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ABSTRACT 

 

 MicroRNA expression is dysregulated in many human cancers, including 

hematopoietic malignancies. Among hematopoietic malignancies, acute myeloid 

leukemia (AML) carries a particularly poor prognosis, leading to over 10,000 deaths each 

year in the US alone. The most common genetic aberration in AML is a gain-of-function 

mutation in the FMS-like tyrosine kinase 3 (FLT3) receptor. FLT3 internal tandem 

duplication (ITD) occurs in ~30% of all AML cases, and confers a negative prognosis. 

MicroRNA expression has been shown to be highly dysregulated in FLT3-ITD+ AML; 

however, the functional relevance of many of these microRNAs on leukemic phenotypes 

remains unclear. We performed a genome-wide CRISPR-Cas9 screen to identify which 

microRNAs, and which of their putative mRNA targets, regulate FLT3-ITD+ AML cell 

growth. Our screen identified a number of microRNAs that function to suppress or 

promote FLT3-ITD+ AML cell growth, revealing that microRNAs are extensively 

integrated into the molecular networks that control tumor cell physiology. We also 

performed anticorrelation functional profiling to predict relevant microRNA-mRNA 

target pairs in this context, and identified miR-150 targeting of p53 as a critical 

relationship governing the growth of these cells. We validated one of our targets, miR-

155, as a critical regulator of FLT3-ITD+ AML cell growth in vitro, where miR-155-

deficient cells displayed a competitive growth disadvantage compared to cells with miR-

155 intact. We extended these findings into an in vivo model of FLT3-ITD-driven 
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myeloid malignancy, where mice containing a FLT3-ITD mutation but lacking miR-155 

exhibited decreased myeloid expansion in the bone marrow, spleen, and blood compared 

to their FLT3-ITD miR-155+/+ counterparts. This phenotype was attributed to miR-155’s 

role in promoting proliferation of the hematopoietic stem cell and myeloid progenitor cell 

compartments in the bone marrow. Further analysis revealed that miR-155 likely exerts 

these effects by regulating multiple pathways involved in cellular proliferation, including 

repressing the interferon response through targeting Cebpb, and activating AKT signaling 

through targeting of Ship1. These findings correlated with human AML data from The 

Cancer Genome Atlas dataset, where we found that FLT3-ITD+ AML samples had a 

decreased interferon signature and lower levels of Cebpb and Ship1 compared to FLT3-

WT AML samples.  Finally, we treated FLT3-ITD+ AML primary patient samples with a 

miR-155 inhibitor and observed decreased colony forming potential and increased 

apoptosis in these cells. These results suggest that miR-155 inhibition could be a novel 

therapeutic approach in FLT3-ITD+ AML.
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MicroRNAs are key regulators of hematopoiesis  

Hematopoiesis is a dynamic biological process giving rise to cells of the blood 

that carry out a variety of essential functions, such as oxygen delivery to tissues and 

defense against infectious microbes. Careful balance during hematopoiesis is required to 

both generate mature blood cells through a hierarchical differentiation process and 

preserve stem cell compartments to ensure a long-term source of blood cell production in 

animals with long life spans. Over the past several decades, we have learned a 

tremendous amount regarding the genes and signaling pathways governing various 

aspects of blood cell development. These include genes that regulate responses to 

inflammatory stress, and others that become dysregulated in pathological conditions of 

the hematopoietic system, including various hematologic malignancies. Among these 

genes important for blood cell development are those that produce noncoding RNAs, 

including the microRNA (miRNA) family. 

First discovered in C. elegans in the early 1990s (1), miRNAs are now recognized 

to be a novel class of small noncoding RNAs that are evolutionarily conserved across 

nearly all species, from plants to mammals (2). It is now estimated there may be more 

than 6000 miRNAs in the human genome (3), each with a potentially unique biological 

function. miRNAs are typically transcribed from intergenic or intronic regions of the 

genome into the primary miRNA transcript, which then undergoes a number of 

processing steps in the nucleus and cytoplasm leading to the production of the mature 

miRNA, a short RNA molecule 20-24 nucleotides in length. The mature miRNA is then 

loaded into the RNA-induced silencing complex (RISC), which binds to the 3’ 

untranslated region (UTR) of its messenger RNA (mRNA) targets by Watson-Crick base 
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pair complementarity (4). The binding of the miRNA-RISC complex leads to decreased 

target protein production through mechanisms involving decreased mRNA stability and 

reduced translation (5).  

The past two decades of research have established miRNAs as playing a vital role 

in posttranscriptional gene regulation. This reduction is typically within the range of 2- to 

4-fold, indicating that miRNA-mediated repression does not serve as an on-off switch, 

but instead as a rheostat for biological processes requiring fine-tuning of gene expression 

(6). Hematopoiesis is one such biological process, where miRNAs are critical for 

achieving proper lineage specification and differentiation by ensuring proper expression 

of genes in complex, regulatory networks and signaling pathways (7,8).  

miRNA expression patterns, function, and target gene regulation have been 

extensively studied throughout the process of normal hematopoietic development, 

starting with hematopoietic stem cells (HSCs). HSCs are characterized by their ability to 

both self-renew and differentiate into all hematopoietic lineages. Further, it is clear that 

long-term HSCs persist largely in a state of quiescence, while differentiating stem cell 

populations cycle at an accelerated rate. Several studies have found that this balance is 

carefully regulated by miRNAs. A subset of miRNAs are enriched in mouse and human 

HSCs compared to mature hematopoietic cells (9), and some of these miRNAs are critical 

for properly managing hematopoietic output (10). HSC-specific deletion of Dicer1, an 

essential enzyme in the miRNA biogenesis pathway, leads to loss of function and 

significantly increased cell death in this compartment (11), thus suggesting miRNAs are 

critical for maintaining a functional pool of HSCs. For example, one study identified 

miR-125a as being specifically enriched in long-term HSCs, and overexpression of miR-
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125a led to expansion of HSC cell numbers by preventing apoptosis (11). Another 

independent study found that miR-125a overexpression conferred a competitive 

reconstitution advantage (12). Other examples of miRNAs regulating HSC function 

include miR-29a, which represses the methyltransferase enzyme Dnmt3a leading to 

increased HSC self-renewal capacity and quiescence (13), and miR-126, whose 

expression prevents HSC expansion by repressing multiple targets in the proproliferative 

PI3K/AKT pathway (14). It is also becoming clear that miRNAs regulate HSC function 

across the lifespan of mammals. The increased expression of the let-7 family of miRNAs 

in HSCs signifies a transition from fetal hematopoiesis to adult HSCs with decreased 

self-renewal potential (15), whereas the miRNA-212/132 cluster is critical for HSC 

maintenance in aging mice through inhibition of Foxo3 expression (16).  

Not only do miRNAs clearly regulate hematopoiesis at the level of the HSC, but 

they also regulate hematopoietic development throughout maturation in both myeloid and 

lymphoid lineages. The myeloid lineage gives rise to a variety of mature blood cell types 

with a broad range of form and function. This includes cells of the granulocyte-monocyte 

(GM) lineage, recognized for their essential role in innate immunity. Deletion of Dicer1 

specifically in myeloid progenitors leads to neutrophil dysplasia and blocks monocytic 

differentiation in mice (17), thus suggesting miRNAs are critical for the development of 

mature myeloid cells from the GM lineage. miR-155 and miR-146a are two well-

characterized miRNAs that have been shown to counter-regulate GM cell expansion in 

the bone marrow through their opposing roles in regulating inflammatory pathways 

(18,19). Interestingly, several miRNAs, including miR-155 and miR-146a, have been 

found to be critical for myeloid cell function, regulating key innate immune pathways, 
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and cytokine production in macrophages and dendritic cells (18,19).  

Beyond GM cells, several studies have identified specific miRNAs that have 

evolved to regulate both megakaryocyte and erythroid development (20). RNA 

expression profiling of the megakaryocyte lineage has identified distinct miRNA 

expression patterns during their development (21,22). miR-150 is one example of a 

miRNA that is enriched in mature megakaryocytes. Overexpression of miR-150 in 

megakaryocyte-erythrocyte progenitors favors megakaryocyte production at the expense 

of erythropoiesis through the repression of c-Myb (23). Conversely, miR-486-5p is 

critical for erythroid differentiation and survival in both in vitro and in vivo studies (24).  

miRNAs have also been extensively studied in the stetting of lymphocyte 

development and function. The lymphoid lineage gives rise to cells of adaptive immunity, 

including T, B, and natural killer (NK) cells. In some cases, a specific miRNA may have 

a broad impact on lymphoid formation. miR-142 was recently found to be critical for 

proper lymphopoieis, as mice with a genetic deletion of the miR-142 locus fail to develop 

both T and B1 B cells, leading to severe immunodeficiency (25). However, most studies 

to date have focused on the effects of individual miRNAs on specific lymphoid lineages.  

miRNAs are widely accepted as playing a critical role in B cell development and 

effector function. The importance of miRNAs in B cell development was convincingly 

demonstrated when deletion of Dicer1 in the B cell lineage of mice led to a 

developmental block in the transition from pro- to pre-B cells (26). Additionally, the first 

study to recognize the importance of miRNAs in hematopoietic lineage differentiation 

identified miR-181 as a driver of B cell development (27). Further studies have identified 

distinct patterns of miRNA expression across developmental B cell stages in humans, 
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including naïve B cells, germinal center B cells, plasma cells, and memory B cells (28). 

These patterns suggest that proper miRNA expression is critical for promoting specific 

steps in mature B cell formation. A variety of miRNAs have now been found to affect B 

cell development and differentiation (29), where genetic deletion of these miRNAs leads 

to an increased or decreased number of mature B cells. Other miRNAs seem to govern 

different aspects of mature B cells function, including differentiation into plasma cells, 

high affinity antibody production, and enhancing the germinal center reaction (30-33). 

These studies lend credence to the idea the miRNAs are deeply rooted into all aspects of 

B cell biology. 

Much attention has been paid to the role of miRNAs in T cells, as T cells are key 

orchestrators of adaptive immune responses and have been the focus of many 

immunotherapeutic strategies. Initial studies based on global disruption of miRNAs via 

Dicer1 deletion in developing T cells showed decreased proliferation and increased 

apoptosis leading to fewer mature T cells (34), thus suggesting miRNAs are critical for T 

cell production. Indeed, miRNAs are important for all levels of T cell development, 

starting with thymopoiesis, where miR-181a was found to affect T cell signaling through 

the T cell antigen receptor, and thus thymic selection, through downregulation of multiple 

phosphatases (35). Many studies have shown the importance of miRNAs in the 

differentiation of naïve T cells into the different CD4+ Th cell subsets (36). For example, 

miR-182 is induced by IL-2 following naïve CD4+ T cell activation, and it promotes 

clonal expansion through inhibition of Foxo1, leading to the production of Th1, Th2 and 

Th17 cells (37). The miR-17-92 cluster is critical for the differentiation of Th1 and Tfh 

cells, and also inhibits inducible Treg differentiation (38). miRNAs are also known to 
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play critical roles in CD8+ T cell development and responses (39). For example, the miR-

17-92 cluster promotes short-lived effector CD8+ T cell expansion at the suspense of 

CD8+ memory T cell formation (40), whereas miR-139 and miR-150 block the 

differentiation of activated CD8+ T cells into cytotoxic T lymphocytes (41). 

miRNAs are also recognized as critical regulators of both NK cell development 

and function (42). Much attention is being paid to NKT cells, because they have been 

recognized as critical to developing appropriate antitumor responses. Interestingly, miR-

150 has been identified as a pivotal branch point between NK versus NKT development, 

where high levels of miR-150 expression favors NK cells, but a reduction of NKT cells in 

the thymus (43). Let-7 miRNAs are also important for the development of NKT cells, as 

their increased expression leads to NKT cells differentiating into IFNγ producing NKT1 

cells (44).  

 

miRNA dysregulation in hematopoietic malignancies 

The above section highlights the importance of miRNAs in hematopoiesis, as the 

proper expression and processing of miRNAs is critical in normal hematopoietic 

development and function. However, it is now appreciated that dysregulation of miRNA 

levels can also have severe consequences. Early studies discovered that the miRNA 

profiles of cancerous cells differ greatly from the profiles of normal cells (45). Certain 

miRNA signatures have been identified that correlate not only with diagnosis, but also 

with staging, prognosis, and response to treatment in a variety of cancers, including 

hematopoietic malignancies (46). Several miRNAs, referred to as oncomiRs, can promote 

cancer if their expression is elevated. Other miRNAs can act as tumor suppressors, where 
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their deletion or downregulation can promote cancer progression (47).  

 In one of the first studies identifying miRNA dysregulation as an important step 

in tumorigenesis, Calin et al. found that miR-15a and miR-16-1 deletions or 

downregulation in chronic lymphocytic leukemia promoted cell survival through 

increased expression of the antiapoptotic protein BCL2 (48). Since these seminal 

findings, many other miRNAs have been found to drive malignancies of lymphoid origin, 

such as the miR-17-92 polycistron in B cell malignancies. Overexpression of this miRNA 

cluster occurs due to its genomic proximity to regions often amplified in B cell 

lymphomas (49). Increased expression of miR-17-92 in lymphocytes triggers a 

lymphoproliferative disorder (50), while aberrant expression of miR-17-92 from a B cell-

specific promoter leads to a lymphoid malignancy (51). miR-21 is another miRNA with 

broad potential as an oncomiR. Overexpression of miR-21 leads to a pre-B cell 

malignancy that regresses when miR-21 expression returns to endogenous levels (52). 

This supports the concept that targeting aberrantly expressed miRNAs could be an 

effective strategy for combating hematologic malignancies. 

Many miRNAs have also been implicated in the development and prognosis of 

myeloid malignancies (53). The overexpression of a number of miRNAs is sufficient to 

induce myeloid malignancies in mice. For example, overexpression of miR-155 leads to 

the development of a myeloproliferative disease (MPD) in mice, resembling a chronic 

myeloid leukemia characterized by the overproduction of mature myeloid cells (54). 

Overexpression of other miRNAs including miR-125b and miR-29a results in an MPD 

that progresses to an acute leukemia (10,55). An improved understanding of the roles 

miRNAs play in promoting or preventing hematopoietic malignancies is critical to 
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unlocking the therapeutic potential of miRNA biology. 

 

Acute myeloid leukemia 

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy that 

carries a poor prognosis. According to the American Cancer Society, nearly 20,000 new 

cases of AML will be diagnosed this year, and over 10,000 patients die from this disease 

annually. AML is characterized by the overproduction of immature myeloid cells, known 

as blasts, which disrupts normal hematopoiesis and eventually leads to bone marrow 

failure. Patients often present to the clinic with anemia, infection, or chronic bleeding 

resulting from this disruption in normal blood cell production (56). One of the primary 

challenges facing the treatment of AML is the high rate of relapse due to the aggressive 

nature of the disease, as well as the development of drug resistant forms of malignancy 

(56). This high rate of recurrence illustrates the need for research to elucidate the cellular 

mechanisms driving AML formation and pathways leading to drug resistance. This 

knowledge would allow for novel therapies to more effectively combat this deadly 

disease. 

 The mutational landscape in AML varies dramatically from patient to patient, and 

a plethora of genetic abnormalities have been found at the root of this malignancy. A 

number of chromosomal rearrangements have been identified that drive disease 

progression in AML, including 5q and 7q deletions, t(15;17), t(8;21), and inv(16), among 

others. (57). However, many AML cases are cytogenetically normal, where somatic 

mutations are the key drivers of disease.  
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FLT3-ITD mutations in AML 

Among the most common mutations occurring in AML are gain-of-function 

mutations in the FMS-like tyrosine kinase 3 (FLT3) receptor (57). FLT3 is a member of 

the platelet-derived growth factor receptor (PDGFR) subfamily (class III) of tyrosine 

kinases and is selectively expressed on the cell surface of hematopoietic stem and 

progenitor cells (HSPCs) (58). FLT3 normally responds to FLT3 ligand (FLT3L) and 

activates downstream signaling pathways, including STAT5, AKT, NFkB, and MAPK to 

promote proliferation and survival of this critical stem cell compartment (59). In 1996, 

Nakoa et al. observed genetic duplications in the juxtamembrane domain of the FLT3 

gene specifically in AML samples, which they referred to as internal tandem duplications 

of the FLT3 gene, or FLT3-ITD (60). FLT3-ITD leads to ligand-independent signaling 

and confers a growth and survival advantage to cells harboring this mutation (61). FLT3-

ITD occurs in ~30% of AML diagnoses and confers a poor prognosis to patients (62), 

thus highlighting the importance of further research on FLT3-ITD biology to identify 

novel therapeutic targets. 

 

miRNA dysregulation in FLT3-ITD+ AML 

 miRNA expression is dysregulated in a number of hematologic malignancies, 

including AML (63,64). An extensive review on our current understanding of the role 

miRNAs are playing in AML will be covered in Chapter 2, with a specific emphasis on 

therapeutic implications and emerging concepts. Through sequencing of clinical samples, 

a number of groups have found that FLT3-ITD+ AML has a distinct miRNA expression 

profile compared to FLT3-WT AML (65,66). However, the significance of this 
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dysregulated miRNA profile, and whether specific miRNAs could be affecting disease 

progression, remained unclear. To answer this question, we performed a genome-wide 

CRISPR-Cas9 screen to identify which miRNAs could be affecting cell growth in a 

FLT3-ITD+ AML cell line. This work is further characterized in Chapter 3. 

 miR-155 was one of the top miRNA candidates identified by our CRISPR-Cas9 

screen as being a critical promoter of FLT3-ITD+ AML cell growth in vitro. This finding 

was particularly interesting because miR-155 had previously been identified as the most 

highly overexpressed miRNA in FLT3-ITD+ AML through microarrays or RNA-

sequencing of clinical AML samples (66-68). miR-155 has also previously been shown to 

play a critical role in the development of hematopoietic cells, where its highest level of 

expression is observed in HSPCs and myeloid progenitor cells (54). Interestingly, 

overexpression of miR-155 in the bone marrow is sufficient to cause a MPD in mice, a 

precursor step to AML (54). miR-155 has also been identified to have oncogenic 

potential in a number of other cancers (69), including other models of AML (70,71).  

Based on these observations and findings, we hypothesized that miR-155 is 

critical for disease development in FLT3-ITD-driven myeloid malignancy. We obtained 

mice containing a human FLT3-ITD mutation knocked-in to the endogenous mouse locus 

(61), and crossed this strain to miR-155-deficient mice to determine whether miR-155 is 

necessary for FLT3-ITD-driven disease development. This novel mouse strain was also 

used to determine the downstream effects of miR-155 overexpression in the context of 

FLT3-ITD. The results of this study will be discussed at length in Chapter 4.  
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Dissertation summary 

This dissertation investigates the importance of miRNA dysregulation, 

specifically in FLT3-ITD+ AML. Through the use of a genome-wide CRISPR-Cas9 

screen, we identified a number of miRNAs and their relevant mRNA targets that regulate 

FLT3-ITD+ AML cell line growth in vitro. miR-150 was our top miRNA candidate 

promoting cell growth, which we attributed to its repression of the well-known tumor 

suppressor p53. Our screen also identified miR-155 as a key regulator of FLT3-ITD+ 

AML cell growth, which has previously been identified as the most significantly 

overexpressed miRNA in FLT3-ITD+ AML. Utilizing a mouse model of FLT3-ITD-

induced myeloid malignancy, we found that miR-155 was critical for myeloid expansion 

in the bone marrow, spleen, and blood of these animals, leading to decreased disease 

severity in miR-155-deficient FLT3-ITD animals. We found that miR-155 acts at the 

HSPC and myeloid progenitor levels to increase proliferation of these cell compartments 

through a multitarget mechanism affecting downstream pathways, including interferon 

and AKT signaling. These findings were extended into human FLT3-ITD+ AML through 

analysis of The Cancer Genome Atlas (TCGA) AML dataset and through inhibition of 

miR-155 in both FLT3-ITD+ AML cell lines and primary human samples. These studies 

highlight the importance of miRNAs, and specifically miR-155, in FLT3-ITD+ AML. 

They also suggest that miR-155 inhibition may warrant consideration as a novel 

therapeutic strategy in FLT3-ITD+ AML. 
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Acute myeloid leukemia (AML) is a deadly

hematologic malignancy characterized by

the uncontrolled growth of immature mye-

loid cells. Over the past several decades,

we have learned a tremendous amount re-

garding the genetic aberrations that gov-

ern disease development in AML. Among

these are genes that encode noncoding

RNAs, including the microRNA (miRNA)

family. miRNAs are evolutionarily con-

served small noncoding RNAs that display

important physiological effects through

theirposttranscriptional regulationofmes-

senger RNA targets. Over the past decade,

studies have identified miRNAs as playing

a role in nearly all aspects of AML disease

development, including cellular prolifera-

tion, survival, and differentiation. These

observations have led to the study of

miRNAs as biomarkers of disease, and ef-

forts to therapeuticallymanipulatemiRNAs

to improve disease outcome in AML are

ongoing. Althoughmuchhas been learned

regarding the importance of miRNAs in

AML disease initiation and progression,

there are many unanswered questions and

emerging facets ofmiRNAbiology that add

complexity to their roles in AML. Moving

forward, answers to these questions will

provide a greater level of understanding of

miRNAbiologyandcritical insights intothe

many translational applications for these

small regulatory RNAs in AML. (Blood.

2017;130(11):1290-1301)

Introduction

MicroRNA (miRNAs) are small noncoding RNAs (;20-24 nucleo-
tides) that play vital roles in posttranscriptional gene regulation through
repression of target messenger RNAs (mRNAs).1 miRNA-encoding
genes in the nucleus are transcribed into primary miRNA transcripts,
which then undergo a number of processing steps in the nucleus and
cytoplasm to generate the mature miRNA molecule. The mature
miRNA is loaded into the RNA-induced silencing complex (RISC),
and this miRNA-RISC complex targets the 39 untranslated region
(UTR) of specific mRNAs on the basis of sequence complementarity,
resulting in reduced protein outputs through mechanisms involving
decreased mRNA stability and reduced translation.2

miRNAsarenowrecognized toplay roles in nearly all physiological
processes and have been implicated in a number of human diseases
including cancer, where miRNAs can act as either oncogenes
(oncomiRs) or tumor suppressors.3 Hematologic malignancies are no
exception, as dysregulated miRNA expression contributes to blood
cancers frommany different hematopoietic lineages.4 This reviewwill
focus on recent advances in understanding the role of miRNAs in a
hematologic malignancy with a particularly high rate of mortality,
acute myeloid leukemia (AML).

miRNAs in AML: background

AML is a heterogeneous disease characterized by the increased pro-
liferation and survival of immature myeloid cells and is the result of a
number of genetic abnormalities, including mutations and chromo-
somal rearrangements.5 Early studies characterizing the role of
miRNAs in AML focused on identifying AML-specific miRNA
expression patterns. Distinctive miRNA profiles were identified for
many cytogenetic subtypes of AML,6-8 as well as for several specific
mutations in cytogenetically normal AML, including mutations in

NPM1, FLT3, and CEBPA.9-13 miRNA expression profiles also
correlate with prognosis,12,14 highlighting the potential importance of
miRNAs in this disease. However, although miRNAs are enriched
in leukemia-associated genomic alterations, only;100 are expressed
above background level,15 suggesting that only a subset of miRNAs
have functional effects in AML.

Beyond dysregulated miRNA expression profiles, it is now well
accepted that miRNAs can function as either oncomiRs or tumor
suppressors in many subtypes of AML, affecting a broad range of
leukemic processes, including proliferation, survival, differentiation,
self-renewal, epigenetic regulation, in vivo disease progression, and
chemotherapy resistance8,15-57 (Table 1). miRNAs impact leukemic
development and progression through collaboration with known
oncogenes or tumor suppressors, either by directly targeting them
on the mRNA level or by working in concert with these proteins
to promote malignancy. To illustrate these concepts, we have
summarized findings for selected miRNAs consistently found to play
a role in AML in Table 1, and we discuss some of the more novel
aspects of miRNA biology in AML below, as a greater understand-
ing of miRNA biology will enable more strategic design of therapies
in the future.

Mechanisms of dysregulated miRNA
expression in AML

Alterations in miRNA expression can occur through a variety of
mechanisms in AML (Figure 1). Copy number alterations (CNAs),
which include deletions22,25 and amplifications,20 can drastically alter
miRNA expression. However, acquired CNAs specifically targeting
miRNAs may be relatively rare in AML. By using a combination of
comparative genomic hybridization and whole-genome sequencing,
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researchers found that 18% of patients had CNAs involving miRNA
genes,with a singleCNAaffectingup to121miRNAs.58However, these
CNAs always contained one or more protein-coding genes, suggesting
that the miRNA genes involved in these CNAs may be passenger
alterations. miRNAs may also be aberrantly expressed when located
in oncogenic genomic locations, which occurs through chromosomal
translocations28 or overexpression of nearby protein-coding genes.49

The most common mechanisms by which miRNA expression
becomes dysregulated in AML are epigenetic alterations and via tar-
geting by dysregulated transcription factors or oncogenic fusion pro-
teins. These two mechanisms are not always distinct, as epigenetic
alterations to miRNA loci often occur via dysregulated transcription
factors or oncoproteins.18,47 There is some evidence that alterations in
miRNA expression in cancer can be the result of dysregulated miRNA
processing59,60; however, it is unclear whether this occurs in AML.

Although mutations in the mature miRNA sequence would likely
have no effect on expression levels, these mutations could change
mRNA target specificity and dramatically alter phenotypic effects in
AML. In perhaps the most thorough AML sequencing effort to date,
The Cancer Genome Atlas group reported that miR-142-3p was the
only miRNA bearing recurrent somatic single nucleotide variants in its
mature strand that could alter binding to targets (4 of 187).13,61 Only 7

miRNA single nucleotide variant mutationswere discovered in the 187
samples analyzed, indicating that these are rare events. However, while
mutations in the miRNA sequence itself are uncommon, polymor-
phisms in the mRNA 39 UTR miRNA binding site may happen more
frequently and could predispose patients to AML by altering miRNA
regulation of specific genes.62 Taken together, it seems that aberrant
miRNA levels that are observed in AML are largely driven by altered
transcription of miRNA primary transcripts, which suggests that tar-
geting of key transcription factors or epigenetic regulators may be one
way to restore proper miRNA expression in AML.

Translational aspects of miRNA biology

It is nowwell established that miRNAs play a variety of critical roles in
AML, in which they can either promote or inhibit tumor cell biology.
However, these advances have yet to make a clinical impact. Here we
will highlight the efforts being made toward moving miRNA research
in AML to the clinic and focus on the potential for using miRNAs
as disease biomarkers, as well as advances in miRNA-targeting
therapeutic strategies in AML.

2. Oncogene

4. Epigenetic
 Alterations

6. Dysregulated
    Processing

RISC

5. Dysregulated 
 Transcription 
Factors / Oncoproteins

3. Copy Number
 Amplification

nucleuscytoplasm

�
1. Deletion

miRNA
 gene

miRNA
geneOncogene

Figure 1. Mechanisms of dysregulated miRNA expression in AML. miRNA dysregulation can contribute to the development of AML. Thus far, numerous mechanisms by

which miRNAs become dysregulated in AML have been identified, including (1) deletions leading to decreased miRNA expression, (2) improper expression because of close

proximity to an oncogenic genomic region created as a result of either a translocation event or overexpression of a neighboring protein-coding gene, (3) copy number

amplifications leading to increased miRNA expression, (4) epigenetic alterations affecting miRNA expression, (5) miRNA promoter regions being aberrantly targeted by

dysregulated transcription factors or oncoproteins, and (6) dysregulated miRNA processing leading to altered levels of mature miRNAs.
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miRNAs as AML biomarkers

Perhaps the most encouraging clinical application of miRNA research
to date is the potential use ofmiRNAs as disease biomarkers inAML.63

When a patient initially presents with leukemia, proper classification is
critical to determining the correct treatment. However, a small number
of leukemias are difficult to identify as myeloid or lymphoid, thus
making treatment decisions challenging. miRNA expression profiling
can help classify acute leukemias of ambiguous lineage as either AML
or acute lymphoblastic leukemia,64with 1 group claiming that as few as
2 miRNAs can be used to discriminate between acute lymphoblastic
leukemia and AML at an accuracy of.95%.65 As mentioned earlier,
specific subtypes and mutant drivers of AML are associated with
distinctive miRNA expression profiles, again suggesting that miRNAs
could be useful in the initial classification of disease.

Beyond classification, miRNA expression profiles may provide
important prognostic information. Several groups have reported that
miRNAexpressionat diagnosis adds relevant prognostic information in
patients with AML and can even predict survival in some cases.66-68

It was also recently reported that miRNA expression can predict
progression of myelodysplastic syndrome (MDS) to AML.69

A major issue with patients receiving treatment for AML is the
persistence of a small number of leukemic blasts in the bone marrow
after intensive chemotherapy known as minimal residual disease
(MRD), which can eventually give rise to leukemia relapse. Because
the appearance of leukemic blasts in circulation often occurs late in the re-
lapse process, a number of highly sensitive polymerase chain reaction–
and flow cytometry–based methods for detection of blast nucleic acid
or protein products have been developed for monitoring MRD,70 as
recognizing MRD before patient relapse could allow for preemptive
therapy.71 A number of groups have proposed screening circulating
miRNAsas an inexpensive, noninvasive, and sensitive option tomonitor
for MRD, because the serum expression of miRNAs changes after
standard chemotherapy,72 and patients with AML have a distinctive
serum miRNA expression profile compared with healthy controls.73,74

These early results are promising, because a specific AML-associated
miRNA serum profile could not only be used to track MRD after
chemotherapy, but could also potentially provide an important screening
tool for early detection of de novo AML in the clinic, as alterations in
serummiRNAprofilesmay precede the entry of leukemic blasts into the
periphery.However, there has been a lack of concordance between these
individual studies, suggesting that more work is needed on larger AML
cohortswithmore rigorous study design to validate these initialfindings.

Advances in miRNA-based therapeutics

As the list ofmiRNAs and theirmRNA targets that are relevant inAML
disease progression continues to grow, therapeutic manipulation of
these miRNAs becomes more enticing. It is easy to imagine delivering
locked nucleic acid (LNA) oligonucleotide inhibitors to target known
oncomiRs in AML or delivery of synthetic miRNA mimics that act
as tumor suppressors. These approaches have exciting therapeutic
potential, because miRNAs are endogenous molecules that often
repress multiple targets, either in the same pathway or by affecting a
common biological process. Thus, resistance to miRNA-based
therapies through target site mutation would be unlikely.

A good example of the effectiveness of an miRNA-based ther-
apeutic in AML was recently demonstrated with targeted delivery of
miR-29bvia transferrin-conjugated lipid nanoparticles both in vitro and
in mice engrafted with human AML cell lines.75 Delivery of miR-29b
led to decreased leukemic cell growth and improved survival in the
AML xenograft mouse model, which was attributed to miR-29b

downregulatingCDK6, SP1, FLT3,DNMTs, andKIT, either directly or
indirectly. These target genes affect a variety of cellular processes in
AML, and this study highlights the ability of 1miRNA-based treatment
to target many pathways simultaneously. Several studies involving the
use of miR-based therapeutics have shown encouraging results in
preclinical in vitro and animal models,22,33,75-77 the results of which are
summarized in Table 2.

Another underexplored area of miRNA-based therapy is the
possibility of repurposing existing drugs known to influence miRNA
levels by targeting the pathways that regulate miRNA expression.
MLN4924 (Pevonedistat), a drug known to reduce nuclear factor kB
(NF-kB) activation that is currently being evaluated in clinical trials,
was recently shown to decrease the levels of oncogenic miR-155 in
FLT3-ITD1AMLcell lines, leading to decreased leukemic phenotypes
both in vitro and in vivo.78 miRNA-based therapeutics may also be
efficaciouswhenused in combinationwith existing chemotherapeutics.
Manipulation of miRNA expression levels can increase AML
responsiveness to standard chemotherapeutic regimens.34,75,79-81

Although several studies have implicated miRNAs and their
putative targets as being clinically actionable, the vast majority of these
studies have yet to achieve clinical relevance, with the first therapies
targeting miRNAs just entering clinical trials within the last few
years.82,83 One miRNA-based therapy in clinical trials that shows
promise is treatment of hepatitis C virus by miR-122, in which
researchers found that patients treated with an LNA inhibitor of mature
miR-122 have reductions in hepatitis C virus RNA levels in a dose-
dependent manner.84 This study provides proof of principle that should
encourage future endeavors of this kind in the cancer arena. Although
the list of miRNA-based therapeutics entering clinical trials continues
to grow, to the best of our knowledge, nomiRNA-based therapies have
made their way to clinical trials specifically for the treatment of AML.

A major barrier preventing the development of miRNA-based
therapies is the lack of more efficient and specific delivery methods,
because synthetic miRNAs or oligonucleotide inhibitors are degraded
rapidly in circulation and have limited cellular uptake and specificity.
To further complicate matters, delivery of drugs to the bone marrow is
difficult, andhigher doses are often required to elicit a therapeutic effect.
This highlights the importance of developing novel targeting tech-
niques for more effective delivery. Consequently, there are many new
approaches being explored for improved delivery of miRNA-based
therapies, including liposomes, nanoparticles, LNAs with increased
stability, peptide-based inhibitors, and several other creative ap-
proaches,85 some of which are highlighted in Table 2. Efficient and
specific delivery of miRNA mimics or antagonists to the proper cell
types in vivo is a key step toward unlocking the therapeutic potential of
manipulating miRNA function to combat AML.

Emerging concepts

Going forward, there remain several aspects of miRNA biology that
need further investigation to fully grasp how miRNAs function within
AML cells. This includes a continued effort to better answer certain
questions that have been raised in the past and work in novel areas that
have recently emerged. Several of these areas and how they relate to
AML are described below.

Improper regulation of inflammatory pathways leads to AML

A newly appreciated mechanism by which miRNAs promote malig-
nancy is through their impacts on classical inflammatory pathways. It
has long been known that there is a strong link between inflammation
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and cancer; however, the mechanisms governing this association are
still largely unclear. NF-kB is critical in initiating inflammatory
responses, and dysregulation of this critical transcription factor is
heavily integrated into cancer biology because of its role in promoting
proliferation and survival.86

Several groups have shown that dysregulation of certain miRNAs
can disrupt normal NF-kB signaling that results in cancerous
transformation,87,88 including in myeloid malignancies.39 Because
miR-146a is a negative regulator of NF-kB signaling, and over-
activation ofNF-kB is involved inmalignant transformation, one could
predict that loss of miR-146a might lead to the development of
hematopoietic cancers. Indeed, a miR-146a deficiency has been
shown to result in the development of both lymphoid and myeloid
malignancies in an age-dependent manner.39,41 Chromosome 5q
deletions, which are common in MDS progressing to AML, leads to
loss of miR-145 and miR-146a because they are both encoded on the
long arm of chromosome 5.37 The loss of these miRNAs leads to
myeloproliferation and eventual progression to AML inmice as a result
of increased NF-kB signaling,37,40 as miR-145 and miR-146a target
TIRAP, IRAK1, and TRAF6, known activators of NF-kB. Targeted
inhibition of IRAK1 has significant activity against MDS/AML cells in
vitro and in xenograftmousemodels,89 suggesting that targeting of these
traditional innate immune pathways may have clinical efficacy.

Not only does miRNA regulation of NF-kB signaling seem to be
important in AML progression, but there is also evidence that NF-kB
activates miRNA expression to promote leukemic phenotypes.90

Additionally, there could be some contribution from the bone marrow
microenvironment. Activation of inflammatory signaling in mesen-
chymal cells was recently found to drive development of an MDS
preleukemic condition in mice.91 A further understanding of how
alterations to these miRNA-regulated classical inflammatory path-
ways can promote AML progression will be an interesting new area
of miRNA research in the future.

miRNAs play context-dependent roles in AML

An interesting aspect of miRNA biology in AML is that a miRNA can
have opposing roles, depending on the disease context. For example,

miR-9 was identified as being specifically upregulated in MLL-
rearranged AML, in which it plays an oncogenic role in promoting
leukemogenesis in the presence of MLL-AF9.16 However, other
studies have found miR-9 to play a tumor suppressive role in AML,
including in pediatric AML with t(8;21), in which miR-9 overex-
pression reduced leukemic growth and induced monocytic differenti-
ation in human AML cells and in xenotransplantation mouse models,17

as well as in EVI1-induced AML, in which miR-9 is epigenetically
silenced leading to decreased apoptosis and myelopoiesis.18

There are many other examples of miRNAs displaying context-
dependent roles in AML. miR-155 seems to have no phenotypic effect
in MLL-rearranged AML,44 but it is consistently found to play an
oncogenic role in FLT3-ITD–drivenAMLpathogenesis.42,45 miR-126
plays different roles and regulates different targets in normal vs
malignant hematopoietic stem cells35 and, interestingly, both over-
expression and knockout of miR-126 promote leukemogenesis.34

These studies highlight how the influence of anmiRNA inAMLcan be
dependent on the underlying genetic abnormalities that drive disease or
cell type of expression.

A variety of potential explanations for context-dependent
discrepancies have been proposed, including RNA-binding protein
regulation of miRNA binding to 39 UTRs or differential splicing to
include or exclude a given 39 UTR.92 In addition, recent findings
suggest that mutant proteins in AML can alter miRNA-mRNA
interactions.93 Perhaps the most plausible explanation would be
differences in the mRNA target availability for the miRNA, because
AML driven by independent mutations would have distinct tran-
scriptional profiles (Figure 2). However, most studies that find
context-specific roles for miRNAs in AML do not go on to explore
themechanistic basis underlying this phenomenon, andmorework in
this area is needed to better understand context-dependent miRNA
functions.

Varying levels of miRNA expression may have opposing effects

One potential explanation for the context-dependent effects observed
for miRNA dysregulation in AML is that different levels of miRNA
expression may have vastly different effects on host-cell phenotypes.

Mutation A Mutation B

miRNA

mRNA A

mRNA C

mRNA B

miRNA

mRNA X

mRNA Z

mRNA Y
                 nucleus

                cytoplasm

Transcriptional
profile

Transcriptional
profile

                nucleus

                cytoplasm

Oncogenic
Function

Tumor Suppressive
Function

Figure 2. miRNAs play context-dependent roles in AML.

A model for context-dependent effects of a specific miRNA

given different transcriptional backgrounds between 2 dis-

tinct AML-driver mutations, mutation A and mutation B. Mu-

tation A leads to the transcription of mRNA A, B, and C,

whereas mutation B drives the transcription of mRNA X, Y,

and Z. All mRNAs have predicted targeting by the example

miRNA. The miRNA depicted in mutation A and mutation B is

the same hypothetical miRNA.
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miR-125b isoneof themore interestingknownoncomiRsbecause it plays
a role in promoting both myeloid and lymphoid malignancies. Over-
expression inmice has been shown to cause both lymphoproliferative and
myeloproliferative disorders and, ultimately, a frank malignancy in these
compartments.29,30,94,95 Recently, some light was shed on the dual nature
of miR-125b in promoting hematologic malignancy in which miR-125b
was found to selectively induce either myeloid or lymphoid leukemia
based on the level and time course of miR-125b overexpression.31

miR-155 is another well-studied oncogenic miRNA in AML, and
overexpression correlates with a poor prognosis.43 However, evidence
has emerged that miR-155 may play a role as a tumor suppressor in
certain contexts.96 A recent study examined the role of miR-155 in
AML more closely to help resolve these opposing effects. The study
found that when overexpressingmiR-155 in 3 different murine models
of AML (HoxA9/Meis1, MLL-ENL, MLL-AF9) to an intermediate
level (;5- to 10-fold above control), miR-155 displayed oncogenic
function, leading to increased proliferation and enhanced colony-
forming potential.97 This was in contrast to miR-155 high levels (.10-
fold above control), in which miR-155 acted as a tumor suppressor by
repressing colony formation and proliferation, establishing a dose-
dependent effect of miR-155 in these AML mouse models. The study
did confirm that the intermediate miR-155 expression levels were a
better representation of what was seen in their pediatric AML data set
(increased;one- to sevenfold), values that were consistent with miR-
155 expression in other AML data sets,12,45 suggesting that miR-155
likely has a predominately oncogenic effect in humanAML. The study
highlights the importance of considering the level of expression in
various model systems when studying miRNAs in AML.

5p vs 3p transcripts

A long-standing question regarding miRNAs is the significance of
differential use of 5p vs 3p miRNA transcripts. 5p and 3p miRNAs are
encoded by the same genomic region and are both contained within the
initial transcript andmaturemiRNAduplex before 1 of them is chosen as
the active or guide strand (miR) and the other as the passenger strand
(miR*). The passenger strand is then typically degraded and traditionally
thought not to have a functional role. Interestingly, the 2miRNA strands
each have unique seed sequences and therefore do not share the same

mRNA target spectrum. This means that the biological processes and
pathways being regulated by any given pri-miRNA transcript could be
vastly different depending on the selection of either the 5p or 3p strand as
the guide. There are several examples of 5p and 3p transcripts from the
same duplex having distinct biological functions.98,99

In a small percentage of cases, the passenger strand can be stabilized
at the same level as the active strand, and may even exhibit important
physiological function in myeloid cells.100 A recent report identified a
specific passenger strand, miR-9*, that is not detectable in normal
myeloid cells but is expressed in 59% of AML cases, and expression
levels correlated with prognosis.101 This group also found that miR-9*
expression levels had prognostic value, because patients with high
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miR-9* expression vs low expression were associated with positive
patient outcome. Although the mechanisms behind passenger strand–
retained expression are still largely unknown, there is some evidence that
posttranscriptional modifications to the RNA duplex and differential
expression of various RISC components could play an important role in
strand selection.102,103 Whether these processes are dysregulated in
AML remains to be determined.

A variety of miRNA sources and noncanonical targeting

Although the traditional dogma of miRNA biology states that miRNAs
are encoded from their own genes, go through a distinct processing
pathway, and then repressmRNAtargets viabinding the39UTR, there is
mounting evidence that this canonical biogenesis pathway might not be
exclusive. It is now understood that thematuremiRNA can come from a
variety of sources, including from the5por 3p transcript, longnoncoding
RNAs (lncRNAs),104 small nucleolar RNAs,105,106 or spliced from
introns107 (Figure 3). Identifying and characterizing miRNAs generated
from these nontraditional sources may be challenging, but it is key to
comprehensively understanding the breadth of small RNAs in AML.

Functional effects exhibited by miRNAs are often attributed to a
handful of targets predicted by seed sequence complementarity in the 39
UTR. But miRNAs can also bind and repress targets without predicted
binding sites in their 39 UTRs, referred to as noncanonical targets.
Researchers found that when they pulled down the RISC complex to
identify mRNA targets loaded in an miR-155–specific manner,;40%
of the targets identified were noncanonical targets.108 This was
explained, in part, by laxity in the seed matching of miRNAs and
mRNA 39UTRs but could also be explained by the concept of
isomiRs,which aremiRNAs transcribed from the samegenebut having
different mature miRNA sequences, found extensively in a murine
model of leukemia.109 These variants are a result of posttranscriptional
modifications, including “errors” in miRNA processing, nucleotide
addition to the 39 end, and nucleotide substitution.110,111 Beyond
isomiRs, there is also someevidence thatmiRNAscanbind topromoter
regions of DNA,112 59 UTRs,113 the mRNA coding sequence,114,115

and even proteins.116 Thus far, the evidence for noncanonical targeting

playing a functional role in AML is lacking, but it could be a more
prominent mode of miRNA function than we realize.

Transfer of miRNAs in exosomes alters leukemic phenotypes

Recently, miRNAs have been found within extracellular vesicles,
including exosomes that are produced by the multivesicular body
pathway.117 Both primary and malignant cells can release miRNAs in
exosomes, which can be taken up by certain recipient cells where they
deliver their miRNA cargo in a functionally relevant manner.118,119

Although evidence for the functional role of exosomally transferred
miRNAs inAML is somewhat limited, preliminary studies indicate this
could be a paradigm-shifting field of study.

Early work showed that both primaryAML cells andAML cell lines
do in fact release exosomes containing miRNAs.120 Moreover, these
exosomes contain anmiRNApopulation that is compositionally distinct
from the miRNA population of the host cell,120 suggesting that there is
specificity with the loading of miRNAs into exosomes. Other functional
studies have revealed that miRNAs can be transferred in exosomes from
AML cells to both stromal and normal hematopoietic cells and alter
their function in a manner that promotes leukemic phenotypes.121,122

Interestingly, exosomes from extramedullary tumors have been shown
to alter the bone marrow niche, suggesting that miRNA-containing
exosomes can home to the bone marrow and alter function independent
of cell contact.121 In a recent study,122 authors found that exosomes
containing miR-150 and miR-155 released from AML cells suppressed
normal hematopoietic stem cell proliferation and differentiation through
inhibition of c-MYB, thus perpetuating a malignant phenotype by di-
rectly altering hematopoietic stem cell biology.

Such studies provide evidence that miRNAs secreted in
exosomes are a novel form of intercellular communication that
may play vital regulatory roles in suppressing normal hematopoi-
esis and disrupting the hematopoietic niche to promote leukemic
cell outgrowth (Figure 4). Analysis of the miRNA content of
exosomes has even been suggested as a novel biomarker for the
detection of AML, because blast-derived exosomes can be isolated
from circulation before the appearance of circulating blast cells in a
xenograft mouse model.74 Further study of the machinery required
for specific miRNA loading into exosomes and uptake by recipient
cells is critical to manipulating this system in a manner that will
better test the relevance of exosomal miRNAs in AML.

lncRNAs can interfere with miRNA function in AML

lncRNAs are a distinct class of noncoding RNAs much longer
than mature miRNAs (.200 nucleotides) that have been observed
to exhibit a variety of functions, but are typically involved in reg-
ulating gene expression,123 including miRNA genes.124 It has re-
cently been learned that lncRNA dysregulation in AML can alter
the function of specific miRNAs leading to skewed disease pheno-
types (Figure 5).

HOTAIRM1 is a lncRNA located in theHOXA genomic region
that was recently found to impact prognosis in various subtypes of
AML and was associated with a distinct miRNA expression
profile.125 Additional work on lncRNA HOTAIRM1 revealed that
it was acting to sequester autophagy-regulating miRNAs miR-20a,
miR-106b, and miR-125b, which affected the degradation of
PML-RARA in acute promyelocytic leukemia.126 Another lncRNA,
HOTAIR1, was also found to act as a miRNA sponge in AML,
competitively binding miR-193a, which leads to increased c-KIT
expression and ultimately confers a poor prognosis.127 Other ex-
amples of lncRNAs acting to competitively bind miRNAs in myeloid
malignancy have started to emerge.128,129

 lncRNA

1. miRNA
Production

2. miRNA
 Sponge

miR1 miR2 miR3

lncRNA
gene

miRNA
gene

3. Influence miRNA
 Transcription

nucleuscytoplasm

Figure 5. lncRNAs can interfere with miRNA function in AML. A picture depicting

the ways lncRNAs can affect miRNA biology in AML, including (1) lncRNAs serving

as a source for mature miRNA production, (2) lncRNAs acting as miRNA sponges,

binding miRNAs to prevent them from repressing their target mRNAs, and (3)

altering miRNA gene transcription.
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Asmentioned above, lncRNAs can provide a nontraditional source
formaturemiRNAproduction. It was recently learned that the pri-miR-
223 transcript is actually a functional lncRNA in AML that displays
tumor suppressive functions by sponging oncogenic miRNAs miR-
125a and miR-125b.104 Interestingly, while miR-223 is processed out
of this lncRNA, miR-223 and lncRNA-223 are expressed at different
levels, and these 2 noncoding RNAs have distinct functions in the
myeloid lineage. It is unclear how prevalent this phenomenon is
in AML, but there is additional evidence that lncRNAs can serve as
precursors for miRNAs in T-cell lymphomas.130,131 A better under-
standing of the ways in which lncRNAs regulate miRNAs in AML
could shed more light on their biology in this setting.

Conclusion

miRNAs are now widely regarded as playing a critical role in
AML pathogenesis. Specific miRNA expression profiles can help
classify subtype, determine prognosis, and predict response to
treatment in AML, but the use of miRNAs as biomarkers is not yet
routine practice. Therapies targeting miRNAs in AML have shown
promise in preclinical models but have not made the leap to human
clinical trials, which will require improvements in our delivery
methods.

The continued development of advanced genomic approaches,
including CRISPR-Cas9 technology, will allow us to more quickly
identify and efficiently study relevant miRNAs and their targets in
AML. Indeed, genome-wideCRISPR-Cas9 screening has been used to
identify functionally relevant miRNA-mRNA target pairs that regulate
AML cell line growth132 and will likely be extended to additional
preclinical models of AML.

ManycomplexitiesandmysteriesofmiRNAbiologyremain,but their
solutions will substantially improve our understanding of how miRNAs
function in AML. In some cases, novel aspects of miRNA biology have
already shed additional light on how AML cells are regulated, whereas

in other cases, emerging mechanisms have yet to be explored in AML
despite their potential to help us understand how miRNAs influence
this deadly leukemia. Addressing long-standing questions and exploring
emerging concepts of miRNA biology will provide important insights
into how miRNAs function in AML, and only through an improved
understanding of these mechanisms can we better exploit miRNAs
therapeutically to improve disease outcomes in the clinic.
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Abstract
Mammalian microRNA expression is dysregulated in human cancer. However, the func-

tional relevance of many microRNAs in the context of tumor biology remains unclear. Using

CRISPR-Cas9 technology, we performed a global loss-of-function screen to simultaneously

test the functions of individual microRNAs and protein-coding genes during the growth of a

myeloid leukemia cell line. This approach identified evolutionarily conserved human micro-

RNAs that suppress or promote cell growth, revealing that microRNAs are extensively inte-

grated into the molecular networks that control tumor cell physiology. miR-155 was

identified as a top microRNA candidate promoting cellular fitness, which we confirmed with

two distinct miR-155-targeting CRISPR-Cas9 lentiviral constructs. Further, we performed

anti-correlation functional profiling to predict relevant microRNA-tumor suppressor gene or

microRNA-oncogene interactions in these cells. This analysis identified miR-150 targeting

of p53, a connection that was experimentally validated. Taken together, our study describes

a powerful genetic approach by which the function of individual microRNAs can be

assessed on a global level, and its use will rapidly advance our understanding of how micro-

RNAs contribute to human disease.

Introduction
Acute Myeloid Leukemia (AML) is an aggressive hematologic malignancy that carries a poor
prognosis. In AML, hematopoiesis is disrupted by the overproduction of transformed myeloid
cells, leading to life-threating anemia, immunosuppression, and bleeding due to decreased nor-
mal blood cell production. A variety of genetic and epigenetic aberrations are thought to drive
leukemic phenotypes, including alterations in protein-coding genes and microRNAs.

MicroRNAs (miRNAs) are small non-coding RNAs that repress their target genes by bind-
ing to cognate 3’ UTR sites in their respective mRNA targets, preventing their translation and/
or triggering mRNA degradation. miRNA expression is highly dysregulated in AML [1, 2], and

PLOSONE | DOI:10.1371/journal.pone.0153689 April 15, 2016 1 / 11

a11111

OPEN ACCESS

Citation:Wallace J, Hu R, Mosbruger TL, Dahlem
TJ, Stephens WZ, Rao DS, et al. (2016) Genome-
Wide CRISPR-Cas9 Screen Identifies MicroRNAs
That Regulate Myeloid Leukemia Cell Growth. PLoS
ONE 11(4): e0153689. doi:10.1371/journal.
pone.0153689

Editor: Daniel T Starczynowski, Cincinnati Children's
Hospital Medical Center, UNITED STATES

Received: February 3, 2016

Accepted: April 3, 2016

Published: April 15, 2016

Copyright: © 2016 Wallace et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: The CRISPR-Cas9
library screen data have been deposited in NCBI’s
Gene Expression Omnibus under GEO: GSE71544.
All other relevant data are within the paper and its
Supporting Information files.

Funding: This work was supported by the University
of Utah Flow Cytometry Facility in addition to the
National Cancer Institute through Award Number
5P30CA042014-24. The content is solely the
responsibility of the authors and does not necessarily
represent the official views of the National Cancer
Institute or the National Institutes of Health. This work



 36 

certain miRNAs have been shown to modulate leukemia cell biology in vitro [3]. Furthermore,
the overexpression of a few specific miRNAs is sufficient to induce leukemic transformation in
mice [4, 5], whereas other miRNAs act as tumor suppressors via repression of known protein
oncogenes in hematopoietic malignancy [6, 7]. However, while the dysregulation of a number
of miRNAs has been implicated in leukemia, the functional impact of many miRNAs and their
putative targets on leukemic phenotypes remains unclear.

In this study, we took an unbiased, global loss-of-function approach to determine which
miRNAs, and which of their putative targets, are involved in MV4-11 cell line growth, a model
of myeloid leukemia. Because of the many caveats associated with previously described meth-
ods of miRNA loss-of-function screening that limits their use, we employed CRISPR-Cas9
technology [8–10]. Using this approach, each human miRNA and protein-coding gene in
MV4-11 cells was individually disrupted and the impact on cellular growth was determined.
Results point to a subset of evolutionarily conserved miRNAs that regulate cellular growth, and
have also determined the impact of predicted miRNA targets that mediate these effects on
tumor cell proliferation and survival. Furthermore, we have validated miR-150 as a critical pro-
moter of leukemic cell growth in our system through targeting of p53. Taken together, our
study demonstrates that CRISPR-Cas9 technology can be used to identify novel, functionally
relevant miRNAs in mammalian cell phenotypes, while simultaneously identifying putative
target proteins with opposing function. Our dataset also provides a resource describing the
effects of individual miRNAs and protein-coding genes on leukemic cell fitness.

Results

CRISPR-Cas9 screen identifies protein-coding genes that regulate AML
cell line growth
In order to determine which protein-coding genes and miRNAs regulate leukemic cell growth,
we utilized a genome-scale CRISPR-Cas9 library (lentiCRISPRv2 library) [11, 12] to disrupt
specific genes and evaluate the impact on cellular fitness over time. The lentiCRISPRv2 library
contained 3 unique single guide RNAs (sgRNAs) targeting each protein-coding gene, as well as
4 unique sgRNAs targeting each miRNA gene locus cloned into an all-in-one CRISPR-Cas9
construct (lentiCRISPRv2). MV4-11 cells, a human-derived AML cell line homozygous for the
FLT3-ITD mutation [13] and positive for the fusion protein MLL-AF4 [14], were transduced
with the lentiCRISPRv2 library at ~250X coverage and an MOI of 0.3 to favor single viral inte-
grations. An initial time point (TP0) was taken two days post-infection to assess library repre-
sentation. Cells were selected with puromycin (puro) for 7 days, at which point puro was
removed and growth was allowed to continue for an additional 16 days before a final time
point (TP23) was collected (Fig 1A). Following genomic DNA (gDNA) extraction from cells at
both time points and PCR amplification of each sgRNA sequence, we performed Illumina
sequencing to generate read counts for each gene-targeting lentiCRISPRv2 construct. In order
to accurately determine the impact of each gene on cell fitness over the 23-day time course, we
combined the normalized read counts of all lentiCRISPRv2 constructs targeting a given gene at
TP23 and expressed this as log2 fold change relative to the initial abundance of constructs at
TP0 using DEseq2. We calculated the average log2 fold change across three independently-per-
formed experiments to determine whether loss-of-function of each gene expressed in MV4-11
cells led to increased, decreased, or no change in cell growth over time using a cutoff p-value of
0.05. Furthermore, MV4-11 cells were transcriptionally profiled using RNA sequencing, and
only expressed genes were included in our analysis. Using this approach, we identified protein-
coding genes whose deletion significantly affected MV4-11 cell growth (Fig 1B and S1 Table).
Of the 19,052 protein-coding genes targeted in our screen, we found 715 genes whose deletion
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Fig 1. CRISPR-Cas9 loss-of-function screen identifies protein-coding genes, including known oncogenes STAT5A and BCL2, as important for
MV4-11 cell line growth. (A) Overall experimental design of lentiCRISPRv2 library screen. (B) Log2 Fold Change of each protein-coding gene targeted in
lentiCRISPRv2 library screen (x-axis) plotted against–Log10 P-Value (y-axis). Dotted line represents p-value = 0.05. (C) Fold change of STAT5A normalized
read counts in lentiCRISPRv2 library screen as compared to TP0. (D) Western blot of STAT5A using cellular extract from STAT5A-CR1, STAT5A-C2, or EV
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consistently resulted in increased cell numbers, which included many known tumor suppressor
genes (TSGs). We also identified 516 genes whose deletion reproducibly resulted in decreased
cellular growth, including a number of known oncogenes.

Signal transducer and activator of transcription 5A (STAT5A) was among the known onco-
genes that our screen identified as important for cell growth (Fig 1B and 1C). STAT5 is a key
signaling pathway that is inappropriately activated by FLT3-ITD mutations [15] and promotes
FLT3-ITD driven growth. Thus, we tested the efficacy of two distinct STAT5A targeting lenti-
CRISPRv2 constructs (STAT5A-CR1 and STAT5A-CR2) through individual transduction of
MV4-11 cells, and observed significantly reduced STAT5A protein levels by western blotting
two weeks post-infection (Fig 1D). We sequenced the STAT5A locus in individual clones trans-
duced with the STAT5A-CR1 vector and found that 80% of cells contained mutations at the
expected Cas9 cut site (Fig 1E). STAT5A-CR1 and STAT5A-CR2 cells grew at a slower rate
than cells transduced with a lentiCRISPRv2 empty vector (EV) control, confirming results
from our screen indicating that STAT5A is a promoter of FLT3-ITD+ leukemic cell growth
(Fig 1F and 1G). Similar results were obtained when we independently validated another
known oncogene, BCL2 (Fig 1H–1J).

Interestingly, we also found that cells with CRISPR-Cas9-mediated depletion of Argonaute
2 (Ago2), Dicer, or Drosha, important proteins in the miRNA processing pathway, displayed
reduced cell numbers over time, with p-values that trended towards, but did not reach, statisti-
cal significance (Data not shown). Because these genes are all in the miRNA biogenesis path-
way, we sought to investigate this observation further. Therefore, we created Ago2 (Ago2-CR1)
and Drosha (Drosha-CR1) deleted MV4-11 cell lines by using the lentiCRISPRv2 system to
deliver sgRNAs against each of these protein-coding genes, and deletion was confirmed via
western blotting (Fig 2A). These cell lines also demonstrated decreased cellular growth com-
pared to EV-infected control MV4-11 cells (Fig 2B), suggesting that microRNAs were playing
a net role in promoting cell growth in this context.

Critical role for specific, evolutionarily conserved miRNAs during MV4-
11 cell growth
We next evaluated which individual miRNAs were playing a functional role in regulating
MV4-11 cell growth. We found that 27 of the 197 evolutionarily conserved miRNAs targeted
in our screen had a positive or negative influence on cell numbers over time with an average
fold change p-value of less than 0.05 when the 3 biological replicate experiments were com-
bined (Fig 2C and S2 Table). Only mature miRNAs expressed in MV4-11 cells, as assessed by
RNA sequencing, were considered in our analysis. Interestingly, we found that fewer miRNAs
had a functional effect during our screen than protein-coding genes. This observation could be
explained by the fact that there are fewer miRNA vs protein-coding genes overall. Furthermore,
this finding may also be due to the observation that miRNAs typically display only partial
repression of their mRNA targets leading to modest changes in protein levels, whereas many
protein-coding genes encode essential proteins that regulate core cellular processes required
for growth and viability. miR-150, miR-155, and miR-182 were included in our top hits among

control infected MV4-11 cells with actin serving as load control. (E) DNA sequencing of the STAT5A locus from four representative STAT5A-CR1 infected
MV4-11 clones (C1-C4). STAT5A represents the wild type (WT) sequence. Black box indicates translational start site. Arrow represents predicted cleavage
site of Cas9 endonuclease. Red box identifies mutated region, with dashed lines indicating deleted nucleotides. (F, G) Growth curve for STAT5A-CR1 or
STAT5A-CR2 infected MV4-11 cells compared to EV control. (H) Fold change of BCL2 normalized read counts in lentiCRISPRv2 library screen as compared
to TP0. (I) Western blot of BCL2 in BCL2-CR1 or EV control infected MV4-11 cells with actin serving as load control. (J) Growth curve for BCL2-CR1 infected
MV4-11 cells compared to EV control. (B, C, H) Represents combined data from three independently performed lentiCRISPRv2 library infections. Data
represented as mean +/- SEM. P-values as indicated: *�0.05, **�0.01, ***�0.001, and ns p>0.05. See also S1 Table.

doi:10.1371/journal.pone.0153689.g001
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Fig 2. Identification of individual microRNAs, includingmiR-155, that regulate MV4-11 cell line growth. (A) Western blots of Ago2 and Drosha using
cellular extract from Ago2-CR1, Drosha-CR1, and EV infected MV4-11 cell lines with actin serving as load control. (B) Growth curve for Ago2-CR1 and
Drosha-CR1 infected MV4-11 cells compared to EV control. (C) Log2 Fold Change of each conserved microRNA gene targeted in lentiCRISPRv2 library
screen (x-axis) plotted against–Log10 P-Value (y-axis). Dotted line represents p-value = 0.05. Represents combined data from three independently
performed lentiCRISPRv2 library infections. (D) Schematic of miR-155 hairpin sequence as annotated in miRBase and sgRNA design of two independent
miR-155-targeting lentiCRISPRv2 constructs (155-CR1, 155-CR2). (E) Expression levels of miR-155 in MV4-11 cells infected with EV control, 155-CR1, or
155-CR2 lentiCRISPRv2 constructs determined by qPCR. Expression normalized to 5s. (F) DNA sequencing of five representative 155-CR1 and 155-CR2
infected MV4-11 clones (C1-C5). 155 represents the WT sequence. Arrow indicates predicted cleavage site of Cas9. Red box identifies the mutated region,
with dashed lines indicating deleted nucleotides. (G) Competitive growth curve of EV (GFP+), 155-CR1 (GFP+), or 155-CR2 (GFP+) infected MV4-11 cells
mixed ~1:1 with WTMV4-11 cells at time point 0. Y-axis = (%GFP+ cells at indicated time point)/(%GFP+ cells initial). Data represented as mean +/- SEM. P-
values as indicated: *�0.05, **�0.01, ***�0.001, and ns p>0.05. See also S2 Table.

doi:10.1371/journal.pone.0153689.g002
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conserved miRNAs that promote cell growth. Of relevance, all three have previously been
implicated in hematopoietic malignancy [16–18]. We also identified conserved miRNAs that
acted to repress cell growth in our screen, including miR-491 and miR-335.

miR-155 was identified as a top miRNA candidate that promoted FLT3-ITD+ cell growth
(Fig 2C). Interestingly, miR-155 is also the most highly dysregulated miRNA in primary
FLT3-ITD+ AML cells compared to FLT3-WT AML or normal CD34+ hematopoietic stem
and progenitor cells [1, 2], and has been implicated in regulating the survival and growth of
FLT3-ITD+ cells [19]. To independently validate miR-155, we used two distinct lentiCRISPRv2
constructs represented in our library to generate miR-155 deficient FLT3-ITD+ cell lines; one
targeting the mature miRNA region of the miR-155 hairpin sequence (155-CR1), and the other
targeting the loop (155-CR2) (Fig 2D). We found that cell lines carrying the 155-CR1 or
155-CR2 constructs had significantly decreased levels of mature miR-155 (Fig 2E). We further
analyzed the mutations being created by 155-CR1 and 155-CR2, and found that 15/16 clones
analyzed (8/8 of 155-CR1; 7/8 of 155-CR2) contained mutations at the predicted Cas9 cut site
(Fig 2F). Of these 15 mutations, we observed 12 deletions and 3 insertions, indicating that
NHEJ-mediated deletions were favored in these cells. 5 of the 7 clones analyzed that had been
transduced with 155-CR1 contained mutations spanning the seed sequence, the critical portion
of the mature miRNA that leads to target repression via complementary binding to the 3’ UTR.
In the case of 155-CR2, we conclude that deletion of the loop region leads to disrupted biogene-
sis of mature miR-155. Both 155-CR1 and 155-CR2 cells exhibited decreased competitive cell
growth compared to EV control cells (Fig 2G), thus confirming our library findings.

Anti-correlation functional profiling identifies relevant microRNA-target
pairs, including miR-150 and p53
We also used our dataset to identify miRNAs predicted to target known oncogenes and TSGs
(S3 Table). In the case of several representative oncogenes, their promotion of cell growth
inversely correlated with the impact of specific miRNAs with conserved binding sites in their 3’
UTRs (Fig 3A). Similar observations were made for a subset of known TSGs, where their nega-
tive effects on cell growth inversely correlated with the impact of specific miRNAs with con-
served binding sites in their 3’UTRs (Fig 3B). This approach, which we refer to as anti-
correlation functional profiling, is a powerful method that can be used to globally identify
miRNA-target gene pairs that may be functionally linked.

To test the ability of anti-correlation functional profiling to identify functionally relevant
miRNA-target pairs in our system, we tested the top association from our miRNA-TSG plot,
TP53 (p53) and miR-150. miR-150, the top miRNA hit in our lentiCRISPRv2 library screen,
has a conserved binding sequence in the 3’UTR of p53 (Fig 3C), and has been shown to be
directly targeted by miR-150 in luciferase reporter assays [20, 21]. We generated a lenti-
CRISPRv2 construct designed to cut near the mature miRNA coding sequence using one of the
miR-150 sgRNAs (150-CR1) represented in the lentiCRISPRv2 library (Fig 3D), and confirmed
that 150-CR1 containing MV4-11 cells displayed a significant decrease in miR-150 levels com-
pared to EV control cells by qPCR (Fig 3E). We also generated p53 deficient cell lines
(p53-CR1), again using a sgRNA from the lentiCRISPRv2 library cloned into a lentiCRISPRv2
construct. We confirmed that p53 protein levels were reduced in the p53-CR1 cells compared
to EV control cells (Fig 3F), and saw an increase in p53 protein level in the 150-CR1 cells com-
pared to EV control, indicating that miR-150 is indeed repressing p53 in MV4-11 cells. Finally,
we observed that p53-CR1 cells had a competitive growth advantage compared to EV infected
cells (Fig 3G), while 150-CR1 cells had a growth disadvantage. These results validate our anti-
correlation functional profiling approach to finding relevant miRNA-target pairs that regulate
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specific cellular phenotypes, and point to miR-150 repression of p53 as a significant pro-
growth and survival mechanism in at least some types of myeloid leukemias.

Fig 3. Anti-correlation functional profiling identifies relevant miRNA-target interactions, includingmiR-150 repression of p53, that regulate MV4-11
cell line growth. (A) Heat map indicating representative oncogenes whose loss leads to decreased cell growth according to Log2 Fold Change values from
lentiCRISPRv2 library screen (first column), and functionally anti-correlated miRNAs that are predicted to target each oncogene. Grey boxes indicate that the
miRNA is not predicted to bind the 3’UTR of the oncogene (NT = Not targeted). (B) Heat map indicating representative TSGs whose loss lead to increased
cell growth according to our Log2 Fold Change values from lentiCRISPRv2 library screen (first column), and miRNAs predicted to target each TSG whose
growth anti-correlated in library. Grey boxes indicates that the miRNA is not predicted to bind the 3’UTR of TSG (NT = Not targeted). (C) Schematic showing
miR-150 targeting of the p53 3’UTR. (D) Schematic of the miR-150 hairpin sequence as annotated in miRBase and sgRNA design of the miR-150-targeting
lentiCRISPRv2 construct (150-CR1). (E) Expression level of miR-150 in MV4-11 cells infected with EV control or 150-CR1 lentiCRISPRv2 constructs
determined by qPCR. Expression normalized to 5s. (F) Western blot of p53 in p53-CR1, 150-CR1, and EV control infected MV4-11 cell lines with actin
serving as load control. (G) Competitive growth curve of EV (GFP+), p53-CR1 (GFP+), or 150-CR1 (GFP+) infected MV4-11 cells mixed ~1:1 with WTMV4-
11 cells at time point 0. Y-axis = (%GFP+ cells at indicated time point)/(%GFP+ cells initial). (A, B) Only expressed protein-coding genes and microRNAs with
p-values <0.05 were analyzed. Data represented as mean +/- SEM. P-values as indicated: *�0.05, **�0.01, ***�0.001, and ns p>0.05. See also S3 Table.

doi:10.1371/journal.pone.0153689.g003
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Discussion
There are over 1000 different miRNAs in human cells, each with the potential to be functionally
relevant in diseases such as cancer. However, the use of large-scale loss-of-function screening to
identify functionally relevant miRNAs has been hampered by technical limitations, including the
inability of shRNAs to effectively block miRNA biogenesis and function. Most miRNAs that
have been studied to date have been assessed on an individual basis. While this has provided
important insights into the roles of those examined, many miRNAs have been left uncharacter-
ized. Consequently, there is a tremendous need for high throughput approaches to identifying
functionally relevant miRNAs in an unbiased manner to obtain a comprehensive list of miRNAs
that impact specific phenotypes. Here, we have successfully used CRISPR-Cas9 technology to
carry out a miRNA loss-of-function screen, and although further validation of individual hits is
ultimately necessary in more physiologically relevant systems, our results clearly demonstrate
that subsets of specific miRNAs act to positively or negatively control cellular proliferation and
survival in the system under study and provide a resource to guide future work.

Because miRNAs repress protein-coding target genes, data from our screen could be used to
predict functionally relevant miRNA-target gene interactions that regulate leukemic cell growth.
Using this anti-correlation functional profiling approach, we identified miRNAs with functions
that oppose a specific TSG or oncogene predicted to be a conserved target of each respective
miRNA. Further, we confirmed that miR-150 repression of p53 is a promoter of cell growth in our
system, which validates this approach. Although additional miRNA-target connections in this set-
ting require further validation, our results underscore the potential of this approach to identify
novel miRNA-target networks with relevance to cancer, and do so during a single experiment.

Our screen also identified miR-155, a miRNA that has been clinically connected to
FLT3-ITD+ AML, as a promoter of FLT3-ITD+ cell proliferation. To validate this result, we
confirmed that two independent sgRNAs against the human miR-155 hairpin sequence were
able to dramatically reduce production of mature miR-155. While one of these sgRNAs tar-
geted mature miR-155, including the seed sequence, the other targeted the loop region of the
hairpin. These results indicate that, although miRNA hairpin sequences are short, one can find
multiple CRISPR-Cas9 sites that can be used to disrupt miRNA biogenesis and subsequently
validate and study loss-of-function phenotypes.

Beyond regulating tumor cell proliferation and survival, miRNAs have been implicated in
other aspects of cancer, including drug resistance and metastasis [22, 23]. Our current
approach has the potential to be used to identify specific miRNAs and their targets that regu-
late these deleterious processes, and reveal key miRNA species that represent promising thera-
peutic targets in these contexts. Together, these approaches will provide a systematic view of
the molecular networks that coordinate malignant disease origin and subsequent outcomes
with a focus on functional relevance.

Material and Methods

Cells and tissue culture
MV4-11 cells were purchased fromATCC and used for all in vitro experimentation. Cells were cul-
tured in RPMI basedmedia supplemented with 10% FBS, and kept at 37°C with 5% CO2. Cells were
passaged every 2–3 days in order to stay within 1x105-1x106 cells/ml to maintain logarithmic growth.

CRISPR-Cas9 library screen and individual LentiCRISPRv2 infections
Genome-scale CRISPR Knock-Out (GeCKO) v2.0 was purchased from Addgene for application
in all lentiCRISPRv2 library screens, and performed as described in S1 Supporting Methods. In
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brief, cells were infected, selected with puromycin, DNA was extracted, the integrated sgRNAs
were then amplified and amplicons were subjected to DNA-Seq. Single CRISPR-Cas9 vector
infections were performed using a similar approach. Unique sgRNA sequences were cloned into
a lentiCRISPRv2 construct (a gift from Feng Zhang; Addgene plasmid #52961) containing either
a puro resistance or GFP selection marker. Sequences can be found in our supplemental methods
section. The CRISPR-Cas9 library screen data have been deposited in NCBI’s Gene Expression
Omnibus under GEO: GSE71544.

Growth curves and competition assays
Growth curves using STAT5A-CR1, STAT5A-CR2, Drosha-CR1, or Ago2-CR1 cells were per-
formed in 2 ml triplicate cultures in a 6 well plate. EV infected cells were grown in parallel as a
positive control. Cells were split to 100,000 cells/ml and counted daily via microscopy using a
hemacytometer and trypan blue exclusion until cells reached ~2x106 cells/ml, or the point
when cells no longer demonstrated logarithmic growth. Competitive growth assays were per-
formed by mixing miR-155-CR1, miR-155-CR2, p53-CR1, miR-150-CR1, or EV control cells
(all GFP+) at a 1:1 ratio with WTMV4-11 cells (GFP-), and measuring the percentage of GFP
+ cells over a 4-week time course via flow cytometry.

Quantitative PCR
Total RNA was isolated fromMV4-11 cell lines and mouse BM cells using the miRNeasy spin
column kit (Qiagen). Mature miR-155 or miR-150 was quantified using the miRCURY LNA
Universal RT microRNA PCR cDNA Synthesis Kit II (Exiqon) and ExiLENT SYBR Green
master mix kit (Exiqon) on a Light Cycler 480 PCR machine (Roche). Human or mouse miR-
155 LNA primers, human miR-150 LNA primers, and 5S rRNA loading control primers were
purchased from Exiqon.

Expression profiling
Total RNA was isolated using the miRNeasy spin column kit (Qiagen). Expression of small
RNAs and long RNAs in MV4-11 cells was performed using RNA sequencing as described fur-
ther in S1 Supporting Methods. Data have been deposited into GEO as GSE71544.

Western blot analysis
Total protein extracts fromMV4-11 cell lines were harvested using RIPA lysis buffer with pro-
tease inhibitors, and protein concentration was determined using a Bio-Rad Protein Assay Dye
Reagent kit. SDS-denatured protein was separated via gel electrophoresis and transferred onto
a nitrocellulose membrane. Protein was detected via overnight antibody staining with the fol-
lowing antibodies: STAT5A (Santa Cruz L-20), Drosha (Cell Signaling D28B1), Ago2 (Cell Sig-
naling C34C6), p53 (Santa Cruz FL-393), and Actin (Sigma A5441).

Statistics
Significant p-values were determined using an unpaired Student’s t-test, unless otherwise
noted. P-values for lentiCRISPRv2 library screen were determined using DEseq2. Quantitative
data are displayed as mean +/- SEM. P-values are shown as indicated: ��0.05, ���0.01,
����0.001, and ns p>0.05. All statistics were performed in either GraphPad Prizm6.0 or
Microsoft Excel. For calculation of p-values in growth curves, individual t-tests were performed
for the final time point.
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Key Points

• miR-155 promotes
myeloproliferation in the bone
marrow, spleen, and blood of
mice carrying the FLT3-ITD
mutation.

• miR-155 suppresses the IFN
response in FLT3-ITD1

mouse hematopoietic stem
and progenitor cells, as well
as FLT3-ITD1 human AML
cells.

FLT3-ITD1 acute myeloid leukemia (AML) accounts for ∼25% of all AML cases and is a

subtype that carries a poor prognosis. microRNA-155 (miR-155) is specifically overex-

pressed in FLT3-ITD1 AML compared with FLT3 wild-type (FLT3-WT) AML and is critical

for the growth of FLT3-ITD1 AML cells in vitro. However, miR-155’s role in regulating

FLT3-ITD–mediated disease in vivo remains unclear. In this study, we used a genetic

mouse model to determine whether miR-155 influences the development of FLT3-

ITD–induced myeloproliferative disease. Results indicate that miR-155 promotes FLT3-

ITD–induced myeloid expansion in the bone marrow, spleen, and peripheral blood.

Mechanistically, miR-155 increases proliferation of the hematopoietic stem and pro-

genitor cell compartmentsby reducing thegrowth-inhibitoryeffectsof the interferon (IFN)

response, and this involves targetingofCebpb.Consistentwith ourobservations inmice,

primary FLT3-ITD1 AML clinical samples have significantly higher miR-155 levels and a

lower IFN response comparedwith FLT3-WTAMLsamples. Further, inhibition ofmiR-155

in FLT3-ITD1 AML cell lines using CRISPR/Cas9, or primary FLT3-ITD1 AML samples

using locked nucleic acid antisense inhibitors, results in an elevated IFN response and

reduces colony formation. Altogether, our data reveal that miR-155 collaborates with FLT3-ITD to promote myeloid cell expansion in

vivo and that this involves a multitarget mechanism that includes repression of IFN signaling. (Blood. 2017;129(23):3074-3086)

Introduction

Acute myeloid leukemia (AML) is an aggressive hematological
malignancy that carries a poor prognosis. AML is a heterogeneous
disease with a variety of genetic aberrations, including translocations
andmutations, that can drive leukemic phenotypes. Themost common
genetic aberration in AML is a gain-of-function mutation in the
FMS-like tyrosine kinase 3 (FLT3) receptor. FLT3 internal tandem
duplication (ITD) in the juxtamembrane domain of the receptor occurs
in ;25% of AML diagnoses and confers a poor prognosis.1 FLT3 is
a cell surface protein that promotes the proliferation and survival of
the hematopoietic stem and progenitor cell (HSPC) compartments in
response to FLT3 ligand.2 However, FLT3-ITD mutations lead to
constitutive, ligand-independent activation of this receptor,3 conferring
a growth and survival advantage.

Although FLT3-ITD is a common mutation observed in human
AML and carries a poor prognosis, the mutation itself has not been
shown to independently drive leukemic transformation in vivo.Rather,
FLT3-ITD must collaborate with additional oncogenic mutations to
trigger hematopoieticmalignancy.4-6 IntroductionofhumanFLT3-ITD
mutations into mice triggers a myeloproliferative disease (MPD) that

resembles chronic myelomonocytic leukemia,7-9 but does not lead to
overt leukemia. Regardless, FLT3-ITD mouse models have proven
useful in studying FLT3-ITD biology in hematologic malignancies.

MicroRNAs (miRNAs) are small noncoding RNAs that repress
their target genes by binding to cognate sites in the 39 untranslated
region of their respective messenger RNA targets, thereby preventing
their translation and/or triggering messenger RNA degradation.
miRNA expression has been shown to be highly dysregulated in
AML, includingFLT3-ITD1AML,wheremicroRNA-155 (miR-155)
represents the most significantly overexpressed miRNA.10-16 Over-
expression of miR-155 alone in the hematopoietic compartment is
sufficient to cause amyeloproliferative phenotype17 resembling that
seen inmiceharboringFLT3-ITDmutations.Although the association
betweenFLT3-ITDandmiR-155overexpression hasbeenobserved in
primary human samples, and miR-155 has been shown to promote
FLT3-ITD1 cell line growth in vitro,18,19 the relationship between
FLT3-ITD and miR-155 has not been directly examined in vivo, and
the downstream effects of miR-155 overexpression are still being
deciphered.
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In this study,we used a FLT3-ITDgeneticmousemodel and FLT3-
ITD1 human AML cells to study the collaboration between the FLT3-
ITDmutation andmiR-155 in promoting hematologicmalignancy.We
found that miR-155 substantially contributes to FLT3-ITD–induced
MPD, and that knockdown of miR-155 in primary FLT3-ITD1 AML
samples reduces colony formation.Mechanistically,we show thatmiR-
155 inhibits the response to interferon (IFN) in these model systems,
and this involves direct repression of Cebpb. Interferon has previously
been shown to exhibit an antiproliferative effect on early hematopoietic
cells,20-23 including in our FLT3-ITD mouse model.24 Altogether, our
study identifies a specific role for miR-155 in promoting the expansion
ofmyeloid cells in FLT3-ITD–mediated disease in vivo, indicating that
inhibitionofmiR-155maybeapromisingnew therapeutic approach for
treatment of FLT3-ITD1 AML.

Methods

A more extensive description of the methods can be found in the supplemental
Methods, available on the BloodWeb site.

Animals

All mice (wild-type [WT], 1552/2, FLT3-ITD, and FLT3-ITD 1552/2) were on
a C57BL/6 background. FLT3-ITD mice were obtained from The Jackson
Laboratory (stock no. 011112) and were homozygous for the FLT3-ITD
mutation. Experimental procedures were performed with the approval of the
Institutional Animal Care and Use Committee of the University of Utah.

Flow cytometric analysis

Splenocytes andbonemarrow (BM)cellswere harvested frommice anddepleted
of red blood cells prior to staining with specific fluorophore-conjugated anti-
bodies. Antibody-stained cells were analyzed with a BD LSR Fortessa flow
cytometer (BD Biosciences), and data analysis was performed by using FlowJo
software.

Proliferation assay

FLT3-ITD and FLT3-ITD 1552/2 mice were injected intraperitoneally with
150mLof5-bromo-29-deoxyuridine (BrdU[BDPharmingen]) at a concentration
of 10mg/mL20 hours prior toBMharvest. BMcellswerefixed and stainedwith
an anti-BrdU antibody (BD Pharmingen) following the manufacturer’s in-
structions and analyzed via flow cytometry.

BM chimera reconstitutions

Total BM was harvested from FLT3-ITD and FLT3-ITD 1552/2 mice (45.21)
and mixed in equal ratios with BM fromWT (45.11) mice purchased from The
Jackson Laboratory (stock no. 002014). Myeloproliferative phenotypes were
evaluated at 3 months.

Expression profiling

Lineage-negative (Lin–), c-Kit1, Sca11 (LKS) cells were sorted by using flow
cytometry, and total RNA was isolated using the miRNeasy spin column kit
(Qiagen). RiboZero treatment/library preparation was performed at the
University of Utah DNA Sequencing Core Facility, followed by stranded
RNA sequencing by using Illumina HiSequation 2000 sequencing. Aligned
reads (miRBase) were used in DESeq2 (version 1.10.1), which normalizes
the signal and determines differential expression. The RNA sequencing data
has been deposited in the National Center for Biotechnology Information
Gene Expression Omnibus under GSE86526. Genes with multiple testing
corrected P values, .05 were used in Ingenuity Pathway Analysis and Gene
Set Enrichment Analysis (GSEA). Western blotting and quantitative reverse
transcription polymerase chain reaction (qRT-PCR)were carried out by using
standard procedures.

Cell culture and lentiCRISPR infections

Molm14 and MV4-11 cell lines were cultured in RPMI 1640 with fetal bovine
serum and antibiotics. LentiCRISPR infections (155-CR1 and empty vector
[EV]) were performed as described previously,19 and cells were passaged for at
least 10 days prior to analysis.

TCGA analysis

Mirbase20 miRNA expression data from IlluminaGA_miRNASeq (n 5 188)
and the RSEM gene expression data from IlluminaGA_RNASeqV2 (n5 173)
were downloaded from The Cancer Genome Atlas (TCGA) Web site for the
availableAMLsamples. Somatic variants for the 305mutated genes identified in
the 200 TCGA AML patients were downloaded from the cBioPortal Web site
(http://www.cbioportal.org/). AML samples were split into FLT3-ITD–positive
samples (FLT3-ITD) and FLT3 mutation–negative samples (FLT3-WT).
DESeq2 (version 1.10.1) was used to normalize the count data and detect dif-
ferently expressed genes or miRNAs.

Cebpb overexpression

Lin– c-Kit1 (LK) cells were sorted by flow cytometry and cultured in RPMI
1640–based medium with 50 ng/mL SCF. Cells infected with either an EV
control (pMIG II-EV) or Cebpb-overexpressing vector (pMIG II-Cebpb) were
passaged for 2 days in individual wells prior to RNA isolation.

Patient samples

Mononuclear cells from the peripheral blood of FLT3-ITD1AMLpatients at the
Huntsman Cancer Institute (University of Utah) were Ficoll-separated and used
for automated isolation of the CD341 fraction by using an autoMACS Pro
(Miltenyi Biotech). Cells were used for methylcellulose colony assays or
expanded in liquid culture to assessAnnexinVor gene expression by qRT-PCR.
Cellswere treatedwith 100nMLNA-155orLNA-CTRL (Exiqon).Donors gave
informed consent and studies were approved by the University of Utah
Institutional Review Board (no. 00045880).

Statistics

Significant P values were determined by using an unpaired Student t test unless
otherwisenoted.Quantitativedataaredisplayedasmean6 the standarderrorof the
mean (SEM).Pvalues are shown as indicated: *P# .05; **P# .01; ***P#.001;
****P # .0001; and not significant (ns) P . .05. The false discovery rate for
GSEAplotswas calculated by usingLimma.All other statisticswere performed in
either GraphPad Prism 6.0 or Microsoft Excel.

Results

miR-155 promotes expansion of myeloid cells in the spleen and

the blood of FLT3-ITD1 mice

We generated mice homozygous for the FLT3-ITDmutation (denoted
as FLT3-ITD) that also lack miR-155 (1552/2) to test the function
of miR-155 during FLT3-ITD–mediated pathogenesis in vivo
(Figure 1A-B). Of note, mice homozygous for the FLT3-ITDmutation
develop a chronic MPD during adulthood.7-9 At 4 to 6 months of
age, FLT3-ITD miR-1551/1 (FLT3-ITD), FLT3-ITD 1552/2, WT,
and1552/2micewere analyzed.Weobserved that FLT3-ITD–induced
splenomegaly was significantly reduced in the absence of miR-155
(Figure 1C), both in terms of overall spleen weight and cellularity
(Figure 1D). Spleens from FLT3-ITD animals showed extensive
infiltration ofmaturingmyeloid cells disrupting and replacing thewhite
pulp and had a significant reduction in the red pulp as well as normal
erythropoiesis (Figure 1E). Although various aspects of this disease
process were still observed in the FLT3-ITD 1552/2 group, their
severity was noticeably diminished compared with their FLT3-ITD
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counterparts. Flow cytometry on the spleen revealed a reduced total
number of CD11b1 Gr1– cells, primarily consisting of monocytes and
dendritic cells, as well as a decrease in the neutrophilic CD11b1 Gr11

population in the absence of miR-155 (Figure 1F; supplemental
Figure1A), indicating reducedsplenic infiltrationofmaturemyeloidcells.

In the peripheral blood, we observed a noticeable increase in white
blood cells in the FLT3-ITD mice compared with WT mice, which is
consistent with previous reports,7 and this increase was significantly
reduced in the FLT3-ITD 1552/2 group (Figure 1G; supplemental
Figure 1B). The decrease in leukocytosis in FLT3-ITD 1552 /2
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compared with FLT3-ITD mice was attributed to decreased mono-
cytosis and neutrophilia (Figure 1G). Although both FLT3-ITD and
FLT3-ITD 1552/2mice were anemic, this phenotype was less severe
when miR-155 was lacking. These findings demonstrate that deletion
of miR-155 abrogates several aspects of the myeloproliferative
phenotype observed in the spleen and blood of FLT3-ITD mice.

miR-155 drives myeloid cell production in the BM of FLT3-ITD

mice by increasing granulocyte-monocyte progenitors

To determine the source of miR-155–dependent myeloproliferation in
FLT3-ITD mice, we next analyzed the BM. FLT3-ITD BM cells
displayed increased expression of miR-155 compared with BM from
WTmice (Figure 2A), which is consistent with the clinical observation
of elevated miR-155 levels in FLT3-ITD1 patient samples.10,11 We
also observed decreased BM cellularity in FLT3-ITD 1552/2

compared with FLT3-ITDmice (Figure 2B). Flow cytometry revealed
that this decrease in BM cellularity of FLT3-ITD 1552/2 mice could
largely be attributed to reduced CD11b1 Gr11, and CD11b1 Gr1–

cells (Figure 2C). In contrast, we did not observe a difference in the
suppression of B2201 cells by FLT3-ITDwhenmiR-155 was lacking.
However, we did observe a slight decrease in Ter1191 cells in the BM
ofFLT3-ITD1552/2mice comparedwith FLT3-ITDmice, suggesting
that miR-155may play some role in supporting erythroid development
in the context of FLT3-ITD.

Next, we examined the impact ofmiR-155 on theHSPCpopulation
during FLT3-ITD–mediated disease. Total BM was isolated from the
femurs and tibias of FLT3-ITD and FLT3-ITD 1552/2 mice, and the
depicted flow cytometry gating strategy was used to assess distinct
HSPC populations (Figure 2D). There was no difference in the total
number of LKS cells (Figure 2E), a compartment consisting of the
earliest stem and progenitor cell populations.25 However, there was a
significant decrease in myeloid progenitor cells (Lin2, c-Kit1, Sca1–)
in FLT3-ITD 1552/2 compared with FLT3-ITD mice (Figure 2F).
This finding indicates that miR-155 is necessary for maintaining a
robust myeloid progenitor pool in this disease context. On further
analysis of myeloid progenitor subsets, we found that miR-155 is
required for the increase in granulocyte-monocyte progenitor cells
mediated byFLT3-ITD (Figure 2G; supplemental Figure 1C).Wealso
observed a subtle decrease in megakaryocyte-erythrocyte progenitor
cells in FLT3-ITD 1552/2 mice, again suggesting that miR-155 may
also be supporting erythroid development to some degree in
FLT3-ITD animals. Altogether, these findings reveal a role for
miR-155 in the myeloid progenitor compartment of the BM, where
miR-155 is required for proper myeloid expansion in response to
FLT3-ITD signaling.

miR-155 promotes the proliferation of the LKS and myeloid

progenitor compartments in FLT3-ITD mice

Afterfinding thatmiR-155 is critical for themyeloid-specific expansion
seen in FLT3-ITD BM, we next sought to determine how miR-155
regulates myeloid cell numbers in the BM by assessing proliferation

and cell survival. Using a BrdU incorporation assay, we found that
miR-155 promotes proliferation of both the LKS and myeloid
progenitor cell populations (Figure 3A). However, on analyzing
Annexin V levels, we did not see a miR-155–dependent difference in
LKS and myeloid progenitor cells undergoing apoptosis when
comparing FLT3-ITD and FLT3-ITD 1552/2mice (supplemental
Figure 2A), suggesting that miR-155 plays a more specific role in
promoting proliferation of these cells in this premalignant context.
These data indicate that miR-155 enhances FLT3-ITD–mediated
MPD by increasing the proliferation of LKS and myeloid progenitor
cells in the hematopoietic compartment.

A hematopoietic cell–intrinsic role for miR-155 during

FLT3-ITD–mediated MPD

Todetermine ifmiR-155 functions in a cell-intrinsicmanner to promote
FLT3-ITD–mediatedMPD,we generatedmice with BM chimeras and
assessed different disease parameters. Irradiated WT recipient mice
were reconstituted with equal cell numbers of WT (45.11) BM and
FLT3-ITD or FLT3-ITD 1552/2 (45.21) BM and were analyzed at
3 months postreconstitution (Figure 3B). Markedly increased spleno-
megalywas observed in theWT:FLT3-ITD comparedwithWT:FLT3-
ITD 1552/2 mice (Figure 3C), a finding that correlated with the
expansion of FLT3-ITD 45.21 cells, namely 45.21CD11b1myeloid
cells, comparedwith FLT3-ITD1552/2 cells (Figure 3D).WT:FLT3-
ITD animals also had increased BM cellularity compared with their
WT:FLT3-ITD 1552/2 counterparts, with an increased number of
45.21 white blood cells that included 45.21 CD11b1 myeloid cells
(Figure 3E). Both the FLT3-ITD and FLT3-ITD 1552/2 45.21 cells
dominated the BM engraftment at 3 months postreconstitution
(supplemental Figure 2B-C), and we did not observe significant
differences in the small number of remaining WT 45.11 BM cells
between groups (supplemental Figure 2D). These findings indicate
that miR-155 plays a hematopoietic cell–intrinsic role as it promotes
the expansion of FLT3-ITD1 myeloid cells.

miR-155 inhibits endogenous IFN signaling in LKS cells and

myeloid progenitors from FLT3-ITD mice

To decipher the mechanism by which miR-155 promotes pro-
liferation of the LKS and myeloid progenitor pool, we performed
RNA sequencing of sorted cells from the LKS compartment of
WT, FLT3-ITD, and FLT3-ITD 1552/2 mice. Interestingly, although
the gene expression profiles of FLT3-ITD and FLT3-ITD 1552/2

samples clustered away from the WT group, they also exhibited dis-
tinct gene expression patterns (Figure 4A). We then performed
Ingenuity Pathway Analysis and GSEA to determine which path-
ways were impacted according to the observed gene expression
differences. Overwhelmingly, the results pointed to the IFN response
as being highly upregulated in the absence of miR-155 (Figure 4B;
supplemental Figure 3A-B). IFN-a– and IFN-g–responsive genes,
as determined by GSEA, made up a large proportion of genes
that were significantly elevated in FLT3-ITD cells lacking miR-155

Figure 5. The TCGA data set of human AML samples and miR-155 mutant AML cell lines identify an inverse correlation between miR-155 levels and the IFN

response in FLT3-ITD1 AML. (A) Box plot showing MIR155HG and mature miR-155 expression levels in FLT3-WT and FLT3-ITD AML samples from the TCGA data set.

(B-C) GSEA of the TCGA data set identifies the IFN-a response and IFN-g response as hallmark differences between FLT3-ITD AML and FLT3-WT AML. (D) Expression

level of representative IFN-responsive genes from the TCGA data set in FLT3-WT and FLT3-ITD AML. (E) Relative expression of miR-155 in Molm14 and MV4-11 cells

infected with EV or 155-CR1 vectors determined by qRT-PCR. Expression normalized to 5S. n 5 3 biological replicates for each condition. (F-G) qRT-PCR analysis of

representative IFN-responsive genes in Molm14 (F) or MV4-11 (G) cells infected with either EV or 155-CR1 vectors. Expression normalized to L32, with the EV-infected cell

average set to a relative expression value of 1. n 5 3 biological replicates for each condition. (H) Western blot of STAT1 in MV4-11 cells infected with either EV or 155-CR1

constructs. Replicates represent cells grown in independent wells for 72 hours. ACTIN serves as the loading control. LentiCRISPR data represent at least 2 independent

experiments. Data represented as mean 6 SEM. *P # .05; **P # .01; ***P # .001; ns, P . .05. FDR, false discovery rate; NES, normalized enrichment score.
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(Figure 4C; supplemental Figure 3C-D). Interestingly, although we
found that the IFN response was moderately elevated in FLT3-ITD
compared with WT LKS cells (supplemental Figure 4A), it was
further increased in the FLT3-ITD 1552/2 group, suggesting that the
absence of miR-155 impairs the ability of FLT3-ITD to suppress the
antiproliferative effect of BM regulatory cytokines. We further
validated these RNA sequencing data using qRT-PCR to assay the
expression levels of IFN-responsive genes in the LKS (Figure 4D)
and myeloid progenitor compartments (Figure 4E), where we
found the same overall trend in increased expression of IFN-
responsive genes in the absence of miR-155, but only in the context
of FLT3-ITD (supplemental Figure 4B-C). Lastly, we evaluated
protein levels of STAT1, a master regulator of IFN responses, by
western blotting and observed a large increase in STAT1 expression in
FLT3-ITD LK cells deficient in miR-155 (Figure 4F). Altogether,
thesedata support amodelwherebymiR-155promotes proliferationof
the LKS and myeloid progenitor pool in FLT3-ITD–mediated
neoplasms by reducing the antiproliferative effects of IFN signaling
in these cells.

Analysis of the TCGA human AML data set identifies increased

miR-155 and decreased IFN signaling in FLT3-ITD1 AML

To extend our findings from an animal model of FLT3-ITD–mediated
disease into the clinical arena, we next analyzed sequencing results
from human AML samples deposited in TCGA.26 We sorted these
173 samples according toFLT3status, placingpatientswith duplications
in the FLT3 juxtamembrane domain in the FLT3-ITD group and
patients without mutations in FLT3 in the FLT3-WT group. We
found thatMIR155HG, themiR-155 host gene, andmature miR-155

were significantly increased in FLT3-ITD1AML samples compared
with FLT3-WT AML samples (Figure 5A), which is consistent with
previous reports.10-13 Next, we further analyzed these gene expression
data from the categorized FLT3-WT and FLT3-ITD groups using
GSEA and demonstrated that both the IFN-a and IFN-g responses
were significantly downregulated in FLT3-ITD1AML compared with
FLT3-WT AML (Figure 5B-C), revealing an inverse correlation with
miR-155 levels in FLT3-ITD1 AML. This reduction can also be ap-
preciated by examining the expression of representative IFN-responsive
genes between the 2 groups (Figure 5D).

To further examine the connection between miR-155 and the
IFN response, we deleted miR-155 in FLT3-ITD1 human AML
cell lines (MV4-11 andMolm14). Cells were transduced by using a
previously developed miR-155 targeting lentiviral CRISPR/Cas9
construct (155-CR1),19 and we subsequently observed significant
miR-155 knockdown in both Molm14 and MV4-11 cell lines
(Figure 5E). Reduced levels of miR-155 in Molm14 and MV4-11
cells resulted in significantly increased IFN signaling compared
with cells infected with EV control (Figure 5F-G). In addition, we
observed increased STAT1 protein levels in MV4-11 155-CR1
cells (Figure 5H). Together, these findings strongly correlate with
data in our FLT3-ITD mouse model.

Multiple direct miR-155 targets are increased in FLT3-ITD1

myeloid cells in the absence of miR-155, including the IFN

regulator Cebpb

To determine which of the direct targets of miR-155 are involved in its
regulation of FLT3-ITD–mediated disease, we first analyzed the
expression of established miR-155 targets in our LKS sequencing data
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set. Ship1, Pu.1, and Cebpb have all previously been shown by us and
others to be directly targeted by miR-15517,27 and may play important
miR-155–dependent roles inFLT3-ITDpathogenesis.18,28,29We found
increased expression of these targets in FLT3-ITD 1552/2 compared
with FLT3-ITD mice, with a statistically significant increase in Cebpb
(Figure 6A). In the human AML TCGA data set, we found that ex-
pressionofSpi1 (Pu.1), Inpp5d (Ship1), andCebpbwas lower inFLT3-
ITD1 AML, with Ship1 and Cebpb reaching statistical significance
(Figure 6B). Expression of these genes also inversely correlates with
the higher expression of miR-155 (supplemental Figure 5), suggesting
that they could be functional miR-155 targets in this disease setting.
Next, we sorted LK cells from FLT3-ITD and FLT3-ITD 1552/2mice
and evaluated protein levels of these miR-155 targets via western
blot. Elevated expression of all 3 of these proteins was observed in
FLT3-ITD1552/2vsFLT3-ITDmice (Figure 6C),which is consistent
with each of these being directly repressed by miR-155 in vivo. We
also observed higher transcript levels of these targets in our 155-
CR1–infected human FLT3-ITD1 cell lines (Figure 6D).

The miR-155 target Cebpb has previously been implicated in the
regulation of IFN signaling.30-32 To determine if elevated Cebpb levels
could increase the IFN response, we overexpressed Cebpb in sorted
LK cells (Figure 6E) and observed increased expression of IFN-
responsive genes (Figure 6F). This was also true in Cebpb-
overexpressing RAW264.7 cells, a murine myeloid cell line, treated
with recombinant type I and type II IFN (supplemental Figure 6). This
finding demonstrates that Cebpb is sufficient to induce the IFN
response in myeloid cells and supports a model whereby miR-155 re-
pression of Cebpb is involved in its ability to repress the IFN response
in myeloid cells.

We also examined the downstream effect of miR-155’s repres-
sion of Ship1, a known inhibitor of AKT activation.33 Consistent
with elevated Ship1 levels in FLT3-ITD 1552/2 cells, we observed
decreased AKT phosphorylation in the LK cells of FLT3-ITD 1552/2

mice compared with FLT3-ITDmice (Figure 6G). Taken together, this
finding indicates that miR-155works through amultitarget mechanism
that enables regulation of multiple relevant signaling pathways and
responses that define FLT3-ITD myeloid cell biology.

Inhibition of miR-155 in primary FLT3-ITD1 AML samples leads

to decreased colony formation and increased Stat1 expression

To assess the functional role of miR-155–mediated regulation of the
IFN response in primary FLT3-ITD1AML, we treated primary AML
samples (n 5 3, supplemental Table 1) with an LNA antisense
oligonucleotide targeting miR-155 (LNA-155) or a scrambled control
LNA oligonucleotide (LNA-CTRL) and assessed these cells for
changes in the expression of Stat1, as well as colony formation in
methylcellulose medium and Annexin V positivity. qRT-PCR con-
firmed miR-155 inhibition by LNA-155 at 100 nM (Figure 7A), and
this correlatedwith a reduction of colony formation (Figure 7B) and an
increase in apoptosis (Figure 7C). Consistent with data in our mouse
model, miR-155 inhibition in primary FLT3-ITD1 AML samples
correlated with increased expression of Stat1, Cebpb, and Ship1
(Figure 7D). These results provide further evidence that our findings in
mice extend to primary human FLT3-ITD1 AML cells.

Discussion

miRNA expression is highly dysregulated in FLT3-ITD1 AML, a
subtype of AML that confers a poor prognosis. Microarray and qRT-

PCR–based methods have shown that miR-155 is among the most
highly overexpressed miRNAs in FLT3-ITD1 AML.10-16 We further
substantiated these findings by analyzing the TCGA humanAML data
set, which contains sequencing data from 173 patients representing all
major subtypes of AML. Our retrospective analysis confirmed that
miR-155 was the most significantly upregulated miRNA in FLT3-
ITD1 AML compared with FLT3-WT AML.

From a functional perspective, miR-155 has been shown by our
group and others to be important for the growth of FLT3-ITD1 cells in
vitro.18,19 We recently identified miR-155 as a top growth-promoting
miRNA in a FLT3-ITD1 leukemic cell line via a genome-wide
CRISPR/Cas9 screen.19 Importantly, both FLT3-ITD and miR-155
overexpression are each sufficient to cause MPDs in mice.7-9,17

However, the impact of endogenousmiR-155 onFLT3-ITD–mediated
disease in vivo had not been previously explored. In the current study,
we crossed FLT3-ITD and miR-1552/2 mice to determine if these 2
molecules collaborate to induceMPD. Indeed, we found that miR-155
is critical for several aspects of disease development in FLT3-ITD
mice, including myeloid expansion in the BM, spleen, and peripheral
blood. Further analysis of the hematopoietic compartment revealed that
miR-155 promotes disease in FLT3-ITD mice by increasing pro-
liferation of the LKS and myeloid progenitor compartments.

Through RNA sequencing of the LKS compartment, we identified
the IFN response as being substantially increased in FLT3-ITD 1552/2

compared with FLT3-ITD mice. We also demonstrated that human
FLT3-ITD1 AML samples had increased miR-155 and a decreased
IFN gene expression signature when compared with FLT3-WT AML,
which is consistent with our mouse data. It is well established that
IFN signaling has growth-inhibitory effects on the hematopoietic
compartment,20-23 and inhibition of IFN signaling was recently dis-
covered as a novel mechanism by which FLT3-ITD1 cells can avoid
the antiproliferative effects of IFN-a and IFN-g.24 Our results indicate
that miR-155 is clearly involved in this mechanism that subverts
the antiproliferative effects of IFN in this setting. Our findings are also
in line with a recent study demonstrating that miR-155 promotes
proliferation of CD81 T cells through inhibition of IFN signaling,34 in-
dicating that this mechanism is used bymultiple cell types in vivo. Taken
together, this work provides novel insights into the role of miR-155 in
FLT3-ITD–mediateddisease,where it helpsHSPCs to escape thegrowth-
inhibitory effects that are typically conferred by regulatoryBMcytokines.

A number of studies have found that miR-155 can repress the
expression of selected relevant targets, such as Ship1, Cebpb, and Pu.1,
within FLT3-ITD1AML cell lines.18,28,29 Furthermore, we found that
bothShip1andCebpbweredecreasedat theRNAlevel inFLT3-ITDvs
FLT3-WT AML patient samples. To better understand our in vivo
phenotype, we examined the regulation of these targets by miR-155
in sorted LKS and myeloid progenitors and found that these targets
are indeed derepressed in early stem cell compartments genetically
deficient for miR-155. Of note, Pu.1 and Cebpb are well-known
myeloid commitment genes,35 and reduction in either Ship1 or Pu.1
levels can give rise to myeloproliferation,27,36 which further supports
the functional relevance of their regulation by miR-155 in this context.
In the case of Cebpb, it has been previously shown to promote the
IFN response,30-32 providing a connection between miR-155 and the
repressionof IFN-responsivegenes. Indeed,we found thatCebpbcould
enhance the IFN response in murine myeloid cells, including LK cells.
We also showed that AKT was less activated in the LK cells of FLT3-
ITD1552/2mice, likelydue to increased levels of themiR-155 target and
knownAKT inhibitor, Ship1. Taken together, our data indicate thatmiR-
155 acts on multiple targets, suggesting a complex mechanism of action
that could involve both IFN signaling–dependent and –independent
mechanisms. Sorting out the individual contributions of these targets to
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the IFNresponse and/or additionalmechanismsat play in this contextwill
be a fascinating future area of study.

Our current results, coupled with other clinical observations
that miR-155 upregulation correlates with the FLT3-ITD1 subtype of
AML that confers a negative prognosis, provide a physiologically
relevant context where miR-155 plays a deleterious role in the myeloid
compartment in vivo. We also demonstrate a functional role for miR-
155 in FLT3-ITD1 AML, because inhibition of miR-155 reduced
survival and increased apoptosis in primary FLT3-ITD1 AML
samples, and this correlated with increased expression of Stat1,
Cebpb, and Ship1. Taken as a whole, the current study provides
strong evidence that miR-155 promotes FLT3-ITD–mediated
MPD, at least in part, through its regulation of IFN signaling in
the early hematopoietic compartment and argues that therapeutic
targeting of miR-155 in FLT3-ITD1 AML may warrant serious
consideration.
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Since the discovery of miRNAs as a novel class of short noncoding RNAs nearly 

two decades ago (1), innumerable studies by researchers across the globe have 

established miRNAs as playing an integral role in hematopoietic development and 

function. Perhaps it comes as no surprise that miRNA dysregulation in various 

hematopoietic lineages can have deleterious effects, including contributing to the 

development and progression of hematologic malignancies (2,3). It is now recognized 

that miRNAs can act as either oncogenes or tumor suppressors in a number of blood 

cancers, including AML (4). 

AML is a deadly hematologic malignancy that leads to over 10,000 deaths each 

year in the United States alone. One subtype of AML with a particularly poor prognosis 

is AML containing gain-of-function mutations in the FLT3 receptor, known as FLT3-ITD 

mutations (5). A number of groups have previously shown that the miRNA expression 

profile is highly dysregulated in FLT3-ITD+ AML compared to FLT3-WT AML (6,7). 

However, which of these dysregulated miRNAs was functionally impacting disease 

progression remained unclear. 

 

CRISPR-Cas9 screening to identify functionally relevant miRNAs in  

FLT3-ITD+ AML 

To address this question, we utilized a genome-wide CRISPR-Cas9 screen to 

functionally assess which miRNAs were regulating cell growth of FLT3-ITD+ AML 

cells in vitro. First described by Shalem et al. in 2014 (8), the CRISPR-Cas9 library used 

in this study contained four unique guide sequences for every human miRNA gene, and 

three unique guide sequences to each protein-coding gene. The design of this library 
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allowed us to functionally screen both miRNAs and their putative mRNA targets 

simultaneously. Previous screening techniques did not afford researchers the ability to 

identify functional miRNA-mRNA target pairs in one high-throughput process, making 

our study one of the first of its kind. 

Through the use of this innovative screening technology, we were able to identify 

miRNAs that both promoted and prevented the growth of a FLT3-ITD+ AML cell line in 

vitro (9), explained at length in Chapter 3. miR-150 was identified as our top candidate 

promoting the growth of these cells. We also analyzed the impact of miR-150’s predicted 

mRNA targets on cellular growth, which led to the discovery of the tumor suppressor p53 

as a novel target of miR-150 in this context. This miRNA-mRNA interaction has been 

identified in other types of cancer (10,11), but never before in AML. The relevance of 

miR-150 in clinical FLT3-ITD+ AML remains to be determined, but our study suggests 

that inhibition of miR-150 could have potent effects on the growth of cells containing this 

deadly mutation.  

Beyond the individual miRNA candidates identified in this CRISPR-Cas9 screen, 

we made other interesting observations that could have broad impacts on future miRNA 

research. One of the most surprising results from this dataset was that levels of miRNA 

expression did not necessarily correlate with the functional significance elicited by the 

CRISPR-mediated knockdown of any given miRNA. For instance, we found that miR-

155 was expressed at almost 10x greater level than miR-150 in our cell line of choice. 

However, knockdown of miR-150 had a slightly greater impact on the growth of these 

cells compared to miR-155. This result is most likely explained by the expression level 

and functional significance of the miRNA’s target mRNAs. This finding suggests that 
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only studying miRNAs based on level of expression may not always be appropriate, and 

that other factors, such as predicted targets, should also be considered. 

Our screen also supports a growing body of literature suggesting that miRNAs 

exert their effects through repression of multiple targets (12). While examining the effect 

of a particular miRNA on cell growth in this system, we found that knocking down many 

predicted targets had the opposite effect on growth, thus suggesting that a given miRNA 

has a number of putative targets that could potentiate its observed effect on growth. 

Although we did not individually validate these observations, we believe that this 

CRISPR-Cas9 screening system would allow for quick identification of functionally 

relevant miRNA targets, providing a more efficient system to study the downstream 

effects of miRNA dysregulation. 

While this study provided evidence for the effectiveness of genome-wide 

CRISPR-cas9 screening to identify functionally relevant miRNAs in a given system, 

further optimization and more robust screens are needed to demonstrate the power of this 

approach. Future studies could incorporate multiple cell lines, or potentially even primary 

samples, to identify miRNAs regulating any number of AML cellular phenotypes, 

including proliferation, cell death, response to treatment, or drug resistance. Indeed, these 

efforts are already underway. Since the publication of our work in 2015, other groups 

have utilized similar methods to screen for genes that could affect the development of 

drug resistance in AML, including FLT3-ITD+ AML (13,14). While these studies did not 

specifically analyze noncoding RNAs, the same techniques could easily be applied to 

miRNA research. 
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miR-155 promotes myeloid expansion in a mouse model of  

FLT3-ITD-induced MPD 

Our CRISPR-Cas9 screen also identified miR-155 as a top candidate promoting 

FLT3-ITD+ AML cell growth (9). We verified this result via knockdown of miR-155 

with two independent CRISPR-Cas9 lentiviral constructs, confirming that inhibiting miR-

155 expression could decrease the expansion of FLT3-ITD+ AML cells in vitro. Other 

groups have produced similar findings through alternate means of miR-155 knockdown 

(15,16). These findings correlate nicely with clinical data showing that miR-155 is highly 

overexpressed specifically in FLT3-ITD AML (6,15-17). However, whether miR-155 

played a role in FLT3-ITD-driven myeloid malignancy in vivo and the downstream 

effects of miR-155 overexpression in the context of FLT3-ITD mutations was still 

undetermined. 

We crossed mice homozygous for the FLT3-ITD mutation with miR-155 

knockout mice to determine the specific role of miR-155 in the context of FLT3-ITD. 

FLT3-ITD miR-155-/- mice exhibited decreased myeloid expansion in the bone marrow, 

reduced splenomegaly, and decreased peripheral blood monocytosis and neutrophilia 

compared to their FLT3-ITD miR-155+/+ counterparts, thus indicating that miR-155 was 

crucial in promoting FLT3-ITD-mediated myeloproliferation (18). When examining the 

stem cell compartment, we found that miR-155 deficient animals had fewer myeloid 

progenitors than FLT3-ITD miR-155+/+ mice. This phenotype was attributed to miR-

155’s role in promoting proliferation of the HSPC and myeloid progenitor cell 

compartments in the bone marrow. These findings confirmed that miR-155 was 

promoting FLT3-ITD-mediated disease in vivo. 
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To better understand the downstream effects of miR-155 overexpression in the 

context of FLT3-ITD, we performed RNA sequencing on the HSPC population in FLT3-

ITD 155+/+ mice and FLT3-ITD 155-/- mice. These data revealed that mice lacking 

miR-155 had an increased response to interferon, known to have a growth-suppressive 

effect on hematopoietic cells (19,20). These findings corresponded with human AML 

data from the The Cancer Genome Atlas database, where we found that FLT3-ITD+ 

AML samples, which have increased miR-155 expression, had a decreased interferon 

signature compared to FLT3-WT AML samples. We also found that Stat1, the master 

activator of interferon responses, increased when knocking down miR-155 levels in both 

FLT3-ITD+ AML cell lines and primary patient samples, further confirming this result.  

This finding that miR-155 represses the interferon response in the context of 

FLT3-ITD was initially surprising. Inflammatory signals initiate miR-155 signaling under 

a normal physiologic conditions (21). miR-155 then represses anti-inflammatory targets 

that inhibit cellular proliferation and survival (22,23). FLT3-ITD aberrantly activates a 

number of the same inflammatory pathways that drive miR-155 expression. This suggests 

that FLT3-ITD could be coopting these inflammatory pathways in a cell-intrinsic manner 

to drive increased miR-155 expression, thus leading to increased proliferation and 

survival of these leukemic cells. This proinflammatory role for miR-155 in most 

immunological contexts is at odds with our finding that miR-155 inhibits a well-known 

inflammatory pathway, interferon signaling. However, other groups have also found 

miR-155 repressing interferon signaling in cells of hematopoietic origin (24,25), further 

confirming our observation. We attributed miR-155’s repression of mRNA target Cebpb, 

a transcription factor known to activate interferon signaling (26,27), as being responsible 
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for this decreased interferon signature in FLT3-ITD+ AML cells. However, there is also 

the possibility the miR-155 could be repressing Stat1 directly through noncanonical 

targeting, as the Stat1 3’UTR was found to be loaded into the RISC complex in a miR-

155-depending manner (28). Nonetheless, this is an interesting result that may provide a 

link between dysregulated inflammatory pathways and cancer. 

 A number of putative miR-155 targets in the HSPCs of FLT3-ITD mice were 

upregulated in the absence of miR-155, including Pu.1, Ship1, and Cebpb. Pu.1 and 

Cebpb are known regulators of myeloid development (29), and as mentioned above, we 

linked Cebpb to miR-155’s repression of interferon responses. Ship1 is a known 

phosphatase that downregulates AKT activation and whose loss leads to a MPD in mice 

(30). Indeed, we found that Ship1 inhibition by miR-155 led to increased AKT activation, 

and thus increased proliferation and survival of myeloid progenitor cells. These findings 

suggest a multitarget effect of increased miR-155 expression in the context of FLT3-ITD.  

 

miR-155 as a novel therapeutic target in FLT3-ITD+ AML 

These findings suggest that miR-155 inhibition in FLT3-ITD+ AML could 

warrant consideration as a novel therapeutic approach. To this end, we treated primary 

FLT3-ITD+ AML samples with miR-155 inhibitors and observed increased apoptosis 

and decreased colony forming potential. This corresponded with our findings that 

CRISPR-mediated knockdown of miR-155 in FLT3-ITD+ AML cell lines decreased 

cellular growth, which was confirmed independently by Gerloff et al. (15). This begs the 

question if miR-155 inhibition could be used as combination therapy for FLT3-ITD+ 

AML. The most current targeted therapy for treatment of this deadly disease uses FLT3-
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ITD-specific tyrosine kinase inhibitors (TKIs). One such inhibitor, Midostaurin, passed 

clinical trials within the last 12 months (31), and another, Quizartinib, may be shortly 

behind (32).  

One consideration when proposing miR-155 therapy in combination with a FLT3-

specific TKI is that these two drugs may be targeting the same pathway. Two 

independent groups have found that inhibition of FLT3 or downstream activators Stat5 

and NFkB will decrease miR-155 expression (15,16); however, others claim that 

increased miR-155 expression occurs independently of FLT3-ITD (33). The clinical 

expression data and data from our FLT3-ITD mouse model suggest that FLT3-ITD must 

be driving increased miR-155 expression. This would suggest that FLT3-ITD inhibition 

alone would lower miR-155 expression, potentially decreasing the efficacy of miR-155 

inhibitors as therapy. However, this may also mean that a combination therapy may 

decrease the risk of developing drug resistance during FLT3-ITD+ AML treatment, 

which is a serious concern in managing this disease (34). Adding miR-155 inhibition in 

combination with FLT3-specific TKIs will be of great interest and is certainly a future 

direction of this project. 

 

The role of miR-155 in FLT3-ITD-driven leukemogenesis 

 Our studies demonstrate an interesting relationship between miR-155 and FLT3-

ITD mutations, where FLT3-ITD drives miR-155 expression to increase 

myeloproliferation. Although FLT3-ITD has been associated with human AML and is 

considered a poor prognostic factor, the mutation itself has not been shown to 

independently drive leukemic transformation, but rather leads to an MPD similar to a 
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chronic myelomonocytic leukemia (35,36). Instead, FLT3-ITD is thought to be one of 

“multiple hits” and must collaborate with other oncogenic mutations in order to cause 

hematopoietic malignancy. However, these additional hits are not well understood and 

are just now being identified. An interesting question to explore will be if a mutation that 

increases miR-155 expression could collaborate with FLT3-ITD to cause leukemic 

transformation. Experiments investigating this hypothesis are currently ongoing. 

 There is some evidence of other mutations common in AML causing leukemic 

transformation when combined with FLT3-ITD in mouse models, including mutations in 

Tet2, Dnmt3a, and Npm1 (37-39).  Interestingly, when analyzing miR-155 expression 

across all the common mutations found in AML using the TCGA database, we found that 

miR-155 expression was significantly increased in FLT3-ITD and NPM1 mutations 

(NPMc). A future direction in our lab is to generate a mouse model of FLT3-ITD+ 

NPMc+ AML and determine whether miR-155 is necessary for the development of 

AML. Other groups have examined the necessity of miR-155 for leukemic transformation 

in other mutational models of disease, including Hoxa9/Meis1-driven and MLL-

rearranged AML (40,41).  These groups found that miR-155 was not required for 

leukemogenesis, but did find that the leukemia was less severe in the absence of miR-

155. This suggests that miR-155 was not a driver of AML in their model, but was 

certainly acting as a disease modifier. However, miR-155 expression in these models was 

not as dramatically increased as in FLT3-ITD+ NPMc+ AML, thus suggesting it could 

play a more significant role and perhaps act as a driver in this scenario. As highlighted in 

Chapter 2, varying levels of miR-155 expression in a number of AML models appears to 

have drastically different effects on the disease. Increased miR-155 expression in our 
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proposed model may be indispensable for AML transformation, or at the very least, the 

absence of miR-155 may delay leukemogenesis.  

 

Concluding remarks 

 In conclusion, the findings described above and the work performed 

independently by other groups have now shown a clear role for miR-155 in promoting 

disease severity in FLT3-ITD+ AML. Future work by our lab will aim to further 

understand whether increased miR-155 expression is necessary for FLT3-ITD-driven 

leukemic transformation, or whether miR-155 is more of a disease modifier in FLT3-

ITD+ AML. Regardless of the answer to this question, it is clear that further studies are 

clearly needed to investigate the therapeutic efficacy of miR-155 inhibition in this 

disease. Indeed, efforts by our group and others are being made in this area (42).  

Beyond studying miR-155 in FLT3-ITD+ AML, the results of our CRISPR-Cas9 

screen suggests that there could be a number of other miRNAs that regulate AML cell 

growth. This result is supported by over a decade of research showing that a variety of 

miRNAs clearly regulate nearly every aspect of the AML disease process, as highlighted 

in Chapter 2. Any one of these miRNAs could potentially be targeted for therapeutic 

benefit. Broadening this screening approach to include a number of different AML cell 

lines or applying it to primary patient samples may help identify miRNAs that regulate 

AML growth across a landscape of driver mutations, which could hold tremendous 

promise therapeutically. CRISPR-Cas9 screening could also be used to examine other 

aspects relevant to AML treatment, including identification of miRNAs that could be 

therapeutically targetable in combination with known AML chemotherapeutic agents, or 
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that could decrease the ability of AML cells to acquire drug resistance. Whether miRNA 

inhibition becomes a legitimate option for the treatment of AML may ultimately come 

down to improved delivery methods for miRNA-based therapeutics. Nonetheless, the 

findings described in this dissertation provide hope for a novel therapeutic approach 

targeting miRNAs in AML, a disease whose treatment often feels hopeless in the clinic.  
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