgttgaacctgacattgaaggGTTTTAGAGCTA

GAAATAG 
rrf3_Ex4_F1 CGA TTG CGA TTG GAA ACT GC 
rrf3_WT_R1 GCA CGT TTC CAT ATT GAG AAC C 
rrf3_Ex9_R3 TTG TGA TCC TTC TGT GAG AGC 
T7_drh1_sgRNA_A TAATACGACTCACTATAgcctctgctcggagagcaagGTTTTAGAGCT

AGAAATAG 
T7_drh1_sgRNA_B TAATACGACTCACTATAggtatcttctctcaggattcgGTTTTAGAGCTA

GAAATAG 
drh1_Ex4_F1 GTT TCC TAC GCT TCA TTG AAC 
drh1_WT_R1 GCA GTT CCT AAA TAG ACC ATC 
drh1_Ex18_R2 ACT TCA ATC AAC TGA CCA AGC 
T7_sgRNA_nrde3_Ex1_A TAATACGACTCACTATAggatctcctagacaaagtaatGTTTTAGAGCT

AGAAATAG 
T7_sgRNA_nrde3_Ex11_B TAATACGACTCACTATAggtcattgcatttagatcgtGTTTTAGAGCTAG

AAATAG 
nrde3_5p_F1 CAT TCC TTT GCT GTG CGA CTG 
nrde3_3p_R1 CAA GTG AAA TCC CTG GTA AAC C 
nrde3_WT_R2 CGA CCT CCA AGA GAT CCT TGC 
T7_rrf1_sgRNA_A TAATACGACTCACTATAggcagtcactatccatacaacGTTTTAGAGCT

AGAAATAG 
T7_rrf1_sgRNA_B  TAATACGACTCACTATAgtcagaaagaaagctgttgccGTTTTAGAGCT

AGAAATAG 
rrf1_Ex_F1 ACG GTT CGA TTG TGA TTG GAG 
rrf1_Ex17_R2 GAT TTG CTC CAC CAA TCT GC  
rrf1_WT_F2 CAA CGG ACA ACT CAG GGT TAG 
T7_set25_Ex2_sgRNA_A TAATACGACTCACTATAggcactcgggcttcagtgtgGTTTTAGAGCTA

GAAATAG 
T7_set25_Ex7_sgRNA_B TAATACGACTCACTATAgacttcgacgaacaccgagctGTTTTAGAGC

TAGAAATAG 
set25_Ex1_F1 TAC AGA AGC GAC AGC ATC TC 
set25_Ex7_R1 CAT TTG ACA CTC GAC CGT TTC 
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set25_WT_R2 ATC TCC TGC GAT TGC TTT GAG 
T7_ergo1_Ex1_sgRNA_A TAATACGACTCACTATAggttatcgtggatacaaccaGTTTTAGAGCTA

GAAATAG 
T7_ergo1_Ex6_sgRNA_B TAATACGACTCACTATAggagagttcatagatcacacGTTTTAGAGCT

AGAAATAG 
ergo1_Ex1_F1 GGA CAA TCG CTA CGA TGA TCG 
ergo1_Ex6_R1 CAC GTA TCG TGA AGC ACA TAG 
ergo1_WT_F2 TCG ACG TTT CTC ATC CAT CG 
!
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Supplemental Table S4: Novel mutations generated by CRISPR/Cas9 for this study. 

Mutation Coordinates 
(ce10/WS220) 

Nature of 
mutation Inserted sequence 

adr-2(uu28) chrIII:7230936-
7232861 

-1926 nt deletion - 

ccb-1(uu35; 
ΔEER) 

chrI:3644035-
3644883 

-849 nt deletion - 

efa-6(uu46; 
Δefa-6 intron 
8 + 60 nt 
syntron) 

chrIV:12607422-
12609861 

+97/-2440 nt 
insertion/deletion 

AACCGACGGTGGAAAGAGTAAG 
TTTAAACAGTTCGGTACTAACT 
AATCCATGGACATAGATATCTT 
TAAATTTTCAGCTCCATTCGGA 
CGTCGCTCC 

egl-8(uu47; 
ΔEER) 

chrV:30802-34717 -3916 nt deletion - 

adr-1(uu49) chrI:7773430-
7777062 

+1/-3633 nt 
insertion/deletion 

T 

rde-1(uu51) chrV:9988461-
9991606 

-3146 nt deletion - 

rde-4(uu53) chrIII:10217478-
10218402 

-925 nt deletion - 

rrf-3(uu56) chrII:8163812-
8165364 

-1553 nt deletion - 

rrf-3(uu57) chrII:8163805-
8165366 

+22/-1562 nt 
insertion/deletion 

GTATTCTGGTGGCCACCAGACA 

drh-1(uu60) chrIV:6608226-
6612649 

+54/-4424 nt 
insertion/deletion 

CATGTATACAATTTGGGAAAAAG 
CACTTGCCTTGGAGAGAGAAGA 
TACCTTGGA 

nrde-3(uu64) chrX:372267-
376618 

+64/-4352 nt 
insertion/deletion 

CACATGTGCCATGTGCACTCCAT 
GCCATGTGCACATGCCATGTGC 
ACTCCAAGTGGTGCACAGG 

rrf-1(uu65) chrI:7645169-
7648452 

+20/-3284 nt 
insertion/deletion 

TCATTCATACTCATATTGAA 

set-25(uu66) chrIII:13287014-
13292728 

+15/-5715 nt 
insertion/deletion 

GCTGTGACCCCAGCT 

ergo-1(uu68) chrV:1009051-
1016719 

+1/-7669 nt 
insertion/deletion 

T 
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CHAPTER 3 

 

DOUBLE-STRANDED RNA STRUCTURES ARE ASSOCIATED  

WITH ESSENTIAL AND HIGHLY EXPRESSED GENES  

ON C. ELEGANS AUTOSOME DISTAL ARMS 

 

Introduction 

 Interactions between long double-stranded RNAs (dsRNAs) and dsRNA-binding 

proteins (dsRBPs) mediate critical cellular processes. The best example is RNA 

interference (RNAi), which is initiated when the dsRNA-specific endoribonuclease Dicer 

binds and processes dsRNA into ~20-30 nucleotide (nt) small interfering RNAs (siRNAs) 

to silence target transcripts (Carthew and Sontheimer, 2009). However, dsRNAs are also 

important substrates of other dsRBPs, like the regulatory protein Staufen (Heraud-Farlow 

and Kiebler, 2014) and Adenosine Deaminases that act on RNA (ADARs), RNA editing 

enzymes that convert adenosine to inosine in dsRNA (Nishikura, 2016). dsRBPs interact 

with the phosphodiester backbone of A-form dsRNA, and so dsRBPs bind their 

substrates regardless of sequence (Tian et al., 2004). Complementary RNA sequences 

that form dsRNA often arise from transposon-derived repetitive sequences, which are 

abundant in metazoan genomes (Feschotte and Pritham, 2007; Nishikura, 2016). Thus, 

duplex structures are common genomic features, and indeed, human and C. elegans each 

express thousands of ADAR-edited dsRNAs (Blango and Bass, 2016; Reich et al., 2018). 
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However, despite the ubiquity of dsRNA structures and the essential roles of many 

dsRBPs, the functions of most cellular dsRNAs remain largely uncharacterized. 

 Recent work to define cellular dsRNAs found that most occur within introns and 

3’UTRs of protein-coding genes (Blango and Bass, 2016; Reich et al., 2018; Whipple et 

al., 2015), suggesting that these structures may function to regulate gene expression. 

Indeed, a growing body of evidence indicates that dsRNAs impact expression of their 

associated genes through various mechanisms. In C. elegans, ADARs edit dsRNAs to 

prevent their processing and silencing by antiviral RNAi mechanisms (Reich et al., 

2018). Duplex structures also impact translation efficiency, since C. elegans mRNAs 

containing dsRNA structures in 3’UTRs are associated with lighter polysome fractions 

than mRNAs lacking such structures (Hundley et al., 2008). In human cells, 

intermolecular interactions between long noncoding RNAs and certain mRNA 3’UTR 

sequences recruit Staufen to trigger mRNA decay (Gong and Maquat, 2011), suggesting 

that dsRNA formation regulates transcript stability. Together, these studies demonstrate 

that dsRNAs regulate gene expression by multiple mechanisms. 

 The organization of eukaryotic genomes into distinct domains also influences 

gene expression patterns. Genomic domains can differ widely by gene transcription 

levels, nucleosome organization, and post-translational histone modification patterns 

(Ahringer and Gasser, 2018). The C. elegans genome is comprised of the sex 

chromosome, Chromosome X, and five autosomal chromosomes that are divided into 

distinct distal arm and central domains. Autosome center domains are dense with genes 

that exhibit higher levels of expression and are more often essential and well-conserved 

(Consortium, 1998; Cutter et al., 2009), in part due to low meiotic recombination 
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frequency in autosome centers. In contrast, autosome distal arms are characterized by 

frequent recombination, high density of genomic repeats (mostly DNA transposons), and 

histone modifications associated with gene repression, particularly trimethylation of 

histone H3 at lysine 9 (H3K9me3) and lysine 27 (H3K27me3) (Ho et al., 2014; Liu et al., 

2011; Towbin et al., 2012). Autosome arms are also physically associated with the 

nuclear lamina, seen in chromatin immunoprecipitation (ChIP) experiments with the 

nuclear lamina component LEM-2 (Ikegami et al., 2010). However, distal arms are not 

completely silent, as they contain many essential, expressed genes and display 

subdomains with marks of active chromosome that are not lamina-associated (Ikegami et 

al., 2010; Liu et al., 2011). Though these genomic domains clearly exhibit distinct 

properties, the mechanisms that establish and regulate chromosomal domains and 

subdomains are far from understood. 

 In this report, we characterize the genomic distribution of C. elegans dsRNAs and 

report their association with essential and highly expressed genes on the distal arms of 

autosomes. Using three independent methods to identify dsRNAs, we confirm that 

dsRNA loci cluster on autosome arms and most often occur in gene introns. Of the genes 

that occur on autosome arms, those associated with dsRNAs are often essential; over 30% 

of essential genes on Chromosome I and V distal arms contain edited dsRNA structures. 

Further, dsRNA-associated genes exhibit elevated expression compared to other distal 

arm genes at four developmental stages. Histone modifications associated with 

transcriptional elongation are enriched over dsRNA loci. Because we find that repetitive 

sequence content is also positively associated with gene expression on autosome arms, 

we cannot conclude that the effects observed relate explicitly to dsRNA structure. 
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Limited analyses of transgenic reporters containing duplex structures further indicate that 

these structures are not sufficient to increase gene expression. Nonetheless, our 

observations identify a property common to many highly expressed, essential genes on 

autosome arms, offering potential insight into their regulation and possibly suggesting a 

novel function of dsRNA. 

 

Results 

Predicted dsRNA structures correlate with EERs  

We previously reported that C. elegans editing-enriched regions (EERs), 

expressed regions containing clustered A-to-I editing, are enriched on the distal arms of 

autosomes (Reich et al., 2018; Whipple et al., 2015). This genomic pattern is striking, so 

we sought to understand if all C. elegans dsRNAs exhibit this organization or if it was 

restricted to the edited transcripts we found in earlier analyses. To this end, we compiled 

experimental datasets of C. elegans dsRNAs by three independent methods.  

Our first dataset comprised the 1523 EERs previously determined from RNAseq 

of C. elegans populations at four development stages: embryos, L1-L2 larval stages, L3-

L4 larval stages, and young adults (Fig. 3.1A) (Reich et al., 2018). Because these regions 

are edited by ADAR, we know they form dsRNA in vivo. Like guanosine, inosine prefers 

to pair with cytidine, so ADAR editing sites appear as A-to-G transitions in cDNA. We 

defined EERs by identifying regions containing clustered A-to-G changes in aligned 

RNAseq reads. In this analysis, we restricted our EER pipeline to genomic regions 

covered by ≥5 reads, and thus missed any dsRNAs expressed below this threshold. As a 

control dataset, we randomly permuted EERs around genomic regions covered by ≥5 
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reads, generating a set of length-matched, expressed random regions. However, because 

we could not define dsRNAs in lowly expressed regions, we sought to identify dsRNAs 

in a manner that did not rely on gene expression. 

Since most EERs occur in the introns of protein coding genes (Reich et al., 2018; 

Whipple et al., 2015), we used UNAFold to predict the folding free energy of C. elegans 

introns to determine their likelihood of forming duplex structures at 20°C (Fig. 3.1B; 

(Markham and Zuker, 2008). Introns ≥9000 nt, the maximum length that UNAFold 

would analyze, were excluded from analysis. Further, we did not include introns ≤40 nt, 

the minimum length we predicted would form dsRNA long enough to bind ADAR (~15 

base-pairs) (Herbert and Rich, 2001) that did not encompass consensus splicing 

sequences. This dataset comprised 99.5% of all C. elegans introns annotated by UCSC 

Genome Browser (https://genome.ucsc.edu/; ce10/WS220). To control for differences in 

intron length, we normalized the predicted folding free energy of each intron to its length, 

giving us a total of 113,740 introns with ΔG/nt values that varied from 0.03 to -1.01 

kcal/mol*nt (where more negative values equate to more stable introns). Using the ΔG/nt 

values, we also determined the most stable intron for each of 20,735 intron-containing 

genes. For the vast majority of genes (75.6%), the minimal intron ΔG/nt value fell 

between -0.2 and -0.4 kcal/mol*nt. However, a set of 1521 genes carried at least one 

exceptionally structured intron (ΔG/nt < -0.5 kcal/mol*nt), including 579 EER-associated 

genes (EAGs) containing edited dsRNA structures. Further, 710 EERs (46.6%), but only 

105 length-matched random regions (6.9%), overlapped an intron with ΔG/nt < -0.5 

kcal/mol*nt, demonstrating that intron folding free energy is a good predictor of dsRNA 

formation.   
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Most EERs form dsRNA through intramolecular interactions of inverted repeat 

(IR) sequences, so we next used the publicly available Inverted Repeats Finder tool 

(Warburton et al., 2004) to predict IRs in the C. elegans genome (Fig. 3.1C). Only 

regions containing repeated sequences of ≥20 base-pairs within <2kb of each other were 

defined as IRs. Unlike EERs and stable introns, we restricted our list of IRs to include 

only sequences predicted to form dsRNA; we excluded loop sequences not predicted to 

base-pair. As a control dataset for IRs, we also used the Tandem Repeat Finder (Benson, 

1999) to predict tandem repeats (TRs) in the C. elegans genome, which we predict would 

not fold into intramolecular structures. To avoid low complexity sequences (i.e. 

dinucleotide tracts, telomeric repeats, etc.), we only considered TRs comprised of 

repeated units of unique sequences ≥20 nt long. We reasoned that TR sequences might 

also form dsRNA if they occurred nearby an inverted copy of the TR sequence. 

Therefore, to separate control TR regions from the list of IRs, we removed TR sequences 

predicted to overlap IRs, since these would have potential to form dsRNA. 

Demonstrating that these methods effectively predicted dsRNAs, we found that 1476 

EERs (96.9%) overlapped IRs, while only 159 EERs (10.4%) overlapped TRs.  

Gene-associated dsRNA structures cluster on autosome distal arms 

To characterize the genomic distribution of dsRNAs, we first compared the 

relative position of EERs on C. elegans chromosome to a control set of length-matched 

expressed random regions (Reich et al., 2018). We divided each chromosome into ten 

equal segments and determined the number of EERs and control random regions in each 

chromosomal segment (Fig. 3.2A). While 89.5% of EERs occurred outside of a 
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chromosome’s central four segments, only 59.8% of control random regions were found 

in the same distal arm segments, a significantly different distribution than EERs (P < 

0.0001, Kolmogorov-Smirnov test). EERs were also more prevalent on the five C. 

elegans autosomes, as only 50 EERs (3.3%) occurred on Chromosome X, compared to 

100 random regions (6.6%). These results confirm previous findings that EERs are 

enriched on the distal arms of C. elegans autosomes (Whipple et al., 2015). 

 To determine if EER locations reflected the distribution of dsRNAs globally, we 

next analyzed the chromosomal positions of genomic IRs, as well as TR controls. When 

we mapped predicted IR and TR regions to chromosomal segments shown in Fig. 3.2A, 

we found that 77.6% of IRs and 75.3% of TRs occurred in autosome distal arm regions 

(Fig. 3.2B), which comprise only 49.4% of total genomic sequence. To determine if IRs 

and TRs were associated with protein coding genes, we determined the fraction of IR and 

TR sequences that mapped to annotated exons, introns, UTRs, and noncoding RNAs 

(ncRNAs), as well as the fraction that mapped to intergenic sequences proximal (<1000 

nts) or distal (>1000 nts) to genes (Fig. 3.2C). Similar to EERs, the majority of IR 

(56.3%) sequences mapped to intronic sequences, which comprise just 34.7% of total 

genomic sequence. Intronic sequences also made up the largest fraction of TRs (47.6%), 

though a higher fraction of TR sequences occurred outside annotated genes than IRs. Our 

observations suggest that both IR and TR sequences are enriched on distal autosome arms 

and largely occur in noncoding regions of protein-coding genes, similar to EERs. 

Next, we plotted intron ΔG/nt values along each chromosome (Fig. 3.2D). In 

concordance with EER and IR patterns, intron ΔG/nt decreased in the distal arms of all 

five C. elegans autosomes, but not Chromosome X, suggesting stable RNA structures 
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cluster in these domains. The differences in intronic ΔG/nt between arm and center 

domains were remarkably clear in some cases (for example, on Chromosomes I and III). 

These large chromosomal differences in intron ΔG/nt allowed us to calculate more 

refined boundaries of “arm” and “center” domains for each chromosome (dotted vertical 

lines in Fig. 3.2D; see Materials and Methods), which we used in all subsequent analyses.  

We wanted to understand if dsRNA clustering on autosome arms was conserved 

in a related nematode species, Caenorhabditis briggsae, which exhibit chromosome arm 

and center domains with respect to recombination rates, gene density, and repeat density 

(Hillier et al., 2007). Though we have not determined ADAR editing sites or EERs in C. 

briggsae, we were able to predict intron ΔG/nt values for C. briggsae as we had done for 

C. elegans. When we plotted intron ΔG/nt values relative to chromosome position, we 

found that, like in C. elegans, introns on C. briggsae distal autosome arms formed more 

stable dsRNA structures than those in the central autosome regions or on Chromosome X 

(Fig. 3.2D). From our combined analyses, we conclude that gene-associated dsRNAs 

cluster on distal autosome arms in two Caenorhabditis species. 

RNA structures are enriched in essential genes 

We previously showed that in adr-1;adr-2 mutant worms, EERs associated with 

protein-coding genes were cleaved by Dicer to generate siRNAs, which induced gene 

silencing by RNAi (Reich et al., 2018). However, this work did not identify a function of 

EERs in wildtype animals, so we sought to understand if dsRNAs show signatures of 

functional importance. Mammalian EERs show almost no sequence conservation 

between mouse and human, but mouse EAGs have orthologous human genes containing 
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EERs at a greater fraction than expected by random chance (Blango and Bass, 2016). To 

assess if similar sets of orthologous Caenorhabditis genes were associated with dsRNA, 

we compared C. elegans genes containing a structured intron (ΔG/nt < -0.5 kcal/mol*nt) 

to genes whose C. briggsae ortholog had a structured intron. We found that 147 of 1521 

C. elegans genes containing structured introns (9.6%) also had an orthologous gene in C. 

briggsae that contained a structured intron, more than double the number expected by 

chance (expected 62 genes; P < 0.0001, χ2 test). This suggests that dsRNA-associated 

genes maintain an association with duplex structures over many generations, indicating 

potential functional relevance. However, structured introns did not always occur in the 

same intron in orthologous genes (data not shown), and this was also found in 

comparison of mouse and human EAGs (Blango and Bass, 2016). Further, when we 

compared orthologous C. elegans and C. briggsae genes containing structured introns, we 

found no correlation between minimum intron ΔG/nt in each species (Pearson correlation 

coefficient = -0.03). Thus, the exact structures do not appear conserved between species, 

but common sets of genes associate with dsRNA, possibly for some functional purpose. 

If dsRNAs perform some function in their associated genes, we hypothesized that 

they would be enriched among physiologically important, essential genes. To test this, we 

mined WormBase (www.wormbase.org) for genes that induced lethal or sterile 

phenotypes when disrupted by RNAi or genetic mutation, a total of 1906 genes that we 

defined as essential. When we overlapped this list of essential genes with the 955 EAGs 

defined in our previous publication (Reich et al., 2018), we observed 213 essential EAGs, 

more than double the number expected by chance (Fig. 3.3A). Further, essential genes 

were significantly enriched among EAGs defined from individual developmental stages, 
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except young adults, where we defined only 128 EERs. Our results were particularly 

surprising because EERs and EAGs cluster on autosome distal arms, while conserved and 

essential genes are more abundant in chromosome centers (Cutter et al., 2009; Liu et al., 

2011). Strikingly, we found that a large subset of essential genes on autosome arms 

contained EERs (Fig. 3.3B).  Over 30% of the essential genes on the arms of 

Chromosomes I and V were associated with EERs. In contrast, essential genes in 

autosome centers or on Chromosome X did not show enriched association with EERs. 

Further, a much lower fraction of nonessential genes on autosome arms contained EERs 

than essential genes. These results indicate that EERs occur within functionally important 

genes on distal autosome arms. 

 A possible explanation for EER enrichment in essential genes could be 

differences in expression of essential and nonessential genes. If essential genes had 

higher coverage than nonessential genes in RNAseq datasets used to define EERs, we 

may have simply identified EERs in essential genes but missed editing in nonessential 

genes due to low coverage. In overlapping EAGs and essential genes, we had limited 

comparisons to genes with enough read coverage depth to define an EER (≥5 reads); 

however, we still worried that gene expression differences might have biased our results. 

To avoid complications from differences in gene expression, we analyzed ΔG/nt of the 

most stable intron in essential and nonessential genes on chromosome arms and centers 

(Fig. 3.3C). Both essential and nonessential genes on distal arms had more stable introns 

than genes in chromosome centers. However, on autosome arms, but not Chromosome X, 

essential genes exhibited more stable introns overall than nonessential genes. Thus, 

independent of gene expression, we observed an association between essential genes and 
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dsRNA structures.  

 We next determined if IRs or TRs were enriched within essential genes. We first 

determined the number of IR and TR nucleotides in noncoding regions (i.e. introns and 

UTRs) of each gene on autosome arms. Then, we separated genes into four categories 

based on their IR and TR content and determined the fraction of genes in each category 

that were essential and nonessential (Fig. 3.3D). Consistent with earlier observations, we 

found that IRs were associated with essential genes, since 18.2% of essential genes on 

autosome arms contained >1kb of IR sequence, compared to only 6.2% of nonessential 

genes. TRs were also associated with essential genes, though to a lesser extent than IRs, 

as 15.5% of essential genes carried >1 kb of TR sequence, compared to 5.6% of 

nonessential genes.  

Genes with dsRNA structures are highly expressed 

Genes on distal autosome arms typically exhibit lower gene expression and 

elevated levels of H3K9me3 and H3K27me3 relative to genes in chromosome centers 

(Liu et al., 2011). Our previous work showed that EERs can also cause gene silencing 

either when ADARs are absent or the 26G endo-siRNA pathway is inactive (Reich et al., 

2018). Thus, we hypothesized that EAGs, particularly those on autosome arms, would 

exhibit decreased expression compared to other genes. To test this hypothesis, we 

separated genes by their position on chromosome arms or centers, and then plotted 

embryo-stage expression of EAGs and all expressed genes (Fig. 3.4A). As observed 

previously, genes on autosome arms exhibited lower overall expression than genes in 

autosome centers. However, to our surprise, we found that EAGs showed the opposite 
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trend; EAGs on autosome arms were more highly expressed than those in autosome 

centers. Furthermore, EAGs on autosome arms displayed much higher expression than 

the set of all autosome arm genes. On Chromosome X, we observed no significant 

relationship between gene expression and EER association. Using gene expression data 

from four different developmental stages, we found that arm EAGs showed increased 

expression relative to all autosome arm genes at every stage (Fig. 3.4B). 

Like the association with essential genes, we worried that our observations might 

simply reflect a bias towards identifying EERs within highly expressed genes. To avoid 

confounding effects from defining dsRNAs based on expression, we classified dsRNA-

associated genes as those containing a structured intron (ΔG/nt < -0.5 kcal/mol*nt) and 

plotted expression of all genes and structured genes in each chromosomal domain (Fig. 

3.4C). As observed with EAGs, genes with structured introns exhibited higher expression 

than the set of all genes on autosome distal arms, but not in autosome centers or on 

Chromosome X. We conclude that dsRNA structures are associated with highly 

expressed genes on autosome arms.  

In considering the correlation between dsRNA structure and elevated expression, 

we noted that many genes contained multiple dsRNA structures. Specifically, we 

identified 125 genes, all located on autosome distal arms, with three or more distinct 

introns or UTRs (5’ or 3’) that overlapped EERs. Included among these highly structured 

genes were examples such as epc-1 and ssl-1, which contained eight and twelve edited 

introns/UTRs, respectively. Of the 125 genes, 43 were essential, more than three times 

the number expected by chance (expected 14 genes, P < 0.0001, χ2 test). Strikingly, the 

125 EAGs with ≥3 EER-associated introns/UTRs displayed significantly higher gene 
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expression than the set of all autosome arm genes (Fig. 3.4D). Indeed, when we ranked 

autosome arm genes by their expression in embryos, 83 of the 125 highly structured 

genes (66.4%) were in the top expression quartile, suggesting these genes are among the 

most highly expressed on autosome arms. Together, our observations provide a 

compelling correlation between gene-associated dsRNA structures and elevated gene 

expression on distal autosome arms. 

 

Histone modifications linked to transcriptional elongation are 

enriched over dsRNA loci 

 Gene expression often correlates with histone modification patterns, which have 

been mapped in detail along the C. elegans genome (Evans et al., 2016; Ho et al., 2014; 

Liu et al., 2011; Towbin et al., 2012). Modifications like H3K4me3 and acetylated 

H3K27 (H3K27ac) typically mark active promoters, while H3K36me marks (mono-, di-, 

and trimethylation) often correlate with transcriptional elongation (Ahringer and Gasser, 

2018; Evans et al., 2016; Venkatesh and Workman, 2013). In contrast, H3K9me3 and 

H3K27me3 are enriched over transcriptionally silent regions (Ho et al., 2014; Liu et al., 

2011; Towbin et al., 2012), and are deposited on targets of nuclear RNAi (Gu et al., 

2012; Mao et al., 2015). Since cellular dsRNAs can be targets of RNAi (Reich et al., 

2018), but are also associated with higher than normal expression on autosome arms, we 

wondered if they would exhibit chromatin modification patterns associated with either 

silencing or transcription. 

 We analyzed modENCODE chromatin immunoprecipitation and microarray 

(ChIP-chip) data to determine the frequency of 19 histone modifications at dsRNA or 
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control loci on autosome arms (Fig. 3.4E). Compared to the control set of random 

regions, EERs showed enrichment for H3K36me1, me2, and me3, as well as H3K9me1 

and me2, but not H3K9me3. Additionally, EERs exhibited very low levels of 

H3K27me3, a mark of transcriptional repression. When we compared histone 

modifications patterns over stable introns (ΔG/nt < -0.5 kcal/mol*nt) and all other 

autosome arm introns, we observed that chromatin marks over stable introns closely 

resembled those over EERs. IRs displayed more subtle enrichment of H3K36me marks 

and H3K9me1 and me2, but, like EERs and stable introns, did not exhibit high levels of 

the silencing marks H3K9me3 and H3K27me3. Overall, modification patterns over IRs 

were very similar to those at TR loci, suggesting these regions are regulated by similar 

mechanisms. We note that a large fraction of IRs and TRs are not gene-associated (Fig. 

3.2B), which may explain why chromatin patterns at IRs and TRs differ in magnitude 

from those at EERs and stable introns. Our analyses indicate that gene-associated 

dsRNAs are associated with marks of transcriptional elongation, rather than gene 

silencing. 

 

Intronic dsRNA structure is associated with elevated expression of 

genes with long introns and abundant periodic An/Tn clusters 

 In human, mouse, and C. elegans, EERs occur in particularly long introns (Blango 

and Bass, 2016; Whipple et al., 2015). EER length does not correlate with intron length, 

suggesting EER-containing introns are not long solely because they contain an EER. To 

further examine the association between intron structure and length, we took each gene’s 

most stable intron and plotted ΔG/nt against intron length (Fig. 3.5A). We found that 
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intron stability and length were moderately correlated (r2 = 0.334) with exceptionally 

stable introns mostly >500 nt. Like dsRNAs, long introns cluster on the distal arms of C. 

elegans autosomes (Prachumwat et al., 2004). Therefore, we wondered if long introns are 

associated with gene expression on autosome arms and if this depended on intronic 

dsRNA structures. We divided autosome arm genes first by whether they had an intron 

>500 nt long, and then by whether they had an intron with ΔG/nt < -0.5 kcal/mol*nt. 

Then we plotted the embryonic expression of genes in each group (Fig. 3.5B). Regardless 

of intron ΔG/nt, genes with long introns exhibited higher expression than genes without 

long introns. However, for genes containing introns >500 nt, the presence of a stable 

intron correlated with significantly higher gene expression, suggesting that stable introns 

are not associated with highly expressed genes solely because they occur in genes with 

long introns. 

 In C. elegans, 10-nt periodic An/Tn clusters (PATCs) promote germline 

expression of genes in repressive chromatin (Frokjaer-Jensen et al., 2016). PATC 

elements frequently occur in long introns on autosome distal arms, much like EERs and 

other predicted dsRNAs. To discern if genes containing dsRNAs also contained abundant 

PATC sequences, we plotted each autosome arm gene’s minimum intron ΔG/nt against 

its maximum intron PATC score (Fig 3.5C), which measures how well a sequence 

conforms to the PATC sequence pattern (higher score = more PATC-like). Intron 

stability and PATC score were weakly correlated (r2 = 0.176), suggesting genes with high 

PATC content were slightly more likely to contain an intronic dsRNA structure. As we 

had done with long introns, we plotted embryonic expression of autosome arms genes 

divided into those with low (<50) or high (>50) PATC scores, and those with or without 
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structured introns (Fig. 3.5D). High PATC score correlated with increased gene 

expression overall. However, among genes with intronic PATC > 50, the presence of a 

stable intron correlated with significantly higher expression. We conclude that the 

association between dsRNA structure and elevated gene expression on autosome arms is 

not caused by long introns or high PATC density alone. 

 

High repeat content is associated with highly expressed distal arm genes 

Most ADAR editing in C. elegans occurs in repetitive sequences, primarily those 

derived from DNA transposons (Reich et al., 2018; Zhao et al., 2015). Thus, we 

wondered if the observed association between dsRNAs and highly expressed genes could 

be explained by a correlation between repeat content and gene expression. To test if this 

was the case, we examined embryo-stage expression of autosome arm genes stratified by 

the amount of IR and TR sequences in introns and UTRs (Fig. 3.6A,B). We hypothesized 

that if gene expression correlated with dsRNA structure, rather than repeat content, we 

would observe higher expression of genes with greater IR content, but not TR content. 

However, while we observed higher expression of genes with greater IR content, we 

observed the same trend in genes stratified by TR content. To test if expression correlated 

with repeat content generally, we determined the overlap between RepeatMasker-

annotated DNA transposons and introns/UTRs of each gene. When we stratified genes by 

DNA transposon content and plotted expression (Fig. 3.6C), again we observed that 

higher repeat content correlated with higher expression. We cannot rule out that repeat 

content correlates with expression due to increased prevalence of dsRNA structures. 

However, due to the close relationship between duplex structure and repetitive sequences, 
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we cannot conclude that associations we describe relate explicitly to RNA structure. 

 

dsRNA structures are not sufficient to increase gene expression 

 To gain further insight into association between EERs and highly expressed genes 

on distal autosome arms, we designed a set of two GFP reporter genes driven by the 

same ubiquitous Pbaf-1 promoter (Fig. 3.7A). The control reporter contained three ~60 nt 

unstructured introns and the unc-54 3’UTR, which lacks predicted dsRNA structure. 

However, in place of the second GFP intron and unc-54 3’UTR, the EER reporter gene 

substituted structured, edited elements from two EAGs: intron 1 from ssl-1 and the 

3’UTR of eif-2alpha. We constructed four transgenic strains using CRISPR protocols to 

integrate a single copy of either the control or EER reporter at defined sites on the distal 

arm or center of Chromosome III (Fig. 3.7B). We chose integration sites without 

annotated genes >1kb in either direction in hopes that reporters would not be influenced 

by neighboring genes. Since autosome arms exhibit high H3K9me3 and H3K27me3 

deposition relative to autosome centers (Liu et al., 2011), we chose an arm site within an 

annotated heterochromatic region (Ho et al., 2014). We hypothesized that the EER 

reporter would exhibit higher expression than the control reporter at the arm site, but not 

the center site. Contrary to our expectations, both the control and EER reporters 

integrated on Chromosome III’s arm exhibited fluorescence barely above background, 

likely due to integration within heterochromatin (Fig. 3.7C,D). In contrast, at the 

Chromosome III center site, we observed higher fluorescence of the EER reporter, which 

correlated with mRNA levels by quantitative RT-PCR (Fig. 3.7E). EAGs are 

downregulated via their EERs in adr-1;adr-2 mutants that lack A-to-I editing (Reich et 
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al., 2018). To test if editing impacted our EER reporters, we deleted adr-2, encoding the 

only active editing enzyme in C. elegans in strains containing GFP reporters (Fig. 3.7F). 

Loss of adr-2 had no effect on any of the reporter lines tested, suggesting that A-to-I 

editing does not strongly influence their expression. 

 Differences in intronic and 3’UTR sequences of our reporters made results 

difficult to interpret. For one, we did not know if increased expression of the EER 

reporter derived from the ssl-1 intron, eIF-2alpha 3’UTR, or both. To test this, we 

constructed a third reporter containing the eIF-2alpha 3’UTR without the edited ssl-1 

intron, and integrated it at the Chromosome III center site. This 3’UTR EER reporter 

exhibited fluorescence between the original control and EER reporters (Fig. 3.7G), 

suggesting that both the ssl-1 intron and eIF-2alpha 3’UTR contribute to higher 

expression of the EER reporter. However, we could still not rule out that expression 

differences of the control and 3’UTR EER reporters were not simply intrinsic to their 

3’UTR sequences, rather than their structures. The eIF-2alpha 3’UTR contains an 

inverted repeat sequence derived from a PALTTAA3_CE DNA transposon. To test if the 

dsRNA structure in the eIF-2alpha 3’UTR promoted expression of the 3’UTR EER 

reporter, we reversed the orientation of the second repeated element in the PALTTAA3 

inverted repeat to make a tandem repeat. The tandem repeat reporter should have the 

same length and similar sequence as the 3’UTR EER reporter, but should not form 

dsRNA (Fig. 3.7H). When we integrated this reporter into the Chromosome III center 

site, we found that the tandem repeat reporter was expressed nearly twice as highly as the 

reporter containing the inverted repeat in its 3’UTR (Fig. 3.7I). Thus, we concluded that 

eIF-2alpha 3’UTR does not promote gene expression due to the dsRNA structure.  
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Discussion 

 In this work, we used three methods to identify C. elegans dsRNA-producing loci 

and correlated these loci with essential genes and gene expression patterns. We find that 

dsRNAs are enriched on autosome distal arms within essential genes and genes with 

higher than expected expression, a correlation that is not dependent on intron length and 

PATC content. While dsRNA structures are not sufficient to increase expression of a 

reporter gene, our results suggest that RNA structures may positively regulate gene 

expression in C. elegans. 

 

How well do the three methods identify dsRNAs? 

  We used three different approaches to identify C. elegans dsRNAs, specifically 

the type of long, highly base-paired duplexes that would be substrates for ADARs and 

other dsRBPs. Previous work established EERs as long dsRNAs that we know to be 

ADAR substrates (Reich et al., 2018; Whipple et al., 2015), so we used this dataset as our 

baseline. The computationally predicted datasets, stable introns and predicted IRs, 

exhibited substantial overlap with EERs, suggesting our approaches effectively predicted 

known dsRNAs. However, many stable introns and IRs did not overlap EERs, suggesting 

the three methods identified different sets of regions. Read coverage requirements used to 

define EERs provide the simplest explanation of these differences, since many dsRNAs 

may be expressed at low levels and lack sufficient RNAseq coverage to identify clustered 

editing sites. Of the five most stable C. elegans introns, only two overlap EERs, but the 

other three did not meet the 5-read coverage threshold needed to define EERs (data not 

shown). Still, these three stable introns, despite that they did not overlap EERs, all 
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exhibited several aligned reads with A-to-G changes, indicating that they are edited. 

Additionally, we found that 53.4% of EERs did not overlap a stable intron, perhaps 

because our stability cutoff of -0.5 kcal/mol*nt was too stringent. Since EERs sometimes 

comprise only a portion of an intron, introns containing duplex structures may also have 

additional unstructured sequences that cause ΔG/nt values to exceed the -0.5 kcal/mol*nt 

threshold. 

Unlike structured introns, our dataset of IRs overlapped nearly every EER 

(96.9%). Thus, almost all EERs can form intramolecular duplexes, suggesting that edited 

intermolecular dsRNAs may be rare in C. elegans. EERs overlapped only 14.4% of total 

IR sequences, demonstrating that IR prediction identified many putative dsRNAs not 

found by editing detection. Again, expression likely explains differences between IR and 

EER datasets, since almost half of IRs are intergenic and may be lowly expressed. It is 

also possible that many IRs form structures simple too short to be nonselectively edited. 

 

What is the important property of dsRNA loci? 

 While our work describes an observed correlation between dsRNA-producing loci 

and highly expressed and essential genes, we cannot be certain that this correlation 

requires transcription of loci into dsRNAs. In fact, dsRNA loci have several other 

characteristics that could underlie the associations we describe.  

For one, most dsRNA loci are repetitive, with ~63% of EER sequences derived 

from DNA transposons (Reich et al., 2018). Similarly, 27.9% of stable introns and 25.9% 

of IRs map to RepeatMasker-annotated transposons (comprising ~11.8% of the total 

genome). If specific transposon sequences promote gene expression, this could explain 
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the association between dsRNA loci and highly expressed genes. Transposons are known 

to provide gene regulatory sequences that act as transcription factor binding sites, 

splicing regulatory elements, and noncoding RNAs (Chuong et al., 2017; Lev-Maor et al., 

2007), so it is conceivable that transposon sequences might promote gene expression 

(Fig. 3.8A). Indeed, we observed a positive correlation between the amount of noncoding 

RepeatMasker transposon sequence in a gene and its relative expression (Fig. 3.5C). 

However, we speculate that transposons with different sequences would have different 

regulatory effects, some increasing expression and some silencing. Thus, we predict that 

only a subset of transposons would associate with highly expressed genes, but no single 

transposon class occurs in most EERs (the most abundant type, PAL5A_CE, comprise 

just 15.7% of transposon-derived EER sequences) (Reich et al., 2018). Nonetheless, 

repetitive sequences may contribute to elevated expression of dsRNA-associated genes. 

The association between dsRNAs and highly expressed genes might involve 

duplex structures formed by DNA sequences, rather than RNA. During transcription of a 

dsRNA-producing locus, inverted repeat sequence in the nontemplate DNA strand can 

fold back to pair with itself, forming an intramolecular DNA duplex structure. It is not 

clear that DNA hairpin structures would necessarily promote gene expression. We 

speculate, however, that such structures might interfere with nucleosome reassembly 

following transcription (Fig 3.8B). Defects in nucleosome deposition can lead to spurious 

transcription (Venkatesh and Workman, 2015), providing a potential mechanism that 

links IR sequences to elevated gene expression. In future work, we hope to establish 

whether this, or another mechanism, underlie the correlation between dsRNA loci and 

highly expressed genes. 
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How might dsRNA promote gene expression? 

 Though we cannot rule out repetitive sequences or DNA structures in the 

association between RNA structures and highly expressed genes, we are intrigued by the 

possibility that dsRNA might promote gene expression. However, we can only speculate 

on the mechanism at this stage. We do not believe the association between dsRNA 

structure and highly expressed gene relates to different rates of RNA decay, because our 

gene expression analyses only measured coverage of mature mRNA exons, excluding 

intronic sequences where most duplex structures reside. Perhaps intronic dsRNA 

structures promote efficient splicing by folding to bring 5’ and 3’ splice sites in close 

proximity (Fig. 3.8C). Alternatively, nascent dsRNA structures might bind nuclear 

dsRBPs that in turn recruit transcription machinery to promote expression (Fig. 3.8D). 

If dsRNAs promote gene expression through interactions with dsRBPs, which 

proteins might mediate this phenomenon? While Dicer primarily acts on dsRNA to 

silence genes (Billi et al., 2014; Carthew and Sontheimer, 2009), the dsRBPs ADAR, 

Staufen, and NF90 are candidate factors due to well-established roles in gene regulation 

(Bass et al., 1994; Castella et al., 2015; Heraud-Farlow and Kiebler, 2014; Nishikura, 

2016). We previously showed that ADARs promote EAG expression by antagonizing 

RNAi silencing (Reich et al., 2018). Because Dicer-dependent RNAi mechanisms 

presumably do not silence genes lacking dsRNA, expression differences between 

structured and unstructured genes are not likely due to RNAi antagonism by ADARs. 

However, we note that while EAGs were downregulated in adr-1;adr-2 embryos lacking 

the 26G factor rrf-3, deleting the RNAi factor rde-4 in this background partially, but not 

completely, rescued EAG expression. Perhaps EAGs remain slightly downregulated in 
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adr-1;adr-2;rrf-3;rde-4 mutants because ADARs also promote gene expression by an 

RNAi-independent mechanism. Expression of ADAR-edited dsRNAs positively 

correlates with ADAR expression in human brain tissue (Liscovitch et al., 2014), 

suggesting that ADAR may promote dsRNA expression in humans as well as C. elegans. 

 Besides ADAR, other dsRBPs might promote expression of their substrates. In 

addition to characterized functions in RNA transport (Heraud-Farlow and Kiebler, 2014) 

and mRNA decay (Park and Maquat, 2013), the dsRBP Staufen has pleiotropic effects 

that are not well understood, suggesting it could perform additional functions like 

supporting dsRNA expression. There is significant overlap between EAGs and transcripts 

bound by the sole C. elegans Staufen ortholog, STAU-1 (72 of 415 STAU-1 target genes, 

expected 29, P < 0.0001, χ2 test) (LeGendre et al., 2013), suggesting that STAU-1 may 

regulate many of the highly expressed, dsRNA-associated genes we identified. In 

mammals, the dsRBP NF90 acts with its obligate binding partner NF45 to both positively 

and negatively regulate gene expression through effects on transcription, mRNA stability, 

and translation (Castella et al., 2015). C. elegans lack an ortholog of NF90, but 

nematodes do encode an NF45 ortholog and an NF90-related gene orthologous to 

mammalian ZFR. ZFR proteins bind NF45 and contain three zinc-fingers domains with 

homology to dsRNA-binding zinc fingers in the Xenopus protein dsRBP-ZFa (Finerty 

and Bass, 1999; Wolkowicz and Cook, 2012). Thus, the C. elegans ZFR ortholog, 

Y95B8A.8, may have uncharacterized functions in dsRNA regulation, and could underlie 

the correlation between dsRNAs and highly expressed genes on autosome arms. 
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Materials and methods 

Published datasets 

 The coordinates of 1523 C. elegans EERs are reported in Supplemental File S1 of 

Reich et al. (2018). RNAseq datasets used to define these EERs and used for expression 

analyses in this report are available from Gene Expression Omnibus (GSE79375). 

Parameters for alignment and read filtering are described in Reich et al. (2018).  

We downloaded modENCODE ChIP-chip data from data.modencode.org. Data 

were downloaded as log2 ratios of signal over input, which we normalized, converted to 

Z-scores, and averaged over replicates. 

 

Intron stability analysis 

 A .bed file of annotated C. elegans introns (ce10/WS220) was downloaded from 

UCSC Genome Browser. To compile a list of unique introns, we collapsed introns with 

the same start and stop coordinates into a single entry. If two or more introns overlapped, 

we removed the largest intron and determined if the remaining overlapped, repeating this 

until no overlapping introns remained. For C. briggsae introns, we downloaded a file of 

annotated C. briggsae genomic features (cb4/WS248) from WormBase 

(ftp://ftp.wormbase.org), extracted intron coordinates, and converted them to .bed format. 

We determined unique C. briggsae introns as we had done with C. elegans. For both sets 

of introns, we removed those <40 nt and >9000 nt. 

 To predict the folding free energy of intronic sequences, we first used the 

bedtools2 (https://github.com/arq5x/bedtools2) application fastaFromBed to determine 

the genomic sequences of each intron. The ΔG of each intron sequence was determined 



103 
 

 
 

with UNAFold (Markham and Zuker, 2008), using the parameters “-X 1 --mode bases -t 

20”. For each intron, ΔG was divided by intron length to calculate ΔG/nt. 

 

IR and TR prediction 

Inverted repeats were predicted using the Inverted Repeats Finder 

(http://tandem.bu.edu/irf/irf.download.html) (Warburton et al., 2004) using the following 

parameters: Match = 2, Mismatch = 5, Delta = 5, PM = 80, PI=10, Minscore = 40, 

MaxLength = 20000, MaxLoop = 1000. Repeats comprised of 100% A-T or G-C base-

pairs were discarded. Overlapping IRs were merged using the bedtools application 

mergeBed. Loop sequences were not included. 

Tandem repeats were predicted with the Tandem Repeats Finder 

(http://tandem.bu.edu/trf/trf.html) (Benson, 1999) using the following parameters: Match 

= 2, Mismatch = 5, Delta = 5, PM = 80, PI=10, Minscore = 40, MaxPeriod = 2000. 

Repeats with a period < 20 or sequence entropy ≤ 1 were discarded. TRs were merged 

using the bedtools2 application mergeBed, and sequences that overlapped predicted IRs 

were removed using the bedtools2 application subtractBed. 

To calculate the number of IR and TR nucleotides in each gene’s intron and 

UTRs, we first determined noncoding regions associated with each gene. We downloaded 

a table of annotated gene transcription start and stop sites and a table of coding exons. 

We used the bedtools2 application subtractBed to subtract coding regions from annotated 

transcribed regions to determine each gene’s noncoding regions. We then used the 

bedtools2 application to calculate the number of IR and TR nucleotides that overlapped 

the table of gene noncoding regions. Finally, for each gene, we summed the IR/TR 



104 
 

 
 

nucleotides in all noncoding regions to determine the total number of IR and TR 

nucleotides in each gene. 

 

Defining chromosome arm and center boundaries 

 To define chromosome domain boundaries by intron ΔG/nt, we first determined 

the ΔG/nt of each gene’s most stable intron. Then, we separated each chromosome into 

100 kb segments, counted the number of genes in each segment, and determined the 

fraction of genes in each 100 kb region with an intron ΔG/nt < -0.5 kcal/mol*nt (% 

structured genes). Starting at the center-most segment of each chromosome, we moved 

outward toward the left arm until we encountered three consecutive 100 kb segments 

with ≥20% structured genes. Of the three consecutive segments, we took the margin 

closest to the chromosome center as the boundary of the left distal arm. We then repeated 

this same process to define the boundary of the right arm of each chromosome. 

 

Essential gene analysis 

Lists of genetic alleles and RNAi phenotypes causing lethality and sterility were 

downloaded from WormBase (http://www.wormbase.org/). We removed all mutant 

alleles and RNAi experiments that ambiguously targeted more than one gene. We further 

removed genetic manipulations that only induced male sterile phenotypes, but were not 

also lethal or sterile in hermaphrodites. From the remaining alleles and RNAi 

experiments, we extracted Ensembl gene IDs of affected genes and removed duplicates to 

generate a full list of essential genes.  

 For each developmental stage, we first filtered out all genes in the lists of 
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essential genes and EER-associated genes that did not contain a region covered by five or 

more reads in RNAseq data from that stage. We then overlapped the lists of expressed 

essential genes and EER-associated genes to determine the number of genes in common. 

The USeq application IntersectLists was used to determine overlapping genes and 

determine the significance of overlapping sets by Chi-square approximation with 10,000 

randomized iterations. 

 

Expression and chromatin analyses 

Expression data, calculated as fragments per kilobase million reads (FPKM) 

values, were determined for C. elegans genes with the USeq (http://useq.sourceforge.net/) 

application DefinedRegionDifferentialSeq, which uses the R package DESeq2. A RefFlat 

table of C. elegans genes was downloaded from UCSC Genome Browser and 

DefinedRegionDifferentialSeq was used to determine FPKM over exonic gene regions 

from each input RNAseq sample. 

For ChIP-chip analyses, we created .bed files of EERs, introns, IRs, and TRs 

present on autosome arm domains. We made a list of random regions using the bedtools2 

application shuffleBed, restricting their possible locations to autosome arm regions 

covered by ≥5 reads in combined developmental RNAseq datasets from Reich et al. 

(2018). Using the bedtools2 application intersectBed, we overlapped our regions of 

interest with .bed files reporting average ChIP-chip Z-scores over 50 nt genomic 

windows for each histone modification. We then calculated the average Z-score value 

over all regions in each group (i.e. EERs, random regions, stable introns, etc.) for each 

modification, and plotted a heatmap of the results in R.  
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Intron PATC analysis 

We downloaded a BigWig file of balanced PATC scores previously calculated for 

the C. elegans genome at 25 nt resolution (Frokjaer-Jensen et al., 2016). Using the UCSC 

Genome Browser utility bigWigAverageOverBed, we calculated the average PATC score 

for each unique C. elegans intron. We then determined the highest intron PATC score for 

each intron-containing gene. 

 

RepeatMasker analysis 

We downloaded a file of C. elegans repeats (ce10) from RepeatMasker 

(http://www.repeatmasker.org/), removed all low complexity and simple repeats, and 

converted the resulting file to .bed format. Using the bedtools2 application annotateBed, 

we calculated the number of repeat bases that overlapped noncoding regions of each 

gene, and then added these values to determine each genes’ total noncoding repeat 

content. 

 

GFP reporter construction 

 All cloning was performed using the Gibson assembly method. Primers are listed 

in Table 3.1. To build the control GFP reporter cassette, the GFP coding sequence, 

containing three 60 nt introns, and unc-54 3’UTR was amplified from pPD95.67. The 

baf-1 promoter, consisting of a 287 nt fragment upstream of the baf-1 coding sequence, 

was amplified from genomic DNA, and assembled with the GFP::unc-54 3’UTR 

fragment in a pBluescript SK(+) cloning vector. A synthetic intron containing the C. 

briggsae unc-119 gene (in the reverse orientation the GFP gene) flanked by loxP sites 
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was amplified from pMLS252 (a generous gift of Matthew Schwartz and Eric Jorgensen) 

and cloned into GFP in place of the third 60 nt intron. To create the EER 3’UTR reporter, 

we amplified the eif-2alpha 3’UTR and cloned this into the control reporter in place of 

the unc-54 3’UTR. Then, to make the full EER reporter, we amplified intron 1 of ssl-1 

from genomic DNA, and inserted it into the EER 3’UTR reporter cassette in place of the 

second 60 nt intron. All inserted sequences were verified by Sanger sequencing. 

 To build Pbaf-1::GFP cassettes suitable for homologous recombination into the 

genome, we first amplified a 2.3 kb genomic fragment (coordinates ChrIII:6106174 – 

6108438) containing the ChrIII center site and cloned this into pBluescript SK(+). 

Control or EER reporter cassettes were inserted into the center of homology sequences, 

within the 20 nt Cas9-sgRNA targeted sequence, 3-6 nts proximal to the PAM. We then 

cloned a 2.3 kb genomic fragment (coordinates ChrIII:385139 – 387463) containing the 

ChrIII arm site into Bluescript SK(+), and similarly inserted the control or EER Pbaf-

1::GFP reporter cassettes.  

 

CRISPR/Cas9-mediated single copy transgene integration 

We cloned Cas9 guide RNA target sequences in the PU6:sgRNA expression 

plasmid pMLS134 as described in Schwartz and Jorgensen (2016).  

For each integration, we used standard microinjection protocols to inject unc-

119(ed3) (EG6249) young adult gonads with mixed plasmids as follows. Each injection 

mix included the following: 30 ng/µl Peft-3::Cas9-SV40_NLS::tbb-2 3’UTR (Addgene 

plasmid 46168), 30 ng/µl PU6::sgRNA, 30 ng/µl Pbaf-1::GFP reporter gene repair 

template, 4 ng/µl pCFJ104 (Pmyo-3::mCherry::unc-54 3’UTR), 4 ng/µl pGH8 (Prab-
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3::mCherry::unc-54 3’UTR), and 2 ng/µl pCFJ90 (Pmyo-2::mCherry::unc-54 3’UTR). 

Injected P0s were grown at 22°-25°C for 8-10 days before screening. Progeny were 

screened for non-Unc worms lacking mCherry fluorescence. Insertions were verified by 

PCR using primer sets that included one primer within the transgene and one primer 

outside the cloned homology region.  

LoxP-flanked unc-119(+) cassettes were removed by injecting lines homozygous 

for each integration with 50 ng/µl, 2 ng/µl pCFJ90, and 48 ng/µl pBluescipt SK(+). F1 

progeny expressing mCherry were picked onto new plates and Unc F2 progeny were 

collected and genotyped by PCR. Those containing the integrated reporter were crossed 

N2 males to remove the unc-119(ed3) mutation.  
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Figure 3.1 Methods to identify dsRNA loci. (A) Clustered A-to-G changes in RNAseq 
reads defined editing-enriched regions, transcribed regions that form long dsRNA in vivo 
and are edited by ADARs. (B) Intronic duplex structures were predicted using UNAFold 
to determine the folding free energy of intronic sequences (Markham and Zuker, 2008). 
To compare the stability of introns with different lengths, we normalized each intron’s 
folding free energy to the number of nucleotides (ΔG/nt). (C) Inverted and tandem repeat 
sequences were determined computationally from the C. elegans genome sequence using 
previously published tools (Materials and Methods) (Benson, 1999; Warburton et al., 
2004). 
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Figure 3.2 dsRNAs cluster on the distal arms of two Caenorhabditis species. (A) The 
distribution of EERs (black) and random expressed regions (grey) over the six major C. 
elegans chromosomes divided into ten equal segments. The center of each chromosome 
is defined as position 0, the end of the left arm is -0.5, and the end of the right arm is 
position 0.5. (B) The distribution of inverted repeats (IRs; black) and tandem repeats 
(TRs; grey) across relative chromosomal segments. (C) The percentage of the entire C. 
elegans genome, IR regions, and TR regions that overlap annotated gene features. (D) 
Smoothed distributions of average intron ΔG/nt across C. elegans (blue) and C. briggsae 
(red) chromosomes. More stable introns have lower (more negative) ΔG/nt. Vertical 
dotted lines depict chromosome arm and center domains, determined by intron ΔG/nt 
(Materials and Methods).  
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Figure 3.3 Duplex RNA structures are enriched in essential genes. (A) The number of 
essential genes expected by chance to overlap genes associated with EERs from all stages 
or each development stage, compared to the actual observed number of essential genes 
that overlapped EAGs. ***: P < 0.001, χ2 test. (B) The percentage of essential (left) and 
nonessential (right) genes associated with an EER on the distal arm and center domains 
of each chromosome. (C) Distributions of ΔG/nt values of the most stable intron in 
essential and nonessential genes in center and arm domains of C. elegans autosomes (left) 
and Chromosome X (right). (D) Relative fractions of essential and nonessential genes on 
autosome arms, binned by the amount of IR (left) or TR (right) sequence in each gene’s 
noncoding elements (i.e. introns, UTRs).  
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Figure 3.4 dsRNAs are associated with highly expressed genes and marks of 
transcriptional elongation. (A) Tukey box-plots show the distributions of gene expression 
in embryos for all genes or EAGs on distal arm or center domains of autosomes (left) or 
Chromosome X. ns: P > 0.05, *: P < 0.05; **: P < 0.01, ****: P < 0.0001, Mann-
Whitney U-test. (B) Tukey box-plot, as in (A), showing expression in each developmental 
stage of all genes or EAGs on autosome distal arms. ****: P < 0.0001, Mann-Whitney 
U-test. (C) Tukey box-plots as in (A) showing embryo-stage expression of all genes or 
genes containing a structured intron (Struct.; intron ΔG/nt < -0.5 kcal/mol*nt), broken 
down by chromosomal domain. *: P < 0.05; ****: P < 0.0001, Mann-Whitney U-test. 
(D) Tukey box-plot, as in (A), showing embryo-stage expression of all genes, EAGs, or 
genes containing 3 or more EER-associated introns and/or UTRs (3+ EER) present on 
autosome arms. (E) Heatmap displays the relative ChIP-chip signal for 19 histone 
modifications over EERs, random regions, structured (ΔG/nt < -0.5 kcal/mol*nt) or 
unstructured introns, IR loci, and TR loci present on autosome distal arms.  
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Figure 3.5 Correlations of intron structure, length, and PATC content with gene 
expression. (A) Scatter plot shows autosome arm genes by the length and ΔG/nt of their 
most stable intron. Semi-log regression analysis (black line; formula at top) reveals a 
moderate correlation. (B) Tukey box-plots showing embryo-stage expression of autosome 
arm genes divided by the length of their longest intron and ΔG/nt of their most stable 
intron. *: p < 0.05; **: p < 0.01; ****: p < 0.0001, Mann-Whitney U-test. (C) Scatter 
plot, as in (A), shows genes by most stable intron ΔG/nt and maximum intron PATC 
score (see Materials and Methods), with a semi-log regression in black (formula at top). 
(D) Tukey box-plot, as in (B), shows embryo-stage expression of genes divided by most 
stable intron ΔG/nt and maximum intron PATC score. *: p < 0.05; ****: p < 0.0001, 
Mann-Whitney U-test. 
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Figure 3.6 Expression of autosome arm genes by repeat content. Tukey box-plots show 
embryo-stage expression of autosome arm genes separated by the amount of noncoding 
sequence in each gene that overlaps (A) IRs, (B) TRs, or (C) annotated RepeatMasker 
transposon repeats. 
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Figure 3.7 Effects of EERs on GFP reporter expression. (A) Gene schematic of control 
(top) and EER-containing GFP reporter cassettes. (B) Chromosome III sites where 
reporter genes were integrated. (C) Fluorescent images of adults carrying GFP reporter 
transgenes in each integration site. Scale bar = 100 µm. (D) Quantification of adult-stage 
fluorescence in control (-) and EER-containing (+) reporters. Error bars reflect standard 
error of the mean, four experiments of n>10 worms each. *: p < 0.05; **: p < 0.01; ***: p 
< 0.001, Student’s t-test. (E) Quantitative RT-PCR analysis of GFP mRNA normalized to 
the geometric mean of ndk-1, Y45F10D.4, and cdc-42 mRNAs, show expression relative 
to the control reporter at the ChrIII center site. Error bars show standard deviation, n = 4 
biological replicates. (F) Adult-stage fluorescence of GFP reporters in wildtype or adr-2 
mutant backgrounds. ND: not determined. Error bars show standard deviation, n ≥ 12 
worms. (G) Adult-stage fluorescence of GFP reporters integrated at the ChrIII center site 
containing EERs in a 3’UTR, intron, or neither. Error bars show standard deviation, n ≥ 
10 worms.  ****: p < 0.0001, Student’s t-test. (H) Gene schematic of GFP reporter 
cassettes containing an inverted repeat sequence or a tandem repeat sequence in the 
3’UTR. (I) Adult-stage fluorescence of GFP reporters containing inverted or tandem 
repeats in the 3’UTR sequence. Error bars show standard deviation, n = 14 worms.  ****: 
p < 0.0001, Student’s t-test. 
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Figure 3.8 Models to explain dsRNA association with elevated gene expression. (A) A 
dsRNA-containing gene houses two inverted transposable elements (TEs) in an intron. 
Each TE copy contains a transcription factor (TF) binding site. TF binding to TE 
sequences leads to transcriptional activation, promoting gene expression. (B) 
Nucleosomes (gray shapes) at a gene locus prevent spurious transcription. Upon 
transcription, nucleosomes are disassembled in front of the RNA polymerase (Pol II) 
complex and reassembled behind it, but formation of a dsDNA duplex in the non-
template strand prevents nucleosome reassembly. As a result, nucleosomes are not 
reestablished after transcription, leading to spurious expression of the locus. (C) A locus 
containing inverted TEs in its intron is transcribed to RNA. The U1 and U2 snRNPs bind 
sequences around the 5’ and 3’ splice sites. Fold back of complementary sequences in the 
intron brings U1 and U2 snRNPs in close proximity, promoting their association and 
recruiting the U4/U5/U6 tri-snRNP to catalyze splicing. Efficient splicing due to dsRNA 
formation promotes elevated gene expression. (D) Transcription of a dsRNA locus leads 
to dsRNA formation in the nascent transcript. An undetermined dsRBP binds the dsRNA 
structure and recruits Pol II and other components of the transcription machinery to 
further promote gene expression. 
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Table 3.1: Primers used in this study 

Primer name Sequence 

pBlue_Pbaf1_F1 CGAGGTCGACGGTATCGATAAGCTTGATATCGTGTCA 
GCGACATACGAATGAATCG 

GFP_Pbaf1_R1 CAGTGAAAAGTTCTTCTCCTTTACTCATGGTTTCTGAA 
ACACAAAATAATTACATTCTTG 

Pbaf1_GFP_F2 CAAGAATGTAATTATTTTGTGTTTCAGAAACCATGAG 
TAAAGGAGAAGAACTTTTCACTG 

Pbaf1_pBlue_R2 CGATTCATTCGTATGTCGCTGACACGATATCAAGCTT 
ATCGATACCGTCGACCTCG 

GFP_Y37E_3UTR 
_F1 

GCATGGATGAACTATACAAATAGTTATTTGAAAATTG 
AAAATTGAAAATTCCCATTG 

pBlue_Y37E_3UTR 
_R1 

CTAGAACTAGTGGATCCCCCGGGCTGCAGGCGAATT 
GGGAGCCCACAAAAATGG 

Y37E_3UTR_pBlue 
_F2 

CCATTTTTGTGGGCTCCCAATTCGCCTGCAGCCCGGG 
GGATCCACTAGTTCTAG 

Y37E_3UTR_GFP 
_R2 

CAATGGGAATTTTCAATTTTCAATTTTCAAATAACTA 
TTTGTATAGTTCATCCATGC 

ssl1_Int1_F2 GTACGATTTTTTAAATTTAATTACTTTCCTCAAATCC 
ssl1_Int1_R2 CTGAAAAACATTAATTCATAATTTTGAAATGTAAC 
ssl1_Int1_GFPEx3 
_F3 

GTTACATTTCAAAATTATGAATTAATGTTTTTCAGGT 
GCTGAAGTCAAGTTTGAAGGTG 

ssl1_Int1_GFPEx2 
_R3 

GGATTTGAGGAAAGTAATTAAATTTAAAAAATCGTA 
CGTGTCTTGTAGTTCCCGTCATC 

pBlue_chr3arm_frag 
_F1 

CGAGGTCGACGGTATCGATAAGCTTGATATCGCCTA 
AAGAACTAAGTCCACAGCGAGC 

pBlue_chr3arm_frag 
_R1 

CACTAAAGGGAACAAAAGCTGGAGCTCGGTACACC 
TTCTGATTTCACCAAAAATCTCGTC 

chr3arm_Pbaf1_F1 CGAGGAGTCCAAAAAACTTTGTAAGCATGGATGCC 
GCTGTCAGCGACATACGAATGAATC 

chr3arm_Y37E_ 
3UTR_R1 

GTCTAGACCCTTATCCGACCAGGTTTGGCTCCGCCG 
AATTGGGAGCCCACAAAAATGG 

chr3arm_unc54_ 
3UTR_R2 

GTCTAGACCCTTATCCGACCAGGTTTGGCTCCGCGA 
AACAGTTATGTTTGGTATATTGG 

pBlue_chr3body_frag 
_F1 

CATTCGCCATTCAGGCTGCGCAACTGCTATATTGAC 
CAGGACTGTCTACTTTTAAAGTTG 

pBlue_chr3body_frag 
_R1 

GAAGCGGAAGAGCGCCCAATACGCAAACGTCTCCTG 
TACTAACCTCGTCTTTTTTGTAG 

chr3_body_Pbaf1 CAGGAAATGGATAGTAGACAGGGGAGGCAGTGTCA 
GCGACATACGAATGAATCG 

chr3body_Y37E_ 
3UTR_R1 

CAAATTTCCGTTTTCGGCACCCAAAGCAGCAGCGAA 
TTGGGAGCCCACAAAAATGG 

chr3body_unc54_ 
3UTR_R2 

CAAATTTCCGTTTTCGGCACCCAAAGCAGCAGGAAA 
CAGTTATGTTTGGTATATTGG 

Y37E_3UTR_rep2_F1 GTAACTTTTATTTGTCCCCCAC 
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Table 3.1 continued 
 

Primer name Sequence 
Y37E_3UTR_rep2 
_R1 AATAGAAGGTCAAAGGTGGAG 

Y37E_3UTR_loop 
_rep2rev_F1 

CATTGGGGCACAAAAATGTAACTTTTATCAAAGGT
GGAGTATCGAAACC 

Y37E_3UTR_3pEnd 
_rep2rev_R1 

GGATGGGAGACAATAAATAGAAGGTTTGTCCCCC
ACTGGTCG 

Y37E_3UTR_rep2rev 
_3pEnd_F2 

CGACCAGTGGGGGACAAACCTTCTATTTATTGTCT
CCCATCC 

Y37E_3UTR_rep2rev 
_loop_R2 

GGTTTCGATACTCCACCTTTGATAAAAGTTACATTT
TTGTGCCCCAATG 

3Arm_pMLS134_F TTGGATGCCGCGGAGCCAAACC 
3Arm_pMLS134_R GGTTTGGCTCCGCGGCATCCAA 
3Body_pMLS134_F TTGGAATTGGAATGAAACAGAC 
3Body_pMLS134_R GTCTGTTTCATTCCAATTCCAA 
gfp_RTPCR_F1 TACCTGTTCCATGGCCAACAC 
gfp_RTPCR_R1 ACCTTCAAACTTGACTTCAGC 
ndk1_RTPCR_F1 GAGTCCACCGGAGTCCACCG 
ndk1_RTPCR_R1 CTCAAGATGCTCAAGATG 
Y45F10D4_RTPCR_F1 CGAGAACCCGCGAAATGTCGGA 
Y45F10D4_RTPCR_R1  CGGTTGCCAGGGAAGATGAGGC 
cdc42_RTPCR_F1  AGCCATTCTGGCCGCTCTCG 
cdc42_RTPCR_R1 GCAACCGCTTCTCGTTTGGC 
 
 

 

 



 

 

 

 

CHAPTER 4 

 

PERSPECTIVES 

 

 Work described in the preceding chapters explored functions of ADAR A-to-I 

editing enzymes and their dsRNA substrates in the nematode C. elegans. In Chapter 2, I 

characterized edited dsRNAs expressed in different C. elegans developmental stages and 

showed that ADARs prevent processing and silencing of their substrates by antiviral 

RNAi. This work complements growing evidence that mammalian ADAR1 prevents 

cellular dsRNAs from triggering MDA5-dependent antiviral signaling, demonstrating 

that ADARs have a conserved role in distinguishing endogenous self dsRNAs from viral 

nonself dsRNAs. In Chapter 3, I described how C. elegans dsRNA loci cluster on distal 

autosome arms and are associated with essential and highly expressed genes, suggesting 

that duplex structures might serve important regulatory roles though an undescribed 

mechanism. In this section, the broader implications of these studies will be discussed, 

with particular focus paid to future avenues of research based on these findings, including 

preliminary data from relevant experiments. 

 

What dsRNAs are relevant to ADAR mutant phenotypes? 

 Several lines of evidence argue that ADARs are necessary to prevent immune 

activity against endogenous dsRNAs. First, mouse ADAR1 mutations cause IFN 
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activation and embryonic lethality, and these phenotypes are rescued by mutating either 

the innate immune effector gene MAVS, or IFIH1, which encodes the antiviral dsRNA 

sensor MDA5 (Liddicoat et al., 2015; Mannion et al., 2014; Pestal et al., 2015). Second, 

deleting adr-1 and adr-2 in C. elegans leads to processing of endogenous dsRNAs into 

siRNAs with characteristics similar to DCR-1-dependent antiviral siRNAs (Ashe et al., 

2013; Reich et al., 2018; Wu et al., 2011). Finally, components of the antiviral RNAi 

machinery are required for bursting and low brood size phenotypes that result from adr-

1;adr-2 deletion in rrf-3 or ergo-1 mutant backgrounds (Reich et al., 2018). 

While these results show that ADARs are required to prevent aberrant immune 

activity in response to cellular dsRNA, they offer little insight into which specific 

dsRNAs ADARs must bind and edit to prevent harmful immune responses. Because 

dsRBPs bind their substrates sequence-nonspecifically, all cellular dsRNAs likely have 

the potential to activate dsRNA-responsive immune mechanisms. Indeed, the fact that 

74% of EERs gave rise to monophosphorylated siRNAs suggests that ADARs prevent 

processing of most C. elegans dsRNAs by the antiviral DCR-1 complex (Reich et al., 

2018). EAGs are enriched for Gene Ontology terms associated with vulval morphology 

and development, indicating that global EAG downregulation in adr-1;adr-2;rrf-3 

mutants might result in vulval defects and bursting. However, misregulation of a single 

gene, lin-41, can cause bursting in C. elegans (Ecsedi et al., 2015), suggesting that adr-

1;adr-2;rrf-3 mutant bursting could relate to silencing of lin-41 or a limited number of 

EAGs. In mammals, some dsRNAs may be expressed too lowly to trigger an IFN 

response. Other dsRNAs, like those in introns, may remain primarily in the nucleus, 

sequestered away from cytosolic dsRNA sensors that initiate immune signaling. Thus, the 
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question remains, which ADAR substrates mediate the immune-relevant phenotypes of 

ADAR mutant animals? 

 

Defining spatiotemporal requirements of adr-1;adr-2-dependent 

phenotypes 

To approach this question in C. elegans, I designed a series of experiments to 

identify transcripts relevant to the bursting phenotype of adr-1;adr-2;rrf-3 mutants. First, 

the tissues and developmental stages where ADAR normally functions to prevent 

bursting must be determined. Defining spatiotemporal requirements of adr-1;adr-2;rrf-3 

mutant bursting will narrow down where and when relevant transcripts are silenced, 

allowing a more directed search for candidate transcripts. To elucidate when and where 

ADARs act to prevent bursting, I constructed a set of genetic tools to control ADR-1 and 

ADR-2 stability in a spatiotemporal manner. These tools employ the auxin-inducible 

degron (AID) system derived from plants (Nishimura et al., 2009) and recently applied in 

C. elegans (Zhang et al., 2015). The AID system uses the Arabidopsis-derived E3 

ubiquitin ligase TIR1 to direct ubiquitination and subsequent proteosomal degradation of 

proteins carrying a 44-amino acid degron sequence, but only when the small molecule 3-

indole acetic acid, also known as the plant hormone auxin, is present (Nishimura et al., 

2009). To apply the AID system to C. elegans ADAR proteins, I first used CRISPR 

protocols to insert a 174-nt sequence encoding a 1x-Flag tag, 44-amino acid degron 

sequence, and 6-amino acid Gly-Ser linker just after the start codons of the endogenous 

adr-1 and adr-2 genes (Fig. 4.1A). I refer to these insertions as adr-1(AID) and adr-

2(AID). Next, adr-1(AID);adr-2(AID) mutants were crossed to one of four C. elegans 
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strains carrying a single-copy transgene expressing TIR1 from a tissue-specific promoter, 

either Peft-3 (pan-somatic), Psun-1 (germline), Pmyo-2 (pharyngeal muscle), or Pges-1 

(intestine) (Zhang et al., 2015). TIR1-expressing worms carrying the adr-1(AID);adr-

2(AID) insertions should rapidly degrade both ADR-1 and ADR-2 in the presence of 

auxin, which C. elegans readily take up (Zhang et al., 2015). 

To validate that the ADAR-AID system degrades ADARs in a tissue-specific 

manner, I crossed the repetitive, integrated transgene uuIs1[Psur-5::sur-5::GFP; Phsp-

16.2::GFP(IR)] into adr-1(AID);adr-2(AID) backgrounds carrying Peft-3::TIR1, Pmyo-

2::TIR1, or Pges-1::TIR1. The uuIs1 transgene constitutively expresses nuclear GFP in 

somatic tissues, but because it is repetitive, it gives rise to dsRNA and is silenced by 

RNAi in adr-1;adr-2 mutant backgrounds (Knight and Bass, 2002). When I grew adr-

1(AID);adr-2(AID);Peft-3::TIR1;uuIs1 worms on media containing 1 mM auxin, I 

observed robust silencing of GFP in all somatic tissues, while worms grown without 

auxin strongly expressed GFP (Fig. 4.1B). This suggests that ADR-1 and ADR-2 are 

degraded in the presence of auxin and TIR1, leading to transgene silencing. Since GFP is 

expressed in adr-1(AID);adr-2(AID);Peft-3::TIR1 worms without auxin, adr-1(AID);adr-

2(AID) insertions do not interfere with wildtype ADAR functions. I next grew adr-

1(AID);adr-2(AID);Pmyo-2::TIR1;uuIs1 and adr-1(AID);adr-2(AID);Pges-1::TIR1; 

uuIs1 worms on 1 mM auxin, observing GFP silencing only in tissues where TIR1 was 

expressed, pharyngeal muscle and intestine, respectively. This suggests that ADAR 

degradation is tissue-specific and that adr-1;adr-2-dependent transgene silencing does 

not spread between tissues, as some other RNAi mechanisms do in C. elegans (Jose et al., 

2011). Most importantly, our results demonstrate that the AID system can be used for 
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tissue-specific, auxin-dependent, ADAR loss-of-function. 

To begin to define spatiotemporal requirements of adr-1;adr-2;rrf-3 mutant 

bursting, I crossed the rrf-3(uu56) deletion with adr-1(AID);adr-2(AID);Psun-1::TIR1. 

Because other TIR1-expressing transgenes are integrated at a Chromosome II locus 

(oxTi179) only ~1 centiMorgan from rrf-3, I could not easily cross these strains with 

existing rrf-3 deletions. Thus, I used CRISPR protocols to delete rrf-3 exons 4-8 in adr-

1(AID);adr-2(AID);Peft-3::TIR1 using the same guide RNAs used to generate rrf-

3(uu56) (Reich et al., 2018). Neither adr-1(AID);adr-2(AID);rrf-3;Psun-1::TIR1 nor adr-

1(AID);adr-2(AID);rrf-3;Peft-3::TIR1 strains exhibited bursting in the absence of auxin. 

However, when these strains were grown in the presence of auxin from embryo stages, 

adults expressing somatic TIR1, but not germline TIR1, burst at frequencies similar to 

adr-1;adr-2;rrf-3 mutants (Fig. 4.1C) (Reich et al., 2018). Notably, adr-1(AID);adr-

2(AID);rrf-3;Psun-1::TIR1, which expresses germline TIR1, never burst, even when 

grown on auxin for several generations (data not shown). This suggests that adr-1;adr-

2;rrf-3 bursting is a somatic phenotype and does not involve germline ADAR loss-of-

function. Because transgene silencing, chemotaxis, and longevity phenotypes of adr-

1;adr-2 mutants do not suggest germline ADAR activity (Knight and Bass, 2002; 

Sebastiani et al., 2009; Tonkin et al., 2002), this result is not wholly unexpected. 

However, ADARs may still have germline functions, since both adr-1 and adr-2 mRNAs 

are expressed in germline tissues (Ortiz et al., 2014), and adr-1;adr-2 mutants have 

altered levels of 21U-RNAs/piRNAs (Warf et al., 2012), which are highly expressed in 

the germline (Billi et al., 2014).  

To define when ADARs normally function to prevent bursting, I grew adr-
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1(AID);adr-2(AID);rrf-3;Psun-1::TIR1 and adr-1(AID);adr-2(AID);rrf-3;Peft-3::TIR1 

strains on normal media, and then transferred worms to media containing 1 mM auxin at 

different developmental stages before measuring bursting on Day 5 after egg lay (Fig. 

4.1C). Somatic TIR1-expressing adr-1(AID);adr-2(AID);rrf-3;Peft-3::TIR1 worms burst 

roughly as frequently as adr-1;adr-2;rrf-3 mutants when added to auxin in embryo, L1, 

or L2 stages. However, worms added to auxin at L3 stages showed markedly lower levels 

of bursting, while auxin-treated L4s almost never burst. Again, adr-1(AID);adr-

2(AID);rrf-3;Psun-1::TIR1 never exhibited bursting. These findings suggest that ADARs 

are required in the soma between L2 and L3 larval stages to prevent bursting in rrf-3 

mutants. Thus, the dsRNAs that mediate bursting are likely expressed in a somatic tissue 

at the same time. Since bursting requires RNAi activity, relevant transcripts are likely 

silenced after this time period. Depending on the time required for dsRNA processing, 

siRNA amplification, and target silencing, relevant transcripts may not be silenced until 

L3-L4 stages, when vulval patterning and morphogenesis occur (Sternberg, 2005).  

The timeframe involved in bursting can be further narrowed by the inclusion of 

more experimental time-points and larger sample sizes. However, the above experiments 

suggest only that ADAR functions somatically to suppress bursting, offering few clues as 

to the specific tissue(s). Though requirements in the intestine and pharyngeal muscle can 

be tested using existing transgenes, testing other tissues will require the generation of 

transgenes that express TIR1 under other promoters. The primary tissue of interest is the 

developing vulva, since I hypothesize that aberrant vulval development causes loss of 

structural integrity and subsequent bursting. Expressing TIR1 in the P6.p vulval precursor 

cell under the Plag-2 or Pegl-17 promoters may facilitate ADAR loss-of-function in 
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vulval cells, to test if ADAR acts in these cells to prevent bursting. 

 

Approaches to identify endogenous dsRNAs relevant to 

adr-1;adr-2 phenotypes 

The end goal of these experiments is to identify the gene(s) whose silencing 

causes adr-1;adr-2;rrf-3 bursting. If possible, individual dsRNA structures required for 

this phenotype would also be defined. Towards this purpose, I propose performing cell-

specific RNAseq to determine edited transcripts expressed in cells of interest within the 

timeframe involved in bursting. Heather Hundley’s group has used cell-specific RNAseq 

on isolated C. elegans neurons to identify neural-specific editing and expression patterns 

(Deffit et al., 2017), and a similar approach could be applied to find bursting-relevant 

ADAR targets. Expression of a fluorescent protein would mark cells of interest, which 

could be isolated from wildtype and adr-1;adr-2;rrf-3 mutant worms by fluorescence-

activated cell sorting after dissociating worms into single cells. With relevant cells 

isolated, RNA would be extracted and analyzed by RNAseq. Then, candidate genes 

would be identified as those edited in wildtype tissues and silenced in adr-1;adr-2;rrf-3 

samples. Focusing on genes with known functions in vulval development could further 

narrow down the list of candidates. Edited dsRNA structures in candidate genes would be 

identified using the EER analysis pipeline (Blango and Bass, 2016; Reich et al., 2018; 

Whipple et al., 2015). To show that relevant genes and dsRNA structures are involved in 

bursting, one would overexpress candidate genes or delete candidate dsRNA structures in 

adr-1;adr-2;rrf-3 mutants and test if these manipulations rescue bursting. Identification 

of the genes or dsRNAs involved in bursting would facilitate further characterization of 
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adr-1;adr-2;rrf-3 mutants by relieving their fitness defects without also disrupting RNAi 

function. 

 

Using ADARs to study immunity 

Finding additional suppressors of adr-1;adr-2;rrf-3 bursting 

 Aberrant immune activity causes the deleterious phenotypes of ADAR1 mutant 

mice and adr-1;adr-2;rrf-3 mutant C. elegans (Liddicoat et al., 2015; Mannion et al., 

2014; Pestal et al., 2015; Reich et al., 2018). Because disrupting immune-relevant genes 

rescues these phenotypes, one could in theory define factors required for the immune 

response by screening for mutations that rescue ADAR mutant phenotypes. Though some 

genetic screens are feasible, mice are not ideal for large-scale forward genetic screens due 

to their complex internal development, long generation times, low brood sizes, and costs 

required to house and breed large numbers of animals (Kile and Hilton, 2005). In 

contrast, given their prolific reproductive capacity, low costs of maintenance, and 

hermaphroditic genetics, C. elegans provide a powerful system for genome-wide screens, 

particularly suppressor screens (i.e. screens for mutations that suppress a phenotype) 

(Jorgensen and Mango, 2002). Thus, additional components of the C. elegans antiviral 

response could be identified by screening for suppressors of the adr-1;adr-2;rrf-3 mutant 

bursting phenotype. 

 In practice, a screen for suppressors of adr-1;adr-2;rrf-3 bursting could be 

performed in two ways. The first way would be to treat P0 adr-1;adr-2;rrf-3 mutants with 

a mutagen such as ethyl methane sulfonate, isolate F2 progeny, and look for lines where 

no adults burst. This F2 screen would be simple, unbiased, and would presumably 
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generate many suppressor mutations in a short period of time. However, mapping and 

identifying the mutations isolated from an F2 screen would be time-consuming, even 

using high-throughput sequencing to find candidate genetic lesions. Further, since at least 

five genes in the antiviral RNAi pathway suppress adr-1;adr-2;rrf-3 bursting, I suspect 

many hits in a simple F2 suppressor screen would occur in the same genes or pathway and 

thus a large proportion of hits would likely be uninformative. The second approach, a 

genome-wide RNAi screen, simplifies the problem of candidate identification. Using this 

method, one would simply grow adr-1;adr-2;rrf-3 mutants on E. coli expressing dsRNA 

to silence each gene in the genome and screen for genes whose silencing rescues 

bursting. Because adr-1;adr-2;rrf-3 mutants presumably exhibit the same enhanced 

RNAi (Eri) phenotype as rrf-3 single mutants (Simmer et al., 2002), gene silencing 

should be highly effective in this strain. However, before screening, one would need to 

ensure the feasibility of this approach by testing if RNAi against known suppressor genes 

like rde-1, rde-4, or drh-1 rescues bursting. If so, a genome-wide RNAi screen could be a 

useful approach to identify additional factors involved in adr-1;adr-2;rrf-3 bursting. 

 

A candidate screen for RNAi factors that mediate adr-1;adr-2 

transgene silencing 

 As proof-of-principle for the feasibility of screening adr-1;adr-2-dependent 

phenotypes, I performed a candidate RNAi screen to identify factors involved in adr-

1;adr-2 mutant transgene silencing (Table 4.1). I began by identifying candidate genes 

involved in endogenous (Billi et al., 2014) or exogenous RNAi (Grishok, 2005), 

including factors that mediate co-transcriptional (Holoch and Moazed, 2015) or post-
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transcriptional silencing (Fischer, 2010; Fischer et al., 2013). Roughly 15 candidates 

were not represented in the available C. elegans RNAi library and thus were not tested. I 

grew adr-1(gv6);adr-2(gv42);uuIs1 worms on E. coli expressing dsRNA to silence each 

of 212 candidate genes. The test strain carries a silenced sur-5::GFP transgene, which 

becomes re-expressed when RNAi factors required for silencing are disrupted (Habig et 

al., 2008; Knight and Bass, 2002). Worms were scored by the strength of GFP re-

expression on a scale of zero to four, with zero indicating no GFP expression above 

background and four indicating GFP re-expression equal to that seen by dcr-1(RNAi) (see 

Table 4.1 notes). Each RNAi clone was screened twice, and clones with an average score 

above 0.5 after the first two rounds were re-screened two additional times. Including 

factors known to mediate adr-1;adr-2 transgene silencing, like dcr-1, rde-1, and rde-4, a 

total of 36 genes were recovered from this screen. Among the strongest hits were the 

RIG-I-like helicase encoded by drh-1 (Ashe et al., 2013), as well as nrde-3 and 

C04F12.1, genes encoding Argonaute proteins (Yigit et al., 2006). I also observed roles 

for chromatin-related factors, like the H3K9 trimethylase gene set-25 (Towbin et al., 

2012), as well as sin-3 and hda-2, factors involved in histone deacetylation (Cui et al., 

2006). Using CRISPR protocols, I validated that drh-1 deletion in adr-1(gv6);adr-

2(gv42);uuIs1 also rescues GFP expression (data not shown). Further, GFP expression 

was rescued by deleting rrf-1, a somatic RdRP required for secondary siRNA biogenesis 

(Billi et al., 2014), which was not represented in the RNAi library. Oddly, genetic 

deletion of lin-61 did not rescue GFP expression as observed on lin-61(RNAi), suggesting 

the effect from lin-61(RNAi) may be nonspecific. 

The results of this candidate screen informed the genes tested in Chapter 2 for 
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rescue of adr-1;adr-2;rrf-3 bursting. Of the factors tested, most genes that rescued adr-

1;adr-2 transgene silencing also rescued adr-1;adr-2;rrf-3 bursting (Reich et al., 2018). 

However, disruption of two genes, C04F12.1 (data not shown) and set-25, did not rescue 

bursting, though they partially rescued transgene silencing. This suggests that transgene 

silencing and bursting phenotypes proceed through related but not identical RNAi 

mechanisms. Differences between these mechanisms may reflect differences in pathways 

used to silence dsRNA from distinct sources. For instance, silencing of cytoplasmic viral 

dsRNA may rely solely on post-transcriptional silencing mechanisms, while silencing 

transposable elements that give rise to dsRNA could involve chromatin modification.  In 

uncovering such differences, this candidate screen demonstrates how ADAR mutant 

phenotypes can be leveraged to study immune-related biology.  

 

Defining the Intracellular Pathogen Response  

While adr-1;adr-2;rrf-3 mutants burst due to aberrant RNAi activity, poly(A)+ 

mRNA profiling of adr-1;adr-2;rrf-3 embryos also revealed activation of a poorly 

characterized antimicrobial transcriptional response. As described in Chapter 2, hundreds 

of genes induced during Orsay virus infection (Chen et al., 2017) are upregulated in adr-

1;adr-2;rrf-3 embryos and other rrf-3 mutant strains. Though Orsay virus-induced genes 

are not upregulated in adr-1;adr-2 mutant embryos, their induction is higher in adr-

1;adr-2;rrf-3 triple mutants compared to rrf-3 single mutants, suggesting ADARs 

influence this transcriptional response. Genes induced during Orsay infection include 

factors involved in protein ubiquitination and degradation, and they correlate well with 

genes induced during infection with the intracellular fungus Nematocida parisii 
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(Bakowski et al., 2014). At least one induced gene, cul-6, facilitates resistance to both N. 

parisii and Orsay virus infection. Because this transcriptional program is induced by 

intracellular pathogens, but not extracellular pathogens, it has been recently named the 

Intracellular Pathogen Response (IPR) (Reddy et al., 2017). However, mechanisms 

underlying IPR activation remain a mystery. For instance, factors required to sense 

intracellular pathogens and transduce this signal are entirely undetermined. Recent 

reports implicate pals-22, a gene of unknown function, as a negative regulator of the IPR, 

since pals-22 mutants induce IPR genes (Leyva-Díaz et al., 2017; Reddy et al., 2017). 

Intriguingly, pals-22 mutants exhibit an Eri phenotype similar to rrf-3 mutants, which 

exhibited IPR activation in our studies (Reich et al., 2018). Thus, there appears to be 

some connection between IPR activation and Eri phenotypes, possibly due to reduced 

function of the 26G endo-siRNA pathway. Since the 26G pathway uses factors involved 

in the antiviral RNAi response (Ashe et al., 2013; Billi et al., 2014), inhibiting the 26G 

pathway could be an important aspect of the antiviral response. Fully understanding how 

26G activity relates to the IPR will require additional study, and adr-1;adr-2;rrf-3 

mutants may provide a useful means to investigate IPR factors. 

IPR-related factors could be determined using a genome-wide RNAi screen to 

identify genes required for IPR reporter expression in adr-1;adr-2;rrf-3 mutants. To 

perform such a screen, one would first need to identify or generate an IPR-dependent 

fluorescent reporter whose expression increased in adr-1;adr-2;rrf-3 mutants. Because 

both adr-1;adr-2 mutants and rrf-3 mutants silence repetitive transgenes (Knight and 

Bass, 2002; Simmer et al., 2002), reporter expression should not be driven from a simple 

transgenic array that produces high amount of dsRNA. The reporter would also need to 
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express a second fluorescent protein under an IPR-independent promoter to control for 

nonspecific transgene silencing. The integrated transgenic array jyIs8[Ppals-5::GFP, 

Pmyo-2::mCherry] might be a suitable reporter, since it induces IPR-dependent GFP 

expression, even in pals-22 mutants that silence repetitive transgenes, and also 

constitutively expresses mCherry in pharyngeal muscle (Leyva-Díaz et al., 2017; Reddy 

et al., 2017). After crossing the reporter into adr-1;adr-2;rrf-3 background and validating 

elevated GFP fluorescence, one would use a genome-wide RNAi library to knock down 

genes in adr-1;adr-2;rrf-3 worms carrying the reporter and identify RNAi clones that 

decrease GFP expression, but not mCherry expression. Ideally, this approach would 

identify factors involved in IPR activation, potentially including sensor proteins that 

respond to pathogen-associated molecular patterns and the transcription factor(s) required 

for IPR gene induction. 

 

Duplex RNA structures in gene regulation and evolution 

Do dsRNA structures promote gene expression? 

 In Chapter 3, I describe a correlation between dsRNA structures and essential and 

highly expressed genes on autosome distal arms. Though this correlation is intriguing, I 

was not able to demonstrate that dsRNA causes elevated gene expression. Limited 

transgenic analyses (Fig. 3.7) suggested that dsRNA structures are not sufficient to 

increase gene expression, though these experiments did not rule out the possibility that 

duplex structures promote expression under certain circumstances. One problem with the 

transgenic analyses was a small number of conditions tested. I only examined 

contributions of one structured intron, ssl-1 intron 1, and one structured 3’UTR, the eif-
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2alpha 3’UTR, making it difficult to discern if the observed effects involved dsRNA 

structures or regulatory properties specific to these elements. Furthermore, reporter 

constructs containing control or structured elements were integrated at one of only two 

genomic loci, limiting the ability to interpret effects from distinct chromosomal domains.  

 In these experiments, control and dsRNA reporters were integrated in precise 

locations using CRISPR/Cas9 to stimulate homologous recombination of reporter genes 

at specific loci. While effective, this approach is biased by the selection of certain loci 

and its ease of application is limited by the need to include flanking sequences 

homologous to the locus of interest. I propose an alternative approach to study gene 

regulation by dsRNA structure using Mos1 transposon-based insertion to integrate 

dsRNA-containing reporters into hundreds of random genomic sites. The miniMos 

system can mobilize and integrate a minimal 550 nt Mos1 transposon sequence carrying 

up to 7.5 kb of cargo DNA randomly throughout the genome, generating potentially 

hundreds of independent lines carrying single insertions of interest (Frokjaer-Jensen et 

al., 2014). Using the miniMos system, one could integrate control or dsRNA-containing 

reporters around the genome, determine insertion sites by inverse PCR, and measure 

reporter expression in diverse genomic contexts. Such an approach was previously 

employed to study the effects of intronic PATC sequences on gene expression (Frokjaer-

Jensen et al., 2016). In this context, this method could provide experimental support to 

the hypothesis that dsRNA structures in introns and 3’UTRs promote elevated gene 

expression from autosome arm domains. Though one could not necessarily integrate 

control and dsRNA reporters at the same sites, analysis of hundreds of independent 

reporter lines would hopefully provide clear expression differences between control and 
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experimental reporters. Alternatively, one could design a single reporter gene carrying a 

dsRNA structure flanked by loxP sites and integrate it throughout the genome. After 

isolating integrants, injecting a Cre recombinase transgene could be used to excise the 

dsRNA structure, allowing comparison of the same reporter in the same locations, with 

and without dsRNA. Because the miniMos system can be used to generate and isolate 

dozens or hundreds of insertions over the course of several weeks (Frokjaer-Jensen et al., 

2014), one could construct many reporters containing different dsRNA or control 

sequences and integrate these genome-wide in a relatively short time. 

 

What mechanism underlies increased expression of  

dsRNA-containing genes? 

Though the association between duplex structures and highly expressed genes is 

intriguing, the lack of a clear mechanism of action makes directed studies of this 

phenomenon difficult. I propose two future directions to clarify potential mechanisms 

explaining the observed correlations described in Chapter 3. 

First, detailed bioinformatics analyses should further investigate the possibility 

that specific transposon-derived sequences enriched in dsRNA structures promote 

expression of associated genes. Since transposable elements (TEs) contain sequences that 

can act as regulatory elements, like transcription factor binding sites, TE insertion near or 

within protein coding genes can influence gene expression patterns (Chuong et al., 2017). 

EER sequences are ~63% derived from DNA transposons (Reich et al., 2018), suggesting 

that EAG expression patterns might relate to TE content. Though we have determined the 

predominant transposon classes within EERs, EAG expression patterns have not been 
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correlated with the presence of particular transposons. If EAGs, or perhaps all genes, 

were separated based on the presence of specific TE classes in gene introns, UTRs, or 

proximal sequences, gene expression analyses could potential identify specific TEs 

associated with elevated gene expression. While straightforward in theory, such analyses 

could be complicated by that fact that TE sequences are often highly fragmented and 

divergent from consensus sequences. Further, if functional sequences occur in several 

different TE classes, analysis of highly expressed genes might not reveal association with 

a single TE. Sequence motif analysis, using software suites like MEME (http://meme-

suite.org/), might identify common TE sequences enriched within introns/UTRs of highly 

expressed EAGs or other autosome arm genes. Genome editing approaches could then be 

used to test if enriched sequences are necessary and/or sufficient for elevated gene 

expression. 

Identifying proteins bound to highly expressed dsRNA-associated transcripts 

could offer additional insight into dsRNA-mediated mechanisms of gene regulation. In 

this approach, one would pull down highly expressed EAG transcripts (i.e. eif-2alpha or 

ssl-1) from C. elegans extracts using either biotinylated antisense oligos or RNA 

aptamers knocked into the gene of interest. Proteins bound to target RNAs would then be 

isolated and identified by tandem mass spectrometry. This approach would aim to 

identify candidate factors involved in regulation of highly expressed dsRNA-associated 

genes. Candidate factors could then be disrupted using RNAi or genetic mutation. Using 

qRT-PCR or RNAseq to assay EAG mRNA levels, one would determine which candidate 

factors influence EAG expression, but not control genes.  
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Duplex RNA structures as platforms of gene evolution 

 A central focus of this work is the idea that dsRNA-dsRBP interactions mediate 

post-transcriptional gene expression regulation. However, dsRNA loci have two 

additional properties that suggest that these elements also impact gene regulation through 

effects on sequence diversification and evolution. First, dsRNA sequences are largely 

transposon-derived (Porath et al., 2017; Reich et al., 2018; Zhao et al., 2015), suggesting 

they can be readily introduced by TE insertion. Active transposons are typically silenced 

in the C. elegans germline by RNAi, since their transcription gives rise to dsRNA (Sijen 

and Plasterk, 2003). However, since Tc1 transposon copy numbers vary between strains 

from ~20-30 copies in Bristol N2 to ~300-500 copies in Bergerac (Bessereau, 2006), 

germline TE transposition likely occurs at some rate over time. Second, long inverted 

repeat sequences are highly recombinogenic and unstable in eukaryotic genomes 

(Gordenin et al., 1993; Waldman et al., 1999; Wang and Leung, 2006), suggesting they 

can promote frequent sequence alterations within and around dsRNA-containing genes. 

Thus, dsRNAs introduced into genes by TE insertion may stimulate recombination and 

lead to new genetic variants that in turn affect gene expression and functions. 

If true, I predict genes containing dsRNA structures exhibit greater variation in 

sequence and expression than unstructured genes. Indeed, most C. elegans inverted 

repeats occur in distal arm domains, where genes have lower levels of conservation 

(Consortium, 1998) and more divergent expression between wild isolate strains (Denver 

et al., 2005). However, it is not clear that these properties of distal arms relate explicitly 

to dsRNA structures. To gain a better understanding of dsRNA functions in C. elegans 

genome evolution, a population genetics approach could be used to define how dsRNA-
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containing genes vary in sequence and expression. Given the highly recombinogenic 

nature of dsRNA loci, these sequences likely change rapidly over evolutionary time, 

complicating phylogenetic comparisons of dsRNAs in different species. However, by 

analyzing many different populations of the same species, one can more easily compare 

sequences of even rapidly evolving loci, since the populations are more closely related. 

The genomes of hundreds of natural C. elegans isolates from around the world have 

already been sequenced and are freely available from the Caenorhabditis elegans Natural 

Diversity Resource (https://www.elegansvariation.org/) (Cook et al., 2017). Genome 

sequences contain genetic variant information showing how gene sequences differ 

between populations. By analyzing genetic variation among dsRNA-associated genes and 

control genes, one could test the hypothesis that dsRNA structures are associated with 

higher rates of genetic variance. Further, functionally important dsRNA structures could 

be identified by searching for dsRNAs containing compensatory mutations that maintain 

base-pairing. RNAseq of wild isolate strains could further define how dsRNA structures 

correlate with variation in gene expression patterns. Such analyses may broaden our 

understanding of the role of dsRNA not only in direct gene regulation but also in gene 

and genome evolution. 
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Figure 4.1 Modulating ADAR levels in space and time. (A) Cas9-mediated DNA 
cleavage proximal to the adr-2 start codon was used to stimulate recombination (red 
lines) with a homology-directed repair donor sequence encoding a 1x Flag tag, the 44 
amino acid auxin-inducible degron (AID) and Gly-Ser linker. This approach was used to 
insert the Flag::AID::linker sequence in-frame into the N-termini of the endogenous adr-
1 (not shown) and adr-2 loci. (B) Auxin treatment of adr-1(AID);adr-2(AID) strains 
expressing TIR1 under different tissue-specific promoters induces transgene silencing in 
tissues where TIR1 is expressed. (C) Auxin treatment (green boxes) of adr-1(AID);adr-
2(AID);rrf-3 strains beginning at different stages (scheme at left) induces bursting at 
frequencies dependent on the stage of addition and tissue of TIR1 expression (plotted on 
right).   
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Table 4.1 RNAi genes required for adr-1;adr-2 transgene silencing. 

Gene Score Description 
dcr-1 4.0 Endoribonuclease required in RNAi 
drh-1 4.0 RIG-I like helicase; promotes viral dsRNA processing 
rde-4 3.3 dsRBP and DCR-1 binding partner 
rde-1 2.5 Argonaute; required for antiviral RNAi 
nrde-3 2.0 Argonaute; transports 22G siRNAs from cytosol to nucleus 
inst-1 2.0 Integrator complex subunit 

C04F12.1 2.0 Argonaute; involved in exogenous RNAi 
ima-3 1.8 Importin alpha protein 
sin-3 1.8 Histone deacetylase subunit 
lin-61 1.8 H3K9me-binding protein 
rsp-7 1.5 SR protein; splicing factor 
set-25 1.5 Histone methylase; deposits H3K9me3 
cid-1 1.4 Poly(U)-polymerase; limits siRNA accumulation 

T25G3.3 1.3 Predicted 60S ribosome export factor 
hda-2 1.2 Histone deacetylase 
ipgm-1 1.1 Phosphoglycerate mutase 
gfl-1 1.0 Chromatin remodeling factor 

prp-17 1.0 Splicing factor 
kin-10 0.9 Protein kinase 
arp-6 0.9 Actin-related protein; possible chromatin remodeling factor 

T23D8.3 0.8 Predicted 40S ribosome export factor 
mut-15 0.8 RNAi factor present in Mutator foci 
pgl-1 0.8 P-granule component 
set-16 0.8 Histone methylase; deposits H3K4me1 
cpsf-2 0.8 mRNA 3’ end processing factor 
rsd-6 0.7 Tudor-domain protein involved in RNAi spreading 

F55F8.3 0.7 Ribosome maturation factor 
cit-1.2 0.7 Cyclin T; involved in RNA Pol II regulation 
zfp-1 0.7 Involved in chromatin remodeling and RNA Pol II pausing 

ZK1127.5 0.7 RNA 3’ terminal phosphate cyclase 
imb-2 0.7 Importin beta protein 
dao-5 0.7 Involved in rRNA transcription and nucleolar structure 
zfp-3 0.6 Zinc-finger protein 
ain-1 0.6 Involved in miRNA-mediated gene regulation 

C55B7.11 0.6 Worm-specific protein of unknown function 
T08G11.4 0.6 Trimethylguanosine synthase 

Genes were scored 0 to 4 based on GFP expression in adr-1(gv6);adr-2(gv42);uuIs1: 
0 – No GFP fluorescence above background. 
1 – At least 50% of progeny had GFP signal higher than background. 
2 – At least 50% of progeny had GFP signal 25-50% of dcr-1(RNAi). 
3 – 100% of progeny had GFP signal 50%-75% of dcr-1(RNAi). 
4 – 100% of progeny had GFP 75-100% of dcr-1(RNAi). 




