
AN INTEGRATED COMPILER AND RUNTIME

FRAMEWORK FOR SPARSE MATRIX CODES

by

Anand Venkat

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

December 2016



Copyright c© Anand Venkat 2016

All Rights Reserved



The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Anand Venkat

has been approved by the following supervisory committee members:

Mary Hall , Chair(s) 9 June 2016
Date Approved

Michelle Strout , Member 9 June 2016
Date Approved

Matthew Might , Member 9 June 2016
Date Approved

Ganesh Gopalakrishnan , Member 9 June 2016
Date Approved

John Regehr , Member 30 Nov 2016
Date Approved

by Ross Whitaker , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda , Dean of The Graduate School.



ABSTRACT

Sparse matrix codes are found in numerous applications ranging from iterative numer-

ical solvers to graph analytics. Achieving high performance on these codes has however

been a significant challenge, mainly due to array access indirection, for example, of the

form A[B[i]]. Indirect accesses make precise dependence analysis impossible at compile-

time, and hence prevent many parallelizing and locality optimizing transformations from

being applied. The expert user relies on manually written libraries to tailor the sparse

code and data representations best suited to the target architecture from a general sparse

matrix representation. However libraries have limited composability, address very specific

optimization strategies, and have to be rewritten as new architectures emerge.

In this dissertation, we explore the use of the inspector/executor methodology to ac-

complish the code and data transformations to tailor high performance sparse matrix

representations. We devise and embed abstractions for such inspector/executor trans-

formations within a compiler framework so that they can be composed with a rich set of

existing polyhedral compiler transformations to derive complex transformation sequences

for high performance. We demonstrate the automatic generation of inspector/executor

code, which orchestrates code and data transformations to derive high performance rep-

resentations for the Sparse Matrix Vector Multiply kernel in particular. We also show how

the same transformations may be integrated into sparse matrix and graph applications

such as Sparse Matrix Matrix Multiply and Stochastic Gradient Descent, respectively. The

specific constraints of these applications, such as problem size and dependence structure,

necessitate unique sparse matrix representations that can be realized using our transfor-

mations.

Computations such as Gauss Seidel, with loop carried dependences at the outer most

loop necessitate different strategies for high performance. Specifically, we organize the

computation into level sets or wavefronts of irregular size, such that iterations of a wave-

front may be scheduled in parallel but different wavefronts have to be synchronized. We



demonstrate automatic code generation of high performance inspectors that do explicit

dependence testing and level set construction at runtime, as well as high performance

executors, which are the actual parallelized computations.

For the above sparse matrix applications, we automatically generate inspector/execu-

tor code comparable in performance to manually tuned libraries.
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CHAPTER 1

INTRODUCTION

Sparse matrix applications are found in a wide range of applications including itera-

tive methods for solving large sparse linear systems, molecular dynamics, and large-scale

graph applications. Sparse matrix representations only store the nonzero values of the

matrix, and have additional auxiliary arrays to record the row and/or column positions.

Attaining high performance on sparse matrix applications is difficult due to the extra

memory accesses for the auxiliary arrays. These computations are memory bound and

only achieve a small fraction of the peak memory bandwidth. Further, caches are not

used effectively in these computations due to their irregular access patterns. Due to these

factors, one of the frequently used kernels in sparse applications, Sparse Matrix Vector

(SpMV) multiply has typically run at 10% or less of the peak performance of the ma-

chine [2].

Libraries are commonly used to specialize for the nonzero structure of the matrix and

the underlying architecture to optimize the performance for these applications. However

library based solutions tend to be fixed-function or address a very specific application.

Further, the code has to be manually optimized for new representations on emergent

architectures [3].

Compiler-based approaches, on the other hand, though having the strength of com-

posability of optimizations have found sparse applications difficult to optimize as runtime

information is required to understand the memory access patterns and dependences of

these applications.

In this dissertation we utilize runtime information to either (i) unravel the memory

locations being accessed; (ii) modify the computation by reorganizing the code’s iteration

space; and (iii) accomplish an additional data transformation on associated data to opti-

mize for parallelism and/or data locality. Specifically we target the automatic generation
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of such high performance runtime code as well as the composability of such transforma-

tions with other existing compiler transformations in a polyhedral compiler framework to

optimize sparse matrix codes.

1.1 Existing strategies for high performance of sparse matrix
codes

No single sparse matrix representation is optimal given a range of inputs and archi-

tectures; identifying the best performing solution requires careful input and architecture

specific tuning. To address this issue, many hand-written libraries provide a range of

sparse matrix representations that the user may choose to convert to, starting from a

standard format such as Compressed Sparse Row (CSR) or Coordinate (COO) as illustrated

in Figure 1.1. In addition to deriving a modified sparse representation libraries are also

utilized to reorganize the computation at runtime for parallelism once the dependences

are known. These optimizations may also be realized using inspector/executor meth-

ods, where an inspector does the conversion of the matrix to the desired representation

and/or reorganizes the computation for parallelism, and the executor is the optimized

computation modified to refer to the new representation. Compiler approaches for sparse

matrix computations use modified representations to mimic the dense computation, so

that dependences can be extracted easily, and rely on additional transformations to convert

from a dense to a sparse representation.

1.1.1 Libraries

One of the common strategies used by libraries in deriving an optimized sparse matrix

format is reducing the indexing overhead associated with the input matrix. This can

improve the memory performance of the resulting application.

The optimizations applied by the Optimized Sparse Kernel Interface (OSKI) [4] library

includes specializing the SpMV application for matrices with block substructure, enforcing

the structure at times by inserting nonzeros, so that the same set of adjacent rows and

columns may be reused or cached in registers for high performance. Though this strategy

is fixed across architectures, the best 2D block size for performance for a given architecture

is nonobvious. OSKI generates multiple code variants for different block sizes and then

applies autotuning techniques to identify the best configuration on the target architecture.
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Figure 1.1: Existing approaches for high performance sparse applications. Sparse aatrix
figures adapted from A library of auto tuned sparse matrix kernels for many core processors by
W. Abu-Sufah, 2015 [1].

NVIDIA’s library for sparse linear algebra and graph computations, CUSP [5], spe-

cializes for SpMV with formats that exploit coalesced memory accesses to their Graphics

Processing Unit (GPU) global memory subsystem or take advantage of low latency shared

memory to maximize throughput. OSKI and CUSP are examples of the manually tuned

libraries used by programmers to achieve high performance on sparse applications.

Achieving high performance on sparse matrix applications requires careful architecture-

specific tuning and as new architectures emerge, these libraries would have to be upgraded

to keep abreast of the architectural advancements.

1.1.2 Inspector/executor

Inspector/executor transformations are a class of runtime transformations, where the

inspector is the code that may traverse the original code’s iteration space, or analyze certain

index arrays and potentially reorder or restructure the code. Additionally it may reorga-

nize the data referenced by the code. The executor is the optimized version of the original

computation that references the potentially reordered iteration space and/or memory ref-

erences by the inspector code.

Inspector/executor transformations have been utilized in isolation in the past to carry

out parallelization, iteration space reordering, and data transformation [6–14]. These itera-

tion and data reordering transformations can facilitate the derivation of specialized sparse
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matrix representations similar to a library-based approach.

The work due to Strout et al. [15] utilizes a compiler to compose various runtime

transformations such as consecutive packing, lexicographic grouping, graph partition-

ing, and full sparse tiling [16]. We espouse the same philosophy of composing these

transformations within a compiler framework and extend polyhedral code generation to

accommodate these transformations in an end-to-end compiler transformation and code

generation framework.

1.1.3 Compiler approaches

To circumvent the problem of indirect accesses, some compiler approaches [17–19]

start with a dense abstraction of the computation and rely on the underlying compiler,

along with user-supplied directives, to generate the analogous sparse representation of

the code during code generation. Typically these compilers are limited in that they ei-

ther incorporate a small, fixed set of matrix representations for which code generation is

straightforward and/or rely on the user to provide implementations for accessing data in

sparse formats for operations such as searching, enumeration, and dereferencing [3]. These

facilitate the conversion from dense to sparse code, making the compiler responsible for

optimizing the overhead of the dense code. Furthermore, some of these solutions require

the user to specify the input nonzero pattern of the sparse matrix in order to derive the

specialized implementation. In almost all these cases, a comparison of running times of

the dense to sparse conversion with manually tuned libraries was not demonstrated. A

key feature of our work is the automatic generation of high performance inspector codes

that perform this dense to sparse conversion.

1.2 Targets of compiler optimization
We implement our transformations for sparse matrix codes in a polyhedral compiler

for their ease of composing transformations. Polyhedral compilers have proven to be

powerful in optimizing regular affine codes. There have been a number of polyhedral

transformation and code generation frameworks that have been successful in optimizing

dense array codes [20–23]. However they have been severely limited in applicability to

codes with nonaffine code constructs such as array indirection.
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Since inspector/executor transformations are an effective runtime methodology to re-

organize a computation for better locality and/or parallelism, providing support for such

transformations within a polyhedral compiler framework and allowing nonaffine trans-

formations to be composed with regular affine transformations could reveal interesting

opportunities for a compiler based optimization framework for sparse codes. Such an

approach would have implications for all aspects of polyhedral compilation: iteration

space representation, code transformation, dependence analysis, and code generation.

This dissertation touches on all these aspects and extends a real system for a holistic

approach to embedding inspector/executor transformations in a polyhedral context.

The twin objectives of our work are automatically generating high performance inspec-

tor/executor code transformations from a compile-time specification and composing these

transformations with other common compiler transformations. This necessitates abstrac-

tions to represent nonaffine code constructs as well as embed runtime inspector/executor

functionality as nonaffine code transformations. Our compiler framework was extended

for this purpose and these abstractions were used for iteration and data representation

and reorganization and dependence information extraction, all involving nonaffine code

constructs.

The inspector/executor transformations target codes with nonaffine code constructs

and reorganize both the code and associated data for potentially better parallelism, mem-

ory reuse, and load balance. Where dependences obstruct full parallelization, the iteration

space is organized into wavefronts whose relative order of execution will respect depen-

dences but have better performance than the original sequential version of the code.

1.2.1 Code transformation

Codes with nonaffine loop bounds and/or array subscripts are transformed within our

framework in a number of ways for high performance. Accommodating and manipulating

such nonaffine constructs can pave the way for a number of code optimizations. For

example, representing nonaffine loop bounds enables many other loop transformations

such as tiling to be applied on the specified loop. We also present a generalized loop

coalescing transformation that can tolerate codes with nonaffine loop bounds and convert

a loop of multiple loop levels to a single loop level, recording the correspondence between
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the output loop and input loop levels via runtime inspection in the process. The runtime

functionality of the transformation is itself abstracted as a nonaffine transformation. Our

approach demonstrates how inspector/executor code transformations may be integrated

as nonaffine transformations in a compiler framework.

Further, code transformations that convert between the dense and sparse versions of the

computation are utilized: a dense conversion uncovers the analogous dense iteration space

of a sparse computation, thus introducing affine loop bounds at the expense of redundant

iterations. Other affine transformations manipulate these affine loop bounds, and hence

reorder the iteration space to facilitate the derivation of a desired representation. Once all

intermediate transformations have manipulated the affine bounds introduced, a sparse

iteration space is derived from the dense one with the redundancy introduced earlier

being eliminated. These code transformations each have an automatically generated in-

spector/executor code component.

Incorporating abstractions for nonaffine code constructs and encapsulating inspector/ex-

ecutor code transformations as nonaffine transformations in a compiler framework al-

lowed us to compose these transformations with other existing polyhedral transformations

with ease and derive complex transformation sequences for high performance code.

1.2.2 Data transformation

In some cases, introducing a small number of zero valued elements to the computation

can result in more regular memory accesses and better performance. For example, for the

Block CSR (BCSR) sparse matrix representation utilized in OSKI [4], this strategy is used

so that adjacent rows and columns belonging to the same block may be stored with less

indexing overhead per nonzero and also because they may be cached and reused from low

latency memory.

For this purpose data transformations are introduced, taking a user specified array and

loop levels to consider for footprint as input. Inspector/executor code is then automat-

ically generated to accomplish the data transformation according to specification. These

data transformations are effected in conjunction with the code transformations that convert

between the dense and sparse versions of the computation.

The above code and data transformations were utilized for the Sparse Matrix Vec-
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tor(SpMV) Multiply kernel, where the combination of the newly introduced inspector/ex-

ecutor transformations with regular affine transformations was able to derive high per-

forming code variants comparable in performance to manually tuned libraries such as

CUSP on GPUs and OSKI on CPUs. The transformations enabled the derivation of SpMV

based on Coordinate (COO), Diagonal (DIA), ELL, and Block-CSR (BCSR) starting from

one based off the standard CSR representation.

1.2.3 Wavefront parallelization

Parallelizing the outermost loop of a SpMV computation is relatively straightforward

due to the absence of cross-iteration dependences. Some important sparse matrix compu-

tations such as symmetric Gauss Seidel relaxation and Incomplete LU0 (ILU0) factoriza-

tion, which are used as preconditioners for the Preconditioned Conjugate Gradient (PCG)

algorithm, have loop-carried dependences at the outer most loop level, thus requiring

paralllelization with synchronization. ILU0 factorization is computed once to find L and

Umatrices such that L ∗ U is close to the input matrix A, when higher powers of A are

used as preconditioners such as A1,A2, the computation is termed as ILU(1) and ILU(2),

respectively.

For these types of computations, we derive the cross-iteration dependence constraints

at compile-time, and supply them to a runtime inspector that explicitly constructs the

dependence graph.

The dependence graph is then traversed in a topological order. This traversal produces

a partial order of wavefronts; a wavefront consists of iterations that can execute in par-

allel, and the partial order captures dependences among wavefronts. The approach of

parallelizing within wavefronts, with synchronization between wavefronts, is wavefront

parallelism.

We integrate the inspector that constructs the dependence graph with a library imple-

mentation for deriving wavefronts, and these are integrated with a compiler-generated

executor, which is the parallelized computation. We demonstrate the effectiveness of this

parallelization of both the inspector and executor code, over sequential execution for a

preconditioned conjugate gradient algorithm (PCG).
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1.2.4 Application integration

We demonstrate how the code and data transformations we introduce can be adapted

and integrated into applications requiring highly specialized sparse representations. Specif-

ically, our compiler transformations can derive the Sparse Matrix-Matrix Multiply compu-

tation using the Compressed Sparse Block (CSB) [24] used recently in a block eigensolver,

Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) for very large sym-

metric sparse matrices having 100s of million nonzeros. The CSB format conceptually

blocks the columns and rows of the input matrix into square tiles and stores the nonzeros

falling in each tile in the Coordinate(COO) format. We were able to derive this format

using our code and data transformations for converting between dense and sparse repre-

sentations and composing them with tiling. The compiler generated code matched and, in

some cases, exceeded the performance of the manually written SpMM [24] code.

In recent work, we also demonstrated how code and data transformation techniques

could be applied to a graph algorithm Stochastic Gradient Descent, where the graph is

stored in a CSR format. The computation has a unique dependence pattern where nonze-

ros that share the same row or column cannot be processed concurrently. Hence, the

same code and data transformations were used to derive diagonal and blocked diagonal

conflict-free, schedules of the computation [25].

1.3 Thesis contributions and organization
Figure 1.2 presents an overview of our compiler and runtime framework. Codes po-

tentially containing nonaffine loop bounds or array subscripts are analyzed, and an ini-

tial dependence extraction that tolerates these code constructs is done. The dependences

constrain the sequence of code restructuring affine and inspector/executor transforma-

tions abstracted as nonaffine transformations within the CHiLL/CUDA-CHiLL polyhe-

dral transformation framework. These nonaffine transformations can be composed with

existing affine transformations in CHiLL. CUDA-CHiLL is a thin wrapper around CHiLL

and supports CUDA code transformations.

CHiLL internally relies on the affine and nonaffine abstractions exported by Omega+

as well as the simplification of nonaffine relations offered by IEGenLib. Once the iteration

spaces and transformations have been prepared in set and relation form respectively by
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Figure 1.2: Overview of compiler and framework.

CHiLL, they are passed to the polyhedra scanning code generator CodeGen+. CodeGen+

has been extended to handle and manipulate nonaffine abstractions and is capable of

generating inspector/executor code according to the specifications from CHiLL.

A key advantage of our approach over existing library-based techniques is that the

same set of core inspector-executor transformations were applicable in a variety of contexts

yielding high performance code applications, illustrating the power of a compiler-based

approach. This is significant in the context of optimizing sparse matrix applications where

attaining high performance depends on a complex combination of the characteristics of the

input matrix, the particular application as well as the specific architecture, hence necessi-

tating the provision of multiple optimization capabilities by the compiler that addresses

these three requirements, as well as their ease of composition.

1.3.1 Contributions

1. Developing the first end-to-end polyhedral transformation and code generation sys-

tem that accommodates and transforms codes with nonaffine loop bounds and array

subscripts, including inspector/executor transformations represented as nonaffine

transformations. Specifically the generalized loop coalescing transformation is intro-

duced as a nonaffine transformation that converts a loop of multiple dimensions to
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a loop of a single dimension.

2. Development of new compiler transformations, make-dense, compact, and compact-

and-pad, for codes with indirection through index arrays that facilitate code and data

transformations. Code transformations include converting a loop of multiple dimen-

sions and data transformations include padding and insertion of zero elements. The

code and data transformations direct the automatic generation of high performance

inspector/executor codes whose performance is competitive with manually tuned

libraries. These new transformations also compose with existing polyhedral trans-

formations.

3. Integration of these new transformations to derive highly specialized representations

for sparse matrix applications such as LOBPCG and SGD.

4. Automated dependence testing, simplification, and inspector/executor code genera-

tion for codes with loop carried dependences resulting in parallel, high performance

inspector, and wavefront-parallel executor codes.

1.3.2 Thesis organization

A brief background on polyhedral compiler technology, inspector/executor methodol-

ogy, various common SpMV representations, and the sparse matrix applications that were

optimized in this thesis are presented in Chapter 2. The abstractions for nonaffine code

constructs and transformations and how they enable high performance GPU code variant

generation for SpMV are explained in Chapters 3 and 4. Chapter 5 describes new compiler

code and data transformations that facilitate conversion from sparse to dense versions of

the code and vice-versa, as well as their composition with existing polyhedral transforma-

tions to derive various high performance sparse representations. The automatic generation

of the transformations corresponding inspectors is also discussed in this chapter.

Chapter 6 discusses the derivation of more advanced sparse matrix representations

and their integration into two sparse matrix applications, LOBPCG and SGD. Chapter 7

presents the automated wavefront parallelization effected via a combination of compiler

and runtime inspector/executor transformations for codes with loop carried or cross-iteration
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dependences. Chapter 8 discusses related work, and Chapter 9 touches on future direc-

tions and concludes.



CHAPTER 2

BACKGROUND

This thesis presents extensions to polyhedral compiler technology for sparse matrix

applications. Nonaffine code constructs, such as indirect accesses via an index array,

eg.A[B[i]], are represented using uninterpreted functions, where uninterpreted denotes

that the mapping from storage location to value is not analyzable.

We use inspector/executor run-time transformations to do code restructuring or iter-

ation space reordering, additional data transformations and finally inspect dependences

and reorganize computations for partial parallelism. These inspector executor transforma-

tions can derive a range of sparse matrix representations starting from a standard Com-

pressed Sparse Row (CSR) representation. Uninterpreted functions are used to abstract the

inspector/executor transformations as nonaffine functions or mappings of the iteration

space. This chapter presents a brief background on polyhedral compilers, inspector/ex-

ecutor methods, common sparse matrix representations, and the applications that were

optimized for this thesis.

2.1 Polyhedral transformations and code generation
This section describes the components that constitute a polyhedral compilation system.

Integral aspects of this system include representing the iteration space of the code as a set

of inequalities, applying multiple transformations in sequence on this iteration space, and

utilizing polyhedral code generation techniques on the final transformed iteration space.

We also briefly describe research on extending polyhedral compilers for nonaffine codes

and transformations.

To illustrate the processes involved in a polyhedral compiler, let us consider the loop

shifting transformation applied to the loop nest in Figure 2.1.

We utilize the Composable High Level Loop (CHiLL) polyhedral transformation frame-

work to apply our source-to-source code optimizations. CHiLL harnesses both polyhedral



13

Stage 1 : 

Iteration Space & 
Dependence Graph 
Construction 

Stage 2 : 

Original Loop 
Iterators obtained as 
functions of new 
iterators  

Transformation (T) 
Application(Loop 
Shift by 4) 

xform_inv  = {[i]->[i-4]} 

Update	  statement	  
macro	  with	  xform_inv.	  
Apply	  Polyhedra	  
Scanning	  	  

Input	  Code:	  
for(i=0;	  i	  <	  n;	  i++)	  

s0:	  a[i+1]=a[i]	  +	  5;	  
	  
	  
	  
	  
	  
	  

Statement	  s0:	  
IS:{{i]	  :	  0	  <=i<	  n}	  
xform:{[i]-‐>[0,i,0]}	  

Code:	  a[i+1]=a[i]	  +	  5;	  
	  

	  
	  
	  
	  
	  

Dep: <+1> 

	  
	  
	  
	  
	  
	  

Statement	  s0:	  
IS:{{i]	  :	  0	  <=i<	  n}	  

xform:{[i]-‐>[0,i+4,0]}	  
Code:	  a[i+1]=a[i]	  +	  5;	  
	  

	  
	  
	  
	  
	  

Dep: <+1> 

Stage 3 : 

Output	  Code:	  
for(i=4;	  i	  <	  n+	  4;	  i++)	  
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Figure 2.1: Polyhedral transformations and code generation.

and AST abstractions for its internal representation of a loop nest computation. The State-

ment is a central data structure to CHiLL’s internal representation that achieves a clean

separation between polyhedral and AST abstractions. Each statement in the code has three

components:

• IS: The iteration space of a statement in a loop nest, represented as an integer tuple.

• xform: The transformation applied to this IS, represented as a mapping that takes the

integer tuple as input and returns an output integer tuple.

• code: An actual pointer to the AST segment of the code. Hence, loop and conditional

code constructs are created in polyhedral relation form, while the AST is encapsu-

lated within the code field within the statement.

The code generator employs polyhedral scanning of the resulting iteration space to

generate the output code shown. The original statement is updated with the inverse of the

transformation mapping, that is, xform inv, when updating the array access expressions.

For instance, in Figure 2.1, we see the occurences of the original loop index i being replaced

by the inverse of the transformation mapping i-4 in the subscripts of array a.
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CHiLL also represents dependences between statements in a dependence graph, illus-

trated as Dep in Figure 2.1. These data structures and their roles in transformation and

code generation are described in this section.

2.1.1 Iteration space

Polyhedral frameworks describe the iteration space for each statement in a loop nest

as a set of lattice points of a polyhedron [26]. For instance, we observe in Figure 2.2 the

iteration space of the double-nested for loop represented pictorially as a 2-dimensional

lattice as well as the inequalities that describe the iteration space.

Polyhedral frameworks such as Omega+, ISL, CLooG, PLuTo [21, 27–29] thus conve-

niently describe the iteration space as a set of inequalities over the set of loop variables

utilizing this polyhedral abstraction. Additionally, all loop variable coefficients and con-

stants are integers, since we need to only consider the integer space for the purposes of

loop iteration spaces.

2.1.2 Transformations

Loop transformations can be viewed as mapping functions that convert the original

iteration space to a transformed iteration space. For instance, the loop shifting transforma-

tion is encoded as a function that translates each point in the iteration space to the right by

4 units in xform in Figure 2.1.

This provides the compiler a powerful abstraction to transform a loop nest without

being restricted to the original loop structure [30]. The bijective property of transforma-

tions also allows the output of one transformation to be composed as the input of the next

transformation in complex sequences, deferring code generation until all transformations

have been applied. Thus, a key strength of the polyhedral transformation approach is this
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Figure 2.2: Iteration space as polyhedron.
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ability to compose sequences of transformations.

The transformational mappings have also been termed as scattering functions in the

literature [29]. They are one-to-one functions of the iteration space: the image of each

point in the iteration space is unique under transformation. CHiLL [20] supports a range

of loop transformations including loop distribution, fusion, tiling, unroll-and-jam, data-

copy, index-set splitting, and permute. Also, CHiLL relies on Omega+ to construct the

transformation mappings internally for each transformation, only exposing a high level

scripting interface for the user to invoke the transformations.

2.1.3 Dependences

To verify the correctness of these iteration space remappings, the compiler employs de-

pendence analysis, which detects possible accesses to the same memory location, where one

of the accesses is a write. True dependences arise because of an initial write to a memory

location and a subsequent read from the same location. Antidependences arise because

of an initial read from a memory location and a subsequent write to the same location

and output dependences arise due to an initial write to a memory location followed by a

subsequent write to the same memory location.

A reordering of a statement’s execution order is valid as long as it preserves all data

dependences, that is, the source is always executed before the sink after transformation for

any data dependence [31]. CHiLL constructs the iteration space and array access functions

in relation form prior to utilizing Omega+ to apply the Omega test [32], to determine

constraints for a dependence to hold for any pair of array references, at least one of which

is a write.

Let us consider the example in Figure 2.1. The array subscript expression on the write

and read are a[i+1] and a[i], respectively. Given the iteration space constraints the condi-

tion for this dependence is represented succinctly as follows:

I = {[i + 1]→ [i] | 0 <= i < N} (2.1)

To compute the dependence, the Omega test is employed by calling the Deltas function

with this relation as input in the Omega library where Deltas is according to Definition 1.
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Definition 1. For a relation r, such that, r = {x1 → y1| f (x1, y1)} the result of Deltas(r) is

defined as {z|∃x, y s.t. f (x, y) ∧ z = y− x}

Informally, Deltas computes the dependence distance or the difference in iterations,

between the source and sink of the dependence. For this example Deltas would compute a

dependence distance of 1.

CHiLL constructs a dependence graph with each statement assuming a vertex and

statements with dependences between them are connected with an edge, which contains

information as to the type of dependence (true, anti, output) and dependence distance [33].

In Figure 2.1 we see that the dependence distance is +1 represented by the edge from

statement s0 to itself.

As each transformation is applied, CHiLL checks for any dependence violation by

traversing the dependence graph, and checking the semantics of the particular transfor-

mation; it throws an exception if a violation occurs. It also incrementally updates the

dependence graph after each transformation. The legality tests are outlined in [20] and

in general check for a loop carried dependence that is negative, that is, the sink of a

dependence occurring before the source, which is a dependence violation.

2.1.4 Code generation

The bijective property of transformations is utilized in polyhedra scanning code gener-

ators [22, 34–37] to update array reference expressions (array access functions [38]) contain-

ing the loop indices with the unique inverse of the one-to-one transformational mapping

as indicated by xform inv in Figure 2.1.

Projection is a common operation that is used in polyhedra scanning code generators

and is described in Definition 3.

Definition 2. For a given set of constraints S on a set of variables I1, . . . , In, Project(S, Ij) is

defined as the set of reduced constraints obtained from S by eliminating every occurrence of variable

Ij from all (in)equalities in S using Fourier-Motzkin elimination, that is, every pair of inequalities

of the form lb ≤ c1 Ij, c2 Ij ≤ ub is replaced by a new inequality c2lb ≤ c1ub.

Given a loop nest, the loop index variables are projected from the innermost loop to the

outermost loop, thus deriving the loop bounds on each variable. This is the first step that
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most polyhedra scanning code generators employ. Each loop variable is a dimension in the

polyhedron and, the bounds on each dimension are scanned in this fashion. CHiLL passes

the final mappings and iteration space in relation and set form, respectively, to CodeGen+

which relies on an improved polyhedra scanning algorithm [34] to handle control-flow

minimized code.

I = {[i, j] : | 0 <= j && j < i < N} (2.2)

For instance, let us consider the set of inequalities above, which are input to the code

generator. i is the outer loop and j is the inner loop as indicated by the iteration space. We

first derive the bounds on j as 0 <= j < i. We then project j from the system of inequalities

to yield the bounds on i as 1 <= i < n. The final code corresponding to this loop nest is

shown in Listing 2.1.

CUDA-CHiLL [39] is a thin wrapper around CHiLL, that utilizes CHiLL’s loop trans-

formation capabilities, and finally generates CUDA code once all transformations and code

generation steps have been applied, by reducing loops that correspond to parallel CUDA

block and thread dimensions and replacing the references to those loops with the correct

parallel block and thread indices.

For instance, in Figure 2.3, we see how the tiled loop indices ii and i get replaced as

block and thread indices bx and tx, respectively. Subsequently, the loops corresponding to

the block and thread indices are removed for the final parallel CUDA code.

2.1.5 Support for nonaffine codes and transformations

The previous sections described iteration spaces, transformations, dependence analy-

sis, and code generation in the polyhedral model with the restriction that all codes and

transformations are affine. There has been relatively little research in extending the appli-

cability of the polyhedral model to nonaffine codes or transformations.

1 for(i = 1; i < N; i++)

2 for(j = 0; j < i; j++)

3 s0(i,j)

Listing 2.1: Polyhedra Scanning.
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Input SpMV Code: 
 
for(i=0; i < n; i++) 
   for(j=index[i];j<index[i+1];j++) 
         s0:  y[i]+=a[j]*x[col[j]] 
 

tile_by_index(0,{“i”}, 
{Ti}, {l1_control=“ii”}, 

{“ii”, “i”,”j”}) 

SpMV Code After Tiling: 
 
for(ii=0; ii < n; i+=Ti) 
   for(i=0; i < Ti;i++) 
       for(j=index[ii*Ti + i];j<index[ii*Ti + i +1];j++) 
         s0:  y[ii*Ti + i]+=a[j]*x[col[j]] 
 

CUDA block 
and thread 
dimensions 

 
cudaize(0, “spmv_GPU,

{a=NNZ,x=N,y=N,col=NNZ,index=
NNZ},{block={“ii”, thread={“i”}},

{}) 

SpMV Code After Cudaize: 
 
if(tx <= n – Ti*bx  – 1) 
for(j=index[bx*Ti + tx];j<index[bx*Ti + tx+1];j++) 
         s0:  y[bx*Ti + tx]+=a[j]*x[col[j]] 
 

Figure 2.3: CUDA-CHiLL’s cudaize transformation.

Analysis and code generation techniques for handling nonaffine loop bounds and array

accesses can be broadly grouped into analyses that provide regular representations for

irregular codes and run-time inspectors for parallelizing and optimizing such codes.

Compile-time analysis approaches use information about nonaffine accesses to im-

prove the precision of data dependence analysis [40, 41] or introduce conservative ap-

proximations in the data dependence analysis [41–45] so that determining the legality

of compile-time transformations is possible despite nonaffine loop bounds and/or array

accesses. The focus of all these techniques is to tolerate control flow and/or nonaffine

memory accesses while still leveraging existing compile-time loop transformations.

Wonnacott and Pugh [40] represented such loop bounds and array accesses with un-

interpreted functions. The relationship between the input and output of uninterpreted

functions is not known or statically unanalyzable at compile time, hence the term. The

Sparse Polyhedral Framework (SPF) [46] also uses uninterpreted functions to represent

runtime reordering transformations.

2.2 Representations for Sparse Matrix Vector Multiply(SpMV)
The sparse matrix representations used in this dissertation are depicted in Figure 2.4.

In the center, we see a dense representation of matrix A, where over half is comprised of

zeros. and detailed below:
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A : 

A:      [ 1 5 7 2 3 6 4 ] 
row-offset:  [ 0 2 4 6 7 ] 
col:    [ 0 1 0 1 2 3 3 ] 

Compressed Sparse Row 
 (CSR) 

A:  offsets: [-1 0 1]  

DIA 

1	 5	 0	 0	

7	 2	 0	 0	

0	 0	 3	 6	

0	 0	 0	 4	

0	 1	 5	

7	 2	 0	

0	 3	 6	

0	 4	 0	

Block CSR (BCSR) 

A: 
 
 
block-row:  [ 0 1 2 ] 
block-col:    [ 0 1 ] 

1	 5	

7	 2	

3	 6	

0	 4	

A: col: 

ELL 

1	 5	

7	 2	

3	 6	

4	 0	

0	 1	

0	 1	

2	 3	

3	 *	

A:      [ 1 5 7 2 3 6 4 ] 
row:  [ 0 0 1 1 2 2 3 ] 
col:    [ 0 1 0 1 2 3 3 ] 

Coordinate (COO) 

A:                   [ 1 5 7 2 3 6 4 ] 
block-offset: [ 0 4 4 4 6] 
col-offset:      [ 0 1 0 1 0 1 1 ] 
row-offset:    [ 0 0 1 1 0 0 1 ] 
 

Compressed Sparse Block 
(CSB) 

Dense 

Figure 2.4: Examples of sparse matrix formats

• Coordinate (COO): The most general representation uses a vector of just the nonzeros

in the matrix, and then 2 auxiliary arrays that represent the column and row for that

element.

• Compressed Sparse Row (CSR): CSR reduces the space requirements of COO. The col-

umn auxiliary array is retained, but the row array has one element per row, indicat-

ing the first element for that row.

• Compressed Sparse Block (CSB): The CSB format blocks the dense matrix into squares.

In Figure 2.4, for example, the dense matrix is blocked into squares of length 2. Each

square or block’s starting row and column can be uniquely determined and each

square’s offset into the nonzeros is stored in block-offset. The row and column offsets

of each nonzero within the square block is stored in 2 auxilliary arrays. CSB saves

on indexing memory footprint as the row and column offsets can be stored with

potentially less number of bits per index.

• Block CSR (BCSR): In BCSR format, the nonzero elements are represented by a col-

lection of small dense blocks, and the blocks are padded where necessary with zero

values. An auxiliary array tracks the row and column of the upper left element of

each nonzero block.The resulting interior computation can be performed on a small

dense array, for which high-performance implementations are more easily obtained.
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• DIA: The DIA format captures only the diagonals that have nonzero elements. The

offset auxiliary array represents the offset from the main diagonal. It is well-suited

for representing banded matrices.

• ELL: The ELL format uses a 2-dimensional matrix with a fixed number of nonzeros

per row, and rows with fewer nonzeros are padded with zero values. An auxiliary

col matrix tracks the columns for the nonzeros as in CSR. When most rows have

a similar number of nonzeros, ELL leads to more efficient code because of a fixed

number of iterations and no indirection in the loop bounds.

2.3 Inspector/executor methodology
A general technique to analyze data accesses through index arrays and consequently

reschedule or reorder data at run time employs an inspector/executor paradigm whereby

the compiler generates inspector code to be executed at runtime that can collect the in-

dex expressions and then an executor employs specific optimizations that incorporate the

run-time information [14, 47–49]. These inspector/executor optimizations have targeted

parallelization and communication [8, 48] and data reorganization [9–13].

2.3.1 Iteration and data space reordering

Ding and Kennedy [9] introduced run-time techniques for reorganizing data and the as-

sociated computation based on the memory access patterns. Specifically they reorganized

the data based on first touch access order in loop based computations, termed consecutive

packing or CPACK. Another scheme they introduced was lexicographic grouping, where

all iterations that reference the same data are scheduled consecutively. Strout et al. [15]

extend these techniques by allowing various different iteration and memory reorganiza-

tion strategies to be composed with additional inspector-executor strategies such as graph

partitioning and full sparse tiling. The ability to compose the specifications for such trans-

formations is implemented. Such transformations are represented using uninterpreted

functions. Basumallik and Eigenmann [14] inspect and restructure loops in converting

OpenMP programs to Message Passing Interface (MPI) programs. They restructure and

reorder iterations to minimize communication of remote data in a distributed computation

setting. They employ runtime inspection to accomplish this.
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2.3.2 Dependence testing and parallelization

Other approaches such as the the Lazy Reduction-parallelization and Privatization Do-

all (LRPD) test [48], speculatively execute a parallel version of the input code at runtime

while simultaneously doing a parallel dependence test to check if the parallelization was

indeed legal. One extension of the above approach is to aggregate loop iterations into

tiles, and do the dependence check across tiles for more coarse grained parallelism, and

execute the tiles in a wavefront or DO-ACROSS manner where the inter tile dependences

are respected and the code is partially paralllelized.

Another approach to exploiting performance from partially parallel loops is to ex-

plicitly construct the full inter-iteration dependence graph in one pass and compute the

iterations belonging to each wavefront and then schedule each wavefront in parallel with

a barrier or point-to-point synchronization across wavefronts. This is the approach taken

to parallelize the forward and backward sparse triangular solver [50–55]. The wavefront

computation is done using the SpMP library [56]. We utilize the SpMP library for the

above mentioned functionality as well as their point-to-point synchronization primitives

to parallelize wavefront style computations.

2.4 Sparse matrix applications
In many cases, the choice of sparse representation to yield high performance tends to be

application specific. In this section, we outline the sparse representations and algorithms

in a range of sparse matrix applications.

2.4.1 Locally Optimal Block Preconditoned Conjugate Gradient (LOBPCG)
and Sparse Matrix-Matrix Multiply (SpMM)

SpMM applies SpMV to multiple right hand sides or vectors. Recent work uses a block

eigensolver, LOBPCG, to compute properties of light atomic nuclei accurately in the Many-

body Fermion Dynamics for nuclei(MFDn) code [24].

This code spends a substantial amount of time in eigenvalue computations that involve

SpMM and SpMM transpose(SpMM T). Due to the large size of the input matrix, which

is symmetric, the Compressed Sparse Block(CSB) sparse matrix format is chosen as an

appropriate format for implementation purposes. The CSB format conceptually blocks the

columns and rows of the input matrix into square tiles and stores the nonzeros falling in
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each tile in the Coordinate(COO) format. This enables the offsets of the nonzeros within a

given tile to be stored with 16 bits rather than the full 32 bits to save memory requirements.

Further, the CSB format is amenable to parallelization for both SpMM and SpMM T by

either parallelizing across block rows or block columns, respectively [57].

2.4.2 Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent(SGD) is an iterative algorithm over a sparse matrix that

computes a low-rank approximation,i.e given an incomplete matrix A, it computes 2 low

rank matrices W and U such that A ≈ W*U. SGD computes the missing entries of the

matrix A. It is used in recommendation systems, for example, to derive a complete set of

user-movie ratings from an incomplete database of ratings, where all movies have not been

rated by all users [25]. The input ratings are represented as a bipartite graph, with the users

and movies corresponding to vertices and the ratings being edges. Each movie and user

has a feature vector associated with it and the SGD algorithm sweeps the graph, iteratively

updating the feature vectors until they are approximately equal to the edge weight or

rating. All originally missing ratings are computed once the algorithm converges.

Recent work [25] uses a variety of online and offline scheduling strategies for SGD.

SGD is challenging to parallelize as edges can only be processed in parallel if they do not

share any endpoint or vertex; otherwise there is said to be a conflict which will materialize

as a race condition at runtime. Online schemes detect and resolve conflicts at runtime for

example, by using locks. Offline schemes try to compute conflict free schedules by prepro-

cessing the graph. One offline strategy is to recognize that in the adjacency matrix repre-

sentation of the graph, processing the entries belonging to the same diagonal is conflict-

free, but that synchronization is required across different diagonals. CUDA-CHiLL was

used to transform the SGD code based on a CSR representation to one based on the DIA

representation and derive high performance GPU code. Additionally, a block-diagonal

variant was also developed.

2.4.3 Preconditioned Conjugate Gradient (PCG)

Conjugate Gradient is a popular iterative method for solving a sparse system of linear

equations. In this dissertation, we parallelize the conjugate gradient algorithm using either

a symmetric Gauss Seidel preconditioner or an Incomplete LU(0) preconditioner. A signif-
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icant amount of time in the PCG algorithm is spent in forward and backward Gauss Seidel

relaxations. These computations have loop carried dependences, but the outermost loop of

Gauss Seidel and Incomplete LU can be partially parallelized using an inspector-executor

methodology to derive wavefronts, where iterations within a wavefront may be executed

in parallel. However, synchronization is required across wavefronts. As outlined in Sec-

tion 2.3.2, we compute the inter-iteration dependence graph and then aggregate wave-

fronts from the dependence graph, using the open source SpMP [56] library, to execute the

iterations in parallel.

2.4.4 Verification and validation

Inspector/executor transformations should preserve the data dependences in the orig-

inal code, that is, they should not reverse the source and sink of any dependence. The

general task of partitioning the data dependence relation is undecidable, although it is

decidable for affine codes.

For nonaffine codes, inspectors are utilized to inspect nonaffine accesses and the de-

pendences due to them. The inspector reorganizes or partitions the computation subject

to the constraints of the dependence relation. Inspectors may also reorganize the code and

data for better memory locality. Reordering memory accesses is equivalent to constructing

a spatial schedule assignment to the data dependence relation traversal.

Parallel execution of the reorganized code in a wavefront fashion is also constrained by

dependences across partitions. If the inspector is unable to partition the data dependence

relation then the executor is sequential.

Verifying the correctness of inspector/executor transformations for wavefront paral-

lelization has been studied by Norrish and Strout [58]. Norrish and Strout use an action

graph abstraction, constructed at runtime, that captures all ordering constraints between

iterations. They then verify the correctness of the inspector/executor transformations by

checking that the reordered and/or parallelized computation’s action graph is equivalent

to the original computation’s action graph. These techniques can be combined with our

work to prove the correctness of our inspector/executor transformations.

When checking for the correctness of sparse matrix computations where floating point

operations are involved, it may not be possible to produce bitwise identical results espe-
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cially when the computations are parallelized. Floating point computations are exemplars

of interval arithmetic, and all the computations in this dissertation fall under this category.

For computations involving interval arithmetic, as long as the computed result encloses the

exact unknown result, the inclusion property of interval arithmetic is satisfied [59]. In all

our computations, we test for correctness using this property by checking if the computed

results match that of the reference sequential implementation, within a certain tolerance

that is appropriate for the computation.

2.5 Summary
In this chapter, we presented a brief background on the main components of polyhe-

dral compilation, namely representing iteration spaces, transformations, representing and

analyzing dependences, and polyhedra scanning of the final iteration spaces during code

generation. We also touched on past research on incorporating nonaffine analysis into

compilers. We described the inspector/executor methodology in the context of applying

reordering code and data transformations. Finally, we detailed common sparse matrix

formats and the optimized representations developed by a compiler and runtime approach

as well as the sparse matrix applications optimized in this dissertation.



CHAPTER 3

NONAFFINE EXTENSIONS:

REPRESENTATIONS AND

TRANSFORMATIONS

Codes with indirect array access expressions, for example, A[B[i]], in loop bounds

and/or array subscript expressions are termed nonaffine. Many polyhedral frameworks [28,

29, 60] fail to recognize and/or represent such expressions, let alone optimize them. We

utilize the uninterpreted function symbol abstraction from Omega/Omega+ [27, 61] to

represent such constructs that arise in the code. Aside from Omega+, the Sparse Poly-

hedral Framework (SPF) [46] is the only framework that represents index arrays using

the uninterpreted function symbols. SPF also uses uninterpreted functions for Run-Time

Reordering Transformations (RTRTs) [38].

In this chapter, we detail our support for both representing nonaffine code constructs

and transforming codes using nonaffine transformations. We demonstrate how repre-

senting nonaffine loop bounds using the uninterpreted function abstraction allows us to

transform those loops. Next, we introduce the generalized loop coalescing transformation

that converts a multidimensional loop nest, potentially containing nonaffine loop bounds,

into a single dimensional loop. For this transformations, we utilize the same uninter-

preted function abstraction for encapsulating run-time inspector functionality in the form

of nonaffine mappings. With these extensions, we can compose with existing polyhedral

transformations via unified abstractions for affine and nonaffine mappings.

3.1 Nonaffine representations: Loop bounds and subscripts
The code in Listing 3.1 shows a typical serial implementation of SpMV. The inner j loop

has nonaffine loop bounds and the reference x[col[j]] has a nonaffine array subscript.

Most polyhedral compilers will stop at just analyzing the outer i loop alone, since it

has affine loop bounds. However representing the j loop has certain advantages for
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1 for(i = 0; i < N; i++)

2 for(j = index[i]; j < index[i+1]; j++)

3 y[i] += A[j]*x[col[j]];

Listing 3.1: SpMV Code based on the CSR format

parallelization as will be shown in Chapter 4. The iteration space for the SpMV code above

is represented in our system as follows:

I = {[i, j] | 0 ≤ i < N ∧ index(i) ≤ j < index(i + 1)} (3.1)

The compiler parses the code shown in Listing 3.1 and recognizes an array expression in

the loop bounds of j. It encodes index as an uninterpreted function of the outer loop

iterator i with arity 1, that is a single argument. It also encodes the argument to the

uninterpreted function as a relation. The inputs to the relation are the outer loop variables

and the output for the relation is the array subscript expression. For instance, the upper

bound on the j loop is index[i+1], and the subscript expression, i+1 maybe represented as

the affine function i→ i+1 by the compiler. This has been termed an array access function

in prior work [38].

Throughout the transformation process the uninterpreted functions are treated in a

fashion identical to global variables, where global variables represent read-only param-

eters. For correctness, these indexed loop bounds must be functions of iterators in the

enclosing loops.

The representation of nonaffine loop bounds utilizing uninterpreted functions paves

the way for transformations or mappings to manipulate these loop bounds. For example,

the tiling transformation might be effected on the above iteration space using the following

relation T:

T = {[i, j]→ [i, jj, j] | (∃α : jj = 4α ∧ jj ≤ j < jj + 4)} (3.2)

to result in the following tiled iteration space:

I′ = {[i, jj, j] | (∃α : jj = 4α (3.3)

∧ j− 4 < jj ≤ j < index(i + 1) (3.4)

∧ 0 ≤ i < N ∧ index(i) ≤ j)} (3.5)
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α is an existential used to represent the tile size and possible values for the tile controlling

loop’s starting point.

3.1.1 Redefinition of statement interface for nonaffine transformations

Strout et al. [15, 38] used uninterpreted functions to represent transformations with

an inspector and executor. To incorporate inspector-based transformations into existing

polyhedral compiler frameworks, the statement macro interface discussed in Chapter 2

must change.

This section presents a modification to the statement macro interface that enables the

simplification of array access functions needed to incorporate inspector-based transforma-

tions. As an example assume the following loop:

for (i=1; i<N; i++) {

... X[ i-1 ] ... Y[ f[ i ] ] ...

}

The following relation T represents a permutation transformation of the above loop, where

f is an uninterpreted function at compile time.

T = {[i]→ [j] | j = f (i) ∧ 1 ≤ f (i) < N}

One way to derive the values of f is to use an inspector at runtime. When performing

transformations it is necessary to solve for the old iterator in terms of the new iterator

so that any array accesses in the loop now uses the new iterator. This is equivalent to

composing the array access relation with the inverse of the transformation mapping. In

the context of the above example, the array access relation for X would be i → i − 1 and

for Y would be i→ f (i). Since the transformation is represented by the permutation f the

inverse of the transformation is f−1. The new subscripts would be obtained by composing

each array’s access relation with the inverse of the transformation.

When we replace the old iterator i with a function of the new iterator j, the new

access expressions become X[ f inv[ j ] - 1 ] and Y[ f[f inv[ j ] ] ] , as shown

in Figure 3.1(a). The compilation framework needs to maintain the knowledge that f is a

bijection, and therefore invertible, and that the inverse f inv is provided by an inspector.
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 #define S0_before(i) ... X[(i)-1] ... Y[f[(i)]] ... 
 for (j=1; j<N; j++)
   S0_before( f_inv[ j ] );

 // Code after preprocessing
 for (j=1; j<N; j++)
   ... X[f_inv[j]-1] ... Y[f[f_inv[j]]] ... 

 #define S0_after(r0,r1) ... X[r0] ... Y[r1] ... 
 for (j=1; j<N; j++)
   S0_after( f_inv[j]-1, j );

 // Code after preprocessing
 for (j=1; j<N; j++)
  ... X[f_inv[j]-1] ... Y[j] ... 

a. Statement macro interface and usage before b. Statement macro interface and usage after

Figure 3.1: Current code generators pass to statement macros old iterators as a function of
new iterators. To incorporate the results of inspector-based transformations and enable
simplification of access expressions, we modify the statement macro interface so that
whole access expressions are passed to the statement macro.

An explanation of how composition and applying a transformation relation to a set are

performed when uninterpreted functions are involved is provided in [46].

Code generators that use the typical statement macro approach would pass f inv[ j

] into the statement macro (see Figure 3.1(a)). A backend compiler like gcc cannot do the

simplification that uses the equality f ( f−1(j)) = j, so two unnecessary levels of indirect

referencing stay in the code.

We solve this problem by modifying the statement macro interface in a simple but

important way. Now instead of having a parameter in the statement macro for each iterator

in the original loop, there is a parameter in the statement macro for each memory/array

access in the original statement (see Figure 3.1(b)). For example Y[ f[i] ] will become

Y[ r1 ] in the statement macro. Then the code generator when generating the call to the

statement macro provides the modified access function, which in this example will result

in the access expression for Y being j instead of f[f inv[j]]. The PPCG compiler [22]

also represents access relations and simplifies them before generating code. It uses the

representation of access relations to map data to registers and allocating shared memory

storage for tiles in generated CUDA code. However, the PPCG compiler does not handle

nonaffine access relations.

The main impact of this change for the compiler is that the representation of the com-

putation needs to include a relation for each array access expression for each statement, in

addition to the statement’s iteration space specification.

The above approach exploits the polyhedral representation to chain transformations,

where each iteration space transformation is composed with array access relations at com-
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pile time. It also has the added advantage that the mapping and iteration space abstrac-

tions can be manipulated or simplified to result in high performance code.

3.2 Nonaffine transformation: Generalized loop coalescing
Suppose we want to parallelize a COO representation of SpMV, starting from the CSR

representation of Listing 3.1, this section shows how the code generation is extended and

integrated with a compiler-generated inspector to perform a run-time transformation we

call generalized loop coalescing.The inspector/executor code generation for the generalized

loop coalescing transformation is outlined in Figure 3.2. This transformation combines

the inner and outer loops into a single loop with an expanded iteration space. In the

vectorization literature, coalescing is applied to loop nests with affine bounds to gener-

ate longer vectors, and the subscript expressions are effectively linearized to map to the

coalesced loop’s bounds [62]. Our generalization to nonaffine loop bounds is similar to

that of Basumallik and Eigenmann[14], but their approach is exclusively syntax-based and

not integrated into a polyhedral transformation framework. We implement the coalescing

transformation as a loop transformation, representing it as an uninterpreted function along

Inspector	Code:	
for(i=0;	i	<	n;i++)	 		
		for(j=index[i];j<index[i+1];j++)	
									c.create_mapping(i,j);	

Input	Loop:	
for(i=0;	i	<	n;i++)	 		
		for(j=index[i];j<index[i+1];j++)											

	y[i]+=a[j]*x[col[j]];	

Executor	Code	:	
for	(k	=	0;	k	<	NNZ;	k++)	
		y[c_inv[k][0]]	+=A[c_inv[k]	
																[1]]*x[col[c_inv[k][1]]];		

Compiler	
Interface	Construct 

non-affine 
map c 

Update statement subscripts with c-1 

OpNmized	Executor	Code	:	
for	(k	=	0;	k	<	NNZ;	k++)	
				y[c_inv[k][0]]	+=	
																											A[k]*x[col[k]];		

Use k=j to eliminate indirection 

Figure 3.2: Overview of the generalized loop coalescing transformation. The steps involv-
ing both inspector and executor code generation are shown, including optimizations for
executor code, based on additional simplification.
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with syntax components.

To determine the iteration space, we must generate code for an inspector, which creates

a mapping from the original iteration space of the inner and outer loops to that of the

coalesced loop. Once this enabling transformation has been applied, other transformations

on the iteration space become valid, and the polyhedral framework can be used.

3.2.1 Coalescing transformation relation

Generalized loop coalescing is a nonaffine transformation that converts the input loop

nest’s iteration space with multiple dimensions to one with a single dimension. As com-

pared to the affine shifting transformation in Chapter 2, where the inverse of the trans-

formation xform inv is a bijective function that exactly specifies the relationship between

the input and output loop indices of the transformation, the relationship between the

input iteration space and the output iteration space is not known at compile time and

is only fully realized at run time. We introduce the following relation to represent this

mapping, using an uninterpreted function c to represent the mapping from the original

loop iterators to the coalesced loop iterator derived from an inspector. The coalesced

loop’s upper bound is represented by the variable, NNZ, and is determined by the inspector

at runtime.The following relations show the 2-D to 1-D mapping, and the n-D to 1-D

mapping, respectively.

Tcoalesce = {[i, j]→ [k] | k = c(i, j) ∧ 0 ≤ k < NNZ}

{[I1, I2, I3, . . . , In]→ [k] | k = c(I1, I2, I3, . . . , In) ∧ 0 ≤ k < NNZ}
(3.6)

Our framework uses the information that the coalescing function c is bijective and that the

inspector makes the inverse of c available, c−1.

3.2.2 Inspector for coalescing

The loop coalescing transformation establishes the values of the uninterpreted function

c with compiler-generated runtime inspector code. A sample code snippet corresponding to

the inspector is shown in Figure 3.3. The call to the function create mapping(i,j) sets

up the mapping corresponding to the uninterpreted function c, from which the inverse

mapping c−1 can be derived. The loop coalescing transformation creates a C++ class as

an abstraction for the functionality of the uninterpreted function. It creates one array per
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struct access_relation {!
!
  // array to track old iterators !
  int c_inv[][2]; !
           !
  // variable to keep track of k               !
  int k;  !
  void create_mapping(int i,int j){!
      c_inv[k][0] = i;!
      c_inv[k][1] = j;!
      k++;!
   }!
}!

struct access_relation c;!
for (i=0; i<=n-1; i++)!
 for (j=index[i]; j<=index[i+1]-1; j++) !
    c.create_mapping(i,j);!

Figure 3.3: Compiler-generated coalescing inspector.

index variable being coalesced local to the uninterpreted function data structure. It also has

a scalar variable to indicate the range of the uninterpreted function. This step is similar to

the creation of the inspector in [14], where the inspection is done on a per index basis and

the values of the output variable corresponding to the each index is recorded.

To construct the mapping from the old loop nest to the new one, the original loop nest

has to be traversed once by the inspector using the same iteration space as the original

nest. Hence, the loop coalescing transformation creates a new statement for the inspector

routine and copies the old iteration space of the untransformed statement to that of the

inspector’s iteration space.

Since the inspector code is sequential, its associated overhead has to be amortized over

many calls to SpMV. However this is not uncommon, as in the case of the Conjugate

Gradient solver that calls the SpMV kernel multiple times over which the input matrix

structure remains invariant.

3.2.3 Code generation

The next task of the coalescing transformation is to set up the iteration space of the

transformed statement and update the changes in the indexing expressions of the trans-

formed code (sometimes called the executor). Conceptually, the compiler has to remove the

original indices, and replace them with uninterpreted function inverses.

After applying the loop coalescing transformation Tcoalesce on the CSR SpMV code in

Listing 3.1, the old iterators i and j in terms of the new iterator k are as follows: i =
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c−1(k)[0] and j = c−1(k)[1], where c−1 is a function that returns a 2-tuple. The resulting

code becomes:

for (k = 0; k < NNZ; k++)

y[c_inv[k][0]]

+= A[c_inv[k][1]]*x[col[c_inv[k][1]]];

The process of simplifying access expressions outlined in Section 3.1.1 did not result in

improved code in this case. However, it is possible to use program analysis techniques

such as those presented by Lin and Padua [41] on the inspector to determine that j = k.

Using the constraint j = k in the loop coalescing transformation

T′coalesce = {[i, j]→ [k] | j = k ∧ k = c(i, j) ∧ 0 ≤ k < NNZ} (3.7)

enables simplification of access expressions so that the resulting code is instead

for (k = 0; k < NNZ; k++)

y[c_inv[k][0]] += A[k]*x[col[k]];

In our experimental results, we show the performance due to the original loop coalescing

transformation with and without the j = k constraint. Utilizing this additional constraint

is important to reduce the number of indirect accesses in the resulting code.

3.3 Summary
This chapter discussed the compiler extensions for nonaffine loop bounds and trans-

formations which utilize the uninterpreted function symbol abstraction. Representing

nonaffine loop bounds allows us to compose further transformations, such as tiling. The

statement macro interface for polyhedral code generation was described. Additionally,

the modifications for nonaffine transformations was discussed. Specifically simplification

of the array subscript expressions to minimize indirection when subjected to nonaffine

mappings was explained.

Generalized loop coalescing was introduced as a nonaffine transformation that con-

verts a loop of multiple dimensions, potentially containing nonaffine loop bounds, to a

single loop. It uses an uninterpreted function to record the nonaffine mapping between

the input and output loop iterators. The executor code is updated with the inverse of
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the uninterpreted function at compile-time while the inspector code explicitly constructs

this mapping at runtime. We also discussed compile-time optimizations to reduce the

indirection in the executor code resulting from generalized loop coalescing.



CHAPTER 4

PARALLELIZATION OF SPMV UTILIZING

NONAFFINE EXTENSIONS

In this chapter, we show how the nonaffine representations and transformations from

the previous chapter can be composed with other affine transformations, specifically tiling,

fusion, distribution, peeling, and scalar replacement and expansion [26]. Additionally our

framework supports an array reduction that interfaces with Nonaffine indices. The array

reduction implementation is integrated with a highly tuned GPU specific implementation

from Nvidia’s CUSP [5] library. We demonstrate the application of our framework with

the aforementioned components in generating high performance SpMV code for the CSR

and COO matrix representations. We also support different parallelization strategies, such

as parallelizing across nonzeros or rows and nonzeros within a row. With these extensions

our framework achieves performance that is comparable and sometimes outperforming

the manually tuned CUSP library on the Nvidia Tesla C2050 Fermi GPU.

4.1 GPU optimization considerations
To justify the GPU-specific transformations described in this section, we first clarify

features of the GPU architecture that influence the selection of the implemented approach.

Critical to the parallelization strategy is the two-level parallelism hierarchy of the the

architecture. Several SIMD processors (SP) form a streaming multiprocessor (SM). The

GPU consists of several SMs that operate independently with their own control (MIMD).

CUDA blocks are indivisibly mapped to SMs, and CUDA threads are mapped to SPs.

Within a block, a warp is the set of contiguous SIMD threads that are scheduled together,

and can be exploited to reduce synchronization. This organization impacts the overhead

of synchronization: synchronization within a warp is not needed, within a block it has low

overhead due to the SIMD single thread of control, but across blocks it is very expensive.

The resulting reduction implementation exploits these different levels of synchronization
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overhead to lead to its efficient implementation.

We must also consider how the memory system organization affects the reduction

implementation. The GPU consists of a single device DRAM, called global memory, which is

addressable and shared by all blocks. As with any off-chip DRAM, global memory accesses

observe high latencies in the hundreds of cycles, so optimizing global memory accesses

can significantly impact performance. The bandwidth is maximized when global memory

accesses across threads can be combined into a single memory transfer, called global memory

coalescing. Coalescing is achieved when accesses across threads in the same warp appear

in the same contiguous transfer unit; this typically requires that adjacent threads access

adjacent data. Each block also has a scratchpad memory that is shared across its threads,

but inaccessible to other blocks; this storage is called shared memory, Shared memory has

extremely low latency, but its capacity is severely limited.

4.2 Reduction transformation
The reduction transformation that interfaces with the Nonaffine indices is a parallel re-

duction. As is common in parallelizing compilers, high-performance code that implements

a reduction is architecture specific, and so the code generation strategy is to transform

the code and then invoke a highly-tuned architecture-specific library to implement the

accumulation into a final result. We have developed a set of reduction functions that

are implemented with two levels of parallelism corresponding to the block and thread

hierarchy in GPUs. These functions are similar to those used by CUSP, but are designed

to interface with a compiler. This section describes the reduction library functions, how

they interface with the index expressions from the inspector, and requirements for code

transformations to set up the code for these library calls.

4.2.1 Identifying reductions

The original double loop corresponding to CSR SpMV, shown in Listing 3.1 has a

flow, anti and output dependence on y carried by the inner loop due to the update, prior

to coalescing. However, the only update to vector y is a commutative and associative

operation, which can be recognized as a reduction, as is common among parallelizing

compilers [63, 64]. In our compiler, we mark the dependences on y as being a reduction,
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to make it possible to parallelize either loop level. Additional information is recorded in

case reduction is combined with loop coalescing: the outer loop bounds do not have any

indirection, are monotonic and have a unit stride.

4.2.2 Reduction library

Figure 4.1 illustrates a general two-level reduction that can be used to exploit the two-

level parallelism hierarchy of the GPU (threads and blocks). The reduction shown here is

a segmented reduction, where matrix rows may span across warp and/or block boundaries.

A sequence of adjacent input values (corresponding to rows in the original matrix) are

accumulated into a single output value (corresponding to a single element of y). This

transformation is used for the COO format implementation in the next section, and is a

generalization of what is used for the CSR Vector implementation.

In the first step of the reduction each thread copies a corresponding entry from the

input matrix and the input vector from global memory, computes the product and stores

the result in shared memory. A segmented reduction is then done in shared memory. Each

segment is denoted with a particular color in Figure 4.1.

A collection of threads that are executed in a single instruction issue on a GPU are

called a warp, shown as 8 threads in Figure 4.1. Whenever the last thread of the row does

not fall on a warp boundary, the thread adds its accumulated sum to the output vector in

B0 B1 

W0 W1 W2 

0	   1	   2	   3	  

Defer write to second level Defer write to second level Defer write to second level 

Write to global memory spmv_first_level_gpu Write to global memory 

Write to global memory 

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7Threads : 

Values 
After 

Reduction : 
0 9 1 3 5 9 5 8 2 3 6 8 2 4 6 8 1 2 3 4 5 6 7 8 1 2 4 5 6 7 8 9

Threads : 

8	   8	   16	   9	  Values 
After 

Reduction : 

spmv_second_level_gpu 

Defer write to second level 

W3 

Write to global memory 

Figure 4.1: GPU implementation of 2-level parallel reduction over a block/thread-warp
hierarchy. B0,1 represent GPU blocks and W0−3 represent thread-warps.
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global memory, for instance threads 1 and 5 within Warp 0 in Figure 4.1. Otherwise, the

last thread of each warp defers its write to global memory by writing to an intermediate

array stored in the GPU block’s shared memory that is reduced in the second phase. The

2-level reduction conceptually updates row-sums spanning across warp block boundaries.

For CSR vector, since each warp processes exactly one row, the 2nd level reduction proves

unnecessary, and the last thread of the warp updates the row sum at the end of the first

level reduction.

The reduction for the CSR Vector format is simpler than the COO format reduction

shown in Figure 4.1, as rows do not cross warp boundaries. For CSR vector, the 2nd level

reduction proves unnecessary, and the last thread of the warp updates the row sum at the

end of the 1st level reduction.

4.3 Transformations for GPUs
We now describe how this system was used to generate three versions of GPU code

achieving high performance for SpMV, following the versions in [5]. The three versions

differ in parallelization strategy: CSR Scalar parallelizes only across rows, CSR Vector

parallelizes across rows as well as the reduction across nonzeros within a row and COO

parallelizes across nonzeros disregarding row boundaries. It utilizes a segmented re-

duction with the row identifier corresponding to the segment. These versions and their

parallelization are ilustrated in Figure 4.2 using a simple sparse matrix with 10 nonzeros.

As is evident from the figure, CSR Scalar assigns one thread per row processed, while CSR

Vector assigns a group of threads per row and COO assigns a group of threads per batch of

nonzeros. Here the group size is 4 for purposes of illustration, but in actuality the group

size is the warp size which is 32.

For each version, we used the compiler framework described in the previous section.

The input to the compiler was the original sequential SpMV code from Chapter 3, and a

CUDA-CHiLL script that describes the transformations to be applied. The transformation

sequences address the GPU specific optimization considerations outlined in Section 4.1.
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Figure 4.2: Different parallelization strategies for SpMV.

4.3.1 Parallelizing rows: CSR Scalar

Of the three SpMV implementations, CSR Scalar code is the simplest to generate, so

it is only discussed briefly. The CUDA-CHiLL script and compiler-generated output are

shown in Figure 4.3(a) and (b). The dot product across each row of the input matrix is

processed in parallel, with each thread being assigned a single row and computing its

elements sequentially. Loop i corresponding to the matrix row is tiled. In the cudaize

command, the tile controlling loop is mapped to the blocks, and the tile is mapped to the

threads in the GPU’s two-level parallelism hierarchy.

CSR Scalar suffers from load imbalance across threads especially when the number

of nonzeros per row exhibit high variance. Further, accesses to global memory are not

coalesced as consecutive threads are not accessing consecutive elements in global memory,

resulting in significant memory traffic.

4.3.2 Parallelizing within a row: CSR Vector

For CSR Vector, the CUDA-CHiLL script and compiler-generated output are shown in

Figure 4.3(c) and (d). Two levels of tiling are used, across rows and within a row for the

intra-warp reduction. The second level of tiling for the intra-warp reduction is done on the

j loop with index arrays in the loop bounds, and is only possible because of the Nonaffine

representation of the index arrays involved in the loop bounds utilizing uninterpreted

functions as outlined in Chapter 3.

The cudaize command maps the resulting loops to the 1-D block and 2-D thread di-
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__global__ void spmv_GPU(float *y,float *a,float *x,int *col,int *index) { 
     … 
if (tx <= NROWS – TILESZ* bx - 1) 
  for (j=index_(TILESZ* bx + tx);j<=index__(TILESZ*bx + tx)-1;j+=1) 
    y[TILESZ* bx + tx] += (a[j] * x[col[j]]); 
} 

tile_by_index(0,{"i"},{Ti},{l1_control="ii"},
{"ii","i","j"})CU=1 
 
cudaize(0,"spmv_GPU",{ a=NNZ,x=N,y=N,col=NNZ, 
index=NNZ}, {block={"ii"}, thread={"i"}},{}) 

a. CSR Scalar Script b. CSR Scalar Code 

tile_by_index(0,{"i"},{Ti}, 
 {l1_control="ii"},{"ii","i","j"})CU=1 
tile_by_index(0,{"j"},{Tj},{l1_control="jj",l1_tile="j"},  
{"ii","i","j", "jj"},strided)CU=1 
 
scalar_expand_by_index(0,{"i","j"},"RHS”, 
CP_TO_SHARED, 
NO_PAD,ACCUMULATE_THEN_ASSIGN) 
 
cudaize(0,"spmv_GPU",{ a=NNZ,x=N,y=N, 
col=NNZ,index=NNZ},{block={"ii"}, thread={"j", "i"}},{}) 
 
reduce_by_index(0,{"jj"}, "reduce_warp",{}, {"tx"}) 

#define index_(i) index[i] 
#define index__(i) index[i + 1] 
__global__ void spmv_GPU(float *y,float *a,float *x,int *col,int *index) { 
  … 
__device__ __shared__ float _P1[TILESZ*WARPSZ]; 
 if (ty <= NROWS - TILESZ* bx - 1) { 
    if (tx <= index__(ty + TILESZ* bx) - index_(ty + TILESZ* bx) - 1)  
      _P1[tx + ty * WARPSZ] = 0; 
    if (tx <= index__(ty + TILESZ* bx) - index_(ty + TILESZ* bx) - 1)  { 
      for (jj = index_(ty + TILESZ* bx); jj <= -tx + index__(ty + TILESZ* bx) - 1; jj += 
WARPSZ) 
        _P1[tx + ty * WARPSZ] += (a[tx + jj] * x[col[tx + jj]]); 
      
      reduce_warp(&y[ty + TILESZ* bx],&_P1[tx + ty * WARPSZ], _lt(31,index__(ty + 
TILESZ* bx) - index_(ty + TILESZ* bx) - 1));     
}  } } 

c. CSR Vector Script d. CSR Vector Code 

1. Coalescing 
kernel1 = coalesce_by_index(0,”cidx",{"i","j"}, "c”) 
kernel3 = split_with_alignment_by_index(kernel1,"cidx",Ti) 
distribute_by_index({kernel1,kernel3},"i") 
 
2. Tiling 
tile_by_index(kernel1,{"cidx"},{Ti},{l1_control="block"},
{"i","j","block","cidx"}) 
tile_by_index(kernel1,{"cidx"},{Tj},{l1_control="warp"},{"i", "j", 
"block","warp","cidx"}) 
tile_by_index(kernel1,{"cidx"},{Tk},{l1_control="by_warp"},{"i", "j", 
"block", "warp","by_warp","cidx"}) 
 
3. Setup for segmented 2-level reduction 
kernel2 = setup_for_segreduce(kernel1,"warp",{"block", "warp", 
"cidx"}, segment,PADSZ,shm,TILESZ_LEVEL2,"k", stmt_to_reduce) 
 
4. Setup for segmented last-level reduction  
tile_by_index(kernel3,{"cidx"},{TILESZ_LEVEL3},
{l1_control="block"},{"i", "j", "block",  "cidx"},strided) 
scalar_expand_by_index(kernel3,{"cidx"},segment,shm, NO_PAD, 
ASSIGN_THEN_ACCUMULATE) 
scalar_expand_by_index(kernel3,{"cidx"},"RHS",shm, NO_PAD, 
ASSIGN_THEN_ACCUMULATE) 
 
5. Cudaize 
cudaize(kernel1,"spmv_first_level_gpu",
{ a=NNZ,x=N,y=N,col=NNZ, temp=NNZ, c_j=NNZ, c_i=NNZ },
{block={"block"}, thread={"cidx", "warp"}},{"_P_DATA1", 
"_P_DATA2"}) 
cudaize(kernel2,"spmv_second_level_GPU",
{ a=NNZ,x=N,y=N,col=NNZ, temp=NNZ,c_i=NNZ},{block={}, 
thread={"warp","block"}}, {"_P_DATA1", "_P_DATA2"}) 
cudaize(kernel3,"spmv_final_level_GPU",
{ a=NNZ,x=N,y=N,col=NNZ, temp=NNZ, c_j=NNZ, c_i=NNZ},
{block={}, thread={"cidx"}}, {}) 
 
 
 
6. Reduce 
reduce_by_index(kernel1,{"tx"},"segreduce_warp",{"by_warp"}, {}) 
reduce_by_index(kernel2,{"ty","tx"},"segreduce_block",{},{"ty"}) 
reduce_by_index(kernel3,{"tx"},"segreduce_block2",{},{"tx"}) 
reduce_by_index(stmt_to_reduce[1],{"tx"},"segreduce_warp",{},{}) 
 
 
 

__global__ void spmv_first_level_gpu(int *c_count,float *y,int *_P_DATA1,float 
*_P_DATA2,int *c_i,float *a,int *c_j,float *x,int *col) { 
 … 
  
__shared__ int _P1[4 * 64]; 
__shared__ float _P2[4 * 64]; 
 
for (by_warp = 0; by_warp < DIM_X - 1; by_warp += 1) { 
    _P1[tx + ty * 64] = c_i[32 * by_warp + NZB * bx +   NZW* ty + tx]; 
    _P2[tx + ty * 64] = (a[32 * by_warp + NZB * bx + NZW* ty + tx] * x[col[32 * by_warp 
+ NZB * bx + NZW* ty+ tx]]); 
    segreduce_warp(&y[0],&_P1[0 + ty * 64],&_P2[0 + ty * 64],by_warp); 
  } 
  _P1[tx + ty * 64] = c_i[32 *(DIM_X -1) + NZB * bx + NZW* ty+ tx]; 
  _P2[tx + ty * 64] = (a[32 * (DIM_X -1) + NZB * bx + NZW* ty+ tx] * x[col[32 * (DIM_X 
-1) + NZB * bx + NZW*ty + tx]]); 
  segreduce_warp(&y[0],&_P1[0 + ty * 64],&_P2[0 + ty * 64]); 
  _P_DATA1[ty + bx * 4] = _P1[31 + ty * 64]; 
  _P_DATA2[ty + bx * 4] = _P2[31 + ty * 64]; 
} 
 
__global__ void spmv_second_level_gpu(int *c_count,float *y,int 
*_P_DATA1,float *_P_DATA2) { 
… 
__shared__ int _P3[DIM_Y2*DIM_X2]; 
__shared__ float _P4[DIM_Y2*DIM_X2]; 
 
  for (k = 0; k <= (c(t2,t4) - NZB ) /(DIM_Y2*NZB ); k += 1) 
    if (ty <= (c(t2,t4) - (DIM_Y2*NZB ) * k - NZB ) / NZB ) { 
      _P3[tx + ty*DIM_X2] = _P_DATA1[tx + (DIM_Y2 * k + ty) *DIM_X2]; 
      _P4[tx + ty*DIM_X2] = _P_DATA2[tx + (DIM_Y2 * k + ty) *DIM_X2]; 
      segreduce_block(&y[0],&_P3[0 + 0*DIM_X2],&_P4[0 + 0*DIM_X2], _lt(NZW-1,(-
(NZW* NZB *k) + c(1,1) – NZB) / NZB )); 
    } 
} 
 
__global__ void spmv_final_level_GPU(int *c_count,float *y,int *c_i,float *a,int 
*c_j,float *x,int *col) { 
 … 
__shared__ int _P1[BLOCKDIM2]; 
__shared__ float _P2[BLOCKDIM2]; 
   
  for (cidx= (c(t2,t4)/NZB )*NZB ; cidx<= c(t2,t4) - 1; cidx+= BLOCKDIM2) 
     if(tx + cidx<=  c(t2,t4) - 1){      
      _P1[tx] =  c_i[cidx+tx];  
      _P2[tx] =  a[cidx+tx]*x[col[cidx+tx]]; 
      segreduce_block2(&y[0],&_P1[0],&_P2[0],_lt(c(t2,t4) - cidx- 1,BLOCKDIM2 -1)); 
     }; 
} 

e. COO Script f. COO Code 

Figure 4.3: CUDA-CHiLL scripts and the corresponding generated codes for (a)-(b) CSR
Scalar, (c)-(d) CSR Vector and (e)-(f) COO.
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mensions. To prepare for the intra-warp reduction, each thread computes its correspond-

ing product expression (A*x) and stores it in shared memory. To effect this strategy, the

product expression, denoted by the special RHS argument, is replaced by a scalar and

then expanded across parallel loop levels, (i and j) using scalar expand by index. The

arguments CP TO SHARED and NO PAD indicate that the array created by scalar expansion

is to be stored in GPU shared memory, and that the array is not to be padded, respec-

tively. ACCUMULATE THEN ASSIGN specifies that the array created by scalar expansion is

to be accumulated into, so that it has a “+=” sign when it is on the left hand side of

the assignment operator, in an compound assignment statement, and the final result is

obtained from the array by a simple “=” assignment statement when it is on the right hand

side of the assignment operator. This option only has effect when the original statement

is a compound assignment statement. Correspondingly, ASSIGN THEN ACCUMULATE assigns

the product expression to the array created initially and then does an accumulation for the

final result.

The loop, jj, is replaced by a call to a reduction routine (reduce warp in the command,

reduce by index). The CUDA-CHiLL interface makes it possible to replace reductions

with any library implementation.

CSR Vector assigns multiple threads to process a row’s dot product, and the row sum

is computed using a reduction across threads. CSR Vector exhibits better global memory

coalescing than CSR Scalar as the multiple threads assigned to a particular row access

consecutive elements in global memory. However, its performance can suffer in the face of

high variance of nonzeros across rows.

4.3.3 Parallelizing across elements: COO

The COO implementation is by far the most complex, using all the system capabilities

described in Chapter 3 and Section 4.2 of the paper. The scripts and corresponding gener-

ated code are shown in Figure 4.3(e) and (f), respectively, and we describe the roles of the

six boxes in the script.

1. Coalescing. From the initial representation of SpMV for the CSR format, generalized

loop coalescing and generation of its supporting inspector routine are implemented by

the coalesce by index command as outlined In Chapter 3. To generate high-performance
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steady-state code, iterations that are not divisible by the block size are split off using the

remaining commands in this box, using the split with alignment by index transforma-

tion. The loops resulting from split are distributed so that they are separate kernels.

2. Tiling. The coalesced loop is then tiled thrice. Two of the 3 loops thus derived correspond

to the parallel CUDA block and thread dimensions. The third loop, denoted by the loop

index by warp corresponds to the number of times a warp of 32 threads should iterate to

process all nonzeros assigned to it. For instance, if each warp is assigned 256 nonzeros

to process, then by warp would have a loop count of 256/32 which is 8, since each warp

processes a batch of 32 nonzeros at a time.

3. Setup for segmented 2-level reduction. The command setup for segreduce abstracts the

compiler transformations that are needed to set up for the segmented reduction. It firstly

peels the last thread of any parallel dimension/loop, which has to be treated differently

with regards to committing its write, and it has to save its results in an intermediate

array for a second level reduction. It performs scalar expansion to effect the write to an

intermediate array in shared memory.

Further, loop distribution separates the peeled statements corresponding to the 2nd

level reduction from the 1st level reduction kernel. The steps in the setup for segreduce

transformation are detailed in Listings 4.1 to 4.3. 4. Setup for segmented last-level reduction.

The tile and scalar expansion sequence are for the last level kernel.

5. and 6. Cudaize and Reduce. Finally a sequence of cudaize and reduce commands are

shown to map the designated loops to block and thread dimensions and to replace certain

loops with the specified reduction routines. The “block”, “warp” and “cidx” loops are

examples of parallel loops that are mapped to parallel block and thread dimensions in

CUDA, and cudaize marks them to be removed and replaced with parallel thread indices

during code generation. The “cidx” loop is marked for reduction and is replaced with a

call to segreduce warp similar to the way reduction is implemented for CSR Vector.

Since the inspector used by coalescing keeps track of the original indices and their

correspondence with the new loop levels, we can preserve the values corresponding to the

segment within our framework and supply it to the reduction routines subsequently.
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1 /*1. After tiling , NZB = nonzeros per block , NZW = nonzeros per warp

DIM_X = NZW/32, index = cidx + by_warp *32 + warp*NZW + block*NZB;

2 */

3 for(block =0; block < NZB; block ++)

4 for(warp =0; warp < NZW; warp ++)

5 for(by_warp =0; by_warp < DIM_X; by_warp ++)

6 for(cidx =0; cidx < 32; cidx ++)

7 y[c_i[index]] += A[index]*x[col[index ]];

8 /*2. Scalar expand across indices (warp ,cidx) for A*x and c_i*/

9 for(block =0; block < NZB; block ++)

10 for(warp =0; warp < NZW; warp ++)

11 for(by_warp =0; by_warp < DIM_X; by_warp ++)

12 for(cidx =0; cidx < 32; cidx ++){

13 _P1[warp][cidx] = c_i[index];

14 _P2[warp][cidx] = A[index]*x[col[index ]];

15 y[_P1[warp][cidx]] += _P2[warp][cidx ];}

16 /*3.Peel last iteration of by_warp loop since the last thread in a warp

cannot commit its write , has to defer to second level kernel */

17 for(block =0; block < NZB; block ++)

18 for(warp =0; warp < NZW; warp ++){

19 for(by_warp =0; by_warp < DIM_X - 1; by_warp ++){

20 for(cidx =0; cidx < 32; cidx ++){

21 _P1[warp][cidx] = c_i[index];

22 _P2[warp][cidx] = A[index]*x[col[index ]];

23 y[_P1[warp][cidx]] += _P2[warp][cidx ];}}

24 for(cidx =0; cidx < 32; cidx ++){

25 _P1[warp][cidx] = c_i[index];

26 _P2[warp][cidx] = A[index]*x[col[index ]];

27 y[_P1[warp][cidx]] += _P2[warp][cidx ];}}

28 /*4.Peel the 31st thread of the newly introduced loop for the write to y

*/

29 for(block =0; block < NZB; block ++)

30 for(warp =0; warp < NZW; warp ++){

31 for(by_warp =0; by_warp < DIM_X - 1; by_warp ++){

32 for(cidx =0; cidx < 32; cidx ++){

33 _P1[warp][cidx] = c_i[index];

34 _P2[warp][cidx] = A[index]*x[col[index ]];

35 y[_P1[warp][cidx]] += _P2[warp][cidx ];}}

36 for(cidx =0; cidx < 31; cidx ++){

37 _P1[warp][cidx] = c_i[index];

38 _P2[warp][cidx] = A[index]*x[col[index ]];

39 y[_P1[warp][cidx]] += _P2[warp][cidx ];}

40 _P1[warp ][31] = c_i[index];

41 _P2[warp ][31] = A[index]*x[col[index ]];

42 y[_P1[warp ][31]] += _P2[warp ][31];}

Listing 4.1: setup for segreduce transformation sequence for shared memory
reduction involving scalar expansion. Loop peeling is done subsequently to isolate
updates by threads on warp boundaries
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1 /*5. Scalar Expand across indices (block , warp) for arrays _P1 and _P2

to communicate

2 intermediate values for second level reduction */

3 for(block =0; block < NZB; block ++){

4 for(warp =0; warp < NZW; warp ++){

5 for(by_warp =0; by_warp < DIM_X - 1; by_warp ++){

6 for(cidx =0; cidx < 32; cidx ++){

7 _P1[warp][cidx] = c_i[index];

8 _P2[warp][cidx] = A[index]*x[col[index ]];

9 y[_P1[warp][cidx]] += _P2[warp][cidx];

10 }

11 }

12 for(cidx =0; cidx < 31; cidx ++){

13 _P1[warp][cidx] = c_i[index];

14 _P2[warp][cidx] = A[index]*x[col[index ]];

15 y[_P1[warp][cidx]] += _P2[warp][cidx];

16 }

17 _P1[warp ][31] = c_i[index];

18 _P2[warp ][31] = A[index]*x[col[index ]];

19 _P_DATA1[block ][warp] = _P1[warp ][31];

20 _P_DATA2[block ][warp] = _P2[warp ][31];

21 y[_P_DATA1[block][warp]] += _P_DATA2[block][warp];

22 }

23 }

24 /*6. Distribute newly introduced statements for 2 level reduction

25 */

26 for(block =0; block < NZB; block ++)

27 for(warp =0; warp < NZW; warp ++){

28 for(by_warp =0; by_warp < DIM_X - 1; by_warp ++){

29 for(cidx =0; cidx < 32; cidx ++){

30 _P1[warp][cidx] = c_i[index];

31 _P2[warp][cidx] = A[index]*x[col[index ]];

32 y[_P1[warp][cidx]] += _P2[warp][cidx];

33 }

34 }

35 for(cidx =0; cidx < 31; cidx ++){

36 _P1[warp][cidx] = c_i[index];

37 _P2[warp][cidx] = A[index]*x[col[index ]];

38 y[_P1[warp][cidx]] += _P2[warp][cidx];

39 }

40 _P1[warp ][31] = c_i[index];

41 _P2[warp ][31] = A[index]*x[col[index ]];

42 _P_DATA1[block ][warp] = _P1[warp ][31];

43 _P_DATA2[block ][warp] = _P2[warp ][31];

44 }

45 for(block =0; block < NZB; block ++)

46 for(warp =0; warp < NZW; warp ++)

47 y[_P_DATA1[block][warp]] += _P_DATA2[block][warp];

Listing 4.2: setup for segreduce transformation sequence for separating loop nests
for first and second level reductions.
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1 /*7. Scalar Expand across indices (block ,warp) for shared memory

reduction for second level gpu*/

2 for(block =0; block < NZB; block ++)

3 for(warp =0; warp < NZW; warp ++){

4 for(by_warp =0; by_warp < DIM_X - 1; by_warp ++){

5 for(cidx =0; cidx < 32; cidx ++){

6 _P1[warp][cidx] = c_i[index];

7 _P2[warp][cidx] = A[index]*x[col[index ]];

8 y[_P1[warp][cidx]] += _P2[warp][cidx];

9 }

10 }

11 for(cidx =0; cidx < 31; cidx ++){

12 _P1[warp][cidx] = c_i[index];

13 _P2[warp][cidx] = A[index]*x[col[index ]];

14 y[_P1[warp][cidx]] += _P2[warp][cidx];

15 }

16

17 _P1[warp ][31] = c_i[index];

18 _P2[warp ][31] = A[index]*x[col[index ]];

19 _P_DATA1[block ][warp] = _P1[warp ][31];

20 _P_DATA2[block ][warp] = _P2[warp ][31];

21 }

22 for(block =0; block < NZB; block ++)

23 for(warp =0; warp < NZW; warp ++){

24 _P3[block][warp] = P_DATA1[block][warp];// shared memory copy

25 _P4[block][warp] = _P_DATA2[block][warp]; // shared memory copy

26 y[_P3[block][warp]] += _P4[block][warp];

27 }

28

Listing 4.3: setup for segreduce transformation sequence for second level reduction
in shatred memory.

4.4 Results
We measure the performance of compiler-generated SpMV code on a set of matrices

from the University of Florida Sparse Matrix Collection[65]. Table 4.1 lists the matrices

with their number of rows, nonzeros and average nonzeros per row. The experiments

use the Nvidia Tesla C2050 Fermi, which has 14 Streaming Multiprocessors with 32 cores

per SM. It has 1 GB of global memory and a 64KB register file per streaming multiproces-

sor. We report relative performance measurements, comparing the generated code to the

corresponding CUSP implementation described in [5]. The compiler generates the three

versions of the code from the previous section: CSR Scalar, CSR Vector, and COO.

4.4.1 CSR Scalar

In Figure 4.4, we compare performance of the CSR Scalar code and its relative speedup

over CUSP. We use three different 1D block sizes representing the number of threads
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Table 4.1: A suite of unstructured test matrices.
Matrix N NNZ NNZ

N
1 cant 62,451 4,007,383 64.1
2 consph 83,334 6,010,480 72.1
3 mac econ fwd500 206,500 1,273,389 6.1
4 mc2depi 525,825 2,100,225 3.9
5 pdb1HYS 36,417 4,344,765 119.3
6 pwtk 217,918 11,634,424 53.3
7 rma10 46,835 2,374,001 50.6
8 scircuit 170,998 958,936 5.6
9 shipsec1 140,874 7,813,404 55.4
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Figure 4.4: Speedup of CSR Scalar generated code with respect to its CUSP implementa-
tion.

per block: 1024, 256, and 64. In all versions, each thread computes a single row of the

output vector. As shown in Figure 4.4, observe that using a block size of 64 gives the best

performance for each matrix, indicating the performance of CSR Scalar code depends on

the number of threads per block (block size) rather than on the matrix properties. The best

performance attained by the compiler-generated code across all matrices is comparable or

even exceeds the performance of the CUSP CSR Scalar implementation in some cases, with

an average improvement over CUSP of 1.13X. The improvement over CUSP is presumably

due to the block size; CUSP uses a fixed block size of 256 for CSR Scalar.
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4.4.2 CSR Vector

Figure 4.5 compares two versions of CSR Vector and their speedup over CUSP’s CSR

Vector implementation. The Base case uses a fixed 2D block of size 32 ×16, with 32 threads

per matrix row. Observe that performance of Base is close to the CUSP implementation on

6 out of 9 matrices. However it performs poorly for the matrices: mac econ fwd500, mc2depi,

and scircuit. For these, the average number of nonzeros per row (see Table 4.1) is below

10, and thus there are idle resources, and unnecessary synchronization in the reduction.

The CUSP library adjusts the number of threads per row based on number of nonzeros;

for the compiler-generated code, we employ autotuning to identify the best 2D block size,

with the additional performance gained by the best solution captured by the Autotuned

bar. For autotuning, we vary the 2D block size (x, y) such that, x ∈ {2, 4, 8, 16, 32} and y ∈

{16, 32, 64, 128, 256} and x × y = 1024. The pair of numbers on top of each bar represent

the best 2D block size per matrix, and results improve significantly so that the average

speedup over CUSP is 1.15×.

4.4.3 COO

Figure 4.6 illustrates the cumulative performance improvements of applying different

optimizations for COO related to improving memory bandwidth and reducing control

flow, shown in comparison to CUSP. The “Base” case is a simpler compiler-generated

version. The first optimization, “Indirection and padded”, eliminates IF conditions that
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Figure 4.5: Speedup of CSR Vector generated code with respect to its CUSP implementa-
tion.
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Figure 4.6: Speedup of COO generated code with respect to its CUSP implementation.

check if the array accesses are within bounds by padding the data structure with zeroed

entries ( P1 in the spmv first level gpu kernel, refer to Figure 4.3(f)). P1 is padded to

64 elements even though a warp of size 32 threads access it. The reduction proceeds by

checking the segment id of other threads that are less than it by 16,8,4,2,1 in that order. By

prepadding shared memory with 32 invalid values for segment descriptors, we avoid the

IF-condition check for within bounds accesses. On average, this optimization improves

the performance by 15%. The removal of indirection as discussed in Chapter 3 further

improves the overall performance by an additional 10% on average as indicated by the “No

indirection and padded” bar. With these optimizations the generated COO code achieves

92% of the corresponding CUSP implementation. CUSP still achieves marginally better

performance than the automatically-generated COO implementation. This slightly im-

proved performance in CUSP is due to the tight coupling of reduction and the remainder of

SpMV, whereas in our implementation the reduction implementation has been abstracted

so as to achieve a clean separation from the core kernel; that is, a small performance loss

results from the systematic compiler-based derivation.

4.5 Summary
This chapter described how the Nonaffine representations and transformations intro-

duced in the previous chapter facilitated the derivation of high performance code variants

for SpMV on the GPU. Exposing sufficient fine-grained parallelism and global memory
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coalescing were introduced as high performance strategies for the GPU. Various paral-

lelization strategies for SpMV, as in Bell and Garland [5], were reviewed and their corre-

sponding compiler implementations were described. Representing Nonaffine loop bounds

was imperative to deriving the transformation sequence for CSR Vector, one of the code

variants. The generalized loop coalescing transformation’s role in enabling other trans-

formations in the derivation of the COO code variant for SpMV was also demonstrated.

Results competitive with Nvidia’s CUSP library [5] were obtained for the code variants

CSR Scalar, CSR Vector, and COO.



CHAPTER 5

LOOP AND DATA TRANSFORMATIONS FOR

SPARSE MATRIX CODE

There has been a proliferation of sparse matrix formats in recent years to improve

the performance of sparse matrix applications on emergent architectures. Sparse matrix

computations tend to be memory bound, where the cost of data movement dwarfs compu-

tation [3]. Some sparse matrix formats introduce a small number of zero-valued elements

to the data to regularize memory accesses and simplify the generated code.

In this chapter, we introduce three new loop and data transformations for sparse matrix

codes. For each of these new transformations, the compiler automatically generates inspec-

tor/executor code that reorganizes the iteration space and/or data. An advantage of this

approach, is that these transformations compose with other iteration space transforma-

tions such as tiling and unroll-and-jam to further optimize the code. The transformations

are sufficiently generic in that they can be utilized to systematically derive a wide range of

sparse matrix representations tailored to different architectures.

5.1 Overview of approach
This section describes the new transformations make-dense, compact, and compact-and-

pad. Figure 5.1 illustrates how the new transformations interact with each other and other

transformations.

• First, make-dense takes as input any set of nonaffine array index expressions and

introduces a guard condition and as many dense loops as necessary to replace the

nonaffine index expressions with an affine access. The make-dense transformation en-

ables further loop transformations on the dense loops introduced, such as skewing,

shifting and tiling.

• The compact and compact-and-pad transformations are
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… 

skew 

shift 

tile 

Input  
Loop Nest 

make-dense 

Enabling 
Transformations 

compact 

Downstream 
Transformations 

Output	  
Code	  scalar expand 

unroll 

datacopy 

… 

Data 
Transformation 

No 

compact-and-pad 
Yes 

Loop	  Nest	  
with	  dense	  
iterator(s)	  

guard	  

Inspector	  
Code	  

Executor	  
Code	  

Figure 5.1: Overview of approach, showing how transformations are incorporated.

inspector-executor transformations; an automatically-generated inspector gathers the

iterations of a dense loop that are actually executed, and the optimized executor only

visits those iterations. The executor represents the transformed code that uses the

compacted loop, which can then be further optimized by downstream loop transfor-

mations.

• In the compact-and-pad transformation, the inspector also performs a data transfor-

mation, inserting explicit zeros when necessary to correspond with the optimized

executor.

5.1.1 Make-dense

Figure 5.2 presents before and after code templates for make-dense, illustrating its effects

on the control flow, loop bounds, and array index expressions. The arguments of command

make-dense(s0,[idx1, . . . , idxm]) identify the statement and the index expressions to which

the transformation is to be applied.

Each input index expression is replaced with a corresponding dense loop iterator, Ix1 , . . . ,

Ixm . These dense loops iterate over the range of their corresponding index expression

and are placed immediately outside some loop Ik, where Ik is the innermost loop upon

which any of the m index expressions depend. As the set of index expression values may

not be a continuous sequence, and as loop iterators are continuous integer sequences, a

guard surrounds the loop body to compare the new dense iterators to the associated index

functions. Finally the nonaffine index expressions are replaced by a reference to the new
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make-dense(s0, [idx1, idx2, … , idxm]) 
for(I1) 
        
     for(Ix1) 

        for(Ix2) 
           
          for(Ixm) 
            for(Ik) 
               if(Ix1 == idx1(I1, I2,…,Ik) 
                   && Ix2 == idx2(I1, I2,…,Ik)  
                   &&  …    
                   && Ixm== idxm(I1, I2,…,Ik)) 
                     for(In) 
                         s0:   …A1[Ix1]… 
                                 …A2[Ix2]… 
                                 …A3[Ixm]… 

After for(I1)         
            
    for(Ik) 
            
     
       for(In) 
              s0:  …A1[idx1(I1,I2,…,Ik)]… 
                     …A2[idx2(I1,I2,…,Ik)]… 
                     …A3[idxm(I1,I2,…,Ik)]…   

Before 

Figure 5.2: Template for the make-dense transformation.

loop iterator.

Although the transformed code after the make-dense transformation is executable unlike

the sublimation approach in [45], typically we would not want to execute the code because

it is not efficient. Specifically, the entire dense range for each nonaffine index expression

passed to make-dense is now being visited although the guard ensures only the iterations

from the original loop are executed. However, make-dense is still useful as an enabling

transformation because it enables tiling over the range of index expressions, register tiling,

and scalar replacement. In essence, make-dense results in a loop nest with more affine

loop bounds and affine array index expressions. Safety Test: A conservative safety test

for make-dense requires that the only dependences carried by loops I1, . . . , Ik are due to

reduction computations [31]. This restriction is because the new dense loops will iterate

over the range of possible index expression values in order, whereas the original loop

potentially employs a different order (e.g., if the nonzeros in each row i in Listing 5.1 are

not stored in order by column). If it is possible to prove that the nonaffine array accesses

are monotonically nondecreasing [41, 66], and therefore, the iterations are not reordered,

then this restriction is not needed.

There are other requirements on the array index expressions and the placement of the

guard introduced by make-dense. Any index expression where it is possible to compute

its range is allowed as input to make-dense. Additionally, the guard depends on the loops

I1, . . . , Ik and Ix1 , . . . , Ixm and therefore must be nested within those loops and should sur-
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round the whole loop body.

5.1.2 Compact

The compact transformation replaces a dense loop containing a conditional guarding

execution of its body with a sparse loop that only visits the iterations where the condition

is true. The compact command takes as arguments the statement corresponding to the

loop body, and Ik, the loop level whose iterations are to be evaluated against a guard.

The transformed original code is called the executor, as illustrated in the before-and-after

code template in Figure 5.3. The transformation also generates an inspector to pack the

iteration values that satisfy the condition into array explicit index, shown in Figure 5.4.

The compact transformation is similar to guard encapsulation [67].

Each of the outer loops of Ik: I1, . . . , Ik−1, are represented by dimensions in offset index.

On iterations that satisfy the guard, explicit index records the original value of Ik, and

is used in place of references to Ik in the executor. Since the loop being compacted, Ik

may have inner loops (e.g., loops Ik+1 through Ik+d in Figure 5.3), the inspector needs to

ensure that it only stores a specific value of Ik once. The marked variable flags the presence

of a compacted loop iteration that satisfies the guard and ensures that each such iteration

is counted only once. After compact has been applied the resulting code will have more

nonaffine loop bounds and array index expressions.

An example where the compact transformation could be used is in the construction of

1The compact and compact-and-pad transformations support compaction of multiple consecutively nested
loop levels. For purposes of illustration we show compact and compact-and-pad on one loop level. Multiple
consecutive loop levels are treated as a single logical loop level.

 
for(I1) 
         
    for(Ik-1)  
      for(Ik)                         
        for(Ik+1) 
    
           for(Ik+d) 
              if(cond(Ik) )   
                 s0:   …X[Ik]…        

 
for(I1) 
         
   for(Ik-1)  
     for(Ik’=offset_index[I1]…[Ik’-1]; Ik < offset_index[I1]…[Ik’-1+1];Ik’++) 
        for(Ik’+1) 
      
           for(Ik’+d) 
              if(cond(explicit_index[Ik’]) ) 
                 s0:     …X[explicit_index[Ik’]]…  

Before After 

compact(s0, Ik) 

Figure 5.3: Template for the compact1transformation.
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Inspector template 
(compact) 

for(I1) 
    
    for(Ik-1) 
       for(Ik) 
          marked = false 
          for(Ik+1) 
    
                for(Ik+d) 
                    if(cond(Ik)) 
                        if(!marked)   
                           marked = true 
                           explicit_index[count] = Ik  
                           count++                     
       offset_index[I1]…[Ik-1 + 1] = count 

Figure 5.4: Template for the run-time inspector for compact (before optimizations in
Section 5.2).

Unaligned Block Compressed Sparse Row (UBCSR) [2], Generalized Compressed Sparse

Row (GCSR) [68], and Doubly Compressed Sparse Columns (DCSC) [69], where only

nonempty rows or columns are stored for blocks of nonzeros in a sparse matrix. Safety

Test: The compact transformation is always legal because it does not change the ordering

of the iterations in the loop. It merely replaces a dense loop iterator with a sparse one that

has nonaffine loop bounds. While compact is safe, further transformations that could have

been applied to the previously affine loop bounds may no longer be applicable to that loop

level.

5.1.3 Compact-and-pad

The compact-and-pad transformation generates a similar inspector and executor to com-

pact but additionally performs a data transformation. It takes as arguments the statement

corresponding to the loop body, and Ik, the loop level whose iterations are to be evaluated

against a guard, and a single array A to which a data transformation is to be applied.

The before-and-after executor code and inspector code are shown in Figure 5.5 and 5.6,

respectively. Inspector generation relies on the following definition:

Definition 3. For a given set of constraints S on a set of variables I1, . . . , In, Project(S, Ij) is

defined as the set of reduced constraints obtained from S by eliminating every occurrence of variable

Ij from all (in)equalities in S using Fourier-Motzkin elimination, i.e. every pair of inequalities of



54

 
for(I1) 
         
    for(Ik-1)  
      for(Ik)                         
        for(Ik+1) 
    
           for(Ik+d) 
              if(cond(Ik) )   
                s0: …+=…A[…]*X[Ik]…       

 
for(I1) 
         
   for(Ik-1)  
     for(Ik’=offset_index[I1]…[Ik’-1]; Ik < offset_index[I1]…[Ik’-1+1];Ik’++) 
        for(Ik’+1) 
      
           for(Ik’+d) 
                s0: … += …A_prime[Ik’][Ik’+1]…[Ik’+d]*X[explicit_index[Ik’]]…  
 

Before After 

compact-and-pad(s0, Ik, A) 

Figure 5.5: Template for the compact-and-pad transformation.

Inspector Template 
(compact-and-pad) 

for(I1) 
      
      for(Ik-1)  
         for(Ik) 
             marked = false         
             for(Ik+1) 
    
                for(Ik+d) 
                   if(cond(Ik) ) 
                      if(!marked)   
                           marked = true 
                           explicit_index[count] = Ik  
                           for(Ik’+1) 
                                
                                 for(Ik’+d) 
                                    A_prime[count][Ik’+1]…[Ik’+d]=0 
                           count++ 
                      A_prime[count][Ik+1]…[Ik+d] = A[…] 
         offset_index[I1]..[Ik-1 + 1] = count 

Figure 5.6: Template for the run-time inspector for compact-and-pad (before optimizations
in Section 5.2).

the form lb ≤ c1 Ij, c2 Ij ≤ ub is replaced by a new inequality c2lb ≤ c1ub.

Conceptually, the compact-and-pad inspector copies the footprint of the compacted iter-

ations associated with a specified array A into a transformed array A prime that will be ref-

erenced in the optimized executor code. The count of the compacted loop’s iterations that

satisfy the guard assumes the leading dimension of the newly reorganized array, A prime.

When the compacted loop level is not innermost, we use the inner loops’ (Ik+1, . . . , Ik+d)

iteration space to derive the size of A prime. For each loop level j nested inside Ik, the

size of the dimension corresponding to that level is computed as ubj − lbj + 1, where



55

lbj ≤ Ij ≤ ubj and lbj and ubj are the respective lower and upper bounds on the loop level

Ij in the set of constraints obtained from Project(S,Ik),. . .,Project(S,Ij−1). That is, the outer

loop constraints are projected into each inner loop to derive the inner loops’ maximum

loop bounds. These bounds are then used to allocate the corresponding array dimension.

Additionally compact-and-pad might pad data elements with an identity value (0 in

the template) in A prime to effect redundant but harmless computation for associative

operators. The inspector can insert an identity value, particular to the type of operation,

into A prime even on iterations that do not satisfy the guard. This allows compact-and-pad

to eliminate the guard condition in the executor where compact would not, as illustrated in

Figure 5.3 and 5.5 (c). The marked variable in compact-and-pad serves an identical function

as in compact. Safety Test: Eliminating the guard condition in compact-and-pad is unsafe if

two distinct input iteration space vectors evaluate to the same location in the array being

transformed. Thus, compact-and-pad aborts in the inspector if two distinct data entries

being inspected are mapped to the same array location. This is the injectivity criterion.

Any affine transformations that manipulate the loop indices in the guard such that the

injectivity criterion is violated will cause compact-and-pad to fail. Further, padding and

eliminating the guard relies on updates involving A prime to be associative and to have an

identity value.

5.1.4 Example: CSR SpMV

Applying make-dense and a subsequent compact-and-pad on the SpMV code in Listing 5.1,

based on the templates presented in Figure 5.2, results in the executor code shown in

Listing 5.3. This code is roughly equivalent to the original CSR SpMV code.

5.1.5 Example: Traversing an unstructured mesh

The example input code in Listing 5.4 traverses over triangles in an unstructured mesh

and performs various operations by accessing values associated with the three nodes of

each triangular element. The code has three distinct nonaffine index expressions n1, n2

and n3, and illustrates how make-dense and compact could be called on multiple array index

expressions and loop levels simultaneously.

Three outer loops are inserted by make-dense, as shown in Listing 5.5, with one corre-

sponding to each indirect reference. The execution is guarded with a logical conjunction
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over the conditions corresponding to each loop level. Then, compact is subsequently called

with all three outer loops simultaneously specified to produce the inspector in Listing 5.6.

Since all loop levels for compact are continuous, they are treated as a single logical entity.

The inspector code records the value of each iterator that satisfies the guard, one per

compacted loop level. The inspector code in Listing 5.6 is further optimized as outlined in

Section 5.2.2. The optimized executor code appears in Listing 5.7.

5.1.6 Example: BCSR SpMV

Now let us examine how to use these transformations to modify the matrix representa-

tion. The inspector copies from A to A prime to introduce additional zero-valued elements.

We first apply make-dense to the CSR input of Listing 5.1 and produce the code in Listing

5.2. To derive dense blocks of constant size R × C, we can tile the output of make-dense,

both the i and k loops, corresponding to the rows and columns of the sparse matrix.

1 for(i = 0; i < N; i++)

2 for(j = index[i];j < index[i+1]; j++)

3 y[i] += A[j]*x[col[j]];

Listing 5.1: CSR SpMV code.

1 for(i = 0; i < N; i++)

2 for(k = 0; k < N; k++)

3 for(j = index[i];j < index[i+1]; j++)

4 if(k == col[j])

5 y[i] += A[j]*x[k];

Listing 5.2: CSR SpMV after make-dense.

1 for(i = 0; i < N; i++)

2 for(k = offset_index[i]; k < offset_index[i+1]; k++)

3 y[i] += A_prime[k]*x[explicit_index[k]];

Listing 5.3: Executor for CSR SpMV.

1 for (e=0; e<numelem; e++){

2 ... data[ n1[e] ] ...

3 ... data[ n2[e] ] ...

4 ... data[ n3[e] ] ...

5 }

Listing 5.4: Triangle code.
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1 for(n3i=0; n3i < N; n3i ++)

2 for(n2i =0; n2i < N; n2i ++)

3 for(n1i =0; n1i < N; n1i ++)

4 for (e=0; e<numelem; e++)

5 if(n1i==n1[e] && n2i==n2[e] && n3i==n3[e]){

6 ... data[ n1i ] ...

7 ... data[ n2i ] ...

8 ... data[ n3i ] ...

9 }

Listing 5.5: Triangle after make-dense.

1 count=0

2 for(n3i=0; n3i < N; n3i ++){

3 marked_3 = false;

4 for(n2i =0; n2i < N; n2i ++){

5 marked_2 = false;

6 for(n1i =0; n1i < N; n1i ++){

7 marked_1 = false;

8 for (e=0; e<numelem; e++)

9 if(n1i==n1[e] && n2i==n2[e] && n3i==n3[e])

10 if(!( marked_3 && marked_2 && marked_1)){

11 marked_3 = true;

12 marked_2 = true;

13 marked_1 = true;

14 explicit_index_1[count] = n1i;

15 explicit_index_2[count] = n2i;

16 explicit_index_3[count] = n3i;

17 count ++;

18 }

19 }

20 }

21 }

Listing 5.6: Inspector resulting from compact for Triangle.

1 for(i=0; i < count;i++){

2 ... data[ explicit_index_1[i] ] ...

3 ... data[ explicit_index_2[i] ] ...

4 ... data[ explicit_index_3[i] ] ...

5 }

Listing 5.7: Executor resulting from compact for Triangle.



58

1 for(ii = 0; ii < N/R; ii++)

2 for(kk = 0; kk < N/C; kk++)

3 for(i = 0; i < R; i++)

4 for(k = 0; k < C; k++)

5 for(j = index[ii*R + i]; j < index[ii*R+i+1]; j++)

6 if(kk*C + k == col[j])

7 y[ii*R + i] += A[j]*x[kk*C + k];

Listing 5.8: CSR SpMV after make-dense and tiling.

1 for(ii = 0; ii < N/R; ii++)

2 for(kk = offset_index[ii]; kk < offset_index[ii+1]; kk++)

3 for(i = 0; i < R; i++ )

4 for(k = 0; k < C; k++)

5 y[ii*R + i] += A_prime[kk][i][k]*x[C*explicit_index[kk] + k];

Listing 5.9: Executor for BCSR SpMV.

This is shown in Listing 5.8. The tiles are then the inner loops (with j temporarily remain-

ing as innermost loop), and the tile controlling loops ii and kk permuted to the outermost

positions. This tiling is proven safe as it does not modify the direction of the dependence

on y. The associated transformation relation is:

T = {[i, k, j] → [ii, kk, i, k, j]|C ∗ kk + k < N && R ∗ ii + i < N} (5.1)

A subsequent compact-and-pad at loop level kk produces the BCSR executor shown in List-

ing 5.9. The corresponding CHiLL script and inspector for BCSR are shown in Figure 5.7

and Listing 5.10, respectively.

5.2 Optimization of inspector and executor
A key consideration in automating an inspector/executor approach for sparse matrices,

and a distinguishing feature of our work, is to derive high-performance inspectors that

make_dense(stmt,”j”,"k") 
 
tile(stmt,”i”, R, 1, counted) 
tile(stmt,”k”, C, 1, counted) 
 
compact-and-pad(stmt,”kk”,”a”, “a_prime”) 
 
--downstream transformations 
--copy to temporary storage and 
--fully unroll inner loops 
 
datacopy(executor_stmt,”k”, x) 
datacopy(executor_stmt, “i”, y) 
unroll(executor_stmt,”k”, C) 
unroll(executor_stmt, “i”, R) 

Figure 5.7: CHiLL script for BCSR.
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1 struct list_item{

2 float data[R][C];

3 int col;

4 struct list_item *next;

5 };

6 struct mk{

7 struct list_item *list_ptr;

8 };

9 offset_index [0] = 0;

10 count = 0;

11 struct mk marked [];

12 struct list_item *list=NULL;

13 for(ii = 0; ii < N/R; ii++){

14 for(i = 0; i < R; i++)

15 for(j = index[ii*R + i]; j < index[ii*R+i+1] ; j++){

16 kk = col[j]/C;

17 marked[kk]. list_ptr = NULL;

18 }

19 for(i = 0; i < R; i++)

20 for(j = index[ii*R + i]; j < index[ii*R+i+1] ; j++){

21 kk = col[j]/C;

22 k = col[j] - kk*C;

23 if(marked[kk]. list_ptr == NULL){

24 struct list_item *new_entry =

25 malloc(sizeof(struct list_item));

26 for(i_ = 0; i_ < R; i_++)

27 for(k_ = 0; k_ < C; k_++)

28 new_entry ->data[i_][k_] = 0;

29 new_entry ->col = kk;

30 new_entry ->next = list;

31 list = new_entry;

32 marked[kk]. list_ptr = new_entry;

33 count ++;

34 }

35 marked[kk].list_ptr ->data[i][k] = A[j];

36 }

37 offset_index[ii+1] = count;

38 }

Listing 5.10: Optimized inspector for BCSR SpMV.

perform comparably to those used in manually-tuned libraries. In particular, we want

to avoid the inspector having to make several passes over the sparse matrix or introduce

significant additional work not present in the original code. This section describes code

generation and optimization details for both the inspector and executor.

5.2.1 Dynamic memory allocation and reduced traversals (Inspector)

The size of the new matrix representation cannot be determined statically. However,

traversing the input to compute the size, as is done in OSKI, is expensive as it requires two

passes over the input: one for initialization of an auxiliary data structure, and another to
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traverse and count the number of nonzeros.

To minimize the number of traversals over the input, we utilize dynamic memory

allocation to create a linked list of nonzero elements or blocks when they are discovered by

the inspector or use static memory allocation when the size is known a priori, such as in

ELL. This allows us to copy the data associated with the nonzeros while counting them in a

single effective pass over the input matrix. Despite the overhead of subsequently copying

the linked list into an array, this approach is faster than using two separate passes, as will

be shown in Section 7.3.

5.2.2 Derivation of closed-form iterators (Inspector)

The unoptimized inspector code resulting from the compact and compact-and-pad trans-

formations retains the loops and the guard from the input code. Since the make-dense com-

mand introduces additional loops to the executor and compact or compact-and-pad are typi-

cally applied after make-dense and other enabling transformations, the inspector’s traversal

over the resulting iteration space can be expensive. To reduce the overhead associated

with the inspector, we replace these loop iterators with closed-form expressions wherever

possible. The main idea behind this optimization is to compute the maximal set of loop

iterators that can be derived from other iterators based on the guard condition for compact.

We utilize the rich set of polyhedral functions, such as variable projection and elimina-

tion, provided by the Omega+ library to accomplish this. The guard conditions (typically

those introduced by make-dense) are encoded as equality constraints involving loop index

variables, and all possible orderings of the loop index variables involved in the guard

condition are considered to determine how to eliminate the maximum number of inner

loops in the order. The guard condition is progressively updated with the eliminated

variables being replaced with the corresponding expressions. A variable can be eliminated

if present in the set of equalities of the current guard.

One of the patterns our algorithm detects is variables that are multiplied by some

constant and then summed with a variable whose constant range is defined by the same

constant (e.g., the kk*C + k == col[j] condition in Listing 5.8). Generally, if we have the

constraints v ∗ c + m = e and 0 ≤ m < c, where c is a constant, v and m are iterators, and

e is some expression, then a closed-form expression for v is v = be/cc used in conjunction
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with terms being multiplied by that constant range.

For example, consider the sample guard condition kk*C + k == col[j]. The bounds

on the k loop are 0 ≤ k < C and if the kk loop is the candidate for elimination, the k loop

is replaced as an existential leading to the constraints below:

I = {[j, kk] | (∃k : C ∗ kk + k = col(j) ∧ 0 ≤ k < C)} (5.2)

We observe the existence of a closed form solution for kk is bcol[j]/Cc and eliminate

the kk loop in the inspector (see lines 28 and 33 in Listing 5.10). Once kk is derived, its

solution can be substituted into the set of constraints to yield further loop iterators such

as k, where k is col[j]-C*kk, which would be uncovered by checking for equalities in the

modified guard constraint. Hence both these loops may be eliminated from the inspector

code. The optimized code with the loops and guard condition eliminated and replaced

with assignments as functions of the sparse iterator is shown in Listing 5.10.

The derivation of closed form expressions used to eliminate loops also facilitates reduc-

ing the number of traversals over the input. Minimally, this optimization will eliminate the

compacted loop, requiring that the scalar marked from Figure 5.4 be expanded to a vector,

with the same size as the range of the compacted loop.

5.2.3 Elimination of loops (executor)

The additional loops introduced by the make-dense transformation make it imperative

for the compact and compact-and-pad transformations to eliminate the additional loop(s)

and/or guard introduced to minimize the run time of the executor code.

Redundant loops in the executor can be identified from considering the guard condi-

tion and the loop(s) being compacted. Let us assume that the input code for compact (or

equivalently, compact-and-pad) is an n-deep loop nest of the form I1, . . . , In and a particular

loop level Ij is a candidate for compaction and elimination from the executor. The Ij

loop may be eliminated if: (1) the guard is satisfied on all iterations of Ij; and, (2) an

injective function F exists such that on each iteration of Ij that satisfies the guard, F maps

that iteration to a unique tuple formed from the other iterators. This function is explicitly

constructed in the inspector code for compact.

In Listing 5.11, the optimized executor code is shown with the j loop removed. The

reference to the j loop in the array A, is now derived from k, using col inv, which repre-
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1 for(i = 0; i < N; i++)

2 for(k = offset_index[i]; k < offset_index[i+1]; k++)

3 y[i] += A[col_inv[k]]*x[explicit_index[k]];

Listing 5.11: Executor code for CSR SpMV from compact

sents the injective function F. The redundant loops being eliminated from the executor are

distinct from the required loops whose closed form expressions are being derived in the

inspector.

5.3 Parallel GPU implementations
We now describe two parallel implementations targeting Nvidia GPUs, which extend

the work of Venkat et al. to examine implementations that require new matrix representa-

tions and will be used to compare with manually-tuned CUSP [26].

5.3.1 DIA

To uncover the diagonals that are implicit in the SpMV CSR format, the make-dense com-

mand is used to convert the iteration space of the sparse computation to its corresponding

dense one, as we did for BCSR. After this transformation we skew the resulting dense

loop k by k=k-i and permute the i and k loops to obtain the code in Listing 5.12. The

transformation relations are as follows:

T = {[i, k, j]→ [i, k− i, j]} (5.3)

T = {[i, k, j]→ [k, i, j]} (5.4)

The outer k loop iterates over the diagonals that are numbered from 0 to 2*N-1, while

the inner i loop gives the maximum possible count of the number of elements in each diag-

onal. However, since the matrix is sparse, the additional guard (k+i-(N-1) == col[j])

checks for the presence of the diagonal entry. Now the compact command is called on

the k loop, with the A matrix as argument to eliminate diagonals with nonzeros. The final

executor code is shown in Listing 5.13.

The CUDA-CHiLL script for DIA is shown in Figure 5.8. Following the make-dense and

compact-and-pad commands, the inner i loop is parallelized for threaded execution on a

GPU. The copy to shared command copies the diagonal offset matrix or the explicit index



63

1 for(k = 0; k<= 2*N-2; k++)

2 for(i = max(0,N-1-k); i <= min(N-1,2*N-2-k); i++)

3 for(j = index[i];j < index[i+1]; j++)

4 if(k+i-(N-1) == col[j])

5 y[i] += A[j]*x[k+i-(N-1)];

Listing 5.12: CSR SpMV after make-dense, skew and permute.

1 for(k=0; k < ub; k++)

2 for(i = 0; i <= N-1; i++)

3 y[i] += A_prime[k*N + i]*x[explicit_index[k]+i -(N-1)];

Listing 5.13: Executor for DIA SpMV.

matrix into shared memory to exploit its reuse across multiple threads, while the copy to registers

command copies the output y vector to an intermediate register to accumulate the rows’

dot products.

5.3.2 ELL

The ELL sparse matrix format relies on determining the maximum number of nonzero

entries in a row for a sparse 2-D matrix and then extending the other rows to that length

by padding with zeros. The number of nonzeros per row in the initial SpMV CSR code

is implicit in the loop bounds. To make it explicit, the inner j loop is normalized to give

an exact count of the nonzeros in each row, using a nonaffine shifting transformation as

shown in Listing 5.14. The maximum row length M must be supplied, or can be derived by

additional inspection, and is used as a tile size for the j loop. After compact-and-pad, the

make_dense(0,2,"k") 
--enabling transformations 
skew(stmt,"k",{-1,1}) 
permute(stmt,{"k","i","j"}) 
 
compact-and-pad(stmt,”k”,”a”,"a_prime”) 
 
--downstream transformations 
permute(executor_stmt,{"i","k"}) 
tile_by_index(executor_stmt,{"i"},{Ti},{l1_control="ii"},
{"ii","i","k"}) 
tile_by_index(executor_stmt,{"k"},{Ti},{l1_control="kk"},
{"ii","i","kk","k"}) 
 
cudaize(executor_stmt,"spmv_diag_GPU",{x=N,y=N},
{block={"ii"}, thread={"i"}}, {"a_prime", "_P_DATA2"}) 
 
--shared memory and register copy --optimizations for 
GPU 
copy_to_shared(executor_stmt,"k","_P_DATA2",-16) 
copy_to_registers(executor_stmt, "kk", "y”)  
                             

Figure 5.8: CUDA-CHiLL script for DIA.
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ELL executor is parallelized similarly to DIA, using a transposed matrix to achieve global

memory coalescing and a register copy to accumulate the output results. As the nonaffine

shift is somewhat unique, we include the transformation relations as follows.

T = {[i, j]→ [i, j− index(i)]} (5.5)

{[i, j]→ [i, jj, j] | M ∗ jj + j < index(i + 1)− index(i)} (5.6)

Denoting the maximum row length by a constant M, the j loop is then tiled by this

amount resulting in Listing 5.15.

The jj loop is chosen for compaction with the j loop as the inner loop. We indicate

that none of the row lengths exceed the constant M, by specifying it as a known constraint

and input it to the compact-and-pad command. We encode it as follows:

{[M][i, jj, j] : index(i + 1)− index(i) < M} (5.7)

This means that the loop corresponding to index jj is a single-iteration loop and so is

eliminated in the executor code shown in Listing 5.16. Further since the jj loop is a single-

iteration loop, the arrays A prime and col prime are reorganized according to the outer

loop index, i and the inner loop index j.

The CUDA-CHiLL script in Figure 5.9 shows the other downstream transformations

applied subsequently. The loop order is permuted, and the input matrix is reordered by the

CHiLL datacopy transformation based on the new loop order, so that consecutive threads

access the fastest changing dimension of the input matrix. Finally the inner scalar product

accumulation is done in a register by employing the copy to registers transformation.

5.4 Performance results
The transformations described in Section 5.1 are used in the transformation recipes

such as in Figure 5.7 and 5.8 to derive optimized BCSR, DIA and ELL matrix represen-

1 for(i = 0; i < N; i++)

2 for(j = 0; j < index[i+1]- index[i]; j++)

3 y[i] += A[j+index[i]]*x[col[j+index[i]]];

Listing 5.14: CSR SpMV code after nonaffine shift.
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1 for(i = 0; i < N; i++)

2 for(jj = 0; jj <= (index[i+1]- index[i]-1)/M; jj++)

3 for(j=0; j <= M - 1; j++)

4 if(j <= index[i+1]- index[i]-jj*M - 1)

5 y[i] += A[jj*M+j+index[i]]*x[col[j+jj*M+index[i]]];

Listing 5.15: CSR SpMV code after shift and tile.

normalize(stmt,”j”) 
tile_by_index(stmt,{"j"},{Tj},{l1_control="jj"},{"i","jj","j"}) 
 
shift_to(stmt,”jj”,0) 
shift_to(stmt,”j”,0) 
 
compact-and-pad(stmt,{“jj”},{"a_prime","col_prime"}, 0, 
{"a","col"}, {1,-1},{"index_", "index__"}, M, 1) 
permute(executor_stmt,{"j", "i"}) 
 
scalar_expand(executor_stmt,{“j”,”i”}, "a_prime") 
scalar_expand(executor_stmt,{“j”,”i"}, "col_prime") 
 
distribute({executor_stmt,datacopy_stmts}, “j”) 
fuse(datacopy_stmts,”j”) 
 
tile_by_index(executor_stmt,{"i"},{Ti},{l1_control="ii"}, 
{"ii","i","j"}) 
cudaize(executor_stmt,"spmv_ell_GPU", 
{ _P_DATA4=N*M,x=N,y=N,_P_DATA3=N*M},{block={"ii"}, 
thread={"i"}}, {"_P_DATA4", "_P_DATA5", "n"}) 
copy_to_registers(executor_stmt, "j", "y") 

Figure 5.9: CUDA-CHiLL Script for ELL Matrix Representation.

1 for(i = 0; i < N; i++)

2 for(j=0; j <= M - 1; j++)

3 y[i] += A_prime[i*M + j]*x[col_primel[i*M + j]];

Listing 5.16: Executor for ELL SpMV.

tations. These recipes include further downstream transformations as were described in

Sections 5.1 and 5.3 to derive the final corresponding optimized code variants.

We use two target platforms for this experiment. The BCSR comparison focuses on

optimizing for the memory hierarchy of a node in a conventional multicore architecture.

For this purpose, we use an Intel i7-4770 (Haswell) CPU with 256KB L1 cache, 1 MB L2

cache, and 8MB L3 cache size. The system has 32GB of DRAM memory. The DIA and ELL

comparisons look at performance on an Nvidia Tesla K20c Kepler GPU. The K20c has 13

Streaming Multiprocessors with 192 cores per SM. It has 4800 MB of global memory and

a 64KB register file per streaming multiprocessor. All CPU code is compiled with the icc

compiler, version 15.0.0, and all GPU code uses the nvcc compiler, version 6.5.
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We compare BCSR performance to OSKI version 1.0.1h for the same set of 14 matrices

used by Williams et al.[70] and obtained from the University of Florida Sparse Matrix

Collection[71]. We compare DIA and ELL performance to CUSP version 0.4.0 for the same

sparse matrices as in [5], structured matrices resulting from standard discretizations of

the Laplacian operator. The sizes of these matrices range from 958,936 to 11.6 million

nonzeros, and are therefore sufficiently large to exceed the size of the last level cache of the

underlying machine.

We report the absolute performance for all implementations in terms of GFlops. As

sparse matrix libraries that convert to optimized matrix representations also incorporate

an inspector to derive the new representation, we also compare against inspector times for

OSKI and CUSP. As is done in CUSP, the compiler-generated DIA and ELL inspector code

is executed sequentially on the CPU.

5.4.1 BCSR

A performance comparison of the compiler-generated BCSR code with OSKI is shown

in Figure 5.10(a). We ran all configurations for block size R×C (see Listing 5.9) in the range

of 1 to 8 and report the best-performing configuration for both OSKI and our compiler-

generated code. The compiler-generated codes are within 1% of the performance of OSKI

for the BCSR executor.

The inspector speedup, shown in Figure 5.10(b), compares the overhead of converting

from CSR to the BCSR representation. On average the compiler-generated inspector is

1.5x faster than OSKI’s. This is because OSKI does effectively four sweeps over the input

matrix: two to compute the number of nonzero R × C blocks to allocate the memory

accordingly and two more to actually fill the nonzeros in the appropriate locations of the

reorganized matrix. We eliminate the first two sweeps over the input matrix by simulta-

neously allocating memory dynamically as a linked list of nonzero blocks and filling in

the nonzeros. An additional traversal is done to reset the data structure. Finally a sweep

over the nonzero blocks stored as a linked list is done to copy the data into an array layout.

Hence, we accomplish the data reorganization in three sweeps as opposed to four by OSKI.

For input matrices mc2depi and mac econ fwd500, BCSR does not achieve any advan-

tage over the CSR format for both OSKI and our compiler. The extra costs associated with
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Figure 5.10: Performance comparison of BCSR executor and inspector code with respect
to OSKI.

dynamic memory allocation for every nonzero in the matrix is not amortized even by the

lesser number of traversals in our inspector code compared to OSKI.

Comparing the inspector time for a particular matrix is fair only when the same R× C

configuration is picked across both as larger R× C sizes lead to faster inspector times for

a given matrix. In cases where the best performing configurations of the executor for both

OSKI and ours were identical, such as for cant, consph, qcd5 4, and shipsec1, we observe

that our inspector is uniformly faster than OSKI’s, due to fewer traversals over the input

matrix.

5.4.2 DIA and ELL

Figure 5.11(a) and (b) compares performance of the DIA and ELL executor code against

that of the CUSP library. On average the compiler-generated code is within 5% of the

performance of CUSP for both representations. The best-performing compiler-generated

versions are up to 6% faster than CUSP.

We observed that as the size of the stencil increases from a 3- to 27-point stencil, the

performance of the CUDA-CHiLL code variant relative to its CUSP counterpart improves.

CUSP outperforms CUDA-CHiLL marginally for the 3- and 5-point stencils. This is due

to a subtle difference in the two implementations. In CUSP the output vector storing the

result of the matrix-vector multiply is assumed to be zero; the inner product of each vector

is accumulated in a register, pre-initialized to zero, and then copied to the output vector.

The code generated by CUDA-CHiLL has an additional global memory read to initialize

the result vector. This read overhead is noticeable when the work per thread is relatively
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Figure 5.11: Performance comparison of DIA and ELL inspector and executor code with
respect to CUSP.

small, such as for the low-order 3- and 5-point stencils. The performance advantage of the

code generated by CUDA-CHiLL on the other stencils is a result of an IF-condition in the

CUSP code checking if the column entries are valid in the innermost loop. CUDA-CHiLL

avoids this inner conditional check by virtue of the inspector adding zeros into the data

representation. DIA outperforms ELL significantly, up to a factor of 2×, because the DIA

implementation reuses the elements of the x vector and the offset vector, whereas ELL

cannot.

Figure 5.11(c) presents the speedup for the automatically-generated DIA inspector over

CUSP, which is on average 1.27× faster. The CUSP inspector initializes the entire DIA

matrix in a single pass prior to copying the nonzero entries in a separate pass, whereas the

CUDA-CHiLL inspector initializes and copies the data in a single pass. Initializing and

copying the data in a single pass is beneficial to exploit temporal reuse of the initialized

diagonal, if it is copied into subsequently. This is the case for all matrices except the

27-point stencil where the size of the last level cache is insufficient to exploit this temporal

reuse. In the case of the 27-point stencil, some of the initialized diagonals are flushed
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without being reused for the data copy of the nonzeros. This result suggests that we

might improve inspector time for large matrices with numerous diagonals if we could

generate both versions of the inspector, and use techniques such as autotuning, learning

or additional inspectors to decide which inspector is best for the input matrix.

Figure 5.11(d) examines the performance of the ELL inspector. We show two bars,

labeled Inspector and Inspector+Transpose. To achieve global memory coalescing in the

executor (i.e., adjacent threads accessing adjacent elements in memory), the CUSP library

performs the computation on a transposed ELL matrix by declaring the ELL matrix to be in

column major order. Our compiler-generated implementation must perform an additional

transpose to achieve this same representation; alternatively, the generated code would be

equivalent if the programmer could provide the designation of column major order to

the compiler. Without the cost of the transpose, the red columns in Figure 5.11(d), the

compiler-generated inspector achieves a speedup ranging from 0.52× to 1.26×. With the

additional overhead of the transpose, the automatically-generated inspector code is always

slower than CUSP, as the blue columns show speedups between 0.26× and 0.40×.

As the size of the matrix increases, the inspector performance relative to CUSP im-

proves because the difference in layout is less significant for large matrices. We have

identified additional optimizations to improve ELL inspector time that could be the target

of future work. First, we could combine the transpose with the data layout transformation

in a single sweep by permuting the loops in the CSR code prior to compact-and-pad, incor-

porating the knowledge of the fixed upper bound for the inner loop into account to make

this safe. Second, we can reduce loop overhead arising from tiling by the fixed row width.

5.5 Summary
This chapter introduced three new loop and data transformations: make-dense, compact

and, compact-and-pad. The make-dense transformation converts a sparse iteration space to a

dense one, exposes affine loop bounds and eliminates nonaffine array access expressions.

Conceptually, the dense loop iterates over the range of the nonaffine expression and a

guard is introduced for correctness, as the nonaffine expression may not be continuous,

while the introduced loop is a continuous integer sequence.

The dense loop can then be transformed by affine transformations. The compact and
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compact-and-pad transformations convert a dense iteration space to a sparse one by gather-

ing only the loop iterations that satisfy the guard introduced by make-dense. The compact-

and-pad transformation effects a data transformation additionally. Both compact and compact-

and-pad generate inspector/executor code to effect the code and data reorganization at

run-time. Optimizations that reduce the overhead of the generated inspector and executor

code were also described.

The executor code generated by compact and compact-and-pad can be further optimized

by downstream transformations such as unrolling. The BCSR, ELL, and DIA sparse matrix

representations were derived by composing these new transformations with other itera-

tion space transformations. The generated BCSR code was benchmarked against OSKI on a

single core CPU, while the ELL and DIA results were benchmarked against Nvidia’s CUSP

library on a GPU. In both cases, performance of the generated inspector and executor codes

were competitive with the library implementations.



CHAPTER 6

INTEGRATION OF TRANSFORMATIONS

INTO APPLICATIONS

In this chapter we demonstrate how the transformations from the previous chapter

can help facilitate the derivation of highly specialized sparse matrix formats that meet

the particular demands of an application. The first application is Locally Optimal Block

Preconditioned Conjugate Gradient (LOBPCG) which calls Sparse Matrix-Matrix (SpMM)

multiply for computing the properties of light atomic nuclei [24]. In this application, the

size of the matrix is so huge (approximately 430 million nonzeros) that it necessitates

a sparse matrix representation with an optimized memory footprint. We describe the

derivation of such a sparse matrix representation that utilizes our loop and data trans-

formations. The second application, Stochastic Gradient Descent (SGD) [25] is a graph

algorithm, where the edges of the graph are processed iteratively until some criteria of

convergence is met, and on each iteration the endpoints of each edge are read and updated.

SGD is challenging for parallelization because no two edges sharing an endpoint may

be processed concurrently. We describe how our transformations derive efficient parallel

implementations for SGD given this constraint.

6.1 LOBPCG
LOBPCG is a subspace iteration method which starts with an initial guess about the

eigenvectors and refines the guess at each iteration of the solver [24]. At the heart of

LOBPCG lies SpMM, which multiplies a sparse matrix with multiple dense eigenvectors.

Due to the very large size of the input matrix used, the property of symmetry of the matrix

is taken advantage of to store only half the matrix entries to optimize for memory footprint.

Since the matrix is symmetric, SpMM using the entire matrix is accomplished by SpMM

over half the symmetric matrix, followed by an additional transposed SpMM (SpMM T)

over the same half.
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SpMM can be trivially parallelized using the CSR format by computing each row com-

putation in parallel. However computing the transposed SpMM in parallel using the CSR

format is difficult due to write conflicts on the output vector when the row computations

are parallelized. One might observe that the Compressed Sparse Column(CSC) format

might be ideal for parallelization of transposed SpMM, but then a similar problem would

arise for computing SpMM using CSC.

The CSB format solves this problem by blocking the actual matrix dimensions into

square blocks of size, say β × β, where β is the blocking factor. It then determines the

nonzeros falling in each block and stores them in the COO format in addition to storing

the start and end offsets of each block. Now, SpMM can be effectively parallelized by block

rows since they do not have any write conflicts and transposed SpMM can be effectively

paralllelized by block column without conflicts. The CSB format is illustrated in Figure 6.1,

where the actual matrix is blocked into β× β tiles. Block-column-wise parallelization for

transposed SpMM is indicated by a vertical line while block-row-wise parallelization is

indicated by a horizontal line. The tiles with dotted boundaries are actually not stored but

×	 ×	 ×	

×	 ×	

×	 ×	

×	 ×	

×	 ×	 ×	

×	 ×	 ×	 ×	

×	 ×	 ×	

×	 ×	

×	 ×	

×	

×	

×	

×	 ×	

×	 ×	 ×	 ×	

Block-row 0 

β

β 

Block-column 0 

Figure 6.1: Parallelization strategy using CSB format. Nonzeros are represented by crosses.
Input matrix is blocked into β × β blocks. Blocks with dotted boundaries represent
symmetric portion of matrix which is not stored to reduce the memory footprint. SpMM
is parallelized by block rows, while transposed SpMM is parallelized by block columns.
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serve to illustrate that the actual matrix is symmetric.

6.1.1 CSB derivation

We derive the CSB format starting from the code for SpMM and transposed SpMM

shown in Listings 6.1 and 6.2. The innermost loop index , k, iterates over the multiples

right hand side vectors in SpMM. To expose the dense loops that correspond to the actual

dimensions of the matrix, the make-dense transformation is firstly called on the SpMM code

yielding the intermediate code shown in Listing 6.3. Next, tiling is applied to the two

outermost loops to yield the β× β blocks in CSB. Here β is the tiling factor. The tiled code

for SpMM is shown in Listing 6.4.

Finally compact-and-pad is applied to the consecutive third and fourth loop levels(i,

l), that is the third and fourth loop levels are treated as a single logical loop level for

compaction. The input sparse matrix is also reorganized by compact-and-pad into a new

layout reflecting the updated traversal order of the nonzeros. Additionally the offset index,

explicit index 1 and explicit index 2 arrays are populated by the compact-and-pad inspec-

tor.The offset of each β × β block into the array of nonzeros is stored in P DATA1. Each

entry of the array P1 corresponds to a single block, and the block’s nonzeros are stored

as a linked list because the size of the matrix is unknown. For each nonzero, its block

is identified using the indices ii and ll. These indices specify the entry of P1, whose

linked list is appended with the nonzero. The row and column offsets within the block

correspond to indices i and l and are stored in the linked list fields col [0] and col [1]

respectively. The total count of nonzeros is stored in chill count 1 and the individual

nonzero count of each block is stored in the corresponding entry in P1.Once all nonzeros

1 for(i=0; i < n; i++)

2 for(j=index[i]; j < index[i+1]; j++)

3 for(k=0; k < m ; k++)

4 y[i][k]+= A[j]*x[col[j]][k];

Listing 6.1: SpMM code based on the CSR format.

1 for(i=0; i < n; i++)

2 for(j=index[i]; j < index[i+1]; j++)

3 for(k=0; k < m; k++)

4 y[col[j]][k]+= A[j]*x[i][k];

Listing 6.2: Transposed SpMM code based on the CSR format.
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1 for(i=0; i < n; i++)

2 for(l=0; l < n; l++)

3 for(j=index[i]; j < index[i+1]; j++)

4 for(k=0; k < m ; k++)

5 if(l == col[j])

6 y[i][k]+= A[j]*x[l][k];

Listing 6.3: SpMM code after make-dense.

1 for(ii=0; ii < n/beta; ii++)

2 for(ll=0; ll < n/beta; ll++)

3 for(i=0; i < beta; i++)

4 for(l=0; l < beta; l++)

5 for(j=index[ii*beta + i]; j < index[ii*beta+i+1]; j++)

6 for(k=0; k < m ; k++)

7 if(ll*beta + l == col[j])

8 y[ii*beta + i][k]+= A[j]*x[ll*beta + l][k];

Listing 6.4: SpMM code after make-dense and tiling.

have been gathered, the offset and explicit index arrays are allocated within the memory

for the right size. The data is then copied from the linked list to the arrays and, the offset

of each block is updated using P DATA1. Listing 6.5 shows the inspector code for CSB.

6.1.2 Optimizations

The generated CSB code was further parallelized using OpenMP directives across block

rows for SpMM and block columns for transposed SpMM. For transposed SpMM, the

two outermost loops were interchanged using loop permutation so that the resulting code

would be traversed by block columns.

A further optimization that reduced the memory footprint of index arrays was declar-

ing the row and column index arrays, or explicit index 1 and explicit index 2 within a β× β

block to be of 16 bit width rather than 32 bit width. To detect that the size of the index array

used did not exceed the maximum allocatable size with 16 bits, the loop bounds and array

access expressions were queried during compact-and-pad to verify the maximum possible

value of the array index expression, and if they were found not to exceed the maximum

allocatable size with 16 bits, were declared with a short data type.

Also, the innermost loop of SpMM does not carry a dependence, and is data parallel,

and hence, is parallelized with the SIMD pragma annotation for further performance ben-

efits. The pragma annotation is supplied via the transformation interface with the loop

level for the annotation, and the code generator inserts the pragma at this loop level. The
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1 for (ii = 0; ii <= 587; ii += 1)

2 for (ll = 0; ll <= 589; ll += 1) {

3 _P1 [590 * ii + ll] = 0;

4 _P_DATA1 [590 * ii + ll + 1] = 0;

5 }

6 for (ii = 0; ii <= 587; ii += 1)

7 for (i = 0; i <= 4095; i += 1)

8 for (j = index [(4096 * ii + i)]; \

9 j <= index [(4096 * ii + i)+1] - 1; j += 1) {

10 ll = (col[j] - 0) / 4096;

11 l = (col[j] - 0) % 4096;

12 _P_DATA5 = (( struct a_list *)\

13 (malloc(sizeof(struct a_list ) * 1)));

14 _P_DATA5 -> next = _P1 [590 * ii + ll];

15 _P1 [590 * ii + ll] = _P_DATA5;

16 _P1 [590 * ii + ll] -> A = 0;

17 _P1 [590 * ii + ll] -> col_ [0] = i;

18 _P1 [590 * ii + ll] -> col_ [1] = l;

19 chill_count_1 += 1;

20 _P_DATA1 [590 * ii + ll + 1] += 1;

21 _P1 [590 * ii + ll] -> A = A[j];

22 }

23 for (ii = 0; ii <= 587; ii += 1) {

24 if (ii <= 0) {

25 _P_DATA2 = (( unsigned short *)(malloc \

26 (sizeof(unsigned short ) * chill_count_1)));

27 _P_DATA3 = (( unsigned short *)(malloc \

28 (sizeof(unsigned short ) * chill_count_1)));

29 A_prime = (( float *)(malloc(sizeof(float ) * chill_count_1)));

30 }

31 for (ll = 0; ll <= 589; ll += 1) {

32 _P_DATA5 = _P1 [590 * ii + ll];

33 for (newVar0 = 1 - _P_DATA1 [590 * ii + ll + 1]; \

34 newVar0 <= 0; newVar0 += 1) {

35 _P_DATA2[_P_DATA1 [590 * ii + ll] - newVar0] = \

36 _P_DATA5 -> col_ [0];

37 _P_DATA3[_P_DATA1 [590 * ii + ll] - newVar0] = \

38 _P_DATA5 -> col_ [1];

39 A_prime [( _P_DATA1 [590 * ii + ll] - newVar0) * 1] = \

40 _P_DATA5 -> A;

41 _P_DATA5 = _P_DATA5 -> next;

42 }

43 _P_DATA1 [590 * ii + ll + 1] += _P_DATA1 [590 * ii + ll];

44 }

45 }

Listing 6.5: SpMM inspector code.

final parallelized codes for SpMM and SpMM T, containing SIMD and OpenMP pragmas

are shown in Listings 6.6 and 6.7, respectively. OpenMP pragmas are inserted in much the

same way as SIMD pragmas, specifying the statement number and loop level.

The full transformation sequence for the CSB derivation, involving a composition of

make-dense,compact-and-pad and other loop transformations is shown in the CHiLL script in
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1 #pragma omp parallel private(ii ,ll ,i,k)

2 {

3 #pragma omp for schedule(dynamic ,1)

4 for(ii=0; ii < n/beta; ii++)

5 for(ll=0; ll < n/beta; ll++)

6 for(i=offset_index[ii][ll]; i < offset_index[ii][ll+1]; i++)

7 #pragma simd

8 for(k=0; k < m ; k++)

9 y[ii*beta + explicit_index_1[i]][k]+= A[i]*x[ll*beta +

explicit_index_2[i]][k];

10 }

Listing 6.6: Parallelized and optimized SpMM executor code.

1 #pragma omp parallel private(ii ,ll ,i,k)

2 {

3 #pragma omp for schedule(dynamic ,1)

4 for(ll=0; ll < n/beta; ll++)

5 for(ii=0; ii < n/beta; ii++)

6 for(i=offset_index[ii][ll]; i < offset_index[ii][ll+1]; i++)

7 #pragma simd

8 for(k=0; k < m ; k++)

9 y[ii*beta + explicit_index_2[i]][k]+= A[i]*x[ll*beta +

explicit_index_1[i]][k];

10 }

Listing 6.7: Parallelized and optimized SpMM T executor code.

Figure 6.2. The omp par for enables the flag for OpenMP code generation. The split with alignment

transformation splits the rows to an exact multiple of the tile factor, for efficient code gen-

eration that does not include IF conditions in the innermost loop. Instead, the remaining

iterations from split are executed separately in a sequential manner.

6.2 Stochastic Gradient Descent (SGD)
SGD is a stochastic approximation of the gradient descent optimization method for

minimizing an objective function that is written as a sum of differentiable functions [72].

SGD is utilized for computing a low-rank matrix approximation to a graph or equivalently

a sparse matrix. SGD iterates over each edge of the graph and uses the edge weight on the

graph to update the entries in the two low-rank dense matrices that correspond to the

endpoints of the graph until their product approximates the input sparse matrix/graph.

Recommendation systems commonly use SGD to compute a complete set of metrics

given an originally incomplete one. For example, a recommendation system for movies

based on user preferences would represent the incomplete set of user-movie ratings as
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source: csb_v2.c # SpMM 
procedure: csb 
format : rose 
loop: 0 
 
original() 
remove_dep(0,1) 
fuse([0,1], 2) 
split_with_alignment(0,1,4096) 
split_with_alignment(1,1,4096) 
 
make_dense(0,2,k) 
known(lb == 0) 
known(ub == 2412565) 
known(n == 2412469) 
 
#tile outer row and col loops by 4096 
tile(0,2,4096,1,counted) 
tile(0,2,4096,1,counted) 
 
#normalize tiled loops 
shift_to(0,4,0) 
shift_to(0,3,0) 
 

compact(0,[3,4],[A_prime], 0, [A]) 
 
distribute([0,1,2,3], 1) 
permute(1,1,[2,1]) 
 
#OpenMP code generation 
mark_omp_threads(0,[0]) 
mark_omp_threads(1,[0]) 
mark_omp_threads(2,[0]) 
mark_omp_threads(3,[0]) 
 
# simd code generation 
mark_pragma(0,4, simd) 
mark_pragma(1,4, simd) 
mark_pragma(2,3, simd) 
mark_pragma(3,3, simd) 
 
#set number of OpenMP threads 
omp_par_for(1,1,8) 
 
known(index_ < index__) 
known(m > 1) 
 
 

Figure 6.2: CHiLL script for SpMM based on the CSB format.

edges in a graph, where each edge exactly connects one user and 1 movie. SGD can then

be utilized to approximate the complete set of user-movie ratings. Recommender systems

such as the Netflix challenge, utilize the SGD algorithm [73].

6.2.1 Parallelizing SGD using diagonal schedules

Parallelizing SGD is a challenging problem as the processing of each edge involves

updating the feature vector associated with both its endpoints. This implies a required

synchronization between edges sharing the same users or movies for correct updates to

the shared feature vectors.

A variety of available online and offline parallelization schemes for SGD have been

explored on the GPU by Kaleem et al. [25]. The online schemes explicitly synchronize

at run-time using atomic instructions for locking the feature vectors associated with an

edge. The offline schemes compute matchings, where no two edges in a matching share

any endpoints. The graph is partitioned in this way into a sequence of maximal matchings,

which are then scheduled with no need of online synchronization within a matching, but

with synchronization required across matchings. The adjacency matrix representation of

the graph depicted in Figure 6.3 is shown in Figure 6.4. To build conflict-free schedules
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Figure 6.3: SGD graph representation
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Figure 6.4: Adjacency matrix representation of graph

efficiently, we can exploit the matrix representation of the graph to build matchings.

In a matrix representation, items along the diagonal have non-overlapping end points

and can be processed concurrently. Different diagonals must be serialized, however. The

diagonal matchings schedules rely on an inspector to collect edges along the diagonals

of the matrix representation of a graph and an executor to schedule each diagonal con-

currently.This parallelization is similar in principle to that used in wavefront crosssbar

arbiters [74], which is an asynchronous extension to the symmetric crossbar designs of

Tamir [75]. The design exploits the diagonal direction of wave propagation for parallelism.

As long as the structure of the graph does not change, this inspector need only be run

once. The generation of these schedules can be performed by the compiler. We derive

these diagonal schedules using a transformation sequence similar to that for the DIA

representation used for SpMV.

In this section, we describe two diagonal schedules as well as their implementation via

our compiler. The diagonal matchings schedules represent an instance of the compiler-
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driven inspector-executor [76] implementations that can be automatically generated for

sparse matrix codes [3]. We show how the serial code, shown in Listing 6.9 can be trans-

formed by the compiler to diagonal matchings schedules that can be executed on the GPU.

Assume we are given a matrix with the number of movies, M, represented as rows,

and the number of users,U, represented as columns. The maximum number of diagonals

is |M|+ |U| − 1 and the maximum width of a diagonal will be the number of columns. In

our example, 4 movies (rows) and 6 users (columns) result in 4 + 6− 1 = 9 diagonals with

the longest diagonal containing 4 entries. The complete list of diagonals, starting from

the bottom is given in Figure 6.5(a). Empty entries are discarded resulting in compressed

diagonals. Figure 6.5(b) shows the same matrix organized by block diagonals. Each block

represents 2 adjacent movies and users and blocks of the same color belong to the same

block diagonal.

The Diag version has the advantages of being cheap computationally to convert to by an

inspector and that it is conflict-free. The block diagonal schedule, BlkDiag can be advanta-

geous as it facilitates temporal reuse of feature vectors, but the benefits must outweigh the

overhead of the barrier synchronization between diagonals. We increase the granularity

of work within a diagonal, and therefore reduce the frequency of barrier synchronization

in the block diagonal version. These two version are detailed in Sections 6.2.2 and 6.2.3,

respectively. The recipes, which describe the corresponding series of transformations to be

applied to the compiler, are described in Figure 6.6 and Figure 6.7, for the two diagonal

matchings schedules.

D Diagonal
d0 (k)
d1 (−, l)
d2 ( f ,−,−)
d3 (a, g,−,−)
d4 (b,−, i,−)
d5 (c,−,−,−)
d6 (−, h, j)
d7 (d,−)
d8 (e)

(a) Diagonals.

m0 m1 m2 m3 

u0 a f k 

u1 b g l 

u2 c 

u3 i 

u4 d h 

u5 e j 

(b) 2× 2 block diagonal schedule.

Figure 6.5: Diagonal matchings schedules for the sample input.
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make_dense(stmt,”j") 
skew(stmt,”k",{-1,1}) 
permute(stmt,{“k","i","j”, “l”}) 
 
compact-and-pad(stmt,”i”,”ratings”,”ratings_prime”) 
 
tile_by_index(executor_stmt,{“i"},{Ti},{l1_control=”ii"},{“k”,"ii","i",”l"}) 
 
scalar_expand_by_index(executor_stmt,{“i”}, “err”, SHARED_MEM,…) 
scalar_expand_by_index(executor_stmt,{“i”,”l”}, “RHS”, 
SHARED_MEM,…) 
 
cudaize(executor_stmt,”sgd_mdimDiag_GPU”,…,{block={"ii"},  
thread={“l”, "i"}}, {“ratings_prime”}) 
 
reduce_by_index(executor_stmt, {“tx”}, “segreduce_warp”, …) 
 
datacopy_privatized(executor_stmt, “ty”, “_P_DATA2”, {“ty”, “tx”})  
                         

Figure 6.6: CUDA-CHiLL script for Diag code variant.

make_dense(stmt,”j") 
 
tile_by_index(stmt,{“k"},{Tk},{l1_control=”kk"},{“kk”, ”i”,”k","i", “j”, ”l"}) 
tile_by_index(stmt,{“i"},{Ti},{l1_control=”ii"},{”ii”, “kk”, "i", “k”, “j”, ”l"}) 
 
skew(stmt,”kk",{-1,1}) 
permute(stmt,{“kk","ii",”i”, “k”, j”, “l”}) 
compact-and-pad(stmt,”ii”,”ratings”,”ratings_prime”) 
 
tile_by_index(executor_stmt,{“ii"},{Ti},{l1_control=”iii"}, 
{“kk”,”iii”,"ii”,"i",”k”,”l"}) 
 
scalar_expand_by_index(executor_stmt,{“ii”}, “err”, SHARED_MEM,…) 
scalar_expand_by_index(executor_stmt,{“ii”,”l”}, “RHS”, 
SHARED_MEM,…) 
 
cudaize(executor_stmt,”sgd_blkDiag_GPU”,…,{block={"iii"}, thread={“l”, 
"ii"}}, {“ratings_prime”}) 
 
reduce_by_index(executor_stmt, {“tx”}, “segreduce_warp”, …) 
 
datacopy_privatized(executor_stmt, “ty”, “_P_DATA2”, …)  
datacopy_privatized_by_ref(executor_stmt, “k”, user_refs, …) 
datacopy_privatized_by_ref(executor_stmt, “i”, movie_refs, …) 
 

Figure 6.7: CUDA-CHiLL script for BlkDiag code variant.

6.2.2 Diagonal (Diag schedule)

Diag exploits the parallelism within a single edge by processing the update to the

feature vector in parallel. This ordering also achieves global memory coalescing to the

accesses to the feature vector across threads. We launch a 2-D grid of threads of dimension

F by E, where F is the size of feature vector (e.g., 16 floats), and E is the number of edges

to be processed in a kernel call. A thread (i, j) processes the ith component of the feature

vectors of the end points for edge j.

The full SGD code is shown in Listing 6.8 which is abstractly represented in Listing 6.9.

For Diag, after the sequence of make-dense, skew, permute and shift transformations has been
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1 for(i=0; i < n; i++){

2 for(j=index[i]; j < index[i+1]; j++){

3 // Statement s0

4 err = -ratings[j];//edge weight

5 for(k=0; k < SGD_FEATURE_SIZE; k++)

6 err += fv[i][k]*fv[col[j]][k];

7 for(k=0; k < SGD_FEATURE_SIZE ; k++){

8 // source feature vector update

9 fv[i][k] -= step_size *

10 (err * fv[col[j]][k] + SGD_LAMBDA*fv[i][k]);

11 // destination feature vector update

12 fv[col[j]][k] -= step_size *

13 (err * fv[i][k] + SGD_LAMBDA*fv[col[j]][k]);

14 }//end for -k

15 }//end for -j

16 }//end for -i

Listing 6.8: SGD input code.

1 for(i=0; i < n; i++){

2 for(j=index[i]; j < index[i+1]; j++){

3 s0(i, col[j]);

4 }//end for -j

5 }//end for -i

Listing 6.9: Abstracted SGD input code.

applied, the ratings matrix is traversed by diagonals in the outermost loop and by entries

within the diagonal in the immediately enclosed loop as shown in Listing 6.10. The skew

transformation is an affine transformation that is expressed as a mapping corresponding

to the diagonal number. Entries along the same diagonal have the same value for the

difference between column and row ids. The skew transformation maps the column id,

uncovered from make-dense to this expression, so that the corresponding loop traverses

diagonals. The permute transformation interchanges this loop to the outermost level so

that we traverse diagonals in the outer loop, and entries within diagonals in the inner

loop. The shift transformation shifts the diagonal number to a positive value, since entries

below the main diagonal will have a negative diagonal value otherwise.

After this sequence of transformations, the iteration space contains redundancy and

mimics that of the dense matrix, due to the make-dense transformation. The compact-

and-pad transformation when applied to the i loop, inserts inspector code to gather only

those iterations for which the guard is satisfied and derives the Diag executor where only

those iterations are traversed, constructing the required index arrays, offset index and ex-

plicit index as shown in Listing 6.11. For the Diag code variant no padding is done by
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1 for(k=0; k <= 2*N - 2; k++){

2 for(i = max(0, N - 1 - k); i

3 <= min(N-1, 2*N - 2 -k); i++){

4 for(j=index[i]; j < index[i+1]; j++){

5 if(k + i - (N-1) == col[j]){

6 s0(i, k+i-(N-1));

7 }//End if

8 }//end for -j

9 }//end for -i

10 }//end for -k

Listing 6.10: SGD code after make-dense,skew permute and shift.

1 for(k=0; k <= 2*N - 2; k++){

2 for(i = offset_index[k];

3 i <= offset_index[k+1]; i++){

4 s0(explicit_index[i],

5 k+explicit_index[i]-(N-1));

6 }//end for -i

7 }//end for -k

Listing 6.11: SGD executor code from compact.

compact-and-pad but the data in array ratings prime is reorganized by diagonals rather than

by the row dimension as in ratings.

The scalar expand by index and reduce commands cause each thread to own a feature

vector entry in shared memory and facilitate the subsequent shared memory reduction.

datacopy privatized exploits the reuse of index arrays repeatedly referenced in the executor

by storing them in registers. cudaize designates certain loops as parallel CUDA dimensions,

for parallel code generation.

6.2.3 Block-diagonal (BlkDiag)

The BlkDiag schedule reduces the size of the matrix by blocking along both dimensions.

This reduced matrix has a reduced number of diagonals – if the movies are blocked by a

factor R, and the users by a factor C, then the total number of diagonals in the BlkDiag

schedule is |M|/R + |U|/C− 1.

A diagonal schedule obtained after 2 × 2 blocking is shown in Figure 6.5(b). There

are now only 4 diagonals with each block consisting of 4 edges. Figure 6.8 illustrates the

reorganization of the graph edges according to the block diagonal that owns each edge in

the corresponding adjacency matrix representation of the graph by the inspector.

Our implementation assigns one thread to each block. Within a block, the same set of
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1 void build_blk_diag_schedule(Graph g){

2 DiagSet d;

3 EdgeSet edges [];

4 for(Edge e: g){

5 diag = d.insert(e.user/C -e.movie/R + movies/R -1);

6 edges[diag][e.movie%R][e.user%C]. insert(e.movie , e.rating);

7 }

8 }

Figure 6.8: Build the schedule for BlkDiag.

movies and users are used repeatedly and the feature vectors corresponding to those rows

and columns are cached in registers or GPU shared memory.

The transformation recipe for BlkDiag varies from Diag by requiring tiling of the two

outermost loops after make dense and then applying skew,permute and shift on the tile-

controlling loops ii and kk. Conceptually the tiling yields 2-D blocks which the ii loop

iterates over and the above transformations uncover the block diagonal iteration space. In

this case, compact-and-pad evaluates the guard on the entire 2-D loop nest encompassed by

the compacted loop level and as long as any iteration in the enclosed 2-D iteration space

satisfies the guard, it copies the entire block, padding on iterations that do not satisfy the

guard.

In addition to the shared memory reduction and register optimizations for Diag the

recipe for BlkDiag also copies the feature vector elements that are repeatedly reused for

each movie and user within the 2-D block into registers. The datacopy privatized by ref

transformation is invoked once for the feature vector elements involved with the users

and the second time for those involved with the movies for the specific 2-D block.

6.3 Performance results
We compare the performance of the compiler generated SpMM code using the CSB

format with the manual implementation from Aktulga et al. [24]. The CSB experiments

were run on an Intel i7-4770 (Haswell) CPU with 256KB L1 cache, 1 MB L2 cache, 8MB L3

cache size and 32GB of DRAM memory. We compiled our codes using the Intel C compiler

version 15.0.0. The manual implementation was compiled using the Intel Fortran compiler

version 15.0.0.

The SGD experiments where conducted on the Nvidia Tesla K40c and were compiled

using nvcc version 6.5. In these experiments we compare the performance of both the
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inspectors that construct the diagonal schedule, as well as the executors, which are the

actual SGD computations based off the diagonal schedules.

6.3.1 SpMM

Figure 6.9 shows the performance of SpMM and SpMM T using the CSB sparse ma-

trix representation, parallelized with 8 OpenMP threads and using a blocking factor of

4096 (β =4096). As observed from Figure 6.9, the combined SpMM and SpMM T imple-

mentation parallelized with OpenMP pragmas achieves 0.77× of the performance of the

manual implementation. With the additional compiler optimization that detects that the

size of the index arrays can be represented with 16-bit arrays or the short data type, the

performance improves to approximately 0.83× of the performance of the manual imple-

mentation. Finally the SIMD pragma for vector execution of the innermost loop improves

the performance to achieve a speedup of 1.06× over the manual implementation.

6.3.2 SGD

In Figure 6.10 we compare the speedup of the BlkDiag variant’s inspector and executor

code relative to the Diag variant. The inspector for the BlkDiag code variant is marginally

slower than the Diag code variant. On average it is 0.96× as fast as the Diag inspector. This

is due to the extra loop overhead in the BlkDiag inspector as it has a more nested looping

structure. However the BlkDiag executor is 1.26× faster than the Diag executor on average

and on all inputs. This is due to the fewer number of global synchronizations incurred

Figure 6.9: SpMM and SpMM T results using CSB.
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Figure 6.10: Inspector and executor performance of BlkDiag and Diag.

by BlkDiag. Further since the executor code is called multiple times in the iterative SGD

algorithm and the inspector is only called once to derive the modified representation, it is

more important to optimize the executor code than the inspector code in this context. In

this light, the marginal slowdown of the BlkDiag inspector compared to Diag is tolerable

given its significant speedup in the executor.

6.4 Summary
In this chapter, we observed how application requirements can influence the choice of

the sparse matrix representation used. In LOBPCG the large size of the input matrices

necessitate a sparse matrix representation that has less memory and indexing overhead,

hence only half the matrix is stored by exploiting symmetry. However this necessitates

an extra SpMM T operation over the matrix, and parallelizing both SpMM and SpMM T

requires a specialized representation. The CSB sparse matrix representation is ideal for

these criteria and is realized using our loop and data transformations. Both SpMM and

SpMM T are parallelized effectively using CSB by parallelizing across block rows and

block columns respectively. Further indexing overhead is eliminated at compile time by

detecting that indices of nonzeros within a block may be stored using 16-bit vectors. The

compiler generates code parallelized with OpenMP pragmas, and vector instructions with

SIMD pragmas to outperform the manual implementation.

SGD is a graph algorithm and represents the graph’s corresponding adjacency matrix

as a sparse matrix. SGD is an iterative algorithm that repeatedly scans the edges of the

graph and updates the endpoints on the edges. No two edges that share an endpoint may

be processed in parallel. This requires traversing the matrix by its diagonals, and we utilize

loop and data transformations to derive diagonal representations for SGD similar to deriv-
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ing the DIA sparse matrix representation for SpMV. The Diag code variant is conceptually

simpler to implement than the BlkDiag variant which blocks the matrix and derives block

diagonals. the BlkDiag variant is observed to have better executor performance than the

Diag variant as it has less global synchronizations. The inspector for BlkDiag is marginally

slower, but this can be tolerated as the inspector is only called once to derive the sparse

matrix representation, while the executor is called multiple times by the iterative SGD

algorithm.



CHAPTER 7

AUTOMATED WAVEFRONT PARALLELIZATION

OF SPARSE CODES

Computations such as the forward Gauss Seidel relaxation shown in Listing 7.1 are

challenging to parallelize due to the presence of loop-carried or cross-iteration depen-

dences on the outermost loop. Conventional wisdom suggests that parallelization of a loop

level with cross iteration dependences may have diminished profitability. While this may

be the case for dense computations, where there is a strict total ordering on all iterations,

there might still be significant parallelism available for sparse computations due to fewer

dependences. The amount of parallelism available heavily depends on the nonzero pattern

of the matrix.

In this work, we automate the derivation of wavefront-parallel code for sparse ma-

trix computations such as symmetric Gauss Seidel relaxations. Iterations belonging to

a wavefront may be scheduled in parallel but require synchronization between those of

other wavefronts. We do a compile-time dependence test, and if there are dependences

stemming from nonaffine array subscripts, we generate parallel inspector code to inspect

these accesses and enumerate the dependences at run-time. We then derive wavefronts

from the dependence graph. We demonstrate the performance of the parallel inspectors

and executors in a full Preconditioned Conjugate Gradient(PCG) computation, showing

1 for (i=0; i < N; i++) {

2 sum = b[i];

3 for (j=rowptr[i];j<rowptr[i + 1];j++) {

4 sum -= values[j]*y[colidx[j]];

5 }

6 y[i] = sum*idiag[i];

7 }

Listing 7.1: Gauss Seidel Code
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speedup over sequential code.

7.1 Methodology
In this section, we outline the compile-time dependence analysis involving nonaffine

subscripts, the subsequent parallelized inspector that actually enumerates the dependences

at run-time and constructs the dependence graph explicitly, and optimizations for the

generated inspector and executor code.

7.1.1 Data dependence analysis

Compile-time data dependence analysis identifies two distinct statement instances in

a loop nest that may refer to the same memory location, and at least one of the statements

is a write. More concretely, a dependence exists between iteration I = [i1, i2, . . . , iN ] and

subsequent iteration I′ = [i′1, i′2, . . . , i′N ] (i.e., I < I′) in a multidimensional iteration space

if both of the iterations potentially access the same memory location, at least one of those

accesses is a write, and the iterations lie within the loop bounds. Standard techniques are

used to derive data dependence relations between two accesses to the same array; compile-

time dependence analysis then analyzes these relations to prove that the dependences

cannot be satisfied, but otherwise must assume a dependence. For instance, consider the

Gauss-Seidel code in Listing 7.1. Compile-time dependence analysis is imprecise in this

case because the array reference involves an indirect reference through an index array

whose values are not available until runtime (e.g., y[colidx[j]] in Listing 7.1).

In this work, we automatically generate a runtime inspector to perform dependence

testing involving such indirection. During compile-time dependence testing, the compiler

uses uninterpreted functions to represent information that will not be known until run-

time, where an uninterpreted function f () has the property that if x = y then f (x) = f (y).

For example, the uninterpreted function colidx() represents the index array colidx[] for

the Gauss-Seidel code in Listing 7.1. We assume that the outermost loop level is chosen for

wavefront parallelization. By capturing all constraints on i1 and i′1 and having the inner

loop iterators be existentially quantified, the data dependence relation expresses all pairs

of iterations of the outermost level involved in a dependence. At runtime, the inspector

explicitly constructs the dependence graph to connect all such pairs of iterations where



89

a dependence exists. For Gauss-Seidel, the runtime inspector that would be generated

directly from this dependence relation would result in two separate loop nests (one for

each conjunction) and each loop nest would be four deep (i, i′, j, j′), as shown in Listing 7.2.

7.1.2 Optimized inspectors

The simplified data dependence relations described in Section 7.1.1 specify the con-

straints that have to hold for every pair of iterations, I and I′, involved in a dependence

as a mixture of affine relations and nonaffine relations involving uninterpreted functions.

All such pairs of iterations are connected by an edge in the dependence graph, which the

inspector constructs at runtime.

To generate the inspector code, we utilize polyhedra scanning to enumerate all values

of I and I′ that satisfy the constraints and utilize the polyhedral statement macro inter-

face to specialize for the operation to be done when a pair of such values are identified.

Specifically, when a dependence is found between two iterations of the outer loop, those

iterations are connected in the dependence graph with an edge (note the connectFrom()

and connectTo() functions in Listing 7.3).

Listing 7.3 illustrates the inspector and executor code generated when the input to

the compiler is the Gauss-Seidel example from Listing 7.1. In Listing 7.3, the optimized

inspector uses the functions connectFrom() and connectTo() to introduce dependences

for values of i and colidx(j′) that are equal. The connectFrom() and connectTo() functions

populate the dependence graph, A, with edges. The dependence graph is represented as

each iteration having a set of incoming and outgoing dependence edges and then another

pass creates an adjacency list representation with just incoming edges.

1 // Naive Inspector Code

2 // Input: Dependence relations

3 // Output: Dependence Graph(A)

4 for(ip=0; ip <=m-1; ip++){

5 for(jp=rowptr[ip]; jp <rowptr[ip+1];jp++){

6 for(i=0; i<=m-1;i++){

7 for(j=rowptr[i]; j<rowptr[i+1];j++){

8 if(col[jp] == i){

9 if(i < ip){connectTo(A,i,ip);}

10 else if(ip < i){connectFrom(A,ip,i);}

11 }}}}}

Listing 7.2: Naive Inspector Code for Gauss-Seidel.
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1 // Inspector Code

2 // Input: Dependence relations

3 // Output: Dependence Graph(A)

4 #pragma omp parallel for

5 for(ip=0; ip <=m-1; ip++){

6 for(jp=rowptr[ip]; jp <rowptr[ip+1]; jp++){

7 i = colidx[jp];

8 if(i < ip) { connectTo (A,i,ip); }

9 else if(ip < i) { connectFrom(A,ip,i); }

10 }}

11

12 // Level Set Construction (Inspector Code)

13 // Input: Dependence Graph(A)

14 // Output: Level Sets(levelSetBoundaries)

15 deriveLevelSets(A, &levelSetBoundaries ,

16 &num_levels);

17

18 // Executor Code After

19 // Reordering(Parallelized)

20 for(i=0; i<num_levels; i++){

21 #pragma omp parallel for

22 for(j=levelSetBoundaries[i];

23 j<levelSetBoundaries[i+1]; j++){

24 sum = b[j];

25 for (k=rowptr[j]; k<rowptr[j+1]; k++){

26 sum -= values[k] * y[colidx[k]];

27 }

28 y[j] = (sum * idiag[j]);

29 }}

Listing 7.3: Example of compiler output.

The code generator is able to improve the generated inspector code by performing the

following three optimizations.

7.1.2.1 Unnecessary loop removal optimization

Data dependence analysis creates data dependence relations where array index ex-

pressions must be equal for a dependence to exist between two iterations of the loop

being wavefront parallelized (e.g., the equality constraint i = col(j′) for the Gauss-Seidel

example). Utilizing polyhedra scanning as the underlying methodology for enumerating

dependences has a major advantage that any time an iterator can be expressed as a function

of other iterators, the code generator will not generate a loop for that iterator (e.g., the

iterator i in the Gauss-Seidel example). For the Gauss-Seidel example, this reduces the

original need for a four deep nested loop to a two-deep nested loop only containing the

iterators i′ and j′, eliminating the i loop.
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7.1.2.2 Loop fusion

There are two conjunctions in the data dependence relation input to the code generator.

This would typically lead to two loop nests in the inspector, one for each conjunction.

We modified the code generator so that it is able to determine that the data dependence

relation conjuncts are the same except for the ordering constraints on the outer loop iter-

ators i and i′. Therefore the loops to traverse the data dependences and produce the data

dependence graph can be fused and those ordering constraints placed into the loop body

to select which edge to insert into the graph.

7.1.2.3 Parallelization

Since it is critical that the generated inspector is efficient to reduce runtime overhead,

the code generator parallelizes the inspector, ensuring that the outer loop of the inspector

is fully parallel. This is possible because of what is known about the structure of the data

dependence relations and the inspector code after loop fusion.

Listing 7.3 shows an example of the structure of the inspector code for Gauss-Seidel.

Note that there will always be some outer loop in the inspector and that outer loop will

be either i or i′ from the data dependence relation (in Listing 7.3 it is i′, which is repre-

sented as ip in code). There will possibly be some other loops internal to the outer loop.

However, the parallelization is not concerned with these loops and how many of them

there are. In the innermost loop body, there will be guarded calls to connectFrom() and

connectTo(). The code generator will ensure that the connectFrom() call always has the

outer inspector loop iterator passed in as the source of the data flow dependence edge and

the connectTo() passes it as the target. This results in the outgoing and incoming edges

data structure only being updated based on the outer loop iterator. Since each outer loop

iteration is only updating its own data structures, the outer loop of the inspector can be

parallelized.

7.1.3 Parallelized executors

At run-time, once the wavefronts are constructed, all the iterations belonging to a level

set can be scheduled in parallel without any dependence violation, but synchronization

across wavefronts is required to ensure correctness.

In Listing 7.3 we see the generated executor for the barrier synchronization variant. The
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code is parallelized with OpenMP directives. The array levelSetBoundaries[] denotes

the set of tasks that belong to each level set, and which may be scheduled concurrently. The

deriveLevelSets() function reorders the sparse matrix data structure so that the order of

rows in the rowptr[] index array match the order of iterations within each level set. Since

the size of the level sets may vary, we require the extra index array to record the start and

end of each level set.

7.2 Implementation
A new transformation sparse partition was developed in CHiLL to partition a particular

loop level, typically the outermost one, into wavefronts of irregular length. The start and

end of each irregular partition is represented using index arrays, which are represented

using uninterpreted functions in CHiLL. The sparse partition transformation is called twice

by sparse wavefront to derive a 2-level hierarchical irregular tiling as shown in Figure 7.1.

The reorder by inspector transformation derives a permutation over the loop level being

organized by the inspector into wavefronts. The reorder data transformation removes the

indirection due to the permutation by reordering the data according to the iteration space

permutation. The transformations prepare the iteration space of the executor code. For

the barrier synchronization variant of the code, we use the OpenMP code generation capa-

bilities of ROSE. For the point-to-point synchronization, the compiler generates SpMP’s

specialized post-and-wait synchronization primitives as shown in Figure 7.2. We use

omp par for and mark omp parallel region to indicate loop levels to be designated as parallel

loops and regions respectively for OpenMP code generation.

original() 
 
reorder_by_inspector(stmt,level,perm, A, …) 
reorder_data(stmt,perm_inv, perm, [rowptr]) 
 
omp_par_for(stmt, level, nthreads) 
sparse_wavefront(stmt, level, …) 
 
mark_omp_parallel_region(stmt,P2P_TYPE,...) 
 

sparse_partition(stmt, level, taskBoundaries) 
sparse_partition(stmt,level, threadBoundaries) 

Figure 7.1: CHiLL script for point-to-point wavefront paralllelization.
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#pragma omp parallel  private(sum,tid,t6,t8,t4) num_threads(12) 
{ 
    int nthreads; 
    tid = omp_get_thread_num(); 
    nthreads = omp_get_num_threads(); 
    //….Initiialization  (not shown) 
#pragma omp barrier  
{ 
      for (t4 = threadBoundaries[tid]; t4 <= threadBoundaries[tid+1] - 1; t4 += 1) {{ 
          SPMP_LEVEL_SCHEDULE_WAIT; 
           for (t6 = taskBoundaries[t4]; t6 <= taskBoundaries[t4+1] - 1; t6 += 1) { 
                 t8 = rowptr[t6]; 
                  sum = b[t6]; 
                  for (t8 = rowptr[t6]; t8 <= rowptr[t6+1] - 1; t8 += 1)  
                       sum -= (values[t8] * y[colidx[t8]]); 
                  t8 = rowptr[t6+1]; 
                  y[t6] = (sum * idiag[t6]); 
             } 
        } 
        SPMP_LEVEL_SCHEDULE_NOTIFY; 
      } 
    } 
  } 

Figure 7.2: Compiler generated point-to-point wavefront parallel code.

7.3 Experimental results
In these experiments, we evaluate the performance of the generated code for the Pre-

conditioned Conjugate Gradient (PCG) that has been used in a prior study [55]. The PCG

benchmark uses ILU0 as a preconditioner. ILU0 factorization is computed once to find L

and U matrices such that L*U is close to A, subject to L and U having non-zeros at the same

locations as the lower and upper triangular parts of A, respectively [77].

This accelerates the convergence of the subsequent iterative conjugate gradient calcu-

lation. We use forward and backward Gauss-Seidel relaxations for the solver, which will

execute each iteration. The compiler generates two distinct implementations of the syn-

chronization: (1) an OpenMP barrier between level sets; or, (2) a point-to-point synchro-

nization between level sets (Post and Wait in SpMP). We use as input a representative set

of matrices from the University of Florida sparse matrix collection [71], listed in Table 7.1.

We measure performance gains on a compute node of Edison at NERSC. The compute

node is equipped with a dual-socket Intel Ivy Bridge generation Xeon E5-2695 v2 running

at 2.4 GHz and with 64 GB of DDR3 1866 MHz main memory. Each socket has 12 cores

and a shared LLC with capacity 30 MB. Each core has a private 32 KB L1 data cache and a

private 256 KB L2 cache. For our experiments, we use only 12 cores in one of the two
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Table 7.1: Input matrices sorted in order of increasing parallelism

Matrix Rows Nonzeros Parallelism
tmt sym 726,713 5,080,961 1.00
nd24k 72,000 28,715,634 6.28
crankseg 2 63,838 14,148,858 14.53
offshore 259,789 4,242,673 75.28
Hook 1498 1,498,023 59,374,451 95.92
af shell3 504,855 17,562,051 135.57
Emilia 923 923,136 40,373,538 176.17
Flan 1565 1,564,794 114,165,372 200.49
bmwcra 1 148,770 10,641,602 204.35
Geo 1438 1,437,960 60,236,322 246.99
inline 1 503,712 36,816,170 287.67
StocF-1465 1,465,137 21,005,389 487.89
ecology2 999,999 4,995,991 500.50
G3 circuit 1,585,478 7,660,826 611.45
thermal2 1,228,045 8,580,313 992.96
apache2 715,176 4,817,870 1,078.70
parabolic fem 525,825 3,674,625 87,637.50

sockets, thus avoiding NUMA effects and focusing the results on the efficiency of the

generated code. We use 1 thread per core because hyperthreading does not speed up the

sparse matrix operations we evaluate.

The resulting parallel code is compiled with icc version 16.0.0, and we compare our

performance results with Intel Math Kernel Library(MKL) version 11.3.

Section 7.3.1 examines the performance of the generated Gauss-Seidel executor, and

compares against sequential performance and Intel’s MKL library. Additionally we look

at the overhead of the inspection time for Gauss-Seidel. In Section 7.3.3, we compare

overall parallel performance of the generated PCG to that of the Intel MKL library and
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the manually-tuned code from [55].

7.3.1 Gauss-seidel inspector and executor performance

The parallel wavefront schedules computed for the Gauss-Seidel relaxations are reused

multiple times. The inspector overhead takes into account the total time to construct the

dependence graph as well as the modified breadth-first search to derive the wavefronts.

This quantity is measured in terms of the time taken per iteration of the preconditioned

conjugate gradient solver, which includes a forward and backward Gauss-Seidel relax-

ation. We report the performance of the parallelized executor code for the Gauss-Seidel

relaxations in Figure 7.3. In Table 7.2 we observe the number of convergence iterations for

each matrix. Evidently, the average inspection overhead is approximately 3.68% and the

maximum, 32.33%, of the number of convergence iterations over the set of 17 matrices. The

maximum inspection overhead is observed for af shell3 due to its relatively low number of

iterations to convergence.

More than two thirds of the execution time of PCG is spent in the forward and back-

ward Gauss-Seidel relaxations, the executors generated by our compiler. In Figure 7.3, we

compare against the serial implementation, and Intel’s MKL library.

We report performance in terms of effective memory bandwidth utilization. We mea-

sure the effective bandwidth in terms of the size of matrix and input/output vectors di-

vided by the time taken for the symmetric Gauss Seidel relaxations. This is a useful metric

to quantify how close the performance is to the machine peak because the sparse matrix

operations we are evaluating are memory bandwidth bound due to their low arithmetic

intensity [78].

Figure 7.3: Performance of parallel Gauss-Seidel executor.
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Table 7.2: Inspector overhead measured as convergence iterations.Inspector overhead#
is the inspector time divided by the average time for one iteration of PCG.Inspector
overhead% is this number expressed as a percentage of the total number of iterations to
convergence.

Matrix
Convergence
Iterations #

Inspector
Overhead #

Inspector
Overhead %

tmt sym 1176 3.48 0.30
nd24k 381 22.49 5.90
crankseg 2 177 25.20 14.24
offshore 186 4.71 2.53
Hook 1498 1580 7.53 0.48
af shell3 22 7.11 32.33
Emilia 923 411 7.75 1.89
Flan 1565 2817 8.86 0.32
bmwcra 1 1300 8.70 0.67
Geo 1438 443 7.63 1.72
inline 1 8399 15.73 0.19
StocF-1465 2493 4.56 0.18
ecology2 1791 2.92 0.16
G3 circuit 755 3.00 0.40
thermal2 1657 3.25 0.20
apache2 723 3.60 0.50
parabolic fem 678 4.04 0.60

Average 3.68

The median speedups achieved by the compiler generated code over the serial and

Intel MKL versions are 5.26× and 3.95×, respectively.

In addition, we consider absolute performance based on the bandwidth measurements

on the y-axis. As described in [55] the maximum parallel performance attainable by the

Gauss-Seidel relaxation is capped by the performance of Sparse Matrix Vector Multiply

(SpMV) on the corresponding matrix as they have the same number of floating point

operations per nonzero and SpMV is more easily parallelized. On average the SpMV
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performance measured for our configuration was approximately 50 GB/s, again matching

the bandwidth on the same configuration as measured by the STREAM benchmark [79, 80].

We achieve on average 74.9% of the maximum STREAM bandwidth for the Gauss-Seidel

Relaxations. Except for tmt sym, which has virtually no parallelism as indicated by Ta-

ble 7.1, we observe a speedup due to parallelization for the compiler generated code on all

inputs.

7.3.2 Scaling

In Figure 7.4 we present the scaling of the multithreaded Gauss Seidel executor for

6 representative matrices. We measure the speedup of the multithreaded executors over

the sequential implementation. Both the amount of average parallelism and the average

number of nonzeros per row determine the scaling of the executors. The available work

is a complex function of both the number of rows and average nonzeros per row as the

wavefronts are partitioned by rows. The matrices thermal2 and StocF-1465 have relatively

high parallelism and available work and thus achieve the highest speedups for 12 threads.

The matrix ecology2 is representative of those with relatively high parallelism but low work

and they do not scale well beyond 10 threads as there is not enough work to keep all

cores busy. Flan 1565 and Hook 1498 have sufficient work but their moderate parallelism

prevents scaling beyond 10 threads. crankseg 2 has both modest parallelism and work and

so scales worse than the others.

Figure 7.4: Scaling Behavior of parallel Gauss-Seidel executor.
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7.3.3 Overall performance of PCG

Here we quantify the performance impact of all our optimizations for parallel PCG.

For all input matrices, we demonstrate the speedup obtained over the reference sequential

implementation, and compare against the Intel MKL library and manually-optimized code

from [55].

We compute execution time for parallel PCG by summing the execution time of the

ILU0 inspector and executor, Gauss-Seidel inspector and overall solver time. This is com-

pared with the time for a PCG implementation utilizing sequential ILU0 factorization

and Gauss Seidel relaxations. The results in Figure 7.5 show the speedup of the parallel

PCG kernel over the sequential PCG implementation taking into account both the total

inspector overhead and the executor times. We observe a median speedup of 2.97× over

the serial implementation, for the point-to-point version. Although not shown here, the

barrier version achieves a slightly more modest median speedup of 2.29×. The manually-

tuned code and Intel MKL achieve a median speedup of 3.19× and 1.05× over the serial

implementation. The manually tuned code has a slightly lower inspection overhead as it

does not construct the dependence graph explicitly but uses the input matrix directly as the

dependence graph, since the structure of the sparse matrix is equivalent to the dependence

graph for the purposes of Gauss Seidel relaxations. Its inspector overhead only involves

constructing the wavefronts from the input matrix.

Overall, these results demonstrate the efficacy of using an Inspector/Executor approach

to parallelize PCG, and that the compiler-generated code is competitive with manually-

tuned code.

Figure 7.5: Speedup of parallel PCG over sequential PCG.
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7.4 Summary
In this chapter, we demonstrated an automated wavefront parallelization methodology

that utilizes both compiler and run-time optimizations for sparse matrix computations

with loop-carried dependences. The constraints for loop-carried dependences are captured

at compile-time and if the dependences stem from nonaffine constructs, run-time inspec-

tion code is generated to enumerate the dependences. Parallel inspectors both construct

the dependence graph and derive the wavefronts. The wavefronts then execute in parallel,

with synchronization across wavefronts. The point-to-point and barrier synchronization

schemes were implemented for wavefront parallelization. Various optimizations for the

generated inspector code, namely unnecessary loop removal using polyhedra scanning

and parallelization of the dependence graph construction were discussed. The CHiLL

implementation of the transformations for wavefront parallelization were detailed. The

performance of the parallelized inspectors and executors was demonstrated for the PCG

application.



CHAPTER 8

RELATED WORK

This section discusses prior work and focuses on the most closely-related compilers

targeting sparse matrix codes.

8.1 Sparse matrix compilers
Previous work has developed compiler optimizations for sparse matrices beginning

with a dense abstraction of a sparse matrix computation, as optimizations for dense matrix

computations are well understood; these compilers generate sparse data representations

during code generation [17–19, 81]. These compilers either incorporate a small, fixed set

of matrix representations for which code generation is straightforward or rely on the user

to provide implementations for accessing data in sparse formats for operations such as

searching, enumeration and de-referencing. Shpeisman and Pugh [17] specify an interme-

diate program representation for transforming sparse matrix codes. The specification di-

rects an underlying C++ library for efficient enumeration, permutation and scatter-gather

access of nonzeros stored according to some compressed stripe storage. The Bernoulli

compiler permits extension to new formats by abstracting sparse matrix computations

into relational expressions that describe constraints on the iteration space and predicates

to identify nonzero elements [19, 82, 83]. Using an approach similar to optimizing rela-

tional database queries, the compiler derives a plan for efficiently evaluating the relational

expressions, and generates corresponding code. Gilad et al. [81] use the LL functional

language for expressing and verifying sparse matrix codes with their dense analogs, under

the assumption that the matrix is dense initially.

In contrast to these compilers specialized for sparse matrix computations, we have

developed code and data transformations applicable to nonaffine loop bounds and sub-

script expressions within a polyhedral framework, in conjunction with an automatically-

generated inspector. Existing nonaffine code can be optimized in this way with our com-
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piler, and new matrix formats can be supported by applying the appropriate sequence of

transformations. Our work is also distinguished in demonstrating that the inspection time

is comparable to manually-tuned libraries.

8.2 Sublimation and guard encapsulation
The make-dense transformation is similar to sublimation presented by van der Spek et

al. [45]. Sublimation requires analysis or pragmas to determine injectivity properties of the

access functions so that the sublimation transformation can replace an existing loop with

irregular bounds (like the inner loop in SpMV) with the dense loop. Additionally, a related

idea of expanding a sparse vector into a dense vector is called access pattern expansion [84].

The compact transformation we present is related to guard encapsulation [84], which

moves tests for elements into the loop bounds; in addition, compact-and-pad rewrites the

matrix into a new representation and performs optimizations on the inspector.

Further, we have incorporated our transformations into CHiLL, which enables com-

positions with other polyhedral transformations and compiler-based auto-tuning within

a broader context. We have designed these transformations to also generate optimized

inspectors that match or beat existing hand-written inspectors in libraries.

8.3 Compiler-based approaches that support nonaffine codes
SPolly [85] extends Polly [86] with support for nonaffine constructs such as runtime

specialization for program parameters with constants. SPolly achieves this by runtime

profiling of parameters, identifying recurring values and replacing them with constants.

One of the relevant differences between this method and our work is that, the nonaffine

behavior in the program is not exposed to the underlying polyhedral framework whereas

in our framework the polyhedral abstractions are extended to represent, tolerate and ma-

nipulate the nonaffine parameters, loop bounds or array access expressions.

SPolly uses runtime methods to effectively preprocess code with nonaffine behavior

and convert it where possible to affine codes which can be analyzed as SCoPs(Static Con-

trol Parts), whereas we expose the runtime abstractions into the polyhedral model itself.

A related technique is employed by Sukumaran-Rajam and Clauss [87] in their Apollo

compiler and runtime system. At runtime the input code is profiled and a model of the
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memory accesses of the code that may involve nonaffine constructs is built. nonaffine

accesses are modeled by regression equations or approximated by a regression ’tube’. A

dynamic dependence polyhedron is built extending Pluto’s [21] dependence testing with

the linear and regression equations in a relaxed dependence polyhedron. The speculative

code variant is then monitored by a decentralized verification system for any dependence

violation, which is an access unpredicted by the linear and regression equations for the par-

ticular thread signaling an inter-thread interaction or dependence. A rollback is initiated

upon such a violation and potentially a single threaded version of the code is executed.

Our work is distinguished from Apollo as we explicitly compute the inter-iteration

dependence graph for wavefront parallelization and reorganize the code into wavefronts,

whereas dependence violations would be marked by the Apollo system if such inter-

iteration dependences existed and speculative execution would fail, necessitating serial

execution.

8.4 Compiler-based approaches with inspector/executor
extensions

Strout et al. [38] first demonstrated the feasibility of automatically generating inspec-

tors and composing separately specified inspectors using the sparse polyhedral frame-

work; the inspector-executor generator prototype composed inspectors by representing

them using a data structure called an inspector dependence graph. We extend on this

approach for automatic code generation of high performance inspector-executor code.

Rauchwerger et al. [88] use an inspector/executor methodology for wavefront paral-

lelization of loop nests with staticallly unanalyzable access patterns. Our work uses a

similar approach but with some key differences. Although they parallelize the inspector

like ours, their inspector code still retains the original structure of the loop nest, which

can give rise to increased time and space complexity. Moreover, during inspection they

explicitly build a dependence graph for each memory location, which as they show ben-

efits reduction and array privatization, but results in increased space consumption for

inspection. In contrast, our approach simplifies the inspector via assertions [89] and results

in simplified and faster inspector code.

Ravishankar et al. [49] present compiler algorithms for generating inspectors and ex-
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ecutors that parallelize producer/consumer loop sequences when there are indirect mem-

ory accesses. Their parallelization is more applicable to distributed memory systems by

optimizing interprocessor data communication, while ours can be applied on a single node

as well. This is a different parallelization than wavefront parallelism, which is within a

single loop instead of across multiple loops.

The work of McKinley [89] takes a different approach from runtime techniques: it uses

user assertions about index arrays (which may otherwise be statically unanalyzable) to

increase the precision of dependence testing. The assertions certify common properties

of index arrays, for example, an index array can be a permutation array, monotonically

increasing,monotonically decreasing strictly increasing and strictly decreasing. Our work

also uses these assertions, but it uses them to improve the performance of runtime tech-

niques, that is, it reduces the complexity of inspector code. Other data dependence analysis

techniques that seek to find more parallelizable loops at compile-time include [41, 43, 90,

91].

8.5 Hand-crafted implementations for sparse matrix kernels
SpMV has been optimized for the BCSR format using OSKI [4] on CPUs. Nvidia’s

CUSP [5] library supports different formats such as DIA, ELL, CSR Scalar, CSR Vector ,and

COO, again optimized for SpMV for GPUs.

There have been efforts on manually optimizing sparse matrix kernels with loop car-

ried dependences, from Saltz and Rothberg’s work on sparse triangular solver in 1990s [53,

92] to work on optimizing sparse triangular solve for recent NVIDIA GPUs and Intel’s

multicore CPUs [54, 55, 93]. Even though these manual optimizations have been successful

at achieving high performance in some cases, the significant software engineering efforts

involved can be affordable only for a few high profile software with manageable code

complexity. This software engineering challenge is also indicated by that Intel MKL started

incorporating inspector-executor optimization only very recently in their 11.3 beta version

released around April 2015 [94]. One of the biggest challenges is composing the manual

parallelization with other optimizations. Parallelization of kernels like sparse triangular

solve needs to be composed with other optimizations such as reordering to realize its full

potential as shown in [93]. Various preconditioners with different dependency pattern
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can be composed with numerous choices of iterative solver algorithms [77]. Our work

addresses this composability issue with the compiler.

8.6 Summary
In this chapter we discussed related work that can be categorized broadly into sparse

matrix compilers, compilers that support nonaffine codes and/or inspector/executor ex-

tensions and handtuned libraries for sparse matrix computations. Early sparse matrix

compilers such as MT1, SIPR and Bernoulli start off from a dense abstraction of the compu-

tation and rely on special representations to generate sparse code. We compared our make-

dense transformation with that of sublimation [45] and the compact transformation with

that of guard encapsulation [84]. We discussed compiler frameworks that support and/or

model nonaffine code constructs. Some of these approaches abstract inspector/executor

transformations. Most of these techniques are isolated inspector/executor transformations

or have limited composability with polyhedral transformations. Finally we compare our

techniques with manual library based approaches.



CHAPTER 9

CONCLUSIONS AND FUTURE WORK

In this chapter we restate the contributions of this dissertation and point to future

research directions.

9.1 Nonaffine extensions
We have developed and demonstrated extensions to polyhedral code generation for

supporting Nonaffine index arrays in loop bounds and subscripts. We demonstrated the

robustness of this approach in applying complex sequences of new and existing transfor-

mations that integrate seamlessly with the code generation extensions.

9.2 Loop and data transformations
We have presented new transformations and an automatically-generated inspector that

can be used to transform sparse matrix computations and their data representations. The

compiler-generated inspector and executor code achieves performance that is compara-

ble and sometimes exceeds the performance of popular manually-tuned sparse matrix

libraries OSKI and CUSP. We see this work as an important step towards a general frame-

work for automating transformation and data representation selection for the domain of

sparse matrix computations.

9.3 Integration into applications
To clarify the scope of the effort, and the power of incorporating these transformations

into an existing compiler framework, Table 9.1 shows sparse matrix formats that can be

derived using our framework.

We see that a rich set of transformations are needed, both to enable the restructuring of

the code and matrix representation following make-dense, and to generate optimized code

for our two target architectures.



106

Table 9.1: A list of transformations performed for each variant.
Enabling Transformations Downstream Transformations

make-dense permute skew shift tile compact compact-and-pad datacopy scalar-expand unroll coalesce
COO 3 3 3 3

ELL 3 3 3 3

DIA 3 3 3 3 3

BCSR 3 3 3 3 3 3

GCSR 3 3

TRI 3 3

CSB 3 3 3 3

S-DIA 3 3 3 3 3 3 3

The formats highlighted in grey, GCSR and TRI from Section 7.1, Compressed Sparse

Block (CSB) [24] and S-DIA [95] can also be derived using the transformations we intro-

duced. CSB [24] relies on blocking the dense matrix into square tiles and determining the

nonzeros that fall within each tile. The nonzeros are then stored in a Coordinate (COO)

format as in [26], where the row and column offsets within the tile are stored explicitly.

S-DIA [95] relies on storing blocked diagonals and may be conceptualized as a hybrid

between BCSR and DIA, and is derived similarly to DIA, with the addition of tiling.

9.4 Wavefront parallelization
Finally we have demonstrated how a compiler dependence analysis and parallel code

generation framework can be utilized to automatically generate wavefront parallelization

of sparse matrix computations. The compiler automates dependence testing for compu-

tations with loop-carried dependencs that arise in sparse computations with index array

indirection and automatically generates optimized parallel inspectors and executors. Our

compiler-generated inspector and executor codes outperform the corresponding computa-

tions implemented with the Inspector/Executor interface of the Intel Math Kernel Library

(MKL) and nearly match that of hand-tuned code.

9.5 Contributions
To summarize our contributions are:

(1) Developing the first end-to-end polyhedral transformation and code generation sys-

tem that accommodates and transforms codes with Nonaffine loop bounds and array

subscripts. including inspector/executor transformations represented as Nonaffine

transformations. Specifically the generalized loop coalescing transformation is intro-

duced as a Nonaffine transformation that converts a loop of multiple dimensions to a
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loop of a single dimension. This work was published in [26].

(2) Development of new compiler transformations, make-dense, compact and compact-and-

pad, for codes with indirection through index arrays that facilitate code and data trans-

formations. Code transformations include converting a loop of multiple dimensions

and data transformations include padding and insertion of zero elements. The code

and data transformations direct the automatic generation of high performance inspec-

tor/executor codes whose performance is competitive with manually tuned libraries.

These new transformations also compose with existing polyhedral transformations.

This work was published in [3].

(3) Integration of these new transformations to derive highly specialized representations

for sparse matrix applications such as LOBPCG and SGD. The LOBPCG work was

published in [96] and the work related to SGD was published in [25].

(4) Automated dependence testing, simplification, and inspector/executor code genera-

tion for codes with loop carried dependences resulting in parallel, high performance

inspector, and wavefront-parallel executor codes. This work is to be published in [97].

9.6 Future work
We have implemented an inspector/executor methodology for both wavefront paral-

lelization and loop and data transformations. Composing both these transformations for

applying a code and data restructuring for data locality and parallelism is an interesting

subject of future work. For example composing both these transformations could derive

code variants such as Gauss Seidel relaxation based off the BCSR sparse matrix represen-

tation. Composed inspectors could do both the wavefront parallelization and the matrix

format conversion.

Another feature that could be incorporated into our compiler framework would be

supporting algorithms that do fill-in or convert a zero to a nonzero through the course

of the computation. Supporting fill-in would be essential to optimizing direct methods

for sparse linear systems and can be realized using the make-dense transformation since

it exposes dense loop bounds, and potentially locations where a zero might turn into a

nonzero.
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The Nonaffine extensions implemented by the uninterpreted function symbol abstrac-

tion facilitate seamless polyhedral code generation for sparse matrix codes. Implementing

sophisticated algorithms to minimize control flow in loop codes involving such uninter-

preted function symbols is also an interesting area for future research.

Many different sparse matrix representations have been developed recently to exploit

structural properties of the matrices whenever possible to improve code performance. In

the future, we see the need to extend the inspector in our framework to support two new

capabilities to be able to implement new sparse matrix representations. First, a number

of representations require reorganizing the sparse matrix by sorting of the rows and/or

columns of the input matrix, usually to expose locality [98, 99]. Other representations split

the matrix into multiple parts with different characteristics, and use a different implemen-

tation for each part [100–102]. Incorporating sorting and splitting to implement hybrid

schemes is the subject of future work. Further we would like to introduce abstractions for

user-supplied inspectors which can then be composed within the framework.



REFERENCES

[1] W. Abu-Sufah, “A library of automatically optimized sparse matrix kernels
on graphics processors.” [Online]. Available: https://sites.google.com/site/
sparseautotuner/matrices/hyb

[2] R. W. Vuduc, “Automatic performance tuning of sparse matrix kernels,” Ph.D.
dissertation, Univ. California, Berkeley, CA, USA, January 2004. [Online]. Available:
http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf

[3] A. Venkat, M. Hall, and M. Strout, “Loop and data transformations for sparse
matrix code,” in Proc. 36th ACM SIGPLAN Conf. Programming Language Design and
Implementation, ser. PLDI 2015. New York, NY, USA: ACM, 2015, pp. 521–532.
[Online]. Available: http://doi.acm.org/10.1145/2737924.2738003

[4] R. Vuduc, J. W. Demmel, and K. A. Yelick, “Oski: A library of automatically tuned
sparse matrix kernels,” J. Phys., vol. 16, no. 1, pp. 521–530, 2005.

[5] N. Bell and M. Garland, “Implementing sparse matrix-vector multiplication on
throughput-oriented processors,” in Proc. ACM/IEEE Int. Conf. High Performance
Computing, Nov. 2009.

[6] J. H. Saltz, R. Mirchandaney, and K. Crowley, “Run-time parallelization and
scheduling of loops,” IEEE Trans. on Comput., vol. 40, no. 5, pp. 603–612, May 1991.
[Online]. Available: http://dx.doi.org/10.1109/12.88484

[7] L. Rauchwerger, N. M. Amato, and D. A. Padua, “Run-time methods for
parallelizing partially parallel loops,” in Proc. 9th Int. Conf. Supercomputing,
ser. ICS. New York, NY, USA: ACM, 1995, pp. 137–146. [Online]. Available:
http://doi.acm.org/10.1145/224538.224553

[8] J. Saltz, C. Chang, G. Edjlali, Y.-S. Hwang, B. Moon, R. Ponnusamy, S. Sharma,
A. Sussman, M. Uysal, G. Agrawal, R. Das, and P. Havlak, “Programming irregular
applications: Runtime support, compilation and tools,” Advanced Computing, vol. 45,
pp. 105–153, 1997.

[9] C. Ding and K. Kennedy, “Improving cache performance in dynamic applications
through data and computation reorganization at run time,” in Proc. ACM SIGPLAN
Conf. on Programming Language Design and Implementation. New York, NY, USA:
ACM, May 1999, pp. 229–241.

[10] N. Mitchell, L. Carter, and J. Ferrante, “Localizing non-affine array references,” in
Proc. Int. Conf. on Parallel Architectures and Compilation Techniques (PACT), October
1999, pp. 192–202.

[11] J. Mellor-Crummey, D. Whalley, and K. Kennedy, “Improving memory hierarchy
performance for irregular applications using data and computation reorderings,”
Int. J. Parallel Prog., vol. 29, no. 3, pp. 217–247, 2001.



110

[12] H. Han and C.-W. Tseng, “Exploiting locality for irregular scientific codes,” IEEE
Trans. Parallel Distrib. Syst., vol. 17, no. 7, pp. 606–618, 2006.

[13] B. Wu, Z. Zhao, E. Z. Zhang, Y. Jiang, and X. Shen, “Complexity analysis and
algorithm design for reorganizing data to minimize non-coalesced memory accesses
on gpu,” in Proc. 18th ACM SIGPLAN symposium on Principles and Practice of Parallel
Programming, ser. PPoPP, 2013.

[14] A. Basumallik and R. Eigenmann, “Optimizing irregular shared-memory applica-
tions for distributed-memory systems,” in Proc. Sym. on Principles and Practice of
Parallel Programming, 2006.

[15] M. M. Strout, L. Carter, and J. Ferrante, “Compile-time composition of run-time data
and iteration reorderings,” in Proc. ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI), June 2003.

[16] M. M. Strout, L. Carter, J. Ferrante, and B. Kreaseck, “Sparse tiling for stationary
iterative methods,” Int. J. High Performance Computing Applications, vol. 18, no. 1, pp.
95–114, February 2004.

[17] W. Pugh and T. Shpeisman, “Sipr: A new framework for generating efficient code for
sparse matrix computations,” in Proc. 11th Int. Workshop on Languages and Compilers
for Parallel Computing, Chapel Hill, North Carolina, August 1998.

[18] A. Bik and H. A. Wijshoff, “Advanced compiler optimizations for sparse computa-
tions,” in Proc. Supercomputing, Nov 1993, pp. 430–439.

[19] N. Mateev, K. Pingali, P. Stodghill, and V. Kotlyar, “Next-generation generic pro-
gramming and its application to sparse matrix computations,” in Proc. 14th Int. Conf.
Supercomputing, Santa Fe, New Mexico, USA, May 2000, pp. 88–99.

[20] C. Chen, J. Chame, and M. Hall, “CHiLL: A framework for composing high-level
loop transformations,” University of Southern California, Tech. Rep. 08-897, Jun.
2008.

[21] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A practical auto-
matic polyhedral parallelizer and locality optimizer,” in Proc. ACM SIGPLAN Conf.
on Programming Language Design and Implementation, Jun. 2008.

[22] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez, C. Tenllado, and
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