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Abstract 
 

 

The expression of cartilage-degrading metalloproteinases (MMPs or ADAMTSs) is 

regulated in part via changes in acetylation mediated by histone acetyltransferases and 

histone deacetylases (HDACs). Classical HDACs can be divided into class I (HDAC1, 2, 3 

and 8), class II (HDAC4, 5, 6, 7, 9 and 10) and Class IV (HDAC11). Broad spectrum 

HDAC inhibitors (HDACi) block cytokine-induction of key proteases in SW1353 

chondrosarcoma cells and primary human articular chondrocytes (HACs), resulting in 

chondroprotection. This study aimed to elucidate the role of HDACs in chondroprotection 

using selective chemical HDACi and siRNA technology. 

 

Trichostatin A (TSA) (broad spectrum) and valproic acid (VPA) (class I selective at 

<1mM) repressed all cytokine-induced metalloproteinase genes in SW1353 cells, and 

MMP13 expression in HACs. MS-275 (class I selective) failed to repress cytokine-induced 

MMP1 and MMP13 expression in SW1353 cells, but repressed MMP13 expression in 

HACs. Tubacin (HDAC6 specific) decreased cytokine-induced MMP1 and MMP13 in 

SW1353 cells. All inhibitors prevented cytokine-induced degradation of bovine nasal 

cartilage, where MS-275 was also able to repress cytokine-induced MMP expression, 

including MMP1 and MMP13.  

 

A profile of HDAC expression showed that the majority have reduced expression in OA 

cartilage compared to normal. TSA increased HDAC3 expression and decreased HDAC7 

expression in SW1353 cells, suggesting that HDACi may both inhibit HDAC catalytic 

activity, and regulate HDAC expression. 

 

Knockdown of individual HDACs in SW1353 cells using siRNA showed that inhibition of 

all HDACs, except HDAC1, caused a repression of basal and IL-1α-induced MMP13 

expression, with HDAC1 knockdown potentiating IL-1α-induced MMP13 expression. In 

HACs, HDAC3 or HDAC8 knockdown resulted in reduced basal and IL-1α-induced 

MMP13 expression, HDAC1 or HDAC11 knockdown potentiated both of these and 

HDAC5 or HDAC6 knockdown potentiated only IL-1α-induced MMP13 expression. 

Problems with non-targeting control siRNAs made interpretation of experiments difficult. 

 

HDACs therefore play a key role in metalloproteinase expression, with inhibition of class I 

HDACs, or separately HDAC6, capable of altering metalloproteinase expression to confer 

chondroprotection. 
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Chapter I 

 

Introduction 

 

1.1 The Structure and Tissues of Synovial Joints 

The most common joint of the human skeleton is the synovial joint. The bones of the 

synovial joint (see Fig. 1.0) are capped with a thin layer of hyaline cartilage, known as 

articular cartilage, which provides a smooth surface for joint movement. The joint is 

enclosed within a fibrous capsule which holds it together. The fibrous capsule is lined 

with a synovial membrane, the resident cells of which secrete synovial fluid into the 

joint cavity to lubricate and reduce friction upon movement. The bones of the joint are 

further held together by ligaments made of dense connective tissue.  

 

 

 

 

Figure 1.0. The structure of the synovial joint 

 

(Taken from the osteoarthritis information booklet from Arthritis Research UK- 

http://www.arthritisresearchuk.org). 
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1.1.1 Articular Cartilage 

Articular cartilage is a specialised avascular tissue which provides a low friction surface 

for movement and distributes load equally throughout the joint. The cartilage matrix is 

produced and maintained by a sparse population of specialised cells called 

chondrocytes, which are embedded within the matrix itself. Articular cartilage is 

composed of two main extracellular matrix (ECM) components, type II collagen and 

aggrecan. Type II collagen forms a highly organised fibrous scaffold which interacts 

with other cartilage specific collagens, including collagen types IX and XI, and other 

matrix components, providing cartilage with tensile strength. Large proteoglycan 

aggregates, mainly composed of hyaluronan and aggrecan, are embedded within and 

interact with the collagen scaffold. The proteoglycan aggregates have an intense 

negative charge that attracts water molecules into the tissue, causing the aggregates to 

swell against the collagen network and giving cartilage the ability to resist compression. 

The hydration of aggrecan also allows nutrient and solute transport from the synovial 

fluid into the cartilage tissue, thus maintaining the metabolic activity of resident 

chondrocytes (Dudhia, 2005). Overall articular cartilage is composed of approximately 

70% water, 25% ECM protein and 5% chondrocytes (Kumar et al, 2001). Other smaller 

leucine-rich proteoglycans, including decorin, biglycan, fibromodulin and lumican, help 

maintain the cartilage structure through interaction with the collagen scaffold (Goldring, 

2000). It is postulated that PRELP (proline/arginine-rich end leucine-rich repeat protein) 

and chondroadherin receptors provide interaction between the cartilage matrix and 

chondrocytes by binding cell membrane proteins, such as syndecan and α2β1 integrin 

(Goldring, 2000).  
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Figure 1.1. The structure of articular cartilage.   

Cartilage consists of a territorial (peri-cellular) region and interterritorial region. The territorial 

region is rich in collagen type VI. Aggrecan can associate with proteins, such as fibulin and 

tenascin-R. Large aggregates of hyaluronan and aggrecan are trapped between the collagen type 

II network in the interterritorial region. The collagen network is further strengthened by 

collagen binding proteins, including decorin, fibromodulin and collagen type IX. (Adapted from 

(Dudhia, 2005)). 

 

 

Mature human articular cartilage is composed of four major layers: the superficial, 

middle (transitional), deeper and calcified zones. Each zone can be distinguished by 

differences in chondrocyte morphology and content of glycosaminoglycans, collagen, 

water and minerals. The integrity of the superficial layer is essential for weight 

distribution throughout the joint (Kumar et al, 2001), with any change in structure or 

morphology potentially leading to cartilage breakdown and disease onset. The 

superficial layer is divided into the ‘outermost’ and ‘deepest’ layer. The outermost layer 

(facing the joint space) is acellular and contains types I, II and III collagen fibres that 

orientate parallel to the articular surface, and a low amount of proteoglycan (Clouet et 

al, 2009). The deepest superficial layer also contains types I, II and III collagen fibres 

(Clouet et al, 2009; Kuettner, 1992), but also contains chondrocytes. The tissue’s main 

mechanical properties can be attributed to the zonal organisation of deeper cartilage 
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layers (Kumar et al, 2001). The middle and deeper zone matrices contain high 

proteoglycan content and the prominent collagen fibres increase in diameter, acquiring a 

more perpendicular orientation in respect to the articular surface (Schumacher et al, 

1994). The cartilage in contact with the subchondral bone is known as the calcified 

zone, containing a limited number of hypertrophic chondrocytes that synthesise type X 

collagen. Calcification takes place on collagen fibres, which anchors cartilage to the 

subchondral bone (Clouet et al, 2009). The role of each cartilage ECM component is 

complex, but primarily they interact to enable interaction and communication between 

the chondrocytes and surrounding ECM to provide the correct structural properties of 

cartilage. 

 

Chondrocytes within the adult cartilage are organised in well-defined vertical columns 

and horizontal strata (Hunziker et al, 2007) and are often surrounded by a peri-cellular 

matrix. The peri-cellular matrix is rich in hyaluronan, proteoglycans and aggregates of 

type VI collagen. The chondrocyte and its peri-cellular matrix are collectively known as 

a chondron. The depth-related differences in biochemical composition and 

macromolecule organisation of cartilage arise from the metabolic specialisation of the 

resident chondrocytes in each layer (Schumacher et al, 1994). The deepest superficial 

layer is the most cellular region of the tissue, containing ellipsoidal chondrocytes 

(Clouet et al, 2009; Schumacher et al, 1994). The orientation of chondrocytes within 

this layer is debated, but a recent study found grouped cell patterns that were orientated 

parallel to the articular surface (Rolauffs et al, 2008). The resident chondrocytes of the 

middle zone are rounded rather than ellipsoidal, and those of the deep zone are larger, 

elongated and arranged in vertical columns (Schumacher et al, 1994). 
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Figure 1.2. The histological organisation of articular cartilage.  

 

Mature human articular cartilage is composed of four major layers: the superficial, middle 

(transitional), deeper and calcified zones. Each zone can be distinguished by differences in 

chondrocyte morphology and content of glycosaminoglycans, collagen, water and minerals. The 

chondrocytes are organised anisotropically into distinct vertical columns and horizontal strata 

within the cartilage deep zone. (Adapted from (Clouet et al, 2009)). 
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1.1.2 Chondrocytes 

Chondrocytes are the single cellular component of adult hyaline cartilage and 

responsible for the maintenance of cartilage structure and function (Archer et al, 1982; 

Goldring, 2000; Goldring & Goldring, 2007). The cells are derived from differentiated 

mesenchymal cells during the process of chondrogenesis. This is an essential part of 

skeletal development, allowing the formation of cartilage intermediate templates for 

future limb development (Goldring et al, 2006). Following the aggregation and 

differentiation of chondroprogenitor mesenchymal cells,  the chondrocytes undergo 

proliferation, terminal differentiation, hypertrophy, ending with apoptosis or autophagy 

(Goldring & Goldring, 2007). The process of chondrogenesis is followed by 

endochondral ossification, during which the hypertrophic chondrocyte matrix is invaded 

by vascular elements, allowing entry of skeletal cells from the osteoblast lineage for 

bone development. 

 

Chondrocytes of adult cartilage are fully differentiated and survive under relatively 

hypoxic conditions in the absence of a vascular supply. The cells have low metabolic 

activity and possess little regenerative ability (Goldring & Goldring, 2007). In the 

absence of disease, chondrocytes maintain low replacement of cartilage matrix proteins; 

cartilage collagen has a half life of >100 years (Verzijl et al, 2000) and 

glycosaminoglycan constituents an estimated half-life of 3-24 years (Maroudas et al, 

1998). Cartilage matrix homeostasis is maintained by the chondrocyte through a 

synchronised balance between anabolism and catabolism.  

 

The chondrocytes of the cartilage superficial zone are particularly important due to their 

synthesis and secretion of lubricin into the joint space, thus contributing to joint 

lubrication. Chondrocytes of the superficial zone are predominately the first to respond 

to mediators within the synovial fluid and changes in mechanical stimuli (Rolauffs et al, 

2008; Schumacher et al, 1994). 

 

Chondrocytes express cell membrane receptors that bind components of ECM, enabling 

them to recognise and respond to biomechanical stimuli within the joint (Millward-

Sadler & Salter, 2004). For example, chondrocytes respond to dynamic compression by 

increasing matrix synthesis and decrease synthesis in response to joint injury (Sauerland 

et al, 2003). Chondrocytes also respond to joint injury by increasing their expression of 

inflammatory mediators, cartilage degrading proteases and stress response factors 
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(Sauerland et al, 2003). There are many potential cell membrane mechanoreceptors, 

including stretch activated ion channels, hyaluronan receptor CD44, anchorin II (a 

collagen type II receptor) and integrin receptors. 

 

1.1.3 Collagen 

Collagen is the main protein responsible for the structural integrity of vertebrates and 

many multicellular organisms, with collagen fibrils providing the major biomechanical 

scaffold for cell attachment and macromolecule anchorage (Kadler et al, 1996). 

Suprafibrillar collagen architecture is tissue dependent and defines and maintains the 

structure of many tissues such as the skin, tendon, bone and cartilage (Hulmes, 2002; 

Kadler et al, 1996).   

 

Fibrillar collagen type II is one of the main ECM components of articular cartilage. All 

fibrillar collagens begin synthesis in the endoplasmic reticulum (ER) from three 

constituent polypeptide α-chains, forming a unique triple helical structure known as pro-

collagen (Lamande & Bateman, 1999).  The pro-collagen molecules are then secreted 

from the ER and transported to the cis-Golgi, followed by transportation from the Golgi 

apparatus to the plasma membrane for secretion into the ECM (Canty & Kadler, 2005; 

Hulmes, 2002).  

 

The three α-chains that form the pro-collagen molecule can be identical, such as 

collagen type II which contains three α1(II) chains, or differ such as collagen type I 

which contains two α1(I) chains and one α2(I) chain. To allow formation of the pro-

collagen triple helix each α-chain consists of the repeating structure Gly-Xaa-Yaa, 

where Xaa and Yaa residues are commonly proline or hydroxyproline. The single 

hydrogen side chain of glycine allows tight interaction between α-chains (Kadler et al, 

1996).  

 

Each pro-collagen molecule consists of an uninterrupted triple helix flanked by short 

extrahelical telopeptides at the N- and C-terminus. The telopeptides, known as pro-

domains, do not have the Gly-Xaa-Yaa repeat sequence or form part of the triple helical 

structure (Hulmes, 2002). However, both pro-domains are essential for pro- and mature- 

collagen formation. Initial interaction between the α-chains occurs at the C-propeptide 

and ensures constituent chains are correctly aligned prior to triple helical nucleation, 

which occurs in a zip-like manner, from the C- to N-terminus (Engel & Prockop, 1991).  
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The highly conserved 245 amino acid sequence of the C-propeptide also contains a 15 

residue discontinuous variable sequence which determines α-chain stoichiometry (Lees 

et al, 1997).  

 

During and following secretion from the cell into the ECM the pro-collagens are 

proteolytically processed at the N- and C-telopeptides by specific N- and C-terminus 

metalloproteinases, producing mature-collagen molecules that spontaneously assemble 

into fibrils (Fukui et al, 2002). N-terminus proteases include ADAMTS2, ADAMTS3 

and ADAMTS14, a family of proteases discussed further in section 1.3.3 (Colige et al, 

1997; Colige et al, 2002; Fernandes et al, 2001). C-terminus proteases include bone 

morphogenic protein-1 (BMP-1) and mammalian Tolloid-like (mTLL)-1 and -2 (two 

genetically distinct BMP-1-related proteases) (Li et al, 1996; Pischon et al, 2004; Uzel 

et al, 2001). The C-propeptide is responsible for solubility post ER secretion, thus its 

main extracellular function is to prevent fibril formation. The N-propeptide, which has 

greater variability than the C-propeptide, influences fibril shape and diameter. Finally, 

following spontaneous assembly fibrils are stabilised by covalent cross-linking initiated 

by oxidative de-amination of specific lysine and hydroxylysine residues, within 

collagen, by lysyl oxidase (Kadler et al, 1996; Siegel et al, 1970). 

 

In addition to this, long collagen fibrils can be traced from locations deep within the 

cell, where they may coexist with numerous shorter fibrils, through a distinctive 

fibripositor (fibril-depositor) structure (Canty & Kadler, 2005; Canty et al, 2004). In 

embryonic tendon this structure is located at the side of the cell, aligns along the long 

axis of the tendon and protrudes into the spaces between cells to extracellular collagen 

fibril bundles (Canty & Kadler, 2005; Canty et al, 2004). It is now postulated that 

collagen fibrillogenesis is initiated during transport from the Golgi apparatus to the 

plasma membrane, in transport carriers known as the Golgi-to-PM transport 

compartments (GPCs). These carriers are thought to fuse with the plasma membrane to 

form new fibripositors, or fuse with the base of existing fibripositors, which then direct 

collagen deposition.  Fibripositors have also been shown to facilitate collagen fibril 

growth, which may occur at the base of the fibril in the fibripositor through the addition 

of individual collagen molecules (Holmes et al, 1998), or by end-to-end fusion with 

nascent short fibrils (Canty & Kadler, 2005; Kadler et al, 2000). 

  



Introduction                                                                                                          Chapter I 

21 
 

  

Figure 1.3. The formation of collagen fibrils.  

 

Pro-collagen consists of a 300nm long triple helical domain (comprised of three α-chains) 

flanked by a trimeric globular C-peptide domain and a trimeric N-propeptide domain. Pro-

collagen is secreted from cells and converted into collagen by removal of the N- and C-

propeptides by pro-collagen metalloproteinases. This produces mature collagen that 

spontaneously self-assembles into cross-striated fibrils. (Taken from (Kadler et al, 1996)). 
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1.1.4 Aggrecan and Hyaluronan 

Proteoglycan aggregates are mainly composed of aggrecan molecules non-covalently 

bound to a central hyaluronan molecule (Hardingham & Muir, 1974). Hyaluronan 

molecules are intensely negatively charged and composed of alternating polymers of 

glucuronic acid and N-acetylglucosamine joined together by ß1-3 linkage. Hyaluronan 

extensively expands in solution, forming a net of extended random coiled molecules. 

The molecule can be found intra-cellularly, but is predominantly found within the 

cartilaginous ECM in large aggregates with aggrecan. Up to a hundred aggrecan 

monomers can bind to a single hyaluronan molecule, with the interaction stabilised via a 

link protein (Morgelin et al, 1988) (Figure 1.4).   

 

Aggrecan is composed of a long core protein consisting of functional domains (see 

Figure 1.4).  At the N-terminus are two globular domains, G1 and G2, separated by a 

150 residue interglobular domain (IGD) (Roughley, 2001). The G2 domain is followed 

by a long central glycosaminoglycan (GAG) attachment region, where keratan sulphate 

and chondroitin sulphate covalently bind. A final globular domain, G3, is found at the 

C-terminus. The G1 domain, along with link protein, is responsible for aggrecan-

hyaluronan interaction (Roughley, 2001).  The function of the other globular domains is 

unclear (Roughley, 2001). The GAG attachment region is separated into three domains 

responsible for the binding of keratan sulphate (KS domain) and chondroitin sulphate 

(CS1 and CS2 domains) (Roughley, 2001). 
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Figure 1.4. The structure of aggrecan 

 

The structure of aggrecan consists of three globular domains (G1, G2 and G3) and a 

glycosaminoglycan (GAG) attachment region. The GAG attachment region is separated into 

three domains responsible for keratan sulphate (KS domain) and chondroitin sulphate (CS1 and 

C2) binding. (Taken from (Porter et al, 2005)). 

 

 

The functional properties of proteoglycan aggregates are dependent on the amount and 

structure of aggrecan, the size of hyaluronan, and the proportion of link protein 

(Roughley et al, 2003). Aggrecan structure is dependent on many factors such as age, 

species and anatomical site (Glant et al, 1986). Structural variations in aggrecan can 

occur during synthesis and by proteolytic processing once within the ECM. Aggrecan 

has 5 proteolytic cleavage sites for resident articular cartilage proteases. The first is 

located in the IGD between G1 and G2, and the remaining four in the CS2 domain 

(Loulakis et al, 1992; Roughley et al, 2003; Sandy et al, 1991). Proteolytic cleavage and 

loss of aggrecan from articular cartilage characterises many joint pathologies, such as 

osteoarthritis, and is predominantly driven by ADAMTS enzymes (Little et al, 2007). 
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1.1.5 Synovium and Synovial Fluid 

The synovium is a soft connective tissue which lines the inner surface of the joint 

capsule. It is divided into two layers, the subintima and intima. Normal synovial intima 

consists of two cell populations, the macrophage-like synoviocytes (type A) and the 

fibroblast-like synoviocytes (type B) (Henderson et al, 1988). The synovial intima cells 

are responsible for the production of synovial fluid components, absorption from the 

joint cavity, and blood/synovial fluid exchange. The main function of the synovial fluid 

is to act as a lubricant to the joint, with its viscosity and lubricating properties attributed 

to its hyaluronan and lubricin content. A normal joint should only contain a microscopic 

film of synovial fluid, allowing hydrodynamic lubrication and nutrition of cartilage.  
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1.2 Osteoarthritis 

1.2.1 Osteoarthritis Pathology 

Osteoarthritis (OA) is a multifactorial, degenerative, progressive joint disease, 

characterised by degeneration of articular cartilage, synovitis and changes in the peri-

articular and subchondral bone (Goldring & Goldring, 2007). It is currently the leading 

cause of pain and disability in the aging population (>60 years of age) (Franses et al, 

2009). 

 

OA is commonly characterised by cartilage degradation, with almost complete cartilage 

loss observed in the final stages of the disease. Early OA is associated with sub-clinical 

lesion development in the cartilage articular surface, causing it to gradually roughen and 

thin (see Figure 1.5b). Lesion progression leads to almost complete cartilage 

degradation and exposure of the subchondral bone beneath (see Figure 1.5c). In severe 

cases the sufferer is left with major joint deformity and loss of normal joint function. 

 

 

 

 

Figure 1.5. Schematic representation of OA progressive joint destruction. 

 

(a) The normal joint: the subchondral bone is covered by smooth articular cartilage (b) Early 

osteoarthritic joint: thinning of the articular cartilage is coupled with thickening of the 

subchondral bone and osteophyte growth at the joint margins. Joint space narrowing and mild 

synovium inflammation is also evident. (c) Severe osteoarthritic joint: there is little remaining 

cartilage and the exposed subchondral bone is flattened and deformed. Large osteophytes have 

formed and inflammation of the synovium is still apparent. (Adapted from the osteoarthritis 

information booklet from Arthritis Research UK- http://www.arthritisresearchuk.org). 
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Angiogenic vascular invasion of cartilage, originating from the subchondral bone, has 

been detected in the OA joint (Suri et al, 2007). Angiogenic invasion results in cartilage 

calcification, causing reduced cartilage thickness and innervation. The innervation of 

cartilage provides a possible source of OA pain (Franses et al, 2009). Increased 

expression of the pro-angiogenic factor VEGF (vascular endothelial growth factor) by 

OA chondrocytes has been shown, and it is suggested that the failure of deep zone 

chondrocytes to express anti-angiogenic protease inhibitors may permit vascular 

invasion from the subchondral bone (Franses et al, 2009). 

 

The subchondral bone within the OA joint has increased thickness and often develops 

bony outgrowths at joint margins, known as osteophytes. The exposure of bone at the 

articular surface is thought to allow ‘leakage’ of synovial fluid towards the medullar 

spaces, affecting the bone-marrow mesenchymal stem cells (MSCs), and thereby 

contributing to the formation of osteophytes and cartilage nodules (Clouet et al, 2009). 

The excessive remodelling of bone is itself linked to increased cytokine production and 

cartilage loss (Sakao et al, 2009). The deterioration of the subchondral bone is 

postulated to be largely responsible for joint pain, but this claim is yet to be 

substantiated. 

 

Supporting connective tissues are also affected in OA, with articular muscles 

surrounding the joint often becoming weaker, thin and wasted, whilst surrounding joint 

ligaments become thicker and contracted. These changes can result in bones being 

pushed out of their normal position, resulting in biomechanical changes within the joint. 

However, it is unclear if changes to the supporting tissues are the cause or an effect of 

OA.  

 

The OA synovium undergoes hypertrophy and hyperplasia due to an increased number 

of lining cells and infiltration of the sublining tissue with activated B-cells and T-

lymphocytes (Pelletier et al, 2001). Despite synovial inflammation, OA is not classified 

as an inflammatory disease due to an absence of neutrophils in the synovial fluid and a 

lack of systemic inflammation (Goldring & Goldring, 2007). However, clinical 

presentation of the OA joint includes stiffness, effusions and swelling which indicates 

that the synovium does have a low-grade contribution to the disease (Krasnokutsky et 

al, 2007). Areas of synovial inflammation are commonly localised to areas of 

pathologically damaged cartilage and bone (Krasnokutsky et al, 2007), thus 
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inflammation tends to occur in patches rather than inflammation of the entire synovium. 

It has been demonstrated that synovitis leads to an over-expression of pro-inflammatory 

cytokines, such as interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α) and -β, 

leading to protease expression and subsequent cartilage destruction (Benito et al, 2005). 

One suggestion is that synovial inflammation is a secondary phenomenon related to the 

release of cartilage breakdown products into the synovial fluid (Pelletier et al, 2001).  

 

The adult chondrocyte plays a critical role in OA pathogenesis by responding to adverse 

environmental stimuli. It does this by promoting cartilage degradation and down-

regulating matrix synthesis and repair through the release of cytokines and growth 

factors (Goldring & Goldring, 2007). This is partially mediated via chondrocyte cell 

membrane receptors binding components of the ECM. These receptors include integrins 

which activate upon binding to ECM components, such as fibronectin (FN) and type II 

collagen fragments, causing chondrocyte production of inflammatory cytokines, 

chemokines and  matrix degrading proteases (Pulai et al, 2002). Chondrocyte 

production of IL-1 and TNFα is thought to be the primary mediator of the increased 

expression of cartilage catabolic enzymes detected in the OA joint (Clouet et al, 2009). 

Interestingly, in early OA increased chondrocyte matrix synthesis is detected. This is 

thought to be an attempt by the chondrocytes to counterbalance the increased catabolism 

within the joint. Increased cartilage metabolism in response to cartilage damage is 

demonstrated in early cartilage studies, but increased metabolism rapidly decreases 

(Meachim, 1963). Chondrocyte death is also increased in OA, with both apoptotic and 

non-apoptotic signals detected (Almonte-Becerril et al, 2010). 

 

In conclusion, the current view is that an increased expression of catabolic enzymes 

from the articular chondrocytes is responsible for ECM degradation and the subsequent 

changes within the OA joint. The expression of these enzymes is induced via the 

secretion of pro-inflammatory cytokines from OA chondrocytes and activated 

synoviocytes. The catabolic enzymes are predominantly from the metalloproteinase 

family, including the MMPs (matrix metalloproteinases) and ADAMTSs (a disintegrin 

and metalloproteinase with thrombospondin motifs). The increased catabolism is 

coupled with reduced expression of TIMPs (Tissue Inhibitors of Metalloproteinases), 

the endogenous inhibitors of MMPs and anabolic growth factors, which are discussed in 

more detail in section 1.3.5 and 1.3.6 (Figure 1.6) (Davidson et al, 2006; Kevorkian et 

al, 2004; Murphy et al, 2002).   
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Figure 1.6. The imbalance between anabolic and catabolic factors in the physiopathology of 

osteoarthritis. 

 

The imbalance between catabolic and anabolic factors contributes to the alteration of the 

biomechanical properties of articular cartilage, leading to the destruction of its ECM. (IGF: 

insulin-like growth factors, TGF-β: transforming growth factor-β, BMPs: bone morphogenetic 

proteins, FGFs: fibroblast growth factors, NO: nitric oxide, MMPs: matrix metalloproteinases, 

ADAMTS: a disintegrin and metalloproteinase with thrombospondin repeats, IL-1β: 

interleukin-1β, TNF: tumour necrosis factor). (Taken from (Clouet et al, 2009)) 

 

 

Thus OA is a multi-faceted disease affecting all major components of the joint. 

However, the interaction between the joint components and where pathology begins still 

remains unclear.  
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1.2.2 Osteoarthritis Epidemiology 

OA is the leading cause of physical disability and impaired quality of life in 

industrialised nations, affecting over 50 million people worldwide (Dai & Ikegawa, 

2010). The study of OA epidemiology is difficult due to complex disease pathology, the 

inability to detect the point of OA onset and the inability to grade disease severity 

(Pollard et al, 2008). OA is diagnosed primarily through radiography, with magnetic 

resonance imaging (MRI) and arthroscopy used more rarely. The severity of joint 

damage is then graded, commonly using the Kellgren and Lawrence system (Kellgren & 

Lawrence, 1957), from 0 to 4 depending on sequential appearance of osteophytes, joint 

space loss, sclerosis and cysts (Arden & Nevitt, 2006). Several joints might be affected 

by OA, but the sites most commonly affected are the knees, hips, fingers and the lumbar 

and cervical spine (Clouet et al, 2009). Age is a key risk factor associated with OA 

development, affecting 9.6% of men and 18% of women over the age of 60 years 

worldwide. Thus population aging is predicted to worsen the socio-economic impact of 

OA (Bitton, 2009).  (For epidemiology review refer to Ref: (Arden & Nevitt, 2006)) 

 

1.2.3 Osteoarthritis Aetiology 

The risk factors associated with OA include; age, previous joint injury, joint instability 

and/or malalignment, genetic inheritability, female gender, intra-articular crystal 

deposition, muscle weakness, peripheral neuropathy and obesity (Goldring & Goldring, 

2007; Valdes et al, 2007). Thus identifying the reason or reasons responsible for the 

onset of OA in any given individual is complex due the various factors affecting the 

joint. 

 

Age is a primary risk factor for OA onset, with disease development commonly seen 

between the ages of 40 and 60 years. It is thought OA affects people later in life due to 

the contributing factors of weakening muscles, weight gain and the bodies lessening 

ability to heal itself. Age-related changes in the composition and structure of the 

cartilage ECM also contribute to OA onset, often causing softening of the articular 

surface and decreased tensile strength of the matrix (Goldring & Goldring, 2007). 

However, despite the clear association between increased age and OA onset it is also 

important to remember that erosive lesions can be found in young cartilage and that not 

everyone over the age of 40 develops OA. Therefore aging alone is unlikely to be the 

causative factor. 
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A number of twin-pair, sibling risk and segregation epidemiology studies have been 

completed for OA, and have indicated that genetic contribution plays a major role in 

OA predisposition and onset (Chitnavis et al, 1997; Dai & Ikegawa, 2010; Doherty, 

2000; MacGregor et al, 2000; Spector & MacGregor, 2004). The data produced from 

these studies and genome linkage maps have enabled inheritance patterns and the 

location of potentially causative mutations to be identified. The identification of OA 

susceptibility genes would lead to a better fundamental understanding of the disease, but 

the data produced across past studies is not always consistent (Valdes et al, 2007).  To 

date, several groups have reported the identification of OA susceptibility genes through 

candidate gene association studies (Dai & Ikegawa, 2010). One such example is a single 

nucleotide polymorphism (SNP) identified in the GDF5 gene (growth differentiation 

factor 5) known as rs143383, which has been found to associate with knee OA in a 

large-scale meta-analysis study  and smaller scale genetic studies (Chapman et al, 2008; 

Evangelou et al, 2009). The identification of this polymorphism is important as GDF5 

has a known role in the development and maintenance of bone and cartilage (Francis-

West et al, 1999), with mutations in this gene linked to several disorders of skeletal 

development, such as chondrodysplasia (Evangelou et al, 2009; Miyamoto et al, 2007). 

Thus, its function in OA aetiology appears highly plausible (Chapman et al, 2008; 

Evangelou et al, 2009). However, SNPs identified in small cohorts, such as the 

identification of the FRZB T/G haplotype which was associated with susceptibility to 

OA in the hip and knee (Valdes et al, 2007), are not always replicated in large cohort 

analysis (Evangelou et al, 2009). This emphasises the difficulty in identifying OA 

susceptibility genes. Other genetic mutations yet to be identified are postulated to affect 

chondrocyte differentiation and function, cartilage matrix formation and skeletal 

development. These all potentially affect joint structure and function, leading to OA 

onset. Therefore, further genetic association studies on OA susceptibility are necessary 

to capture the complete picture of the genetic aspect of OA (Dai & Ikegawa, 2010). 

 

OA is more common in women, especially in the hip and knee, and is often more 

severe. It is thought that estrogen loss after menopause may accompany OA onset. The 

evidence currently available on the effect estrogen has on cartilage is conflicting. 

However, studies researching prevalence and incidence of OA in post-menopausal 

women with or without hormone replacement strongly indicates estrogen has a 

chondroprotective effect (Richette et al, 2003). The literature also indicates that animal 
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models undergoing ovariectomy and subsequent estrogen reduction often exhibit signs 

of cartilage damage (Sniekers et al, 2008). Chondrocytes have been shown to express 

estrogen alpha and beta receptors, suggesting that cartilage is sensitive to the hormone 

(Richmond et al, 2000). It is also postulated that estrogen may decrease the acceleration 

of subchondral bone remodelling in postmenopausal women (Felson et al, 1993). 

Furthermore, synoviocytes have also been shown to express an estrogen receptor, which 

makes synoviocytes another possible target for estrogen’s effects on the joint 

(Ushiyama et al, 1995). 

 

Traumatic joint injury and joint misalignment are linked to OA onset. In vitro 

experiments suggest that injurious static compression of cartilage results in reduced 

proteoglycan, damage to the collagen network and reduction in chondrocyte matrix 

protein production (Goldring & Goldring, 2007; Guilak et al, 2004). These all result in 

the loss of cartilage matrix integrity, possibly leading to the development of OA. 

 

Obesity is also a key factor associated with OA onset, which will only be exacerbated 

with the currently growing obesity epidemic (Cicuttini et al, 1996; Oliveria et al, 1999). 

Increased body weight leads to increased load bearing for all joints, which contributes 

to cartilage wear, lesion formation and OA progression (Messier et al, 2005). 

Adipokines produced by white adipose tissue, including leptin, adiponectin and restin, 

have been detected in the synovial fluid of OA joints (Presle et al, 2006). Adipokines 

are known regulators of inflammation and immune response, so their presence in OA 

synovial fluid indicates that fat actively contributes to inflammation and cartilage 

destruction. Obesity and OA correlates strongly in the knee joint (Felson et al, 1988). 

Obesity also increases the likelihood of OA development in non-weight-bearing joints, 

supporting the role of adipokines and other systemic factors in obesity-associated OA 

development (Presle et al, 2006). 

 

1.2.4 Osteoarthritis Therapy 

Currently there are no efficacious therapies for OA, with available treatments only 

partially addressing the clinical issue. Therapies are divided into pharmacological and 

non-pharmalogical treatments. The first pharmacological step after diagnosis is pain 

management using painkillers ranging from mild, such as paracetamol, to strong, 

including non-steroidal anti-inflammatory drugs (NSAIDs), cyclooxygenase-2 (Cox-2) 

inhibitors, glucocorticoids and opioids. However, these treatments can have severe side 
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effects, exhibiting gastrointestinal, renal and cardiovascular toxicity. Glucocorticoid 

injections directly into the joint can reduce pain for several weeks and is particularly 

effective in knee and finger joints. These injections are limited to every 3-4 months due 

to metabolic events. Slow-acting treatments aim to slow OA progression and reduce 

pain include dietary supplements glucosamine and chondroitin sulphate, co-enzyme S-

adenosyl methionine and hyaluronan joint injection. The dietary supplements have been 

shown to possibly stimulate matrix synthesis (Clouet et al, 2009; Derfoul et al, 2007), 

but there are no current data to support pain relief and their use remains controversial. 

S-adenosyl methionine treatment has been shown to increase GAG synthesis, 

accompanied by significant pain relief and improvement of joint function (Najm et al, 

2004). Injections of hyaluronan solutions, naturally found in the synovium, into the 

knee can be given over a period of 3-5 weeks to reduce pain. Hyaluronan is thought to 

provide a protective coating over the articular surface and to act as a shock absorber for 

the joint, but there is contention over the effectiveness of this treatment (Bannuru et al, 

2009). Hyaluronan has also been found to bind and activate Toll-like receptor-4 

(Termeer et al, 2002). Toll-like receptors are known to play a role in inflammatory 

arthritis, thus hyaluronan could mediate its effects though this pathway (Brentano et al, 

2005). Non-pharmalogical treatments are also encouraged. These include: weight loss, 

physical therapy, aerobics, muscle strengthening, walking aids, thermal treatment and 

acupuncture (Clouet et al, 2009). Patients that cannot achieve adequate pain relief from 

these methods are then considered for total joint replacement. Joint replacement is the 

only method available to truly ‘cure’ OA, which is accompanied by its own 

complications. 

 

Future treatments under investigation include novel analgesic and anti-inflammatory 

treatments COX/LOX inhibitors (cyclooxygenase/lipooxygenase) and CINODs 

(Cyclooxygenase-inhibiting nitric oxide donors), which have exhibited minimal side 

effects in phase III trials. Disease modifying osteoarthritis drugs (DMOADs), which 

aim to slow cartilage degradation by targeting specific catabolic enzymes or cytokine 

activated signalling cascades, are also in development. However, clinical trials have 

indicated adverse side effects (Hellio Le Graverand-Gastineau, 2009). New surgical 

techniques are continuously being developed. These include stem cell, cartilage 

grafting, cell-based implantation and tissue-scaffold engineering procedures. These all 

have displayed variable success. (For full review Ref: (Clouet et al, 2009)). 
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1.3 Metalloproteinases 

Chondrocytes and synoviocytes are thought to maintain the homeostasis of anabolic and 

catabolic processes within the joint through the secretion of regulatory mediators. Both 

cell types are major sources of cytokines and growth factors that can promote or inhibit 

the expression of proteolytic enzymes. The regulation of MMP and ADAMTS 

expression is a key mechanism in this process. The MMP and ADAMTS enzymes are 

members of the metalloendopeptidase family and between them can degrade all 

components of the ECM matrix. The metzincin metalloproteinase superfamily consists 

of four subfamilies, adamalysins, matrixins, astacins and serralysins. The matrixins are 

referred to as MMPs and the adamalysins are referred to as the ADAMs (a disintegrin 

and metalloproteinase) and ADAMTSs (a disintegrin and metalloproteinase domain 

with thrombospondin motifs). Metzincin metalloproteinases are named due to the 

conserved methionine residue found downstream of the catalytic zinc binding site that 

confers a right-handed ‘Met-turn motif’. Although many classes of proteases have 

increased expression in OA, it is widely accepted that the MMPs and ADAMTSs are the 

primary mediators of joint destruction (Murphy et al, 2002). 

 

1.3.1 Matrix Metalloproteinases 

There are 23 secreted and cell-surface MMP enzymes in humans (Kevorkian et al, 

2004). They are neutral endopeptidases which are synthesised as pro-enzymes or 

zymogens. MMPs were initially classified into five main groups regarding their primary 

structure, substrate specificity and cellular location; the collagenases (MMP-1, -8 and -

13): gelatinases (MMP-2 and -9): stromelysins (MMP-3, -10 and -11): matrilysins 

(MMP-7 and -26) and membrane-type-MMPs (MMP-14, -15, -16, -17, -24 and -25). 

However, later identified MMPs did not fit this nomenclature, so currently MMPs are 

numbered 1 to 28 (not including MMP-4, MMP-5 and MMP-6). The MMP family has a 

wide range of substrates including other proteases, protease inhibitors, latent growth 

factors, chemotactic molecules, growth factor binding proteins, cell surface receptors 

and cell-cell/cell-matrix adhesion molecules (Table 1.0).   
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Table 1.0   

MMP Enzyme Known substrates 

 
MMP-1 Interstitial collagenase 

(Collagenase-1) 

Collagens I, II, III, VII, VIII and X, gelatin, aggrecan, 

versican, proteoglycan link protein, casein, α1-

proteinase inhibitor, α2-M, pregnancy zone protein, 

ovostatin, nidogen, MBP, proTNF, L-selectin, proMMP-

2, proMMP-9 

 

MMP-2 Gelatinase-1 Collagens I, IV, V, VII, X, XI and XIV, gelatin, elastin, 

fibronectin, aggrecan, versican, proteoglycan link 

protein, MBP, proTNF, α1-proteinase inhibitor, 

proMMP-9, proMMP-13 

 

MMP-3 Stromelysin-1 Collagens III, IV, IX and X, gelatin, aggrecan, versican, 

perlecan, nidogen, proteoglycan link protein, 

fibronectin, laminin, elastin, casein, fibrinogen, 

antithrombin-III, α2M, ovostatin, α1-proteinase 

inhibitor, MBP, proTNF, proMMP-1, proMMP-7, 

proMMP-8, proMMP-9, proMMP-13 

 

MMP-7 Matrilysin-1 (PUMP-1) Collagens IV and X, gelatin, aggrecan, proteoglycan 

link protein, fibronectin, laminin, entactin, elastin, 

casein, transferrin, MBP, α1-proteinase inhibitor, 

proTNF, proMMP-1, proMMP-2, proMMP-9 

 

MMP-8 Neutrophil collagenase 

(collagenase-2) 

Collagens I, II, III, V, VII, VIII and X, gelatin, 

aggrecan, α1-proteinase inhibitor, α2-antiplasmin, 

fibronectin, laminin 

 

MMP-9 Gelatinase B Collagens IV, V, VII, X and XIV, gelatin, elastin, 

aggrecan, versican, proteoglycan link protein, 

fibronectin, nidogen, α1-proteinase inhibitor, MBP, 

proTNF 

 

MMP-10 Stromelysin-2 Collagens III, IV and V, gelatin, casein, aggrecan, 

elastin, proteoglycan link protein, fibronectin, proMMP-

1, proMMP-8 

 

MMP-11 Stromelysin-3 α1-proteinase inhibitor, fibrin, gelatin 

 

MMP-12 Macrophage 

metalloelastase 

Collagen IV, gelatin, elastin, α1-proteinase inhibitor, 

fibronectin, vitronectin, laminin, proTNF, MBP 

 

MMP-13 Collagenase-3 Collagens I, II, III and IV, gelatin, plasminogen  

activator inhibitor 2, aggrecan, perlecan, tenascin 

 

MMP-14 MT1-MMP Collagens I, II and III, gelatin, casein, elastin, 

fibronectin, laminin B chain, vitronectin, aggrecan, 

dermatan sulfate proteoglycan, MMP-2, MMP-13, 

proTNF 

 

MMP-15 MT2-MMP proMMP-2, gelatin, fibronectin, tenascin, nidogen, 

laminin 

MMP-16 MT3-MMP proMMP-2 

 

MMP-17 MT4-MMP 

 

 

MMP-18 Xenopus collagenase 

 

Collagen I 
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MMP-19 RASI-1 Collagen IV, gelatin, laminin, nidogen, tenascin, 

fibronectin, aggrecan, COMP 

 

MMP-20 Enamelysin Amelogenin 

 

MMP-21 XMMP (xenopus) 

MMP-21 (human) 

 

 

MMP-22 

 

CMMP (chicken) Casein, gelatin 

MMP-23 CA-MMP 

 

 

MMP-24 MT5-MMP proMMP-2, proMMP-9, gelatin 

 

MMP-25 MT6-MMP, leukolysin Collagen IV, gelatin, fibronectin, fibrin 

 

MMP-26 Matrilysin-2 

endometase 

Collagen IV, fibronectin, fibrinogen, gelatin,  

α1-proteinase inhibitor, proMMP-9 

 

MMP-27 

 

MMP-27 (human)  

 

MMP-28 

 

Epilysin 

 

Casein 

Table 1.0. Matrix metalloproteinases and their substrates. 

 

(CA, cysteine array; α2-M, α2-macroglobulin; COMP, cartilage oligomeric matrix protein; 

MBP, myelin basic protein; TNF, tumour necrosis factor).  

(Adapted from (Murphy et al, 2002; Raffetto & Khalil, 2008)). 
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1.3.2 Matrix Metalloproteinase Structure 

The basic metalloproteinase structure consists of a signal peptide for secretion, a pro-

peptide for maintaining latency, a catalytic domain with conserved Zn
2+

 binding 

sequence, and a COOH-terminal domain with hemopexin domain (Cauwe et al, 2007). 

The MMPs are characterised by their conserved zinc binding motif HEXXHXXGXXH 

(X represents any amino acid) within the catalytic domain, and a conserved methionine 

which forms part of the ‘Met-turn’ structure (Nagase & Woessner, 1999). The histidines 

are responsible for the binding of the catalytic Zn
2+ 

ion, which is essential for catalytic 

activity. The catalytic domain is approximately 170 amino acids and formed from a five 

stranded β-sheet, three α-helices, and bridging loops (Bode et al, 1993). MMPs are 

secreted in a latent form due to the presence of a pro-domain that must be cleaved 

before activation. The pro-domain maintains latency via a conserved PRCG(V/N)PD 

sequence, whose cysteine group interacts with the catalytic Zn
2+

 ion rendering the pro-

MMP inactive. The removal of the pro-domain causes a conformational change in the 

MMP allowing the Zn
2+ 

ion to bind water for the hydrolysis of peptide bonds, and for 

the enzyme to bind with its substrate. This mechanism is known as the ‘cysteine switch 

mechanism’ (Van Wart & Birkedal-Hansen, 1990). Cleavage of the pro-domain can be 

mediated by MMPs themselves, other proteases or chemical induction. However, MMP-

11, -14, -15, -16, -17, -21, -23, -24, -25 and -28 have a peptide insert containing a furin 

recognition sequence, meaning these enzymes maybe activated in the golgi apparatus by 

furin cleavage before secretion (Berg & Miossec, 2004), although furin-like enzymes 

may also activate these enzymes extracellularly. The hemopexin domain, found in the 

stromelysins and collagenases, contributes to substrate specificity (at least for 

collagenases) and interacts with endogenous inhibitors (Piccard et al, 2007). The 

domain itself is approximately 210 amino acids and is composed of four anti-parallel β-

strands and a α-helix. Its presence is essential for cleavage of the collagen triple-helix 

(Bode, 1995) and for MT1-MMP activation of pro-MMP2. The function of the proline-

rich linker region is unknown. The membrane-bound MMPs (MT-MMPs) are linked to 

the cell surface through a COOH-terminal transmembrane domain (MT1, MT2, MT3, 

and MT5-MMP) or a glycosylphosphatidylinositol (GPI) anchor (MT4 and MT6-MMP) 

(Nagase & Woessner, 1999). 
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Figure1.7. Common domain structure of matrix metalloproteinases 

 

 

The collagenases are the main focus of this study, due to the collagen loss observed 

during OA progression. The classical collagenases (MMP-1, -8 and -13) all cleave 

collagen α-chains at the same loci, producing a ¼ and ¾ fragment. MMP-2 and MMP-

14 can also cleave collagen at this position, but with less efficiency.  

 

MMP-1 and MMP-13 are synthesised by macrophages, fibroblasts and chondrocytes. 

MMP-8 is primarily synthesised by neutrophils but also by chondrocytes. The enzymes 

differ in their specific activity to collagen types, with MMP-13 having the highest 

specific activity for collagen type II (Knauper et al, 1996a). All collagenases are present 

in diseased cartilage, but MMP-8 expression is only detected at low levels (Berg & 

Miossec, 2004). 

 

1.3.3 ADAMTSs 

There are 19 known human ADAMTSs (a disintegrin and metalloproteinase with 

thrombospondin motifs) which are numbered 1 to 20 (there is no ADAMTS-11) (Porter 

et al, 2005). The ADAMTS enzymes are extracellular and can bind to the ECM. The 

function of only a few of these enzymes has been identified, but many are involved in 

the cleavage of the pro-collagen N-terminus and the matrix proteoglycans aggrecan, 

versican and brevican (Table 1.1). ADAMTS-1, -4, -5, -8 and -15 have been shown to 

cleave aggrecan with varying efficiency, and are therefore termed the aggrecanases. 

ADAMTS-2, -3 and -14 have been shown to cleave collagen N-propeptides during fibril 

assembly, and are termed N-propeptidases. 
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Table 1.1.  Human ADAMTS names and known substrates. 

 

(PCINP, pro-collagen I N-proteinase; COMP, cartilage oligomeric matrix protein; a2-M, alpha 

2-macroglobulin; vWFCP, von Willebrand factor-cleaving protease). (Adapted from (Porter et 

al, 2005)). 

 

 

 

ADAMTS Alternative names Known substrates 

 
 

ADAMTS-1 

 

METH-1 

Aggrecanase-3 

 

Aggrecan 

Versican V1 

 

ADAMTS-2 PCINP Pro-collagen I, II and III N-propeptide 

 

ADAMTS-3 KIAA0366
 

Pro-collagen II N-pro-peptide 

 

ADAMTS-4 Aggrecanase-1 

KIA0688
 

Aggrecan, brevican, versican V1, fibromodulin, decorin, 

carboxymethylated transferring 

 

ADAMTS-5 Aggrecanase-2 

ADAMTS11 

 

Aggrecan, Brevican 

ADAMTS-6 

 

  

ADAMTS-7          

 

ADAMTS-7B COMP, α2-M 

ADAMTS-8 METH-2 

 

Aggrecan 

ADAMTS-9 KIAA1312 Aggrecan, versican 

 

ADAMTS-10 

 

  

ADAMTS-12 

 

 COMP, Aggrecan, α2-M 

ADAMTS-13 vWFCP Von Willebrand factor 

 

ADAMTS-14  Pro-collagen I N-propeptide 

 

ADAMTS-15  Aggrecan 

 

ADAMTS-16 

 

 α2-M 

ADAMTS-17   

 

ADAMTS-18 

 

  

ADAMTS-19 

 

 Aggrecan 

ADAMTS-20  

 

Aggrecan 
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1.3.4 ADAMTS Structure 

The basic ADAMTS structure from N-terminus to C-terminus consists of a signal 

peptide, pro-domain, metalloproteinase catalytic domain, disintegrin-like domain, a 

central thrombospondin type-1 like motif, a cysteine-rich domain, a spacer region and 

finally a C-terminal containing variable numbers of thrombospondin repeats (Porter et 

al, 2005). The pro-domain is thought to retain enzyme latency, but it is also potentially 

important for correct protein folding and secretion (Cao et al, 2000; Porter et al, 2005). 

The metalloproteinase catalytic domain contains a reprolysin-type zinc-binding motif 

and a methionine residue or ‘Met-turn’ downstream of the third zinc binding histidine 

(Porter et al, 2005) (Figure 1.8). The C-terminal domain has a variable number of 

thrombospondin motifs and additional modules, which are enzyme-dependent; 

ADAMTS-7 and ADAMTS-12,  mucin domain: ADAMTS-20 and the long isoform of 

ADAMTS-9, GON domain: ADAMTS-13, CUB domain: ADAMTS-2, -3, -10, -12, -

14, -17 and -19, PLAC domain. 

 

 

 

 

Figure 1.8. Common domain structure of ADAMTSs 

 

 

The loss of aggrecan from cartilage is an early event in OA that is driven primarily by 

aggrecanases that cleave at a number of sites in the aggrecan core. The cleavage site 

within the interglobular domain (IGD), between the N-terminal G1 and G2 globular 

domains, is the predominantly cleaved site within diseased tissue. Cleavage of the IGD 

results in the loss of the entire glycosaminoglycan-containing region and subsequent 

loss of aggrecan function (Rogerson et al, 2008). ADAMTS-4 and ADAMTS-5 are the 
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most efficient of all the aggrecanases, suggesting an important role in OA pathology. 

Importantly, ADAMTS-5 null mice are protected against aggrecan loss and cartilage 

destruction in both inflammatory and osteoarthritis models (Glasson et al, 2005; Stanton 

et al, 2005). Surprisingly murine deletion of ADAMTS-4 does not confer the same 

protection as that seen in the ADAMTS-5 null mouse, suggesting ADAMTS-5 is the 

primary aggrecanase of murine cartilage (Glasson et al, 2004). Consistent with this, the 

aggrecanolytic activity of ADAMTS-5 was much greater than ADAMTS-4 in both the 

IGD and the CS-2 regions of aggrecan (Gendron et al, 2007). However, the main 

aggrecanase in human cartilage is still unknown. 

 

1.3.5 TIMPs  

A family of four MMP inhibitors known as the TIMPs (tissue inhibitors of 

metalloproteinases) have been described. They are endogenous inhibitors of 

metalloproteinases, binding to active MMPs in a 1:1 ratio, and potential inhibitors of the 

ADAMTSs. TIMPs are composed of a 125 amino acid N-terminal domain and a 65 

amino acid C-terminal domain, each of which is stabilised by three disulphide bonds. 

 

Due to their substantial role in controlling degradation of the connective tissue (via 

protease inhibition) the expression of TIMPs is carefully regulated during tissue 

remodelling and physiological conditions. The current view is that TIMP activity is a 

key factor in regulating cartilage homeostasis, with excess MMP activity and reduced 

TIMP expression causing pathological cartilage destruction. 

 

The ability of TIMPs 1-4 to inhibit active MMPs is largely promiscuous, though a 

number of functional differences have been identified (Brew et al, 2000). For example, 

both TIMP-2 and TIMP-3, unlike TIMP-1, are effective inhibitors of the membrane-

type MMPs (MT-MMPs), while TIMP-3, but not TIMP-1, -2 or -4, is a good inhibitor 

of tumour necrosis factor-κ converting enzyme (TACE) (ADAM-17) (Amour et al, 

1998; Brew et al, 2000; Zucker et al, 1998). TIMP-3 is known as the most potent 

inhibitor of the ADAMTS family, inhibiting ADAMTS-4 and ADAMTS-5 at 

subnanomolar Ki (Kashiwagi et al, 2001). TIMP-4 is predominantly found in the heart 

but also found in the joint, implicating it in cartilage homeostasis (Greene et al, 1996). 

However, TIMP-4 has been found to be a poor inhibitor of ADAMTS-4 and ADAMTS-

5 (Kashiwagi et al, 2001). TIMP-1 was used to affinity purify ADAMTS-4, suggesting 

it may inhibit this enzyme, but not very efficiently (Tortorella et al, 1999).   
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The functional interaction between TIMP and metalloproteinases has been established 

by crystallographic structures. Crystallographic structures that are available include the 

TIMP-1/MMP-3 complex, the TIMP-2/MT1-MMP complex and for uncomplexed 

TIMP-2 (Brew et al, 2000; Fernandez-Catalan et al, 1998; Gomis-Ruth et al, 1997; 

Tuuttila et al, 1998). 

 

1.3.6 Metalloproteinases and Osteoarthritis 

MMPs and ADAMTS enzymes have been shown to participate in a wide range of 

cellular processes, including cell adhesion and migration, ectodomain shedding, 

proteolysis, development, ovulation and angiogenesis. However, it is their important 

role in a number of pathologies, including arthritides, atherosclerosis, asthma and cancer 

progression, which has made them a major focus of scientific research and potential 

therapeutic targets. 

 

There have been three comprehensive screens of MMP, ADAMTS and TIMP expression 

in osteoarthritis (Davidson et al, 2006; Kevorkian et al, 2004; Swingler et al, 2009), 

with other arthritide gene expression studies primarily focusing on rheumatoid arthritis 

(RA).  The first study, completed by Kevorkian et al. (2004) screened the expression of 

all known metalloproteinases in OA femoral head cartilage versus normal femoral head 

cartilage. The second study, completed by Davidson et al. (2006) screened for gene 

expression in OA versus normal femoral head cartilage and synovium. The third study 

completed by Swingler et al. (2009) completed an expression profile for all known 

proteases within the human genome, known collectively as the ‘degradome’, in OA 

versus normal femoral head cartilage. In all studies OA cartilage was classed as late 

stage OA. All studies indicated aberrant gene expression for MMPs and ADAMTSs in 

OA cartilage, with many genes consistent between the studies. MMP13 was one of the 

genes with the most significantly increased expression in all three studies (in cartilage 

and synovium), supporting the theory that MMP-13 is the key collagenase in OA. To 

further support this MMP1 was decreased in OA cartilage, indicating that it does not 

play a significant role in late stage OA cartilage degradation in the hip (Davidson et al, 

2006; Kevorkian et al, 2004). ADAMTS4 and ADAMTS5 had decreased expression in 

both OA cartilage and synovium (Davidson et al, 2006; Kevorkian et al, 2004). 

Proteolytically driven aggrecan loss occurs early in OA, indicating that increased 

aggrecanase mRNA expression would be seen in early OA cartilage samples rather than 
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the late OA samples used in these studies. Although, the decreased expression of 

ADAMTS4 and ADAMTS5 could also indicate that ADAMTS expression is regulated at 

levels other than at the mRNA level. The screens conducted by Davidson et al. (2006) 

and Kevorkian et al. (2004) also identified aberrant expression of TIMPs in OA 

cartilage. Importantly, a decrease in TIMP1 and TIMP4 was observed in OA cartilage, 

supporting the theory of an imbalance between protease and TIMP expression within 

the OA joint. Interestingly, ADAMTS16 and MMP28 were two of the genes with the 

most significantly increased expression in OA cartilage (Davidson et al, 2006; 

Kevorkian et al, 2004). The substrates and the functions of both genes remain unknown, 

but the data suggests a potential role in OA pathology.  

 

It is clear that metalloproteinase gene regulation and expression is abnormal in OA 

cartilage and synovium. This suggests that the regulation of metalloproteinase 

expression is a potential therapeutic target in the treatment of OA. (For complete screen 

analysis please refer to (Davidson et al, 2006; Kevorkian et al, 2004; Swingler et al, 

2009) 

 

1.3.7 Cytokines and Osteoarthritis 

Studies exploring the role of cytokines in arthritis have mainly focused on RA due to 

the characteristically high levels of cytokines expressed by the chronically inflamed 

synovium. However, cytokines have an important role in inflammation and cartilage 

degradation seen in both RA and OA.  

 

IL-1 and TNFα are two of the most frequently studied and abundant cytokines found in 

the OA joint, which are primarily produced by chondrocytes and the macrophage- and 

fibroblast-like cells of the synovium (Bondeson et al, 2006; Goldring, 2000). The 

network of pro- and anti-inflammatory cytokines is complicated, but pharmacological 

neutralisation of IL-1 and TNFα, both in vitro and in vivo, has defined a significant role 

for both cytokines in arthritis onset and progression. It is generally accepted that IL-1 is 

the pivotal cytokine in OA (Goldring, 1999). Other cytokines released during the 

inflammatory process in the OA joint may be regulatory (IL-6, IL-8) or inhibitory (IL-4, 

IL-10, IL-13, IFN-gamma) (Goldring, 1999). 

 

Both IL-1 and TNF mediate similar responses within the joint and have been shown to 

act synergistically. IL-1 and TNFα cause inflammation by inducing the expression of 
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cyclooxygenase type 2 (COX-2), phospholipase A and nitric oxide synthase (iNOS), 

resulting in the synthesis of inflammatory mediators prostaglandin E2, platelet activating 

factor, leukotrienes and nitric oxide (NO) (Berg & Miossec, 2004). They have also been 

shown to increase the expression of intercellular adhesion molecule-1 (ICAM-1) and 

vascular-cell adhesion molecule-1 (VCAM-1) on mesenchymal and vascular cells, 

enhancing invasion of inflammatory and immune-competent cells into the joint space.  

 

Mouse models over-expressing TNFα develop destructive arthritis, including synovial 

inflammation, cartilage damage and bone destruction (Keffer et al, 1991). The 

neutralisation of TNFα by anti-TNFα drugs, such as infliximab (Remicade
®
, Centocor 

Ortho Biotech Inc), etanercept (Enbrel
®
, Amgen/Wyeth), and adalimumab (Humira

®
, 

Abbott Laboratories), has proved successful in reducing the progression and symptoms 

of RA. These drugs have now been a favourable course of RA treatment for over a 

decade (Moreland, 2009). Pilot clinical trials for OA anti-TNF treatment have proved 

effective, but research is ongoing (Magnano et al, 2007). Inflammatory mouse models 

over-expressing TNFα and lacking IL-1 expression, exhibit joint inflammation but are 

protected from cartilage degradation and bone damage, indicating the importance of IL-

1 in arthritis (Zwerina et al, 2007).  

 

IL-1 has been shown to promote the synthesis of metalloproteases, inhibit growth factor 

induction of ECM protein synthesis, and to stimulate the synthesis of other pro-

inflammatory cytokines such as TNF-alpha and IL-6 (Dayer & Bresnihan, 2002). In 

vitro and in vivo studies have demonstrated that IL-1 inhibition by IL-1 receptor 

antagonists (IL-1Ra) can reduce the severity of cartilage destruction (Caron et al, 1996; 

Fernandes et al, 1999; Pelletier et al, 1996). However, IL-1Ra clinical trials in humans 

are still rare. (For full review refer to (Calich et al, 2010)). The induction of 

metalloproteinases by IL-1 is further enhanced by the addition of  the cytokine 

oncostatin M (OSM) (Barksby et al, 2006). The synergistic induction of 

metalloproteinases by I/O (a combination of IL-1α and oncostatin M) has been explored 

in both cell and bovine cartilage assays, determining that this induction can cause 

almost complete human and bovine cartilage resorption in vitro (Milner et al, 2006; 

Morgan et al, 2006).  

 

These data show that cytokines play a central role in OA onset and progression, 

mediating the induction of inflammation and metalloproteinases expression. 
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1.4 Epigenetics and Transcription 
 

1.4.1 Chromatin Structure 

 Eukaryotic DNA is compacted into the nucleus in the form of tightly condensed 

chromatin. Chromatin consists of repeating nucleosome units, consisting of 146 DNA 

nucleotide base pairs wrapped around a core histone octamer (Luger et al, 1997). The 

histone octamer contains two copies of H2A, H2B, H3 and H4 proteins, which are 

positively charged due to their lysine rich amino-terminal side chains. Negatively 

charged DNA tightly associates with positively charged histones. The degree of 

interaction between histones and DNA is a primary factor involved in determining 

chromatin conformation and transcriptional status. In general, transcriptionally active 

regions of chromatin are associated with a relaxed euchromatin conformation, mediated 

by hypomethylation of DNA and acetylation of histones. Conversely, transcriptionally 

silent regions of chromatin are associated with a compact heterochromatin confirmation, 

caused by hypermethylated DNA associated with deacetylated histones. Heritable 

changes in gene transcription mediated by acetylation and methylation of chromatin are 

referred to as ‘epigenetic’ modifications. Epigenetic processes will be discussed here 

due to their potential role in the aberrant gene expression observed within the OA joint. 

 

1.4.2 Epigenetic Chromatin Modifications 

Epigenetic processes are heritable changes in gene expression without change to the 

nucleotide sequence. While the genetic code is identical for every somatic cell in the 

body, epigenetic changes are generally confined to specific cells/tissues or even cells 

within a tissue (Roach & Aigner, 2007). Such processes include DNA methylation, 

histone modification and microRNA binding. Currently the two most widely studied 

epigenetic processes are DNA methylation and histone acetylation. The interaction 

between these processes can initiate and sustain gene expression and repression, 

integrating both genetic background and environmental factors for cell adaptation and 

survival (Karouzakis et al, 2009). However, disruption in these processes can lead to 

inappropriate gene expression and silencing causing the onset of ‘epigenetic disease’, 

such as cancer and potentially arthritis.  

 

DNA methylation is thought to be a major mechanism by which cells maintain stable 

chromatin configuration that represses transcription, with methylation patterns inherited 
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during adult cell mitosis (Roach & Aigner, 2007). Methyl groups are added to cytosine 

(C) nucleotides, particularly those that are 5’ to guanine (G) nucleotides (Roach & 

Aigner, 2007). These are classed as CpG sites (where p represents the phosphate that 

links the two nucleotides). This process is mediated by DNA methyltransferases 

(Dnmts), which catalyse the transfer of a methyl group from S-adenosyl-methionine 

(SAM) to the cytosine nucleotide. DNA methylation is also essential for normal cellular 

functions such as female X chromosome inactivation, imprinting of specific genes and 

cell-type specific gene expression through permanent silencing of all genes that are not 

expressed in a particular somatic cell (Roach & Aigner, 2007). DNA methylation 

inhibits gene transcription by preventing access of transcription factors and machinery 

to DNA binding motifs. Methyl-CpG-binding domain proteins (MBD1, MeCP2, MBD3 

and MBD4) are important in implementing DNA methylation and further regulate 

chromatin structure through interaction with histone deacetylases (HDACs) (Dobosy & 

Selker, 2001).  

 

The chromatin structure can be modulated by acetylation and deacetylation of lysine 

residues on core histone N-terminal tails (Grunstein, 1997). Acetylation occurs at the ε-

amino groups of the highly conserved lysine residues. This is mediated by histone 

acetyltransferases (HATs) and results in the neutralisation of histone positive charge. 

Neutralisation of histone charge reduces histone-DNA interaction, resulting in a ‘loose’ 

euchromatin conformation that permits access of transcription factors and 

transcriptional machinery to binding motifs (de Ruijter et al, 2003). The sites of histone 

acetylation include at least four highly conserved lysines in histone H4 (K5, K8, K12 

and K16), five in histone H3 (K9, K14, K18, K23 and K27), as well as less conserved 

sites in histones H2A and H2B (Kurdistani et al, 2004). The removal of acetyl groups is 

mediated by histone deacetylases (HDACs), which re-establishes the histone positive 

charge and tight DNA-histone interaction. Histone acetylation can be a dynamic 

process, but the rate of acetylation/deacetylation varies throughout the genome (Davie 

& Spencer, 1999).  
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Figure 1.9. Schematic of histone acetyltransferase and histone deacetylase action. 

 

Histone acetyltransferases (HATs) acetylate histone N-terminal tail lysine residues, neutralising 

histone positive charge and subsequently reducing histone-DNA interaction. This results in a 

loose DNA conformation, known as euchromatin, which exposes transcriptional machinery 

binding sites, allowing transcription to occur. Histone deacetylase enzymes (HDACs) remove 

acetyl groups from histone N-terminal tails, re-establishing histone-DNA interaction and a 

heterochromatin confirmation which is transcriptionally silent. 

 

 

Core histones are susceptible to other post-translational modifications, including 

phosphorylation, methylation, ubiquitination, glycosylation, and ADP-ribosylation 

(Davie & Spencer, 1999). All of these modifications occur at the histone N-terminal 

tails, apart from ubiquitination. 
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1.4.3 Epigenetics and Disease  

The role of epigenetics in disease onset has been the subject of much research due to 

aberrant gene expression and silencing observed in diseases such as cancer and arthritis. 

Epigenetic reviews primarily focus on cancer, while arthritis reviews tend to discuss the 

epigenetic changes within the synovial fibroblasts of the RA joint.  

 

 In addition to the genetic mutations observed in cancer, there are distinct epigenetic 

modifications. For example, despite a global decrease in DNA methylation, 

hypermethylation at the promoters of tumour suppressor genes is observed in almost all 

cancers (Kristensen et al, 2009). It has been shown that cancer cells have 20-60% less 

methylated CpG sites than non-transformed cells (Esteller, 2007). Global 

hypomethylation is thought to contribute to cancer onset and progression through 

several processes, such as loss of genetic imprinting, re-activation of transposons and 

the activation of normally methylated oncogenes (Cruickshanks & Tufarelli, 2009; Li et 

al, 2009; Nakayama et al, 1998). Hypermethylation of CpG regions within the 

promoters of tumour suppressor genes is known to suppress their expression, resulting 

in cancer development. An example of this is the hypermethylation of BRCA1 in breast 

cancer (Dobrovic & Simpfendorfer, 1997). Over-expression of HDACs has also been 

observed in many cancers, resulting in the repression of important growth suppressor 

genes and promotion of cancer cell proliferation (Abbas & Gupta, 2008). This includes 

the over-expression of HDAC1 in prostate cancer, and HDAC2 in gastric cancers 

(Halkidou et al, 2004; Song et al, 2005). 

 

A number of studies have looked at synovial fibroblasts from the RA joint (RASF 

cells). RASFs are aggressive, invasive and display apoptotic resistance, thus exhibiting 

a phenotype similar to transformed cells (Strietholt et al, 2008). Epigenetic processes 

are thought to contribute to this change in phenotype. For example, increased 

methylation of CpG regions within the promoter of death receptor 3 (DR3), which 

confers apoptotic resistance, has been reported in these cells (Takami et al, 2006).  

 

Increased methylation is also predicted to play a role in OA. It is postulated that the 

aberrant expression of cartilage catabolic genes by OA chondrocytes is due to the loss 

of methyl-mediated silencing (Cheung et al, 2009; Roach et al, 2005). Data from Roach 

et al. (2005) demonstrating  reduced methylation both globally and at the promoters of 

MMP-3, -9, -13 and ADAMTS-4 of OA chondrocytes support this theory (Cheung et al, 
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2009; Roach et al, 2005). They have also demonstrated that long term exposure of 

human chondrocytes to inflammatory cytokines can modulate the methylation status of 

key CpG sites, resulting in the long term expression of IL-1β (Hashimoto et al, 2009).  

(For full review of methylation in OA refer to (Roach & Aigner, 2007)). HDAC 

expression is also reportedly altered in OA chondrocytes, with a significantly increased 

expression of HDAC7 and decreased HDAC4 and HDAC10 detected in OA cartilage 

from the knee (Higashiyama et al, 2009).  

 

The epigenetic changes that take place during the onset and progression of these 

diseases are potentially reversible, and have led to the development of a number of 

pharmaceuticals classed as ‘epi-drugs’. These primarily consist of DNA 

methyltransferase inhibitors and histone deacetylase inhibitors (HDACi), which have 

both proven successful in the treatment of cancer. The data discussed suggests that 

HDAC inhibitors may be efficacious in the prevention of cartilage degeneration and 

hence this study will focus on the potential use of HDAC inhibitors as 

chondroprotective agents in the treatment of OA. 

 

1.4.4 Histone Deacetylases Structure and Localisation 

There are two distinct histone deacetylase families, the SIR2 (silent information 

regulators) family and the classical HDAC family. The SIR2 family contains the NAD
+ 

dependent HDACs found in yeast (Marmorstein, 2001), but will not be reviewed here. 

The classical HDAC family consists of eleven members, classified 1 to 11, which can 

be further divided into four sub-classes (class I, IIa IIb and IV) depending on phylogeny 

(Figure 1.10). The class I family (HDAC1, 2, 3 and 8) are closely related to yeast 

transcriptional regulator RPD3 (de Ruijter et al, 2003). The class IIa (HDAC4, 5, 7 and 

9) and class IIb HDACs (HDAC6 and 10) share homology with yeast histone 

deacetylase HDA1 (Bjerling et al, 2002). Class IV consists of only HDAC11, which 

contains all the necessary features to be designated an HDAC, but shares too little 

sequence similarity with other HDACs to be placed in either class I or II (Gao et al, 

2002). HDACs commonly function as transcriptional repressors in large, multi-subunit 

protein complexes (Alland et al, 1997; Nagy et al, 1997).  
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Figure 1.10. The classical histone deacetylase family. 

 

The catalytic domain is depicted in grey and the nuclear localisation signal in black. 

(Adapted from (Balasubramanian et al, 2009)). 

 

 

The class I HDACs are widely expressed in tissues and most cell types, and are 

primarily localised in the nucleus. The catalytic activity of class I enzymes requires a 

complex of other co-repressing proteins. Both HDAC1 and HDAC2 are exclusively 

nuclear as they lack a nuclear export signal. HDAC1 and HDAC2, which share 

approximately 84% homology, exist together in at least three distinct multiprotein 

complexes called the Sin3, the NuRD/NRD/Mi2 and the CoREST complexes 

(Humphrey et al, 2001; Laherty et al, 1997; Tong et al, 1998). Due to the high 

homology between HDAC1 and HDAC2, and co-residence within repressor complexes, 

it is difficult to determine the individual function of each of the proteins (Yang et al, 

2002). HDAC3 requires the co-repressors silencing mediator of retinoid and thyroid 

hormone receptor (SMRT) and N-CoR for activity (Fischle et al, 2002; Yang et al, 

2002). HDAC3 contains both a NLS and NES, suggesting it can localise in both the 

nucleus and cytoplasm.  However, HDAC3 is predominantly reported in the nucleus, 

and this may be due to its presence in the SMRT/N-CoR complex, and its recruitment to 

DNA-bound class IIa HDACs (Fischle et al, 2002). HDAC8 is classed as a class I 

HDAC, but phylogenetic analysis indicates that it is closer to the class I-class II border. 
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HDAC8 varies from other class I HDACs due to negative regulation of its catalytic 

activity by phosphorylation on Ser39, and its predominant residence in the cytoplasm 

(Lee et al, 2004; Waltregny et al, 2004). 

 

The expression pattern of class II HDACs is much more restricted, displaying limited 

tissue distribution (Acharya et al, 2005) and indicating that the class II family may have 

a role in cellular differentiation and developmental processes (de Ruijter et al, 2003). 

Class IIa members are expressed strongly in the heart, muscle and brain (Gregoretti et 

al, 2004; Verdin et al, 2003). These HDACs have been found to interact with SMRT/N-

CoR and Bcl-6-interacting co-repressor (B-CoR), allowing them to interact with 

HDAC3, which they require for catalytic activity (Fischle et al, 2002; Verdin et al, 

2003). The N-terminal domain of Class IIa HDACs contain two conserved cam-

dependent protein kinase (CaMK) phosphorylation sites, which upon signal-dependent 

phosphorylation allows binding of 14-3-3 chaperone proteins and export of the HDACs 

from the nucleus into the cytoplasm (McKinsey et al, 2000; Zhang et al, 2002). Class 

IIb show specific expression patterns, with HDAC6 showing the highest expression in 

the testis and HDAC10 the highest expression in the liver, spleen and kidney (Kao et al, 

2002; Zhang et al, 2008). HDAC6 and HDAC10 are unusual  in that they contain two 

catalytic domains, both of which are required for HDAC6 catalytic activity (Carey & La 

Thangue, 2006). 

 

Class IV HDAC11 expression is tissue-specific with high expression observed in the 

brain, heart, skeletal muscle and kidney. HDAC11 does not appear to reside in any 

known HDAC co-repressor complexes (Gao et al, 2002). 

 

The structure of the HDAC active site consists of a tubular pocket containing a zinc 

binding site and two Asp-His charge relay systems. The removal of an acetyl group is 

mediated by the charge relay systems, but it can only work when specific cofactors are 

present, along with a zinc ion in the catalytic site (de Ruijter et al, 2003; Finnin et al, 

1999; Marmorstein, 2001).  

 

1.4.5 Histone Deacetylase Function 

Other than histones HDACs have many cellular protein substrates, including alpha-

tubulin, Ku-70, Bcl-6 and transcription factors, p53, STAT1, E2F1, GATA-1 and NF-

kB (Balasubramanian et al, 2009). The broad range of substrates gives HDACs 
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numerous biological and developmental functions, many of which are yet to be 

characterised. Both siRNA (small interfering RNA) and knockout mouse models have 

been essential for understanding the biological function of individual isoforms. For 

example it has been reported that siRNA mediated knockdown of HDAC7 results in 

decreased levels of MMP13 RNA (Higashiyama et al, 2009), supporting their 

previously reported regulatory role in metalloproteinase expression (Young et al, 2005). 

Null mouse models have also been central in deciphering the individual functions of 

HDACs in development as well as in adulthood. 

 

However, both siRNA and mouse knockout studies must be interpreted with care as 

these experiments result in the complete loss of protein, thus abolishing not only 

enzymatic activity but also protein-protein interactions that may play a critical role in 

numerous cellular functions. 

 

1.4.6 Histone Deacetylase Null Mouse Models: A Brief Review  
 

1.4.6.1 Class I HDAC Murine Models 
 

HDAC1 

Homozygosity for the HDAC1-null allele results in embryonic lethality, caused by 

increased expression of cyclin-dependent kinase inhibitors p21 and p27, and subsequent 

inhibition of cell proliferation at gastrulation (Lagger et al, 2002; Montgomery et al, 

2007). Mice generated with a HDAC1 cardiomyocyte-specific deletion (HDAC1cko) 

are phenotypically normal, exhibiting expected levels of cardiac hypertrophy when 

exposed to known inducers of hypertrophy. This indicates that HDAC1 does not play a 

regulatory role in preventing or inducing cardiac hypertrophy. HDAC1 tissue-specific 

deletion in the neural crest, skeletal muscle and secondary heart field produces viable 

mutants, which is attributed to HDAC1 redundancy with HDAC2 in later development. 

 

HDAC2 

There is disagreement regarding the function of HDAC2 in vivo. The first HDAC2
-/- 

mouse was generated using a gene-trap embryonic stem cell line (Trivedi et al, 2007), 

causing complete deletion of the carboxy-terminal domain and part deletion of the 

catalytic domain. The mice exhibited partial penetrant embryonic lethality, but those 

that survived appeared normal and viable. Interestingly, in this model deletion of 

HDAC2 conferred resistance to induced cardiac hypertrophy. This was attributed to the 
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removal of the HDAC2-mediated repression of Inpp5f (phosphatidylinositol-3,4,5-

triphosphate (PIP3) phosphatase), which was found to be up-regulated in HDAC2
-/-

 

mice. Induction of Inpp5f results in decreased levels of active phospho-Akt and 

phospho-GSK3β of the PI3K-Akt-GSK3β pathway, a pathway known to be activated by 

hypertrophic stimuli.  

 

A second HDAC2 null mouse generated by homologous recombination, deleting a 

portion of the oligomerisation domain and residues of the catalytic domain, displayed a 

lethal phenotype 24 hours post-birth (Montgomery et al, 2007).  Analysis of HDAC2
-/- 

neonates detected morphologically abnormal hearts with obliteration of the right 

ventricular lumen and thickening of the interventricular septum. Specific HDAC2 

deletion in cardiomyocytes (HDAC2cko) was completed by the same research group 

and generated a phenotypically normal mouse which exhibited normal hypertrophic 

response to known hypertrophic inducers. This indicates HDAC2 does not play a 

regulatory role in preventing or inducing cardiac hypertrophy. Other cell specific 

HDAC2 deletion was unable to phenocopy, suggesting that the HDAC2 null cardiac 

phenotype was caused by multiple cardio-cell types, not just cardiomyocytes. Therefore, 

the HDAC2 mouse models generated by Montgomery et al. (2007) indicate that 

HDAC2 is essential for normal cardiac growth and morphogenesis, with its deletion 

leading to cardiac defects superficially similar to many known congenital heart 

abnormalities. 

 

Different murine genetic backgrounds could account for the conflicting phenotypes. 

Alternatively, Montgomery et al. (2007) suggests that the gene trap insertion, used by 

Trivedi et al. (2007) only ablated the C-terminus of HDAC2, which has uncertain 

function, thus not creating a true null mutant. It has recently been shown that deletion of 

the C-terminus does not affect the catalytic activity of HDAC2, but does reduce target 

gene specificity (Hong et al, 2009).  

 

HDAC1 and HDAC2 

Specific deletion of both HDAC1 and HDAC2 in cardiomyocytes results in cardiac 

arrhythmia, severe ventricular dilation and postnatal lethality (Montgomery et al, 2007). 

Analysis revealed increased apoptosis and fetal gene expression within mutant hearts, 

indicative of cardiac stress. Microarray of mutant heart transcripts indicated up-

regulation of specific L-type and T-type calcium channel subunits. It was postulated that 
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induction of T-type and L-type calcium channels causes cardiomyocyte calcium influx 

and increases skeletal muscle-specific TnI (troponin I) expression, attributing to 

abnormal cardiac contraction and sudden death. Specific cardiomyocyte deletion of 

HDAC1 or HDAC2 had no effect on cardiac development or function, suggesting that 

HDAC1 and HDAC2 act redundantly to regulate cardiac gene expression. 

 

Montgomery and colleagues also explored the molecular mechanism by which neural 

progenitor cells commit to a specified lineage of the central nervous system, through the 

specific deletion of HDAC1 and HDAC2 in neuronal precursors within the mouse 

(Montgomery et al, 2009).  Mice lacking HDAC1 or HDAC2 in neuronal precursors 

exhibited no overt histo-architectural phenotype, whereas deletion of both HDAC1 and 

HDAC2 in developing neurons resulted in hippocampal abnormalities, absence of 

cerebellar foliation, disorganisation of cortical neurons, and lethality by P7. These 

abnormalities were attributed to a failure of neuronal precursors to differentiate into 

mature neurons and to excessive cell death. This demonstrated that HDAC1 and 

HDAC2 redundantly control neuronal development and are required for neuronal 

specification. 

 

HDAC3 

Homozygosity for HDAC3 null allele results in embryonic lethality due to defects in 

gastrulation (Knutson et al, 2008; Montgomery et al, 2008). The genes responsible for 

this are unknown, but loss of HDAC3 has been linked to defective double-stranded 

DNA repair (Bhaskara et al, 2008). To circumvent embryonic lethality, specific deletion 

of HDAC3 was completed in the heart and the liver (Knutson et al, 2008; Montgomery 

et al, 2008), with both conditional deletions resulting in metabolic dysfunction 

associated with changes in peroxisome proliferator-activated receptor (PPAR) 

signalling.  

 

Specific deletion of HDAC3 in the murine liver induced liver hypertrophy attributed to 

reduced glucose and increased lipid storage (Knutson et al, 2008). Microarray analysis 

of mutant liver transcripts detected increased expression of PPARγ and aberrant 

expression of PPARγ target genes. PPARγ mediates metabolic homeostasis through 

transcriptional repression of target genes via the recruitment of the HDAC3/NCoR 

repressor-complex. This model indicates that HDAC3 mediated repression of PPARγ 
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target genes is essential for the regulation of glucose and lipid metabolism within the 

liver.  

 

Specific cardiac deletion of HDAC3 (HDAC3cko) within the murine heart led to 

cardiac abnormalities mimicking the metabolic derangements observed in diabetic 

cardiomyopathies, including cardiac hypertrophy, increased fatty acid oxidation, up-

regulation of cardiomyocyte lipid storage and decreased glucose metabolism 

(Montgomery et al, 2008). The severe cardiac phenotype was attributed to rampant 

PPARα activation, which requires the HDAC3/NCoR/SMRT repressor complex to 

mediate target gene repression. HDAC3 deletion also resulted in severe interstitial 

fibrosis, although the molecular events involved are still unknown. 

 

HDAC8 

The deletion of HDAC8 in mice results in a highly specific deficiency of cranial neural 

crest cells (NCCs), the loss of specific cranial skeletal elements, and consequent 

biomechanical instability of the skull, which results in perinatal death due to brain 

trauma (Haberland et al, 2009). Immediately after birth, HDAC8-deficient mice showed 

deficiencies in movement, signs of hypoxia and usually died within 4 to 6 hours after 

birth. The examination of the major organ systems did not reveal an obvious phenotype 

in the heart, lung, liver, kidney, intestine, and bladder of the mutant mice. However, 

haemorrhages in the brain, and in some severe cases herniation of brain and other soft 

tissue through the top of the skull, were observed in the null mice. Analysis of the 

mutant skulls revealed a distinct ossification defect with a wide foramen frontale and 

defects in the interparietal bone. No defects were observed in the rest of the mutant 

skeleton. Specific HDAC8 deletion in osteoblasts and chondrocytes did not replicate the 

skull phenotype observed with global deletion. However, specific deletion of HDAC8 in 

neural crest-derived tissue largely phenocopied the global deletion, with ossification 

defects observed in both the frontal and interparietal bones. No other defects in other 

neural crest-derived tissues were observed. Specific deletion of HDAC1 or HDAC2 in 

neural crest-derived tissue exhibited no skeletal phenotype. Microarray analysis 

comparing the transcripts from wildtype NCCs to those containing the HDAC8 deletion 

(derived from the frontal skull of mouse models) revealed the increased expression of 

17 homeobox genes, including the genes encoding Hox transcription factors Lhx1 and 

Otx2. Hox transcription factors Lhx1 and Otx2 are known to be crucially important for 

the normal development of the frontal skull, and their specific over-expression in NCCs 
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caused a severe cranial phenotype resembling the HDAC8-null phenotype. Haberland 

and colleagues concluded that HDAC8 exerts transcriptional repression of certain 

homeobox genes within NCCs to control the formation of specific cranial skeletal 

elements. Therefore the loss of HDAC8 mediated repression presumably leads to mis-

patterning of the skull elements, resulting in the lethal null-phenotype. 

 

1.4.6.2 Class IIa Murine Models 
 

All class IIa HDACs have been deleted in mouse models. Each HDAC has been shown 

to play a role in tissue-specific gene expression. However, all knockout model 

phenotypes seem to reflect class IIa repression of the myocyte enhancer factor 2 

(MEF2) transcription factor.  

 

HDAC4 

HDAC4 deletion results in postnatal lethality at P10, with mutants distinguishable from 

their wildtype littermates at birth by their ‘dome-shaped’ heads, misshapen spines and 

runted phenotype (Vega et al, 2004). Histological analysis revealed growth retardation 

and death of HDAC4 null mice was due to inappropriate and premature ossification of 

all cartilaginous skeletal elements by the process of endochondral ossification. In 

particular, aberrant ossification of the chondralcostal regions, vertebrae and sternum led 

to impaired mobility and eventual suffocation, whilst premature mineralisation at skull 

synchondroses inhibited longitudinal skull growth resulting in ‘dome-shaped’ heads. 

The HDAC4
-/-

 phenotype mirrors that of mice with constitutive expression of 

transcription factors Runx2 (runt-related transcription factor 2) or MEF2, which both 

have vital roles in the control of chondrocyte hypertrophy and bone formation (Arnold 

et al, 2007; Karsenty & Wagner, 2002; Takeda et al, 2001; Ueta et al, 2001). HDAC4 

was shown to directly bind to Runx2 preventing it from activating target genes (Vega et 

al, 2004). HDAC4 is also known to directly repress MEF2 and the onset of 

endochondrial ossification (Miska et al, 1999). Vega et al. (2004) concluded that the 

absence of HDAC4 resulted in unrestrained transcriptional activation of these factors, 

leading to excessive bone formation. 

 

No other class IIa HDACs were detected during bone development, and triple knockout 

of HDAC4/5/9 does not enhance the HDAC4 knockout phenotype. This suggests 

HDAC4 specifically regulates chondrocyte hypertrophy.  
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HDAC5 and HDAC9 

HDAC5 and HDAC9 null mice both exhibited a histologically and pathologically 

normal phenotype at birth (Chang et al, 2004; Zhang et al, 2002). However, at 8 months 

of age mutants developed cardiac hypertrophy. Cardiac stress signals commonly 

activate both kinases and calcium/calmodulin-dependent phosphatase calcineurin. 

Activated kinases phosphorylate the amino-terminal extensions of class II HDACs, 

causing their dissociation from MEF2 and export from the nucleus. MEF2 is highly 

expressed in cardiomyocytes and known to activate foetal cardiac gene expression and 

cardiac hypertrophy in response to stress signals.  

 

HDAC5 and HDAC9 null mice exhibited increased sensitivity to stress-induced cardiac 

hypertrophy, consistent with the theory that class IIa HDACs suppress pathological 

cardiac growth through interaction with MEF2. A double knockout mouse for HDAC5 

and HDAC9 (generated by Chang et al. (2004)) was under represented at P7 and 

showed severe growth retardation. Histology and gross organ examination of double 

knockout mice revealed mutant hearts were larger than WT and expressed stress-

induced hypertrophic genes. This suggests that double knockout causes stress-induced 

developmental cardiac augmentation, or that age-induced hypertrophy observed in the 

single knockouts is accelerated in the double knockout. Therefore, HDAC5 and HDAC9 

act as suppressors of cardiac hypertrophy through interaction with MEF2, with stress 

stimuli resulting in their phosphorylation and export from the nucleus.  

 

HDAC7 

The HDAC7
-/- 

mouse resulted in embryonic lethality after E11 (Chang et al, 2006). 

Mutants were indistinguishable for wildtype at E10.75, but by E11 widespread 

vasculature rupture, pericardial diffusion and enlarged dorsal aortae resulted in death. 

Electron microscopy determined fewer gap junctions between mutant endothelial cells 

(ECs) than wildtype, with mutant ECs producing long processes that failed to attach. 

Microscopy also revealed reduced endothelial recruitment of smooth muscle cells. The 

loss of gap junctions between endothelial cells and the subsequent loss of vascular 

integrity was attributed to a 6.5-fold increase in MMP10 expression and an 8.6-fold 

decrease in TIMP-1 expression. Further experiments in human umbilical vein 

endothelial cells (HUVECs) found HDAC7 inhibits MEF2 induction of MMP10, with 

CHIP analysis confirming MEF2, HDAC7 and CBP/p300 binding of the proximal 
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promoter of MMP10. Therefore, loss of HDAC7 induces MMP10 expression, causing 

cleavage of endothelial cell-cell contacts and loss of vascular integrity. 

 

HDAC7 was also specifically deleted in endothelial cells and cardiomyocytes. Deletion 

of HDAC7 in endothelial cells resulted in embryonic lethality at E.11.5 with circulatory 

abnormalities the same as those observed in the HDAC7 null mouse. Specific HDAC7 

deletion within cardiomyocytes produced viable mice. Thus HDAC7 is postulated to be 

specifically required for endothelial cell-cell adhesion and maintenance of vascular 

integrity.  

 

1.4.6.3 Class IIb HDAC Murine Models 
 

HDAC6 

The HDAC6 null mice were viable and showed increased tubulin acetylation in most 

tissues (Zhang et al, 2008). HDAC6 had previously been shown to interact and 

deacetylate lysine 40 of α-tubulin both in vitro and in vivo (Zhang et al, 2003). HDAC6 

is known to interact with transcription factors Runx2/Cbfa1 to mediate transcriptional 

repression of p21
cip/waf1 

promoter in differentiating osteoblasts. Overall skeletal 

development in the mutant was the same as WT, but a slightly increased density was 

detected in the cancellous bone of the tibial metaphysis, suggesting a minor role for 

HDAC6 in bone biology. The role of other HDACs in tubulin deacetylation was 

explored in mouse embryonic fibroblasts, but this was shown to be a HDAC6 specific 

role. Therefore, HDAC6 is not essential for normal development or physiological 

function in the murine model. 

 

A HDAC knockout mouse has not been developed for HDAC10 or class IV HDAC11. 

 

1.4.7 HDAC Inhibitors – ‘Epi-Drugs’ 

HDAC inhibitors have been shown to induce differentiation, apoptosis, cell-cycle arrest, 

inhibition of DNA repair, up-regulation of tumour suppressors, down-regulation of 

growth factors, oxidative stress and autophagy of transformed cells at concentrations at 

which normal cells are relatively resistant (Balasubramanian et al, 2009; Kristensen et 

al, 2009; Ungerstedt et al, 2005). These effects are partially mediated by altering the 

acetylation status of chromatin and other non-histone proteins. However, the exact 

molecular basis of response to HDAC inhibitors is still not fully understood. There is 

currently a variety of proposed mechanisms, but the response to HDAC inhibitors seems 
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to be dependent on cell type, the specific compound and experimental conditions 

(Balasubramanian et al, 2009). 

 

Currently vorinostat is the only HDAC inhibitor approved by the FDA (US Food and 

Drug Administration) for cancer treatment. However, a range of HDAC inhibitors are 

currently under clinical trial, some of which are stated in Table 1.2. 

 

 

Name Chemical nature Clinical Status 

Sodium phenylbutyrate Short-chain fatty acid Phases I, II 

Valproic acid Short-chain fatty acid Phases I, II 

OSU-HDAC42 Short-chain fatty acid Not yet in clinical trial 

Panobinostat Hydroxamic acid Phases I, II, III 

Belinostat Hydroxamic acid Phases I, II 

Romidepsin Cyclic peptide Phases I, II 

Entinostat Benzamide Phases I, II 

MGCD-0103 Benzamide Phases I, II 

Table 1.2. HDAC inhibitors in clinical trials for cancer treatment 

 

HDAC inhibitors currently under development for cancer treatment and their clinical trial status. 

(Adapted from (Kristensen et al, 2009)) 

 

 

Inflammatory arthritis models, which mirror the events that take place in RA, have 

shown HDAC inhibitors can reduce joint damage in vivo. Chung et al. (2003) 

demonstrated that topical treatment of HDAC inhibitors trichostatin A (TSA) and 

phenylbutyrate can successfully inhibit joint swelling, synovial inflammation and 

subsequent cartilage and bone destruction in an adjuvant-induced arthritis rat model. 

The reduction in joint damage was associated with induction of cell-cycle regulators and 

reduced expression of TNFα (Chung et al, 2003). Consistent with this, a later study 

conducted by Keiichiro et al. (2004) demonstrated that a single intravenous injection of 

FK228 (Romidepsin), a class I ‘selective’ inhibitor can successfully inhibit joint 

swelling, synovial inflammation and subsequent cartilage and bone destruction in a 

murine autoantibody-mediated arthritis model (Keiichiro et al, 2004). The reduction in 

joint damage was accompanied by cell-cycle arrest of RASFs via induction of cell-cycle 

regulators p16
INK4a

 and p21
WAF/Cip1

, which showed increased promoter acetylation. 

Reduced joint damage in auto-antibody mediated arthritis models has also been shown 



Introduction                                                                                                          Chapter I 

59 
 

with inhibitors MS-275 and VPA (Lin et al, 2007; Saouaf et al, 2009). However, most 

importantly to this study intra-articular injection of TSA has also been shown to reduce 

cartilage damage and suppress increased MMP1, MMP3, MMP13 and IL-1 expression 

(within cartilage) in an OA rabbit model (Chen et al, 2010). Bovine nasal cartilage 

assays have also shown that cytokine-driven cartilage degradation can be blocked with 

the addition of TSA and sodium butyrate (NaBy) (Young et al, 2005), accompanied by 

a reduction of collagenases in the explant-conditioned medium. Further investigation in 

cell culture models demonstrated that both TSA and NaBy significantly reduced 

cytokine-induced metalloproteinase expression (Young et al, 2005). Conceptually 

HDAC inhibitors increase the acetylation status of chromatin and other non histone 

proteins, resulting in increased gene transcription. However, microarray analysis has 

found that only 2-9% of the genome is regulated by HDAC inhibitors, with an equal 

number of genes suppressed as activated (Glaser et al, 2003; LaBonte et al, 2009). It is 

also surprising that such a small fraction of genome expression is affected by HDAC 

inhibitor treatment, due to the large range of HDAC substrates. 

 

Therefore, the inhibition of HDACs provides a potential therapeutic route for future OA 

therapeutics. However, most of the currently available HDAC inhibitors are termed 

‘pan’ inhibitors as they target nearly all isoforms of the classical HDAC family. 

Inhibitor administration can result in large global changes of cellular pathways that 

perturb normal cellular functions, potentially inducing severe side effects, including 

nausea, fatigue, vomiting, cardiac abnormalities and many more (Duvic et al, 2009; 

Shah et al, 2006). The toxicity profiles of these drugs are not outside that of other 

cancer therapeutics, but would not be used in the treatment of OA. The development of 

specific HDAC inhibitors to reduce their current side effects is essential and ongoing. 

 

1.4.7.1 Histone Deacetylase Inhibitor Structure and Function 

The structure and source of HDAC inhibitors varies greatly, but most can be  grouped 

into seven major structural groups including; carboxylates, short-chain fatty acids, 

small-molecule hydroxamates, electrophilic ketones (epoxides), cyclic peptides, 

benzamides and other hybrid compounds (Acharya et al, 2005; Drummond et al, 2005). 

Most inhibitors have been designed to contain three basic structural components: a 

metal binding moiety, carbon linker and capping group (Bieliauskas et al, 2007). The 

capping group is thought to bind amino acids near the entrance of the HDAC active site, 
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enabling the inhibitor metal moiety to chelate with the HDAC metal ion required for 

catalytic activity. The linker region is thought to position the previous two domains to 

allow high affinity reactions with the classical HDACs  (Bieliauskas et al, 2007). 

 

Hydroxamate inhibitors, such as trichostatin A, contain a hydroxamate moiety which 

binds and chelates the catalytic zinc ion. The hydroxamate moiety is very efficient at 

chelating the zinc ion, but it does not generate sufficient secondary contacts to 

distinguish between the catalytic pockets of the different HDAC isoforms 

(Balasubramanian et al, 2009).  

 

However, other structural HDAC inhibitors are slightly more specific and can 

preferentially bind to a specific class of classical HDACs, helping reduce side effects. 

Valproic acid (VPA), for example, was a well-known and tolerated epileptic 

anticonvulsant drug before its HDAC inhibitor properties were discovered (Bialer & 

Yagen, 2007; Gottlicher et al, 2001; Nissinen & Pitkanen, 2007; Phiel et al, 2001). 

Valproic acid causes relatively mild side effects in comparison to the side effects of 

hydroxamate TSA (Nau et al, 1991), and this may be attributed to its preferential 

inhibition of co-repressor associated HDACs, especially HDAC1 and HDAC2. It has 

been demonstrated that VPA inhibits class I HDACs at low concentrations (~ 0.7-1mM) 

and class II HDACs at higher concentrations (>1mM) (Gurvich et al, 2004). It has been 

shown that 0.3-1mM VPA detected in patient serum, during epilepsy therapy of a daily 

dose of 20-30mg/kg, achieves potent HDAC inhibition (Gottlicher et al, 2001). The 

HDAC inhibitory mode of action is thought to be independent of VPAs anticonvulsant 

properties and achieved through direct binding of the HDAC catalytic centre, preventing 

substrate binding (Gottlicher et al, 2001). MS-275 is another ‘selective’ HDAC 

inhibitor, which reportedly inhibits class I HDACs HDAC1, HDAC2 and HDAC3 (Hu 

et al, 2003; Inoue et al, 2006). 

 

Developing selective HDAC inhibitors is a difficult process due to the homology 

between catalytic sites and the difficulty in isolating purified active proteins for both 

activity assays and x-ray structure analysis (Balasubramanian et al, 2009). However, the 

crystal structures that have been determined, such as that of HDAC8, do reveal unique 

structures which could be utilised in the development of specific HDAC inhibitors 

(Vannini et al, 2004). Tubacin, a HDAC6 specific inhibitor, is one of the only specific 
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HDAC inhibitors and the best characterised in terms of in vitro cancer assays 

(Hideshima et al, 2005). 
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1.5 Scope of Thesis 

Pro-inflammatory cytokine IL-1α is known to induce the expression of many 

metalloproteinase genes in primary chondrocyte and chondrocyte cell lines, which is 

further potentiated when IL-1 is combined with cytokine OSM (Barksby et al, 2006; 

Koshy et al, 2002). Young et al. (2005) previously demonstrated that broad spectrum 

HDAC inhibitors TSA and NaBy can repress cytokine-induced metalloproteinase 

expression at the mRNA and protein level, both in the SW1353 cell line and primary 

chondrocytes. The study also demonstrated that cytokine-induced cartilage resorption, 

of bovine nasal cartilage explants, is prevented by TSA and NaBy treatment.  It was 

postulated that this chondroprotective effect was due to transcriptional repression of 

cytokine-induced metalloproteinase expression by non-histone related pathways (Young 

et al, 2005). Milner et al. (2006) previously profiled metalloproteinase expression in the 

14 day bovine nasal cartilage assay. The study revealed the induction of many 

metalloproteinase genes in IL-1α and OSM treated cartilage explants, and demonstrated 

that activation of pro-MMPs is a key regulatory control point in collagenolysis and 

cartilage degradation. 

 

The chondroprotective property of HDAC inhibitors has also been demonstrated in 

animal models of both inflammatory arthritis and osteoarthritis, where HDAC inhibitor 

treatment resulted in reduced joint damage. The reduced joint damage mediated by 

TSA, VPA or MS-275 treatment in inflammatory animal models was associated with 

reduced cytokine expression and increased expression of cell cycle regulators p16
INK4a

 

and p21
WAF/Cip1 

(Chung et al, 2003; Keiichiro et al, 2004; Lin et al, 2007). The recently 

published OA rabbit model demonstrated that intra-articular injection of TSA reduced 

cartilage damage and suppressed increased MMP1, MMP3, MMP13 and IL-1 

expression observed in the OA rabbit controls (Chen et al, 2010).  

 

The molecular pathways by which HDAC inhibitors mediate repression of cytokine-

induced metalloproteinase expression remain unknown. However, the 

chondroprotective affects of these inhibitors indicate that HDACs play important roles 

in the regulation of metalloproteinase expression and that these compounds could have 

a potential use in the treatment of OA. Compounds TSA and NaBy inhibit all members 

of the classical HDAC family, with the exception of HDAC6 for NaBy, with 

administration resulting in large global changes of cellular pathways that potentially 

induce severe side effects. The non-selective inhibition by these compounds makes it 
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unclear as to which HDACs may have been repressed in order to confer the 

chondroprotective effect observed in the study completed by Young et al. (2005). To 

elucidate which HDACs play a role in metalloproteinase gene regulation, this thesis will 

examine the differential effects of HDAC inhibitors with reportedly specific inhibitory 

profiles on metalloproteinase expression and cartilage degradation. The role of classical 

HDACs in the regulation of metalloproteinase expression will also be assessed by 

individual siRNA (small interfering RNA) knockdown of classical HDACs, followed by 

the detection of HDAC and MMP13 expression by quantitative real-time PCR (qRT-

PCR), in the SW1353 cell line and primary OA chondrocytes.  If the HDACs involved 

in the regulation of metalloproteinase expression can be determined the specific 

inhibition of these enzymes could provide possible therapeutic targets for the treatment 

of OA. 
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Chapter II 

 

Materials and Methods 

 

2.1 Materials 

2.1.1 Cell Lines 

2.1.1.1 SW1353 

The SW1353 human chondrosarcoma cell line was initiated by A. Leibovitz at the Scott 

and White Clinic, Texas in 1977 from a primary grade II chondrosarcoma of the right 

humerus, obtained from a 72-year-old female Caucasian. The cell line (product code: HTB-

94) was purchased from the American Type Culture Collection (ATCC) (for further details 

visit www.atcc.org).  

 

2.1.1.2 Primary Articular Chondrocytes 

Primary human articular chondrocytes (HACs) were isolated from patients who underwent 

joint replacement surgery of the knee for osteoarthritis (all samples were collected with 

Ethical Committee approval and all patients provided informed consent).  Articular 

cartilage was enzymatically digested overnight in digestion medium (D-MEM GlutaMax™ 

(Gibco Paisley, UK), 1mg/ml collagenase (Sigma-Aldrich, Dorset, UK), 0.4% hepes 

(Sigma-Aldrich, Dorset, UK), 100IU/ml penicillin and 100µg/ml streptomycin (Gibco)) at 

37C, with gentle rocking.  The digestion mixture was strained through a 70µm cell strainer 

(BD Falcon) and washed twice.  Cells were plated at 4x104 cells/cm
2
 and grown to 80% 

confluence.  All HACs were used at passage 1. Primary OA chondrocytes were a kind gift 

from Dr. Rose Davidson (University of East Anglia, UK). 

 

2.1.2 Cell Culture Reagents 

Dulbecco's Modified Eagle Medium (D-MEM) low glucose, Hanks' Balanced Salt Solution 

(HBSS), penicillin-streptomycin, and trypsin-EDTA (0.25% EDTA) were purchased from 

Invitrogen (GIBCO Paisley, UK). All filter cap culture flasks and sterile plates were 
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purchased from NUNC of Thermo Fisher Scientific (Waltham, USA). Heat inactivated fetal 

calf serum was purchased from BioSera (East Sussex, UK).  

 

2.1.3 Cytokines 

Recombinant human interleukin-1α (IL-1α) and recombinant human oncostatin M (OSM) 

were purchased from R&D Systems (Abingdon, UK), reconstituted in phosphate-buffered 

saline solution (PBS) containing 0.1% bovine serum albumin and stored at -80°C (as 

recommended by supplier). 

 

2.1.4 HDAC Inhibitors 

MS-275 was purchased from Alexis Biochemicals (Lausanne, Switzerland). Trichostatin A 

and valproic acid were purchased from Calbiochem (Merck Biosciences Nottingham, UK). 

Tubacin and niltubacin were kindly provided by Ralph Mazitschek and James Bradnerand 

(Harvard Medical School, USA). MS-275, TSA and tubacin/niltubacin were reconstituted 

in sterile DMSO, and VPA in sterile dH2O, according to manufacturers’ recommended 

concentrations and stored at -20°C. 

 

2.1.5 Immunoblotting 

All antibodies were rabbit polyclonal, unless otherwise stated. Anti-histone 3 (#9715), anti-

acetyl-histone H3 (Lys9) (#9671), anti-histone 4 (#2592), anti-acetyl-histone H4 (Lys8) 

(#2594), anti-histone deacetylase 1 (#2062) and anti-histone deacetylase 2 (#2540) were 

purchased from Cell Signaling Technology (Beverly MA, USA). Mouse monoclonal anti-

α-tubulin (#ab11304) and anti-acetylated α-tubulin (#ab24610) were purchased from 

Abcam plc (Cambridgeshire, UK). Horseradish peroxidase-conjugated anti-rabbit (PO448) 

and anti-mouse (PO260) secondary antibodies were purchased from Dako UK Ltd 

(Cambridgeshire, UK). 

 

Tris Base Ultra Pure, Sodium dodecyl sulphate (SDS), N,N,N,N’-

Tetramethylethylenediamine (TEMED), 30% acrylamide/bis acrylamide solution 37:5:1, 

extra thick filter paper, protein standard Precision Protein Plus
TM

, gel rigs, electrophoresis 

tanks and a Trans-Blot SD Semi-dry electrophoretic transfer cell were all purchased from 
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Bio-Rad Laboratories (Hemel Hempstead, UK). Ammonium persulphate (APS), 

polyoxyethylenesorbitan monolaurate (Tween-20), Ponceau S solution, bovine serum 

albumin (BSA) and Kodak BioMax maximum sensitivity film were purchased from Sigma 

Aldrich (Dorset, UK). Immobilon-P polyvinylidene difluoride (PVDF) membrane was 

purchased from Millipore (Watford, UK). Protein standard Magic Marker
TM

 was purchased 

from Invitrogen (Paisley, UK). Marvel non-fat dry milk powder was purchased from 

Premier Foods (St. Albans, UK). LumiGLO
® 

chemiluminescent reagents were purchased 

from Cell Signaling Technology (Beverly MA, USA). 

 

2.1.6 Bovine Nasal Cartilage Assay 

D-MEM High Glucose, Dulbecco’s phosphate buffered saline (PBS), nystatin and L-

glutamine were purchased from Invitrogen (GIBCO Paisley, UK). Gentamicin was 

purchased from Fisher Scientific (Waltham, USA).  

 

2.1.7 1,9-Dimethyl-Methylene Blue (DMB) and Hydroxyproline (DAB) Assays  

1,9-dimethyl-methylene blue, chondroitin 4-sulphate sodium salt from bovine trachea, 4-

(dimethyl-amino) benzaldehyde, chloramine T-hydrate and trans-4-hydroxy-L-proline were 

purchased from Sigma Aldrich (Dorset, UK). 70% perchloric acid was purchased from 

Fisher Scientific (Waltham, USA).  

 

2.1.8 SMARTpool Short Interfering RNAs (siRNAs) 

Pre-designed siGENOME SMARTpool siRNAs were purchased for all human classical 

HDACs from Thermo Scientific Dharmacon (Chicago, USA) (For catalogue numbers and 

target sequences refer to appendix III). All siRNAs were reconstituted to 20μM with 1x 

Dharmacon siRNA Buffer, aliquotted and stored at -80°C (according to manufacturer’s 

instructions).  
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2.2 Methods 
 

2.2.1 Cell Culture 

Cells were cultured in D-MEM low glucose, containing 10% heat-inactivated fetal bovine 

serum, 100IU/ml penicillin and 100μg/ml streptomycin, in vented flasks. Cells were 

incubated at 37°C in a humidified atmosphere of 5% CO2. Cells were grown until 

confluent, detached with trypsin-EDTA and then passaged. For long term storage, cells 

were detached with trypsin-EDTA, pelleted by centrifugation at 130g for 5 minutes and 

resuspended in cryo-preservation medium (90% FCS with 10% DMSO) before slow 

freezing (at approximately 1°C per minute) in liquid nitrogen. 

 

2.2.2 HDAC Inhibitor Assays 

SW1353 cells were plated in 6-well plates (1.5x10
5 

cells/well) for dose response 

experiments with TSA, VPA and MS-275, or in 96-well plates (6.5x10
3
 cells/well) for the 

dose response assay with tubacin. Primary articular chondrocytes were plated in 96-well 

plates (6.5x10
3
 cells/well) for dose response experiments with TSA, VPA and MS-275. All 

cells were initially plated in serum-containing medium. Once cells had adhered, medium 

was removed and cells washed twice with HBSS to remove traces of serum and replaced 

with serum-free medium. Cells were serum-starved for 24hrs before the addition of 

treatments. Cells were treated with IL-1α (5ng/ml) alone or in combination with OSM 

(10ng/ml). HDAC inhibitor treatments included TSA (5ng/ml, 25ng/ml, 50ng/ml and 

100ng/ml), VPA (0.5mM, 1mM, 5mM and 10mM), MS-275 (1µM, 2µM, 5µM and 10µM) 

or tubacin (1µM, 2.5µM, 5µM, 10µM and 20µM). All treatments were completed in 

triplicate. Supernatants were removed 6 hours post stimulation and cells washed twice with 

ice-cold PBS. 6-well plate assays were harvested into 500µl/well TRIzol
®
 reagent and 

stored at -80C until RNA extraction. 96-well plate assays were harvested into Cells-to-

cDNA lysis buffer (30µl) (refer to section 2.2.14). 
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2.2.3 RNA Extraction from Cells 

RNA was purified from 500µl TRIzol
®
 whole cell lysates by adding 100µl chloroform 

followed by a 15 second vortex. The solution was incubated at room temperature for 2 

minutes before centrifugation at 12000g for 10 minutes, at 4°C. The aqueous phase was 

recovered and 250µl of iso-propanol added. The resulting mixture was vortexed and 

incubated for 10 minutes at room temperature. The mixture was centrifuged at 12000g for 

10 minutes, at 4°C and the supernatant discarded. The remaining pellet was washed with 

1ml 75% ethanol solution followed by centrifugation at 12000g for 30 minutes, at 4°C. The 

pellet was re-suspended in 20µl RNase-free water (analytical reagent grade) (Fisher 

Scientific, Waltham USA). RNA was stored at -80°C until DNase I treatment (refer to 

section 2.2.4). 

 

2.2.4 DNase I Treatment 

RNA samples were DNase I treated (recombinant RNase-free) (Roche Diagnostics Ltd, 

West Sussex, UK) to remove any genomic DNA contaminants before reverse transcription. 

RNA, 1µl DNase I and 2µl 10x DNase I buffer were combined in a final volume of 20µl 

(according to manufacturer’s instructions). Samples were incubated at 37˚C for 15 minutes 

followed by an inactivation step of 75˚C for 10 minutes. Samples were purified using the 

organic extraction method (refer to 2.2.5). 

 

2.2.5 Organic Extraction of Nucleic Acid  

RNA samples, post DNase I treatment, were combined with 1x volume 

phenol:chloroform:isoamyl alcohol (25:24:1) (Sigma Aldrich, Dorset, UK) then vortexed 

for 15 seconds. Samples were centrifuged at 9500g for 10 minutes at 4˚C and the aqueous 

phase recovered. The aqueous phase was combined with 3x volume 100% ethanol and 0.1x 

volume 3M sodium acetate (pH 4.8) then incubated at -80˚C for 1 hour. Samples were 

centrifuged at 9500g for 30 minutes at 4˚C and the supernatant removed. The remaining 

RNA pellet was washed with 1ml 75% ethanol then centrifuged at 9500g for 30 minutes at 

4˚C. The supernatant was removed and the RNA pellet air dried. The pellet was re-

suspended in 20µl RNase-free water and stored at -80˚C until RNA quantification using the 

NanoDrop
® 

spectrophotometer (NanoDrop Technologies, Wilmington, Delaware, USA). 
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2.2.6 Reverse Transcriptase cDNA Synthesis 

For cDNA synthesis, 2µg random hexamers (pd(N)6) (GE Healthcare, Little Chalfont, UK) 

were added to 1µg of RNA, in a final volume of 11µl, and heated to 70˚C for 10 minutes 

(all heating steps in protocol were performed in MJ Research PTC-200 Peltier Thermal 

Cycler PCR machine). A mastermix of 4µl 5x First Strand Buffer (Invitrogen, Paisley, 

UK), 2µl 0.1M DTT (Invitrogen), 1µl 100mM dNTP Mix (Bioline, London, UK), 1µl 

RNasin
® 

Ribonuclease Inhibitor (40U/µl) (Promega, Southampton, UK) and 1µl 

SuperScript™ Reverse Transcriptase (200U/µl) (Invitrogen) was added per sample, 

followed by heating steps of 42˚C for 1 hour and 70˚C for 10 minutes.  The cDNA was 

stored at -20°C. 

 

2.2.7 Immunoblotting 
 

Buffers 

 

 Final sample buffer (FSB) (6x FSB: 7ml 4x stacking gel buffer, 3ml glycerol, 1g SDS. 

1x FSB: 333ul 6x FSB + 1667µl deionised water.) 

 Resolving buffer (4x buffer: 91g Tris base dissolved in 300ml deionised water, made 

to pH8.8 with hydrochloric acid.  Made to final 500ml volume with deionised water.  

2g SDS added and dissolved.) 

 Stacking buffer (4x buffer: 6.05g Tris base dissolved in 40ml deionised water, made to 

pH6.8 with hydrochloric acid. Made to final 100ml volume with deionised water. 0.4g 

SDS added and dissolved.) 

 Running buffer (10x buffer: 30.2g Tris base, 144g glycine, 10g SDS made to 1L with 

deionised water.) 

 Transfer buffer (10x buffer: 30.3g Tris base, 141g glycine made to 1L with deionised 

water. 1x buffer: 100ml 10x buffer  made to 1L with deionised water.) 

 Tris buffered saline (TBS) (10x TBS: 24.2g Tris base, 80g NaCl dissolved in 900ml 

deionised water and made to pH7.6 with hydrochloric acid. Made to final volume of 1L 

with deionised water.) 

 Blocking buffer (TBS containing 5% (w/v) Marvel non-fat dry milk powder and 0.1% 

(v/v) Tween-20.) 
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 Primary antibody buffer (20ml TBS containing 5% (w/v) bovine serum albumin and 

0.1% (v/v) Tween-20.) 

 

Method 

 

SW1353 cells were plated in 6-well plates (1.5x10
5 

cells/well) and serum-starved (as 

described in section 2.2.2) for HDACi dose response immunoblots, or in 12-well plates 

(6.5x 10
4
 cells/well) to assess protein knockdown after siRNA treatment (as described in 

section 2.2.13.2). SW1353 cells were harvested, by scraping, into final sample buffer 

(1xFSB), 100l/per well of a 6-well plate or 50ul/per well of 12-well plate. Whole cell 

lysates were stored overnight at -20C. Samples were sonicated using an Ultra Sonic 

Processor (model # GE50, Jencons Scientific LTD, Leicestershire, UK) and protein 

quantified using a BCA protein quantification kit (Pierce Proteomics, Thermo Fisher 

Scientific, Northumberland, UK) following manufacturer’s instructions. Samples were 

diluted to contain 20µg (samples from 6-well plates) or 15g (samples from 12-well plates) 

protein in a 30µl volume with deionised water, followed by addition of 20ng/µl 

bromophenol blue and 1.2µl 1M Dithiothreitol (DTT). Samples were electrophoresed on 

appropriate 15%, 10% or 7.5% polyacrylamide gels depending on the size of the protein of 

interest. Resolving gels were made as stated in Table 2.0. 

 

 

Table 2.0. The reagents required for 4x mini resolving gels. 

  

 Percentage SDS-polyacrylamide gel 

 7.5% 10% 15% 

30% Acrylamide 3.75ml 5ml 7.5ml 

4x Resolving buffer 3.75ml 3.75ml 3.75ml 

ddH2O 7.5ml 6.25ml 3.75ml 

10% APS 50µl 50µl 50µl 

TEMED 10µl 10µl 10µl 
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Resolving gels were cast and topped with iso-propanol until set. Once set, iso-propanol was 

removed and stacking gels (1 gel: 0.71ml 4x stacking buffer, 0.41ml 30% acrylamide/bis 

acrylamide solution 37:5:1, 1.91ml deionised water, 16µl 10% ammonium persulfate (APS) 

and 3.2µl TEMED) were cast on top of the set resolving gels and a comb inserted. 

 

Samples were heated for 5 minutes at 95°C before electrophoresis by SDS-PAGE. Protein 

markers Magic Marker
TM 

and Protein Precision Plus
TM 

were electrophoresed in 

neighbouring lanes to samples. Samples were electrophoresed at 150V until standards had 

separated sufficiently. 

 

PVDF Immobilon P membrane was primed in 100% methanol and thick filter paper soaked 

in transfer buffer. Proteins were transferred from the gel to PVDF membrane using a Trans-

Blot SD Semi-dry Electrophoretic transfer cell at 25V for 40 minutes for two 1mm mini-

gels. 

 

Membranes were washed briefly in TBS followed by Ponceau S dye staining, used for 

reversible protein staining on PVDF membranes, to check for equal protein loading. 

Membranes were then washed three times with TBS-T (TBS with 0.1% (v/v) Tween-20) 

for 5 minutes. Membranes were incubated in blocking buffer for 1 hour, gently rocking at 

room temperature, then washed three times with TBS-T for 5 minutes. Primary antibodies 

were diluted in primary antibody buffer (according to manufacturers’ suggestions) and 

incubated with membranes with gentle rocking (incubation time and temperature according 

to manufacturers’ suggestions). Membranes were then washed in TBS-T three times for 5 

minutes. Horseradish peroxidase-conjugated secondary antibodies were diluted in blocking 

buffer according to manufacturers’ instructions and incubated with membranes, whilst 

gently rocking, for 1hour at room temperature. Membranes were washed three times with 

TBS-T for 5 minutes. Proteins were visualised with LumiGLO and signal detected by 

exposure to Kodak BioMax maximum sensitivity film.  

 

2.2.8 Bovine Nasal Cartilage (BNC) Assay 

Bovine cartilage explants were stimulated with I/O (IL-1α combined with OSM) (to 

stimulate cartilage degradation) with or without a HDAC inhibitor. Collagen and 
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glycosaminoglycan (GAG) release from the explants into the media was assayed as a 

measurement of cartilage degradation. Collagen release was assayed using the 

hydroxyproline (DAB) assay (refer to section 2.2.11) and GAG release measured using the 

1,9-dimethyl-methylene blue (DMB) assay (refer to section 2.2.10). Cartilage explants 

remaining at the end of the assay were papain digested (refer to section 2.2.9) then assayed 

for GAG and collagen content. The percentage of collagen and glycosaminoglycan release 

from explants was then calculated. 

 

2.2.8.1 Small Scale BNC Assay 

Bovine nasal septa was dissected, scraped clean and washed in PBS containing 200U/ml 

penicillin, 0.2U/ml streptomycin and 100U/ml nystatin. The cartilage was sliced into ~2mm 

thick sections then punched into ~2 mm diameter by 2mm thick discs. Three cartilage discs 

per well were added to 24-well plates, plus 1ml of serum-free DMEM containing 2mM L-

glutamine, 100U/ml penicillin, 0.1U/ml streptomycin, 50U/ml nystatin and 0.04mg/ml 

gentamicin. Cartilage discs were incubated at 37˚C in a 5% CO2/humidified atmosphere for 

24 hours to allow equilibration of explants. Media was removed after equilibration and 

replaced with 600μl DMEM containing cytokines and/or HDAC inhibitor, with each 

treatment completed in quadruplicate. Treatments included I/O (IL-1 0.5ng/ml, OSM 

5ng/ml), trichostatin A (50ng/ml and 250ng/ml), VPA (0.5mM, 1mM, 5mM and 10mM) 

MS-275 (1µM, 2µM, 5µM and 10µM) or tubacin/niltubacin (10µM). Supernates from BNC 

assays completed with TSA, VPA and MS-275 were harvested at day 7, treatments 

replaced and explants incubated until day 14. Supernates from the BNC assay completed 

with tubacin/niltubacin were harvested and treatments replaced at days 3 and 7, then 

incubated until day 14. At day 14, any remaining cartilage and media was harvested. 

Supernates were stored at -20°C until assayed for GAG and collagen content. Remaining 

cartilage explants were papain digested then stored at -20°C until assayed for GAG and 

collagen content.  

 

Lactate dehydrogenase (LDH) was also detected in harvested supernates as a measure of 

cytokine and HDAC inhibitor toxicity. This was completed with a Cyto Tox 96 Non-

Radioactive Cytotoxicity Assay kit from Promega (Southampton, UK), following 

manufacturer’s instructions. 
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2.2.8.2 Bovine Nasal Cartilage Assay Profile 

For the BNC profile, three bovine nasal septa were dissected and scraped clean in PBS with 

antibiotics (as in section 2.2.8.1). The septa were sliced into strips and cut into ~2 mm 

diameter by 2mm thick cubes. The cubes from all noses were combined and mixed equally. 

Approximately 0.7g of cartilage cubes and 4ml serum-free DMEM (containing L-glutamine 

and antibiotics as in section 2.2.8.1) were added per well of a 12-well plate. The cartilage 

cubes were then incubated at 37˚C in 5% CO2/humidified atmosphere for 24 hours to allow 

equilibration of explants. Media was removed after equilibration and replaced with 4ml 

DMEM containing I/O (IL-1 0.5ng/ml and OSM 5ng/ml) and/or MS-275 (5µM), with each 

treatment completed in quadruplicate. The cartilage explants were incubated for 14 days 

with treatments being replaced at days 3 and 7. Supernatants and cartilage were collected at 

days 0, 1, 3, 8, 10 and 14. Supernatants were stored at -20°C for collagen and proteoglycan 

assays. Harvested cartilage was washed once with PBS, covered in RNAlater (Ambion, 

Warrington, UK) and stored at 4C for 24 hours (to allow the RNAlater to penetrate the 

sample). Samples were then stored at -80C until RNA extraction (refer to section 2.2.12). 
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2.2.9 Papain-Digest of Cartilage Explants 
 

Buffers 

 

 Phosphate buffer (137ml 0.1M NaH2PO4  + 63ml 0.1M NaHPO4  (pH 6.5)) 

 Papain solution (0.25g (12U/mg) papain + 10ml phosphate buffer) 

 Cysteine-HCl solution (0.039g cysteine-HCl + 5ml phosphate buffer) 

 EDTA solution (0.095g EDTA + 5ml phosphate buffer) 

 

Method 

 

To digest explants harvested at day 14, 350µl phosphate buffer, 100µl papain (from Carica 

papaya, Sigma Aldrich) solution, 50µl cysteine-HCl (Sigma Aldrich) solution and 50µl 

EDTA were added per well. The plates were then sealed and explants heated to 65˚C 

overnight to allow cartilage digestion. After digestion, samples were transferred to 

Eppendorf tubes and 450µl phosphate buffer was added to make a final volume of 1ml. 

Papain-digests were assayed to determine collagen and glycosaminoglycan content of 

explants at the assay endpoint (refer to section 2.2.10 and 2.2.11). 

 

2.2.10 1,9-Dimethyl-Methylene Blue (DMB/Glycosaminoglycan) Assay 

Glycosaminoglycan (GAG) content of BNC assay supernatants and papain-digested 

cartilage samples was quantified using the DMB assay.  

 

Reagent 

 

 DMB solution (3.04g glycine, 2.37g NaCl, 95ml 0.1M HCl, made to final volume 

of 1L with deionised water. 16mg DMB added and dissolved (absorbance of 0.3a.u 

at 530nm.) 
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Method 

 

A standard curve of 0-40g/ml chondroitin sulphate (from bovine trachea, Sigma Aldrich, 

Dorset, UK) (at 5g/ml increments), was made in PBS buffer (the same as that used in 

section 2.2.9) and plated into a 96-well plate with supernatant or papain-digested samples 

(40l/well). 250l DMB solution was added per well and the plate was read immediately at 

530nm on a Wallac Envision 2103 multi-label plate reader (PerkinElmer, Waltham, USA). 

The GAG content was quantified using the standard curve and following equation: 

                                                       x = y-c 

                                                              m 

 

(Where y is absorbance, c is the intercept, m is the gradient, and x the concentration) 

The final number was then multiplied by the volume of the medium the cartilage explants 

were stimulated in during the assay. 

 

2.2.11 Hydroxyproline (DAB) Assay 

200l of supernatants or papain digests were combined with 200l concentrated HCl 

(Sigma Aldrich. Dorset, UK) and heated to 105C overnight (to hydrolyse protein and 

release hydroxyproline). Samples were dried at 60C for 3 hours using the Savant Speed 

Vac Concentrator (SPD131DDA) and Universal Vacuum System (Thermo Electron 

Corporation, Waltham, USA). Finally, samples were re-suspended in 200l deionised water 

and mixed thoroughly.  

 

For the assay three stock solutions were made: 

Solution A: 20g DAB (4-(dimethyl-amino) benzaldehyde) + 30ml 70% perchloric acid   

Solution B: 0.14g chloramine T + 2ml dH2O 

Solution C: 2ml sodium acetate + 37.5g tri sodium citrate 
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Stock solutions were used to make two working solutions: 

Solution 1 (Chloramine-T solution): 2ml solution B + 8ml solution C 

Solution 2 (DAB solution): 10ml solution A + 30ml propan-2-ol  

 

A standard curve containing 0-30g/ml hydroxyproline (trans-4-hydroxy-L-proline) (at 

5g/ml increments) was made with deionised water and plated into a 96-well plate with re-

suspended samples (40l/well). 25l/well of Solution 1 (Chloramine T solution) was added 

to samples and incubated at room temperature for 4 minutes. 150l/well of solution 2 

(DAB solution) was then added, and the plate sealed and incubated at 65C for 35 minutes. 

The plate was allowed to cool before being read at 560nm on a NorthStar Scientific 

ELX800 plate reader (BioTek, Bedfordshire, UK). The final concentration of 

hydroxyproline in samples was determined using the equation in section 2.2.10. 

 

2.2.12 RNA Extraction from Cartilage 

Cartilage was defrosted, RNAlater removed and the tissue ground under liquid nitrogen 

using the 6750 Freezer Mill (Spex Certiprep) (10 minute pre-cool, 5 cycles of 2 minute 

grind, 2 minute cool, at 10 Hz). TRIzol
®
 reagent (1ml/0.2g cartilage) was added 

immediately to ground cartilage, mixed thoroughly and incubated at room temperature for 5 

minutes. The mixture was centrifuged at 9500g for 10 minutes at 4C to pellet the ground 

cartilage. Supernatants were collected and 300l chloroform added per 500l of sample. 

Samples were vortexed for 15 seconds followed by incubation at room temperature for 10 

minutes. Samples were centrifuged at 9500g for 15 minutes at 4C, and the aqueous layer 

recovered into RNase free tubes. Aqueous layers were combined with 0.5x volume 100% 

ethanol and mixed. The samples were added to RNeasy plus mini kit columns (Qiagen, 

West Sussex, UK. cat no: 74134), centrifuged at 9500g for 15 seconds and the flow-

through discarded. 700l RW1 buffer (Qiagen) was added to the columns then centrifuged 

at 9500g for 15 seconds and flow-through discarded. Columns were placed in new RNase-

free collection tubes and 500l RPE (Qiagen) added, followed by centrifugation at 9500g 

for 15 seconds and flow-through discarded. 500µl RPE was added to columns followed by 

centrifugation at 9500g for 2 minutes. Columns were then placed in RNase-free collection 

tubes and 30l of RNase-free water added. Columns were then left to stand for 2 minutes 
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(to increase maximum RNA yield) then centrifuged at 9500g for 2 minutes. RNA was then 

stored at -80

C until quantification. 

 

2.2.13 SMARTpool Short Interfering RNAs (siRNAs) 

SMARTpool siRNAs combine four duplexes against different regions of the target gene, 

which potentially minimises off-target effects due to the reduced concentration of each 

single siRNA. 

 

2.2.13.1 SMARTpool Short Interfering RNAs (siRNAs) Messenger RNA Knockdown 

Cells (SW1353 and primary chondrocytes) were plated within 96-well plates (6.5x10
3 

cells/well) for siRNA mRNA knockdown analysis, with experiments carried out 24hrs 

later. SMARTpool siRNA stocks were diluted to 2M in 1x Dharmacon siRNA Buffer 

(Dharmacon, Chicago, USA). Transfections were carried out according to manufacturer’s 

instructions. For each transfection two tubes were prepared as described in Table 2.1. 

 

 

100nM transfection/well 

Tube 1 Tube 2 

5l siRNA (2M)  

5l DMEM medium 

(serum and antibiotic-free) 

0.2l Dharmafect reagent 

9.8l DMEM medium 

(serum and antibiotic-free) 

 

Table 2.1. Transfection reagents required for 100nM siRNA transfection per well of a 96-well 

plate. 

 

 

Different amounts of siRNA were added to tube 1 to change the final siRNA concentration 

and 1x Dharmacon siRNA buffer used to maintain the same final volume. Tubes 1 and 2 

were incubated at room temperature for 5 minutes then combined and incubated at room 

temperature for 20 minutes to allow liposome formation. The final volume was made to 

100l with DMEM containing 10% heat-inactivated FCS, 100IU/ml penicillin, and 

100μg/ml streptomycin. Medium was aspirated from wells and replaced with 100l 

transfection mixture. All treatments were completed in triplicate and cells incubated for 
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desired time. After incubation supernatants were removed and cells washed twice with ice-

cold PBS. Cells were harvested into 30l Cells-to-cDNA II cell lysis buffer (Ambion, 

Huntingdon, UK) followed by reverse transcription using the cells-to-cDNA II method 

(refer to section 2.2.14). 

 

2.2.13.2 SMARTpool Short Interfering RNAs (siRNAs) Protein Knockdown 

For SMARTpool siRNA protein knockdown analysis, cells were plated in 12-well plates 

(6.5x 10
4
 cells/well) and reagents scaled up by a factor of 10. To detect siRNA-mediated 

protein knockdown, cells were incubated for 48 hours post transfection, then harvested into 

50l 1x final sample buffer (FSB: refer to section 2.2.7). Samples were stored at -20°C 

until the protein content was quantified via BCA assay and immunoblotted with HDAC 

specific antibodies (refer to sections 2.1.5 and 2.2.7). 

 

2.2.13.3 SMARTpool Short Interfering RNAs (siRNAs) Knockdown with Cytokines 

SW1353 cells were plated and transfected with 25nM siRNA for all classical HDACs as in 

section 2.2.13.1. Cells were incubated with siRNA for 24 hours. The media was then 

removed and replaced with serum, antibiotic-free DMEM, and cells serum-starved 

overnight. Cells were stimulated with cytokine IL-1α (5ng/ml) in the presence or absence 

of 50ng/ml TSA. Media was removed 6 hours post stimulation and cells washed twice with 

ice-cold PBS. Cells were then harvested into 30µl Cells-to-cDNA II cell lysis buffer and 

reverse transcribed as in section 2.2.14. 
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2.2.14 Ambion Cells-to-cDNA II RNA Isolation from 96-Well Plate Monolayer 
 

Reagent 

 

Cells-to-cDNA II cell lysis buffer (Ambion, Huntingdon, UK) lyses cells and inactivates 

RNases, providing a cell lysate which can immediately be reverse transcribed without the 

need for RNA isolation. 

 

Method 

 

Lysates (from cells lysed into Cells-to-cDNA II lysis buffer) were transferred to ice-cold 

AB gene
®
 PCR plates (Thermo Scientific ABgene, Surrey, UK). The lysates were heated to 

75°C in a Verti 96-well Thermal Cycler for 15 minutes (Applied Biosystems, Warrington, 

UK) to inactivate RNases (after this step, lysates can be stored at -80°C until reverse 

transcription). For genomic DNA digestion, 1µl DNase I (RNase-free) (Ambion, 

Huntingdon, UK) (2U/µl ) and 3µl DNase I 10x buffer (Ambion) were added per well and 

the plate heated to 37°C for 15 minutes, followed by an inactivation step 75°C for 5 

minutes.  

 

For reverse transcription 8µl of the DNase-treated samples were taken and placed into a 

new ice-cold PCR plate. Following this, 3µl of 10mM dNTP Mix (Bioline, London, UK) 

and 0.2µg random primers (Invitrogen, Paisley, UK) were added per well and samples 

heated to 70˚C for 5 minutes. Samples were chilled on ice then a master mix of 0.5µl M-

MLV Reverse transcriptase (Invitrogen) (200U/µl), 4µl 5x First Strand Buffer (Invitrogen), 

2µl 0.1M DTT (Invitrogen), 1µl RNasin
® 

Ribonuclease Inhibitor (Promega, Southampton, 

UK) (40U/µl) and 1µl RNase-free water was added per well. Samples were then heated to 

37˚C for 50 minutes, followed by a step of 75˚C for 15 minutes. 30µl of RNase-free water 

was then added per sample. For quantitative real-time PCR (qRT-PCR) analysis of the gene 

of interest, 5µl of sample was used. For analysis of ‘house-keeping’ gene 18S, samples 

were diluted 1:10 and 5µl used for qRT-PCR. Quantitative real-time PCR of samples was 

carried out as in sections 2.2.15.1 and 2.2.15.2 
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2.2.15 Real-Time Quantitative RT-PCR 
 

2.2.15.1 Standard Probe-Based Real-Time qRT-PCR 

The probe-based quantitative real-time PCR (qRT-PCR) method was used to detect the 

expression of human metalloproteinases and their inhibitors in the SW1353 cell line and 

primary chondrocytes. The primers and fluorescent probes for human MMPs and 

ADAMTS genes were designed using Primer Express 1.0 software (Applied Biosystems) 

and synthesised by PE Biosystems. To control against amplification of genomic DNA, 

primers and probes were designed to be close to intron/exon boundaries, with the probe 

spanning two neighbouring exons where possible. Primers and probe sequences are as 

described in Nuttall et al. (2003) and Porter et al. (2005) (See Appendix II for complete 

list) (Nuttall et al, 2003). Gene specificity of primers and probes was validated through 

BLAST (Basic Local Alignment Search Tool). 

 

Reagents 

MicroAmp optical 96-well plates, 2x Taqman
® 

Universal PCR Master Mix and optical 

adhesive covers were all purchased from Applied Biosystems (Warrington, UK). 

 

Method 

 

Fluorescence-based relative quantification of genes was conducted on the ABI Prism 7500 

sequence-detection system (Applied Biosystems, Warrington, UK), according to 

manufacturer’s instructions.  PCR reactions contained 1ng of reverse transcribed RNA for 

‘housekeeping’ gene 18S analysis, and 5ng for the gene of interest when the RNA quantity 

was known. For Cells-to-cDNA II transcribed samples, 5µl of sample was used for gene of 

interest detection, or diluted 1:10 and 5µl used for the detection of 18S (refer to section 

2.2.14). 

 

The 18S rRNA gene was used as an endogenous control to normalize the total amount of 

cDNA found in each sample. The threshold cycle (CT) is the cycle number at which the 

signal is detectable above baseline. The median CT level of 18S was calculated and samples 

giving a CT reading of 1.5 CT greater or less than the median were excluded from analysis. 

This was done to ensure the quality of the final data.  
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To determine the relative cDNA input of each sample, standard curves for each gene were 

prepared using cDNA from one sample (known to express the gene of interest) and making 

2-fold serial dilutions. 18S cDNA standards were serially diluted to 4, 2, 1, 0.5, 0.25, 

0.125ng/10µl. Gene of interest standards were serially diluted to 20, 10, 5, 2.5, 1.25, 

0.625/10µl. Relative input amounts of cDNA were then calculated from CT using the 

standard curves.  

 

The PCR reaction mix contained Taqman Universal 2x mastermix, final concentration 

100nM of forward and reverse primer and 200nM of fluorescent probe (in a final volume of 

25µl). PCR cycles: 2 minutes at 50°C, 10 minutes at 95°C, followed by 40 cycles for 15 

seconds at 95°C and 1 minute at 60°C. Reactions were carried out in MicroAmp optical 96-

well plates and sealed with optical adhesive covers.  

 

2.2.15.2 Universal Probe Library Real-Time qRT-PCR 

The Universal Probe Library (UPL) (Roche Diagnostics Ltd, West Sussex, UK) enables 

extensive transcript coverage due to the short 8-9 nucleotide-long probes. Each probe has a 

fluorescein (FAM™) label at the 5’ end and a dark quencher dye at the 3’ end. For 

specificity and melting temperature (Tm) required for hybridising probes, locked nucleic 

acids are incorporated into their sequence. 

 

The UPL was used for detection of all classical HDACs within the SW1353 cell line and 

primary chondrocytes. The transcript DNA accession numbers for all classical HDACs 

were obtained from the GenBank National Centre of Biotechnology Information (NCBI) 

and entered into the Assay Design Centre, Roche Applied Science. The Assay Design 

Centre identifies a list of optimal primer/probe sets that can be used for the detection of the 

gene of interest. This was completed for all classical HDACs and primers purchased from 

Sigma Aldrich. (For primer sequences and UPL probe numbers refer to Appendix II). 

 

The PCR reaction mix contained Taqman 2x mastermix, 100nM of forward and reverse 

primer and 200nM of fluorescent probe (in a final volume of 25µl). PCR cycles the same as 

section 2.2.15.1. 
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2.2.15.3 SYBR
®
 Green Real-Time qRT-PCR 

The SYBR Green dye fluoresces when bound to double stranded-DNA, enabling the 

measurement of double stranded-DNA amplification during PCR. The combination of dye 

with specific primers generates single gene-specific amplicons, thus allowing relative 

quantification of the original cDNA template.  

 

SYBR
®
 Green real-time qRT-PCR was used to detect bovine metalloproteinase and 

inhibitor gene expression. The design of the metalloproteinase and inhibitor primer sets was 

as described in Milner et al. (2006) (for full primer sequences refer to appendix II).  

Briefly, SYBR Green primers were designed using DNAstar (DNASTAR, Inc., Madison, 

WI, USA) and designed to cross intron/exon boundaries where possible. BLAST searches 

for all primer sequences were conducted to ensure gene specificity. All primers were 

purchased from Sigma-Aldrich DNA-Oligo design.  

 

Method 

 

SYBR
®
 green reactions contained 5ng of cDNA for the detection of the gene of interest. 

The PCR reaction mix contained 50% SYBR
®
 Green PCR Master Mix (Applied 

Biosystems) and 100nM of forward and reverse primer (in a final volume of 25µl). PCR 

cycles: 2 minutes at 50°C, 10 minutes at 95°C, 40 cycles for 15 seconds at 95°C, 1 minute 

at 60°C and a dissociation step. The dissociation step produces a melting curve for the PCR 

amplification product and ensures there is only amplification of the target gene.  Reactions 

were carried out in MicroAmp optical 96-well plates sealed with optical adhesive covers 

(Applied Biosystems, Warrington, UK). 
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2.2.16 Data Analysis 
 

2.2.16.1 Relative Gene Quantification: Standard Curve Method 

The standard curve method of relative quantification uses standards of known amounts of 

positive control cDNA (as described in section 2.12.1). For relative quantification (RQ) for 

the target gene the following equation was used:  

 

RQ= (CT-intercept)/slope 

 

The RQ was then transformed to inverse log10. All genes of interest were normalized to the 

relative gene expression of 18S.  

 

2.2.16.2 Relative Gene Quantification: Comparative CT Method 

The 2-(CTgene-CT18S) (2-ΔCT) method was used as an approximate measure of target gene 

expression in the BNC assay screen, HDAC inhibitor dose responses (completed in 

chondrocytes) and for all siRNA knockdown assay experiments. The amount of target was 

normalised to 18S ‘house-keeping’ gene as an endogenous control. This method allowed 

comparison of expression levels between genes as it has been shown to correlate well 

between copy number and cycle threshold (CT) values (as assessed by using in vitro-

transcribed RNA to produce a standard curve) (Kevorkian et al, 2004; Milner et al, 2006). 

This method assumes that all primers and probe sets are working at the same efficiency.  

 

2.2.17 Statistical Analysis 

All values are given as mean values of replicates with error bars representing the standard 

error of the mean. Student’s t-test (unpaired), completed using GraphPad Prism 4.00 

(GraphPad software, San Diego, USA) was used to detect significant differences between 

independent sample groups, unless otherwise stated.  Levels of statistical significance are 

depicted as * p≤0.05, ** p≤0.01 and *** p≤0.001.   
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Chapter III: The role of histone deacetylase inhibitors 

in metalloproteinase gene regulation and 

chondroprotection 
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Chapter III 

 

The role of histone deacetylase inhibitors in metalloproteinase gene 

regulation and chondroprotection 

 

3.1 Introduction 

Cartilage destruction in osteoarthritis is thought to be mediated by the action of 

proteinases from the matrix metalloproteinase (MMP) and ‘a disintegrin and 

metalloproteinase domain with thrombospondin motifs’ (ADAMTS) families. OA 

chondrocytes are postulated to be one of the major sources of metalloproteinase 

expression within the OA joint (Goldring, 2000). Metalloproteinase expression is 

primarily regulated at the transcriptional level, which is partially mediated through 

changes in protein acetylation catalysed by enzymes from the histone acetyltransferase 

(HATs) and histone deacetylase (HDACs) families.  

 

Previous work published by our laboratory has shown that broad spectrum HDAC 

inhibitors TSA and NaBy can repress cytokine-induced metalloproteinase expression at 

the mRNA and protein level, both in the SW1353 cell line and primary chondrocytes 

(Young et al, 2005). These compounds were also found to inhibit cytokine-induced 

cartilage resorption in the bovine nasal cartilage (BNC) assay, thought to be a result of 

the transcriptional repression of cytokine-induced metalloproteinase expression by non-

histone related pathways (Young et al, 2005). The expression of metalloproteinases and 

their inhibitors has previously been profiled during the 14 day BNC assay, identifying a 

number of cytokine-induced metalloproteinase genes, such as the collagenases MMP1 

and MMP13 and the aggrecanases ADAMTS4 and ADAMTS5 (Milner et al, 2006).  

Importantly the activation of pro-collagenases was also found to be a key regulatory 

step in collagenolysis (Milner et al, 2006).  

 

The chondroprotective property of HDAC inhibitors has also been supported by the 

reduced joint damage observed in inflammatory, and most recently, osteoarthritic 

animal models as a result of HDAC inhibitor treatment in vivo. The reduced joint 

damage in inflammatory animal models, mediated by inhibitors such as TSA and MS-

275, was associated with reduced cytokine expression and increased expression of cell 

cycle regulators p16
INK4a

 and p21
WAF/Cip1 

(Chung et al, 2003; Keiichiro et al, 2004; Lin 
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et al, 2007). The recently published OA rabbit model demonstrated that intra-articular 

injection of TSA reduced cartilage damage and suppressed increased MMP1, MMP3, 

MMP13 and IL-1 expression detected in the OA rabbit controls (Chen et al, 2010).  

 

The molecular pathways by which HDAC inhibitors mediate repression of cytokine-

induced metalloproteinase expression remain unknown. Compounds TSA and NaBy 

reportedly inhibit all members of the classical HDAC family, with the exception of 

HDAC6 for NaBy, making it unclear which HDACs are involved in the regulation of 

metalloproteinase expression. In order to elucidate which HDACs need to be inhibited 

to repress metalloproteinase expression three reportedly selective inhibitors were chosen 

for use in cell monolayer and BNC assays. The inhibitors chosen were valproic acid 

(VPA), MS-275 and tubacin, which belong to different structural classes and have 

different inhibitory profiles. Short-chain fatty acid VPA reportedly inhibits class I 

HDACs at low concentrations (~0.7-1mM) and class II HDACs at higher concentrations 

(>1mM), preferentially targeting co-repressor-associated HDAC1 and HDAC2 

(Gottlicher et al, 2001; Gurvich et al, 2004). Benzamide MS-275 is known to be class I 

selective, inhibiting the action of HDAC1, HDAC2 and HDAC3, but not HDAC8 

(Hess-Stumpp et al, 2007; Hu et al, 2003; Inoue et al, 2006; Vannini et al, 2004). 

Tubacin is a recently developed inhibitor shown specifically to inhibit HDAC6, thus 

preventing α-tubulin acetylation in mammalian cells (Haggarty et al, 2003). The effect 

of these compounds on cytokine-induced metalloproteinase expression was assessed in 

the SW1353 cell line, OA primary articular chondrocytes and the BNC assay, alongside 

the previously studied inhibitor TSA.  
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Aims 

 Establish the effect of HDAC inhibitors TSA, VPA and MS-275 on core histone 

and α-tubulin acetylation levels. 

 

 Determine the effect of TSA, VPA and MS-275 on basal and cytokine-induced 

metalloproteinase expression in the SW1353 chondrosarcoma cell model, and 

confirm these effects in primary articular chondrocytes.  

 

 Determine if TSA, VPA and MS-275 can prevent cytokine-induced cartilage 

degradation in the BNC assay. 

 

 Profile the expression of OA-associated metalloproteinases and TIMP1 during 

the BNC assay, and establish if MS-275 can modulate this expression. 

 

 Determine the effect of tubacin on the level of α-tubulin acetylation and 

cytokine-induced metalloproteinase expression in the SW1353 cell line. 

 

 Establish if tubacin can prevent cytokine-induced cartilage degradation in the 

BNC assay. 
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3.2 Results 

3.2.1 The induction of core histone and α-tubulin acetylation in SW1353 cells 
 

Human SW1353 chondrosarcoma cells were cultured and plated as described in section 

2.2.7. SW1353 cells were incubated with increasing concentrations of TSA (5ng/ml, 

25ng/ml, 50ng/ml and 100ng/ml), VPA (0.5mM, 1mM, 5mM and 10mM) and MS-275 

(1µM, 2µM, 5µM and 10µM) for 6 hours. The effect of HDAC inhibitors on the cellular 

level of core histone and α-tubulin acetylation was assessed by immunoblotting, as 

described in section 2.2.7. Predominantly, HDAC inhibitors induce histone acetylation 

through the inhibition of HDACs. However, HDAC6 deletion in embryonic stem cells 

and the null mouse model has been shown to have no significant effect on histone 3 and 

histone 4 acetylation, leading to the identification of α-tubulin as its primary 

physiological substrate (Zhang et al, 2008; Zhang et al, 2003). Therefore, inhibition of 

HDAC6 catalytic activity can be detected by an increase in the cellular level of 

acetylated α-tubulin.  

 

In this study, all inhibitors increased cellular histone 3 and histone 4 acetylation in a 

concentration-dependent manner, compared to total histone 3 and histone 4 levels 

(Figure 3.1 a and b). This indicates that all three compounds inhibit HDACs involved in 

histone deacetylation. TSA was shown to increase α-tubulin acetylation in a 

concentration-dependent manner compared to total α-tubulin (Figure 3.1c), indicating 

that TSA inhibits HDAC6 catalytic activity and supports its status as a ‘pan’ inhibitor. 

VPA had no effect on the level of acetylated α-tubulin, suggesting that it does not 

inhibit HDAC6 activity at these concentrations. MS-275 had no effect on the level of 

acetylated α-tubulin, supporting its status as a class I selective inhibitor. 
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Figure 3.1. The effect of HDAC inhibitors on core histone and α-tubulin acetylation in the 

SW1353 cell line 

 

SW1353 cells were incubated with increasing concentrations of TSA, VPA and MS-275 for 6 

hours. Total protein was extracted, resolved by SDS-PAGE and acetylation levels of histone 3, 

histone 4 and α-tubulin assessed by immunoblotting with specific antibodies. The levels of 

histone and α-tubulin acetylation were compared to total levels. (a) Histone 3 acetylation in 

response to TSA (5ng/ml, 25ng/ml, 50ng/ml and 100ng/ml), VPA (0.5mM, 1mM, 5mM and 

10mM) and MS-275 (1µM, 2µM, 5µM and 10µM). (b) Histone 4 acetylation in response to 

TSA, VPA and MS-275. (c) α-tubulin acetylation in response to TSA, VPA and MS-275. 

(acH3, acetylated histone 3: acH4, acetylated histone 4: ac α-tubulin, acetylated α-tubulin). 
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3.2.2 The effect of HDAC inhibitors on metalloproteinase expression in SW1353 cells 
 

The pro-inflammatory cytokine IL-1α is known to induce the expression of many 

metalloproteinase genes in primary and chondrocyte cell lines. This induction is further 

potentiated when IL-1 is combined with the growth factor OSM (Barksby et al, 2006; 

Koshy et al, 2002). Previously published data demonstrated that the broad spectrum 

inhibitors TSA and NaBy can decrease cytokine-induced metalloproteinase expression 

in the SW1353 cell line (Young et al, 2005). To determine whether TSA-mediated 

metalloproteinase repression could be repeated with the more selective inhibitors VPA 

and MS-275, SW1353 cells were incubated with IL-1α alone and in combination with 

OSM (I/O) in the presence or absence of increasing concentrations of TSA, VPA and 

MS-275 (as described in section 2.2.2). The expression of MMP1, MMP2, MMP3, 

MMP9, MMP10, MMP13, MMP28, ADAMTS4 and ADAMTS5 were then measured by 

quantitative real-time PCR (qRT-PCR).  

 

Of the genes detected, MMP1, MMP3, MMP10 and MMP13 were robustly induced by 

IL-1α, with the responses further potentiated in combination with OSM. Cytokine-

induced MMP9 expression was variable, showing induced expression in some assays 

and not others (Appendix I: Figure 1b, Figure 2b and Figure 3b). ADAMTS4 and 

ADAMTS5 were expressed at low levels in the SW1353 cell line, and exhibited variable 

response to cytokine treatment (Appendix I: Figure 1e and f, Figure 2e and f and Figure 

3e and f).  

 

TSA and VPA significantly decreased cytokine-induced MMP1 and MMP13 

expression. TSA reduced both IL-1α- and I/O-induced MMP1 and MMP13 expression 

in a concentration-dependent manner (Figure 3.2a and c). VPA decreased I/O-induced 

MMP1 and MMP13 expression in a concentration-dependent manner. However, 

repression of IL-1α-induced MMP1 and MMP13 expression was not concentration-

dependent, due to a reproducibly greater repression of both collagenases at 0.5mM VPA 

compared to 1mM (Figure 3.3a and c). This may be related to the concentration-

dependent class switch of inhibition from class I to both class I and class II HDACs 

reported for VPA (Gurvich et al, 2004). The greatest level of VPA-mediated 

metalloproteinase repression was achieved at 5mM and 10mM. At these high 

concentrations it would be expected that the catalytic activity of both class I and class II 

HDACs would be inhibited by VPA. This suggests that to achieve maximum repression 

of cytokine-induced metalloproteinase expression with this compound, it is necessary to 
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inhibit members of both classes of HDAC. In contrast, despite a statistically significant 

repression of IL-1α-induced MMP1 and MMP13 expression achieved with 1µM MS-

275, the class I specific inhibitor did not convincingly decrease cytokine-induced 

collagenase expression (Figure 3.4a and c). This indicated that class I HDACs may not 

play an important role in the regulation of collagenase expression in these cells.  

 

Despite the differences observed between TSA, VPA and MS-275 regarding the 

repression of cytokine-induced MMP1 and MMP13 expression, all three inhibitors 

displayed the same pattern of concentration-dependent repression of cytokine-induced 

MMP3 expression (Figure 3.2b, 3.3b and 3.4b). However, the repression of induced 

MMP3 expression by MS-275 was not as efficient as that achieved with TSA and VPA. 

Interestingly, TSA and VPA also significantly decreased cytokine-induced MMP10 

(stromelysin-2) (Appendix I: Figure 1c and 2c), but MS-275 had no repressive effect 

(Appendix I: Figure 3c).  

 

MMP2 expression was not induced in response to cytokines, which is consistent with 

Young et al. (2005). However, the current study detected decreased basal MMP2 

expression in response to TSA, VPA and MS-275 treatment (Appendix I: Figure 1a, 2a 

and 3a), which was not observed in response to TSA and NaBy treatment by Young et 

al. (2005). This current study also found that MMP28 expression was not induced by 

cytokines, but detected increased basal expression in response to all three inhibitors 

(Appendix I: Figure 1d, 2d and 3d). The induction of MMP28 expression by HDAC 

inhibitors is consistent with previous reports (Swingler et al, 2010; Young et al, 2005). 
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Figure 3.2. The effect of trichostatin A on cytokine-induced MMP expression in SW1353 cells 

 

SW1353 cells were incubated with increasing concentrations of TSA (5ng/ml, 25ng/ml, 

50ng/ml and 100ng/ml) in combination with IL-1α (5ng/ml) or I/O (combination of IL-1α and 

OSM (10ng/ml)) for 6 hours. Total RNA was extracted with Trizol, reverse transcribed to 

cDNA, and MMP levels detected by real-time qRT-PCR (a) MMP1 expression in response to 

cytokine and TSA treatment. (b) MMP3 expression in response to cytokine and TSA treatment. 

(c) MMP13 expression in response to cytokine and TSA treatment. Assays were completed at 

least twice, using triplicate samples. Data presented is representative of one assay; means ± 

standard errors are represented. *P<0.05, **P<0.01, ***P<0.001. (a.u: arbitrary units). 
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Figure 3.3. The effect of valproic acid on cytokine-induced MMP expression in SW1353 cells 

 

SW1353 cells were incubated with increasing concentrations of VPA (0.5mM, 1mM, 5mM and 

10mM) in combination with IL-1α (5ng/ml) or I/O (combination of IL-1α and OSM (10ng/ml)) 

for 6 hours. Total RNA was extracted with Trizol, reverse transcribed to cDNA, and MMP 

levels detected by real-time qRT-PCR (a) MMP1 expression in response to cytokine and VPA 

treatment. (b) MMP3 expression in response to cytokine and VPA treatment. (c) MMP13 

expression in response to cytokine and VPA treatment. Assays were completed at least twice, 

using triplicate samples. Data presented is representative of one assay; means ± standard errors 

are represented. *P<0.05, **P<0.01, ***P<0.001. (a.u: arbitrary units). 
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Figure 3.4. The effect of MS-275 on cytokine-induced MMP expression in SW1353 cells 

 

SW1353 cells were incubated with increasing concentrations of MS-275 (1µM, 2µM, 5µM and 

10µM) in combination with IL-1α (5ng/ml) or I/O (combination of IL-1α and OSM (10ng/ml)) 

for 6 hours. Total RNA was extracted with Trizol, reverse transcribed to cDNA, and MMP 

levels detected by real-time qRT-PCR (a) MMP1 expression in response to cytokine and MS-

275 treatment. (b) MMP3 expression in response to cytokine and MS-275 treatment. (c) 

MMP13 expression in response to cytokine and MS-275 treatment. Assays were completed at 

least twice, using triplicate samples. Data presented is representative of one assay; means ± 

standard errors are represented. *P<0.05, **P<0.01, ***P<0.001. (a.u: arbitrary units). 
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3.2.3 The effect of HDAC inhibitors on MMP13 expression in primary articular 

chondrocytes 

 

Primary articular chondrocytes were treated with cytokines IL-1α and OSM either in the 

presence or absence of increasing concentrations of TSA, VPA and MS-275 (as 

described in section 2.2.2). This was to determine if HDAC inhibitors exhibited the 

same pattern of repression of cytokine-induced MMP13 expression in primary cells as 

in the SW1353 cell line. The expression of MMP13 was determined by qRT-PCR.  

 

Cytokine treatment significantly induced MMP13 expression in primary articular 

chondrocytes. All three HDAC inhibitors significantly repressed cytokine-induced 

MMP13 expression, despite MS-275 previously exhibiting no repression in the SW1353 

cell line (Figure 3.5c). This indicated that class I HDAC regulation of MMP13 

expression may be different in the transformed SW1353 cell line than in primary 

chondrocytes, with class I inhibition alone enough to repress cytokine-induced MMP13 

expression in primary cells. Interestingly, the repression of cytokine-induced MMP13 

expression by TSA was not as efficient in primary chondrocytes as in SW1353 cells, 

with significant repression only seen with 100ng/ml (Figure 3.5a). In contrast the 

repression of MMP13 expression by VPA was more efficient in primary chondrocytes 

than in SW1353 cells, with massive repression achieved with just 0.5mM VPA (Figure 

3.5b). VPA at 0.5mM is thought to only inhibit class I HDACs, which again indicates 

that class I HDAC inhibition alone is capable of repressing cytokine-induced MMP13 

expression in primary articular chondrocytes. 
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Figure 3.5. HDAC inhibitors down-regulate cytokine-induced MMP13 expression in primary 

articular chondrocytes 

 

Primary articular chondrocytes were incubated with increasing concentrations of TSA (5ng/ml, 

25ng/ml, 50ng/ml and 100ng/ml), VPA (0.5mM, 1mM, 5mM and 10mM) or MS-275 (1µM, 

2µM, 5µM and 10µM) in combination with I/O (combination of IL-1α (5ng/ml) and OSM 

(10ng/ml)) for 6 hours. Total RNA was extracted with Cells-to-cDNA lysis buffer, reverse 

transcribed to cDNA, and MMP13 expression detected by real-time qRT-PCR (a) MMP13 

expression in response to cytokine and TSA treatment. (b) MMP13 expression in response to 

cytokine and VPA treatment. (c) MMP13 expression in response to cytokine and MS-275 

treatment. Assays were completed once, using triplicate samples; means ± standard errors are 

represented. *P<0.05, **P<0.01, ***P<0.001. 
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3.2.4 The effect of HDAC inhibitors on cytokine-induced cartilage degradation 
 

The combination of IL-1α and OSM has previously been shown to potently induce 

cartilage degradation both in vitro and in vivo (Cawston et al, 1998; Morgan et al, 2006; 

Rowan et al, 2003). In vitro cartilage degradation is commonly measured as 

proteoglycan and collagen release from cartilage explants. Previously published data 

demonstrated that broad spectrum HDAC inhibitors TSA and NaBy can block both 

collagen and proteoglycan proteolysis in the BNC assay (Young et al, 2005). This 

chondroprotective effect was thought to be mediated by the repression of cytokine-

induced metalloproteinase expression, which was observed in monolayer SW1353 and 

primary chondrocyte assays (Young et al, 2005). 

 

To determine if this could be repeated with TSA and the more selective inhibitors VPA 

and MS-275, bovine nasal cartilage chips were treated with IL-1α and OSM in the 

presence or absence of increasing concentrations of TSA (50ng/ml and 250ng/ml), VPA 

(0.5mM, 1mM, 5mM and 10mM) and MS-275 (1µM, 2µM, 5µM and 10µM) (as 

described in 2.2.8.1). The level of proteoglycan and collagen release was defined as the 

percentage loss from the total content of cartilage explants at the start of the assay. 

Proteoglycan release is shown as at day 7 and collagen release as at day 14, reflecting 

the time points at which proteoglycan and collagen were maximally released.  

 

Proteoglycan and collagen proteolysis were significantly induced by IL-1α and OSM, 

causing release of approximately 80-100% of the total cartilage content of both ECM 

components. TSA and MS-275 significantly decreased cytokine-induced proteoglycan 

and collagen release in a concentration-dependent manner (Figure 3.6a, b, e and f). The 

significant reduction of proteoglycan and collagen release by MS-275 treatment 

indicates that inhibition of class I HDACs (HDAC1, 2 and 3) alone is capable of 

conferring a chondroprotective affect. VPA significantly reduced cytokine-induced 

proteoglycan and collagen release, but not in a strictly concentration-dependent manner 

(Figure 3.6c). Interestingly, I/O-induced collagen release was reduced to a greater level 

by 0.5mM VPA than 1mM VPA, reflecting the greater repression of induced 

collagenase expression by 0.5mM VPA in the SW1353 cell monolayer assays. 

Proteoglycan release demonstrated less sensitivity to HDAC inhibitors than collagen 

release in the BNC assays, which may be attributed to the rapid kinetics of proteoglycan 

release.  
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Lactate dehydrogenase (LDH) release was detected in harvested supernates as a 

measure of both cytokine and HDAC inhibitor toxicity. LDH release was slightly higher 

in cytokine-treated samples as previously reported, but was not significant when 

compared to non-treated controls. HDAC inhibitors did not increase LDH release above 

cytokine-induced levels at any concentration, and exhibited no concentration-dependent 

effect on LDH release (data not shown). This indicates that TSA, VPA and MS-275 

were not toxic in the assay.  
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Figure 3.6. HDAC inhibitors prevent cytokine-induced cartilage degradation 

 

Bovine nasal cartilage discs were cultured in the presence or absence of I/O (a combination of 

IL-1α (0.5ng/ml) and OSM (5ng/ml)) ± a histone deacetylase inhibitor. Cartilage was incubated 

until day 7, supernates harvested and reagents replaced until day 14. Glycosaminoglycan (GAG) 

release is shown as at day 7 and was assayed using the dimethylmethylene blue method. 

Collagen release is shown as at day 14 and was measured using a hydroxyproline assay. (a) 

GAG release in response to I/O and TSA (50ng/ml and 250ng/ml) treatment. (b) Collagen 

release in response to I/O and TSA treatment. (c) GAG release in response to I/O and VPA 

(0.5mM, 1mM, 5mM and 10mM) treatment. (d) Collagen release in response to I/O and VPA 

treatment. (e) GAG release in response to I/O and MS-275 (1µM, 2µM, 5µM and 10µM) 

treatment. (f) Collagen release in response to I/O and MS-275 treatment. Assays were 

performed using quadruplicate samples; means ± standard error are represented. *P<0.05, 

**P<0.01, ***P<0.001. GAG and collagen release are depicted as percentage release from total 

in tissue.  
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3.2.5 Profile of OA-associated metalloproteinases and TIMP1 in resorbing bovine 

cartilage 

 

Metalloproteinase expression has previously been profiled during the 14 day BNC assay 

(Milner et al, 2006). The Milner study revealed the induction of many metalloproteinase 

genes in I/O-treated cartilage explants, such as MMP1, MMP3, MMP13, ADAMTS4 and 

ADAMTS5. Milner et al. (2006) also demonstrated that activation of pro-MMPs is a key 

regulatory control point in collagenolysis and cartilage degradation. In order to 

determine if HDAC inhibitors mediate chondroprotection by the inhibition of cytokine-

induced metalloproteinase expression, as postulated by Young et al (2005), this profile 

was repeated with the addition of MS-275. This also enabled us to confirm whether MS-

275 could repress cytokine-induced MMP1 and MMP13 expression in primary bovine 

chondrocytes, in order to clarify if the lack of repression observed in SW1353 cells was 

due to altered HDAC regulation of these genes within the cell line compared to primary 

cells. Bovine nasal cartilage explants were incubated with IL-1α and OSM in the 

presence or absence of 5µM MS-275 for 14 days, with treatments replaced at day 3 and 

7. Supernates and explants were harvested at day 0, 1, 3, 5, 8, 10 and 14, as described in 

section 2.2.8.2. Proteoglycan and collagen release were measured in supernates as a 

measure of cartilage degradation and MS-275 chondroprotection. Total RNA was 

extracted from cartilage explants and reverse transcribed to cDNA, as described in 

section 2.2.12 and 2.2.6. MMP1, MMP3, MMP13, ADAMTS4, ADAMTS5 and TIMP1 

expression were detected by qRT-PCR. 

 

Cytokines significantly induced both proteoglycan and collagen release from cartilage 

explants. Cumulative cytokine-induced proteoglycan release was significantly increased 

compared to control at day 1 (P=0.0022) and remained significantly higher throughout 

the assay (Figure 3.7a). Maximum GAG release occurred between days 1 and 3, with 

release reaching a plateau after day 5. This supports the theory that the reduced 

sensitivity of proteoglycan release to HDAC inhibitors measured in the previous BNC 

assays was due to the rapid kinetics of proteoglycan release. Therefore, early harvest 

time-points, such as day 1 to day 3, are required to detect the repression of GAG release 

mediated by HDAC inhibitors. Cytokine-induced GAG release was significantly 

reduced by MS-275 at all time points apart from day 14. Cumulative cytokine-induced 

collagen release was also significant increased at day 1 compared to control (P=0.0133) 

and remained significantly higher throughout the assay (Figure 3.7b). Maximum 
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collagen release occurred between days 8 and 14. Cumulative induced collagen release 

was significantly reduced by MS-275 at all time points. The early release of 

proteoglycan and late release of collagen is consistent with previous studies (Milner et 

al, 2001; Milner et al, 2006; Young et al, 2005). MS-275 inhibition of both cytokine-

induced collagen and proteoglycan release again demonstrates its chondroprotective 

properties. 

 

MMP1 and MMP13 expression was significantly increased by IL-1α and OSM when 

compared to controls. Cytokine-induced MMP1 expression was significantly increased 

compared to control at day 1 (P=0.058), with significant induction also seen at day 5, 8 

and 10 (P=0.0053, P=0.0006 and P=0.058 respectively). Cytokine-induced MMP13 

expression was seen at day 1 but did not reach statistical significance. However, I/O-

induced MMP13 expression compared to controls did reach statistical significance at 

days 5, 8, 10 and 14 (P=0.0150, P=0.0005, P=0.0022 and P=0.0002 respectively). The 

pattern of expression for both collagenases was similar, with the greatest expression 

observed at day 10, followed by a decline in expression at day 14 (Figure 3.8a and c). 

The early induction of collagenase expression, coupled with late collagen release, 

suggests that activation of the synthesised pro-collagenases plays a key regulatory role 

in cartilage degradation. This is consistent with the profile completed by Milner et al. 

(2006). However, this current profile detected slower kinetics of MMP1 and MMP13 

induction compared to that seen in the profile conducted by Milner et al. (2006). 

Maximal collagenase expression was not reached until day 10 of this study but achieved 

at day 2 before reaching a plateau in the Milner profile. The reason for this is unknown. 

 

Despite the contrasting results in the SW1353 and primary chondrocyte assays, MS-275 

did decrease cytokine-induced MMP1 and MMP13 expression in the BNC assay (Figure 

3.8a and c). This supports the theory that transcriptional regulation of MMP1 and 

MMP13 expression may differ in the SW1353 cell line compared to primary 

chondrocytes, either human or bovine. Interestingly, MS-275 in combination with 

cytokines initially induced both MMP1 and MMP13 expression at day 1 to a greater 

level than I/O alone, but this did not reach statistical significance. The reason for this is 

unknown and it would require further assays to determine if this is a true event or an 

experimental anomaly. However, MS-275 significantly reduced cytokine-induced 

MMP1 expression at days 5, 8 and 10, and MMP13 expression at days 5 and 10. MS-

275 repression of key collagenases supports the theory that HDAC inhibitors mediate 
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chondroprotection through the inhibition of cytokine-induced metalloproteinase 

expression (Young et al, 2005). 

 

Interestingly, at day 1, MMP3 expression was rapidly and significantly induced by 

cytokines in combination with MS-275 (P=0.0137), more so than cytokines alone 

(Figure 3.8b). However, by day 3, I/O-induced expression was markedly reduced by 

MS-275, which continued until day 10. After the initial rapid cytokine induction of 

MMP3 at day 3, there was a small decline in expression at day 5, followed by fairly 

consistent expression for the remainder of the assay. The rapid induction of MMP3 

between days 1 and day 3 is consistent with the previous BNC profile and chondrocyte 

monolayer assays (Barksby et al, 2006; Milner et al, 2006). Significant repression of 

cytokine-induced MMP3 was achieved with MS-275 at day 5. However, despite MS-

275 reducing I/O-induced MMP3 expression between days 3 and 10, the combination of 

I/O and MS-275 caused a sudden induction of MMP3 at day 14. The reason for this is 

unclear. Therefore, further assays are required to determine if this is a true event or an 

experimental anomaly.  

 

ADAMTS4 expression, at day 1, was also induced to a greater level by cytokines in 

combination with MS-275 than cytokines alone (Figure 3.8d). However, from days 3 to 

10 I/O-induced expression was markedly repressed by MS-275, with significant 

repression seen at days 8 and 10. Despite the significant inhibition of I/O-induced 

ADAMTS4 expression at day 10, the combination of I/O and MS-275 again induced 

ADAMTS4 expression to a greater level than cytokines alone at day 14. Cytokine-

induced ADAMTS4 expression was greatest at day 3, which correlated with the point of 

maximum GAG release, then declined during the remainder of the assay.  

 

ADAMTS5 expression was significantly induced by IL-1α and OSM compared to 

control at all time points excluding day 3. MS-275 reduced cytokine-induced ADAMTS5 

at all time points, with significant repression seen at day 1 (Figure 3.8e). The level of 

I/O-induced ADAMTS5 expression fluctuated throughout the assay, with two peaks of 

expression observed at days 3 and 8. The peak in expression observed at day 3 

correlated with the point of maximal GAG release. 

 

The rapid increase of ADAMTS4 and ADAMTS5 expression between days 0 and 3 is 

consistent with the profile conducted by Milner et al. (2006). However, the profile by 

Milner et al. (2006) showed that after the initial rapid increase in aggrecanase 
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expression, the expression of aggrecanases reached a plateau and remained at a similar 

level for the remainder of the assay. This was not seen in this study, with ADAMTS4 

expression exhibiting a steady decrease in expression after day 3 and ADAMTS5 

expression fluctuating throughout the assay. The reason for the different expression 

patterns of both aggrecanase genes between the profiles is not clear. The assay would 

have to be repeated to clarify this. 

 

TIMP1 expression was rapidly induced with the combined treatment of cytokines and 

MS-275, but this was not statistically significant compared to control (Figure 3.8f). 

However, after this rapid induction, TIMP1 expression steeply declined, almost back to 

basal level, and continued to decrease in I/O and MS275-treated explants until day 14. 

TIMP1 expression was also induced at day 1 with cytokine treatment alone, but to a 

lesser degree than the combined treatment of I/O and MS-275. However, I/O induction 

of TIMP1 was more sustained, with increased expression compared to control seen from 

days 1 to 8 and reaching significance at days 5 and 8 (P=0.0069 and P=0.0023). 

However, I/O-induced expression rapidly decreased between days 8 and 10, returning to 

near basal levels at day 14. MS-275 significantly repressed I/O-induced TIMP1 at days 

5, 8 and 10. Both control and MS-275-treated samples showed gradual decrease in 

TIMP1 expression during the assay. The induction of TIMP1 expression in response to 

I/O treatment is consistent with Milner et al. (2006), where TIMP1 was the only 

member of the TIMP family which exhibited induction in response to cytokine 

treatment. However, after its initial induction, TIMP1 expression remained at a fairly 

constant level for the remainder of the assay in the Milner profile. This contrasts with 

this current profile where I/O-induced expression decreased between day 8 and 10, 

returning to near basal levels at day 14. 

 

The BNC profile also indicates that certain cytokine-induced genes may be more 

susceptible to MS-275 repression than others. For example, cytokine-induced MMP1 

expression was significantly repressed by MS-275 and remained low throughout the 

assay (Figure 3.8a), whereas MS-275 mediated-repression of MMP13 continued to rise 

during the assay (Figure 3.8c). MS-275 inhibits HDAC1, HDAC2 and HDAC3, which 

may mean that genes more susceptible to MS-275 repression may be transcriptionally 

regulated by these HDACs to a greater extent than less susceptible genes. Further assays 

would be required to determine if this is true. 
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Figure 3.7. Cumulative GAG and collagen release during the BNC assay screen 

 

Bovine nasal cartilage discs were cultured in the presence or absence of I/O (a combination of 

IL-1α (0.5ng/ml) and OSM (5ng/ml)) ± MS-275 (5µM) for 14 days. At days 3 and 7, medium 

was removed and the cartilage replenished with identical reagents. Cartilage and medium were 

harvested at days 0, 1, 3, 5, 8, 10 and 14. GAG and collagen release from explants into 

harvested supernates were measured via dimethylmethylene blue and hydroxyproline assays 

respectively. (a) Cumulative GAG release in response to I/O treatment alone and in 

combination with MS-275. (b) Cumulative collagen release in response to I/O treatment alone 

and in combination with MS-275. The assay was performed once using quadruplicate samples; 

means ± standard error are represented. *P<0.05, **P<0.01, ***P<0.001 representing the 

significant reduction of I/O-induced collagen and GAG release with the addition of MS-275. 
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Figure 3.8. Profile of metalloproteinase and TIMP1 expression in resorbing cartilage explants  

 

Bovine nasal cartilage discs were cultured in the presence or absence of I/O (a combination of 

IL-1α (0.5ng/ml) and OSM (5ng/ml)) ± MS-275 (5µM) for 14 days. At days 3 and 7, medium 

was removed and the cartilage replenished with identical reagents. Cartilage and medium were 

harvested at days 0, 1, 3, 5, 8, 10 and 14. Total RNA was extracted from cartilage (as described 

in Materials and Methods), reverse transcribed to cDNA, and MMP and TIMP levels detected 

by real-time qRT-PCR. Each treatment was completed in quadruplicate; means ± standard 

errors are represented. *P<0.05, **P<0.01, ***P<0.001 representing the significant reduction 

of I/O-induced gene expression by MS-275 treatment. 
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3.2.6 Tubacin induces cellular α-tubulin acetylation levels 
 

Tubacin has previously been shown to increase cellular α-tubulin acetylation levels via 

preventing HDAC6-mediated deacetylation (Haggarty et al, 2003). To determine if 

tubacin affects tubulin acetylation in chondrocytes, SW1353 cells were incubated with 

increasing concentrations of tubacin (1.25µM, 2.5µM, 5µM, 10µM and 20µM) and the 

level of acetylated α-tubulin assessed by immunoblotting with specific antibodies. 

SW1353 cells were also treated with TSA (100ng/ml), previously shown to induce α-

tubulin acetylation, as a positive control. The assay was also repeated with niltubacin, 

an inactive analogue of tubacin, as a negative control (Haggarty et al, 2003). The level 

of acetylated α-tubulin was compared to total α-tubulin. 

 

Consistent with previous studies, tubacin induced α-tubulin acetylation, thus supporting 

its role as a HDAC6 inhibitor (Figure 3.9). The level of acetylated α-tubulin increased 

in a concentration-dependent manner from 1.25µM to 5µM tubacin, but then appeared 

to decrease at the higher 10µM and 20µM concentrations. This contrasts with 

previously published data that indicates that tubacin increases acetylated α-tubulin in a 

concentration-dependent manner (Haggarty et al, 2003; Hideshima et al, 2005). 

Interestingly, the level of acetylation achieved with 5µM tubacin far exceeded that seen 

with TSA. This may indicate that tubacin is a more efficient inhibitor of HDAC6 

activity than TSA. Niltubacin caused a slight induction of α-tubulin acetylation, but this 

was far less than that seen with TSA treatment. The level of α-tubulin acetylation 

remained unchanged in both assays. 
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Figure 3.9. The effect of tubacin and niltubacin on α-tubulin acetylation levels in SW1353 cells 

 

SW1353 cells were incubated with increasing concentrations of tubacin and inactive analogue 

niltubacin (1.25µM, 2.5µM, 5µM, 10µM and 20µM) for 6 hours. TSA (100ng/ml), a known 

inducer of α-tubulin acetylation, was added as a positive control. Total protein was extracted, 

resolved by SDS-PAGE, and the acetylation level of α-tubulin assessed by immunoblotting with 

specific antibodies. The level of α-tubulin acetylation was compared to total α-tubulin.  
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3.2.7 The effect of tubacin on cytokine-induced collagenase expression in the 

SW1353 cell line 

 

Pan inhibitors TSA and NaBy, and the more selective inhibitors VPA and MS-275, have 

been shown to decrease cytokine-induced metalloproteinase expression, both in this 

study and in the previous study completed by Young et al. (2005). To determine 

whether specific HDAC6 inhibition could decrease cytokine-induced metalloproteinase 

expression, SW1353 cells were incubated with IL-1α and I/O, in the presence or 

absence of increasing concentrations of tubacin (1, 2.5, 5, 10 and 20µM). The 

expression of MMP1 and MMP13 were then determined by qRT-PCR. (This assay was 

completed by Dr. Rose Davidson, University of East Anglia, UK). 

 

Both MMP1 and MMP13 expression were clearly induced by IL-1α and I/O (Figure 

3.10a and b). Tubacin demonstrated a trend of concentration-dependent repression on 

both IL-1α- and I/O-induced MMP13 expression, with IL-1α-induced expression 

significantly repressed by 20µM tubacin (Figure 3.10 b). Tubacin also demonstrated a 

trend of concentration-dependent repression of IL-1α-induced MMP1 expression, with 

induced expression significantly repressed by 10µM tubacin (Figure 3.10 a). Tubacin 

also appeared to reduce I/O-induced MMP1 in a concentration-dependent manner 

between the concentrations of 1 to 5µM, but with a lesser degree of repression observed 

with 10µM and 20µM tubacin.  Therefore, tubacin did not repress cytokine-induced 

MMP1 expression as efficiently as cytokine-induced MMP13 expression. However, the 

repression of both cytokine-induced collagenases by tubacin indicates that the specific 

inhibition of HDAC6 activity may be sufficient to repress induced MMP1 and MMP13 

expression in the SW1353 cell line. Further assays are required to confirm if tubacin can 

repress cytokine-induced MMP1 and MMP13 in primary chondrocytes. 
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Figure 3.10. The effect of tubacin on cytokine-induced MMP1 and MMP13 expression in 

SW1353 cells 

 

SW1353 cells were incubated with increasing concentrations of tubacin (1µM, 2.5µM, 5µM and 

10µM) in combination with IL-1α (5ng/ml) or I/O (combination of IL-1α and OSM (10ng/ml)) 

for 6 hours. Total RNA was extracted with Cells-to-cDNA lysis buffer, reverse transcribed to 

cDNA and MMP expression determined via real-time qRT-PCR. (a) MMP1 expression in 

response to cytokine and tubacin treatment. (b) MMP13 expression in response to cytokine and 

tubacin treatment. The assay was completed once, using triplicate samples; means ± standard 

errors are represented. *P<0.05. 
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3.2.8 Tubacin reduces cytokine-induced cartilage resorption 
 

As tubacin exhibited the ability to repress cytokine-induced collagenase expression in 

the SW1353 cell line, we postulated that it may also prevent cytokine-induced cartilage 

degradation. In order to test this hypothesis, BNC explants were incubated with I/O (to 

stimulate cartilage degradation) in the presence or absence of tubacin/niltubacin 

(10µM). The level of proteoglycan and collagen release was defined as the percentage 

loss from the total content of cartilage explants at the start of the assay. Proteoglycan 

release is shown at day 3 and collagen release at day 14. 

 

Maximal GAG release at day 3 was approximately 18%, with reduced release compared 

to previous assays likely accountable to the earlier harvest time point (Figure 3.11a). 

Cytokine-induced GAG release was significantly reduced to approximately 10% by 

tubacin treatment, with niltubacin exhibiting no significant effect. Maximal collagen 

release was approximately 30% (Figure 3.11b). Tubacin significantly reduced cytokine-

induced collagen release to approximately 2%. Niltubacin also appeared to reduce 

cytokine-induced collagen release, but not significantly. Importantly, this assay 

indicates that inhibition of HDAC6 alone is capable of conferring a chondroprotective 

effect in vitro.  
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Figure 3.11. Tubacin prevents cytokine-induced cartilage resorption 

 

Bovine nasal cartilage discs were cultured in the presence or absence of I/O (a combination of 

IL-1α (0.5ng/ml) and OSM (5ng/ml)) and tubacin or niltubacin (10µM). Supernates were 

harvested at days 3 and day 7, and fresh reagents replaced until day 14. Glycosaminoglycan 

(GAG) release is shown as at day 3 and was assayed using the dimethylmethylene blue method. 

Collagen release is shown as at day 14 and was measured using a hydroxyproline assay. (a) 

GAG release in response to I/O treatment alone and in combination with tubacin or niltubacin. 

(b) Collagen release in response to I/O treatment alone and in combination with tubacin or 

niltubacin. The assay was performed once using quadruplicate samples; means ± standard error 

are represented. *P<0.05, **P<0.01, ***P<0.001. GAG and collagen release are depicted as 

percentage release from the total in tissue at the start of the assay. 
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3.3 Discussion 
 

HDAC inhibitors have been the subject of much research due to their potential use as 

cancer therapeutics, and the recent approval of vorinostat (Merck; trade name Zolinza) 

for the treatment of cutaneous T-cell lymphoma.  Inhibitors have been found to induce 

the differentiation and apoptosis of transformed cells, which is accompanied by an up-

regulation of repressed tumour suppressor gene expression. These effects are partially 

mediated by altering the acetylation status of chromatin and other non-histone proteins. 

However, the response to HDAC inhibitors seems to be dependent on cell type, the 

specific compound and experimental conditions (Balasubramanian et al, 2009). 

 

Conceptually, HDAC inhibitors increase the acetylation status of chromatin and other 

non-histone proteins, resulting in increased gene transcription. However, microarray 

analysis has found that only 2-9% of the genome is regulated by HDAC inhibitors, with 

the expression of an equal number of genes suppressed as those activated (Glaser et al, 

2003; LaBonte et al, 2009).  An example of inhibitor-mediated gene repression is that of 

cytokine-induced metalloproteinase expression at the mRNA and protein level by broad 

spectrum inhibitors TSA and NaBy (Young et al, 2005). The data previously published 

by our laboratory also demonstrated that these compounds prevented cytokine-induced 

cartilage resorption in the BNC model. Young et al. (2005) noted that HDAC inhibitors 

do not directly inhibit collagenase activity, indicating that inhibitors likely alter 

metalloproteinase gene expression to mediate repression and induce their 

chondroprotective effect (Young et al, 2005).  

 

The chondroprotective effect exhibited by HDAC inhibitors in the BNC assay indicates 

that they may have a potential use in the treatment of osteoarthritis. This is also 

supported by the reduced joint damage observed in inflammatory, and recently, 

osteoarthritic animal models as a result of HDAC inhibitor treatment (Chen et al, 2010; 

Chung et al, 2003; Keiichiro et al, 2004; Lin et al, 2007). The reduced joint damage in 

inflammatory animal models, mediated by inhibitors such as TSA and MS-275, was 

associated with reduced cytokine expression and increased expression of cell cycle 

regulators p16
INK4a

 and p21
WAF/Cip1 

(Chung et al, 2003; Keiichiro et al, 2004; Lin et al, 

2007). However, most recently a rabbit model of OA has demonstrated that intra-

articular injection of TSA reduced cartilage damage and suppressed the increased 

MMP1, MMP3, MMP13 and IL-1 expression observed in the OA rabbit controls (Chen 

et al, 2010). This once again demonstrates that inhibitors partially mediate their 
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chondroprotective effect by the repression of cytokine-induced metalloproteinase 

expression, and importantly that they are capable of doing this in an in vivo setting. 

 

Despite the abundance of data now demonstrating that these compounds are capable of 

repressing cytokine-induced metalloproteinase expression and conferring a 

chondroprotective effect, it is still unclear which histone deacetylases play a role in this 

process. The majority of arthritis-based research in regard to HDAC inhibitors has been 

conducted using ‘pan’ inhibitors such as TSA and NaBy, making it difficult to pinpoint 

if the inhibition of a specific HDAC or a group of HDACs mediates this 

chondroprotective effect. In order to determine which HDACs may be implicated, this 

current study selected inhibitors VPA, MS-275 and tubacin, which display variable 

degrees of selectivity towards members of the classical HDAC family, for use alongside 

the inhibitor TSA in both cell monolayer and BNC assays. The IC50 (median inhibitory 

concentration) value of each inhibitor is variable and dependent on cell type and HDAC 

isoform. TSA reportedly has an IC50 value of 50ng/ml (Furumai et al, 2001). VPA 

reportedly inhibits class I HDACs more efficiently than class II HDACs, with an IC50 

value of 0.7mM-1mM for class I HDACs and  >1mM for class II HDACs (HDAC4,5 

and 7) (Gurvich et al, 2004). The inhibitory profile of VPA differs between 

publications, with HDAC6 inhibition detected in a study conducted by Gottlicher et al. 

(2001) (IC50 2.4mM), which was not observed in a later publication by Gurvich et al. 

(2004). VPA also exhibits no inhibition towards HDAC10 (Gurvich et al, 2004). MS-

275 is known as a class I selective inhibitor, preferentially inhibiting HDAC1 and 

HDAC2, with an IC50 value of 0.3µM-2.5µM, compared to HDAC3 with an IC50 value 

of 8µM. MS-275 does not inhibit HDAC8 (IC50 > 100µM) (Hu et al, 2003; Inoue et al, 

2006). The IC50 value of tubacin-mediated HDAC6 inhibition has not been reported. 

However, the EC50 value (mean inhibitory concentration) for induced α-tubulin 

acetylation is reportedly 2.5µM (Haggarty et al, 2003), which reflects the level of 

HDAC6 inhibition. Inhibitor concentration ranges used in this current study were 

selected based on these reports. 

 

The SW1353 chondrosarcoma cell line was used as a model to establish the effect of 

HDAC inhibitors on histone and α-tubulin acetylation. TSA, VPA and MS-275 induced 

concentration-dependent acetylation of both histone 3 and histone 4 in the SW1353 cell 

line. The induction of histone acetylation by all three compounds is consistent with 

previous in vitro and in vivo studies (Camphausen et al, 2004; Chung et al, 2003; 
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Gurvich et al, 2004; Hoshikawa et al, 1994; Hu et al, 2003; Saouaf et al, 2009). The 

effect of tubacin on histone acetylation was not tested. However, previous studies have 

indicated that tubacin has no effect on histone acetylation levels (Haggarty et al, 2003). 

This suggests that histones are not the primary substrate of HDAC6, which is also 

supported by HDAC6 knockout studies where no significant change in the level of 

histone acetylation was observed (Zhang et al, 2008; Zhang et al, 2003). This is not 

surprising as HDAC6 has been found to be primarily localised in the cytoplasm (Verdel 

et al, 2000). TSA and tubacin were the only inhibitors found to increase α-tubulin 

acetylation, confirming that they are the only inhibitors capable of repressing HDAC6 

activity in the SW1353 cell line. TSA increased α-tubulin acetylation in a concentration-

dependent manner, which is consistent with previous studies and its status as a broad 

spectrum inhibitor (Koeller et al, 2003). Tubacin did not increase α-tubulin acetylation 

in a concentration-dependent manner, with the largest increase of acetylation observed 

with 5µM followed by a reduction in acetylation at 10µM and 20µM. Previous studies 

have indicated that tubacin increases α-tubulin acetylation in a concentration-dependent 

manner (Haggarty et al, 2003; Hideshima et al, 2005). However, these studies were 

carried out in different cell lines (A549 and multiple myeloma human cell lines), which 

may indicate that tubacin’s mode of action varies in the SW1353 cell line. VPA’s 

inability to induce α-tubulin acetylation confirms that it does not inhibit HDAC6 

activity, supporting the data of Gurvich et al. (2004). As expected, MS-275 did not 

induce tubulin acetylation which supports its status as a class I HDAC inhibitor. 

 

The expression of MMP1, MMP2, MMP3, MMP9, MMP10, MMP13, MMP28, 

ADAMTS4 and ADAMTS5 were detected in the SW1353 cell line after incubation with 

cytokines and HDAC inhibitors. Of the genes detected, MMP1, MMP3, MMP10 and 

MMP13 were significantly induced by IL-1α and OSM, consistent with previous studies 

(Koshy et al, 2002; Rowan et al, 2003; Young et al, 2005). TSA significantly repressed 

all cytokine-induced genes in a concentration-dependent manner, consistent with data 

previously published by our laboratory and with the repression observed in an OA 

rabbit model (Chen et al, 2010; Young et al, 2005). VPA also successfully repressed all 

cytokine-induced genes. VPA decreased I/O-induced gene expression and IL-1α-

induced MMP3 and MMP10 in a concentration-dependent manner. However, IL-1α-

induced MMP1 and MMP13 expression was not reduced in a concentration-dependent 

manner, with a greater repression observed with 0.5mM than 1mM VPA. The reason for 
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this is unclear but could be related to the concentration-dependent class switch of 

inhibition from class I to both class I and II HDACs reported for VPA (Gurvich et al, 

2004). VPA at 10mM achieved the greatest repression of all induced genes, reducing 

gene expression almost back to basal level. At this concentration it would be expected 

that both class I (HDAC1, 2 and 3) and class II HDACs (HDAC4, 5 and 7) would be 

repressed, suggesting that maximal repression of cytokine-induced genes by VPA is 

achieved with inhibition of members from both classes of classical HDACs in SW1353 

cells. This study demonstrated that VPA does not inhibit HDAC6 in SW1353 cells, and 

it has previously been shown not to inhibit HDAC10 in 293T cells (Gurvich et al, 

2004). This suggests that neither HDAC6 nor HDAC10 inhibition is essential to repress 

MMP1, MMP3, MMP10 and MMP13 expression in SW1353 cells. The inhibitory 

profiles published for VPA are yet to establish if the compound inhibits the activity of 

HDAC8, HDAC9 and HDAC11 (Gottlicher et al, 2001; Gurvich et al, 2004). 

Surprisingly, MS-275 did not repress cytokine-induced MMP1, MMP10 and MMP13 

expression in the SW1353 cell line. This initially suggested that class I HDACs 

(HDAC1, 2 and 3) may not regulate collagenase or stromelysin-2 (MMP10) expression.  

 

TSA, VPA and MS-275 all suppressed cytokine-induced MMP3 expression in SW1353 

cells, suggesting that HDAC inhibitors may mediate their chondroprotective effect 

through the regulation of this protease. Activation of pro-metalloproteinases, in 

particular pro-collagenases, is known to be a key regulatory step in ECM turnover and 

cartilage collagenolysis (Milner et al, 2001; Milner et al, 2006). MMP-3 is a known 

activator of all pro-collagenases (Knauper et al, 1996a; Knauper et al, 1993; Murphy et 

al, 1987). Therefore, inhibitor-mediated repression of MMP3 expression could result in 

decreased MMP-3 protein and thus reduce subsequent activation of pro-collagenases. 

 

TSA, VPA and MS-275 also reduced basal expression of MMP2 in the SW1353 cell 

line. MMP-2 has wide substrate specificity against cartilage matrix constituents 

(including collagen) and is known as potent activator of pro-MMP-13 (Aimes & 

Quigley, 1995; Knauper et al, 1996b; Murphy et al, 2002). Increased MMP2 has also 

been consistently detected in OA cartilage (Davidson et al, 2006; Kevorkian et al, 2004; 

Swingler et al, 2009). Therefore, the repression of MMP2 expression demonstrates 

another mode by which inhibitors may mediate their chondroprotective effect. 
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TSA, VPA and MS-275 all induced basal MMP28 expression in SW1353 cells. This is 

consistent with previous published data, where the inhibitors TSA, NaBy and VPA have 

been shown to induce MMP28 expression in various cell lines (Swingler et al, 2010; 

Young et al, 2005). Data recently published by our laboratory shows that TSA induces 

the acetylation of transcription factor Sp1, which results in a Sp1 protein-complex 

binding to a promoter proximal GT-box causing increased MMP28 expression. 

Consistent with previous data implicating HDAC1 in Sp1-mediated gene repression, 

luciferase assays also showed that siRNA knockdown of HDAC1 expression leads to 

increased MMP28 promoter activity (Swingler et al, 2010). This demonstrates a direct 

link between HDAC1 and metalloproteinase expression. Significantly increased 

MMP28 expression has consistently been detected in OA cartilage and synovium 

(Davidson et al, 2006; Kevorkian et al, 2004; Swingler et al, 2009). However, the role 

of MMP28 in the context of OA is unclear, and its specific biological substrates remain 

unknown (Rodgers et al, 2009). The differential effects of HDAC inhibitors across the 

metalloproteinase family confirm that the compounds are not mediating responses 

through non-specific toxicity. 

 

The effect of TSA, VPA and MS-275 on cytokine-induced MMP13 expression was 

determined in primary articular chondrocytes. TSA and VPA significantly repressed 

I/O-induced MMP13 expression, consistent with the repression observed in SW1353 

cells. However, in contrast to the lack of repression observed in the SW1353 cell line, 

MS-275 significantly repressed I/O-induced MMP13 expression in primary 

chondrocytes. This suggests that class I HDAC regulation (HDAC1, 2 and 3) of 

MMP13 expression in the SW1353 cells varies from that within primary chondrocytes. 

Exploring the difference in HDAC regulation of MMP13 expression between SW1353 

cells and primary chondrocytes could further elucidate the role of HDACs in 

metalloproteinase regulation. The difference observed between the two cell types may 

be because SW1353 cells are derived from a chondrosarcoma, and HDACs are known 

to be aberrantly expressed or recruited to repressive complexes in various cancer types 

(Lucio-Eterovic et al, 2008; Wu et al, 2001). Previous screening of HDAC expression in 

the SW1353 cell line, by quantitative real-time PCR, detected the expression of all 

classical HDACs (data not shown).  

 

Due to the repression of cytokine-induced MMP13 expression in primary chondrocytes, 

we postulated that VPA and MS-275 could prevent cytokine-induced cartilage 
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degradation in the BNC model. TSA, VPA and MS-275 all significantly repressed 

cytokine-induced cartilage degradation. The concentration-dependent repression of both 

GAG and collagen release seen with TSA is consistent with the previous study 

conducted by Young et al. (2005). The concentration-dependent repression of both 

GAG and collagen release observed with MS-275 demonstrates that the inhibition of 

class I HDACs (not including HDAC8) alone is enough to confer a chondroprotective 

effect. Although VPA significantly repressed both collagen and GAG release, it was the 

least effective of the inhibitors tested. This may be because VPA does not target the 

HDACs required to repress the expression of cartilage degrading metalloproteinases or 

it may be that VPA is not as stable in culture as the other inhibitors. The need for an 

early harvest time-point to measure GAG release, such as day 3, is supported by the 

detection of maximal GAG release between days 1 and 3 of the BNC profile conducted 

in this thesis. Therefore, these assays need to be repeated with early harvest time-points 

to determine how efficient these compounds are at repressing cytokine-induced 

proteoglycan release. The chondroprotective effect of TSA, VPA and MS-275 are also 

consistent with the reduced cartilage damage observed in arthritis animal models after 

TSA, MS-275 and VPA treatment (Chen et al, 2010; Chung et al, 2003; Keiichiro et al, 

2004; Lin et al, 2007; Saouaf et al, 2009). 

 

The BNC model provides a useful assay system for studying chondrocytes encapsulated 

within their native environment and the mechanisms of cartilage degradation. 

Metalloproteinase and inhibitor expression has previously been profiled during the BNC 

assay (Milner et al, 2006). The profile of metalloproteinase expression conducted by 

this thesis identified the cytokine-induction of a number of metalloproteinase genes, and 

that activation of pro-collagenases is a key regulatory point in actively resorbing 

cartilage. This is consistent with the previous screen of metalloproteinase expression in 

resorbing bovine cartilage conducted by Milner et al. (2006).  

 

The Milner profile indicated that ADAMTS-5 was the primary aggrecanase, and that 

MMP-1 and/or MMP-13 were the primary collagenases in the BNC model. In order to 

determine if HDAC inhibitor-mediated chondroprotection in the BNC model was due to 

repression of cytokine-induced metalloproteinase expression, and whether class I 

HDAC regulation of collagenases is different between SW1353 and primary 

chondrocyte cells, this thesis repeated the Milner profile in the presence of MS-275. 

Due to the importance of aggrecanases and collagenases in the previous BNC profile 
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and their known roles in cartilage ECM turnover, we chose to measure MMP1, MMP13, 

ADAMTS4 and ADAMTS5 expression, along with the known pro-collagenase activator 

MMP3 and metalloproteinase endogenous inhibitor TIMP, by qRT-PCR. As expected, 

cytokines IL-1α and OSM synergistically induced proteoglycan and collagen release 

from explants. Cytokines also significantly induced the expression of all genes detected, 

consistent with the induction seen in the previous BNC profile and chondrocyte 

monolayer assays (Barksby et al, 2006; Koshy et al, 2002; Milner et al, 2006; Young et 

al, 2005). However, as stated previously, the kinetics of the induction of MMP1 and 

MMP13 was slower in this current profile than in that of Milner et al. (2006), with 

maximum expression reached at day 10 of this study as opposed to day 2 of the Milner 

profile. The expression patterns of ADAMTS4 and ADAMTS5 also varied between the 

two profiles. In the study completed by Milner et al. (2006), ADAMTS4 and ADAMTS5 

expression increased rapidly between days 0 and 2 then reached a plateau. However, in 

the profile completed by this study, after the rapid cytokine-induction of aggrecanase 

expression between days 0 and 3, ADAMTS4 expression steadily decreased and 

ADAMTS5 expression fluctuated throughout the remainder of the assay. The reason for 

the different kinetics of collagenase gene induction and the expression patterns of both 

aggrecanase genes between the profiles is not clear. In order to clarify this, the assay 

would have to be repeated. 

 

Proteoglycan release was maximal between days 1 and 5, which correlated with peaks 

in I/O-induced ADAMTS4 and ADAMTS5 expression observed at day 3. However, 

ADAMTS5 I/O-induced expression also increased again at day 8. Maximal cytokine-

induced collagen release occurred between days 8 and 14. The late release of collagen is 

consistent with previous BNC assays, with substantial collagen release rarely occurring 

before day 10 (Milner et al, 2001; Milner et al, 2006; Young et al, 2005). Maximal 

collagen release correlated with maximal I/O-induced MMP1 and MMP13 expression at 

day 10. However, cytokine-induced collagenase expression was seen as early as day 1, 

with no substantial increase in collagen release. This suggests that the activation of pro-

collagenases is a key regulatory point in cartilage resorption. This is supported by the 

previous profile which detected pro-collagenases in the medium at day 5, but did not see 

active collagenases and collagenolysis until day 10 of culture (Milner et al, 2006). Both 

cytokine-induced proteoglycan and collagen release was significantly repressed by MS-
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275. This again exhibits the chondroprotective property of MS-275, and that inhibition 

of HDAC1, 2 and 3 catalytic activity is sufficient to confer this effect.  

 

MS-275 substantially repressed cytokine-induced collagenase and aggrecanase 

expression in bovine explants, achieving significant repression at various time points. 

This demonstrates that inhibitors likely prevent cytokine-induced cartilage degradation 

through the inhibition of metalloproteinase expression, particularly the collagenases and 

aggrecanases. MS-275 repression of cytokine-induced collagenase expression in the 

BNC model supports the repression of MMP13 seen in monolayers of primary 

chondrocytes. This substantiates the theory that class I HDAC regulation of MMP13 

expression varies in the SW1353 cell line in comparison to primary chondrocytes. It 

also demonstrates that cytokine induction of collagenases and the repression of induced 

collagenases by MS-275 is the same in primary chondrocytes whether in monolayer or 

embedded within the ECM. 

 

MMP3 expression was rapidly and robustly induced by cytokine treatment, with 

expression remaining consistently high compared to control during the BNC assay. MS-

275 successfully inhibited cytokine-induced MMP3 expression between days 3 and 10, 

consistent with the repression seen with all inhibitors in the SW1353 cell line. This 

suggests that inhibitors may block cartilage degradation through MMP3 repression and 

prevention of subsequent pro-collagenase activation. It has previously been 

demonstrated that endogenous addition of MMP-3 to BNC cartilage can mediate pro-

collagenase activation and induce collagenolysis (Milner et al, 2001).  

 

Cytokine treatment also increased TIMP1 expression, with significant induction 

compared to control seen at days 5 and 8. This is consistent with the previous BNC 

profile and with previous chondrocyte monolayer assays (Milner et al, 2006; Rowan et 

al, 2003). MS-275 significantly repressed induced TIMP1 expression from days 5 to 10. 

Therefore, it is important to note that HDAC inhibitors can result in the reduced 

expression of endogenous metalloproteinase inhibitors. Overall, there was a gradual 

decrease in TIMP1 observed during the assay, which may represent the anabolic to 

catabolic shift in gene expression thought to occur in the OA joint. 

 

However, it is also important to note that at day 1 of the BNC assay, the cytokine 

induction of all genes, except ADAMTS5, was further potentiated when combined with 

MS-275. The reason for this is unclear, and contrasts with the inhibition of these genes 
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observed at 6 hours in SW1353 and primary chondrocyte monolayer experiments. The 

profile would have to be repeated to clarify the reason for these experimental anomalies.  

 

Possibly the most interesting data was produced with HDAC6-specific inhibitor tubacin, 

which repressed cytokine-induced MMP1 and MMP13 expression in SW1353 cells 

(data provided by Dr. Rose Davidson, University of East Anglia, UK). Significant 

repression of IL-1α-induced MMP1 expression was seen with 10µM tubacin, and 

MMP13 with 20µM tubacin (although the level of significance was small). I/O-induced 

collagenase expression was not significantly repressed, but there was a clear 

concentration-dependent trend toward reduced expression of both genes. The data 

indicates that HDAC6 inhibition alone is capable of repressing cytokine-induced 

collagenase expression. Interestingly, the tubacin-mediated repression of cytokine-

induced MMP13 expression was more efficient than the repression of induced MMP1 

expression. This may suggest that HDAC6 plays a greater role in the regulation of 

MMP13 expression than MMP1 expression. The effect of this compound on cytokine-

induced metalloproteinase expression is yet to be established in primary chondrocyte 

monolayer assays. 

 

The repression of cytokine-induced MMP1 and MMP13 led us to postulate that tubacin 

may be capable of preventing cytokine-induced cartilage resorption. This was 

confirmed in the BNC assay, where tubacin significantly reduced cytokine-induced 

collagen and proteoglycan release. Both GAG and collagen release were significantly 

induced by cytokines compared to control, but did not reach the 80-100% level achieved 

in the previous BNC assays. GAG release was assayed at day 3, rather than the day 7 

time-point used in previous assays, in order to increase the sensitivity of proteoglycan 

release to inhibitor treatment. Therefore, the reduced total percentage GAG release is 

likely accountable to the earlier harvest time-point. The reason for the reduced collagen 

release compared to previous assays is unclear, but collagen and GAG release are 

sometimes variable between different bovine nasal septa. Despite an overall reduction in 

GAG release, tubacin treatment still significantly reduced release from approximately 

18% to 10%. Niltubacin, the inactive analogue of tubacin, had no inhibitory effect on 

cytokine-induced GAG release, demonstrating that tubacin is likely acting specifically. 

Cytokine-induced collagen release was reduced from 30% to 2% by tubacin treatment. 

Niltubacin also appeared to reduce collagen release but this did not reach statistical 
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significance. Therefore, this indicates that HDAC6 inhibition alone is capable of 

preventing cytokine-induced cartilage resorption. 

 

Pro-inflammatory cytokine IL-1 is known to signal via nuclear factor κβ (NFκβ), 

resulting in metalloproteinase expression (Yan & Boyd, 2007). It has therefore been 

postulated that HDAC inhibitors may repress metalloproteinase expression by 

suppressing the NFκβ signalling pathway, but data surrounding this question are 

conflicting. For example, some previously published data and luciferase assays 

conducted in the laboratory of Dr. David Young (Newcastle University, UK) suggest 

that TSA potentiates signalling via this pathway, rather than repressing it (Ashburner et 

al, 2001; Chen et al, 2001; Young et al, 2005). Conversely, other data suggest that TSA 

and SAHA inhibitors can inhibit the DNA-binding ability of NFκβ in both A549 and 

human colon cell lines, resulting in gene repression (Imre et al, 2006; Yin et al, 2001). 

However, Chabane et al. (2008) demonstrated that TSA and BA did not affect the 

DNA-binding activity of NFκβ in IL-1-stimulated human chondrocytes (Chabane et al, 

2008). In this instance, further research is required to elucidate the effect of HDAC 

inhibitors on NFκβ signalling. Conversely, IL-6 family cytokine OSM is known to 

signal through the JAK-STAT (Janus kinase-signal transducer and activator of 

transcription) pathway, which has been shown to induce metalloproteinase expression 

(Heinrich et al, 1998; Korzus et al, 1997). Catterall et al. (2001) demonstrated that 

STAT3 signalling indirectly mediates the ability of IL-1/OSM to induce MMP1 gene 

expression in immortalised human chondrocyte cell line T/C28a4 cells (Catterall et al, 

2001). Importantly, class I HDACs HDAC1, HDAC2 and HDAC3 have also been 

shown to play an essential role in STAT1-dependent transcription, and that HDAC 

inhibitors can therefore abrogate STAT1-induced gene expression (Klampfer et al, 

2003; Klampfer et al, 2004). Therefore, HDAC inhibitors may also mediate their effects 

on metalloproteinase expression via the JAK/STAT pathway. It is also postulated that 

the anti-inflammatory properties of HDAC inhibitors and their ability to reduce 

cytokine expression may contribute to chondroprotection (Chen et al, 2010; Leoni et al, 

2005). Therefore further studies are required to further elucidate the links between these 

cytokine-induced signalling pathways and HDAC inhibitor-mediated 

chondroprotection. 

 

This study supports data previously published by our laboratory showing that the broad 

spectrum HDAC inhibitor TSA represses cytokine-induced metalloproteinase 
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expression in monolayer SW1353 and primary chondrocyte cells, as well as preventing 

cytokine-induced cartilage resorption in the BNC model. However, further to this it has 

demonstrated that HDAC inhibitors which block the catalytic activity of a specific class 

or member of the classical HDAC family are capable of repressing cytokine-induced 

metalloproteinase expression, both in monolayer cell assays and in the BNC assay. 

Interestingly, MS-275, which is class I specific (not including HDAC8), and HDAC6 

specific tubacin demonstrated repression of induced metalloproteinase expression and 

exhibited a chondroprotective effect. This demonstrates that members of both the class I 

and class II HDAC family are involved in the regulation of metalloproteinase 

expression in cartilage, and subsequently in the regulation of cartilage homeostasis. 

VPA successfully inhibited both induced metalloproteinase expression and cartilage 

degradation, but a high concentration that potentially inhibited most members of the 

class I and II HDAC family was required to cause maximal inhibition. This suggests 

that VPA may not be the most effective inhibitor for potential OA therapy. However, 

VPA has previously been shown to be well tolerated in the treatment of human 

disorders such as epilepsy (Bialer & Yagen, 2007; Gottlicher et al, 2001; Nissinen & 

Pitkanen, 2007; Phiel et al, 2001), which may mean that the higher concentrations 

required for chondroprotection could also be well tolerated.  

 

Due to the chondroprotective property of tubacin in the BNC model, the development of 

HDAC6 inhibitors for the treatment of OA looks particularly attractive. Furthermore, 

the therapeutic potential of a HDAC6 inhibitor is supported by the lack of major 

phenotype in the HDAC6 knockout mouse (Zhang et al, 2008). Zhang and colleagues 

demonstrated that HDAC6 is dispensable for normal development and that tubulin 

hyperacetylation, as a result of genetic HDAC6 inactivation or following treatment with 

HDAC inhibitors, has only minor effects on mice kept under standard laboratory 

conditions. This suggests that pharmacological inhibition of this enzyme may only have 

few side effects, but this was completed in a non-pathological setting. Interestingly, 

despite the lack of phenotype from HDAC6 deletion, the over-expression of HDAC6 

has been linked with human X-linked chondrodysplasia (Simon et al, 2010). The over-

expression of HDAC6 in these patients was attributed to an A to T SNP in the 3’UTR of 

HDAC6, which also lies in the seed sequence of microRNA-433 (hsa-miR-433).  Simon 

et al. (2010) demonstrated that miR-433 down-regulates the expression of endogenous 

HDAC6 and that of an eGFP-reporter mRNA bearing the wild-type 3’UTR of HDAC6, 
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but that this effect is totally abolished when the reporter mRNA encodes the mutated 

HDAC6 3’UTR. Therefore, the mutation led to an accumulation of HDAC6 mRNA and 

protein in MG63 osteosarcoma cells, which mirrors the increased level of HDAC6 

expression seen in the X-linked chondrodysplasia patients. It is thought that the 

increased level of HDAC6 expression contributes to the chondrodysplasia phenotype in 

humans through its interaction and inhibition of RUNX2 transcription factor, which is 

known to be essential for osteoblast differentiation (Simon et al, 2010). A mouse over 

expressing HDAC6 is yet to be described. 

 

It has been shown recently that intra-articular injection of broad spectrum inhibitor TSA 

is capable of repressing induced metalloproteinase expression in the cartilage of an OA 

rabbit model (Chen et al, 2010). This importantly indicates that HDAC inhibitors are 

capable of repressing induced metalloproteinase expression within cartilage in an in 

vivo and pathological setting, further demonstrating the potential use of these 

compounds in the future treatment of OA. However, if a HDAC6 inhibitor was to be 

developed the broad-spectrum of HDAC6 substrates and its cellular roles must be taken 

into account. For example, HDAC6 is known to bind ubiquitinated, misfolded proteins 

and facilitate their accumulation into an aggresome (Kawaguchi et al, 2003). It has also 

established a role as ‘stress sensor’ through its induction of heat-shock proteins and 

contribution to the formation of cytoplasmic stress-granules (Boyault et al, 2007; 

Kovacs et al, 2005; Kwon et al, 2007). Therefore, HDAC6 inhibition in a pathological 

setting may lead to greater side-effects.  

 

HDAC6 is a unique classical HDAC in that it has two catalytic HDAC domains, both of 

which are required for deacetylase activity, and a C-terminal zinc finger domain that 

binds ubiquitin (Seigneurin-Berny et al, 2001; Zhang et al, 2006; Zhang et al, 2003). It 

is also unique in that it has not been found in any known classical HDAC-containing 

repressive complexes, suggesting that it may be functionally distinct from other 

HDACs. It is interesting that its inhibition alone can mediate repression of cytokine-

induced metalloproteinase expression and chondroprotection, since it is primarily 

localised to the cytoplasm. However, a fraction of HDAC6 has been shown to shuttle 

between the cytoplasm and nucleus in response to certain signalling pathways (Verdel 

et al, 2000). For example, a fraction of HDAC6 has been shown to translocate to the 

nucleus in response to proliferation arrest (Verdel et al, 2000). HDAC6 nuclear export is 

regulated by interaction between an N-terminally located nuclear export signal (NES1) 
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and CRM1/exportin1 proteins, with other uncharacterised mechanisms perhaps also 

contributing to this process (Kaffman & O'Shea, 1999; Verdel et al, 2000). It is also 

suggested that post-translational modifications of amino acids surrounding the NES1 

motif of HDAC6, and/or interaction of yet unknown binding proteins to this region, 

might play a role in masking the NES1. This would therefore promote HDAC6 

accumulation in the nucleus (Kaffman & O'Shea, 1999; Verdel et al, 2000). HDAC6 

knockout in both embryonic stem cells and a murine model has indicated that α-tubulin 

is the main physiological substrate of HDAC6, with no significant change in histone 

acetylation levels observed (Zhang et al, 2008; Zhang et al, 2003). However, Zhang and 

colleagues have shown that purified HDAC6 can deacetylate histones in vitro, 

suggesting that HDAC6 may control gene transcription by deacetylating histones and 

potentially other nuclear proteins in some select cases (Zhang et al, 2006). Consistent 

with this, Zhang and colleagues stated that unpublished data from transient transfection 

assays identified that artificial recruitment of HDAC6 to promoter DNA repressed the 

transcription of reporter plasmids. This suggests that the presence of HDAC6 in the 

nucleus could impact on gene expression (Zhang et al, 2003). Whether the cellular 

localisation of HDAC6 impacts on its regulation of metalloproteinase expression is yet 

to be established, as is whether or not HDAC inhibitors or pro-inflammatory cytokines 

trigger the signalling pathways that influence its sub-cellular localisation. Therefore, the 

way in which HDAC6 mediates its chondroprotective effect will need to be the subject 

of further research. 

 

In conclusion, this chapter shows that inhibition of class I HDACs (HDAC1, HDAC2 

and HDAC3) by MS-275, and separately the inhibition of HDAC6 by tubacin, can 

repress cytokine-induced metalloproteinase expression and subsequently prevent 

cartilage degradation. Previously published data has also implicated specific HDACs in 

the transcriptional regulation of members of the matrix metalloproteinase family. For 

example, the knockdown of HDAC7 has been shown to repress both basal and IL-1-

induced MMP13 expression in SW1353 cells (Higashiyama et al, 2009). The next 

chapter aims to further clarify the specific roles of classical HDACs on the expression 

of MMP13 in SW1353 and primary chondrocyte cells, using a siRNA approach. 
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Chapter IV: The role of histone deacetylases in 

cartilage gene regulation 
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Chapter IV 

 

The role of histone deacetylases in cartilage gene regulation 

 

4.1 Introduction 

Previously published data demonstrate that broad spectrum HDAC inhibitors TSA and 

NaBy can decrease cytokine-induced metalloproteinase expression both in the SW1353 

cell line and primary articular chondrocytes (Young et al, 2005). These compounds 

were also found to exhibit a chondroprotective effect against cytokine-induced cartilage 

resorption in the BNC assay. HDAC inhibitors have also been shown to reduce cartilage 

destruction in inflammatory arthritis mouse models, which is associated with reduced 

cytokine expression and increased expression of cell cycle regulators p16
INK4a

 and 

p21
WAF/Cip1 

(Chung et al, 2003; Keiichiro et al, 2004; Lin et al, 2007).  Importantly, TSA 

has also been found to reduce cartilage degradation in an OA rabbit model, which was 

reported as partially mediated through the repression of induced IL-1α, MMP1, MMP3 

and MMP13 expression (Chen et al, 2010).  

 

In this thesis the repression of induced metalloproteinase expression by MS-275 and 

tubacin implicates both class I and II HDACs in the regulation of cytokine-induced 

metalloproteinase expression. Class I-specific inhibitor MS-275 decreased cytokine-

induced metalloproteinase expression in primary articular chondrocytes and the BNC 

assay, whilst HDAC6-specific inhibitor tubacin decreased induced collagenase 

expression in the SW1353 cell line. Tubacin also significantly repressed cytokine-

induced cartilage degradation in the BNC assay. This is thought to be mediated through 

the repression of cytokine-induced metalloproteinase expression via the inhibition of 

HDAC6 activity.  

 

Members of the classical HDAC family have already been shown to have a direct effect 

on metalloproteinase gene expression. As previously described in chapter III, our 

laboratory has demonstrated that HDAC1 represses MMP28 promoter activity through 

its interaction with the Sp1 transcription factor (Swingler et al, 2010). Interestingly, 

Chang et al. (2006) also detected a 6.5-fold increase in MMP10 expression in the 

HDAC7 null mouse, with further experiments in human umbilical vein endothelial cells 

(HUVECs) indicating that HDAC7 inhibits MEF2 induction of MMP10 expression. 

However, most significant to this thesis, Higashiyama et al. (2009) have recently 
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implicated HDAC7 in the regulation of MMP13 expression in the SW1353 cell line, 

with the knockdown of HDAC7 in SW1353 cells resulting in decreased basal and IL-

1α-induced MMP13 expression. This study also profiled classical HDAC expression in 

OA versus normal knee cartilage by qRT-PCR and detected that HDAC7 was 

significantly increased in OA samples (Higashiyama et al, 2009). Higashiyama and 

colleagues concluded that elevated HDAC7 in human OA may contribute to cartilage 

degradation via promoting MMP13 gene expression.  

 

Profiles comparing metalloproteinase gene expression in OA cartilage and synovium to 

that of ‘normal’ tissue have consistently found MMP13 to be significantly increased in 

OA tissue (Davidson et al, 2006; Kevorkian et al, 2004; Swingler et al, 2009). 

Cytokine-induced MMP13 expression can also be significantly repressed by HDAC 

inhibitors, which has now been demonstrated in vitro in both cell and explant models 

(of this study), and in vivo in the OA rabbit model (Chen et al, 2010; Young et al, 

2005). The repression of cytokine-induced MMP13 by MS-275 and tubacin, observed in 

this study, suggests that class I HDACs (HDAC1, HDAC2 and HDAC3) and HDAC6 

play a role in the regulation of MMP13 expression. This project aimed to confirm the 

repression of MMP13 expression in response to HDAC7 knockdown observed by 

Higashiyama et al. (2009), and to determine the role of all other classical HDAC 

members in both basal and IL-1α-induced MMP13 expression. In order to do this, the 

expression of each classical HDAC was knocked down using siRNA technology in non-

stimulated and IL-1α-stimulated SW1353 cells and primary human articular 

chondrocytes. The effect of this knockdown on MMP13 expression was assessed by 

qRT-PCR. Understanding the role of classical HDACs in the regulation of OA-

associated metalloproteinase genes, such as MMP13, could potentially enable the 

development of a specific HDAC inhibitor to modulate metalloproteinase expression, 

and subsequently prevent cartilage degradation. This project also aimed to profile the 

expression of classical HDACs in OA cartilage compared to normal cartilage, in order 

to confirm the aberrant expression of HDAC7 observed in OA cartilage by 

Higashiyama et al. (2009). 
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Aims 
 Profile the expression of classical HDACs in cartilage from the femoral head of 

patients with fracture of the neck of femur (NOF) and patients with OA, using 

Taqman Low Density Array (TLDA). 

 

 Optimise siRNA knockdown of classical HDACs in the SW1353 cell line at the 

mRNA and protein level. 

 

 Complete siRNA knockdown at the mRNA level of each classical HDAC in 

non-stimulated and IL-1α-stimulated SW1353 and primary articular chondrocyte 

cells, and determine the effect of this knockdown on MMP13 expression by 

qRT-PCR. 

 

 Assess the effect of TSA treatment on classical HDAC expression in SW1353 

cells. 
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4.2 Results 
 

4.2.1 The profile of classical HDAC expression in OA versus normal neck of femur 

cartilage  

 

Higashiyama and colleagues have previously profiled the expression of classical 

HDACs in cartilage obtained from the condyles and tibial plateaus of normal (n=6) 

(likely post-mortem) and OA (n=10) donor patients, by qRT-PCR. They identified that 

the expression of HDAC7 was significantly increased in OA cartilage when compared 

to normal cartilage. This finding was also confirmed by the immunostaining of cartilage 

sections with specific anti-HDAC7 antibodies, which identified increased HDAC7 

positive cells in the middle and deep zone cartilage layers of OA sections when 

compared to normal (Higashiyama et al, 2009). The HDAC profile also showed 

decreased expression of HDAC4 and HDAC10 in OA cartilage, but this did not reach 

statistical significance (Higashiyama et al, 2009). 

 

To confirm the increased expression of HDAC7 in OA cartilage reported by 

Higashiyama et al. (2009) and to assess the expression of other classical HDACs in the 

diseased tissue, the expression levels of all eleven HDACs (including two splice 

variants for HDAC9) were profiled in hip cartilage by Taqman Low Density Array 

(TLDA).  Cartilage samples were obtained from patients undergoing total hip 

replacement due to OA of the hip (n=12) or a fracture to the neck of femur (NOF) 

(n=12). Cartilage from the fracture patients was phenotypically normal and will be 

referred to as such throughout. It should be noted that the OA cartilage in our study was 

from patients with end-stage disease, and gene expression patterns may be distinct from 

those occurring at disease initiation or early in disease progression. The cartilage 

samples were collected by Dr. Rose Davidson (Clark Laboratory, University of East 

Anglia) and the TLDA was completed in collaboration with the laboratory of Dr. David 

Young (Newcastle University, UK).  

 

The profile (Figure 4.1) identified that the majority of HDAC genes have decreased 

expression in OA hip cartilage when compared to normal. In contrast to the study 

completed by Higashiyama et al. (2009), HDAC7 was one of the most significantly 

decreased genes in OA cartilage compared to the expression in normal cartilage (Figure 

4.1). The expression of HDAC5 (* P<0.05), HDAC2, HDAC11 (**P<0.01), HDAC3 

and HDAC8 (***P<0.001) were also decreased in OA cartilage compared to normal.  
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Again, in contrast to the Higashiyama profile, HDAC10 expression was significantly 

increased in OA cartilage samples compared to normal. The expression of HDAC1, 

HDAC4, HDAC6 and HDAC9 (both variants) are not significantly altered in OA 

cartilage samples compared to normal (Figure 4.1). The lack of consistency between 

this profile and that conducted by Higashiyama et al. (2009) could be attributed to many 

factors. For example, the cartilage samples from this study were taken from the hip, 

whilst the samples used in the Higashiyama profile were obtained from the knee, which 

may contribute to altered gene expression. Also, the Higashiyama study does not state 

in what circumstance the normal tissue was obtained (although likely due to post-

mortem), and thus could be another source of variability between the two profiles. The 

mean age of patients from which normal samples were taken in the Higashiyama study 

was also substantially younger (30.8 years) than mean age of the normal samples used 

in this current study (76.7 years), which could also contribute to the contrasting gene 

expression detected between the two profiles. It should be noted that the normal 

cartilage and OA cartilage samples were not age-matched in the Higashiyama study, 

with normal samples substantially younger than the OA samples (71.6 years) 

(Higashiyama et al, 2009). This could have potentially led to anomalies within the 

Higashiyama profile itself. 

 

In conclusion, the current HDAC profile demonstrates that the majority of HDAC 

transcripts are decreased in OA hip cartilage compared to normal, suggesting that their 

altered expression may play a role in OA pathology. Due to the important role of 

HDACs in transcriptional regulation, it is possible that their altered expression in OA 

could contribute to, or be responsible for the aberrant expression of genes detected in 

diseased cartilage (Davidson et al, 2006; Kevorkian et al, 2004; Swingler et al, 2009). 

Therefore, further HDAC expression profiles will need to be conducted to confirm their 

altered expression in OA and to establish the consequences of this. A profile of HDAC 

expression in an animal OA model would likely be best for examining the kinetics of 

HDAC expression during disease development and progression.  
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Figure 4.1. Profile of HDAC expression in OA cartilage compared to normal cartilage 

 

Histone deacetylase expression was determined in RNA from the cartilage of neck of femur 

(NOF) fracture patients (open; n=12) and OA patients (grey; n=12). Gene expression was 

quantified as part of a Taqman Low Density Array (TLDA) using Applied Biosystems assays. 

Expression was normalised to the house-keeping gene ActB, whose expression showed the least 

variation amongst samples. Statistical differences were determined using a non-parametric 

Mann-Whitney U test where * represents P<0.05, ** P<0.01 and *** P<0.001. The expression 

of two splice variants of HDAC9 were determined. Data were kindly provided by Dr. David 

Young (Newcastle University, UK). 
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4.2.2 Optimising siRNA concentration and incubation time for effective HDAC 

mRNA knockdown 

 

Assays to optimise siRNA knockdown of classical HDACs were undertaken in the 

SW1353 cell line. Cells were incubated with 100nM siRNA (of each individual HDAC 

siRNA pool) for 24 and 48 hours, followed by detection of HDAC expression by qRT-

PCR in order to determine the time-point at which mRNA knockdown reached 

significance. It was established that significant mRNA knockdown could be achieved at 

24 hours with 100nM siRNA, and that the majority of HDACs were optimally repressed 

at this time-point when compared to the levels of repression achieved at 48 hours 

(Figure 4.2a). Interestingly, overall HDAC expression was found to be reduced in 

control, non-target and HDAC siRNA samples at the 48 hour time point when 

compared to 24 hours of incubation. The reason for this remains unclear. It was decided 

that an incubation of 24 hours would be used for optimal knockdown at the mRNA 

level.  

 

Cells were then incubated with 10nM, 25nM and 100nM siRNA (of each individual 

HDAC siRNA pool), followed by detection of HDAC expression by qRT-PCR in order 

to determine the optimal siRNA concentration for significant mRNA knockdown at 24 

hours. It was determined that 25nM siRNA achieved significant mRNA knockdown at 

24 hours, of a level similar to that of 100nM siRNA (Figure 4.2b). Therefore, the 

concentration of 25nM siRNA and an incubation period of 24 hours were chosen for 

future mRNA knockdown assays. The expression of HDAC2 and HDAC3 were also 

assessed after HDAC1 knockdown in order to determine if siRNA knockdown was 

specific. The expression of both HDACs was unaltered by HDAC1 knockdown, 

confirming that HDAC knockdown was specific (data not shown). This is particularly 

important in the case of HDAC2, due to its >80% homology with HDAC1. 

 

  



HDAC siRNA assays                                                                                        Chapter IV 

134 
 

 

Figure 4.2. The optimisation of HDAC mRNA knockdown in the SW1353 cell line 

 

In order to optimise siRNA incubation times for maximal HDAC mRNA knockdown, SW1353 

cells were incubated with 100nM siRNA for each classical HDAC for 24 hours and 48 hours. 

Total RNA was extracted with Cells-to-cDNA lysis buffer, reverse transcribed to cDNA, and 

HDAC expression detected by real-time qRT-PCR. (a) An example of optimisation: HDAC2 

knockdown after 24 hours and 48 hours of incubation with siRNA. 

 

In order to optimise the concentration of siRNA for maximal HDAC mRNA knockdown, 

SW1353 cells were incubated with increasing concentrations of each HDAC siRNA (10nM, 

25nM and 100nM) for 24 hours. Total RNA was extracted with Cells-to-cDNA lysis buffer, 

reverse transcribed to cDNA, and HDAC expression detected by real-time qRT-PCR. (b) An 

example of optimisation: HDAC1 knockdown after 24 hours of incubation with increasing 

concentrations of siRNA.  

 

Assays were completed once, using triplicate samples; means ± standard errors are represented. 

*P<0.05, **P<0.01, ***P<0.001. (C, control; NT, non-targeting siRNA; siHDACx, HDAC 

siRNA) 
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4.2.3 Optimising non-targeting siRNA controls for mRNA knockdown assays 
 

Non-targeting siRNA (negative siRNA) control reagents are designed to have no known 

targets within the cell line chosen to complete targeted siRNA knockdown. These 

reagents allow sequence-specific siRNA silencing to be distinguished from sequence-

independent effects, such as toxicity resulting from transfection and hypersensitivity 

due to the introduction of double-stranded RNA. Thus non-targeting siRNA are 

essential to control for the effects of siRNA delivery. Initial knockdown assays in the 

SW1353 cell line indicated that some non-targeting siRNAs had significant effects on 

both basal and cytokine-induced MMP13 expression. For example, the siGENOME 

Non-Targeting Pool 2 (Dharmacon, Thermo Scientific, Waltham, USA), which is 

comprised of four siGENOME non-targeting siRNAs identified to have minimal off-

target signatures, was found to induce both basal and cytokine-induced MMP13 

expression in many knockdown assays completed in SW1353 cells. The induction of 

MMP13 by this non-target control made it difficult to interpret knockdown data and was 

therefore unsuitable for this study. Silencer
® 

Negative Control #1 siRNA (Ambion, 

Applied Biosystems, Warrington, UK) is a non-targeting siRNA designed to have no 

significant sequence similarity to human transcripts, but appeared to repress both basal 

and induced MMP13 expression in SW1353 cells. This confirmed that this non-

targeting siRNA was also not suitable for mRNA knockdown assays in this study, and 

further confirms that it is difficult to introduce siRNA into cells without having off-

target effects. The non-targeting siRNA chosen for this study was AllStars Negative 

Control (Qiagen, West Sussex, UK) which displayed no significant effect on basal or 

cytokine-induced MMP13 expression in the SW1353 cell line, allowing accurate 

comparison of gene-specific siRNA knockdown to negative control. However, the 

AllStars non-targeting siRNA did further potentiate IL-1α-induced MMP13 expression 

in primary articular chondrocytes, which will be expanded upon later in this chapter. 
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4.2.4 Optimising siRNA concentration and incubation time for effective HDAC 

protein knockdown 

 

To determine if siRNA knockdown of classical HDACs could be achieved at the protein 

level, SW1353 cells were incubated with 10nM, 25nM and 100nM siRNA targeted to 

HDAC1 or HDAC2 for 48 hours. After siRNA treatment the protein levels of HDAC1 

and HDAC2 were assessed by immunoblot with specific antibodies and compared to 

GAPDH as a loading control. Immunoblots indicated that the knockdown of HDAC1 at 

the protein level, compared to untreated cells, could be achieved with all concentrations 

of HDAC1 siRNA tested (Figure 4.3a). Interestingly, 10nM siRNA was as effective at 

knocking down HDAC1 at the protein level as 25nM and 100nM siRNA. HDAC2 

protein was also reduced by all HDAC2 siRNA concentrations compared to untreated 

cells (Figure 4.3b). The most significant repression of HDAC2 protein was achieved 

with 100nM siRNA. GAPDH expression remained unchanged by HDAC1 and HDAC2 

siRNA treatment. This indicated that the pre-designed siGENOME SMARTpool siRNAs 

used in this study are capable of repressing HDAC expression at the protein level, but 

this will also need to be confirmed for all other classical HDACs. 
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Figure 4.3. The optimisation of siRNA HDAC protein knockdown in the SW1353 cell line 

 

SW1353 cells were incubated with increasing concentrations of HDAC1 or HDAC2 siRNA 

(10nM, 25nM and 100nM) for 48 hours. Total protein was extracted, resolved by SDS-PAGE, 

and the level of HDAC proteins assessed by immunoblotting with specific antibodies. The level 

of HDAC expression was compared to total GAPDH. (a) HDAC1 protein level after siRNA 

treatment. (b) HDAC2 protein level after siRNA treatment. 
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4.2.5 The effect of siRNA knockdown of classical HDACs on MMP13 expression in 

the SW1353 cell line 

 

MMP-13 is thought to be the primary collagenase in OA. This is supported by its 

significantly increased expression in OA cartilage (Davidson et al, 2006; Kevorkian et 

al, 2004; Swingler et al, 2009), its over-expression leading to cartilage degradation 

similar to that of OA in mice (Neuhold et al, 2001) and by its inhibition preventing 

collagen release from human OA cartilage explants (Billinghurst et al, 1997). 

Understanding the transcriptional mechanisms involved in the regulation of this enzyme 

could potentially help elucidate its role in OA and lead to the development of possible 

OA therapeutics. This thesis has confirmed that TSA can significantly repress cytokine-

induced MMP13 expression in both SW1353 cells and primary articular chondrocytes, 

consistent with the study by Young et al. (2005). It has also shown that class I-specific 

(MS-275) and HDAC6-specific (tubacin) inhibitors are capable of repressing cytokine-

induced MMP13 expression. These findings indicate that both class I and class II 

HDACs play a role in the regulation of cytokine-induced MMP13 expression. The 

involvement of Class II HDACs in the transcriptional regulation of MMP13 expression 

is consistent with the study completed by Higashiyama et al. (2009), which reported 

that siRNA repression of HDAC7 mRNA significantly repressed MMP13 expression in 

SW1353 cells. We therefore chose to establish the effect of siRNA knockdown of all 

members of the classical HDAC family on MMP13 expression in the SW1353 cell line, 

and to later confirm these effects in primary articular chondrocytes. 

 

SW1353 cells were incubated with 25nM non-targeting and HDAC siRNAs for 24 

hours (as described in section 2.2.13), followed by serum starvation overnight. Cells 

were then incubated for a further 6 hours either in the presence or absence of IL-1α. The 

addition of IL-1α to siRNA treated cells enabled us to determine the role of HDACs in 

the regulation of basal and cytokine-induced MMP13 expression. TSA (50ng/ml) was 

also added to non-siRNA-treated cells in the presence or absence of IL-1α as a positive 

control, due to its consistent repression of cytokine-induced MMP13 expression. The 

addition of TSA also allowed us to compare the level of MMP13 repression achieved 

through inhibition of all HDAC activity to that achieved by individual HDAC gene 

repression. Both HDAC and MMP13 expression were determined by qRT-PCR. Mock 

transfections, where cells were treated with Dharmafect transfection regent and no 
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siRNA, were also included for all knockdown experiments to ensure that transfection 

reagent alone had no effect on gene expression. 

 

Two knockdown experiments were completed in the SW1353 cell line, in which each 

classical HDAC was knocked down at the mRNA level and the subsequent effect on 

MMP13 expression assessed. The first experiment was preliminary and completed with 

the siGENOME Non-Targeting Pool 2 (Dharmacon) as a negative control. This non-

targeting siRNA was found to increase basal and cytokine-induced MMP13 expression 

in some assays, making it impossible to confidently interpret the siRNA knockdown of 

HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, HDAC9 and HDAC10 on MMP13 

expression. However, conclusions were successfully drawn from the knockdown of 

HDAC1, HDAC2, HDAC3 and HDAC11 (Appendix IV) of this preliminary study, 

which will be referred to in this chapter. The knockdown data shown in this chapter is 

therefore from the second complete SW1353 knockdown experiment, using the AllStars 

Negative Control non-targeting siRNA (Qiagen).  
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4.2.5.1 The effect of siRNA knockdown of class I HDACs on MMP13 expression in 

the SW1353 cell line 

 

The expression of all class I HDACs were significantly repressed by siRNA treatment 

compared to non-targeting siRNA (Figure 4.4). Interestingly, it was also observed that 

HDAC3 expression appeared to be induced by TSA treatment (Figure 4.4c). This is 

consistent with a study previously completed by Hemmatazad et al. (2009) in which 

TSA induced HDAC3 expression in systemic sclerosis (SSc) skin fibroblasts at both the 

mRNA and protein level. 

 

The knockdown of HDAC1 expression had no significant effect on basal MMP13 

expression when compared to the comparative non-targeting control. However, HDAC1 

knockdown in IL-1α-stimulated cells led to a further potentiation of induced MMP13 

expression (Figure 4.4a). The potentiation of induced MMP13 expression was also 

observed in preliminary experiments, but did not reach statistical significance 

(Appendix IV Figure 4a). This suggests that HDAC1 may repress cytokine-induced 

MMP13 transcription in the SW1353 cell line. The transcriptional repression of MMP 

genes by HDAC1 is consistent with previous findings published by our laboratory, 

showing that HDAC1 represses MMP28 promoter activity through its interaction with 

the Sp1 transcription factor (Swingler et al, 2010). However, to date, Sp1 has not been 

found to be involved the transcriptional regulation of MMP13 expression. 

 

The knockdown of HDAC2 expression significantly reduced basal and IL-1α-induced 

MMP13 expression compared to comparative non-targeting siRNAs (Figure 4.4b). This 

effect was also observed in the preliminary experiment (Appendix IV Figure 4b), 

suggesting that HDAC2 plays a role in the induction of both basal and cytokine-induced 

MMP13 expression (Figure 4.4b). 

 

Knockdown of HDAC3 expression also resulted in the significant repression of basal 

and IL-1α-induced MMP13 expression (Figure 4.4c). The repression of cytokine-

induced MMP13 expression in response to HDAC3 knockdown was also observed in 

the preliminary experiment, although no effect was observed on basal MMP13 

expression (Appendix IV Figure 4c). The consistent repression of cytokine-induced 

MMP13 in response to HDAC3 knockdown suggests that HDAC3 plays a role in IL-1α 

induction of MMP13. However, the contrasting effect of HDAC3 knockdown on basal 

MMP13 expression between the preliminary knockdown assay and this assay means 
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that further assays are required to determine the role of HDAC3 on MMP13 

transcription under normal conditions. 

 

HDAC8 knockdown also resulted in significant inhibition of both basal and IL-1α-

induced MMP13 expression compared to non-target controls (Figure 4.4d), indicating 

that HDAC8 plays a role in the induction of MMP13 expression. These data cannot be 

compared to the effect of HDAC8 knockdown in the preliminary experiment due to the 

siGENOME Non-Targeting siRNA inducing both basal and IL-1α-induced MMP13 

expression (data not shown). 
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Figure 4.4. The effect of class I HDAC siRNA knockdown on MMP13 expression in the SW1353 

cell line. 

 

SW1353 cells were incubated with 25nM siRNA for 24 hours in serum-containing medium. Cells 

were then serum-starved overnight, followed by IL-1α (5ng/ml) and/or TSA (50ng/ml) treatment 

(where appropriate) for 6 hours. Total RNA was extracted with Cells-to-cDNA lysis buffer, reverse 

transcribed to cDNA, and MMP13 and HDAC expression detected by real-time qRT-PCR. (a) 

HDAC1 and MMP13 expression after siRNA treatment. (b) HDAC2 and MMP13 expression after 

siRNA treatment. (c) HDAC3 and MMP13 expression after siRNA treatment. (d) HDAC8 and 

MMP13 expression after siRNA treatment. Assays were completed twice, using triplicate samples. 

Data presented are representative of one assay; means ± standard errors are represented. *P<0.05, 

**P<0.01, ***P<0.001. For MMP13 expression graphs, non-cytokine treated samples correspond 

to the left Y axis, and cytokine treated samples correspond to the right Y axis. (C, control; CM, 

control-mock transfection; NT, non-targeting siRNA; siHDACx, HDAC siRNA) 
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4.2.3.2 The effect of siRNA knockdown of class IIa HDACs on MMP13 expression in 

the SW1353 cell line 

 

Significant siRNA knockdown of HDAC5 and HDAC9 expression was achieved in 

non-stimulated (cells treated with siRNA but not IL-1α) and IL-1α-stimulated SW1353 

cells (Figure 4.5b and d). HDAC4 expression was significantly repressed in non-

stimulated cells, but the repression in IL-1α treated cells did not reach statistical 

significance (Figure 4.5a). Significant HDAC7 knockdown was detected in IL-1α-

treated cells but did not reach statistical significance in non-stimulated cells. 

Interestingly, it was also noted that HDAC4 expression was significantly increased in 

response to TSA treatment (Figure 4.5a). 

 

Basal MMP13 expression was significantly repressed in response to HDAC4, HDAC5 

and HDAC7 knockdown (Figure 4.5a, b and c), suggesting that all three HDACs could 

potentially play a role in maintaining basal expression of MMP13 in the SW1353 cell 

line. Interestingly, significant repression of basal MMP13 was achieved in response to 

HDAC7 knockdown despite HDAC7 knockdown not reaching statistical significance in 

these cells (Figure 4.5c). This suggests that a small reduction in HDAC7 expression is 

capable of conferring repression of basal MMP13 expression in SW1353 cells. Basal 

MMP13 expression was not significantly reduced by HDAC9 knockdown, but there was 

however a trend to decreased expression in comparison to the non-targeting control 

(Figure 4.5d). 

 

Cytokine-induced MMP13 expression was significantly reduced in response to HDAC5, 

HDAC7 and HDAC9 siRNA knockdown (Figure 4.5b, c and d). Induced MMP13 was 

also repressed by HDAC4 knockdown but did not reach statistical significance, which is 

likely to be due to inefficient knockdown of HDAC4 in these cells (Figure 4.5a). These 

data indicate that all class IIa HDACs play a role in the activation of basal and cytokine-

induced MMP13 expression in the SW1353 cell line. 

 

The repression of MMP13 expression in both non-stimulated and IL-1α-treated SW1353 

cells by HDAC7 siRNA is consistent with the study completed by Higashiyama et al. 

(2009). Therefore, these data further suggest that HDAC7 plays a role in both basal and 

cytokine-induced MMP13 expression. This current study also found that HDAC7 

knockdown significantly repressed I/O- (IL-1α 5ng/ml and OSM 10ng/ml) induced 



HDAC siRNA assays                                                                                        Chapter IV 

144 
 

MMP13 expression in SW1353 cells, further confirming that HDAC7 plays a role in 

cytokine induction of MMP13 expression (Appendix IV Figure 5a). In addition, 

HDAC7 knockdown was also found to correlate with the repression of IL-1α-induced 

MMP1 expression, although no significant effect of HDAC7 knockdown was seen on 

basal MMP1 expression (Appendix IV Figure 5b).  
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Figure 4.5. The effect of class IIa HDAC siRNA knockdown on MMP13 expression in the 

SW1353 cell line 

 

SW1353 cells were incubated with 25nM siRNA for 24 hours in serum-containing medium. Cells 

were then serum-starved overnight, followed by IL-1α (5ng/ml) and/or TSA (50ng/ml) treatment 

(where appropriate) for 6 hours. Total RNA was extracted with Cells-to-cDNA lysis buffer, reverse 

transcribed to cDNA, and MMP13 and HDAC expression detected by real-time qRT-PCR. (a) 

HDAC4 and MMP13 expression after siRNA treatment. (b) HDAC5 and MMP13 expression after 

siRNA treatment. (c) HDAC7 and MMP13 expression after siRNA treatment. (d) HDAC9 and 

MMP13 expression after siRNA treatment. Assays were completed twice, using triplicate samples. 

Data presented are representative of one assay; means ± standard errors are represented. *P<0.05, 

**P<0.01, ***P<0.001. For MMP13 expression graphs, non-cytokine treated samples correspond 

to the left Y axis, and cytokine treated samples correspond to the right Y axis. (C, control; CM, 

control-mock transfection; NT, non-targeting siRNA; siHDACx, HDAC siRNA) 
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4.2.3.3 The effect of siRNA knockdown of class IIb HDACs and HDAC11 on MMP13 

expression in the SW1353 cell line 

 

Significant siRNA knockdown of HDAC6 and HDAC11 expression was achieved in 

non-stimulated and IL-1α-stimulated cells compared to non-target controls (Figure 4.6a 

and c). However, siRNA treatment did not successfully repress HDAC10 expression 

and subsequently no effect was observed on the expression of MMP13 (Figure 4.6b), 

meaning that HDAC10 knockdown will need to be repeated to establish its role in the 

transcriptional regulation of MMP13 expression in SW1353 cells. 

 

Basal and cytokine-induced MMP13 expression was significantly reduced in response 

to HDAC6 knockdown (Figure 4.6a). The siRNA knockdown of HDAC6 expression 

also significantly repressed I/O-induced MMP1 expression in SW1353 cells (Appendix 

IV Figure 6). This implicates HDAC6 in the induction of basal and cytokine-induced 

collagenase expression in SW1353 cells, which is also supported by the repression of 

cytokine-induced collagenase expression with tubacin treatment in the SW1353 cell line 

(See Figure 3.10). 

 

Cytokine-induced MMP13 expression was significantly repressed in response to 

HDAC11 knockdown, but no significant repression of basal MMP13 expression was 

observed (Figure 4.6c). However, no significant effect was observed on either basal or 

cytokine-induced MMP13 expression in response to HDAC11 knockdown in the 

preliminary experiment (Appendix IV Figure 7). Therefore further assays are required 

to establish the effect of HDAC11 knockdown on MMP13 expression in SW1353 cells. 
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Figure 4.6. The effect of siRNA knockdown of class IIb HDACs and HDAC11 on MMP13 

expression in the SW1353 cell line 

 

SW1353 cells were incubated with 25nM siRNA for 24 hours in serum-containing medium. 

Cells were then serum-starved overnight, followed by IL-1α (5ng/ml) and/or TSA (50ng/ml) 

treatment (where appropriate) for 6 hours. Total RNA was extracted with Cells-to-cDNA lysis 

buffer, reverse transcribed to cDNA, and MMP13 and HDAC expression detected by real-time 

qRT-PCR. (a) HDAC6 and MMP13 expression after siRNA treatment. (b) HDAC10 and 

MMP13 expression after siRNA treatment. (c) HDAC11 and MMP13 expression after siRNA 

treatment. Data presented are representative of one assay; means ± standard errors are 

represented. *P<0.05, **P<0.01, ***P<0.001. For MMP13 expression graphs, non-cytokine 

treated samples correspond to the left Y axis, and cytokine-treated samples correspond to the 

right Y axis. (C, control; CM, control-mock transfection; NT, non-targeting siRNA; siHDACx, 

HDAC siRNA) 
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In conclusion, siRNA knockdown assays completed in the SW1353 cell line indicated 

that the repression of the majority of classical HDACs leads in turn to a repression of 

either basal or IL-1α-induced MMP13 expression. This is clearly demonstrated when 

the data are presented as fold change of MMP13 expression compared to comparative 

non-target controls, which is shown in Figure 4.7. Our original hypothesis was that 

specific HDACs would be involved in the regulation of MMP13 expression, so the 

repression of MMP13 in response to the specific knockdown of the majority of classical 

HDACs was not expected. HDAC1 was the only member of the classical HDAC family 

whose knockdown did not lead to MMP13 repression, instead resulting in the further 

potentiation of IL-1α-induced expression (though basal expression was slightly reduced) 

(Figure 4.7). Interestingly the repression of IL-1α-induced MMP13 exhibited after 

specific HDAC knockdown never reached the level of inhibition observed after TSA 

treatment, suggesting that more than one HDAC is involved in MMP13 gene regulation 

in these cells. 
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Figure 4.7. MMP13 expression after siRNA knockdown of classical HDAC expression in 

SW1353 cells. 

 

SW1353 cells were incubated with 25nM siRNA for 24 hours in serum-containing medium. 

Cells were then serum-starved overnight, followed by IL-1α (5ng/ml) treatment (where 

appropriate) for 6 hours. Total RNA was extracted with Cells-to-cDNA lysis buffer, reverse 

transcribed to cDNA, and MMP13 expression detected by real-time qRT-PCR. Data presented 

is representative of the fold change in MMP13 expression compared to non-targeting siRNA 

controls after HDAC knockdown. The data are representative of one experiment using triplicate 

samples; means ± standard errors are represented. *P<0.05, **P<0.01, ***P<0.001. (NT, non-

targeting siRNA; siHDACx, HDAC siRNA) 
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4.2.4 The effect of siRNA knockdown of classical HDACs on MMP13 expression in 

primary articular chondrocytes 

 

In order to further elucidate the role of classical HDACs in the transcriptional regulation 

of MMP13, siRNA knockdown experiments were repeated in primary articular 

chondrocytes. Two knockdown experiments were completed in primary cells, in which 

each classical HDAC was knocked down at the mRNA level and the effect on MMP13 

expression assessed by qRT-PCR. The data presented are representative of the second 

knockdown experiment, as HDAC knockdown was often not significant in the 

preliminary experiment.  

 

The AllStars non-targeting siRNA appeared to potentiate cytokine induction of MMP13 

when compared to the induction of MMP13 in cells treated with IL-1α alone. The 

AllStars non-targeting siRNA also altered basal MMP13 expression in comparison to 

control non-transfected cells (Figure 4.8, 4.9 and 4.10). This effect was not observed in 

the preliminary knockdown experiment in primary articular chondrocytes, and due to 

time constraints, knockdown experiments could not be repeated a third time. This once 

again makes the effect of HDAC knockdown on cytokine-induced MMP13 hard to 

interpret, with the repression of MMP13 often significant when compared to the non-

target control but not when compared to non-transfected controls. Therefore it is 

difficult to decide which control should be used for data analysis. The non-targeting 

control is the ‘true’ control as it involves introducing siRNA into the cell, but if this 

siRNA is then causing off-target effects it destroys its validity. This leaves the non-

stimulated and the IL-1α-stimulated cells as comparative controls, but these cells have 

at no point been transfected with siRNA. In order to demonstrate the significant 

difference in the data depending on the control chosen, the fold change of MMP13 

expression has been calculated in comparison to both non-targeting siRNA controls and 

non-transfected controls (Figure 4.11a and b). The data have also been represented 

using the comparative CT method (2
-ΔCT

) as used to analyse the SW1353 siRNA 

knockdown experiment.  
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4.2.4.1 The effect of siRNA knockdown of class I HDACs on MMP13 expression in 

primary articular chondrocytes 

 

Significant siRNA knockdown of HDAC2 and HDAC3 expression was achieved in 

non-stimulated and IL-1α-stimulated cells compared to non-target controls (Figure 4.8b 

and c). HDAC1 expression was significantly knocked down in IL-1α-stimulated cells, 

but repression of basal expression did not reach statistical significance (Figure 4.8a). 

HDAC8 expression was repressed in both non-stimulated and IL-1α-treated cells, but 

did not reach statistical significance (Figure 4.8d). 

 

The expression of both basal and cytokine-induced MMP13 expression was increased in 

response to HDAC1 knockdown, but did not reach statistical significance compared to 

non-target control (Figure 4.8a). The correlation between HDAC1 knockdown and 

increased MMP13 is also consistent with the induction of MMP13 expression observed 

in SW1353 cells. This again supports the suggestion that HDAC1 represses the 

expression of MMP13. 

 

The knockdown of HDAC2, HDAC3 and HDAC8 led to a repression in basal MMP13 

expression, but this did not reach statistical significance compared to non-target controls 

(Figure 4.8b, c and d). Therefore, this would suggest that HDAC2, HDAC3 and 

HDAC8 play a role in inducing the transcriptional expression of MMP13 under normal 

conditions, which is also consistent with the data produced from the knockdown assays 

completed in the SW1353 cell line. 

 

The effect of HDAC2, HDAC3 and HDAC8 knockdown on IL-1α-induced MMP13 

expression is harder to interpret due to the further potentiation of cytokine-induced 

MMP13 expression by the non-targeting siRNA (Figure 4.8b, c and d). If the non-

targeting siRNA is selected as the control, IL-1α-induced MMP13 expression is 

significantly repressed by the knockdown of all three HDACs (Figure 4.8b, c and d). 

However, if non-transfected IL-1α-treated cells are used as the comparative control, 

HDAC2 knockdown has no significant impact on cytokine-induced MMP13 expression 

(Figure 4.8b) and the repression observed in response to HDAC3 and HDAC8 

knockdown does not reach statistical significance (Figure 4.8c and d). The potentiation 

of cytokine-induced MMP13 expression by the non-targeting siRNA suggests that the 

non-transfected IL-1α control may be the most accurate comparative control. This 

would infer that HDAC2 does not play a role in the regulation of cytokine-induced 
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MMP13 expression in primary articular chondrocytes, but may do so in the maintenance 

of basal MMP13 expression. It would also suggest that HDAC3 and HDAC8 

knockdown causes a small repression of both basal and cytokine-induced MMP13 

expression, indicating that these enzymes may have a role in inducing MMP13 

transcription. 

 

The contrasting results depending on the control selected are clearly seen when the data 

is presented as fold change of MMP13 expression in relation to either non-target 

controls or non-transfected controls (Figure 4.11a and b).  This means that when the 

change in MMP13 expression (in response to specific HDAC knockdown) is consistent 

between the data sets normalised to both control types, it is more likely to reflect the 

true response to HDAC knockdown. For example, the increase of both basal and 

cytokine-induced MMP13 expression in response to HDAC1 knockdown is seen when 

these data are normalised to both the non-target siRNA controls (Figure 4.11a) and non-

transfected controls (Figure 4.11b). This strongly supports the theory that HDAC1 

represses both basal and IL-1α-induced MMP13 expression in primary chondrocytes. 

The repression of basal MMP13 expression in response to HDAC2, HDAC3 and 

HDAC8 is also observed when the data are presented as fold change in comparison to 

both control types, with the level of repression dependent on the control selected 

(Figure 4.11a and b). This again supports the theory that HDAC2, HDAC3 and HDAC8 

play a role in maintaining basal MMP13 expression.  

 

However, the effect of HDAC2 knockdown on the fold change of cytokine-induced 

MMP13 expression varied depending on the control selected, with a potentiation of IL-

1α-induced MMP13 expression seen when compared to non-target control but no effect 

seen if compared to the non-transfected control (Figure 4.11a and b). The large 

potentiation of IL-1α-induced MMP13 expression by the non-target siRNA suggests 

that the non-transfected IL-1α control is likely the most accurate of the controls.  
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Figure 4.8. The effect of class I HDAC siRNA knockdown on MMP13 expression in primary 

articular chondrocytes  

 

Primary chondrocytes were incubated with 25nM siRNA for 24 hours in serum-containing 

medium. Cells were then serum-starved overnight, followed by IL-1α (5ng/ml) and/or TSA 

(50ng/ml) treatment (where appropriate) for 6 hours. Total RNA was extracted with Cells-to-cDNA 

lysis buffer, reverse transcribed to cDNA, and MMP13 and HDAC expression detected by real-

time qRT-PCR. (a) HDAC1 and MMP13 expression after siRNA treatment. (b) HDAC2 and 

MMP13 expression after siRNA treatment. (c) HDAC3 and MMP13 expression after siRNA 

treatment. (d) HDAC8 and MMP13 expression after siRNA treatment. Assays were completed 

twice, using triplicate samples. Data presented are representative of one experiment; means ± 

standard errors are represented. *P<0.05, **P<0.01, ***P<0.001. For MMP13 expression graphs, 

non-cytokine treated samples correspond to the left Y axis, and cytokine-treated samples 

correspond to the right Y axis. (C, control; CM, control-mock transfection; NT, non-targeting 

siRNA; siHDACx, HDAC siRNA) 



HDAC siRNA assays                                                                                        Chapter IV 

154 
 

4.2.4.2 The effect of siRNA knockdown of class IIa HDACs on MMP13 expression in 

primary articular chondrocytes 

 

Significant siRNA knockdown of HDAC5 and HDAC7 expression was achieved in 

both non-stimulated and IL-1α-stimulated cells (Figure 4.9b and c). HDAC4 expression 

was significantly knocked down in non-cytokine stimulated chondrocytes, but the 

repression in IL-1α-stimulated cells did not reach statistical significance (Figure 4.9a). 

HDAC9 expression was repressed in non-stimulated cells, but did not reach statistical 

significance (Figure 4.8d). HDAC9 knockdown in IL-1α-stimulated cells could not be 

calculated as HDAC9 expression was below the limits of detection by qRT-PCR. 

Interestingly, HDAC4 and HDAC5 expression were significantly increased by TSA 

treatment in primary chondrocytes (Figure 4.9a and b). 

 

The knockdown of HDAC4 expression had no significant effect on basal MMP13 

expression when compared to non-target control (Figure 4.9a). Basal MMP13 

expression was increased in response to HDAC5 knockdown when compared to non-

target, but did not reach statistical significance (Figure 4.9b). HDAC7 knockdown 

resulted in a repression of basal MMP13 expression when compared to non-target 

control, but did not reach statistical significance (Figure 4.9c). Basal MMP13 

expression was slightly induced in response to HDAC9 knockdown compared to non-

target control, but did not reach statistical significance (Figure 4.9d). However, the 

effect of class IIa HDAC knockdown on basal MMP13 expression sometimes differs 

when compared to the non-transfected control. For example, HDAC4 knockdown had 

no effect on basal MMP13 expression when compared to non-target siRNA control, but 

was repressed when compared to the non-transfected control. This can also be seen 

when the data are represented as fold change, with a 0.5 fold decrease in basal MMP13 

expression detected in response to HDAC4 knockdown when compared to non-

transfected control, but no repression observed when compared to non-target control 

(Figure 4.11a and b). The effect of HDAC5 knockdown on basal MMP13 expression is 

also different depending on the control selected, with no effect observed on basal 

MMP13 expression compared to the non-transfected control, but a large induction seen 

when compared to the non-target siRNA control (Figure 4.11a and b). The small 

induction of basal MMP13 expression in response to HDAC9 knockdown when 

compared to non-target control is also larger and statistically significant when compared 
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to the non-transfected control (Figure 4.11a and b). This again stresses the importance 

of selecting the correct comparative control for siRNA knockdown and indicates that 

further knockdown assays will have to be completed to clarify the effects of class IIa 

repression on MMP13 expression. However, HDAC7 knockdown did not induce a 

significant change of basal MMP13 expression when the data were normalised to both 

control types (Figure 4.11), suggesting that HDAC7 does not regulate the expression of 

MMP13 under normal conditions in primary articular chondrocytes.  

 

HDAC4 knockdown significantly repressed cytokine-induced MMP13 expression when 

compared to the non-target siRNA, but resulted in a small potentiation of IL-1α-induced 

MMP13 when compared to the non-transfected IL-1α control (Figure 4.9a). As stated 

previously, the non-transfected IL-1α control is likely to be the better control for 

establishing the effect of HDAC knockdown. Therefore these data suggest that HDAC4 

inhibits cytokine induction of MMP13 expression in primary chondrocytes. 

 

Cytokine-induced MMP13 expression was increased in comparison to both the non-

target control and non-transfected IL-1α control in response to HDAC5 knockdown 

(Figure 4.9b). The knockdown of HDAC5 expression resulted in a 0.5-fold increase in 

MMP13 expression when compared to non-target siRNA control, and a 2-fold increase 

in expression compared to the non-transfected IL-1α control (Figure 4.11a and b). 

Therefore, IL-1α-induced MMP13 expression was increased in correlation to HDAC5 

knockdown, suggesting that HDAC5 represses cytokine-induced MMP13 expression in 

primary articular chondrocytes.  

 

HDAC7 knockdown resulted in a significant repression of cytokine-induced MMP13 if 

compared to the non-target siRNA, but had no significant effect on IL-1α-induced 

MMP13 if compared to the non-transfected IL-1α control (Figure 4.9c). Therefore, with 

the non-transfected IL-1α sample as the control, HDAC7 appears to have no effect on 

cytokine-induced MMP13 expression (Figure 4.11b). These data contrast with the 

induction of MMP13 expression in response to HDAC7 knockdown in SW1353 cells, 

both in this study and in the study conducted by Higashiyama et al. (2009). This 

suggests that the regulation of MMP13 expression via HDAC7 differs in the SW1353 

cell line compared to primary chondrocytes. This is consistent with the inhibition of 

cytokine-induced MMP13 expression by MS-275 in primary cells but not in SW1353 
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cells, which also indicates that HDAC regulation of MMP13 transcription may vary 

between the two cell types.  

 

It is unknown if HDAC9 was repressed in IL-1α-stimulated samples, thus the effect on 

cytokine-induced MMP13 expression cannot be definitely determined. The possible 

effect of HDAC9 knockdown differs depending on the control selected, with a 

repression of cytokine-induced MMP13 detected if compared to the non-target siRNA, 

but a small potentiation observed if compared to the non-transfected IL-1α control (this 

did not reach statistical significance) (Figure 4.9d). Therefore, with non-transfected IL-

1α as the control, HDAC9 appears to slightly potentiate cytokine-induced MMP13 

expression (Figure 4.11b). This suggests that HDAC9 may play an inhibitory role in the 

induction of MMP13 expression. However, due to the undetermined HDAC9 

knockdown in these cells this cannot be certain.  
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Figure 4.9. The effect of class IIa HDAC siRNA knockdown on MMP13 expression in primary 

articular chondrocytes  

 

Primary articular chondrocytes were incubated with 25nM siRNA for 24 hours in serum-containing 

medium. Cells were then serum-starved overnight, followed by IL-1α (5ng/ml) and/or TSA 

(50ng/ml) treatment (where appropriate) for 6 hours. Total RNA was extracted with Cells-to-cDNA 

lysis buffer, reverse transcribed to cDNA, and MMP13 and HDAC expression detected by real-

time qRT-PCR. (a) HDAC4 and MMP13 expression after siRNA treatment. (b) HDAC5 and 

MMP13 expression after siRNA treatment. (c) HDAC7 and MMP13 expression after siRNA 

treatment. (d) HDAC9 and MMP13 expression after siRNA treatment. Assays were completed 

twice, using triplicate samples. Data presented are representative of one assay; means ± standard 

errors are represented. *P<0.05, **P<0.01, ***P<0.001. For MMP13 expression graphs, non-

cytokine treated samples correspond to the left Y axis, and cytokine-treated samples correspond to 

the right Y axis. (C, control; CM, control-mock transfection; NT, non-targeting siRNA; siHDACx, 

HDAC siRNA) 
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4.2.4.1 The effect of siRNA knockdown of class IIb HDACs and HDAC11 on MMP13 

expression in primary articular chondrocytes 

 

HDAC6 expression was significantly repressed in IL-1α-stimulated cells, but the 

repression observed in non-stimulated cells did not reach statistical significance (Figure 

4.10a). The knockdown of HDAC10 expression was statistically significant in both non-

stimulated and IL-1α-treated cells (figure 4.10b). The statistical significance of 

HDAC11 knockdown could not be assessed as only one data point for each knockdown 

was observed (HDAC11 expression was below the limits of detection in the other 

samples) (figure 4.10c). 

 

Basal MMP13 expression was increased in response to HDAC6 knockdown when 

compared to non-target control, but no change was seen when compared to the non-

transfected control (Figure 4.10a). This is also seen when the data are presented as fold-

change (Figure 4.11a and b). Therefore, the effect of HDAC6 knockdown on basal 

MMP13 expression is unclear and requires further investigation. HDAC10 and 

HDAC11 knockdown resulted in increased basal MMP13 expression when compared to 

both the non-target and non-transfected IL-1α controls, with the induction of MMP13 in 

correlation with HDAC11 knockdown reaching statistical significance (Figure 4.10b 

and c). This suggests that HDAC10 and HDAC11 may repress basal MMP13 expression 

under normal conditions in primary articular chondrocytes. 

 

Cytokine-induced MMP13 expression was significantly increased in response to 

HDAC6 and HDAC11 knockdown compared to both the non-target and non-transfected 

IL-1α controls (Figure 4.10a and c). This was also seen when the data were expressed as 

the fold change of MMP13 expression: HDAC6 knockdown resulted in a greater than 1-

fold increase in MMP13 expression when compared to the non-target siRNA control, 

and a greater than 3.5-fold increase when compared to the non-transfected IL-1α control 

(Figure 4.11a and b). HDAC11 knockdown resulted in a 1.5-fold increase in MMP13 

expression when compared to non-target siRNA control, and a greater than 1-fold 

increase in expression compared to the non-transfected IL-1α control (Figure 4.11a and 

b). The further induction of IL-1α-induced MMP13 expression in response to HDAC6 

and HDAC11 knockdown indicates that both enzymes may inhibit cytokine induction of 

MMP13 in primary articular chondrocytes. The fact that HDAC6 appears to play an 

inhibitory role in the induction of MMP13 is surprising since tubacin was previously 
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shown to repress cytokine induction of the collagenases in SW1353 cells and is 

chondroprotective in the BNC assay. The effect of tubacin on cytokine-induced MMP13 

expression is yet to be assessed in primary chondrocytes by qRT-PCR, which may again 

suggest that HDAC regulation of MMP13 differs between the primary cells and the 

transformed cell line. 

 

Cytokine-induced MMP13 expression was also slightly increased by HDAC10 

knockdown, but this did not reach statistical significance compared to non-target or 

non-transfected IL-1α control (Figure 4.9b).  
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Figure 4.10. The effect of siRNA knockdown of class IIb HDACs and HDAC11 on MMP13 

expression in primary articular chondrocytes 

 

Primary articular chondrocytes were incubated with 25nM siRNA for 24 hours in serum-

containing medium. Cells were then serum-starved overnight, followed by IL-1α (5ng/ml) 

and/or TSA (50ng/ml) treatment (where appropriate) for 6 hours. Total RNA was extracted with 

Cells-to-cDNA lysis buffer, reverse transcribed to cDNA, and MMP13 and HDAC expression 

detected by real-time qRT-PCR. (a) HDAC6 and MMP13 expression after siRNA treatment. (b) 

HDAC10 and MMP13 expression after siRNA treatment. (c) HDAC11 and MMP13 expression 

after siRNA treatment. Assays were completed twice, using triplicate samples. Data presented 

are representative of one assay; means ± standard errors are represented. *P<0.05, **P<0.01, 

***P<0.001. For MMP13 expression graphs, non-cytokine treated samples correspond to the 

left Y axis, and cytokine-treated samples correspond to the right Y axis. (C, control; CM, 

control-mock transfection; NT, non-targeting siRNA; siHDACx, HDAC siRNA) 
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In conclusion, the knockdown data from primary chondrocytes is difficult to interpret 

due to the off-target effect of the AllStars non-target siRNA control. However, these 

data still identify possible roles for specific HDACs in MMP13 regulation. For example, 

HDAC1 and HDAC11 knockdown caused clear induction of basal and cytokine-

induced MMP13. This suggests that both enzymes repress both basal and IL-1α-induced 

MMP13 expression in primary articular chondrocytes. HDAC5 and HDAC6 

knockdown also resulted in the further potentiation of IL-1α-induced MMP13 

expression, suggesting that both enzymes inhibit cytokine induction of MMP13 in 

primary articular chondrocytes. Conversely, HDAC3 and HDAC8 knockdown resulted 

in reduced basal and IL-1α-induced MMP13 expression, indicating that both enzymes 

have an activatory role in the transcription of MMP13. The role of other HDACs in the 

transcriptional regulation of MMP13 is less clear due to the off-target effects of the non-

targeting control. This means that the knockdown assays need to be repeated to clarify 

the role of individual HDACs in the regulation of MMP13 in primary chondrocyte cells.  

However, a non-targeting siRNA that consistently has no effect on MMP13 expression 

will first have to be identified in order to validate future data.  
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Figure 4.11 MMP13 expression after siRNA knockdown of classical HDACs in primary 

articular chondrocyte cells. 

 

Primary articular chondrocytes were incubated with 25nM siRNA for 24 hours in serum-

containing medium. Cells were then serum-starved overnight, followed by IL-1α (5ng/ml) 

treatment (where appropriate) for 6 hours. Total RNA was extracted with Cells-to-cDNA lysis 

buffer, reverse transcribed to cDNA, and MMP13 expression detected by real-time qRT-PCR. 

(a) Data presented are representative of the fold change of MMP13 expression compared to non-

targeting siRNA controls after HDAC knockdown. (b) Data presented are representative of the 

fold change of MMP13 expression compared to control and IL-1α samples (which were not 

transfected with siRNA) after HDAC knockdown. The data are representative of one 

experiment using triplicate samples; means ± standard errors are represented. *P<0.05, 

**P<0.01, ***P<0.001. (C, control; NT, non-targeting siRNA; siHDACx, HDAC siRNA)  
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4.2.5 TSA alters HDAC3 and HDAC7 expression in SW1353 cells 
 

It has previously been reported that broad spectrum inhibitors TSA and vorinostat 

(Merck; trade name Zolinza) can not only alter HDAC activity, but can also alter the 

transcriptional expression of specific HDACs in various cell lines (Dokmanovic et al, 

2007; Hemmatazad et al, 2009). For example, TSA has been shown to directly suppress 

HDAC7 expression and increase HDAC3 expression in systemic sclerosis (SSc) skin 

fibroblasts at both the mRNA and protein level (Hemmatazad et al, 2009). Consistent 

with this, it was also noted in the HDAC siRNA knockdown assays undertaken in this 

thesis that TSA could alter HDAC expression in SW1353 and primary chondrocyte 

cells. This included the induced expression of HDAC3 and HDAC4 in the SW1353 cell 

line, and HDAC3, HDAC4 and HDAC5 in primary articular chondrocytes. In order to 

confirm if TSA could alter HDAC expression in the chondrocyte cell line in a 

concentration-dependent manner, SW1353 cells were incubated with increasing 

concentrations of TSA (5ng/ml, 25ng/ml, 50ng/ml and 100ng/ml) in the presence or 

absence of IL-1α or I/O (a combination of IL-1α (5ng/ml) and OSM (10ng/ml). The 

expression of HDAC1, HDAC2, HDAC3, HDAC4 and HDAC7 were then detected by 

qRT-PCR. 

 

Consistent with the findings of Hemmatazad et al. (2009) in SSc skin fibroblasts, TSA 

induced HDAC3 expression (Figure 4.8a) and reduced HDAC7 expression (Figure 

4.8b) in a concentration-dependent manner in the SW1353 cell line. The expression of 

HDAC1 and HDAC2 were unaltered by TSA treatment (data not shown). HDAC4 

expression was significantly induced in response to 50ng/ml TSA (data not shown), 

which was consistent with the induction observed in the siRNA knockdown assays. 

However, the expression of HDAC4 was unaffected by all other TSA concentrations 

tested. HDAC expression remained unaltered in response to cytokine treatment, 

indicating that cytokines do not affect the transcriptional expression of HDACs. 

Therefore, these results demonstrate that TSA not only inhibits the catalytic activity of 

HDACs in the SW1353 cell line, but can also alter their expression at the mRNA level. 

It is yet to be confirmed if TSA can alter the expression of other HDACs in SW1353 

cells and whether these changes in expression are seen at the protein level. It would also 

be interesting to confirm if more specific inhibitors such as MS-275 and tubacin can 

bring about changes in HDAC expression. 
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Figure 4.12. TSA alters HDAC3 and HDAC7 expression in the SW1353 cell line 

 

SW1353 cells were incubated with increasing concentrations of TSA (5ng/ml, 25ng/ml, 

50ng/ml and 100ng/ml) alone, and in the presence of IL-1α (5ng/ml) or I/O (combination of IL-

1α and OSM (10ng/ml)) for 6 hours. Total RNA was extracted with Trizol, reverse transcribed 

to cDNA, and HDAC levels detected by real-time qRT-PCR. (a) HDAC3 expression after TSA 

treatment alone and in combination with cytokines. (b) HDAC7 expression after TSA treatment 

alone and in combination with cytokines. Assays were completed once using triplicate samples: 

means ± standard errors are represented. *P<0.05, **P<0.01, ***P<0.001. 
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4.3 Discussion 
 

Broad spectrum and specific HDAC inhibitors have been shown to repress cytokine-

induced metalloproteinase expression in cell monolayer assays, cartilage explant assays 

and in an OA rabbit model (Chen et al, 2010; Young et al, 2005). Importantly, HDAC 

inhibitors have also been shown to prevent in vitro and in vivo cartilage degradation, 

with their chondroprotective effect attributed to their ability to repress induced 

metalloproteinase expression (Chen et al, 2010; Young et al, 2005). The precise 

molecular pathways by which HDAC inhibitors mediate the repression of 

metalloproteinase expression are unknown. However, in this study it was hoped that by 

elucidating the individual roles of classical HDACs in the regulation of 

metalloproteinase expression that these pathways would become clearer.  

 

The role of HDACs in OA cartilage was first explored by screening the expression of all 

classical HDACs in OA hip cartilage versus normal cartilage by TLDA array. This 

profile indicated that a majority of HDACs have significantly lower expression in OA 

cartilage including HDAC2, HDAC3, HDAC5, HDAC7, HDAC8 and HDAC11 

compared to normal cartilage. HDAC10 was the only HDAC found to have 

significantly increased expression in OA cartilage. These results contrast with a 

previously published profile of HDAC expression in OA cartilage, which found that 

HDAC7 expression was significantly increased in OA cartilage and that HDAC4 and 

HDAC10 were substantially decreased (Higashiyama et al, 2009). As previously stated, 

the contrasting results between the two profiles could be due to a number of 

experimental variables, such as the joint from which cartilage samples were taken, the 

difference between the mean age of patients from which normal cartilage samples were 

taken, and possibly post-surgical processing of the tissue samples. For example, a 

previous metalloproteinase profile conducted by our laboratory found that MMP1 

expression was decreased in OA hip cartilage compared to NOF control cartilage, but 

increased in OA knee cartilage compared to post-mortem cartilage (Kevorkian et al, 

2004). This is an example of how gene regulation may vary in cartilage derived from 

different joints, which may account for the contrasting HDAC expression detected by 

the two profiles. Also, chondrocytes derived from older patients have been found to 

have reduced metabolic activity, reduced proliferation and altered gene expression 

compared to chondrocytes derived from the cartilage of younger patients (Barbero et al, 

2004; Dozin et al, 2002). Therefore, the large difference between the mean age of 
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normal cartilage donors used in the two studies could also contribute to the conflicting 

results. It should also be noted that the Higashiyama profile had not age-matched 

normal cartilage (30.8 years) and OA cartilage (71.6 years) samples, which may have 

led to anomalies within the Higashiyama study itself. Overall however, the HDAC 

profile of this study suggests that the hypothesis put forward by Higashiyama et al. 

(2009), stating that elevated HDAC7 in OA may contribute to cartilage degradation via 

promoting MMP13 gene expression, is likely not true in the hip. Therefore, profiles 

with much larger sample numbers need to be completed to clarify the altered expression 

of HDACs in OA cartilage and to determine the potential consequences of this. It may 

also be better to profile HDAC expression in an OA animal model. This would enable 

HDAC expression to be profiled in response to OA development and progression. 

 

As previously discussed, specific HDACs have already been implicated in the 

transcriptional regulation of members of the matrix metalloproteinase family; HDAC1 

has been shown to repress the activity of the MMP28 promoter (Swingler et al, 2010) 

and HDAC7 is postulated to induce MMP13 expression (Higashiyama et al, 2009). Due 

to the significant role that MMP-13 is predicted to play in OA cartilage degradation, this 

project aimed to establish which classical HDACs play a role in the regulation of this 

enzyme and confirm the findings of Higashiyama et al. (2009). In order to do this 

siRNAs were used to knock down the expression of each classical HDAC at the mRNA 

level in non-stimulated and IL-1α-stimulated SW1353 cells and primary articular 

chondrocytes, with the effect of knockdown on MMP13 expression assessed by qRT-

PCR. We hypothesised that specific siRNA knockdown of each HDAC would 

potentially elucidate those that impact on MMP13 expression, enabling selective 

inhibition of these enzymes in order to regulate MMP13 expression. This proved not be 

a trivial undertaking, primarily due to the difficulty of finding a non-targeting siRNA 

that did not influence the expression of MMP13. Preliminary experiments in the 

SW1353 cell line showed that non-targeting siRNAs could significantly alter basal and 

IL-1α-induced MMP13 expression, with siGENOME Non-Targeting Pool 2 

(Dharmacon) causing induction of MMP13 expression and Silencer
® 

Negative Control 

#1 siRNA (Ambion) causing the repression of MMP13. The AllStars Negative Control 

(Qiagen) was finally found to have no effect on MMP13 expression in the SW1353 cell 

line, so was used as the comparative control for the knockdown assays carried out in 

these cells. However, despite the AllStars Negative Control having no effect on MMP13 
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expression in SW1353 cells and the preliminary experiment conducted in primary 

articular chondrocytes, it was unfortunately found to alter both basal and cytokine-

induced MMP13 expression in the final experiment conducted in primary cells.  

 

This study is not the first to see off-target effects with multiple non-targeting siRNAs, 

with a study conducted by Xu et al. (2007) reporting the induction of adipocyte 

differentiation (adipogenesis) in human foetal femur-derived mesenchymal stem cells 

(foetal MSCs) in response to commercially available non-targeting siRNA controls. 

Interestingly, one of the siRNA controls found to induce adipogenesis was the Silencer
® 

Negative Control #1 siRNA, which was also found to induce off-target effects in this 

thesis (Xu et al, 2007). Off-target siRNA effects have be shown to be caused by either 

the presence of a cross-hybridizing region in mRNAs to the siRNA trigger (Jackson et 

al, 2003), translational silencing of unrelated transcripts by siRNA acting as microRNA 

(Birmingham et al, 2006), or inducing a non-specific interferon response (Marques & 

Williams, 2005). Microarray profiles have indicated that non-targeting siRNAs can alter 

the expression of a large number of genes that have limited sequence similarity to 

siRNA triggers (Jackson et al, 2003). A study conducted by Lin et al. (2005) also 

demonstrated that a 7-nucleotide motif of complementarity between a siRNA and an 

unintended gene is enough to result in degradation of the gene (Lin et al, 2005), thus 

supporting the view that partial sequence identity can elicit non-specific effects. These 

studies highlight the difficulty in finding a true control for RNA interference (RNAi) 

studies, and the need for continued research in the development of non-targeting 

siRNAs.  

 

The siRNA assays completed in the SW1353 cell line indicated that the knockdown of 

nearly all classical HDACs correlates with a reduction of both basal and IL-1α-induced 

MMP13 expression, with the exception of HDAC1 knockdown which resulted in the 

further potentiation of IL-1α-induced MMP13 expression. This was surprising as we 

originally hypothesised that an individual HDAC or a specific group of HDACs would 

be shown to regulate MMP13 expression in SW1353 cells. This hypothesis was partially 

based on the results from prior HDAC inhibitor assays, with specific inhibition of 

HDAC6 alone capable of repressing IL-1α-induced MMP13 expression in the SW1353 

cell line and conferring a chondroprotective effect in the BNC assay. Also, the 

individual knockdown of HDAC7 had previously been reported to repress both basal 
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and IL-1α-induced MMP13 expression (Higashiyama et al, 2009), which indicated that 

specific HDACs may be involved in the transcriptional regulation of MMP13. 

 

The repression of basal and IL-1α-induced collagenase expression detected in response 

to HDAC6 knockdown in the SW1353 cells is consistent with the repression of 

cytokine-induced MMP13 expression caused by tubacin treatment in these cells. This 

suggests that HDAC6 plays a role in activating the transcription of MMP13 in SW1353 

cells, with the inhibition of its activity enough to confer repression of cytokine-induced 

collagenase expression. However, this contrasts with HDAC6 knockdown in primary 

articular chondrocytes, where HDAC6 knockdown resulted in the further potentiation of 

IL-1α-induced MMP13 expression when compared to non-target and non-transfected 

controls. This indicates that HDAC6 inhibits cytokine induction of MMP13 in primary 

articular chondrocytes, and that HDAC6 regulation of MMP13 expression may differ in 

SW1353 cells compared to primary chondrocytes. The possible inhibitory role of 

HDAC6 on cytokine-induced MMP13 expression in primary chondrocytes is surprising 

giving that tubacin represses cytokine-induced MMP13 expression in the SW1353 cell 

line, and blocks cytokine-induced cartilage degradation in the BNC model. The effect of 

tubacin on cytokine-induced MMP13 expression in primary chondrocytes is yet to be 

established. However, the repression of cytokine-induced cartilage degradation by 

tubacin would suggest that the compound must inhibit the expression of key cartilage-

degrading metalloproteinases, such as MMP13. Thus further assays will have to be 

completed to confirm the effect of HDAC6 knockdown and inhibition on MMP13 

expression within primary cells. 

 

The repression of basal and IL-1α-induced MMP13 expression in response to HDAC7 

knockdown in SW1353 cells is consistent with Higashiyama et al. (2009). This supports 

the hypothesis that HDAC7 may promote MMP13 expression in the SW1353 cell line. 

Due to the problems faced in this current study in selecting a non-targeting siRNA that 

did not affect MMP13 expression in SW1353 cells, it is interesting to note that the 

HDAC7 knockdown assays carried out in the Higashiyama study did not have a non-

targeting siRNA control, and instead used non-transfected, non-stimulated and IL-1-

treated cells as controls (Higashiyama et al, 2009).  

 

HDAC1 was the only HDAC in which knockdown resulted in the further potentiation of 

IL-1α-induced MMP13 expression in SW1353 cells. This indicates that HDAC1 is the 
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only classical HDAC to play an inhibitory role on IL-1α-induced MMP13 expression in 

these cells. The knockdown of other class I HDACs (HDAC2, HDAC3 and HDAC8) 

resulted in the significant repression of both basal and IL-1α-induced MMP13 

expression. As stated previously, class I HDAC inhibitor (of HDAC1, HDAC2 and 

HDAC3) MS-275 surprisingly exhibited no repression of cytokine-induced MMP13 

expression in SW1353 cells, which is perhaps more surprising due to the potentially 

activatory role of HDAC2 and HDAC3 in activating transcription of MMP13 in these 

cells. However, MS275 also inhibits HDAC1 activity which, due to the potential 

inhibition of cytokine-induced MMP13 by this HDAC, may be enough to induce 

MMP13 expression and counteract the repression achieved by HDAC2 and HDAC3 

inhibition. However, further assays are required to confirm the effects of class I HDACs 

on MMP13 expression in SW1353 cells, and to clarify further why class I inhibition is 

not enough to repress cytokine-induced MMP13 in these cells. 

 

 It must also be remembered that the effect of siRNA HDAC knockdown on MMP13 

expression could potentially vary compared to the chemical inhibition of HDAC 

activity. This is because siRNA knockdown results in the loss of the HDAC protein and 

thus protein-protein interactions that may play a critical role in cellular functions such 

as transcriptional regulation. This is particularly important as HDACs commonly 

function in large transcriptionally repressive, multi-subunit protein complexes (Alland 

et al, 1997; Nagy et al, 1997). This means that deletion of an individual HDAC protein 

could potentially abolish the formation of these multi-subunit complexes, resulting in 

changes in transcription and cellular functions that would not occur by the inhibition of 

HDAC catalytic activity. This is why it is important to compare data from both HDAC 

knockdown and HDAC inhibition studies. Therefore this may account for any 

differences observed between HDAC inhibitor and HDAC knockdown assays in this 

study. 

 

Although HDAC6 is unique in that it has not been found in any known classical HDAC-

containing repressive complexes, it has been found to have other important non-

deacetylase functions mediated by protein-protein interaction. For example, HDAC6 is 

known to bind poly-ubiquitinated proteins and dynein motors via its C-terminal zinc 

finger, thus recruiting misfolded proteins to dynein motors for transport to the 

aggresome (Kawaguchi et al, 2003). Therefore, the deletion of HDAC6 protein could 

essentially result in changes in cellular function that would not occur with HDAC6 
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inhibition alone. This may account for the previously discussed discrepancy between 

the knockdown of HDAC6 in primary articular chondrocytes and the tubacin inhibitor 

data. 

 

In conclusion, the knockdown assays undertaken in the SW1353 cell line implicate all 

HDACs in the regulation of MMP13 expression. Although the role of certain HDACs in 

the regulation of MMP13 is supported by previous data, it still seems unusual for all 

classical HDACs to be implicated in the regulation of one gene, especially as mouse 

knockout assays have distinguished such specific roles for each enzyme in development 

and cellular function. Therefore, these assays need to be repeated to determine if this is 

true. It must also be remembered that the SW1353 cell line is a transformed one, with 

the over-expression or aberrant transcriptional recruitment of HDACs observed in many 

cancer types (Abbas & Gupta, 2008; Halkidou et al, 2004; Song et al, 2005; Wu et al, 

2001). This means that HDAC regulation of MMP13 expression in the SW1353 cell line 

may not truly reflect the role of HDACs in non-transformed cell types.  

 

The knockdown assays undertaken in primary chondrocytes are difficult to interpret due 

to the off-target effects of the AllStars non-target siRNA on MMP13 expression. 

However, as previously stated the data still identify possible roles for specific HDACs 

in MMP13 regulation, with certain HDACs consistently altering MMP13 expression 

when compared to both non-target siRNA controls and non-transfected controls: 

HDAC1 knockdown correlated with clear induction of basal and cytokine-induced 

MMP13, which was consistent with the HDAC1 knockdown assay in the SW1353 cell 

line. This strongly suggests that HDAC1 represses both basal and cytokine-induced 

MMP13 expression in primary chondrocytes. HDAC1 has previously been shown to 

repress the expression of the MMP28 promoter through its interaction with the Sp1 

transcription factor (Swingler et al, 2010). Further assays will have to be completed to 

determine if HDAC1 mediates the repression of MMP13 expression through the same 

pathway, but to date Sp1 has not been implicated in IL-1 signalling or MMP13 

expression. HDAC11 knockdown also correlated with the induction of basal and IL-1α-

induced MMP13 expression. This suggests that HDAC11 also represses both basal and 

IL-1α-induced MMP13 expression in primary chondrocytes. HDAC5 knockdown 

resulted in the further potentiation of IL-1α-induced MMP13 expression when 

compared to non-target and non-transfected controls. This indicates that HDAC5, like 

HDAC6, may inhibit cytokine induction of MMP13 in primary articular chondrocytes. 
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HDAC10 knockdown resulted in an induction of basal MMP13 when compared to both 

non-target and non-transfected controls, suggesting that HDAC10 induces the 

expression of MMP13 under normal conditions. Conversely, both the siRNA 

knockdown of HDAC3 and HDAC8 expression resulted in reduced basal and IL-1α-

induced MMP13 expression when compared to all controls. This indicates that both 

enzymes have a role in activating the transcription of MMP13. 

 

The role of other HDACs in the transcriptional regulation of MMP13 within primary 

articular chondrocytes is less clear due to the off-target effects of the non-targeting 

control. This means that the effect of HDAC knockdown on MMP13 expression differs 

when compared to either the non-targeting siRNA controls or non-transfected controls. 

If the non-transfected controls are selected as comparative controls HDAC2 knockdown 

represses basal MMP13 expression but has no effect on IL-1α-induced expression: 

HDAC4 knockdown represses basal MMP13 expression, but potentiates IL-1α-induced 

MMP13 expression: HDAC5 knockdown, and separately HDAC6 knockdown, has no 

significant effect on basal MMP13 expression: HDAC7 knockdown has no effect on 

basal or IL-1α-induced MMP13 expression: HDAC9 knockdown induces basal and IL-

1α-induced MMP13 expression and HDAC10 knockdown has no effect on IL-1α-

induced MMP13 expression.  

 

These data suggest that HDAC7 has no regulatory role on MMP13 expression in 

primary articular chondrocytes, contrasting with the postulated role of HDAC7 in 

activating MMP13 expression in SW1353 cells (Higashiyama et al, 2009). HDAC7 may 

therefore be an example of how HDAC regulation of MMP13 expression differs in 

primary cells compared to the SW1353 cell line. 

 

This means that further knockdown assays will have to be repeated to clarify the role of 

individual HDACs in the regulation of MMP13 in SW1353 cells and primary articular 

chondrocyte cells. A non-target siRNA that consistently has no effect on MMP13 

expression will first need to be identified to confidently interpret future knockdown 

data.  

 

The pre-designed siGENOME SMARTpool siRNAs used in this study consist of four 

siRNAs which are targeted to different sequences within the same mRNA. These pooled 

siRNAs reportedly have less off-target effects, and are guaranteed to produce at least a 

75% knockdown of target-gene expression. The reduced off-target effects of the pooled 
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siRNAs are reportedly due to the ‘effective concentration’ of the duplexes within the 

pool: at a total siRNA concentration of 100nM, the individual duplexes comprising the 

pool are at a much lower concentration of approximately 25nM. Thus the off-target 

activity of each duplex is reportedly reduced by a concentration-dependent mechanism. 

However, this essentially means you are introducing four different siRNAs into the cell, 

which conceptually increases the possibility of off-target effects. Recently, small 

quantities of each siRNA within the siGENOME SMARTpools have become available 

for purchase, enabling the efficiency and off-target effects of each siRNA within the 

SMARTpool to be determined. The efficiency and off-target effects of the individual 

siRNAs within SMARTpools used in this study are yet to be established due to time 

constraints. 

 

The knockdown assays undertaken in the SW1353 cell line and primary chondrocytes 

indicated that TSA treatment could induce the expression of certain HDACs in both cell 

types. This included the induced expression of HDAC3 and HDAC4 in the SW1353 cell 

line, and HDAC3, HDAC4 and HDAC5 in primary chondrocytes. In order to explore 

this further, SW1353 cells were treated with increasing concentrations of TSA in the 

presence or absence of IL-1α and I/O, followed by the detection of HDAC1, HDAC2, 

HDAC3, HDAC4 and HDAC7 expression by qRT-PCR. These assays identified that 

TSA significantly induces HDAC3 expression, and significantly represses HDAC7 

expression, in a concentration-dependent manner within the SW1353 cell line. These 

findings are consistent with a previous study completed by Hemmatazad et al. (2009) 

which demonstrated that TSA treatment causes almost complete repression of HDAC7 

expression and induces the expression of HDAC3 in SSc skin fibroblasts at the mRNA 

and protein level. However, Hemmatazad detected decreased transcripts for nearly all 

other HDACs in response to TSA treatment (although not to such a significant degree as 

HDAC7), whilst the expression of other HDACs tested in this current study remained 

unchanged by TSA treatment. This could suggest that the impact of TSA on HDAC 

expression is cell-type dependent. Interestingly, broad spectrum inhibitors vorinostat 

and depsipeptide have also been shown to suppress the expression of HDAC7 at the 

mRNA and protein level in normal, immortalised and transformed cell lines 

(Dokmanovic et al, 2007).  

 

Therefore, this demonstrates that broad spectrum HDAC inhibitors not only inhibit 

HDAC catalytic activity, but also regulate HDAC expression at the transcriptional level. 
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The importance of this finding is also yet to be established. For example, any induction 

of HDAC expression by a broad spectrum inhibitor, such as HDAC3 by TSA, is likely 

to have little impact on gene function due to any translated protein also being 

catalytically inhibited. It is yet to be established if more specific HDAC inhibitors 

modulate the expression of classical HDACs. However, Hemmatazad and colleagues 

postulate that the anti-fibrotic properties of TSA, observed in SSc skin fibroblasts, is 

mediated through its repression of HDAC7 expression (Hemmatazad et al, 2009; Huber 

et al, 2007). Also, Dokmanovic et al. (2007) observed that vorinostat caused the greatest 

suppression of HDAC7 expression in transformed cell lines sensitive to vorinostat-

induced apoptosis, with little repression observed in normal and prostate cancer cells 

resistant to vorinostat-induced cell death. Therefore, it was postulated that HDAC7 may 

be a useful biomarker for predicting the response to vorinostat therapy. Indeed a 

repression in the transcription and subsequent translation of HDAC protein mediated by 

HDAC inhibitors could alter protein-protein interactions of co-repressor complexes, 

potentially resulting in changes in gene expression. This indicates that the regulation of 

HDAC expression, as well as the inhibition of HDAC catalytic activity, may play a role 

in the cellular effects induced by HDAC inhibitors. 

 

In summary, this chapter has identified that the majority of classical HDACs are 

repressed at the mRNA level in OA hip cartilage, which contrasts with the previous 

profile of HDAC expression in OA cartilage completed by Higashiyama et al. (2009). 

This thesis has also confirmed that TSA can directly alter the expression of specific 

HDACs within the SW1353 cell line, indicating that broad spectrum inhibitors can 

regulate both the catalytic activity of HDACs and their transcriptional expression. This 

chapter has also identified the importance and difficulty in identifying a non-targeting 

siRNA control to enable confident interpretation of RNA interference data. The 

knockdown of classical HDAC expression within the SW1353 cell line identified that 

multiple HDACs may play a role in inducing the transcriptional expression of both 

basal and IL-1α-induced MMP13 expression within these cells. Further assays are 

required to confirm this. The knockdown of classical HDAC expression in primary 

articular chondrocytes suggested specific roles for HDAC1, HDAC3, HDAC5, HDAC6, 

HDAC8, HDAC10 and HDAC11 in the transcriptional regulation of MMP13 

expression. However, due to the consistent off-target effects of the non-targeting 

siRNA, knockdown assays will need to be repeated to confirm these results. 
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Chapter V: General Discussion 
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Chapter V 

 

General Discussion 

 

5.1 General discussion 
 

The characteristic cartilage destruction seen in the OA joint is mediated by proteases of 

the MMP and ADAMTS families. The role of these enzymes in cartilage destruction is 

supported by in vitro assays and in vivo arthritis models (Milner et al, 2001; Milner et 

al, 2006; Neuhold et al, 2001; Stanton et al, 2005). Previously published profiles of 

metalloproteinase expression in OA cartilage, conducted by our laboratory, have also 

detected aberrant expression of these enzymes in diseased cartilage versus normal 

cartilage (Davidson et al, 2006; Kevorkian et al, 2004; Swingler et al, 2009). The 

significant role that these proteases play in OA cartilage destruction is therefore well 

documented. 

 

Metalloproteinase expression is primarily regulated at the level of transcription, which 

itself is influenced by changes in protein acetylation. This process is catalysed by 

enzymes from the histone acetyltransferase (HATs) and histone deacetylase (HDACs) 

families (Clark et al, 2007). Our laboratory has previously shown that broad spectrum 

HDAC inhibitors can repress cytokine-induced metalloproteinase expression in cell 

monolayer cultures and inhibit cytokine-induced cartilage resorption in the BNC assay 

(Young et al, 2005). The chondroprotective property of HDAC inhibitors has also been 

supported by the reduced joint damage observed in models of inflammatory arthritis, 

and most recently, models of osteoarthritis as a result of HDAC inhibitor treatment. 

Importantly, the reduced cartilage degradation measured in an OA rabbit model in 

response to TSA treatment was coupled with a repression of induced IL-1α, MMP1, 

MMP3 and MMP13 expression (Chen et al, 2010). 

 

The molecular pathways by which HDAC inhibitors mediate repression of cytokine-

induced metalloproteinase expression remain unclear. This study aimed to determine the 

profile of HDAC inhibition required in order to repress metalloproteinase expression, 

and to understand further the role of specific HDACs in basal and cytokine-induced 

metalloproteinase expression through the use of siRNA technology. This was designed 
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to give a more comprehensive understanding of the mechanisms by which HDAC 

inhibitors mediate their chondroprotective effect. 

 

The SW1353 cell line represented a well characterised and reliable cell model in which 

to examine the effect of HDAC inhibitors on cellular acetylation levels and cytokine-

induced metalloproteinase expression relevant to cartilage. TSA, VPA and MS-275 

were found to increase histone acetylation in a concentration-dependent manner within 

SW1353 cells, indicating that all three compounds inhibit the catalytic activity of 

HDACs involved in the deacetylation of histones within these cells. TSA was the only 

compound found to increase α-tubulin acetylation, indicating that this was the only 

inhibitor to block HDAC6 activity. The lack of HDAC6 inhibition mediated by MS-275 

was predicted due to its reported class I HDAC (HDAC1, HDAC2 and HDAC3) 

specificity (Hu et al, 2003; Inoue et al, 2006). However, previous reports on the ability 

of VPA to inhibit HDAC6 activity were conflicting, with an early study by Gottlicher et 

al. (2001) reporting inhibition, but a later study by Gurvich et al. (2004) detecting no 

inhibition. This current study confirms the data of Gurvich et al. (2004), showing that 

HDAC6 is not inhibited by VPA. In addition, tubacin treatment was found to increase 

α-tubulin acetylation in SW1353 cells, supporting its role as a HDAC6 specific 

inhibitor. Interestingly, the induction of α-tubulin acetylation by tubacin was not 

absolutely concentration-dependent in SW1353 cells, contrasting with the previously 

published data in A549 and multiple myeloma human cell lines (Haggarty et al, 2003; 

Hideshima et al, 2005). This may indicate that the efficiency of tubacin varies across 

cell lines or cell types. 

 

TSA, VPA and MS-275 exhibited differential effects on cytokine-induced 

metalloproteinase expression within the SW1353 cell line and primary articular 

chondrocytes. Consistent with Young et al. (2005), TSA decreased the expression of all 

the cytokine-induced genes detected in SW1353 cells in a concentration-dependent 

manner, as well as decreasing I/O-induced MMP13 expression in primary articular 

chondrocytes. 

 

VPA also decreased the expression of all the cytokine-induced genes detected in 

SW1353 cells, as well as I/O-induced MMP13 expression in primary chondrocytes. 

Gurvich et al. (2004) reported that VPA does not inhibit HDAC6 (supported by this 

current study) or HDAC10 activity (Gurvich et al, 2004). This indicates that neither 
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HDAC6 nor HDAC10 inhibition is essential for the repression of cytokine-induced 

MMP1, MMP3, MMP10 and MMP13 expression in SW1353 cells, nor the repression of 

cytokine-induced MMP13 expression in primary chondrocytes. Interestingly, VPA 

decreased I/O-induced MMP1 and MMP13 expression in SW1353 cells in a 

concentration-dependent manner, but a greater repression of IL-1α-induced collagenase 

expression was observed using 0.5mM than with 1mM VPA. We postulate that this may 

be a result of VPAs reported concentration-dependent class switch of inhibition from 

class I to both class I and II HDACs, which reportedly occurs at concentrations greater 

than 1mM (Gurvich et al, 2004). Despite the VPA data indicating that HDAC6 

inhibition is not essential to repress I/O-induced MMP13 expression in SW1353 and 

primary chondrocyte cells, the inhibition of HDAC6 alone by tubacin decreased IL-1α 

and I/O-induced MMP1 and MMP13 expression in SW1353 cells. This study therefore 

shows that HDAC6 inhibition alone is capable of conferring repression of cytokine-

induced collagenase expression in SW1353 cells. Consistent with this, tubacin also 

significantly reduced cytokine-induced collagen and GAG release from bovine cartilage 

explants. This suggests that this compound must inhibit the expression of key cartilage 

degrading enzymes from primary chondrocytes when embedded within the cartilage 

matrix. 

 

MS-275 was not as effective at repressing cytokine-induced metalloproteinase 

expression in SW1353 cells as TSA and VPA, with no concentration-dependent 

repression of cytokine-induced MMP1, MMP10 or MMP13 expression detected in 

response to MS-275 treatment. However, MS-275 did decrease cytokine-induced 

MMP3 expression. Therefore TSA, VPA and MS-275 all inhibited cytokine-induced 

MMP3 expression in the SW1353 cell line, suggesting that HDAC inhibitors may 

partially mediate their chondroprotective effect through the repression of MMP3 

expression. It is possible that the repression of cytokine-induced MMP3 expression 

could result in decreased MMP-3 protein, thus reducing the activation of pro-

collagenases and subsequent cartilage resorption. MS-275 decreased I/O-induced 

MMP13 expression in a concentration-dependent manner in primary human articular 

chondrocytes, despite exhibiting no repression on I/O-induced MMP13 expression in 

SW1353 cells. Importantly, this demonstrates that class I HDAC (HDAC1, HDAC2 and 

HDAC3) inhibition is enough to repress cytokine-induced MMP13 expression in 

primary chondrocytes. This also suggests that the transcriptional regulation of MMP13 
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by class I HDACs (HDAC1, HDAC2 and HDAC3) differs in SW1353 cells compared 

to primary articular chondrocytes.  Understanding this difference could potentially 

further elucidate the role of class I HDACs in the transcriptional regulation of MMP13 

expression.  

 

The efficiency of TSA- and VPA-mediated repression of I/O-induced MMP13 

expression differed between the SW1353 cell line and primary chondrocyte cells. TSA 

significantly decreased I/O-induced MMP13 expression at 25ng/ml in SW1353 cells, 

but a much higher concentration of 100ng/ml was required to achieve significant 

repression in primary chondrocytes. In contrast, 5mM VPA was required to achieve 

significant repression of I/O-induced MMP13 expression in SW1353 cells, but a much 

lower concentration of 0.5mM significantly repressed expression in primary articular 

chondrocytes. This again suggests that HDAC regulation of MMP13 expression may 

differ between SW1353 cells and primary chondrocytes. In addition to this, VPA at 

0.5mM reportedly only inhibits class I HDACs (whether VPA inhibits HDAC8 activity 

is yet to be established). This further supports the theory that class I HDAC inhibition is 

sufficient to repress cytokine-induced MMP13 expression in primary chondrocytes, but 

is not enough to repress expression in SW1353 cells. Therefore, at this stage class I 

HDAC inhibition (HDAC1, HDAC2 and HDAC3), or separately HDAC6 inhibition, 

was found to be sufficient to repress cytokine-induced MMP expression. 

 

TSA, VPA and MS-275 were all found to significantly reduce cytokine-induced 

cartilage degradation in the BNC assay. This is consistent with the previously reported 

in vivo chondroprotection exhibited by these compounds in animal models of 

inflammatory arthritis, and TSA in the OA rabbit model (Chen et al, 2010; Chung et al, 

2003; Keiichiro et al, 2004; Lin et al, 2007; Saouaf et al, 2009). This current study 

found that the chondroprotective property of MS-275 correlated with its ability to 

decrease cytokine-induced MMP1, MMP3, MMP13, ADAMTS4 and ADAMTS5 

expression in the cytokine treated bovine cartilage explants. This confirms that MS-275 

can repress I/O-induced MMP13 expression in primary chondrocytes, whether in 

monolayer or embedded within the cartilage matrix. Importantly, this also indicates that 

class I HDAC inhibition is enough to decrease cytokine-induction of key OA-associated 

metalloproteinase genes of chondrocytes embedded in the cartilage matrix. Consistent 

with this, the recently published OA rabbit model demonstrated that TSA treatment 
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reduced the increased expression of MMP1, MMP3 and MMP13 expression detected in 

the cartilage of OA rabbit controls (Chen et al, 2010). However, this is the first study to 

identify that class I HDAC inhibition alone is sufficient to repress cytokine-induced 

metalloproteinase expression in cartilage. The effect of MS-275 on cytokine-induced 

metalloproteinase gene expression in vivo is yet to be tested.  

 

The BNC assays of this study demonstrated that cytokine-induced proteoglycan release 

exhibits less sensitivity to HDAC inhibitor treatment than induced collagen release. 

This was found to be a result of the rapid kinetics of proteoglycan loss. This study 

therefore demonstrates that early harvest time points, such as day 3 of the BNC assay, 

are required to detect accurately the effect of HDAC inhibitor treatment on cytokine-

induced GAG release.  

 

The profile of cytokine-induced metalloproteinase expression during the BNC assay 

identified the significant induction of MMP1, MMP3, MMP13, ADAMTS4, ADAMTS5 

and TIMP1 expression in cartilage explants, in response to I/O treatment. Cytokine 

induction of these genes is consistent with the previous profile of metalloproteinase 

expression in the BNC assay, conducted by Milner et al. (2006). I/O-induced MMP1 

and MMP13 expression was detected as early as day 1 of this study. The early induction 

of collagenase genes, coupled with the late collagen release detected at day 10 of this 

current profile, suggests that activation of the synthesised pro-collagenases may be the 

key regulatory factor in cartilage degradation. This is consistent with the profile 

completed by Milner et al. (2006). However, our current profile detected slower kinetics 

of MMP1 and MMP13 induction compared to that detected in the Milner et al. (2006) 

profile, with maximal collagenase expression not being reached until day 10 of this 

study, but achieved at day 2 of the Milner profile. Therefore this current profile may 

demonstrate that a threshold of MMP-13 is required for collagen degradation, rather 

than its actual activation providing a regulatory step in cartilage degradation. The 

expression patterns of ADAMTS4 and ADAMTS5 also varied between the two profiles. 

In the study completed by Milner et al. (2006), ADAMTS4 and ADAMTS5 expression 

increased rapidly between days 0 and 2 then reached a plateau. However, after the rapid 

cytokine-induction of aggrecanase expression detected in this study between days 0 and 

3, ADAMTS4 expression steadily decreased and ADAMTS5 expression fluctuated 

throughout the remainder of the assay. This current profile also found that I/O-induced 
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TIMP1 expression decreased between days 8 and 10, returning to near basal levels at 

day 14. However, Milner et al. (2006) found that after the initial induction of TIMP1 

expression, that its expression remained at a fairly constant level for the remainder of 

the assay. Therefore, TIMP1 expression decreased most significantly at day 10 of this 

study, which correlated with the point of maximal I/O-induced MMP1 and MMP13 

expression. This suggests that collagen degradation occurs when the expression level of 

catabolic enzymes, such as MMP-1 and MMP-13, exceeds that of the protease 

inhibitors, such as TIMP-1. This is consistent with the anabolic to catabolic shift in gene 

expression which is generally thought to occur in the OA joint.  

 

The reason for the differing kinetics of collagenase gene induction and expression 

patterns of aggrecanase genes and TIMP1 between this current profile and that of 

Milner et al. (2006) is not clear. However, the differences may be attributed to the 

variability of age or breed of animal used between both studies. The assay would have 

to be repeated to clarify this. 

 

The profile of classical HDAC expression in OA cartilage versus normal cartilage 

indicated that a majority of HDACs have significantly lower expression in OA cartilage 

compared to normal, including HDAC2, HDAC3, HDAC5, HDAC7, HDAC8 and 

HDAC11. HDAC10 was the only HDAC found to have significantly increased 

expression in OA cartilage. These results contrasted with a previously published profile 

by Higashiyama et al. (2009), which found that HDAC7 expression was significantly 

increased in OA cartilage and that HDAC4 and HDAC10 were substantially decreased. 

As previously stated, the contrasting results between the two profiles could be due to a 

number of experimental variables between the studies. However, the HDAC profile of 

this study does suggest that the hypothesis of Higashiyama et al. (2009), stating that 

elevated HDAC7 in OA may contribute to cartilage degradation via promoting MMP13 

gene expression, is questionable. In order to understand the role of HDAC expression in 

OA onset and progression it may be best to profile HDAC expression in an OA animal 

model. This is because large cohorts of patients may be required to identify a correlation 

between HDAC expression and OA through gene profiling. Also, available human OA 

tissue is predominantly at ‘end stage’, and therefore does not allow the study of HDAC 

expression during the onset and progression of the disease.  
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A number of single nucleotide polymorphisms (SNPs) have been identified in the 

classical HDAC family, which are all listed on the international HapMap project 

website (www.hapmap.org). The HapMap project is a catalogue of genetic sequences of 

different individuals, enabling the identification of chromosomal regions where genetic 

variations are shared. However, despite the identification of SNPs in all members of the 

HDAC family, very few have been found to have clinical association. As previously 

discussed, a SNP in the 3’UTR of HDAC6 has been associated with the onset of X-

linked chondrodysplasia. The HDAC6 3’UTR variant suppressed hsa-miR-433-

mediated post-transcriptional regulation resulting in the over expression of HDAC6. It 

is postulated that the increased level of HDAC6 expression contributes to the 

chondrodysplasia phenotype through its interaction and inhibition of RUNX2 

transcription factor, which is known to be essential for chondrocyte hypertrophy (Simon 

et al, 2010). Therefore, it would be of great interest to determine if any SNPs in the 

HDAC family are associated with OA onset through the genetic profiling of OA 

patients. 

 

We hypothesised that specific siRNA knockdown of each individual HDAC would 

potentially elucidate those that impact on MMP13 expression, enabling selective 

inhibition of these enzymes in order to regulate MMP13 expression. However, the 

siRNA experiments completed in the SW1353 cell line indicated that the individual 

knockdown of nearly all classical HDACs leads to a reduction of basal and/or IL-1α-

induced MMP13 expression. The original hypothesis was partially based upon HDAC 

inhibitor assays showing that class I HDAC (HDAC1, HDAC2 and HDAC3) inhibition, 

and separately HDAC6 inhibition, was capable of repressing IL-1α-induced MMP13 

expression in cell monolayer assays and conferring a chondroprotective effect in the 

BNC assay. It was also based on the study of Higashiyama et al. (2009), which reported 

that the individual knockdown of HDAC7 repressed both basal and IL-1α-induced 

MMP13 expression in SW1353 cells. The siRNA knockdown data in primary 

chondrocytes was difficult to interpret due to the off-target effects of the non-targeting 

siRNA on MMP13 expression, although conclusions could be drawn from these assays 

by using the non-transfected controls. The knockdown assays completed in primary 

cells identified a more select group of HDACs to be involved in the regulation of 

MMP13 expression than that seen in SW1353 cells. 
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HDAC1 was the only classical HDAC in which repression resulted in the further 

potentiation of IL-1α-induced MMP13 expression in SW1353 cells, suggesting that 

HDAC1 represses cytokine induction of MMP13 expression in SW1353 cells. 

Consistent with this, HDAC1 knockdown was also found to increase both basal and 

cytokine-induced MMP13 expression in primary articular chondrocytes, indicating that 

HDAC1 also represses MMP13 expression in primary cells. HDAC1 has previously 

been shown to repress the expression of the MMP28 promoter through its interaction 

with the Sp1 transcription factor (Swingler 2009). However, further assays are required 

to determine the mechanisms by which HDAC1 may repress MMP13 expression. 

Indeed, if HDAC1 is found to repress MMP13 expression in primary chondrocytes, this 

would contrast with the repression of I/O-induced MMP13 expression achieved by class 

I HDAC inhibition with MS-275 in these cells.   

 

Consistent with tubacin’s repression of cytokine-induced MMP13 expression in 

SW1353 cells, HDAC6 knockdown resulted in decreased basal and IL-1α-induced 

MMP13 expression in these cells. However, HDAC6 knockdown resulted in the further 

potentiation of IL-1α-induced MMP13 expression in primary chondrocytes, suggesting 

HDAC6 may repress cytokine induction of MMP13 expression in primary cells. The 

effect of tubacin on cytokine-induced MMP13 expression is yet to be established in 

primary cells, but is required to help clarify the role of HDAC6 in the regulation of 

MMP13 expression in these cells. However, as previously stated, the chondroprotective 

property of tubacin suggests that the compound must inhibit the expression of key 

cartilage degrading metalloproteinases, such as MMP-13. It must also be remembered 

that siRNA knockdown results in the complete loss of HDAC protein, thus abolishing 

not only enzymatic activity but also protein-protein interactions that are required for 

HDACs to form multi-subunit protein complexes and fulfil their scaffold protein 

functions. This means that the effect of HDAC inhibition can potentially vary compared 

to the effect of HDAC knockdown. This may be the cause of the discrepancy between 

the effect of HDAC6 knockdown and HDAC6 inhibition detected in this study. Thus 

further assays will have to be undertaken to confirm the effect of HDAC6 knockdown 

and inhibition on MMP13 expression within primary cells. 

 

The implication of all classical HDACs in the regulation of MMP13 expression in 

SW1353 cells seems unusual. This is because it seems unlikely for all HDACs to be 
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implicated in the regulation of one gene, especially as mouse knockout assays have 

distinguished such specific roles for each enzyme in development and cellular function. 

However, the repression of basal and IL-1α-induced MMP13 expression in response to 

HDAC7 knockdown in SW1353 cells, detected in this study, is consistent with the 

Higashiyama (2009) study. This therefore supports the hypothesis that HDAC7 may 

promote MMP13 expression in the SW1353 cell line. In contrast HDAC7 knockdown 

was found to have no effect on basal or IL-1α-induced MMP13 expression in primary 

articular chondrocytes. These data suggest that HDAC7 has no regulatory role on 

MMP13 expression in primary articular chondrocytes, contrasting with the hypothesis 

of Higashiyama et al. (2007) that increased HDAC7 expression in OA cartilage may 

contribute to increased MMP-13 expression, resulting in cartilage degradation. The 

effect of HDAC7 knockdown on MMP13 expression in primary chondrocytes was not 

reported in the Higashiyama study. However, primary articular chondrocytes and 

cartilage derived from the HDAC7 null mouse could be used to further explore the role 

of HDAC7 in the transcriptional regulation of MMP13 expression. For example, if 

HDAC7 does increase MMP13 expression, HDAC7 null chondrocytes would be 

postulated to exhibit a lower level of MMP13 expression in response to cytokine 

treatment than wild type chondrocytes. Therefore, HDAC7 null cartilage may also be 

expected to exhibit a lower level of degradation in response to cytokine treatment than 

cartilage derived from wild type mice alone. Indeed, the use of HDAC null 

chondrocytes and cartilage could be used to further explore the role of all HDACs in 

regards to the transcriptional regulation of MMP expression. 

 

It must also be remembered that the SW1353 cell line is a transformed one, with the 

over-expression or aberrant transcriptional recruitment of HDACs observed in many 

cancer types (Abbas & Gupta, 2008; Halkidou et al, 2004; Song et al, 2005; Wu et al, 

2001). This may account for the implication of all HDACs in the regulation of MMP13 

expression detected in SW1353 cells by the knockdown assays of this study. Therefore, 

HDAC regulation of MMP13 expression in the SW1353 cell line may not truly reflect 

the role of HDACs in non-transformed cell types. However, the non-specific effect of 

HDAC knockdown on MMP13 expression within the SW1353 cells is most likely due 

to a problem in the siRNA technique used, rather than the SW1353 cells being a 

transformed cell line. Further assays are required to determine if this is true. 
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HDAC knockdown in primary chondrocytes identified that HDAC11 knockdown 

correlates with the induction of basal and IL-1α-induced MMP13 expression, suggesting 

that HDAC11, like HDAC1, represses both basal and IL-1α-induced MMP13 

expression in primary chondrocytes. HDAC5 knockdown resulted in the further 

potentiation of IL-1α-induced MMP13 expression when compared to non-target and 

non-transfected controls. This indicates that HDAC5, like HDAC6, may inhibit 

cytokine induction of MMP13 in primary articular chondrocytes. HDAC10 knockdown 

resulted in an induction of basal MMP13 expression, suggesting that HDAC10 induces 

the expression of MMP13 under normal conditions. Conversely, the siRNA knockdown 

of HDAC3 and HDAC8 expression both resulted in reduced basal and IL-1α-induced 

MMP13 expression, indicating that both enzymes have a role in activating the 

transcription of MMP13. The role of other HDACs in the transcriptional regulation of 

MMP13 expression within these cells was less clear due to the off-target effects of the 

non-targeting control. However, the data did suggest that HDAC2 had no regulatory 

role in IL-1-induced MMP13 expression. This means that the knockdown of HDAC3 

(indicating that it activates MMP13 expression) is the only knockdown assay to agree 

with the MS-275 data in primary chondrocytes, which showed that class I (HDAC1, 

HDAC2 and HDAC3) inhibition can repress I/O-induced MMP13 expression. Overall, 

the knockdown assays in primary chondrocytes highlight the need to identify a non-

targeting siRNA that does not influence the expression of MMP13, and the need to 

repeat these assays to clarify the conclusions drawn from the knockdown assays of this 

study. 

 

This study used pre-designed siGENOME SMARTpool siRNAs for HDAC knockdown. 

The siGENOME SMARTpools consist of four siRNAs which are targeted to different 

sequences within the same mRNA. These SMARTpools reportedly have reduced off-

target effects due to the ‘effective concentration’ of the duplexes within the pool: at a 

total siRNA concentration of 100nM, the individual duplexes comprising the pool are at 

a much lower concentration, approximately 25nM. Thus the off-target activity of each 

duplex is reportedly reduced by a concentration-dependent mechanism. However, as 

stated previously this essentially means four different siRNAs are being introduced into 

the cell, which conceptually increases the possibility of off-target effects. The efficiency 

and off-target effects of each of the siRNAs within the SMARTpools used by this study 

are yet to be determined. Recently, small quantities of each of the siRNAs within the 
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siGENOME SMARTpools have become available to purchase, enabling the efficiency 

and off-target effects of each siRNA within the SMARTpool to be determined. This 

would need to be completed by this study to ensure that the HDAC siRNA SMARTpools 

are not producing off-target effects. It would also be interesting to compare the 

efficiency of HDAC knockdown, and the subsequent effect on MMP13 expression, 

produced by the single siRNAs compared to their use in siRNA SMARTpools.  

 

This study also identified that TSA significantly induces HDAC3 expression and 

significantly represses HDAC7 expression within the SW1353 cell line, in a 

concentration-dependent manner. These findings are consistent with Hemmatazad et al. 

(2009), which demonstrated that TSA treatment causes almost complete repression of 

HDAC7 expression and induces the expression of HDAC3 in systemic sclerosis (SSc) 

skin fibroblasts. However, Hemmatazad et al. (2009) detected decreased transcripts for 

nearly all other HDACs in response to TSA treatment (although not to such a significant 

degree as HDAC7), where as this study detected no change in HDAC1 or HDAC2 

expression in response to TSA treatment within SW1353 cells. This suggests that the 

impact of TSA on HDAC expression is dependent on cell type.  

 

Interestingly, broad spectrum inhibitors vorinostat and depsipeptide have also been 

shown to suppress the expression of HDAC7 at the mRNA and protein level in normal, 

immortalised and transformed cell lines (Dokmanovic et al, 2007). This demonstrates 

that broad spectrum HDAC inhibitors not only inhibit HDAC catalytic activity, but also 

regulate HDAC expression at the transcriptional level. This study is the first to report 

this effect in SW1353 cells. The importance of this finding is also yet to be established 

as any induction of HDAC expression by a broad spectrum inhibitor, such as HDAC3 

by TSA, is likely to have little impact on gene function due to any translated protein 

also being catalytically inhibited. However, as previously stated, HDACs are found in 

multi-subunit protein complexes (Alland et al, 1997; Nagy et al, 1997), as well as 

having other scaffold protein functions (Kawaguchi et al, 2003). Therefore, any 

significant change in expression, such as the large repression of HDAC7, caused by 

inhibitor treatment could potentially affect the non-deacetylase-related functions of 

HDACs. This means that HDAC inhibitors, through their regulation of HDAC 

expression, could potentially confer the same effect as HDAC siRNA knockdown on 

metalloproteinase expression. It is yet to be established if more specific HDAC 
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inhibitors modulate the expression of classical HDACs. However, Hemmatazad and 

colleagues postulate that the anti-fibrotic properties of TSA, observed in SSc skin 

fibroblasts, is mediated through its repression of HDAC7 expression (Hemmatazad et 

al, 2009; Huber et al, 2007). Also, Dokmanovic et al. (2007) observed that vorinostat 

caused the greatest suppression of HDAC7 expression in transformed cell lines sensitive 

to vorinostat-induced apoptosis, with little repression observed in normal and prostate 

cancer cells resistant to vorinostat-induced cell death. Therefore further assays are 

required to establish the importance of this finding. 

 

5.2 Summary of Main Findings 
 

The HDAC inhibitor assays of this study indicate that HDAC regulation of OA-

associated metalloproteinases, such as MMP13, may differ between the SW1353 cell 

line and primary chondrocytes. For example, class I HDAC (HDAC1, HDAC2 and 

HDAC3) inhibition by MS-275 is sufficient to repress cytokine-induced MMP1 and 

MMP13 expression in primary cells, whether in monolayer or cartilage explant, but is 

not enough to decrease expression in the SW1353 cell line. This may question the 

validity of SW1353 cells as a model of primary chondrocytes. The validity of SW1353 

cells as a model of primary chondrocytes has previously been questioned by Gebauer et 

al. (2005) due to a microarray of 312 chondrocyte relevant genes detecting little 

similarity between IL-1β-induced gene expression in the SW1353 cell line compared to 

primary chondrocytes. However, the study did state that the pattern of IL-1β-induced 

MMP expression, including MMP1, MMP3 and MMP13, mirrored that or primary cells, 

thus supporting their use for studying the transcription regulation of metalloproteinase 

genes (Gebauer et al, 2005). 

  

This thesis also revealed that inhibition of class I HDACs (HDAC1, HDAC2 and 

HDAC3), and separately the inhibition of HDAC6, can repress cytokine-induced 

cartilage degradation. The lack of phenotype in the HDAC6 null mouse suggests that 

specific HDAC6 inhibition may have minimal side-effects, although further research 

would be required to determine this. Therefore the possible use of HDAC6 specific 

inhibitors may provide a possible therapeutic strategy in the treatment of arthritides. 

This study also identified that many HDACs have decreased expression in end-stage 

OA cartilage compared to normal, and identified the need to profile HDAC expression 

in the cartilage of an OA animal model to truly understand the role of HDAC expression 
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in OA onset and progression. The siRNA knockdown assays of this study indicate that 

knockdown of nearly all classical HDACs leads to a reduction of basal and/or IL-1α-

induced MMP13 expression in SW1353 cells, whilst a more select group of HDACs 

were identified to regulate MMP13 expression in primary chondrocytes. However, the 

knockdown assays of this study will need to be repeated with non-targeting siRNA 

controls which have no effect on MMP13 expression in order to validate the conclusions 

drawn from the knockdown assays of this study.  

 

In conclusion, class I HDACs and HDAC6 were found to play an important role in 

metalloproteinase expression, with their inhibition enough to repress the expression of 

cartilage degrading enzymes. Therefore, the role of these enzymes in OA and the 

regulation of metalloproteinase expression will be the focus of future research. 

  

Future Directions 
 

Future work would include determining the effect of tubacin on cytokine-induced 

metalloproteinase expression in primary chondrocytes, in monolayer and in cartilage 

explants. Tubacin’s repression of cytokine-induced MMP1 and MMP13 expression in 

SW1353 cells, and its chondroprotective effect in the BNC assay, indicates that HDAC6 

plays a significant role in the transcription regulation of cytokine-induced MMPs.  

Therefore, further elucidating the effect of tubacin on metalloproteinase expression in 

primary cells is essential to further understand how it mediates its chondroprotective 

effect. Further confirming tubacin’s chondroprotective effect in vitro would also be 

required before the compound could be tested in vivo in a pathological setting. In order 

to determine the potential of using tubacin in the treatment of OA, the compound would 

need to be tested in an OA animal model, such as the well characterised DMM 

(destabilisation of the medial meniscus) model. The effect of DMM in the HDAC6 null 

mouse would also enable the effect of complete HDAC6 ablation on induced MMP 

expression in an OA setting. This would therefore be the aim of future research. 

 

Due to the chondroprotection and repression of cytokine-induced MMP expression 

exhibited by MS-275, it would be of interest to determine if MS-275 can reduce induced 

MMP expression and protect against cartilage destruction in an OA animal model. 

Previous studies have shown that MS-275 can reduce cartilage damage in inflammatory 

arthritis models (Lin et al, 2007) where its use was well tolerated. However, its effect in 
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vivo on metalloproteinase expression and in an OA setting is yet to be established. The 

possible use of MS-275 for future OA treatment is doubtful due to the side-effects 

reported in clinical trials for its possible use in cancer treatment (Gore et al, 2008). 

Therefore, the aim of testing MS-275 in an OA animal model would be to further 

understand the role of class I HDACs on metalloproteinase expression in an OA setting. 

This could perhaps help in the development of a more specific inhibitor.  

 

The siRNA knockdown experiments completed in this study emphasise the need for 

non-targeting siRNAs which do not have off-target effects in order to validate RNA 

interference data. Therefore, the identification of a non-targeting siRNA that does not 

produce off-target effects is essential for the validation of future knockdown data. The 

individual siRNAs within the HDAC SMARTpool would also be tested to assure that 

they produce no off-target effects, and are efficient at HDAC knockdown. The use of 

individual siRNAs may be best for future knockdown assays, thus further assays 

comparing SMARTpool siRNAs to individual siRNAs would be required. Once a non-

targeting siRNA has been identified and the efficiency of HDAC knockdown assessed, 

the HDAC knockdown assays in SW1353 cells and primary chondrocytes will have to 

be repeated in order to confirm the findings of this study. 

 

Future work would also focus on determining if class I HDACs (HDAC1, HDAC2 and 

HDAC3) and HDAC6 are directly recruited to the MMP-13 promoter, or whether they 

affect its expression indirectly via signalling pathways. This could be determined 

through chromatin immunoprecipitation (ChIP) assays (including ChIP-on-chip 

technology), as well as HDAC overexpression and knockdown assays. 
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Appendix I 

 

The effect of TSA on cytokine-induced MMP expression in  

SW1353 cells 

 
Appendix Figure 1. The effect of Trichostatin A on cytokine- induced MMP expression in 

SW1353 cells 

 

SW1353 cells were incubated with increasing concentrations of TSA (5ng/ml, 25ng/ml, 

50ng/ml and 100ng/ml) in combination with IL-1α (5ng/ml) or I/O (combination of IL-1α and 

OSM (10ng/ml)) for 6 hours. Total RNA was extracted with Trizol, reverse transcribed to 

cDNA, and MMP levels detected by real-time qRT-PCR (a) MMP2 (b) MMP9 (c) MMP10 (d) 

MMP28 (e) ADAMTS4 (f) ADAMTS5. Assays were completed once, using triplicate samples; 

means ± standard errors are represented. *P<0.05, **P<0.01, ***P<0.001. 
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The effect of VPA on cytokine-induced MMP expression in 

SW1353 cells 

 

 
Appendix Figure 2. The effect of VPA on cytokine-induced MMP expression 

 

SW1353 cells were incubated with increasing concentrations of VPA (0.5mM, 1mM, 5mM and 

10mM) in combination with IL-1 (5ng/ml) or I/O (combination of IL-1 and OSM (10ng/ml)) for 

6 hours. Total RNA was extracted with Trizol, reverse transcribed to cDNA, and MMP levels 

detected by real-time qRT-PCR (a) MMP2 (b) MMP9 (c) MMP10 (d) MMP28 (e) ADAMTS4 

(f) ADAMTS5. Assays were completed once, using triplicate samples; means ± standard errors 

are represented. *P<0.05, **P<0.01, ***P<0.001. 
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The effect of MS-275 on cytokine-induced MMP expression in 

SW1353 cells 

 

 
Appendix Figure 3. The effect of MS-275 on cytokine-induced MMP expression 

 

SW1353 cells were incubated with increasing concentrations of MS-275 (1µM, 2µM, 5µM and 

10µM) in combination with IL-1 (5ng/ml) or I/O (combination of IL-1 and OSM (10ng/ml)) for 

6 hours. Total RNA was extracted with Trizol, reverse transcribed to cDNA, and MMP levels 

detected by real-time qRT-PCR (a) MMP2 (b) MMP9 (c) MMP10 (d) MMP28 (e) ADAMTS4 

(f) ADAMTS5. Assays were completed once, using triplicate samples; means ± standard errors 

are represented. *P<0.05, **P<0.01, ***P<0.001. 
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Appendix II 
 

Primer Sequences 
 

 

Gene  Primer/Probe Sequence (5’-3’) 
 

MMP-1 Forward Primer: 
Reverse Primer: 
Probe: 

 AAGATGAAAGGTGGACCAACAATT 
CCAAGAGAATGGCCGAGTTC 
FAM-CAGAGAGTACAACTTACATCGTGTTGCGGCTC-TAMRA 

 
MMP-2 

 
Forward Primer: 
Reverse Primer: 
Probe: 

 
AACTACGATGACGACCGCAAGT 
AGGTGTAAATGGGTGCCATCA 
FAM-CTTCTGCCCTGACCAAGGGTACAGCC-TAMRA 

 
MMP-3 

 
Forward Primer: 
Reverse Primer: 
Probe: 

 
TTCCGCCTGTCTCAAGATGATAT 
AAAGGACAAAGCAGGATCACAGTT 
FAM-TCAGTCCCTCTATGGACCTCCCCCTGAC-TAMRA 

 
MMP-9 

 
Forward Primer: 
Reverse Primer: 
Probe: 

 
AGGCGCTCATGTACCCTATGTAC 
GCCGTGGCTCAGGTTCA 
FAM-CATCCGGCACCTCTATGGTCCTCG 

 
MMP-10 

 
Forward Primer: 
Reverse Primer: 
Probe: 

 
GGACCTGGGCTTTATGGAGATAT 
CCCAGGGAGTGGCCAAGT 
FAM- CATCAGGCACCAATTTATTCCTCGTTGCT-TAMRA 

 
MMP-13 

 
Forward Primer: 
Reverse Primer: 
Probe: 

 
AAATTATGGAGGAGATGCCCATT 
TCCTTGGAGTGGTCAAGACCTAA 
FAM-CTACAACTTGTTTCTTGTTGCTGCGCATGA-TAMRA 

 
MMP-28 

 
Forward Primer: 
Reverse Primer: 
Probe: 

 
TTTGAGACCTGGGACTCCTACAG 
CCCAGAAATGGCTCCCTTTA 
FAM- ACTCTTCCTTCGATGCCATCACTGTAGACAG-TAMRA 

 
ADAMTS4 

 
Forward primer: 
Reverse primer: 
Probe: 

 
CAAGGTCCCATGTGCAACGT 
CATCTGCCACCACCAGTGTCT 
FAM-CCGAAGAGCCAAGCGCTTTGCTTC-TAMRA 

 
ADAMTS5 

 
Forward primer: 
Reverse primer: 
Probe: 

 
TGTCCTGCCAGCGGATGT 
ACGGAATTACTGTACGGCCTACA 
FAM-TTCTCCAAAGGTGACCGATGGCACTG-TAMRA 

 

Table 1. Primer probe sequences for human metalloproteinases detected in this study. 
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Table 2. Primer sequences for all human classical histone deacetylases and corresponding 

universal probes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Gene Universal 
Probe 

Primers  Primer  Sequence (5’-3’) 

 
HDAC1 

 
58 

 
Left primer: 
Right primer: 

 
CAGCGATGACTACATTAAATTCTTG 
AGTCCTCACCAACGTTGAATC 

 
HDAC2 

 
72 

 
Left primer: 

 
CAGATCGTGTAATGACGGTATCA 
CCTTTTCCAGCACCAATATCC Right primer: 

 
HDAC3 

 
89 

 
Left primer: 

 
TCTGGGCTGTGATCGATTG 
CTTGACATATTCAACGCATTCC Right primer: 

 
HDAC4 

 
24 

 
Left primer: 
Right primer: 

 
GTGGTAGAACTGGTCTTCAAGG 
GACCACAGCAAAGCCATTC 

 
HDAC5 

 
3 

 
Left primer: 
Right primer: 

 
AAGGTCCTtCATCGTGGACTG 
GCACAGAGGGGTCATTGTAGA 

 
HDAC6 

 
58 

 
Left primer: 
Right primer: 

 
AGTTCACCTTCGACCAGGAC 
GCCAGAACCTACCCTGCTC 

 
HDAC7 

 
71 

 
Left primer: 
Right primer: 

 
CCATGGGGGATCCTGAGT 
GAGAACTCTCGGGCGATG 

 
HDAC8 

 
52 

 
Left primer: 
Right primer: 

 
GGCAGTTGGCAACACTCAT 
GTCAAGTATGTCCAGCATCGAG 

 
HDAC9 

 
84 

 
Left primer: 
Right primer: 

 
TCTTGGAGAAGCAGAAGCAATA 
GCTTCAGTTGTTCAATAGATTTCG 

 
HDAC10 

 
42 

 
Left primer: 
Right primer: 

 
TGGGAAGCTCCTGTACCTCTT 
GGCTGGAGTGGCTGCTATAC 

 
HDAC11 

 
80 

 
Left primer: 
Right primer: 

 
ATCACGCTCGCCATCAAGt 
GGCATCAAGATCAATGATGGTA 
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Gene  
 

Primer Primer sequence (5’-3’) 

MMP1 Left Primer: 
Right Primer: 

GATGCCGCTGTTTCTGAGGA 
GACTGAGCGACTAACACGACACAT 

 
MMP3 

 
Left Primer: 
Right Primer: 

 
TTAGAGAACATGGGGACTTTTTG 
CGGGTTCGGGAGGCACAG 

 
MMP13 

 
Left Primer: 
Right Primer: 

 
CCCTCTGGTCTGTTGGCTCAC 
CTGGCGTTTTGGGATGTTTAGA 

 
ADAMTS4 

 
Left Primer: 
Right Primer: 

 
GCGCCCGCTTCATCACTG 
TTGCCGGGGAAGGTCACG 

 
ADAMTS5 

 
Left Primer: 
Right Primer: 

 
AAGCTGCCGGCCGTGGAAGGAA 
TGGGTTATTGCAGTGGCGGTAGG 

 
TIMP1 

 
Left Primer: 
Right Primer: 

 
TGGGCACCTGCACATCACC  
CATCTGGGCCCGCAAGGACTG 

 

Table 3. Bovine primer sequences for metalloproteinases and TIMP1 detected in this study.
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Appendix III 
 

Transfection reagents and siRNA sequences 
 

 

Non-targeting siRNAs 

 

siGENOME Non-Targeting siRNA Pool #2: (Dharmacon of Thermo Scientific, Waltham, USA)  

Order number: D-001206-14-05 

Silencer® Negative Control #1 siRNA: (Ambion, Warrington, UK) 

Order number: AM4611 

AllStar Negative Control: (Qiagen, West Sussex, UK)  

Order number: 1027780 

 

Thermo SCIENTIFIC siRNA Reagents 

 

DharmaFECT1 Transfection Reagent: catalogue Item T-2001-02 

5X siRNA Buffer Dharmacon: B-002000-UB-100 

 

siGENOME SMARTpool M-003493-02-0005, Human HDAC1 

 

siGENOME SMARTpool siRNA D-003493-01, HDAC1 

Target sequence: CUAAUGAGCUUCCAUACAA 

siGENOME SMARTpool siRNA D-003493-02, HDAC1 

Target sequence: GAAAGUCUGUUACUACUAC 

siGENOME SMARTpool siRNA D-003493-04, HDAC1 

Target sequence: GGACAUCGCUGUGAAUUGG 

siGENOME SMARTpool siRNA D-003493-09, HDAC1 

Target sequence: CCGGUCAUGUCCAAAGUAA 
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siGENOME SMARTpool M-003495-02-0005, Human HDAC2 

 

siGENOME SMARTpool siRNA D-003495-01, HDAC2 

Target sequence: CCAAUGAGUUGCCAUAUAA 

siGENOME SMARTpool siRNA D-003495-04, HDAC2 

Target Sequence: GCAAAGAAAGCUAGAAUUG 

siGENOME SMARTpool siRNA D-003495-05, HDAC2 

Target sequence: CGGUAUCAUUCCAUAAAUA 

siGENOME SMARTpool siRNA D-003495-18, HDAC2 

Target sequence: CCAUAAAGCCACUGCCGAA 

 

siGENOME SMARTpool M-003883, Human HDAC3 

 

siGENOME SMARTpool siRNA D-003496-01, HDAC3 

Target sequence: GGAAAGCGAUGUGGAGAUU 

siGENOME SMARTpool siRNA D-003496-02, HDAC3 

Target sequence: AAAGCGAUGUGGAGAUUUA 

siGENOME SMARTpool siRNA D-003496-03, HDAC3 

Target sequence: GCAUUGAUGACCAGAGUUA 

siGENOME SMARTpool siRNA D-003496-04, HDAC3 

Target sequence: GGAAUGCGUUGAAUAUGUC 

 

siGENOME SMARTpool M-003883, Human HDAC3 

 

siGENOME SMARTpool siRNA D-003497-01, HDAC4 

Target sequence: CGACAGGCCUCGUGUAUGA 

siGENOME SMARTpool siRNA D-003497-02, HDAC4 

Target sequence: AAAUUACGGUCCAGGCUAA 

siGENOME SMARTpool siRNA D-003497-06, HDAC4 

Target sequence: GAGUGUCGACCUCCUAUAA 

siGENOME SMARTpool siRNA D-003497-19, HDAC4 

Target sequence: GUAAAUAAAGACUGCGUUA 
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siGENOME SMARTpool M-005474, Human HDAC5 

 

siGENOME SMARTpool siRNA D-003498-05, HDAC5 

Target sequence: GUUAUUAGCACCUUUAAGA 

siGENOME SMARTpool siRNA D-003498-06, HDAC5 

Target sequence: AAAGUGCGUUCAAGGCUAA 

siGENOME SMARTpool siRNA D-003498-07, HDAC5 

Target sequence: CAGCAGAGCACCCUCAUUG 

siGENOME SMARTpool siRNA D-003498-07, HDAC5 

Target sequence: GAAUUCCUCUUGUCGAAGU 

 

siGENOME SMARTpool M-006044, Human HDAC6 

 

siGENOME SMARTpool siRNA D-003499-01, HDAC6 

Target sequence: GCACCGAGCUGAUCCAAAC 

siGENOME SMARTpool siRNA D-003499-02, HDAC6 

Target sequence: GAUGAGCAGUUAAAUGAAU 

siGENOME SMARTpool siRNA D-003499-03, HDAC6 

Target sequence: GCAGUUAAAUGAAUUCCAU 

siGENOME SMARTpool siRNA D-003499-04, HDAC6 

Target sequence: GGUGUUGGAUGAGCAGUUA 

 

siGENOME SMARTpool M-001098416, Human HDAC7A 

 

siGENOME SMARTpool siRNA D-009330-02, HDAC7A 

Target sequence: GGAAGAACCUAUGAAUCUC 

siGENOME SMARTpool siRNA D-009330-04, HDAC7A 

Target sequence: GAAGCUAGCGGAGGUGAUU 

siGENOME SMARTpool siRNA D-009330-05, HDAC7A 

Target sequence: GACAAGAGCAAGCGAAGUG 

siGENOME SMARTpool siRNA D-009330-06, HDAC7A 

Target sequence: AGAAUCCACUGCUCCGAAA 
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siGENOME SMARTpool M-001098416, Human HDAC8 

 

siGENOME SMARTpool siRNA D-003500-01, HDAC8 

Target sequence: GCUGGGAGCUGACACAAUA 

siGENOME SMARTpool siRNA D-003500-02, HDAC8 

Target sequence: GGAAUUGGCAAGUGUCUUA 

siGENOME SMARTpool siRNA D-003500-03, HDAC8 

Target sequence: GCAAGUGUCUUAAGUACAU 

siGENOME SMARTpool siRNA D-003500-06, HDAC8 

Target sequence: GACGGAAAUUUGAGCGUAU 

 

siGENOME SMARTpool M-0058177, Human HDAC9 

 

siGENOME SMARTpool siRNA D-005241-07, HDAC9 

Target sequence: GAACAAAUGCGACAGCAAA 

siGENOME SMARTpool siRNA D-005241-09, HDAC9 

Target sequence: ACAGAAUCCUCAGUCAGUA 

siGENOME SMARTpool siRNA D-005241-10, HDAC9 

Target sequence: CAACGCAUUCUAAUUCAUG 

siGENOME SMARTpool siRNA D-005241-11, HDAC9 

Target sequence: CAUCUCACCUUUAGACCUA 

 

siGENOME SMARTpool M-032018, Human HDAC10 

 

siGENOME SMARTpool siRNA D-004072-01, HDAC10 

Target sequence: GGACCGCGCUUGUGUACCA 

siGENOME SMARTpool siRNA D-004072-02, HDAC10 

Target sequence: CCACUGGCCUUUGAGUUUG 

siGENOME SMARTpool siRNA D-004072-03, HDAC10 

Target sequence: CUCCAGACCUCGCCCAUGA 

siGENOME SMARTpool siRNA D-004072-04, HDAC10 

Target sequence: GGUGAACAGUGGUAUAGCA 
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siGENOME SMARTpool NM-032018, Human HDAC11 

 

siGENOME SMARTpool siRNA D-004258-01, HDAC11 

Target sequence: GCACAGAGGAUGAUGAGUA 

siGENOME SMARTpool siRNA D-004258-02, HDAC11 

Target sequence: CAUCAUUGCUGACUCCAUA 

siGENOME SMARTpool siRNA D-004258-03, HDAC11 

Target sequence: GCAAAGUGAUCAAUUUCCU 

siGENOME SMARTpool siRNA D-004258-04, HDAC11 

Target sequence: CACACGAGGCGCUAUCUUA 
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Appendix IV: The effect of HDAC knockdown on 

MMP13 expression in the SW1353 cell line: Data from 

Preliminary Experiments 
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Appendix IV 
 

The effect of HDAC knockdown on MMP13 expression 

 in the SW1353 cell line: Data from the preliminary experiments 

 
Figure 4. The effect of HDAC1, HDAC2 or HDAC3 siRNA knockdown on MMP13 expression 

in the SW1353 cell line 

 

SW1353 cells were incubated with 25nM siRNA for 24 hours in serum-containing medium. 

Cells were then serum-starved overnight, followed by IL-1α (5ng/ml) and/or TSA (50ng/ml) 

treatment (where appropriate) for 6 hours. Total RNA was extracted with Cells-to-cDNA lysis 

buffer, reverse transcribed to cDNA, and MMP13 and HDAC expression detected by real-time 

qRT-PCR. (a) HDAC1 and MMP13 expression after siRNA treatment. (b) HDAC2 and 

MMP13 expression after siRNA treatment. (c) HDAC3 and MMP13 expression after siRNA 

treatment. Data presented is representative of one assay; means ± standard errors are 

represented. *P<0.05, **P<0.01, ***P<0.001. For MMP13 expression graphs, non-cytokine 

treated samples correspond to the left Y axis, and cytokine treated samples correspond to the 

right Y axis.  
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Figure 5. The effect of HDAC7 knockdown on MMP1 and MMP13 expression in the SW1353 

cell line 

 

SW1353 cells were incubated with 25nM siRNA for 24 hours in serum-containing medium. 

Cells were then serum-starved overnight, followed by IL-1α (5ng/ml) or I/O (a combination of 

IL-1α and OSM (10ng/ml)), and/or TSA (50ng/ml) treatment (where appropriate) for 6 hours. 

Total RNA was extracted with Cells-to-cDNA lysis buffer, reverse transcribed to cDNA, and 

MMP13 and HDAC expression detected by real-time qRT-PCR. (a) HDAC7 and MMP13 

expression after siRNA treatment. Data presented is representative of one assay; means ± 

standard errors are represented. (b) HDAC7 and MMP1 expression after siRNA treatment. 

*P<0.05, **P<0.01, ***P<0.001. Data presented is representative of one assay; means ± 

standard errors are represented. For the metalloproteinase expression graph, non-cytokine 

treated samples correspond to the left Y axis, and cytokine treated samples correspond to the 

right Y axis. 
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Figure 6. The effect of HDAC6 siRNA knockdown on MMP1 expression in the SW1353 cell 

line 

 

SW1353 cells were incubated with 25nM HDAC6 siRNA for 24 hours in serum-containing 

medium. Cells were then serum-starved overnight, followed by I/O (a combination of IL-1α 

(5ng/ml) and OSM (10ng/ml)) and/or TSA (50ng/ml) treatment (where appropriate) for 6 hours. 

Total RNA was extracted with Cells-to-cDNA lysis buffer, reverse transcribed to cDNA, and 

MMP1 and HDAC expression detected by real-time qRT-PCR. (a) HDAC6 and MMP1 

expression after siRNA treatment. Data presented is representative of one assay; means ± 

standard errors are represented. *P<0.05, **P<0.01, ***P<0.001. For the MMP11 expression 

graph, non-cytokine treated samples correspond to the left Y axis, and cytokine treated samples 

correspond to the right Y axis. 
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Figure 7. The effect of HDAC11 siRNA knockdown on MMP13 expression in the SW1353 cell 

line 

 

SW1353 cells were incubated with 25nM HDAC11 siRNA for 24 hours in serum-containing 

medium. Cells were then serum-starved overnight, followed by IL-1α (5ng/ml) and/or TSA 

(50ng/ml) treatment (where appropriate) for 6 hours. Total RNA was extracted with Cells-to-

cDNA lysis buffer, reverse transcribed to cDNA, and MMP1, MMP13 and HDAC expression 

detected by real-time qRT-PCR. (a) HDAC11 and MMP13 expression after siRNA treatment. 

Data presented is representative of one assay; means ± standard errors are represented. *P<0.05, 

**P<0.01, ***P<0.001. For MMP13 expression graphs, non-cytokine treated samples 

correspond to the left Y axis, and cytokine treated samples correspond to the right Y axis. 
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Appendix V 
 

Reagents and Suppliers 
 

 

Reagent Supplier Product Code 
 

1,9- Dimethyl-Methylene Blue 

 

Sigma-Aldrich 

 

341088 

20x LumGlo Reagent and 20x Peroxide Cell Signaling 7003 

30% Acrylamide/Bis solution  Bio-Rad laboratories 161-0157 

4-(Dimethylamino)benzaldehyde Sigma-Aldrich D2004 

ABgene
®
 PCR Plates Thermo Scientific AB-0600 

Analytical grade RNase-free water Fisher Scientific W/0100/21 

BCA™ Protein Assay Kit Pierce Proteomics 23227 

Bromophenol blue Sigma-Aldrich B-8026 

Cell lysis buffer Cells-to-cDNA II Ambion AM8723 

Chloramine T-hydrate Sigma-Aldrich C9887 

Chondroitin 4-sulphate Sigma-Aldrich 27042 

D-Cysteine hydrochloride monohydrate Sigma-Aldrich C8005 

Dimethyl Sulfoxide (DMSO) Fisher Scientific D/4121/PB08 

D-MEM High Glucose GIBCO Invitrogen 42430-025 

D-MEM Low Glucose GIBCO Invitrogen 21885-025 

DNase I  Ambion AM2222 

DNase I recombinant RNase-free Roche 04716728001 

dNTP Mix (100mM total) Bioline BIO-39028 

dNTP Mix (10mM total) Bioline BIO-39044 

Dulbecco’s Phosphate Buffered Saline (D-PBS) Invitrogen 14190-086 

Extra thick filter paper Bio-Rad laboratories 1703960 

Gentamicin Fisher Scientific VX15710049  

Heat inactivated fetal calf serum BioSera 51830-500 

Immobilon-P polyvinylidene diflouride (PVDF) Millipore IPVH00010 

Interleukin-1 R&D Systems 200-LA-002 

Kodak BioMax maximum sensitivity film Sigma-Aldrich Z363030-50EA 

L-Glutamine Gibco Invitrogen 25030 

Magic Marker™ XP Western Standard Invitrogen LC56202 

MicroAmp
TM 

 8 Cap Strip Applied Biosystems N801-0535 

MicroAmp
TM 

Fast Optical 96-well reaction plate Applied Biosystems 4346906 

MicroAmp
TM 

Optical 96-well reaction plate Applied Biosystems N801-0560 

MicroAmp
TM 

Optical Adhesive Film Applied Biosystems 4311971 

M-MLV Reverse Transcriptase Invitrogen 28025-021 

MS-275 ALEXIS Biochemicals 270-378-M005 

Nystatin Fisher-Scientific 15340-029 

Oncostatin M  R&D Systems 295-OM-010 

Papain  Sigma-Aldrich 76218 

Pd(N)6 Random hexamers GE Healthcare 27-2166-01 

Penicillin-Streptomycin GIBCO Invitrogen 15140-148 

Perchloric Acid 70% Fisher Scientific P/1280/PB15 

Pheno-Chloroform-Isoamyl 25:24:1 Sigma Aldrich 2069 

Ponceaus Solution Sigma 7170 

Precision Plus Protein™ Dual Color Standards Bio-Rad laboratories 161-0374 

Random Primers Invitrogen 48190-011 

RNAlater Ambion AM 7020 

RNasin
® 

Ribonuclease Inhibitor Promega N2115 

Sodium Acetate  Fisher Scientific S/2120/53 
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Sodium Dodecyl Sulphate (SDS) Melford B2008 

SuperScript
®
 II Reverse Transcriptase Invitrogen 18064-014 

SYBR
® 

Green PCR Master Mix Applied Biosystems 4309155 

Tetramethylethylenediamine (TEMED) Bio-Rad Laboratories 161-0800 

Trans-Hydroxy-L-proline Sigma-Aldrich H5534 

Tris Base Ultra Pure Sigma Aldrich B2005 

Tris-sodium citrate Fisher Scientific S/3320/53 

TRIzol
® 

Reagent Invitrogen 15596-018 

Trypsin-EDTA (0.25% EDTA) GIBCO Invitrogen T4049 

Tween-20 Sigma-Aldrich P7949 

Valproic Acid Calbiochem 676380 
   

Table 4. A list of reagents, including the suppliers and product codes, used in this study 
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