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Abstract
The origins and physical significance of the Casimir effect are reviewed, linking
the zero-point energy of the vacuum in quantum electrodynamics with a force
between conducting plates. It is shown how, by the use of dimensional and
other simple physical arguments, the major features of the phenomenon can be
derived.

1. Introduction

Hendrik Brugt Gerhard Casimir, whose name is known throughout the physics world, died
on 4 May 2000. This brief article written in his honour concerns the discovery, formulation,
physical significance and impact of one of the phenomena that bears his name, the eponymous
Casimir effect. The discovery of this fundamental and very general effect is remarkable in the
history of science for a host of reasons, and there is an extensive literature on the subject. To
quote his original publication, ‘there exists an attractive force between two metal plates which
is independent of the material of the plates. . .’, qualified by the condition that the intervening
distance is sufficiently large ‘. . .that for the wavelengths comparable with that distance the
penetration depth is small compared with the distance’. Such an attraction between two metal
plates in vacuum has nothing to do with the forces of gravity or electrostatics. ‘This force
may be interpreted as a zero point pressure of electromagnetic waves’ [1]. The existence of
such a phenomenon, which even now continues to surprise those who encounter it for the first
time, was at the time of its initial recognition by Casimir not at all an obvious possibility.
Nonetheless, since the effect operates to some extent even in systems that only very loosely
approximate to a pair of conducting plates, it involves a principle of wide relevance.

As a young man Casimir had been highly active in the developing field of quantum theory,
benefiting from a training in physics successively under the tutelage of Ehrenfest, Bohr and
Pauli. Before the Second World War, he worked at the University of Leiden on a much wider
variety of topics, including the theory of Lie groups, thermodynamics, paramagnetic relaxation
and electrical conduction. After moving to Philips Laboratories Casimir published his paper on
the attraction of two plates in the wake of another landmark piece of science with which it has
connections (vide infra), his work with Dik Polder on the long-range influence of retardation
on the London–van der Waals dispersion forces between neutral atoms [2]. In the development
of that theory, the principles of which are described elsewhere in this issue by Edwin Power
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[3], the first step was the derivation of the potential energy of interaction between a neutral
atom and an infinite perfectly conducting plate, which in SI units can be expressed as

�E = − 3h̄c

32π2ε0

α

R4
(1)

where α is the atomic polarizability and R the distance between the atom and the plate. (In
older systems of units where the factor of 4πε0 is absent, the polarizability has the dimensions
of volume). It was the consideration of this primary relationship that subsequently led Casimir
to focus directly on the attraction between two such plates, formulating the result for a force
per unit area of magnitude:

P = π2h̄c

240a4
(2)

where a is the separation between the plates. In passing we celebrate the fact that (2) is a rare
and happy instance, in this branch of physics, of an equation that needs no conversion between
any of the major systems of units. More significantly, however, it is a result that invokes no
electrical constants.

The physical explanation that underpins the derivation of the above formula invokes the
concept of quantization of the electromagnetic field. Quantum electrodynamics establishes
that for each mode of the radiation field the associated energy levels are equally spaced (as
is true for any harmonic oscillator) and each level is associated with an integer number of
photons. Again, from the quantum treatment of harmonic motion, the lowest level for each
such mode has a finite zero-point energy, a physical manifestation of quantum uncertainty. For
the electromagnetic field in free space, there exist an infinite number of radiation modes, each
contributing to an infinite zero-point energy. However in the presence of two parallel, perfectly
conducting plates, only longitudinal waves that have nodes at each surface are supported (at
the microscopic level much the same principle is at work in the modern theory of photonic
crystals). There is no effective constraint on shorter wavelengths, since each plate ‘. . .is hardly
an obstacle at all and therefore the zero point energy of these waves will not be influenced by
the position. . .’ [1]. The net (still infinite) zero-point energy between the plates is nonetheless
countably modified through the presence of the plates. The energy shift has to be interpreted
in terms of a lowering in the potential energy as the plates are moved towards each other
from infinite separation. Relating this to the force required to separate the plates results in an
expression for the pressure exerted.

2. Didactic approaches to the formula

In Casimir’s derivation, which in common with many subsequent treatments of the interaction is
relatively short but mathematically quite intricate, the material properties of the plates are fully
encompassed by the twin assumptions of perfect conductivity and planarity; neither charge nor
electric polarization is involved. The familiar approximation methods of perturbation theory
based on expansions in powers of the electron charge are not well suited to dealing with such a
task, and in the calculational procedure some relatively unusual procedures had to be brought
into play. In fact it is notable that the basis for the calculation entails no further assumptions at
all, although calculational approximations are involved in securing a simple form for the final
result. A large number of more or less equally demanding theoretical treatments is now to be
found in the extensive literature of the subject, and it is not the intention to reproduce any such
derivation here—the reader is instead referred to the excellent accounts by Power [4] and by
Milonni [5], for example. Instead it is our purpose as a didactic exercise to see how far one
can get using simple physical and dimensional arguments—especially since some purposely
over-simplified treatments have been shown to give results of similar form but having slightly
different numerical factors. Certainly it is easy enough, given the premise of a mechanism for
such an interaction, first to determine its sign.
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It is considered that the presence of the two parallel conducting plates imposes conditions
on the vacuum radiation modes that can be supported in their midst, the region of space
commonly called the cavity. The premise is that, because the cavity cannot support modes
whose half-wavelength will not fit an integer number of times inside it, the longest supportable
wavelength is of half the plate separation, and all other allowed modes are correspondingly
higher order harmonics—the detailed calculation has also to take account of the transverse
mode structure. For the excluded modes the corresponding zero-point energies associated
with vacuum fluctuations are therefore absent, whereas in the absence of the plates such modes
would make their usual free-space contributions to the vacuum energy. So the presence of the
plates engenders an energy loss −�E in the cavity, signifying a negative potential energy
U . On physical grounds this must reduce with distance, so that U has to be a negatively
sloped monotonic function of the plate separation a. As is verified below, this means that the
distance dependence of the potential energy has the functional form of an inverse power law,
and consequently the corresponding force F = − ∫

U da itself results in a negative quantity,
signifying attraction between the plates. (More precisely F = − ∫

U da, where a is the
displacement vector of one plate with respect to the other and F is the force the former plate
experiences).

On seeking the detailed form of the force equation, dimensional arguments can profitably
be brought into play. Such arguments are of unusual transparency in this case, precisely because
the phenomenon entails no electrical properties (such as the electric charge or permittivity that
arise in connection with dispersion forces, for example). This is why the Casimir formula
is cast in exactly the same form irrespective of the system of units employed. Suppose then
that the functional form is sought for the quantum force between the parallel plates. For
fairly obvious physical reasons the net force must be dependent on the plate area, and it can be
anticipated that the corresponding pressure is area independent—although this is an assumption
we return to subsequently. So, the only variable in terms of which this pressure p can be cast
is the separation a. As a quantum effect the result must invoke Planck’s constant h̄ and,
also, conceivably the speed of light c, since the latter is the only other independent universal
constant involved with electromagnetic radiation. If we write P = axcyh̄z and use dimensional
analysis, then since [P ] = [M][L]−1[T]−2, [a] = [L], [c] = [L][T]−1, [h̄] = [M][L]2[T]−1,
we obtain the following simultaneous equations for [M], 1 = z; for [L], −1 = (x + y + 2z);
and for [T], −2 = −(y + z). Hence the result is of the form P ∼ h̄ca−4.

If the plate area l2 were to be also included as a possible variable, dimensional analysis
would yield the incompletely determined form P ∼ h̄caxl2w, with x+2w = −4. For symmetry
reasons the area of not just one plate but both would have to play the same role—and with
two plates of the same area, w would have to be even. It is inconceivable that w could be
positive, since then the effect could easily yield immense forces with even moderately large
plates, and any such effect operative over macroscopic scales would have long been well
known. However with w even and negative, then unless x was zero, which would signal the
unreasonable possibility of a distance-independent result, x would have to be positive, giving
the equally unpalatable prospect of a force increasing with distance. Since these alternative
scenarios are so clearly unphysical there is no possibility for doubt that a force per unit plate
area is the requisite form for the result as given above. It then follows that the force on
each plate is given by F ∼ h̄cl2a−4 and the corresponding potential energy of interaction is
U ∼ h̄cl2a−3. As shown above, it ensues that both F and U must carry negative signs.

Although a multiplicity of other physical grounds for the Casimir–Polder interaction can
be argued, the basic premise for the Casimir effect is remarkably robust, namely the zero-
point energy of the vacuum. The only significantly different route to the result is one based
instead on the notion of a vacuum photon momentum, interpreting the force on each plate in
terms of the reduction (owing to the cavity exclusion of insupportable modes) of a vacuum
Maxwell–Bartoli radiation pressure. The premise here is one that is less generally useful or
indeed measurable—since the vector character of the envisaged 1

2 h̄k zero-point momentum per
mode of wave-vector k necessarily sums to zero [6]. Nonetheless the concept again affords
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a transparent link to the functional form of equation (2). Consider a cubic cavity of side
a. Any particles of momentum p bouncing back and forth between opposite walls would at
each wall impact impart a momentum change 2p, with a repeat interval given by the round-
trip time 2a/c. From Newton’s Second Law the associated time-averaged force is pc/a and
the force per unit area is pc/a3. Elementary quantum considerations dictate that, since the
system has a localization uncertainty a, then even with no particles present there is a residual
linear momentum uncertainty ∼h̄/a, with an ensuing uncertainty in the force per unit area
∼h̄c/a4. As with the notion of zero-point energy itself, such an uncertainty for a quantity
which classically should be zero reflects a finite physical value, and the result gives a clear
indication of its form.

3. Physical significance and impact

The links that exist between the theory of the Casimir effect and the Casimir–Polder dispersion
interaction between atoms are less transparent than might at first be suspected. The latter
exhibits retardation effects that modify the form of the distance dependence at large distances,
owing to the finite time of signal propagation; the former does not. In its quantum mechanical
formulation the latter generally invokes perturbation theory, whereas the former does not.
(Although classical formulations of the Casimir–Polder interaction appear to circumvent such
approximations, the concept of atomic polarizability thereby entailed is itself an approximation
based on precisely linear optical response.) A perfectly polarizable atom, whose polarizability
in old-fashioned units would equate to its physical volume, corresponds to a classical object
with a continuum of energy levels. As such the onset of retardation effects associated with
inter-atomic interactions would become significant only at an essentially infinite range. Indeed,
if the non-retarded (short-range) London form of the interatomic potential is employed as a
basis for pairwise summing of interactions between atomic components of the plates, the result
does indeed run with a−4. Nonetheless, even then the summing of interactions between atomic
components of the two plates fails to deliver the correct numerical factor because it is based
only on pairwise interactions [7].

It is interesting to reflect on the fact that the original prediction of the Casimir effect
should come from the hand of an industrial scientist—perhaps a little less surprising at the
time than would be the case today, when direct profitability is the universal byword. However,
although it may have been an unlikely provenance for this particular work, Philips Laboratories
in Eindhoven has continued to nurture a great deal of other fundamental research, a later
example being the landmark series of publications on radiation trapping in atomic vapours
by van Trigt—see for example [8] and references therein. It is certainly notable that Casimir
developed his theory at a time when the development of quantum electrodynamics was still
at a very early stage. Moreover his result anteceded by nearly a decade the first (not entirely
convincing) attempts at experimental detection [9–11]—see also [12]. Casimir had himself
appeared somewhat reticent on the likelihood of experimental verification, and it is clear that
attempted measurements were fraught with a host of experimental difficulties, not least the
obviation of electrostatic and gravitational interference. As such the phenomenon appears to
have acquired the connotation of being academically interesting but fundamentally esoteric,
and it is perhaps not so surprising that it was not until 1996 that the first definitive measurements
verified the existence of a force exactly as Casimir had predicted [13, 14]1.

Admitting the reality of the zero-point electromagnetic energy of the vacuum is
conceptually, mathematically and inextricably linked with acceptance of the notion of vacuum
fluctuations [15], which play a key role in the quantum electrodynamical explanation of
spontaneous emission [16, 17]. The fact that numerous alternative means of explicating that
much more familiar process have been sought over many years, since semiclassical theory

1 To avoid the problem of keeping two flat surfaces parallel, experimental measurements have usually been made on
the forces between one plane and a sphere, introducing a different functional form to the Casimir force.
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fails at this point, is a powerful indicator of a general and deeply entrenched reluctance to
accept the reality of zero-point energies. Such a position is of course no longer tenable. The
Casimir effect has implications far wider than the somewhat artificial system it addresses: it is
now known to have very wide implications in elementary particle physics and cosmology [18].
However, it is already clear that accepting the reality has opened a Pandora’s box containing a
host of other entertaining diversions, including some highly fanciful propositions for exploiting
the zero point energy for free-energy devices, the spontaneous generation of energy, perpetual
motion and the like [19].

Perhaps more realistic is recent work suggesting the utilization of the Casimir effect in
nanotechnology where, as miniaturization accelerates, it may prove fundamentally significant
for device design and operation. Thus it has been recognised that the effect should have a
noticeable influence on the performance of molecular sized machines [20], where the scale of
distance between components is such that the pressures exerted can run into atmospheres. For
example simple application of equation (2) to a pair of plates separated by 10 nm shows that each
plate experiences a negative pressure of 1.3 atm. At such a distance a 1 nm displacement would
nonetheless change the pressure by about 40%. Even the atomic irregularity of a ‘perfect’
metal plate needs to be brought into consideration [20]. Recent work in Bell Laboratories
has shown that, exploiting such effects, it may for example prove necessary to modify the
performance characteristics of ultrasensitive switches designed to respond to subtle background
variations. Recalling again the provenance of the Casimir effect it is heartening to see that that
the phenomenon is now being brought forward into practical utility, with commercial relevance
finally in sight.
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