Erratum: Optically induced forces and torques: Interactions between nanoparticles in a laser beam

[Phys. Rev. A 72, 033816 (2005)]
D. S. Bradshaw and D. L. Andrews
(Received 2 February 2006; published 8 March 2006)
DOI: 10.1103/PhysRevA.73.039903
PACS number(s): 42.50.Ct, 32.80.Lg, 34.20.Gj, 85.85.+j, 99.10.Cd

We wish to correct some minor errors in our recent paper, arising from an ambiguity between colocated Cartesian frames of reference. In Eq. (3.1), angular factors are referred to a Cartesian frame where Z is identified with the molecular axis, though tensor components are referred to the previously described laboratory frame in which Z is the inter-particle director. Resolving into a common frame of reference and then proceeding, the laser-induced force expression of (3.3) is properly written as

$$
\begin{aligned}
F_{z}= & \left(\frac{I}{4 \pi \varepsilon_{0}^{2} c R^{4}}\right)\left(\left\{\alpha_{\perp}^{2}\left[\sin ^{2} \phi\left(3-\cos ^{2} \theta\right)-2\right]+\alpha_{\|}^{2} \sin ^{2} \phi \cos ^{2} \theta\right\}\right. \\
& \times\left\{3 \hat{R}_{z} \cos k R \cos (\mathbf{k} \cdot \mathbf{R})+k R\left[3 \hat{R}_{z} \sin k R \cos (\mathbf{k} \cdot \mathbf{R})+\hat{k}_{z} \cos k R \sin (\mathbf{k} \cdot \mathbf{R})\right]-k^{2} R^{2}\left[\hat{R}_{z} \cos k R \cos (\mathbf{k} \cdot \mathbf{R})\right.\right. \\
& \left.\left.-\hat{k}_{z} \sin k R \sin (\mathbf{k} \cdot \mathbf{R})\right]\right\}-\left\{\alpha_{\perp}^{2} \sin ^{2} \phi \sin ^{2} \theta+\alpha_{\|}^{2} \sin ^{2} \phi \cos ^{2} \theta\right\}\left\{k^{2} R^{2} \hat{R}_{z} \cos k R \cos (\mathbf{k} \cdot \mathbf{R})\right. \\
& \left.\left.+k^{3} R^{3}\left[\hat{R}_{z} \sin k R \cos (\mathbf{k} \cdot \mathbf{R})+\hat{k}_{z} \cos k R \sin (\mathbf{k} \cdot \mathbf{R})\right]\right\}\right)
\end{aligned}
$$

The short-range result for a pair of spherical nanoparticles thus vanishes on taking a rotational average $\left\langle F_{z}^{0}\right\rangle=0$ instead of the result given as (3.6). There is no optical binding force under these specific conditions. Effecting a similar correction for the polar contributions, Eq. (3.9) should read

$$
F_{z}^{0}=\left(\frac{3 I \hat{R}_{z}}{4 \pi \varepsilon_{0}^{2} c R^{4}}\right)\left\{\left[\alpha_{\|}^{2}+\mu_{\|}\left(\beta_{\|}-\beta_{\perp_{2}}\right)\right] \sin ^{2} \phi \cos ^{2} \theta+\mu_{\|} \beta_{\perp_{2}}+\alpha_{\perp}^{2}\left[\sin ^{2} \phi\left(3-\cos ^{2} \theta\right)-2\right]\right\}
$$

Results (3.10)-(3.19) are all correct. In Eqs. (4.5)-(4.8), $\cos \phi$ replaces $\sin \phi$ and vice versa. All the graphical results, and their interpretations, are correct.

