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Abstract. Multi-dimensional potential energy surfaces are associated with optical binding.  A 
detailed exploration of the available degrees of geometric freedom reveals unexpected turning 
points, producing intricate patterns of local force and torque.  Although optical pair 
interactions outweigh Casimir-Polder coupling even over short distances, the forces are not 
always attractive.  Numerous local potential minimum and maximum can be located, and 
mapped on contour diagrams.  Islands of stability appear, and structures conducive to the 
formation of rings.  The results, based on quantum electrodynamics, apply to optically trapped 
molecules, nanoparticles, microparticles and colloids. 
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Electrically neutral molecules and larger nanoparticles, separated from each other beyond 
significant wavefunction overlap, generally experience weak forces of mutual attraction.  
Typically, such forces are associated with pair potentials characterized by an inverse sixth 
power dependence on inter-particle distance.  In the case of molecules, the latter feature (the 
attractive component of a Lennard-Jones interaction) is interpreted as a dynamic coupling of 
fluctuating electric dipoles.  Experimentally verifiable retardation effects modify the distance 
dependence at longer distances, exhibiting the deeply quantum electrodynamical character of 
the Casimir-Polder interaction [1-3] – ultimately attributable to virtual photon exchange.  The 
additive effect of pairwise interactions between the constituents of larger particles conveys an 
inverse sixth power distance relationship into the Hamaker interaction [4], where it determines 
properties such as adhesion, wetting, multilayer adsorption and colloid flocculation [5,6]. 

A suspicion that intense laser light might engage with virtual photon exchange, producing 
an optically modified potential energy surface, was first developed into theory by 
Thirunamachandran almost thirty years ago [7] – but the laser intensities that appeared 
necessary then represented a major deterrent.  Within the decade, however, a landmark paper 
by Burns et al. [8] verified the effect experimentally, and introduced the term ‘optical 
binding’; this work also drew attention to the long-range linearly inverse dependence on 
distance, tempered by an oscillatory factor.  The study inspired increasingly adventurous 
theoretical and experimental investigations [9-22] and the development of quantum 
electrodynamical studies [23,24].  Mostly, attention has focused on the intensity and distance 
dependence of the pair forces.  The pair separation is, however, only one of the geometric 
degrees of freedom.  In this Letter, we present the first results to emerge from an investigation 
into the complete potential energy surfaces for optically induced interactions.  Despite a 
relative simplicity in the field equations, a richly textured potential energy landscape emerges. 

For a pair of particles, B displaced from A by a vector R, each with a dynamic polari-
zability tensor ( );k k−α , the optical potential is concisely expressible as follows [24,25]; 
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Here, k is the wave-vector of the throughput radiation and k = |k|; e(λ) is the (complex) 
polarization vector, I the mean irradiance and ( ) ( ) ( ) ( )1 1

A B;g g r r≡R  the time-averaged degree 
of first-order coherence (correlating the positive frequency signal at A with its negative 
frequency counterpart at B); ( ) ( ) ( ) ( ) ( )

1
21 1

(1 2)2n nh z z H zπ +=  are spherical Hankel functions of the 
first kind; c is the speed of light in vacuum, 0ε  the permittivity in vacuum, and jkδ  the 
Kronecker delta.  Generally the coherence length of the radiation exceeds the pair separation, 
and the degree of coherence can be taken as unity.  In applying (1), it is assumed that the 
particle pair is held by an optical trap or suspension that exercises an equal force on each 
particle, so the inter-particle potential is entirely separable.  

Even the simplest two-particle case has at least three degrees of geometric freedom.  As is 
apparent from (1), the interaction engages the directions of both the optical propagation and 
polarization vectors; the plane containing these two, together with its normal, establishes a 
Cartesian frame against which the pair orientation may be defined.  When the particles are 
spherical, there are no further degrees of freedom for the orientations of the individual 
particles, and for each pair an obvious choice of coordinates is the pair separation R and two 
angles, φ  and ζ  specifying the pair orientation – see Fig. 1.  In terms of these variables the 
solution (1) substantially simplifies as follows: 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Two-particle geometry.  Trapped particles A and B, separated by distance R, 
their inter-particle displacement vector subtending an angle φ  to the electric field of 
the laser radiation, and ζ designating the angle between the plane containing these 

vectors and the optical wave-vector. 
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where the polarization is taken as linear and α  is the scalar polarizability.  As the distance 
between the pair increases, the optically induced force rapidly overtakes in magnitude the 
more sharply distance-dependent Casimir force.  Over short distances a convenient basis for 
comparison with the radiation-free Casimir-Polder energy of interaction is the dimensionless 
parameter c2k/IR3 ( c2k3/IR5 in the long-range, kR »1).  With a wavelength of 355 nm and a 
modest irradiance of 1012 W m-2, the optically induced interaction typically exceeds the 
Casimir-Polder force at all distances beyond about 55 nm, subject to the pair orientation.   

When the pair of particles is aligned with the polarization vector, equation (2) delivers a 
result whose graph exhibits the familiar, experimentally verified R-dependence [26].  This 

x

y

z

ζ 

φ 

k

A

Be



Journal of Nanophotonics, Vol. 1, 019503 (2007)                                                                                                                                    Page 3

 3

result (alone) is independent of ζ.  For the angle dependence in general, it is a trivial matter to 
prove that, in the near-zone, the isotropic average of the optically induced pair energy 
vanishes.  Nonetheless at all distances the energy landscape is decidedly anisotropic, and must 
therefore generate both positive and negative forces.   Indeed, it has been  commented [24]  
that  the  term ‘optical binding’ is  potentially  misleading,  focusing  only  on  attraction 
forces.  Force fields are derivable from (2), but they can also be inferred from the potential 
energy landscape, since the pictorial representation of a scalar field is also visually less 
cluttered than a scalar field, we graph the energies.  Results from typical calculations are 
shown in Figs. 2 & 3.   

 

 
Fig. 2. Contour maps of optically induced pair energy.  Plots of ∆E as a function of φ  
and kR: (a) ζ = 0; (b) ζ = π/2. The variation of ∆E with kR along the abscissa, φ = 0, 
shows its first two maxima at kR ~ 4.0, 10.5, the first (non-proximal) minimum, at 

kR ~ 7.5.  The horizontal scale typically spans distances R of several hundred 
nanometers, depending on the value of k (see text). The units of the color scale are 

3 2 22 ( ; ) / (4 )oIk k k cα πε− . 
 

A host of interesting features emerge even from the handful of examples shown here (a 
more extensive set being available as supplementary material from the authors).  In each 
landscape, local minima distinguish optical binding configurations.  The contours intersect the 
abscissa scale orthogonally, reflecting an even dependence on each angular variable; the 
variation in the domain ( π/2, π /2) is notionally revealed by unfolding along the distance axis.  
The physical significance is that a system whose (kR, ζ , φ ) configuration has φ  = 0 or ζ = 0, 
but not situated at a local minimum, is always subject to a force drawing it towards a 
neighboring minimum without change of orientation.  For the same reason, there is no torque 
when φ = π/2 or ζ = π/2.  Clearly, however, not all routes to the closest minimum can involve 
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a change in only one variable; a system in an arbitrary configuration will generally be subject 
to forces leading to both forces and torques.  For example, inspection of Fig. 2(a) shows that 
whilst a pair in the configuration (6.0, π/4, 0) is subject to a torque tending to increase φ to 
π/2, its trajectory will be accompanied by forces that tend to first increase and then decrease 
R.  The details, which will additionally involve changes in ζ, can of course be determined 
from the total derivative of (2).  Other features, also exemplified in Fig. 2(a), are off-axis 
islands of stability such as the one that can be identified at (10, π/10, 0).  The two maps shown 
in Fig. 3, plotted in the kR range (2, 50), illustrate the emergence of potential energy features 
supporting longer-range order.  Notably, columnar patterns of alternating minima and maxima 
at constant kR represent conditions conducive to the formation of ring structures. 

 
 

 
Fig. 3. Contour maps of optically induced pair energy. (a) ∆E plotted against φ and 

kR; ζ = 0, as in Fig. 2(a) on expanded distance scale. (b) ∆E variation with ζ and kR, 
at constant φ  = π/4. Adjacent, differently colored islands signify alternating local 

maxima and minima. The φ  = π/4 section of the landscape in (a) corresponds to the 
ζ = 0 section in (b). The units of the color scale are 3 2 22 ( ; ) / (4 )oIk k k cα πε− . 

 
The pattern of variation in the pair potential energy, as a function of each of its degrees of 

freedom, is most readily comprehended in a video visualization.  In the example shown here, 
the variations with φ and kR are displayed as functions of ζ  (0 ≤ ζ ≤ π).  The most striking 
features are the tidal ripples that signify the outward (increasing R) displacements of the 
maxima and minima up to ζ = π/2, followed by inward displacements over the range (π/2, π).   
For any particle pair trapped in a local minimum, the result signifies a physical effect in which  
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Video 1. Variation of optically induced pair energy with ζ  (0 ≤ ζ ≤ π). The units on the z axes are 
3 2 22 ( ; ) / (4 )oIk k k cα πε−  (MPEG, 1446 KB). 

 
pair rotation produces alternately repulsive and attractive forces, manifest as an oscillation in 
separation distance.  The period of that oscillation is half the rotation time.  

Our results represent the first fruits of a project to map out the force fields for a large 
number of interacting particles.  The utilization of pair potentials in determining the behavior 
of an ensemble should not itself be problematic, as the systems of interest are dominated by 
nearest-neighbor influence, and three-centre interactions are insignificant.  Indeed, others have 
already shown that some calculational complexity can be offset by translational symmetry 
constraints [17].  The registration of local field effects (for example for microparticles 
suspended in a liquid) is also straightforward; it is known how the retarded potential – 
essentially the term in the first square brackets in (1) – is affected [27].  Alongside the 
inclusion of Lorentz field factors, the dependence on kR changes to a dependence on n(ck)kR, 
the multiplier being the refractive index.  For example in a liquid illuminated by 355 nm 
radiation, with a refractive index at that wavelength of 1.40, a potential energy minimum 
registered in the above graphs at kR ~ 4 signifies a closer pair separation of 160 nm, rather 
than 225 nm. 

Substantially greater complexity is to be found in systems comprising non-spherical 
particles, where the number of degrees of freedom rises dramatically.  One case of 
intermediate complexity, that of two cylindrical particles with seven geometric degrees of 
freedom, has been the focus of some preliminary work, [28] being applied specifically to 
carbon nanotubes.  The theory that furnishes equation (1) is nonetheless general, and capable 
of delivering detailed results for even this scenario; this is the subject of ongoing work.  The 
results presented here, relating to spherical particles, nonetheless apply to almost all of the 
systems that have thus far been the focus of experimental studies. 
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