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Abstract 
 

The aim of the study is to investigate the relationship between variability in 

tropospheric ozone in Taiwan and the regional atmospheric circulation, paying 

particular attention to the influence of long-range transport on ozone pollution levels. 

The study period is 1994 to 2004. The data used in this study include air pollution data 

from the Taiwan Air Quality Monitoring Network and NCEP/NCAR reanalysis data. 

The spatial and temporal variations in weather types have been characterised using an 

objective circulation classification scheme and relationships with episodes of high 

ozone levels over Taiwan have been determined. The signature of the large-scale 

atmospheric circulation associated with high ozone pollution and the connection with 

long-range transport of ozone precursors and ozone have been identified using spatial 

composites and back-trajectory analysis. Trajectories were calculated using the Hybrid 

Single-Particle Integrated Trajectory model.   

 

The air pollution data analysis shows that Taiwan experiences a seasonal cycle in ozone 

levels, with maxima in spring and autumn and a minimum in summer. The spatial 

composite and back trajectory analyses indicate that long-range transport does play a 

role in increasing high ozone episodes in Taiwan. A link with the seasonal variation of 

the monsoon circulations at different times is shown, with a weaker summer monsoon 

and a stronger winter monsoon circulation associated with enahcned ozone levels over 

Taiwan. The characteristics of atmospheric circulation for ozone pollution episodes 

include enhanced north and northeasterly flows, originating from nearby polluted areas 

and suggest that mainland China, Korea and Japan are source regions of ozone and its 

precursors for Taiwan. Moreover, the transport pathways at the high level of 2000m 

show that the southern China is also prominent source region, which is a previously 
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unidentified distant source of ozone pollution in Taiwan. It is suggested that the increase 

of ozone pollution in summer found in this study is caused by a weaker summer 

monsoon circulation in recent years. While it is emphasised that variability in 

long-range transport is the only factor affecting ozone pollution levels over Taiwan, the 

influence of global warming on the Asian monsoon circulation and, hence, long-range 

transport of ozone and its precursors warrants serious consideration.
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Chapter 1: Introduction 

 

1.1 Tropospheric ozone pollution, the atmospheric circulation 

 and Taiwan 

The subject of this study is the relationship between the atmospheric circulation and 

tropospheric ozone concentrations over Taiwan (Republic of China). In this chapter, the 

key issues and the content of the thesis are introduced.   

Tropospheric ozone, which is the most important oxidant in the atmosphere, is formed 

through in-situ photochemical reactions involving nitrogen oxides and volatile organic 

compounds (Crutzen, 1974; Brimblecombe, 1996; Finlayson-Pitts and Pitts, 2000; 

Wayne, 2000). Enhanced levels of tropospheric ozone are a serious concern because of 

effects on human health, (Burnett et al., 1997; Tsai et al., 2003a, b; WHO, 2003; Lee et 

al., 2006) crops, ecosystems, building materials (Brimblecombe, 1996; Aunan et al., 

2000; Krupa et al., 2001; Penkett et al., 2003; Wang and Mauzerall, 2004) and, hence, 

the economy (Holland and King, 1998; Holland et al., 2002; Reilly et al., 2004, 2007; 

Ashmore, 2005).  

For example, numerous epidemiological studies have verified that extreme tropospheric 

ozone concentrations affect human mortality and respiratory morbidity in Europe and 

North America (Burnett, et al., 1997; WHO, 2003; Bell et al., 2006). In East Asia, the 

investigation of adverse health effects shows an association with cardiovascular diseases 

and asthma (Chang, et al., 2005; Zhang, et al., 2006). The damage to agricultural crops 
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is a critical issue for Asia where there is high economic dependence upon agriculture 

and a more rapidly increasing population than other regions of the world. According to 

Wang and Mauzerall (2004), the economic cost of grain loss related to tropospheric 

ozone was about US$1.2 billion in 1990 and could rise to US$1.6 billion in 2020 for 

Japan. With a similar sectoral composition of GDP to Japan, adjusting for the difference 

in GDP, Taiwan might expect losses of US$25 million by 2020 according to these 

results.  

A widespread increase in tropospheric ozone concentrations has been observed over the 

Northern Hemisphere over the past few decades (Logan, 1985; Bojkov, 1986; Bojkov et 

al., 1994; Low et al., 1990, 1992; Sunwoo et al., 1994; Nolle et al., 2002, 2005; 

Carslaw, 2005). Observations of tropospheric ozone concentrations over Europe and 

North America show no significant response to decreasing emissions of primary 

pollutants after the mid-1980s (Guicherit and Roemer, 2000). Further analysis by Fiala 

et al. (2003) shows tropospheric ozone concentrations frequently exceed the information 

threshold value (180µg/m3) of the ozone directive in Europe over the period 1995-2002, 

even though the main precursors, nitrogen oxides (NOx) and non-methane volatile 

organic compounds, have reduced by about 30% during the 1990s.  

For Europe and North America, the effect of ambient average levels of tropospheric 

ozone has moderated since the 1990s, as efficient emission control of the main 

precursors; therefore, the concern of tropospheric ozone is focusing on frequently 

occurrence of extreme ozone concentrations in recently. Trends in ambient average 

levels, however, for Asia (e.g. China, Japan, South Korea and Taiwan) are still on the 

increase. For example, both NOx emissions at 3.9% y-1 and ozone concentrations at 

2.5% y-1 have risen over the period 1989-1997 (Guicherit and Roemer, 2000). The 
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growth in NOx emissions is moving from North America and Europe to Asia (Prather et 

al., 2001). With the rapid economic development of China and India, predictions of 

tropospheric chemistry models suggest large increases of tropospheric ozone 

concentrations over Asia in the near future (Lelieveld and Dentener, 2000; Brasseur et 

al., 2001; Prarther et al., 2001; Dentener et al., 2005). Tropospheric ozone pollution is 

an important issue for Asia countries now and increasingly in the future.  

 

Figure 1.1: Geographical location of Taiwan in Southeast/East Asia. 
                           (Source: Central Intelligence Agency, 2010)                 

                                            

Taiwan is an archipelago in East Asia (Figure 1.1). The position of Taiwan is between 

21.3'50"°N and 25.8'20"°N and between 120.1'00"°E and 121.9'15"°E. The islands lie in 

the west of the Pacific Ocean and the east of China; Japan, South Korea and the East 

China Sea are located in the north of Taiwan, South China Sea, Philippine Sea and 

Philippines are in the south. The countries in the neighbourhood of Taiwan include: 

Japan, South Korea, China and Philippines. According to the Human Development 

 3
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report (UNDP, 2009), Japan and South Korea are classified as developed countries, and 

China and Philippines are developing countries. The development of economy for these 

countries is based on various industries, such as electronics, automobile, textiles and 

food processing. One of these countries, China, is a rapid growth industrial country.   

Taiwan is bounded on the east by the Pacific Ocean and is located along the southeast 

coast of the Asian continent; the climate is generally oceanic and greatly affected by the 

Eurasian continent, Pacific Ocean circulation. In addition, local topography features are 

also influenced the climate in Taiwan. For instance, the most important topographic 

feature, which can affect the movement of air masses, is the central range with the 

maximum height of 3952m. The central range extends from Su-ao in the north to 

Eluanbi in the south. The interaction between the air masses from the Asian continent 

and the Pacific Ocean, and the effect of local topography divide the climate in two 

different zones: subtropical and tropical zones for the north and south Taiwan, 

respectively. The climatic difference between the north and south Taiwan results in 

uneven seasonal distribution of precipitation in Taiwan, especially for southern Taiwan, 

the rainfall generally concentrates on the period from May to June.         

In Taiwan, tropospheric ozone is a more recent concern than PM10 since ozone has 

become the major air pollution standard index (PSI) in 2001. A 2005 air quality and 

long-term trends analysis study by the Taiwanese Environmental Protection 

Administration (EPA) concludes that nearly all pollutants show significant reductions in 

ambient levels over the past decade, resulting from the achievements of air quality 

control strategies. The exception is ozone, which shows an increasing trend of annual 

mean concentration, about 38% for the period of 1994-2003 (EPA Taiwan, 2004, 2005). 

This indicates that more factors than simply precursor concentrations contribute to 
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ozone trends (Davies et al., 1992; Liu et al., 1994; Lelieveld and Dentener, 2000; Dueas 

et al., 2002). 

Tropospheric ozone has a complicated production mechanism, which involves 

precursors, chemical processes and meteorological conditions (Finlayson-Pitts and Pitts, 

2000; Dueas et al., 2002; Penkett et al., 2003; Snyder and Strawbridge, 2004). This 

makes it difficult to predict trends based on a single process, such as regulation of a 

single pollutant. Furthermore, there is observational evidence, for example, that 

interannual variability in tropospheric ozone concentrations in Europe is associated with 

atmospheric circulation changes (Low et al., 1990, 1992). In the future, ozone trends 

may be affected by global warming as this could be a contributing factor in altering the 

frequency of weather conditions favouring ozone formation (Davies et al., 1987). The 

link between variability and trends in the atmospheric circulation and tropospheric 

ozone concentrations has not been examined in depth for Taiwan and is the subject of 

this thesis.  

 

1.2 Aims 

The aim of this project is to investigate the correlation between the occurrence of high 

ozone pollution days over Taiwan and the regional atmospheric circulation in order to 

identify mechanisms, such as long-range transport. The differential role of the local and 

the regional scale circulations for high ozone pollution days is an issue that will be 

addressed. The long-range transport mechanisms identified in this study might provide 

the basis for projecting potential effects of global warming on future tropospheric ozone 

in Taiwan. 
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Key questions to be considered in the context of the thesis include: 

 What characteristics of the regional atmospheric circulation are associated    

with high ozone pollution days?  

 Is there evidence that long-range transport is contributing to high ozone levels 

over Taiwan?  

 Is there any link with the dominant monsoonal circulation of the region? 

In addressing these questions, three main analyses are undertaken: (1) a weather type 

classification scheme is developed for Taiwan and the links between climate and ozone 

concentrations are determined. (2) Back trajectory analysis is used to identify patterns 

of long-range transport of precursors or pollutants. (3) As a basis for projecting global 

warming effects, the role of variability in the monsoonal circulation is considered using 

pressure anomaly composites. 

 

1.3 Thesis structure and contents 

In Chapter 2, a detailed review of the previous studies relevant to this project is 

described. The content provides background of regional atmospheric circulation 

influence, local weather conditions and mechanism of tropospheric ozone formation. 

The long-range intercontinental transport of precursor pollutants over Europe and North 

America is discussed in this chapter. The overall content of this chapter is to give a 

scientific background of physical and chemical factors of tropospheric ozone pollution 

and to identify the issues of this study and for project design.   
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In Chapter 3, an overall project design and the methodology for this research is 

developed. The content includes the description of datasets collection and selection, 

statistical analyses used in this study. Data quality control and limitation issues of 

observation data sources that include tropospheric ozone concentration data from 

Taiwanese EPA, NCEP/NCAR reanalysis data. The research methods used to identify 

the mechanism of long-range transport involve automatic circulation type scheme, 

spatial compositing and back trajectory model for this project are discussed.  

In Chapter 4, the analysis of tropospheric ozone trends in Taiwan based on the network 

observations of ozone concentration is described. The definition of high ozone pollution 

events is given including the three processes used to select the indices (HOD3) of high 

ozone pollution days employed in this research. The discussion of ozone trend analysis 

consists of the seasonal and spatial variability and interannual trends result. The selected 

indices (HOD3) are used to investigate the features of composite atmospheric pattern 

and categorised by season.  

In Chapter 5, weather type classification based on an automatic scheme is used to 

investigate the effects of local and regional scale circulation on HOD3. The results of the 

weather type classification are used to depict the frequency of specific weather types 

during high ozone pollution occurrence and provide long-term weather type frequency 

information in Taiwan. In this chapter, the results describe the characteristic of the 

atmospheric circulation patterns, which are linked with pollution days, from both the 

objective scheme and observational field. Additionally, the important discussion is on 

the effects from local and regional circulation with seasonal variability as related to the 

identification of the relationship between large-scale circulation and long-range 

transport. 
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In Chapter 6, a supporting investigation of the pollutants/precursors long-range 

transport in Chapter five is undertaken through back trajectory analysis. The analysis 

involves two metropolitan cities and three different vertical levels to give the 

information of airflow pathway for long-range transport and compares these with the 

features of atmospheric circulation patterns of high ozone pollution. Furthermore, the 

contrasting, results are compared to clarify pathway discrepancies between 

non-pollution and pollution days.  

In Chapter 7, the focus is to conclude the findings from this study and to assess the 

weaknesses such as how the methodology presented in this thesis could be improved 

and further refinement and development of the strengths introduced. Aspects of possible 

future work to extend this study are also proposed in this chapter.
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Chapter 2: Atmospheric Circulation Variability  

 and Tropospheric Ozone Pollution 

 

2.1  Introduction  

In this chapter, the role of atmospheric circulation variability in determining levels of 

tropospheric ozone, especially in terms of long-range transport, is discussed. The 

literature review considers previous research on Europe and North America and then 

focuses on the East Asia region, in particular, Taiwan. The understanding that is gained 

is applied to the project design for the study region in the following chapter.  

 

2.2  Tropospheric Ozone Variability and Trends 

2.2.1 The Basic Mechanism of Tropospheric Ozone Formation   

Ozone exists both in the stratosphere and the troposphere. About 90% of the total ozone 

is present in the stratosphere, and this plays an important role in protecting the 

biosphere on the earth. In contrast, tropospheric ozone causes adverse human health 

effects (Burnett et al., 1997; Tsai et al., 2003a, b; WHO, 2003; Chang et al., 2005; Lee 

et al., 2006) and results in crop yield reduction (Aunan et al., 2000; Holland et al., 2002; 

Reilly et al., 2004, 2007) and damage to forest growth and other aspects of ecosystem 

health and building materials (Brimblecombe, 1996; Krupa et al., 2001; Penkett et al., 

2003; Ashmore, 2005). Additionally, tropospheric ozone is the third most important 
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greenhouse gas after carbon dioxide and methane (Guicherit and Roemer, 2000; 

Prarther et al., 2001; Ehhalt, 2001); hence, the increasing trend in tropospheric ozone is 

influencing both the chemical composition of the atmosphere and global climate 

(Brasseur et al., 2001; Akimoto, 2003).  

Ozone is a secondary photochemical pollutant (Stern, 1968; Finlayson-Pitts and Pitts, 

2000). The main sources of ozone in the troposphere are: 

1. incursion from the stratosphere (Oltmans, 1981; Levy II et al., 1985) 

2. reactions involving precursors that come from biogenic volatile organic 

compounds (VOC) (Wayne, 2000); and, 

3. photochemical reactions with the precursors, nitrogen oxides (NOx = NO + 

NO2), carbon monoxide (CO), methane (CH4) and other organic compounds 

resulting from anthropogenic activities. 

It was thought that tropospheric ozone largely resulted from the processes of 

stratosphere-troposphere exchange and organic materials deposition at the Earth’s 

surface. In the early 1950’s, Professor Haagen-Smith demonstrated that Los Angeles 

smog could be formed by ultraviolet irradiation on a mixture of hydrocarbon vapours 

and nitrogen dioxide in the atmosphere (Stern, 1968). Much research has proved these 

reactions lead to ozone formation, as well as other co-pollutants (for example, 

peroxyacyl nitrates, organic hydroperoxides), under specific meteorological conditions 

of low humidity, high temperature and strong solar radiation (Stern, 1968).  

As far as the photochemistry is concerned, the formation mechanism is influenced by 

the mixing ratio between all the relevant chemical compounds (for example, precursors 

and oxidants). Otherwise, an important factor related to ozone formation is solar 
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radiation with a wavelength range of around 320nm to 410nm (Brimblecombe, 1996; 

Wayne, 2000). A general process of ozone formation at the boundary layer can be 

written as follows (Cheng, 2001): 

  NOx + NMHCs + hν + M (N2, O2) → O3 + other photochemical oxidants  

(NMHCs = nonmethane hydrocarbons; hν = ultraviolet solar radiation, 320nm~ 410nm; 

and other terms have been defined above). 

A conversion reaction of NOx should be noted, involving a catalytic cycle of ozone 

formation and consumption (Crutzen, 1970, 1974; Milford et al., 1994; Brimblecombe, 

1996; Wayne, 2000). The cyclic reactions are as follow: 

1. NO2 + hν → O + NO  

2. O + O2 + M → O3 + M (M = N2, O2) 

3. O3 + NO → O2 + NO2 

An ozone isopleth diagram (Figure 2.1) can illustrate the Non-linear relation between 

precursors and ozone production. The ozone ridge line in Figure 2.1 is used to identify 

the maximum ozone concentration that can be achieved at a given VOC level with 

varying NOx level. It separates the diagram into two regions: the region above the ridge 

line as “NOx saturated”; that below the ridge line is “NOx- limited”. In the NOx 

saturated region, NOx reduction can result in an increase in maximum ozone. For the 

NOx- limited region, there is no effect on ozone maximum with large reductions in 

organics (Seinfeld and Pandis, 1998). The controlling of tropospheric ozone, therefore, 

is more complicated than only taking action to restrict precursor emission amounts.       
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Figure 2.1: Ozone isopleth plot, contour plot of maximum ozone concentrations based 
on initial of VOC and NOx concentrations. 
                                                            (Source: Miflord et al, 1994) 

The major physical mechanisms affecting tropospheric ozone formation include local 

meteorological conditions (such as humidity, temperature, wind speed and direction) 

(Liu et al., 1994; Seinfeld and Pandis, 1998). For instance, low humidity, low wind 

speeds, calm weather and cloud-free conditions favour the photochemical reactions. 

Also important are regional formation mechanisms (for example, large-scale convection) 

(Luo et al., 2000; Erukhimova and Bowman, 2006) and international and 

intercontinental long-range transport (associated with frontal systems and large-scale 

circulation systems) (Penkett et al., 2003). Regional mechanisms and long-range 

transport, related to ozone formation, become to have an important role in controlling 

tropospheric ozone (Lelieveld and Dentener, 2000; Brasseur et al., 2001), in particular 

for those countries which have controlled precursors emission effectively, located in the 

vicinity with severe pollution. For example, the local sources of primary pollutants are 

 12
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limited in Taiwan in comparison to many other areas (see Section 2.2.4) but there are a 

number of substantial source areas within the region. Therefore, the precursors and 

ozone from the vicinity could bring more serious effects on the air quality of Taiwan 

than the local sources influence.  

 

2.2.2 Trend Analysis 

Historical ozone measurements have been used to identify trends in background ozone 

concentrations (Bojkov, 1986; Volz and Kley, 1988; Sandroni et al., 1992; Sandroni 

and Anfossi, 1994; Vingarzan, 2004). World-wide, the trends from observational 

datasets can be separated into four stages from 1870 to present (Marenco et al., 1994; 

Guicherit and Roemer, 2000; Vingarzan, 2004). The first period is between 1870 and 

1910. During this time, there were more than 300 ozone measurement stations over 

Europe, North America, Australia and Russia, mostly located in North America and 

Europe (Bojkov, 1986; Lelieveld et al., 2004; Vingarzan, 2004). Meanwhile, there were 

some short-term observations in South America and Southeast Asia, (Sandroni and 

Anfossi, 1994). The second time period is 1930 to 1950. New optical and chemical 

techniques were used at European locations such as Jungfraujoch (at 3500m in 

Switzerland) from 1933. The third period is from 1956 to the early 1970s. During this 

period, there are a number of long-term daily surface ozone records, such as that at 

Hohenpeissenberg Observatory (Germany) since 1971. As importantly, total ozone 

measurements were taken from surface stations in this period. The final stage is from 

1970 to the present. A number of surface “background” stations (including some of the 

aforementioned observatories) operated systematically from the beginning of the 1970s, 

and then satellite data (for example, Total ozone Mapping Spectrometer, TOMS) have 
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been added to the tropospheric ozone record, resulting in much-improved coverage 

globally. Although the spatial representativeness of ozone measurement has been 

improved at higher resolutions in present, the accurate measurement of tropospheric 

ozone difficulties remain, as the short lifetime of ozone.  

The long-term trend analysis of tropospheric ozone observational data, primarily based 

on European and North American records, indicates a continuous increase at 

mid-latitudes of the Northern Hemisphere, with a particularly marked rise during the 

1970s and early 1980s (Figure 2.2) (Low et al., 1992; Marenco et al., 1994; Vingarzan, 

2004; Carslaw, 2005). Changing data quality has been suspected as a contributing factor 

to the trend due to improvement in techniques. A similar upward trend has been 

observed in Japan (Lee et al., 1998). The most recent records show that ambient ozone 

levels over Europe and North America have increased only slightly or not increased at 

all since the mid-1980s (Fiore et al., 1998; Lee et al., 1998; Guicherit and Roemer, 

2000; Fiala et al., 2003). In contrast, trends for Northeast Asia (China, Japan, South 

Korea and Taiwan) are still notably positive for the period 1989-1997 (Lee et al., 1998; 

Guicherit and Roemer, 2000). Changing patterns of NOx emissions, in response, for 

example, to earlier legislation in Europe and North America, have been held partially 

responsible for these differing trends (Prather et al., 2001). 
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Figure 2.2: Long-term evolution of ozone at the mid-latitudes of the Northern 
Hemisphere.       
                                                                   (Source: Gros, 2007)         

Sources of ozone precursors, such as non-methane hydrocarbons (NMHCs) and 

nitrogen oxides (NOx), are predominantly related to fossil fuel consumption. The source 

categories include motor vehicles, power plants and the petroleum industry (Kley et al., 

1994). In parts of the Southern Hemisphere and many tropical areas, ozone formation is 

also strongly related to biomass burning (Chandra, et al., 2002; Lelieveld et al., 2004). 

In the developed nations, legislation is limiting future emissions growth (Guicherit and 

Roemer, 2000; Prather et al., 2001; Fiala et al., 2003), but East Asia is considered to be 

a major growth region for pollutant sources for coming decades (Wild et al., 2004). For 

example, China and India have become substantial emitters of pollutants over the past 

decade due to industrialization, the increase in population growth and related trends 

such as automobile ownership. East Asia, NOx emissions for 2020 will be more than 

double the emissions of 1995 (Street and Waldhoff, 2000; Richter et al., 2005, Ohara et 

al., 2007).  

 15
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Multiple three-dimensional chemical transport models (for example, GEOS-CHEM and 

MOZART) have been developed to simulate tropospheric ozone concentrations based 

on emissions trends since the 1970s (Brasseur et al., 1998; Hauglustain et al., 1998). 

The results can be compared and/or combined with past observation data and used to 

predict future situation. According to Ehhalt (2001), the simulated results that 

incorporate limited observations from the late 19th and early 20th centuries suggest that 

tropospheric ozone has increased from a global mean value1 of 25 DU to a value of 34 

DU. The predictions indicate no marked increase over western Europe and North 

America over the next few decades but large increases over eastern China, India and 

Africa as well as Central and South America (Lelieveld and Dentener, 2000; Brasseur et 

al., 2001; Prather et al., 2001; Stevenson, et al., 2006). The evidence suggests that East 

Asia will continue to experience an increasing trend in ozone levels, a strong reason to 

pay greater attention to understanding regional tropospheric ozone variability. 

 

2.2.3 Tropospheric Ozone over Taiwan 

In Taiwan, the major air pollutants, which include particulate matter (PM10), sulphur 

dioxide (SO2), carbon monoxide (CO), nitrogen oxides (NOx) and ozone (O3), have 

been monitored to assess ambient air quality since 1982 and a systematic monitoring 

network was established in 1993. Nowadays, the network includes 76 monitoring 

stations distributed in seven air quality zones (Figures 2.3 and 2.4).

 

1 DU: The Dobson Unit 1 DU = 2.687 * 1016 molecules of O3 per square centimetre; global mean value 

1 DU = 10.9 Tg (O3) and 1ppb of tropospheric O3 = 0.65 DU 
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Figure 2.3: Seven air quality zones of monitoring network system in Taiwan. 

                                          (Source: EPA Taiwan, 2006)
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monitoring stations of the general air quality 

monitoring stations of the industrial air quality 

monitoring stations of the background air quality 

monitoring stations of the traffic air quality 

new monitoring station of air quality 

monitoring stations of the traffic air quality 

Figure 2.4: Air monitoring network stations distribution map in Taiwan.                 
                                             (Source: EPA Taiwan, 2006)  

 18



Chapter 2: Atmospheric circulation variability and tropospheric ozone pollution 

 19

                                                

It continues to evolve as, for example, stations are re-located due to changing factors 

(for example, population distribution, sources of pollution, geographical and 

meteorological features) (EPA Taiwan, 2005). Most stations are installed over the 

western plain, the most populations’ part of Taiwan. 

The emission inventory about the turn of the century shows that most PM10 arises from 

industrial emissions (about 53%). Factory exhaust is the main source for SO2 (about 

86%), and the CO source is mostly vehicles (about 77%). The precursors for ozone 

formation, NOx and non-methane hydrocarbons (NMHCs), come mostly from vehicle 

exhaust (about 60% and 30%, respectively); the other source is industrial emissions 

(about 40% for NOx and 46% for NMHCs) (EPA Taiwan, 2004).  

A comprehensive analysis, in terms of the Pollution Standard Index (PSI)2, indicates 

that air quality improved during the period 1994 to 2004, though there was a slight 

increase in ‘unhealthy’ days by about 1.8% in 2004 compared with 2003. Most air 

pollutants show gradual declines over the period 1994 to 2004, for example, the 

decreases were 23%, 28%, and 58% for PM10, CO and SO2, respectively. Nitrogen 

dioxide also presented a decreased trend of about 23% from 1994-2003. The only 

exception for this period was ozone, where the trend shows a steady increase totalling 

 

2 PSI: a segmented linear function transforms the monitoring concentrations of each pollutant 
onto a scale from 0 to 500. The transformation value of each pollutant contrasts the influence 
of human health to convert the secondary indices, and takes the maximum of these secondary 
indices as the PSI on that day. The index value includes five levels: Level 0~50, 51~100, 
101~199, 200~299, over 300 with the influence on health of Good, Moderate, Unhealthy, Very 
Unhealthy and Hazardous, respectively (EPA Taiwan, 2005).  
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about 38% in annual mean concentration (8 ppbv). The increase in ozone 

concentrations has offset the other improvements in Taiwan’s air quality for the period 

of 1994 to 2004 (EPA Taiwan, 2004, 2005). Though lagging behind by about ten years, 

the analysis of major pollutants trend is similar to the results from Europe and North 

America over the past few decades (Guicherit and Roemer, 2000; Prather et al., 2001; 

Fiala et al., 2003). Tropospheric ozone has been substituted for PM10 as the driver of 

ambient air quality since 2001 (EPA Taiwan, 2005; Chou et al., 2006). This ozone 

pollution has become the most important issue of air quality control in Taiwan.  

Over Taiwan, the seasonal distribution of ozone is characterized by two periods of 

high concentrations, one is spring and the other one is autumn; the lowest levels occur 

in summer (EPA Taiwan, 2005). In contrast, ozone concentrations display a summer 

maximum over the European and North American continents, particularly for rural 

areas at mid-latitudes. The spring and autumn maxima typical of Taiwan can be 

observed over the region of East Asia, especially for subtropical areas (Oltmans and 

Levy II, 1994; Logan, 1985; Wang, et al., 2001). This distinction in seasonal cycle 

with location is associated with seasonal climatic characteristics, such as the 

occurrence of high pressure weather types, and the characteristics of the large-scale 

circulation, which influences tropospheric ozone and precursor transport between 

continents (Akimoto et al., 1996; Logan et al., 1999; Stohl, 1999; Wild and Akimoto, 

2001; Wild et al., 2004). The difference in the characteristics of tropospheric ozone in 

the Asian region compared with other region underlines the need for greater 

understanding of regional processes.   

In assessing the role of the physical and chemical processes, it is useful to distinguish 

between slow changes in the mean level of ozone concentrations and the occurrence of 
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short episodes of greatly elevated concentration, referred to henceforward as high 

ozone episodes (Figure 2.5). In recent years, the trend over Taiwan is also evident in 

the changing frequency of high ozone episodes (Figure 2.6). This study focuses on 

such episodes as the link with prevailing conditions can be clearer in these cases.  
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Figure 2.5: Example of high ozone episodes in April, 1999, the thick line is the air 
quality standard of 8-hour average in Taiwan. 
                                                        (Data source: EPA Taiwan, 2001) 
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Figure 2.6: Percentages of hourly ozone concentration over 8-hour average standard in 
Taiwan area. 
                                                        (Data source: EPA Taiwan, 2005)
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2.3 Local Weather Conditions and the Large-Scale 

 Atmospheric Circulation  

The interplay between local weather conditions and the large-scale atmospheric 

circulation is an important mechanism for local and regional tropospheric ozone 

formation. It relates to the diurnal and seasonal variation of ozone levels. In this section, 

the effects of local weather conditions, such as the local sea breeze circulation, and the 

large-scale atmospheric circulation on ozone pollution are discussed. 

 

2.3.1 Local Weather Patterns and the Seasonal Circulation 

Much attention has been paid to the relationship between high ozone pollution levels 

and local weather conditions in previous research, because of the role that various 

atmospheric parameters play, generally as secondary influences, in ozone formation (see, 

for example, Liu et al., 1994, 1997, and Cheng, 2001). For Taiwan, observational 

studies show that important factors include wind speed, the amount and time of 

precipitation, cloud cover, solar radiation and any local sea breeze circulation connected 

with topographical features (for example, the basin terrain in Taipei and Taichung and 

the restriction caused by the central range) (Liu et al., 1994, 1997; Cheng, 2001; Chen 

et al., 2004). These factors influence, amongst other things, the availability of 

precursors, pollutant lifetimes and accumulation and dispersal, and the efficiency of 

photochemical processes (Cheng, 2001).  
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One of the most influential factors is the land-sea breeze in dispersing or accumulating 

pollution (Millán et al., 1996; Pont and Fontan, 2000). Because Taiwan is surrounded 

by the ocean and has pronounced topographical features, the effect of the local sea 

breeze circulation on pollutant dispersion and accumulation is significant, and correlates 

with the diurnal variation of tropospheric ozone concentrations (Liu et al., 1994, 1997; 

Cheng, 2002). The transition period, around 0800-1000 (local time), of the local sea 

breeze circulation is the key factor for high ozone concentrations. During this period, a 

weak local circulation and high traffic emissions act with other favourable conditions to 

enhance ozone formation from precursors. After this transition period, pollutants are 

accumulated by the sea-to-land circulation in downwind areas, especially in basin 

terrains, and these show the highest ozone concentrations about midday.   

Certain synoptic weather patterns, associated with particular local atmospheric 

conditions, can be associated with the seasonal variation of tropospheric ozone 

concentrations, as well as precursor import to Taiwan (Liu et al., 1994, Cheng, 2001). 

Taiwan is on the boundary between the Eurasian continent and the Pacific Ocean. It is 

mainly affected by the Siberian cold anticyclone in winter (January, February and 

December) and by Pacific anticyclones in summer (June, July and August). These two 

synoptic weather patterns interplay with the local topography and create favourable 

conditions for tropospheric ozone formation, particularly during the transition periods of 

the spring (March, April and May) and autumn seasons (September, October and 

November) (Figure 2.7). During summer, ozone accumulation is limited by the short 

lifetime of the pollutant under strong incident radiation and, during winter, high wind 

speeds and the regional circulation result in high dispersal rates (Cheng, 2001; Central 

Weather Bureau Taiwan, 2006).  
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Spring weather patterns are generally characterised by stationary synoptic systems and 

low wind speeds as the winter-time influence of the Siberian anticyclone slowly 

declines (Figure 2.8 A) (Central Weather Bureau Taiwan, 2006; Tu et al., 2003). These 

conditions generally favour ozone formation and result in the spring peak in 

concentrations (Figure 2.7). Later in the season, rain belts form over central or southern 

mainland China. At this time of year, an increase in the strength of the Pacific 

anticyclonic influence, or southerly flow with a cyclonic pattern, can relieve ozone 

pollution in the south of Taiwan. These conditions, though, generate ozone 

accumulation in the north because of the basin terrain and obstruction by the central 

mountain range. 
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Figure 2.7: Seasonal variation of ozone concentration in North and South cities, grey 
line is for the north city and black line is for the south city.                         
                                                        (Data source: EPA Taiwan, 2004) 
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Figure 2.8: Mean Geopotential Height at 850hPa for 1948 to 2006 during Spring (A) 
and Autumn (B). The green circle is the location of Taiwan.  
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During the autumn months, there is a marked transition period between September and 

October (Figure 2.8 B). In September, Pacific anticyclones and tropical depressions 

form the major weather patterns. Siberian anticyclones bring a strong northeast 

monsoon during October, and these conditions are unfavourable for ozone formation in 

the north; however, the central and south regions are situated in the lee areas of the 

central mountain range with low wind speeds and a temperature inversion layer, which 

provide the opportunity to accumulate pollutants (Cheng, 2001). 

Previous studies of the relationship between high ozone pollution episodes and synoptic 

weather conditions and circulation patterns over Taiwan have shown a clear association 

(Liu et al., 1997; Cheng 2001; Chen et al., 2004; Wang, 2005; Yu and Chang, 2006). 

There have been a number of classifications of weather patterns over Taiwan. Lee et al. 

(1998), for example, distinguished 41 weather patterns based on the climatic 

characteristics for four seasons in Taiwan. Based on these, the 14 synoptic weather 

patterns associated with high ozone pollution have been subjectively identified (Wu and 

Chen, 1993). In general, most of these weather patterns are associated with high 

pressure systems, which are in agreement with other investigations in Europe and North 

America (Comrie, 1994; Pont and Fontan, 2000; Dueas et al., 2002), and accompanied 

by northeasterly flow towards Taiwan during the transition seasons. 

While a considerable amount of research has been undertaken in recent years on the link 

between high ozone episodes and local prevailing meteorological conditions over 

Taiwan, less attention has been paid to the broader context in terms of the large-scale 

(regional) atmospheric circulation and the long-range transport of pollutants. The local 

scale meteorology is generally defined as meteorological conditions occurring within 
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the range from around 5 kilometres to several hundred kilometres horizontal dimensions; 

and the range for the large-scale is more about 1000 kilometres (Figure 2.9).  

 

Figure 2.9: Depiction of local scale and large-scale. Dotted-line rectangle shows local 
scale, and solid-line rectangle represents the regional scale as defined in this study.  
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Long-range transport is an important influence on trace gas distributions and budgets in 

the troposphere. It means that pollution sources affect more than the local area, even 

another continent. In middle latitudes, the lifetime of ozone in the free troposphere is in 

the order of months, thus ozone or its precursors can, under certain conditions, be 

transported hundreds of kilometres (Knap, 1989; Crawford et al., 1997; Penkett et al., 

2003). A number of dynamic processes, including convection and motion associated 

with frontal systems and individual synoptic circulations, affect long-range transport 

(Barry and Chorley, 1998; Penkett et al., 2003).  
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For example, convection determines vertical exchange through convective updrafts 

(Knap, 1989; Ehhalt et al., 1992). Precursors or pollutants can be brought to the upper 

troposphere where they have a longer lifetime, as destructive processes are less effective. 

Pollutants may then be transported downwards from the upper levels to the planetary 

boundary layer within frontal systems (Ehhalt et al., 1992; Penkett et al., 2003). 

Numerous studies have shown that frontal systems (for example, through the “warm 

conveyor belt”) are important processes in the long-range transport for ozone and its 

precursors between continents. Using ozone lidar data analysis, Stohl (1999) found 

elevated ozone levels of the upper troposphere in southern Germany could be attributed 

to long-range transport involving frontal processes from North America to Europe. Near 

Taiwan, high pressure systems can be important in accumulating pollution over a wide 

area of downward motion and then transporting pollutants between regions. 

Other evidence of long-range pollutant transport over the North Atlantic and Europe can 

be observed from aircraft experiments (for example, North Atlantic Regional 

Experiment) and model simulations, which suggest North America and Asia as 

substantial tropospheric ozone contributors for Europe (Penkett et al., 2003; Derwent et 

al., 2004; Auvray and Bey, 2005). Moreover, it has been observed that low ozone 

concentrations are also associated with the long-range transport of clean air in Europe, 

for example, from maritime areas (Low et al., 1992). This work also suggests that 

long-range transport is one of major factors determining the ozone distribution and 

budget over the Atlantic Ocean. 

Over East Asia, the main factors influencing long-range transport are, according to        

Penkett et al. (2003) and Jacob et al. (2003), the dominant westerly winds over 

mid-latitudes and vertical mixing over parts of the continent, as affected by  extension 
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of the continental high pressure from Siberia and the occasional influence of the Pacific 

High. Orographic forcing over central and eastern China is also a major process 

responsible for lifting pollution into the free troposphere. The air pollutants from China 

can be exported from the Asian continent and reach Taiwan and Japan (Naja and 

Akimoto, 2004; Oltmans et al., 2004). 

As far as Taiwan is concerned, outflow of pollution from the Asian continent is a key 

consideration. To investigate the influence of photochemistry and continental outflow 

on the tropospheric ozone distribution over the western North Pacific, several 

international campaigns have taken place over the region. For example, studies have 

included the Pacific Exploratory Mission-West Phase A and B for different seasons 

(PEM-West A and B), the Transport and Chemical Evolution over the Pacific Project 

(TRACE-P), and the International Global Atmospheric Chemistry/East Asia-North 

Pacific Regional Study (IGAC/APARE) (Crawford et al., 1997; Jacob et al., 2003; Liu 

et al., 2003; Lam et al., 2004).  

According to the analysis of the PEM-West B field experiment (February-March 1994), 

continental outflow (for example, via the Siberia High) from the west Pacific Rim 

affects tropospheric ozone levels of both subtropical and mid-latitude ocean areas, and 

the chemical composition of the outflow reflects anthropogenic emission (Crawford et 

al., 1997). Crawford et al. (1997 ) show that the high and low levels of NOx in the study 

regions (latitudes of 10°S to 50°N and altitudes of 0-12km) were transported by 

convective transport from continental regions and tropical marine air masses, 

respectively. It is interesting to note that net ozone production was evident at both 

subtropical and mid-latitudes and at all altitudes over the Pacific marine environment, 

particularly for the boundary layer and the lower free tropospheric altitudes, during this 
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experiment (Crawford et al., 1997). This suggests that the continental outflow of ozone 

precursors over the northwestern Pacific basin (for example, over Taiwan and Japan) is 

a significant factor in generating ozone; this could extend far from the Asian Pacific 

Rim, especially for the marine boundary layer, during the later winter and early spring 

seasons. 

A later aircraft mission, TRACE-P, was conducted in February-April 2001 over the 

western North Pacific in the same geographic area as PEM-West B. The data analysis 

was combined with Measurements of Pollution in the Troposphere (MOPITT) satellite 

data to investigate transpacific transport from Asian pollution outflow (Jacob et al., 

2003). Fuelberg et al. (2003) pointed out that the transition from winter to spring and a 

weak La Niña effect for the later winter period resulted in rapid changes in the 

atmospheric circulation. The Siberian anticyclone and the frequent development of 

cyclones at mid-latitudes around the east coast of Asia played a vital role for continental 

outflow to the North Pacific (Fuelberg et al., 2003; Liu et al., 2003; Wild et al., 2004). 

The mechanism was the interplay between cold fronts and warm conveyor belts to 

transport pollution out of Asia to the Pacific in spring (Jacob et al., 2003; Liu et al., 

2003).  

This study revealed a complex interaction of processes that determined ozone 

distribution. Ozone production was insignificant in the upper troposphere as a result of 

unfavourable conditions of formation (Pierce et al., 2003). A weak Siberian anticyclone 

resulted in highly efficient ozone production but with a short chemical lifetime. An 

Aleutian cyclone was characterised by low ozone pollution but deep cloud convection 

took ozone and precursors into the free troposphere where chemical lifetimes are longer 

(Wild et al., 2004). The interplay between these mechanisms makes a substantial 
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contribution to the pattern of long-range transport of ozone in the spring (Heald et al., 

2003; Wild et al., 2004). Another phenomenon that should be noted was that, over 

subtropical regions such as north Taiwan, the boundary layer ozone was at high 

concentrations as the result of outflow from the Asian continent. Hong Kong showed 

elevated ozone levels in the lower troposphere caused by biomass burning from sources 

in Southeast Asia at that time of year (Liu et al., 2003; Oltmans et al., 2004; Wild et al., 

2004).   

Aircraft investigations only provide evidence for a particular time period and cannot 

help in defining longer-term patterns. In recent years, the Frontier Research Centre for 

Global Change (FRCGC) has completed Asia-Pacific and Eurasian long-range transport 

investigations using long-term ozonesonde data and model simulations for East Asia. 

Although there are a few long-term ozonesonde observation sites, these studies still 

provide useful and comparable information with other regions, such as Europe or North 

America, to understand the dynamic processes over the Asian region and Eurasian 

continent.  

Naja and Akimoto (2004) discovered that Eurasian air masses and regionally polluted 

air masses (from China) were the main long-range transport contributors to ozone levels 

over Japan over the period 1970-2002. Polluted air masses from China contributed 

higher ozone concentrations for lower latitude sites (for example, Kagoshima, 31.6°N, 

130.6°E, and Naha, 26.2°N, 127.7°E). Ozone concentrations were mainly affected by 

the Eurasian air masses at mid-latitude observation sites (for example, Sapporo, 43.05° 

N, 141.3°E) with a smaller contribution. The effects from these air masses resulted in 

seasonal and interannual ozone variations.  
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In summary, there is considerable evidence that long-range transport of pollutants can 

affect ozone levels over the Asia-Pacific rim, including Taiwan. There are, however, a 

number of mechanisms underlying long-range transport, which vary in effectiveness by 

source and destination. 
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2.4 Conclusion 

Previous studies of the distribution of tropospheric ozone around the world indicate that 

long-range transport is a key issue. This is not to reduce in importance the dominant 

role of local processes, such as photochemistry, in determining ozone levels in most 

areas. Nevertheless, there is strong evidence that long-range transport can exert an 

appreciable influence.  

Past experience from Europe and North America shows that the physical processes 

underlying tropospheric ozone formation are particularly important factors for those 

countries with emission control legislation that limit local sources. The most influential 

factors are regional formation mechanisms and intercontinental long-range transport. 

Taiwan is moving into this situation now as legislation is implemented to control local 

pollution sources. Much research into related processes has been done for Europe and 

North America but less attention has been paid to the East Asia region, which is likely 

to be a substantial source of precursor emitters for the coming decades. Moreover, 

studies of the role of the atmospheric circulation in determining long-range transport 

have been undertaken for mid-latitude areas of Europe, North America and Japan, but 

research is lacking over subtropical regions, under different atmospheric circulation 

conditions. A greater understanding of the effects of atmospheric circulation variability 

on long-range transport and pollutant distribution in a subtropical region, such as 

Taiwan, is required.  

This literature review, suggests the important points for the design of this study can be 

summarised as follows. 

 Given the episodic nature of extreme ozone concentrations, a daily timescale for 



Chapter 2: Atmospheric circulation variability and tropospheric ozone pollution 

 34

the study is necessary (rather than a focus on long-term changes in mean ozone 

levels).  

 Previous studies have indicated that the episodic variability of ozone levels is 

affected by synoptic weather patterns, such as the Siberia and the Pacific high 

pressure systems, which are dominated by the large-scale (regional and 

intercontinental) atmospheric circulation. The identification of the role of the 

large-scale atmospheric circulation should be the basis of the study. 

 It is useful to distinguish two geographical scales in examining the influences on 

local ozone levels: the local area of Taiwan and the regional context.  

 In the local area of Taiwan, the influence of processes, such as local meteorological 

conditions, including the sea breeze, is strongly related to pollutant accumulation 

and dispersion, both for regional and local emission sources, and to diurnal ozone 

level variation as well. 

 On the regional and larger scale, the Asian monsoon system is an important 

influence on the character of the Asian continental outflow (for example, polluted 

air masses or clean air masses) on long-range pollutant transport. The variability of 

the Asian monsoon can be linked to intraseasonal to interannual ozone variation 

over Asia, in particular for subtropical areas, and this aspect of the general 

circulation of the atmosphere, as a regional integration, provides a focus for the 

study.    

 The relative contribution of the various regional sources, such as China, Japan and 

Korea, to local ozone levels is a key concern and directional considerations may 

permit identification of the role of these different sources in affecting ozone levels 

over Taiwan. 

These conclusions provide a basis for the project design described in the following 
chapter. 
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Chapter 3: Project Design, Data and Statistical  

 Methods 

3.1 Introduction 

On the basis of past research, the previous chapter presented the effects of regional 

formation mechanisms and intercontinental long-range transport on tropospheric ozone 

levels, largely for mid-latitudes. A number of issues were identified that form the basis 

of the project design. The first section of this chapter provides the research framework 

and definition for the entire project. The second section describes and defines data 

sources, particularly their specific use in this study. The final section introduces the 

methodologies that will be applied.  

 

3.2 Project Design 

As has been addressed in Chapter One, the aim of this project is to investigate the role 

of the large-scale atmospheric circulation in the occurrence of high ozone days over 

Taiwan. It tries to understand the link between long-range transport mechanisms and 

the regional atmospheric circulation. The project focuses on the identification of 

atmospheric circulation features related to high ozone pollution days over the period 

1994-2004 and the likely climatological explanation of these links. The study of the 

short period only from 1994 to 2004 is a result of air pollution data availability. 

The role of the monsoon, the dominant feature of the circulation of the region, will 

provide a focus. Taiwan is governed by two prevailing wind systems: one is 



                                     Chapter 3: Project Design, Data and Statistical Methods 

 36

characterised by northeasterlies and is called the winter monsoon, and the other by 

southwesterlies and is called the summer monsoon (Yen and Chen, 2000). The 

variation of these two monsoonal circulations and the transition between them affects 

the character of the Asian continental outflow and thus long-range transport. A 

schematic of the research framework and thesis structure is presented in Figure 3.1. 

Three key questions must be addressed.  

 What are the characteristics of high ozone pollution episodes and their 

variability over Taiwan?  

 Is there evidence that regional atmospheric circulation patterns are 

linked to the occurrence of high ozone pollution days? 

 What is the role of long-range transport and other circulation 

mechanisms, including the dominant monsoonal circulation of the 

region? 

A brief overview of the analysis associated with each question is given here. A more 

detailed discussion of the data and techniques, including references to the literature, 

follows in subsequent sections. 

 

What are the characteristics of high ozone pollution episodes and their variability 

over Taiwan? 

As tropospheric ozone formation mechanisms are dependent on local meteorological 

conditions and topographic features, ozone pollution exhibits a diversity of regional, 

seasonal and interannual behaviour. Ground-level ozone concentration is obtained 

from the Taiwan Air Quality Monitoring Network (TAQMN) for the period 1994 to 
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2004, provided information on ozone pollution episodes. These daily data are used to 

identify high ozone pollution episodes, as defined by air quality standard, and analyse 

the seasonal and interannual trends by various statistical methods. Three indices for 

analysing long-term trend of ozone pollution are constructed and the high ozone 

pollution areas in this study are established.  

Further details follow in Section 3.3. 

 

Is there evidence that regional atmospheric circulation patterns are linked to the 

occurrence of high ozone pollution days? 

To consider the features of the local synoptic weather patterns and of the regional 

atmospheric circulation that accompany high ozone pollution days, three main 

analytical processes are undertaken: 

 definition of high ozone pollution days and characteristics of occurrence; 

 objective definition of local and regional weather types; and, 

 composite analysis of pressure conditions accompanying high ozone pollution 

days. 

Given the seasonal evolution of atmospheric circulation, the analyses are stratified by 

month.  

Long-term synoptic meteorological data are applied to define local and regional 

atmospheric circulation patterns. The NCEP/NCAR reanalysis dataset of daily 

geopotential height data (HGT.PRS) from different pressure levels (850hPa and 
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500hPa) and sea-level pressure (SLP) over the period 1994 to 2004 are used. The 

GrADS system is utilised to manage and analyse these data, with separate Fortran 

routines for particular analyses. This system uses a 4-dimensional data environment. 

The review of likely sources of pollution relevant to Taiwan and the role of long-range 

transport suggest an analytic domain that covers Asia and the neighbouring Pacific 

Ocean.  

An objective scheme, based on wind strength and direction and vorticity defined from 

SLP, is used to define daily weather types and to explore in detail the link between 

atmospheric circulation patterns and high ozone events. The method, developed in 

middle latitudes, is amended for application in lower latitudes and its strengths and 

limitations are considered. The daily weather type catalogue is used to define the 

synoptic conditions on and before high ozone pollution days. Two spatial scales are 

investigated; local and regional, with the latter providing a link with the next stage of 

the analysis. 

The character of the large-scale atmospheric circulation at the time of each pollution 

day is examined by averaging the circulation data (geopotential height at different 

levels) for days with high ozone values and so producing the average pattern of the 

circulation that is related to high ozone occurrence. This pattern can be viewed as 

anomalies based on departures from the long-term mean. Statistical significance testing 

(Cramer test) is used to determine which aspects of the pattern are important. In this 

way, the important features of the synoptic circulation accompanying of high pollution 

episodes are identified.  

Further details follow in Section 3.4 and 3.5. 
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What is the role of long-range transport and other circulation mechanisms, 

including the dominant monsoonal circulation of the region? 

In this study, back trajectory analysis is used to investigate further the role of 

long-range transport, including the importance of different source regions, in high 

ozone pollution episodes over Taiwan. The transport pathways over the region are 

calculated by the HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) 

model. The meteorological input is from NCEP reanalysis dataset to model flow paths 

for consistency with the statistical atmospheric circulation analysis discussed above. 

The results of the back trajectory analysis are compared with the statistical analysis 

results of large-scale circulation patterns. In addition, a comparison study is also 

investigated to explore differences between ‘pollution’ and ‘non-pollution’ episodes’ 

transport pathways. Seasonal and spatial characteristics are considered and, where 

appropriate, case studies are used to explore features of particular interest. 

The results of this analysis are combined with the results of the previous two sets of 

analyses to provide an assessment of the role of Asian monsoon variability and other 

circulation features in influencing high ozone pollution episodes over Taiwan. The 

relevance of this assessment to determining potential global warming effects on future 

ozone levels are discussed, as a sample application. 

Further details follow in Section 3.6. 
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Figure 3.1:  A schematic research framework 
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3.3 Air Pollution Data 

3.3.1 Data Source  

The present study uses daily mean ozone concentration data from the Taiwan Air 

Quality Monitoring Network (TAQMN) to define the features of high ozone pollution. 

The complete TAQMN has been established since late 1993. The network consists of 76 

monitoring stations in seven air quality zones (Noth, Chu-Mian, Central, Yun-Chia-Nan, 

Kao-Ping, Yilan and Hua-Tung) (see Figure 2.4), which are divided by the 

characteristics of local air pollutants, geography and meteorological conditions. Five 

types of air quality monitoring station, including background site, ambient site, roadside 

site, industrial site and national park, serve different purposes. For example, background 

monitoring stations are installed in the upwind areas of the major urban cities, where 

there is little immediate influence by anthropogenic pollution, to monitor the long-range 

transport of pollutants. Roadside sites are located near heavily travelled roadways to 

assess the emission of motor vehicles and the exposure levels of pedestrians. The 

priority monitored pollutants include particulate matter (PM10), sulphur dioxide (SO2), 

carbon monoxide (CO), nitrogen oxides (NOx), ozone (O3) and hydrocarbons (HCs). In 

this study, data are selected from only the 64 stations (see Figure 2.4) that had complete 

ozone data for the study period, 1994-2004. 
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3.3.2 Quality Control 

The Taiwan EPA Data Quality Assurance Procedures (DQAP), which follow those 

prescribed by the U.S. Environmental Protection Agency (USEPA), have been 

established since 1991 (the early stage of the monitoring network in Taiwan). The 

DQAP covers regular system maintenance (for example, daily zero, operating check, 

biweekly precision check and monthly instrument functions check) and data 

performance auditing, which is based on a set of standard TAQMN performance audit 

processes. The ambient ozone monitors are calibrated and audited by ozone 

concentration standards that are dynamically generated and assayed by UV photometry. 

Monitoring of inspection instruments, standard gas calibration, and laboratory standard 

operation processes and other checks have been routinely performed throughout the 

monitoring network (EPA Taiwan, 2001, 2002; Yang, et al., 2005). The limitation of 

the air pollution data is that the data are only available for a short period from 

1994-2004. The shortness of record may affect some results, particularly when ozone 

pollution trends are discussed. To reduce the effect of the short data record, a daily 

analysis period is used and all available stations records are selected to define indices 

of high ozone pollution days. A valid daily value is considered as only the average of 

data collected for more than 16 effective hours per day, such that a better 

representative daily average is obtained.  

 

3.3.3 The Definition of High Ozone Pollution Indices 

The characteristics of high ozone pollution episodes, indices for the study are 

established through a series of calculation and statistics processes. Daily mean data are 
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used to identify high ozone pollution episodes. The procedure is as follows: according 

to the air quality standard (Table 3.1), there are two definitions of a high ozone 

pollution episode in Taiwan, one is daily maximum hourly ozone concentration > 120 

ppb, and the other one is an eight-hour mean concentration > 60 ppb. In this study, we 

focus on exceptionally high levels in order to ensure a strong signal from the related 

data sets; hence, we conservatively define high ozone episodes (HOEs) as those with a 

daily-mean ozone concentration > 60 ppb. If the condition is met at two stations, for 

example, on the same day, then this is counted as two episodes in the HOE index. 

At some of the stations, only a few high ozone pollution episodes have been observed 

over the study period. To eliminate these areas from the analysis, stations are dropped 

if the percentage of HOEs is less than 1% over the eleven-year record (Figure 3.2). 

This process leaves 53 stations in five air quality zones (Figure 3.3). Using this more 

limited network, the high ozone day (HOD), a second index, is defined as a day with 

one station exhibiting average concentration over 60 ppb. As there is a concern that 

local pollution episodes could result in a high occurrence rate of HOD, a third index, 

HOD3, is defined when at least three stations exhibit a daily mean concentration > 60 

ppb to investigate the effect of regional pollutants transport on Taiwan’s air quality. It 

is this index that is used in later analyses to define high ozone pollution days for 

Taiwan as a whole to establish the relationships with atmospheric circulation data.  
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Table 3.1: Air quality standards for various countries: definition of high ozone episodes. 

Pollutant Averaging Time Taiwan U.K. U.S. Singapore

O3 1 Hour 120 ppb  120ppb 120 ppb 

 4 Hours     

 8 Hours 60 ppb 50ppb 80ppb 80 ppb 

Pollutant Averaging Time Australia Hong Kong Japan  

O3 1 Hour 100 ppb 120ppb 60ppb  

 4 Hours 80 ppb    

 8 Hours     

 
 

HOEs (ozone concentration > 60ppb)
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Taoyuan

Taipei City 
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Frequency of HOEs
 

Figure 3.2: Frequency of high ozone episodes (HOEs) in the 22 districts of Taiwan, 
geographical information of 22 districts see Figure 2.4. 
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Figure 3.3: The distribution of 53 air monitoring network stations and the five air 
quality zones used in this study. 
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3.4 Gridded Observational Atmospheric Circulation Data 

Observational meteorological networks on a global scale have existed since 1946. Due 

to changes in instrumentation and observational methods, there are limitations in the 

use of these data for investigating climate change and interannual climate variability. 

These changes can result in temporal and spatial inhomogeneities in the data and the 

recorders interruption. In order to tackle inhomogeneous data and the discontinuities, a 

number of climate research centres have attempted to reproduce and assimilate data by 

a stable, invariant analysis system, through what is called a ‘reanalysis’ project, such as 

NCEP/NCAR reanalysis Project (Kalnay et al., 1996; Kistler et al., 2001). 

The aim of this thesis study is to investigate the characteristics of the local synoptic 

weather patterns and the large-scale atmospheric circulation related to high ozone 

pollution occurrence. Daily atmospheric data were obtained from the National Centre 

for Environmental Prediction (NCEP)/National Center for Atmospheric Research 

(NCAR) reanalysis project. The following sections will introduce the background of 

the NCEP/NCAR reanalysis, the quality control process, problems and known errors, 

inter-comparison results and the diagnostic variables used in this study.  

 

3.4.1 NCEP/NCAR Reanalysis Data 

The aim of the NCEP/NCAR reanalysis project is to provide the climate research, 

monitoring and modelling community with a record of global atmospheric analyses 

(Kalnay et al., 1996). It began in 1991 as a development of the NMC Climate Data 

Assimilation System (CDAS) project. The data are currently available from 1948 to 
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the present. The quality of these re-analyses should be superior to NCEP’s original 

analyses because (Kalnay et al., 1996): 

 a frozen state-of-the-art data assimilation system is used;  

 more observations are used;  

 quality control has been improved; 

 consistent model/data assimilation system is used over the entire project; 

 many more fields are being saved; and, 

 global coverage and a variety of output archives.  

 

The development of reanalysis datasets has recovered land surface, ship, rawinsonde, 

aircraft, satellite and other fields. In addition, the products include forecasts data file 

and the binary universal format representation (BUFR) of the atmospheric observations. 

The complete output data have a horizontal resolution of 2.5° x 2.5° latitude/longitude 

and vertical resolution up to 17 levels.  

Data assimilation theory, models and computers have been improved substantially over 

the past fifty years. The reanalysis project is, however, still affected by changes in the 

observing system. The quality of the output variables is related to the evolution of the 

global observing systems, which can be separated into three major phases: the early 

period from the 1940s to the International Geophysical Year in 1957, when the first 

upper-air observations were established; the modern rawinsonde network from 1958 to 

1978; and the modern satellite era from 1979 to the present (Kistler et al., 2001). 
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The output variables have been classified into four classes, depending on the degree to 

which they are influenced by the observations or the modelling (Kalnay et al., 1996) 

Class A: The primary reanalysis data sources are mostly directly observed, and 

variables of this type are, therefore, in the most reliable class (for example, upper air 

temperature, geopotential height, sea-level pressure). 

Class B: The variable is directly influenced by the observed data as well as model 

values (for example, moisture variable, divergent wind, surface parameters). 

Class C: No observations directly affect the variable. These variables are derived only 

from the model fields, which are forced by the data assimilation to remain close to the 

atmosphere (for example, surface fluxes, heating rates, clouds and precipitation). 

Class D: A field fixed from climatological values and, therefore, with no dependence 

on the model (for example, surface roughness). 

 

3.4.2 Quality Control 

Data quality has been checked through multiple quality control processes during the 

reanalysis project. Two major quality control systems are the Complex Quality Control 

(CQC) and the Optimal Interpolation Quality Control (OIQC) processes.  

The Complex Quality Control (CQC) system is used to assess the quality of the 

rawinsonde heights and temperatures program (Gandin, 1988). The CQC code includes 

a number of checks used operationally, including a hydrostatic check, increment check 

and horizontal and vertical interpolation check. A baseline check is used to detect the 
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changes in the station locations as well as errors in the location. The method of CQC is 

to compute residuals from several independent checks and then use these residuals 

with an advance decision making algorithm to accept, reject or correct data (Collins 

and Gandin, 1990). The performance of CQC for rawinsonde observations detection 

shows that of the hydrostatically detectable errors about 75% are corrected, while 60% 

of the baseline errors are corrected (Kalnay et al., 1996). 

The role of Optimal Interpolation Quality Control (OIQC) is the final screening for 

observational data (Woollen et al., 1994). As far as problems caused by instrumental, 

human or communications processes are concerned, the OIQC is used to detect 

obvious and unresolved errors and withhold them from assimilation system. In addition, 

unrepresentative observations are also detected in the OIQC. The OIQC algorithm is 

based on three approaches: firstly, multivariate three-dimensional statistical 

interpolation is used to do prescribed area checks for each observation; secondly, use 

of independent interpolation and other types of checks that when assessed collectively 

suggests whether errors exist in an observation; and thirdly, use of a non-hierarchical 

decision making algorithm to monitor the results of various checks and to make final 

accept/reject decision after all processes are completed.  

 

3.4.3 Problems and Known Errors 

Problems resulting from observing systems changes or model deficiencies are 

inevitable in reanalysis projects. Many problems and errors were corrected over time 

within the reanalysis process, having been discovered both through internal NCEP 

monitoring and by external users who had access to early results or the observations 
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themselves (Kistler et al., 2001). Where problems affect periods more than few months, 

they cannot be solved by rerunning the reanalysis immediately. These problems have 

been reported and posted on the project website. For example, data were sometimes 

omitted in the assimilation system, such as snow cover in February 1997 and TOVS 

data during May to June in 2003. A problem with regard to TOVS data retrievals 

affects high-level temperature and geopotential heights through the period from March 

1997 to September 2001. More detailed information, with updates, can be obtained 

from the website: http://www.cdc.noaa.gov/cdc/reanalysis/problems.shtml  

 

3.4.4 Inter-Comparisons 

It is important to estimate the reliability of reanalysis results by thorough 

inter-comparisons with other available reanalyses (Kistler et al., 2001). Other 

reanalysis projects are conducted by the European Centre for Medium-Range Weather 

Forecasts (ECMWF, ERA) and the National Aeronautics and Space Administration 

Data Assimilation Office (NASA/DAO). They use nearly the same observations, but 

apply different assimilation models (Kistler et al., 2001). For example, the reanalysis 

and assimilation at NCEP/NCAR are done by Spectral triangular 62 (T62), with 28 

vertical levels and 209 km horizontal resolution. The grid resolution of T62, about 2x2 

degree latitude/longitude, is coarser for topographic analysis than the model used in the 

ERA. In this section, selected studies that have attempted to compare these datasets 

and/or satellite observations are discussed, to give an indication of the strengths and 

weaknesses of the NCEP/NCAR dataset.  
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As noted above, there are four levels of output variable quality. The comparison of 

type A variables, such as zonal wind (u component), air temperature and geopotential 

height at 500hPa, shows good agreement between the NCEP/NCAR and the ECMWF 

reanalyses, but with significant differences in the tropics, in particular, in the 

interannual scale comparison (Kistler et al., 2001; Covey et al., 2002). A number of 

comparisons focus on type C variables, less affected by observations, for instance, 

cloudiness, surface fluxes and precipitation. In this case, these variables are compared 

with observations, mostly “direct” observations such as satellite observations. Covey et 

al. (2002) pointed out that cloudiness from the NCEP/NCAR reanalysis, compared 

with International Satellite Cloud Climatology Project (ISCPP) (Rossow et al., 1991), 

is underestimated, and the ERA exhibits better agreement than the NCEP/NCAR for 

the period of 1984-1990.  

For energy fluxes, the comparison of solar radiation at the top of the atmosphere shows 

that, overall, the net shortwave radiation of the NECP/NCAR reanalysis is less than 

Earth Radiation Balance Experiment (ERBE) observations (Barkstrom et al., 1989). 

The NCEP/NCAR outgoing-longwave-radiation, compared with the ERA and Goddard 

Earth Observing System (GEOS) data, is closest to ERBE for 1985-1989. The ERA is 

overestimated and GEOS is too low in the tropics, but too high out of the tropics 

(Kistler et al., 2001; Covey et al., 2002).  

Comparisons of zonal mean precipitation (another Type C variable) have been made 

between three reanalyses and two independent estimates from the Climate Prediction 

Centre merged analysis (CMAP, Xie and Arkin, 1996) and by the Global Precipitation 

Climatology Project (GPCP) over land and ocean. Of the three reanalyses, comparison 

with the CMAP, shows that NCEP/NCAR and GEOS underestimate variability over 
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the tropical oceans and the ERA substantially overestimates it (Kistler et al., 2001). 

This result is consistent with the comparisons with the GPCP. In addition, NCEP, 

ECMWF and GPCP show the same pattern of the spatial mean as well as seasonal 

cycles in most regions (Quartly et al., 2007). Precipitation in the NCEP/NCAR 

reanalysis more closely follows the observations in the tropics and the ERA presents 

better agreement over the Northern Hemisphere continents and the extratropical 

oceans.  

In terms of zonal mean temperature, Trenberth et al. (2001) indicated that the 

NCEP/NCAR and the Microwave Sound Unit (MSU) agree quite well with each other 

over the tropics. In contrast, the ERA reanalysis exhibits large difference with these 

two datasets (Covey et al., 2002). The lack of accuracy of ERA over the tropics is 

related to spurious fluctuations in tropospheric temperatures and moisture on several 

time scales as well as two discontinuities in late 1986 and early 1989 (Trenberth et al., 

2001). For temperature anomalies at 850hPa, the NCEP/NCAR anomalies showed 

fairly good agreement with the NASA/DAO (Kistler et al., 2001). Overall, analysts 

conclude that the NCEP/NCAR reanalysis presents more reliable quality than the 

ECMWF reanalysis, in particular for the tropics.  

A comparison of the reanalysis datasets with observed sea level pressure (SLP) 

climatologies (Trenberth and Paolino, 1980) indicated that the monthly SLP data of 

NCEP/NCAR exhibits an unusually strong annual cycle over southeastern Russia, 

Mongolia and northern China before 1967 (Yang et al., 2002). This result is also found 

by Inoue and Matsumoto (2004), who reported an evidently increase SLP of 

NCEP/NCAR between the two periods, one is in the mid-1960s and the other one 

occurred in the mid-1970s. The first increase could result from the earlier (1948 to 
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1967) data conversion process (Kistler et al., 2001). However, it is not recognised in 

the ERA and other observational datasets (for example, Climatic Research Unit of 

University of East Anglia, CRU-UEA) used in their study. This suggests that the SLP 

of ERA over East Eurasia (40°N-60°N) and its vicinity before the 1970s is more 

reliable than the NCEP/NCAR reanalysis. Although the data quality of SLP from 

NCEP/NCAR, before 1968, is arguable, the period of the current study from 1994 to 

2004 is quite consistent with other reanalyses. 

For the Southern Hemisphere, climate analysis is limited through the sparse station 

network, especially for the high and middle latitudes. Bromwich and Fogt (2004) have 

carried out a comparison of the NCEP/NCAR and ERA data with Antarctic and mid- 

to high latitude station observations for the period 1958 to 2001. They found large 

discrepancies between NCEP and ERA due to the different assimilation schemes. The 

NCEP/NCAR reanalysis is constrained by the station observational network, whereas 

the ERA is more strongly constrained by the satellite data. Therefore, ERA shows 

better agreement with the observations than the NCEP/NCAR reanalysis, in particular 

after the start of the modern satellite era (post 1978). The quality of both reanalyses is 

less before 1970 (the pre-satellite era), due to the lack of data sources (Sterl, 2004).  

Some comparisons indicate that the ERA data set is more accurate, in particular for 

land surface regions, because its high resolution is better at simulating topographic 

influences (Annamalai et al., 1999). The results suggest, though, that the NCEP/NCAR 

reanalysis data present a better potential for tropical studies, due to the better depiction 

of variability in these regions. Otherwise, all data sets cover the core period for this 

study, defined by ozone data availability, but the NCEP/NCAR data cover the longest 

period (which can be used to place the representativeness of the study period in 
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context). Despite the advantages of NCEP/NCAR reanalysis for tropical studies, there 

are, as noted, potential deficiencies that must be borne in mind. In particular, the 

quality of the reanalysis data for those regions with sparse observational networks may 

be strongly affected by the model simulation and this could affect ocean regions of the 

Asia-Pacific study area. 

 

3.4.5 Diagnostic Variables  

Two central diagnostic variables from the NCEP/NCAR reanalysis have been chosen 

for the present study to clarify the effect of atmospheric circulation variability on 

tropospheric ozone pollution. Sea level pressure is used to classify the features of local 

and regional weather types associated with tropospheric ozone occurrence and to 

investigate the influence of local circulation. The other variable is geopotential height, 

an upper-air variable, for investigating the large-scale circulation associated with 

long-range precursors/pollutants transport. Geopotential height is a vertical coordinate 

referenced to the mean sea level. The two pressure levels, 850hPa and 500hPa, are 

considered.  Both sea level pressure and geopotential height data from the 

NCEP/NCAR reanalysis are designated as Class A variables. This means that both 

variables are highly influenced by the observations, and hence they are in the most 

reliable class (Kalnay et al., 1996), though the potential errors discussed in the 

previous section with regard to pressure over northeast Asia must be borne in mind. 
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3.5 Objective Circulation Classification Scheme 

3.5.1 Introduction 

Synoptic weather typing has been used in various studies, such as on the effects of 

atmospheric circulation on weather elements (Yarnal, 1985; Jones et al., 1993) and the 

correlation between synoptic weather type and air pollutants (Lennartson and Schwartz, 

1999; Schwarzhoff and Reid, 2000; Cheng et al., 2001). Synoptic weather typing 

development can be divided into : subjective (manual) approaches and objective 

(automated) approaches (El-kadi and Smithson, 1992). In this study, an objective 

scheme, developed by Jenkinson and Collison (1977), is used to classify daily weather 

types for the local and regional circulation over Taiwan for the period 1994 to 2004. 

This objective scheme is based on numerical values of flow and vorticity calculated 

from gridded sea-level pressure (SLP) data (Jenkinson and Collison, 1977). The results 

from the weather type classification are utilized to assess the correlation between the 

character of the local and regional circulation over Taiwan and Northeast Asia during 

high ozone events. 

Barry and Perry (1973) argued that atmospheric circulation pattern classification and 

assessment of the relationship between atmospheric circulation patterns and local 

weather elements are two important procedures within synoptic climatology research. 

Perhaps the most famous subjective classification scheme was developed by Lamb 

(1950), who identified seven kinds of atmospheric circulation patterns for the British 

Isles and later expanded this to 27 types (Lamb, 1972). These 27 weather types consist 

of an unclassified type, two types defined by geostrophic vorticity (anticyclonic and 

cyclonic), eight directional types and 16 hybrid types (Table 3.2). Many applications 
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have demonstrated the value of Lamb’s synoptic classification approach in a variety of 

weather analyses (for example, Murray and Lewis, 1966; Jones and Kelly, 1982; Briffa 

et al., 1990 ).  

Despite its proven value, subjective classification may be affected by bias, lack of 

precision and other potential errors. Objective (automated) schemes using numerical 

and statistical techniques can lead to the improvement of precision and errors and 

certainly are more efficient in terms of time and labour during the classification 

processes (Yarnal and White, 1987). The earliest objective weather type classification 

procedure was developed by Lund (1963), who applied statistical methods to group 

patterns on weather maps. The objective scheme used in this study, demonstrated that 

wind flow and vorticity parameters could be used to define the direction and type of 

surface flow for the British Isles related to the subjective Lamb Weather Type 

Catalogue (Jenkinson and Collison, 1977). Jones et al. (1993) have shown that this 

objective scheme can be used to reproduce Lamb’s daily catalogue successfully for the 

British Isles. The scheme has been used for the validation of general circulation model 

output (Hulme et al., 1993). More recently, Goodess and Palutikof (1998), Spellman 

(2000), Trigo and DaCamara (2000) and Tomás et al. (2004) used the scheme to study 

the Mediterranean area, which displays a different climate regime, showing that it 

could provide suitable indices for precipitation research and other meteorological 

conditions. Although objective schemes have been used with in many applications 

successfully, the inherent subjectivity, such as grid spacing, operator decision on 

thresholds, remains to be considered (Yarnal, 1984; Spellman, 2000; Tomás et al., 

2004).  
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3.5.2 Methodology 

The Lamb Weather Type (LWT) objective scheme was initially developed using a 

16-point grid centred on 55° N with a resolution of 5° latitude by 10° longitude 

(Jenkinson and Collison, 1977), reflecting the resolution of the underlying UK 

Meteorological Office pressure data (Jones et al., 1993). In the objective scheme, the 

daily circulation is classified according to categories and thresholds of a set of indices 

associated with vorticity and air flow, which are calculated from daily grid point 

sea-level pressure data. The flow and vorticity parameters provide information about 

wind strength and direction and circulation type, such as cyclonic and anticyclonic. In 

this study, the daily gridded sea-level pressure data are taken from the NCEP/NCAR 

reanalysis dataset. Because interest is in both the local and regional scales, two 

different ‘window sizes’ are classified. For the small (local) window, the area covered 

is from 17.5° N to 32.5° N and from 110° E to 130° E with a resolution of 2.5° latitude 

by 5° longitude (Figure 3.4). The larger (regional) window covers the area defined 

from 0° N to 50° N and from 80 ° E to 160° E with a resolution of 10° latitude by 20° 

longitude (Figure 3.5). Both areas are represented by a 16-point grid within the 

window, centred on 23.75° N, Taiwan, and the primary analysis period is from January 

1994 to December 2004. In addition, the analysis of the long-term trend covers the 

period from 1958 to 2004. 
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Figure 3.4: Grid used in the objective circulation-typing scheme (Local Area). 

 
 
 

 
Figure 3.5: Grid used in the objective circulation-typing scheme (Regional Area). 
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The calculation of the flow and vorticity parameters for the grid is shown in this 

example below for the local area (Figure 3.4) and the calculation for the regional area 

is shown in Appendix one:        

 westerly flow (W): the westerly component of geostrophic surface wind           

calculated from the pressure gradient between 21.25° N and 26.25° N;   

 southerly flow (S): the southerly component of geostrophic surface wind 

calculated from the pressure gradient between 117.5° E and 122.5° E; 

 resultant flow (F): total resultant westerly and southerly flow;  

 direction (dir): in degree (0 to 360 °) of the resultant surface wind obtained 

from w and s , the directional category is calculated on a eight-point compass 

with a   resolution of 45 ° (e.g. NE occurs between 22.5 ° and 67.5 °); 

 westerly shear vorticity (ZW): difference of the westerly flow between 18.75° 

N and 23.75° N minus that between 23.75° N and 28.75° N; 

 southerly shear vorticity (ZS): difference of the southerly flow between 23.75° 

N   and 127.5° E minus that between 23.75° N and 112.5° E; 

 total shear vorticity (Z): the sum of westerly and southerly shear vorticity. 

All the indices, listed above, are calculated from the grid-point values using the 

following equations (adapted from Jenkinson and Collison, 1997; Jones et al., 1993): 

W= 0.5(12+13)-0.5(4+5)                                        (3.1) 

S = 1.09 [0.25(5+2x9+13)-0.25(2+2x8+12)]                         (3.2) 

F = (S 2+W 2)1/2                                              (3.3) 

ZW = 1.11 [0.5(15+16)-0.5(8+9)]-0.91[0.5(8+9)-0.5(1+2)]             (3.4) 
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ZS= 0.6 [0.25(6+2x10+14)-0.25(5+2x9+13)-  

0.25(4+2x8+12) +0.25(3+2x7+11)]                          (3.5) 

Z = ZW+ZS                                                  (3.6) 

The classification scheme is based on values of total shear vorticity Z, the resultant 

flow strength F, and direction. The numbers 1-16 refer to the grid-points shown in 

Figure 3.2 and 3.3. The geostrophic flow and vorticity units are expressed as hPa per 

10° latitude at the central latitude (23.75° N). The constants (1.09, 1.11, 0.91, and 0.60) 

for local area, calculated following the method of Dessouky and Jenkinson (1975), 

reflect the relative differences between the grid-point spacing in the north-south and 

east-west direction used here. The multipliers (0.5 and 0.25) reflect the number of grid 

points used here.  

The rules to identify the Lamb Weather Types are based on the definition of Jenkinson 

and Collison (1977), as follows:  

1. The direction of flow is tan-1 (W/S). Add 180 degrees, if W is positive. 
2. If | Z | is less than F, flow is essentially straight and corresponds to a Lamb pure 

directional type. 
3. If | Z | is greater than 2F, then the pattern is strongly cyclonic (Z >0) or 

anticyclonic (Z <0). This corresponds to Lamb’s pure cyclonic and anticyclonic 
type. 

4. If | Z | lies between F and 2 F then the flow is partly (anti-) cyclonic and 
corresponds to one of Lamb’s synoptic/direction hybrid types, e.g. AE. 

5. If F is less than threshold and | Z | is less than threshold, there is light indeterminate 
flow, corresponding to Lamb’s unclassified type, U.  

In this study, 27 different weather types, following Lamb’s classification, were initially 

identified (Table 3.2). The F and Z threshold values, used to define the unclassified 

type (U type), were modified in light of the features of the lower-latitude zone under 

analysis. The original threshold value of LWT scheme for British Isles is six. The 
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threshold values for this study were selected by comparison with experience in other 

mostly middle-latitude regions, modified after experimentation for use in this lower 

latitude region. In experimenting with different thresholds, the key concern was to 

define an appropriate range of weather types without too many undefined days. The 

main difficulty here lay in the consistency and, in the case of undefined days, low wind 

speeds, of the Taiwanese weather patterns. A threshold for U was determined on the 

basis of an acceptable number of undefined days, ensuring that the categorisation was 

realistic through consideration of the actual weather patterns. Therefore, the thresholds 

for the local and regional scale selected were 1.5 and 3.5, respectively.  

The monthly frequencies of the 27 circulation weather types show that certain weather 

types, particularly for the northwesterly type and its hybrid types, are relatively 

infrequent over the study areas. Given that small sample sizes are unsuitable for trend 

analysis and other statistical analyses, these infrequently occurring types, whose 

relative frequencies are less than 2% at both scales, were eliminated. However, this 

process may cause the elimination of any high ozone days (HOD3) related to 

infrequently occurring types. To avoid analytical bias in the investigation of the link 

between ozone pollution and circulation type, one more type, which is the CNE type, is 

retained, though its relative frequency is less than 2%. Thus, there are 14 circulation 

types (Table 3.3) retained for occurrence frequency analysis and the investigation of 

the relationship between circulation type and ozone pollution.  
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Table 3.2: The original 27 weather types from Lamb's weather category.

Anticyclonic 
types Cyclonic types Directional types Unclassified 

A C      NE U 
 ANE   CNE      E  
AE     CE      SE  
ASE     CSE      S  
AS     CS      SW  

ASW     CSW      W  
AW     CW      NW  

ANW     CNW      N  
AN     CN     

 

 

 

 

 

 

 

 

 

 

 

Table 3.3: The 14 weather types from Lamb's weather category  

Anticyclonic types Cyclonic types Directional types Unclassified

A C NE U 
ANE CNE E  
AE CE SE  

ASE  S  
ASW  SW  
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3.6 Back Trajectory Analysis 

Trajectories are defined as the paths traced by moving particles of air (Dutton, 1976). 

Back trajectories describe where an air parcel came from and forward trajectories 

indicate where it will go. Air trajectory models have been used to study dynamical 

processes in the atmosphere for several decades but developed into numerical methods 

more recently (Draxler and Hess, 1997, 1998; Stohl, 1998; Abdulmogith and Harrison, 

2005). The applications vary from synoptic meteorology to climatology and the 

environmental sciences, for instance, to determine the potential source regions of 

measured airborne pollutants (Draxler, 1996; Stohl, 1998). During the early stage of 

development, trajectory models were based on simple advection schemes to calculate 

the prior position of an air parcel by using estimated wind speed and direction, for the 

time period, of a particular monitoring site (Stohl, 1998; Kleiman and Marin, 2002). 

The present study uses the Hybrid Single-Particle Lagrangian Integrated Trajectory 

(HYSPLIT_4) model an improved version of the earlier models (Draxler and Hess, 

1997, 1998) to study long-range transport pathways of pollutants/precursors from 

potential emission source regions to Taiwan. The model results are compared with the 

weather type classification results and regional circulation patterns to investigate the 

relationship between long-range transport and high ozone pollution episodes in Taiwan. 

In this study, the model was run through the Real-time Environmental Applications 

and Display sYstem (READY) via the website (Draxler and Rolph, 2010). 

The Hybrid Single-Particle Lagrangian Integrate Trajectory (HYSPLIT) model was 

designed by the NOAA Air Resources Laboratory (ARL) to support a wide range of 

simulations related to the long-range transport, dispersion and deposition of pollutants 

using previously gridded meteorological data (Draxler and Hess, 1997, 1998). It can be 
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applied to respond to atmospheric emergencies  (accidental radiological releases or 

volcanic ash eruptions), routine air quality assessment and climatological analysis. The 

evolution of the HYSPLIT model has been through several stages over the past 

decades. The initial version (1982) used only rawinsonde observations and only with 

uniform daytime mixing of the dispersion calculation. In the next revision (1988), a 

temporally and spatially varying diffusivity profile was introduced for variable strength 

mixing. In the HYSPLIT_3 version (1992), input data were replaced by gridded 

meteorological data from either analyses or short-term forecasts. In the current version 

(HYSPLIT_4), the advection algorithms have been substantially improved with 

updated stability and dispersion equations (Draxler and Hess, 1997). The computation 

of dispersion rate is from the vertical diffusivity profile, wind shear and horizontal 

deformation of the wind field. A three-dimensional particle dispersion routine has been 

added to compute air concentrations from the dispersal of an initial fixed number of 

particles.  

Atmospheric dispersion modelling is usually divided into Eulerian and Lagrangian 

models (Dutton, 1976; Draxler and Hess, 1998). Eulerian models solve the 

advection-diffusion equation on a fixed grid, especially when complex emission 

scenarios are considered, requiring solutions at all grid points. The advection and 

diffusion components calculation of Lagrangian models is handled independently. 

These models can be used to tackle the cases of single-point-source emissions with 

restriction of a few grid points’ computations. The calculation method of HYSPLIT_4 

is a hybrid between the Eulerian and Lagrangian approaches. It is based on a 

Lagrangian framework of advection and diffusion calculations, while concentrations 

are calculated on a fixed grid. This method results in short calculation time advantages. 

The approach of HYSPLIT_4 is to combine both puff and particle methods by 
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assuming a puff distribution in the horizontal and particle dispersion in the vertical 

direction. Based on the dispersion calculation of Lagrangian model computed 

following the particle or puff method, the advection of a single pollutant particle is 

computed independently in the HYSPLIT_4 model.  

The procedures of trajectory calculation consist of meteorological data pre-processing 

and advection calculations. Data pre-processing is necessary to maintain a larger 

degree of flexibility within HYSPLIT’s internal structure so that meteorological data 

from different sources with, for example, different resolutions can be used. 

Meteorological data fields may be provided on one of four different vertical coordinate 

systems: pressure-sigma, pressure-absolute, terrain-sigma, or a hybrid 

absolute-pressure-sigma. The input parameters can vary by different sources of 

meteorological data. The time integrated advection of each particle can be viewed as a 

simple trajectory. It is computed from the average of the three-dimensional velocity 

vectors, which are linearly interpolated in both space and time. Position (P) computed 

from average velocity (V) at the initial position P (t) and the first-guess position P' 

(t+dt) is  

                   P'(t+dt) = P(t) + V(P,t) dt                       (3.7) 

The final estimated position is  

           P(t+dt) = P(t) + 0.5 [ V(P,t) + V(P',t+dt) ] dt                (3.8) 

The integration time step (dt) can vary. However, the limitation is that the advection 

distance per time-step should be less than 0.75 of the meteorological grid spacing. The 

input data and parameters used in this study are shown in Table 3.4. 
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Table 3.4: The implementation of HYSPLIT_4.  

Model HYSPLIT version 4 

Vertical coordinate system Pressure-sigma 

Meteorological data source NCEP/NCAR reanalysis dataset 

Input parameters  

U,V wind components, Temperature, 

Height, Pressure, the Pressure at the 

surface, Relative Humidity 

 

The current version of HYSPLIT model has been improved since the first version of 

the model was designed in 1982. The evolution includes the revision of the algorithms 

and equations based upon the more recent literature. The advantages of HYSPLIT_4 

model in present study are as follows:   

 Execution with multiple nested input data grids: Data Assimilation System 

data, Global Data Assimilation System data and NCEP/NCAR reanalysis data.  

 Forecasts and archives meteorological data are available, such as produced by 

the NCEP/NCAR data. 

 Trajectory ensemble option using meteorological variations. 

 Single or multiple simultaneous trajectories. 

 Option grid of initial starting locations. 

 Graphics displayed both Postscript files and illustration formate, such as GIF. 

However, the accuracy of trajectory calculations is considered to be affected by the 

temporal and spatial resolution of the meteorological input (for example, interpolation 

errors), measurement errors, analysis error, receptor location and from any 
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assumptions (for example, vertical wind component) used in the trajectory model 

(Draxler, 1991; Stohl, 1998; Harris et al., 2005). Trajectories and air concentration 

accuracy of the HYSPLIT_4 model have been evaluated by Chemical tracer gases 

(Across North America Tracer Experiment) and balloon trajectories (Aerosol 

Characterization Experiment) (Draxler, 1991; Stunder, 1996; Draxler and Hess, 1998). 

These studies showed that trajectory error ranged from 10 to 30 per cent of the total 

transport distance. The range of error percentage is affected by travel time, the strength 

of wind flow and vertical height. Therefore, model results are sensitive to the vertical 

atmospheric structure, when near ground-level, as strong wind gradients and direction 

can result in a high inaccuracy for the trajectory simulations (Draxler and Hess, 1997, 

1998). Given the meteorological character of the study area in this study, in particular, 

the generally stable, low wind speed conditions, these factors are not considered as 

serious weaknesses but should be borne in mind. 

For this study, the main benefit of using the HYSPLIT_4 model is that one of the input 

meteorological data options, NCEP/NCAR reanalysis data, is the same data source 

used for the weather type classification and regional scale atmospheric circulation 

analysis in this thesis. This ensures consistency in data sources across the study. Other 

advantages are the short execution time, easily accessible user interface and a 

comprehensive quality evaluation system.  
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In estimating back trajectories in this study, the following conditions apply: 

1. the trajectory is calculated 72 hours back in time with a six-hour timestep from 

04:00 UTC1 of the high ozone pollution day; and , 

2. the locations of Taiwan are tracked both in the north (25°N, 121.3°E) and south 

(22.5°N, 120.5°E).  

The initial starting time is set by the local peak ozone concentration. The atmosphere is 

divided into three layers above ground level: 100m, 500m, and 2000m. The level 

selection is to observe how the pollutant transport varies from the surface to higher 

altitudes. 

 

3.7 Spatial Compositing  

Spatial compositing techniques have been used in various applications in meteorology 

and climatology (Barry and Perry, 1973). In this application, it confirms the 

interpretation of the weather types and also adds broader spatial information to aid the 

definition of the behaviors of the large-scale atmospheric circulation. In this study, the 

spatial compositing approach can reveal the main features of large-scale atmospheric 

circulation common to high ozone pollution events, reducing random features or noise. 

The spatial composite maps are derived from the diagnostic variables from the 

NCEP/NCAR reanalysis data (for example, geopotential height). The main series of 

 

1 The setting up of start time from 04:00 UTC is concerned that the local time is eight hours ahead of 

universal time. The setting is based on the occurrence of high ozone concentration at local time.  
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composite maps are determined by averaging the geopotential height during a set of 

high ozone pollution days (HOD3) (Appendix two). The results are displayed as the 

absolute values and as the difference between the means for the high ozone pollution 

days and the long-term pattern for the relevant time of year. Composites are also 

calculated for non-pollution days as a control. The selection of non-pollution days 

consists of two procedures: (1) total number of days (Ntotal) in each month of eleven 

years (1994-2004) minus the days with high ozone concentration over 60 ppb defined 

as HOD (see section 3.3.3) in each month of eleven years, (2) non-pollution days are 

selected from the rest of days (Nrest), without HOD, of each month by using random 

sampling method of Excel software. The number of non-pollution days (Nnon-p) is equal 

to the number of pollution days defined as HOD3 (see Section 3.3.3) in each high 

ozone pollution month which is April, May, June, September, October and November 

(Table 3.5).  

 
 
Table 3.5: The sample sizes for non-pollution days’ selection in high ozone pollution 
months for the period 1994-2004. 

Month Ntotal HOD Nrest HOD3 Nnon-p 

April 330 92 238 22 22 

May 341 117 224 29 29 

June 330 41 289 10 10 

September 330 92 238 19 19 

October 341 119 222 32 32 

November 330 67 263 10 10 
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The statistical significance of the difference between the mean fields is assessed by 

Cramer’s test. Cramer’s test is similar to Student’s t-test and tests significance when a 

small sample of events is drawn as a subset from a longer period of data (Mitchell et 

al., 1966). The null hypothesis used for all tests is that ‘the anomaly is not significantly 

different from zero, i.e. that the control and perturbation variable samples being 

considered have the same mean. If the null hypothesis is correct, the test statistic has a 

t distribution. A rejection of the hypothesis at a level of 5% means there is only a 5% 

probability that the difference in the mean is a result of chance, i.e. there is 95% 

probability that there is an ‘actual’ difference. The 5% level will be used throughout 

this study for significance testing. The Cramer’s test is computed as: 

                 tc = Tc * [{n (N-2)} / N – n (1 + Tc
2)]1/2              (3.9) 

                 where: Tc = (m2 - M1) / S                         (3.10) 

       there are (N-2) degrees of freedom 

       S is the standard deviation of the entire record of N values 

       M1 is the mean of the entire record of N values 

       m2 is the mean of the sub-period of n values  

In this study, the sub-periods will be the number of high ozone pollution days, which 

are categorised by months, and the whole period is taken to be the 1994-2004 period.  
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Table 3.6: Summary of research design 

 Analysis Method Data 

Define high ozone pollution 
events  

Define high ozone pollution 
indices based on air quality 
standards.  

1. What are the characteristics of 
high ozone pollution episodes 
and their variability over 
Taiwan?  

 

High ozone pollution areas 
and seasonal variation 
analysis 

Descriptive statistics 

Taiwan Air Quality Monitoring 
Network (TAQMN) data cover 
the period from 1994 to 2004. 

The features of local synoptic 
weather type patterns during 
high ozone pollution 
occurrence 

Objective circulation 
classification scheme 

Sea Level Pressure data 2. Is there evidence that regional 
and large-scale atmospheric 
circulation patterns are linked to 
the occurrence of high ozone 
pollution days? 

 

Large-scale atmospheric 
circulation and anomaly 
patterns of high ozone 
pollution days 

Spatial compositing and 
Cramer’s test 

Geopotential Height data at 
850hPa and 500 hPalevels 

3. What is the role of long-range 
transport and other circulation 
mechanisms, including the 
dominant monsoonal circulation 
of the region? 

Potential pollutants source 
region investigation.  

Back trajectory analysis 
(HYSPLIT Model) 

Input meteorological data for 
back trajectory analysis based on 
NCEP/NCAR Reanalysis data 
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Chapter 4: Observed Annual and Seasonal Trends 

 of Ozone 

4.1 Introduction  

This chapter presents annual and seasonal variations in ozone pollution from 1994 to 

2004. The occurrence of high ozone episodes, the overall seasonal cycle and 

interannual variability and trends are linked to changes in atmospheric circulation 

features over Taiwan in order to define a framework for the later analysis of links 

between ozone trends and the large-scale atmospheric circulation.  

 

4.2 Annual Trend of Ozone Pollution  

4.2.1 Selection of High Ozone Episodes and High Pollution Zones 

The definition of high ozone episodes (HOEs) is daily eight-hour average ozone 

concentration ≥ 60 ppb. In the 64 stations of the network, there are a few stations with 

a low frequency of high ozone episodes, less than 1% in the eleven-year record. The 

elimination of these stations has made it easier to distinguish high ozone pollution 

areas and low ozone pollution areas. This process leaves 53 stations in ten 

administrative areas of five air quality zones (North, Chu-Miao, Central, Yun-Chia-

Nan, and Kao-Ping); all five air quality zones are distributed around the western plain, 

from north to south Taiwan (see Figure 3.3). The second index (HOD) used in this 

study is to examine whether or not the high ozone episodes identified at each station 

are geographically isolated episodes. In addition, the third index (HOD3) is defined to 
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eliminate the influence from localized pollution episodes. The definition of each index 

(HOEs, HOD and HOD3) has been presented in the previous chapter (see Section 

3.3.3). 

 

4.2.2 Annual Distribution of High Ozone Episodes  

Table 4.1 statistically summarizes the annual number of HOEs, HOD and HOD3 in the 

high ozone pollution areas from 1994 to 2004. The table shows that there are 1,334 

HOEs (from 273,020 records) in 53 monitoring network stations. Although these high 

ozone episodes only occupy a small proportion in the total record, the occurrence of 

episodes has increased dramatically, by seven-fold from 1994 to 2004, with values of 

30 episodes  in 1994 and 209 episodes  in 2004 (Figure 4.1).   

 

Table 4.1: The statistical result of HOEs, HOD and HOD3 from 53 network stations 
for the period 1994-2004. The fifth row is high ozone day (HOD) occurrence 
frequency of per year. 

     Year 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

HOEs (days) 30 31 64 56 133 129 86 149 181 266 209

HOD  (days) 24 28 40 42 52 61 63 71 76 77 105

HOD3  (days) 1 1 8 4 13 18 4 14 22 20 22 

HOD/year 7% 8% 11% 12% 14% 17% 17% 19% 21% 21% 29%
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Figure 4.1: The frequency of high ozone days (HOD) occurrence, based on the 53 
station network,   from 1994-2004. 
 

It is noted that about half of high ozone episodes occurred in the period 2002 - 2004, as 

did the cases of HOD and HOD3. The result is consistent with Chang and Lee (2007) 

who indicated that the occurrence of moderately high ozone concentrations (ozone 

concentration ≤ 60 ppb, 8-hr average) showed an upward trend in recent years, 

particularly in northern Taiwan. From daily ozone concentration data analysis, there 

are three network stations, Matsu, Kinmen and Penhu,1 located in the Taiwan Strait 

( see Figure 2.4) which is a low local emission region without heavy industry, which 

also show a great number of high ozone episodes in 2002-2004. The data of Matsu, 

Kinmen and Penhu stations suggest that long-range transport of ozone or its precursors 

                                                 

1 The Matsu, Kinmen and Penhu stations were established to monitor air pollutants’ concentration as 

reference stations in 2001, 2002 and 2003, respectively. Because of their location and low local 

emissions (the economy of these areas is based on tourism without industries), the data of these stations 

are favourable to identify long-range transport of air pollutants from mainland China, though there are 

only a few years data available (EPA Taiwan, 2004). 
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from mainland China might be the reason for the sharp increase in frequency of high 

ozone episodes in 2002 – 2004, however, the source of ozone and its precursors may 

vary with seasons.      

Notably, there is a distinctive drop in the number of HOEs in the year 2000, compared 

with the eleven-year upward trend of ozone (Figure 4.2). The most probable 

explanation of this dramatic decrease of high ozone episodes in the year 2000 seems to 

be associated with variation of the large-scale circulation. Wang (2005) quantified the 

airstreams over the East Asia region and indicated that the airstreams from northern 

China increased about 20-23% in frequency during the 2000 spring. The characteristic 

of the airstreams shows a spatial distribution from close to the Gobi desert area which 

is one of the major sources of dust storms (Sun et al., 2001; Kurosaki and Mikami, 

2003; Wang et al., 2008) to the East Asian continent and low latitudes (Wang, 2005). 

These kind of airstreams follow a cold front and usually transport a significant amount 

of dust material entrained from the Gobi area and through the Asian continent 

southeastward to Taiwan with the prevailing wind, particularly in spring and winter 

(Lin, 2001; Lin et al., 2005; Liu et al., 2006; Hsu et al., 2008). The impact of dust 

storms on Taiwan is mainly in the northern area (Liu et al., 2006), which is also the 

major location of high ozone pollution episodes in spring. 

In spring 2000, a significant peak value of PM10 was observed in Taiwan compared 

with a downward trend in PM10 concentration over a nine-year period (1994-2002) 

(Wang, 2005). The anomalously high PM10 concentration was caused by severe dust 

events. About 12 dust events were observed in 2000 spring (Lin, 2001; Liu et al., 

2006). The airstreams not only enhanced PM10 concentrations during the period of dust 

storms, but also brought cold temperature and high wind speeds which blew local 
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pollutants away, as there was no obvious diurnal cycle of air pollutants during the 

period of dust storms (Lin et al., 2004, 2007; Xie et al., 2005; Liu et al., 2006). Lin et 

al., (2004) found that air pollutants and dust are usually transported in different air 

parcels associated with the transport paths and atmospheric boundary conditions.  

 
Figure 4.2: The annual trend of HOD3 (days). The solid line is associated trend line 
between 1994 and 2004 obtained by the least-square regression method, and the 
dashed lines are the trend lines with upper and lower 95% confidence interval. The 
open circle indicates high ozone days in year 2000, and the diamonds indicate high 
ozone days of other years. 

This means that ozone or its precursors are probably not transported to Taiwan 

simultaneously during severe dust storms. Although some of the stations where dust 

fall was first detected observed increasing ozone concentrations along with PM10 (Lin 

et al., 2004; Liu et al., 2006), the meteorological conditions along with airstreams are 

not favourable for the accumulation of ozone. Furthermore, the effects of dust aerosols, 

such as increased aerosol optical depth, reduction of visibility and solar radiation, and 

surface temperature cooling (Charlson et al., 1992; Husar et al., 2001; Ogunjobi et al., 

2004; Eck et al., 2005; Huang et al., 2006) also influence ozone formation processes. It 

is concluded that there are two reasons that may have resulted in low high ozone 
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episodes in spring 2000: (1) the limitation of ozone and its precursors’ sources (both 

local and regional). (2) both the meteorological features of the airstreams and the 

influence of dust aerosols suppressed photochemical activity for ozone formation.  

In spite of the exception of 2000, the annual frequency of high ozone pollution shows 

positive trends in three indices (HOEs, HOD and HOD3) during the period 1994 to 

2004. The explanation of these upward trends of high ozone pollution needs to 

consider the emission variation of ozone precursors both in local and regional areas 

and long-range transport of ozone and its precursors from vicinity areas.   

 

4.2.3 Annual Trend in Five High Ozone Pollution Zones 

Based on the abovementioned pollution area selection, there are five air quality zones 

(North, Chu-Miao, Central, Yun-Chia-Nan, and Kao-Ping zones) identified as high 

ozone pollution zones (see Figure 3.3). The annual trends for high ozone days (HOD) 

and ozone concentrations are evaluated by linear regression analyses. The values of 

trend line slope, standard errors (SEs), and coefficient of determination (R2) for HOD 

and annual average ozone concentrations are shown in Tables 4.2 and 4.3, respectively. 

The standard error is used to calculate the interval of the confidence level of slope with 

the significance level of 5%. The R2 value is used to identify the reliability of slope. 

When the value of R2 approaches one, the calculation of trend line slope has high 

reliability. In the five air quality zones, the annual number of HOD all show an 

increasing tendency. The annual increasing trends of HOD in the North and Kao-Ping 

(South) zones are obviously higher than in the other three zones (Table 4.2 and Figure 

4.3). For the eleven-year period, the annual number of HOD has increased by about 
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12% relative to 1994 in the North and Kao-Ping zones; for the other three zones, the 

annual number of HOD has only increased about 4% (Figure 4.3). In regard to analyses 

of the annual average ozone concentrations for the five air quality zones, the results 

indicate that the annual ozone concentrations gradually increase about 2% year by year 

(Table 4.3 and Figure 4.4). The magnitude of the increase of the annual average 

concentration is from about 0.70 to 0.82 ppb year-1. The results of trend analyses 

suggest that there may be more moderate ozone pollution (ozone concentration ≤ 60 

ppb, 8-hr average) in the North and Kao-Ping zones than extreme high ozone pollution, 

as there is a slight increase in the annual average ozone concentrations with an 

apparent larger increase in the annual number of HOD over the period 1994-2004.  

 
 
Table 4.2: The trend line slope, standard errors (SEs), and coefficient of determination 
(R2) estimated using linear regression for high ozone days (HOD) from 1994 to 2004. 

  North Chu-Miao Central Y-C-N Kao-Ping 
Slope 4.95  0.84  1.32  1.21  3.66  

SE 0.91  0.66  0.72  0.56  0.88  
R2 0.86  0.34  0.60  0.66  0.63  

 
 
 
Table 4.3: The trend line slope, standard errors (SEs), and coefficient of determination 
(R2) estimated using linear regression for annual average ozone concentrations. 

  North Chu-Miao Central Y-C-N Kao-Ping 
Slope 0.77  0.80  0.70  0.82  0.74  

SE 0.05  0.09  0.07  0.09  0.06  
R2 0.93  0.70  0.70  0.84  0.85  
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Figure 4.3: The annual trends of HOD in five high ozone pollution zones from 1994-
2004. 
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Figure 4.4: The annual average of ozone concentrations in five zones from 1994-2004. 

 
 79



                                                                         Chapter 4: Observed Annual and Seasonal Trends of Ozone 

 80

A dramatic difference in the number of HOD between the North zone and the Kao-

Ping zone can be seen for year 2000. There are about 53 HOD in the North zone, 

compared with nine days in the Kao-Ping zone in 2000. The reduction in HOD in the 

Kao-Ping zone is caused by the decrease of total high ozone episodes (HOEs) in 2000 

(Table 4.1), as the reduction in the other three zones presents less influence. A further 

investigation of each high ozone episode shows that most HOEs occurred at one 

station (Yangming station) in the North zone. Because the height of Yangming station 

(25.10'57"°N and 121.31'46"°E) is more than above 850m of the sea level, Yangming 

station is overlain by stratus clouds and moist air from the northeastlies most time of 

year. The topography and climatic features of Yangming station are favourable for 

particle deposition during dust storms as they arrive at Taiwan (Liu et al., 2006). Thus, 

a sudden escalation of PM10 at this station was not paralleled by an increase in ozone 

concentrations during spring of 2000. In addition to the particle deposition, the effect 

of NOx destruction on ozone formation processes (see Section 2.2.1) at Yangming 

station should be considered, as Yangming station is a background station in the 

monitoring network. 
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4.3 Seasonal Distribution of High Ozone Days (HOD) 

Vukovich (1994) pointed out that meteorological change is one of the factors that 

causes year-to-year variation of tropospheric ozone. The changes in tropospheric ozone 

may, for example, be associated with variations in synoptic patterns or an increase in 

the stagnation of circulation (Davies et al., 1992; Comrie, 1994; Liu et al., 1994; 

Lelieveld and Dentener, 2000). Liu et al. (1994) indicated there was no significant 

linear relationship between meteorological variables and ozone pollution in Taiwan, 

however, the effect of synoptic patterns on the variation of ozone pollution was well-

founded. Cheng (2001) also found that ozone concentrations over central Taiwan were 

strongly affected by synoptic patterns and with an evident seasonal cycle. 

Considering the conditions of ozone formation and weather conditions in Taiwan, a 

seasonal pattern in the occurrence of high ozone pollution episodes is to be expected. 

In this study, the conventional meteorological classification of four seasons in a year is 

adopted, namely, spring consists of March, April, and May (MAM); summer consists 

of June, July, and August (JJA); autumn consists of September, October, and 

November (SON); and winter consists of December, January, and February (DJF) (see 

Section 2.3.1). Figures 4.5 and 4.6 present the seasonal variation of HOD from 1994 to 

2004; most HODs occur in spring and autumn (transition seasons). The seasonal 

distribution of HOD corresponds with results from studies of the seasonal behaviour of 

ozone concentrations in East Asia (Chan et al., 1998; Tanimoto et al., 2002; Chen et 

al., 2004; Oltmans et al., 2006; Yamaji et al., 2006; Yu and Chang, 2006).  

Figure 4.5 depicts the seasonal distribution of HOD in the five air quality zones. Two 

peaks of high ozone days show in the transition seasons, spring and autumn, in Taiwan. 
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In the five air quality zones, the variation of seasonal distribution is clearly to be 

observed in the North zone and the Kao-Ping zone. For the North zone, the first peak 

period with a high frequency of high ozone days appears in spring (172 days), and the 

second peak appears in autumn (121 days), while the lowest frequency occurs in 

summer (38 days). In contrast, the Kao-Ping zone displays opposite distribution, the 

first peak period shows in autumn (154 days), the second peak shows in spring (109 

days), and a similar pattern of a summer minimum (19 days). The data indicate that the 

effect of ozone pollution on air quality in the North zone in spring is greater than in 

other seasons and in the Kao-Ping zone in autumn. The discrepancy of seasonal 

distribution of HOD in both the North and Kao-Ping zones is consistent with the 

results from studies by Chen, et al., (2004) and Yu and Chang (2006).  

In addition to the seasonal variation of high ozone days, Figure 4.6 shows that the 

occurrence of high ozone days exhibits elevated trends in all seasons. Further 

investigation of monthly trend during the period 1994 to 2004, a regular increase of 

high ozone days (HOD) is observed in March, and December (Figures 4.7a and b). 

Otherwise, February, June and October show marked increases of HOD (Figures 4.7a, 

c and d). Moreover, high amplitude fluctuations of HOD are observed in high ozone 

pollution months, for example, April, May, September and October (Figures 4.7b and 

d). This phenomenon suggests that the short-term variation of synoptic weather 

patterns, such as monsoon circulation, may result in influence on ozone pollution in 

Taiwan.  
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Figure 4.5: Seasonal distribution of HOD in five high ozone pollution zones.
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Figure 4.6: HOD climatology for winter (thin green line), spring (thick red line), 
summer (thin red line) and autumn (thick green line) for the period 1994-2004.   
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Figure 4.7: Monthly trend of HOD for four seasons (a) winter, (b) spring, (c) summer 
and (d) autumn for the period 1994-2004.
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4.3.1 The Possible Effect of ENSO on Tropospheric Ozone   

 Seasonal Distribution. 

It is important to note that the seasonal distributions show high amplitude fluctuations in 

1998 and 1999. An evident decrease (increase) of HOD appeared in 1998 spring 

(autumn). By contrast, a sharp increase (decrease) of HOD shows in 1999 spring 

(autumn). The dramatic variation of seasonal distributions of HOD seems to be related 

to short-term variation of climate that might result from the effect of El Niño Southern 

Oscillation (ENSO). 

McPhaden (1999) indicated that the year 1997-1998 was the strongest El Niño 

phenomenon on record and followed by an extended La Niña period that began in mid-

1998 to the winter of 2000 and slowly decayed from the spring of 2001. In order to 

understand the correlation between ENSO and high ozone days, the data of ENSO 

indices anomaly sea surface temperatures (anomaly SST) were collected from the 

National Climate Data Centre (NCDC) website. Figure 4.8 shows monthly HODs 

distribution and SST anomaly. The diagram presents three phases (warm, normal and 

cold phases). The warm phase is defined as anomaly SST ≥ 0°C and the cold phase is 

anomaly SST ≤ -0°C. There is only one period defined as normal phase 

(06/2001~01/2002), because of small fluctuation of SST. Based on these definitions, the 

study period has been separated into seven sub-periods to calculate the correlation 

between anomaly SST and high ozone days. The result of this analysis is that it is 

difficult to identify any correlation between ENSO and HOD. Nevertheless, indirect 

influences of ENSO might be a factor affecting seasonal distribution of ozone pollution 

in Taiwan. The variability of global climate might be the factor of the anomalous 

seasonal distribution of HOD observed in 1998 and 1999.  
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Chandra et al. (1998) and Ziemke and Chandra (1999) found that the interannual 

variations of Total column ozone (TCO) were associated with the shift in tropical 

convective activities caused by SST changes. During the El Niño period, the enhanced 

convection results in an increase in rainfall and water vapour which decreases TCO over 

the eastern Pacific, and a significant increase in TCO over the western Pacific is 

associated with suppressed convection and downward motion (Chandra et al., 1998; 

Ziemke and Chandra, 1999; Sudo and Takahashi; 2001; Wang et al., 2000; Chandra et 

al., 2007). 

In the western Pacific region, the interaction between suppressed convection and 

downward motion is the factor causing ozone in the lower-middle troposphere to 

increase. Otherwise, one more factor caused the increase of TCO over the western 

Pacific was forest fires in the Indonesia region during the 1997-1998 El Niño period, in 

particular in autumn and winter for 1997. There is, however, no apparent increase of 

tropospheric ozone in the later year of 1997 observed in Taiwan (Figure 4.7). According 

to Tie et al, (2007), there was less effect of forest fire in the Indonesia region on 

tropospheric ozone in East Asia compared with the contribution from industrial 

emission during the 1997 El Niño period. Moreover, the interaction among anomalous 

Pacific circulations results in different impact of synoptic weather patterns (i.e. rainy 

seasons) over East Asia on tropospheric ozone during the ENSO period (Wang et al., 

2000). Therefore, the variations of tropospheric ozone in Taiwan may be very different 

from the equatorial region of western Pacific.  



                                                                     Chapter 4: Observed Annual and Seasonal Trends of Ozone 

 

0

10

20

30

40

50

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
Year

-2

-1

0

1

2

3
H

O
D

/d
ay

s

SS
T 

A
no

m
al

y 
/°

C

 
Figure 4.8: Monthly HOD distribution and SST anomaly over Niño 3.4 region (120W-
170W, 5N-5S) for the period of 1994 to 2004. The red line represents warm phase of 
ENSO, the blue line represents cold phase of ENSO and the green line represents a 
normal phase. The triangle indicates a strong El Niño period and open triangles indicate 
a strong La Niña. The star symbols show the period with positive correlation between 
HOD and ENSO. The open circles indicate high ozone days in spring over study period. 

 
 

Table 4.4: Significant Pearson correlation coefficients (at the 95% confidence interval 
level) identified between ENSO and high ozone days for three episodes.  
Warm phases Period 01/1994~06/1995 04/1997~05/1998 02/2002~05/2003 06/2003~12/2004

  r 0.04 -0.43 -0.36 -0.004 

Normal phase Period 06/2001~01/2002    

  r -0.41    

Cold phases Period 07/1995~03/1997 06/1998~05/2001   

  r 0.22 0.29   
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The interplay between the Asian winter monsoon and ENSO plays an influential role in 

East Asian climate. The linkage between the climate of East Asia and ENSO has been 

found, for example, a weaker East Asian winter monsoon along the East Asian coast 

occurs during the mature phase of ENSO (Tomita and Yasunari, 1996; Zhang et al., 

1996; Wang et al., 2000; Lu, 2006) and the relationship between the rainfall patterns 

and ENSO (Huang et al., 2002; Chen et al., 2003; Jiang et al., 2003). Nevertheless, the 

effects of La Niña on climate show a reverse situation, especially in equatorial region 

(Glantz, 2002).  

For the case of 1997 winter, in addition to the reduced effect of Indonesia forest fire on 

tropospheric ozone, the air-sea interaction in the western Pacific is a possible factor. 

During the 1997 El Niño period (October to December), the SST anomaly over the East 

Asian coast was warmer than normal winter (Kuo and Ho, 2004). In winter, the cold 

northeasterly winter monsoon moves through a warm ocean surface and creates vertical 

mixing in the boundary layer which is favourable for pollution dispersion to the upper-

troposphere (Wang et al., 2000), though the strength of the winter monsoon is weak. 

Therefore, there was less tropospheric ozone pollution observed in 1997 winter, as well 

as in autumn.  

Chen et al. (2003) indicated that 1998 is the second wettest spring in Taiwan over the 

study period. The apparent decrease of HOD in 1998 spring (Figure 4.7 and 4.8 (B)) 

may be in response to heavy rainfall resulting from the El Niño effect on the East Asian 

climate, as the wet weather is favourable to dilute the concentrations of air pollutants. 

The correlation between spring rainfall and the Niño 3 SST has been proved and shows 

a positive correlation in Taiwan (Chen et al., 2003; Jiang et al., 2003). Some of the 

studies indicated that the variations and interactions of atmospheric convection over the 
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western Pacific, East Asia and Southeast Asia region are the major effects on extreme 

summer rainfall in East Asia during ENSO period (Zhang et al., 1996; Tanaka, 1997; 

Wang et al., 2000; Chen et al., 2003; Jiang et al., 2003; Lu, 2004; Yim et al., 2008). In 

Taiwan, the synoptic circulation feature shows a seasonal cycle: it is mainly 

southwesterly in summer and northeasterly in the other seasons, and the strength varies 

with seasons (Kuo and Ho, 2004). There a strong southwesterly produced by the 

interaction between the circulations in the western North Pacific and Southeast Asia 

over Taiwan and northern South China Sea with heavy rain observed during El Niño 

(1998 spring) period (Wang et al., 2000; Huang et al., 2002; Chen et al., 2003; Jiang et 

al., 2003). Thus, the interaction of convection resulting from ENSO which brings heavy 

rainfall for Taiwan is the factor of dramatic decreasing HODs in spring for 1998.   

In contrast to the influence of El Niño phenomenon, La Niña phenomenon presents a 

different seasonal influence on the East Asian climate. During the mature phase of La 

Niña, Taiwan is affected by a strong western North Pacific monsoon and dominated by 

a cyclone in the lower troposphere; the interaction between these two synoptic 

circulations caused an enhanced convection which increases the rainfall during the 

summer and autumn (Tanaka, 1997; Wang et al., 2000; Chou et al., 2003). Therefore, 

low high ozone days in autumns were observed in 1996 and 1999. There is, however, in 

the decaying of El Niño in the autumn of 1998 and the onset of La Niña in the spring of 

1999, the interaction between the western North Pacific monsoon and Taiwan shows an 

opposition situation, a weak western North Pacific monsoon and anticyclone over 

Taiwan establish a suppressed convection, which is unfavourable to ozone pollution 

dispersion in Taiwan. In addition, the strength shift of northeasterly winter monsoon 

and the SST in the Taiwan Strait may result in the apparent number of high ozone days 

in 1998 autumn.    
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Consequently, the variability of climate resulting from the influences of ENSO, such as 

precipitation distribution, strong convection activity and the strength of monsoon 

circulations, might be the factors for the anomalous seasonal distribution of HOD in 

1998 and 1999. Nevertheless, there is a need to further investigate the relationship 

between ENSO and ozone pollution through other ENSO index (i.e. Southern 

Oscillation Index) and climate factors (i.e. rainfall anomaly).  
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4.4 Conclusions 

Based on an eleven-year ozone concentration data series, the annual trends of high 

ozone days (HOD), annual average ozone concentrations, seasonal cycle and 

geographical differences of ozone pollution have been obtained; however, the effect of 

the short record of daily ozone concentration data on the reliability and robustness of 

ozone pollution trend analyses should be noted. 

The annual trends of HOD and annual average ozone concentrations in five air quality 

zones show obviously increasing trends, particularly for the North and Kao-Ping zones, 

for the period from 1994 to 2004. The seasonal cycle shows maxima in spring and 

autumn, in addition, a minimum season is observed in summer. In the North zone, the 

first peak season appears in spring, however, the maximum in the Kao-Ping zone is 

autumn. The seasonal cycle and geographical difference of ozone pollution may be 

affected by the onset and descent of monsoon circulation; however, the influences may 

vary with seasons.  

Given the ozone pollution in Taiwan shows a clear seasonal cycle, an identification of 

the relationship between synoptic weather patterns and ozone pollution is necessary. 

The relevant studies which have been done in Taiwan are usually based on the results of 

subjective weather type classification. The identification of weather patterns related to 

high ozone episodes is subject to researchers’ experience. Therefore, development of an 

objective classification scheme is necessary to improve the accuracy of synoptic 

weather patterns classification and the identification of its relationship with ozone 

pollution.  
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Based on the results obtained in this chapter, the high ozone days of HOD3, an objective 

classification scheme is used to investigate the relationship between synoptic weather 

patterns and ozone pollution in chapter five. Also, a spatial composite analysis of 

geopotential height at 850hpa is used to identify the features of atmospheric circulation 

of high ozone pollution.   
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Chapter 5: The Objective Scheme of Circulation Types

 and Circulation – Ozone Links                     

5.1 Introduction 

In this chapter, an identification of the relationship between ozone days and circulation 

types is performed, both at the local and regional scales. The main emphasis is on the 

circulation types characteristics of days with high ozone concentrations and on 

differences between the seasons. The analyses comprise frequency analyses of circulation 

types both over the long-term period and on ozone days. In addition, a complementary 

spatial compositing analysis of the atmospheric circulation at sea level pressure and 

850hpa during ozone episodes is discussed.  

 

5.2 Frequency and Climatological Analysis  

The daily circulation is classified according to categories and thresholds of a set of 

indices associated to the vorticity and air flow, which are calculated from daily grid point 

sea level pressure (SLP) data (Jenkinson and Collison, 1977) (see Section 3.5). In order to 

investigate the influence of local and regional circulations on ozone pollution, two 

resolutions are used in this study for Taiwan daily circulation classification. One is for a 

local area window covering the area 17.5° N to 32.5° N and 110° E to 130° E, and the 

other one is for a regional area covering the area 0° N to 50° N and 80° E to 160° E, both 

centred on 23.75° N and the resolutions, for local and regional area, are 2.5° latitude by 5° 

longitude and 10° latitude by 20° longitude, respectively.  
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The relative frequencies (number of days with respect to the total) of each circulation type 

for every month of the year over two periods (1958-2004 and 1994-2004) for the two 

scales are shown in Figure 5.1 and Tables 5.1 and 5.2. The classification results covering 

the period from 1958 to 2004 are used to analyse the long-term trends in the annual, 

seasonal and monthly frequencies of circulation types; in addition, the period of 

1994-2004 is used to analyse the links between ozone pollution days (HOD3) (see Section 

3.3.3) and circulation types.  

The frequencies at the local scale show the most frequent circulation pattern throughout 

the year is the E type, followed by the northeasterly type (NE), which shows similar 

seasonal distribution with a winter maximum and a summer minimum (Figure 5.1a and 

Table 5.1). In the annual frequency, the U type also shows a high frequency. In the case of 

spring and summer, the U and A types are the most frequent weather types, as the 

synoptic circulation is mainly dominated by the Pacific anticyclone in this season (Tu et 

al., 2003). The other two most common circulation types observed in summer are the 

southwesterly type (SW) and the cyclonic type (C), whereas the frequencies of these 

circulation types at the local scale are lower than the regional scale. The results of annual 

frequency analysis suggest that the main circulation types at the local scale are the E, NE, 

U and A types. In contrast to the local scale, the circulation types at the regional scale 

show large temporal variability (Figures 5.1c and d). The group of cyclonic and southerly 

types (including C, S and SW types) have a stronger seasonal cycle than the local scale, 

though the same peak season is summer (Table 5.1). Moreover, the anticyclonic type (A) 

shows lower frequency in autumn and maximum frequency in spring. The E and NE 

types are also the most frequent circulation types in the annual frequency, as the same as 

the cases at the local scale.  
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In terms of both local and regional scales, the fourteen circulation types display 

significant seasonal characteristics. The main circulation patterns of both scales show a 

similarity throughout the months, although the frequencies of circulation patterns can 

differ. The easterly type (E) is the most frequent circulation type on both scales; a hybrid 

type anticyclonic northeasterly (ANE) is the least frequent circulation type at the local 

scale; and the cyclonic northeasterly (CNE) type is the least frequent type at the regional 

scale (Figure 5.1a and c). Despite the key influence of the E and NE types for most 

seasons, the comparison between the local scale and regional scale indicates that the local 

scale has high frequencies of unclassified type (U) and anticyclonic type (A) in summer 

(Figure 5.1a and b). With a grid size of 17.5°N - 32.5°N x 110°E - 130°E being classified 

as local, this result is expected, because: (1) The climate in Taiwan is divided into 

subtropical and tropical climate zones, with long-period of low wind speed and warm 

weather characteristics, (2) the dominant synoptic weather type in Taiwan is usually 

represented by the Pacific anticyclone in summer. However, the regional scale shows that 

the cyclonic type (C) and the southerly group (the S, SE and SW types) is appearing to 

have significant influence in summer (Figure 5.1c and d). The dramatic difference of 

circulation types between the two scales suggests that the synoptic circulation in Taiwan 

is influenced by the interaction of a number of circulations, such as the Pacific 

anticyclone, the C type and southerly group in summer. Further discussions on the 

difference of dominant circulation types between the local scale and regional scale follow 

in Section 5.2.2. 
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Figure 5.1: Mean monthly percentage frequency (% days) of the14 circulation types for each moth of two periods 1958-2004 and 1994-2004 (a) and (b) 
represent the local scale, and (c) and (d) represent the regional scale.
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Table 5.1: Mean annual and seasonal circulation type frequencies (% days) for the periods 1958-2004 at the local and regional scales. 

    Local Scale        Regional Scale   
CT Annual Winter Spring Summer Autumn  CT Annual Winter Spring Summer Autumn
U 11.3 2.8 17.2 18.3 6.6  U 4.1 0.4 5.6 7.4 3.0 
A 8.7 2.5 11.8 17.1 3.1  A 7.4 5.5 17.6 3.7 2.6 
ANE 0.5 0.3 0.4 0.5 0.7  ANE 3.6 9.5 2.5 0 2.6 
AE 4.0 4.4 5.4 1.9 4.4  AE 7.5 15 7.3 0.3 7.5 
ASE 1.7 1.0 3.0 1.9 0.7  ASE 2.2 0.9 5.8 0.9 1.0 
ASW 1.7 0.1 2.4 4.2 0.1  ASW 1.2 0 0.7 3.8 0.1 
NE 11.8 19.3 5.6 2.5 20.1  NE 11.1 22 3.8 0.2 18.9 
E 40.2 65.6 34 9.2 52.8  E 25.4 39.5 16.9 1.9 43.7 
SE 2.9 0.8 3.2 5.6 1.8  SE 7.0 2.8 13.1 7.6 4.3 
S 1.5 0 1 3.9 1.1  S 7.0 0.3 8.4 18.2 1.0 
SW 2.8 0.1 2.3 8.4 0.4  SW 4.8 0 2.3 16.5 0.3 
C 4.1 0.9 4.7 7.7 3.1  C 8.2 0.9 5.5 20.6 5.7 
CNE 1.1 0.8 1.2 1.0 1.4  CNE 1.1 0.4 0.3 0.2 3.6 
CE 1.97 1 2.8 1.9 1.1  CE 2.2 2.1 1.7 2.0 3.1 
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Table 5.2: Mean annual and seasonal circulation type frequencies (% days) for the periods 1994-2004 at the local and regional scales. 
 

   Local Scale        Regional Scale   
CT Annual Winter Spring Summer Autumn  CT Annual Winter Spring Summer Autumn
U 10.6  2.4  17.1 18.2  4.5   U 5.4  0.5  8.2 9.4  3.4  
A 8.7  2.3  10.8 17.4  4.3   A 6.1  4.3  15.9 2.4  1.9  
ANE 0.6  0.1  0.5 0.9  1.1   ANE 3.3  9.1  2.8 0.0  1.5  
AE 4.1  4.7  5.4 1.8  4.6   AE 7.7  15.9 8.9 0.5  5.6  
ASE 2.2  1.1  3.7 3.0  1.0   ASE 1.5  0.7  4.3 0.4  0.5  
ASW 1.4  0.0  1.9 3.9  0.0   ASW 0.5  0.0  0.2 1.8  0.0  
NE 12.1  18.8 6.6 3.3  21.0  NE 12.0 22.6 4.7 0.2  20.5 
E 40.4  65.9 33.9 10.7  52.3  E 27.3 41.5 18.3 3.5  46.3 
SE 3.3  1.1  3.1 7.2  1.6   SE 7.0  2.2  12.9 9.5  3.1  
S 1.4 0.1  0.4 3.4  1.6   S 6.3  0.2  6.4 18.1  0.3  
SW 2.1  0.1  1.4 6.6  0.1   SW 3.2  0.2  0.9 11.4  0.3  
C 4.2 1.4  5.9 6.2  3.1   C 9.3  0.7  6.6 22.5  7.3  
CNE 1.1  0.8  1.4 0.6  1.6   CNE 1.3  0.3  0.6 0.5  4.0  
CE 1.8  1.0  3.3 2.1  1.0   CE 2.4  1.6  2.3 2.7  3.1  
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5.2.1 Long-Term Trend Analysis in Circulation Type 

The long-term trends between 1958 and 2004 for the percentage frequencies of all fourteen 

weather types were examined using least-squares linear regression. The directions of the 

trends for the two scales are shown in Tables 5.3 and 5.4.  

For the local scale, four types show significant (at the 5% level) trends in the annual frequency. 

The AE and CNE types show significant increasing trends and the trends for the S and SW 

types are significant decreasing trends for the study period (Table 5.3 and Figure 5.2). In 

addition, the long-term trend of the monthly frequencies shows a significant increase of the A 

type in June and July and the NE type shows a significant increasing trend in March and 

August. The long-term decreasing trends of the S and SW types in the monthly frequencies are 

evident in both spring and summer (Table 5.3). For the regional scale, in most cases, the trends 

observed were significant in the annual frequency, except the ANE, AE, SE and CE types 

(Table 5.4). In comparing the monthly long-term trends between the local and regional scales, 

the S and SW types at the regional scale show the same significant decreasing trends as the 

local scale (Tables 5.3 and 5.4). The NE type also shows a similar long-term trend with the 

local scale, a significant increasing trend observed in spring and autumn. Moreover, a 

significant positive change of the U type in the monthly frequency is observed in spring.       

The trends in the weather types suggest a link with the summer and winter monsoon, with a 

weaker summer monsoon associated with reduced S and SW types and a stronger winter 

monsoon with more frequent NE type. Significant decreasing trends of the S and SW types for 

both scales suggest a reduction of rainfall, especially in spring and summer, because these two 

types are strongly associated with the seasonal precipitation distribution in Taiwan (Yeh and 

Chen, 1998; Chen et al., 1999; Chen and Wang, 2000; Yen and Chen, 2000; Chen and Chen, 

2003).  
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CT Annual JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
U - - - - + - - + + - - - - 
A + + + - - + +* +* - + + + - 
ANE + - - + + + + + - - + - + 
AE +* + + + - + + + - + + - + 
ASE + - - - + + - + + + + - - 
ASW -  - - -* - + -* - -    

NE + + - +* - + + + +* + + - - 
E + + + + + + +* + - + - + + 
SE - - + - - - - +* - - - - - 
S -*  - - - - - -* - + -*   

SW -*  - -* -* -* -* -* -* -* -   

C - -* + + + + - - - - - - + 
CNE +* + + + + +* - - - + + + - 
CE + + -* - + + + + + - - - + 
Positive and Negative trends indicated by plus and minus signs respectively. 
* indicates trend significant at the 5% level 

Table 5.3: The direction of long-term trends of fourteen circulation types for the period 1958-2004 at the local scale. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



Chapter 5: The objective scheme of circulation type and circulation-ozone links 

 101

 
Table 5.4: The direction of long-term trends of fourteen circulation types for the period 1958-2004 at the regional scale. 

 CT Annual JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
U +* -* + +* +* +* + +* + + - - + 
A -* - - - - -* + + - -* - - -* 
ANE + - + + + +    - - + + 
AE - - + + + + + + - - -* - - 
ASE -* + - - - -* - + + - - - - 
ASW -*   - - -* - -* -* -*    

NE +* + + + +* +* +  + + +* + + 
E +* + - +* + +* + + +* +* + + + 
SE - - - - - + + + + - -* -* -* 
S -* - - - -* -* -* + -* -* +   

SW -*  + - - -* - -* -* -*    

C +* - - - +* + +* + +* + + + - 
CNE +* + + + + +* + + +* + + + -* 
CE + - - + + +* + + +* + - + -* 
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Figure 5.2: Annual frequencies of NE, S and SW circulation types for the period 1958-2004,    
(a) local scale, and (b) regional scale. Dashed lines are least-squares linear trends. 
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5.2.2 Seasonal Characteristics of Sea Level Pressure Circulation Types 
 Composites 

To clarify the characteristics of circulation types for each season and to further verify that 

the classified results of circulation types by the objective scheme are meaningful in a 

lower latitude region; analyses of SLP composites of circulation types for four seasons 

are presented and discussed in this section. The mean seasonal SLP map is shown in 

Figure 5.3. The representative monthly circulation type composite maps at both local and 

regional scales for each season calculated from SLP data for the period 1994-2004 are 

shown in Figures 5.4 to 5.7, for winter, spring, summer and autumn, respectively. In 

addition, selected individual days representing each circulation type at both spatial scales 

are shown in Figures 5.8 and 5.9. 

(a) Winter (b) Spring 

(c) Summer (d) Autumn 

Figure 5.3: Mean seasonal SLP (hPa) for the regional window for the period 1958-2004. 
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In winter, the representative types, for the local and regional scale, are the E and NE types 

(Figure 5.4a), and the E, NE, AE and ANE types (Figure 5.4b), respectively. The 

characteristics of the E and NE types at the local scale are very similar to the patterns at 

the regional scale (Figures 5.4b-1 and b-2), except that composite of circulation types at 

the regional scale represent better distribution of synoptic weather systems around 

Taiwan. All these representative types, for the two spatial scales, are closely related to the 

East Asian continental high-pressure system. When the East Asian continental 

high-pressure system (the Siberian anticyclone) moves from northern China 

southeastward to the West Pacific, its peripheral circulation causes strong easterly and 

northeasterly flows around Taiwan (Figures 5.4a and  5.4b). These air flows are 

classified as the E and NE type. A similar flow pattern can be observed for the ANE type 

(Figure 5.4b-4). However, the high pressure centre is located closer to Taiwan and there 

is a more extensive northeasterly flow compared to the NE type. The differences among 

these winter representative types are associated with the relative strength of the 

high-pressure system and the cyclonic flow from the equator. On the selected days 

representing the E type for the local scale, and the NE, AE and ANE types for regional 

scale show clear examples of composite differences of these types (Figures 5.8 and 5.9). 

In the E and NE cases, the trough from the equatorial cyclone suppresses the southward 

influence of the anticyclone and generates a more intensive pressure gradient with a 

greater easterly or northerly flow over Taiwan (for example, the E type in Figure 5.8 and 

the NE type in Figure 5.9). On the other hand, the pressure centres of the AE and ANE 

types are close to the east coast of China (Figures 5.4b-3 and b-4) with a weak influence 

from the equatorial cyclone, which places Taiwan under a stronger anticyclonic effect 

than for the pure directional types (for example, the AE and ANE types in Figure 5.9). 
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Local   (a-1) Winter E   (a-2) Winter NE 

Region   (b-1) Winter E (b-2) Winter NE 

(b-3) Winter AE (b-4) Winter ANE 

 
Figure 5.4: Seasonal mean sea level pressure (hPa) map for the representative circulation 
types in winter (a) local scale; and (b) regional scale. 
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The more frequent circulation types in spring are the A, E and U types and the A, E and 

SE types for the local and regional scales, respectively (Figures 5.5a and b). The E flow 

type, at both the local and regional scales, shows the air flows originating from the East 

Asian continent (Figures 5.5a-1 and b-1) and a weak anticyclone is observed over the east 

coast of China and Japan, whereas Taiwan is subject to easterly flow related to the 

equatorial low pressure (Figure 5.5b-1). In the case of the A-type, the local and regional 

scales represent Taiwan is affected by two different anticyclonic systems. For the local 

scale, the composite map shows that Taiwan is under the influence of an anticyclone from 

the Pacific Ocean (Figure 5.5a-2). There are, however, two high pressure centres 

associated with the A type at the regional scale, one appears over the East China Sea and 

the other one is situated over the West Pacific Ocean. Peripheral circulation of the 

anticyclone over the East China Sea blows clockwise to bring an easterly or 

northeasterly wind around Taiwan (Figure 5.5b-2). Additionally, the selected composite 

of the A type at the regional scale shows that Taiwan is also under the influence of an 

evolving Pacific anticyclone and low pressure from northern China (Figure 5.9). The 

composite features of the A type suggest that the Siberian anticyclone is declining in 

this season. With the SE type, the increased strength of anticyclone over the West Pacific 

Ocean brings the prevailing wind with a southeast direction to Taiwan (Figure 5.5b-3). 

The U type at the local scale shows no obvious air flow over Taiwan (Figure 5.5a-3).  

In spring, the circulation types at both spatial scales are associated with a declining 

Siberian anticyclone and an evolving Pacific anticyclone with a less intensive pressure 

gradient, compared with that in winter, around Taiwan. Depending on the location of the 

high pressure centre and the interaction with the Pacific anticyclone, the prevailing wind 

may shift from the easterly to the southeasterly. Otherwise, Taiwan is apparently affected 
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by the high pressure subsidence flow in this season, as high pressure centres move from 

the East Asian continent toward the East China Sea (Figures 5.5a-1, b-1 and b-2). 

   
Local  (a-1) Spring E Region   (b-1) Spring E 

(a-2) Spring A (b-2) Spring A 

(a-3) Spring U (b-3) Spring SE 

 
Figure 5.5: Seasonal mean sea level pressure (hPa) map for the representative circulation 
types in spring (a) local scale; and (b) regional scale. 
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In summer, the local and regional scales both show that the SW, C and U types are the 

dominant circulation types (Figures 5.6a and b). In addition, the other representative 

circulation types are the A and E types, and the S type, for the local and regional scales, 

respectively. The anticyclonic type (Figure 5.6a-1), at the local scale, is very similar to 

the A type (Figure 5.5a-2) in spring, and characterised by a strong Pacific high. With the 

S and SW types, a low pressure appears over central and southern China (Figures 5.6b-1 

and b-2). The composite characteristics of the S and SW types of selected days (Figures 

5.8 and 5.9) show a good agreement with the mean seasonal composite maps at both 

local and regional scales (Figure 5.6). In this season, Taiwan is under the influence of the 

Asian summer monsoon flow and the Pacific anticyclone. The Pacific anticyclone 

moves westward against the low pressure systems over China and generates strong 

southwesterly flow which is the typical air flow in this season (Figures 5.6a-2, b-1 b-2, 

5.8 and 5.9). The characteristic of the C type is a low pressure centre located over Taiwan 

(Figure 5.6a-3 and b-3). In the case of the U type, at both spatial scales; weak peripheral 

circulation occurs around Taiwan, because of the climate characteristics over this 

subtropical area with no significant weather system affecting the country (Figure 5.6a-4 

and b-4). A similar pattern is often observed in late spring as well (Figure 5.5a-3).  

Another specific circulation type in summer evident at the local scale is the E type (Figure 

5.6a-5). The characteristic of the E type in this season represents a different circulation 

pattern, compared to other seasons (winter and spring); the air flow direction is from the 

South China Sea moving northeastward to Taiwan.   

In addition to the U type, the representative circulation types (the A, S, SW, C and E types) 

in summer demonstrate that the air flows over or around Taiwan mainly originate from 

maritime regions, such as the Pacific Ocean and the South China Sea. The characteristic 
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features of these circulation types suggest that Taiwan is generally influenced by strong 

convective activities in summer.  

Local  (a-1) Summer A Region  (b-1) Summer S 

(a-2) Summer SW (b-2) Summer SW 

(a-3) Summer C (b-3) Summer C 

 
Figure 5.6: Seasonal mean sea level pressure (hPa) map for the representative circulation 
types in summer (a) local scale; and (b) regional scale. 
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Figure 5.6  
(a-4) Summer U (b-4) Summer U 

(a-5) Summer E  
 

 

In autumn, the E and NE types are the representative types for both spatial scales. The E 

and NE types (Figures 5.7a, b-1 and b-2) show similar patterns to the cases in winter 

(Figures 5.4a, b-1 and b-2), but with smaller pressure gradients. Otherwise, the effect of 

low pressure from the equator or the South China Sea is more evident in autumn, 

compared with the E and NE types in winter. The C type, at the regional scale, presents a 

low pressure centre situated on the east side of Taiwan. The circulation flow embedded 

within the East Asian winter monsoon flow is so as to give northeast flow over Taiwan.  
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Local (a-1) Autumn E    Region  (b-1) Autumn E 

(a-2) Autumn NE (a-2) Autumn NE 

 (b-3) Autumn C 

 

 
Figure 5.7: Seasonal mean sea level pressure (hPa) map for the representative circulation 
types in autumn (a) local scale; and (b) regional scale. 
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On the basis of the characteristics of the SLP composite maps, the representative 

circulation types are of the expected type for each season with respect to air flow over 

Taiwan. In terms of the differences between the local and regional scales, the 

classifications of circulation types at the local scale in each season are more related to the 

air flow affecting Taiwan on the day; on the other hand, the patterns at the regional scale 

represent better distribution of synoptic weather systems around Taiwan. The results 

classified with this objective scheme show a good agreement with the synoptic weather 

type classification by Wu and Chen (1993). They categorised the climate of Taiwan into 

14 synoptic weather patterns. They pointed out that four synoptic weather patterns mainly 

dominate the climate in Taiwan: the northeasterly winter monsoon in winter, the Pacific 

high pressure system in summer, southerly flows from southern China and cyclones 

related to the typhoon seasons in summer and autumn. This agrees with the results of the 

objective scheme presented here. In addition, the advantages of the objective scheme, 

apart from its objectivity, are ease of calculation and use in statistical analyses. The 

results of the objective scheme are, therefore, valid to be used to investigate the 

relationship between ozone pollution and circulation types. 
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07/08/2001 U       04/07/1998 A 

     20/09/1996 ANE      09/03/2002 AE 

     07/04/1999 ASE      12/07/2004 ASW 

       25/10/1994 NE       13/12/1999 E 

Figure 5.8: Seasonal mean sea level pressure (hPa) map of selected days for fourteen 
circulation types at the local scale. 
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Figure 5.8: 
      04/08/1999 SE      02/08/1997 S 

     17/06/1999 SW      10/06/1995 C 

     02/09/2001 CNE      25/05/1998 CE 
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  28/08/1996 U     28/04/1997 A 

    29/01/2002 ANE     20/12/1996 AE 

    04/04/1994 ASE     26/06/1996 ASW 

    28/12/2002 NE     16/10/1999 E 

Figure 5.9: Seasonal mean sea level pressure (hPa) map of selected days for fourteen 
circulation types at the regional scale. 
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    Figure 5.9: 
    06/05/1998 SE     05/05/1997 S 

    08/07/2004 SW     06/08/2003 C 

    14/09/1997 CNE     12/09/1998 CE 
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5.3 Relationships between Ozone Pollution and Circulation 

 Weather Types 

The classification results of the circulation weather types are now used to investigate the 

relationship between ozone pollution days defined as the index HOD3 (see Section 3.3.3) 

and specific weather types for the period 1994-2004. In order to understand the 

correlation of long-range transport of ozone pollution in Taiwan, the circulation weather 

type for the day prior to the ozone pollution day (P-1 Day) and the two days prior to the 

ozone pollution day (P-2 Day) are investigated as well as the concurrent relationship. 

Here, the HOD3 day is defined as pollution day (P-Day). Total ozone pollution days 

(HOD3) used in this investigation are 128 days (see Table 4.1) in the eleven-year period. 

The distribution of the 128 ozone days (P-Day, P-1 Day and P-2 Day) within 13 of the 14 

circulation types is shown in Table 5.5, as there is no such case observed for the ASW 

type. The seasonal distribution of HOD3 over the study period is 53 days, 12 days, 61 

days, and two days for spring, summer, autumn and winter, respectively.  

 
Table 5.5: The distribution of ozone pollution days (P), the day prior to the ozone 
pollution day (P-1 Day), and the two days prior to the ozone pollution day (P-2 Day) 
under thirteen circulation-type at both spatial scales. 

Local Scale U A ANE AE ASE NE E SE S SW C CNE CE
P (days) 7 12 4 14 12 13 60 2 2 0 0 2 0 
P-1 (days) 6 6 4 21 3 27 54 3 1 0 1 1 1 
P-2 (days) 8 4 3 11 0 35 52 2 0 0 7 3 3 
Regional Scale              
P (days) 6 10 2 8 7 25 36 8 2 1 16 5 2 
P-1 (days) 6 16 2 6 4 30 31 4 0 1 19 5 4 
P-2 (days) 4 17 0 11 1 28 25 5 0 1 21 9 6 
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5.3.1 Frequency Analysis of Ozone Pollution Circulation Types 

The annual frequencies of ozone days within the specific circulation types from 1994 to 

2004 at both spatial scales are shown in Figure 5.10. The annual frequencies of the 

ozone days at both spatial scales are with high frequencies of the E and NE types (Figure 

5.10). In contrast, the S and SW types are the least frequent types related to the ozone 

days at both the local and regional scales. Otherwise, the ozone days also show high 

frequencies within the A and C types at the regional scale.   

Figures 5.11 and 5.12 show the seasonal frequencies of ozone days within twelve 

circulation types (without the ASW and SW types) and thirteen circulation types 

(without the ASW type) for the local and regional scales, respectively. Seasonal 

frequencies are not shown for winter because less than 1% of cases of high ozone days 

are observed in this season. With respect to the seasonal frequencies, the ozone days 

(P-Day, P-1 Day and P-2 Day) show high frequencies within the E and NE types for 

both local and regional scales, especially in autumn (Figures 5.11 and 5.12). Apart from 

the high frequencies of ozone days on the E and NE type days, the frequencies of the 

ozone days related to specific circulation types vary with seasons.  

In spring, the anticyclonic group (the A, AE, ANE and ASE types) also shows high 

frequency on the P-Day at the local scale (Figure 5.11). The distribution of the P-Day 

within these types indicates that ozone pollution usually occurs under a high pressure 

system, as the subsidence of high pressure systems is not favourable for precursors or 

pollutants dispersion (Figure 5.5). For the regional scale, the ozone days are related to a 

variety of circulation types. For instance, the P-Day is related to the NE, SE and C types; 

and the P-1 Day and P-2 Day is associated with the A, NE and C types (Figure 5.12). 
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These results indicate that the ozone days at the regional scale are related to not only 

pure directional types but to anticyclonic and cyclonic patterns.  

In summer, the E, NE, AE and U types are the most important circulation types for 

ozone days at the local scale (Figure 5.11). On the other hand, the ozone days, at the 

regional scale, show high frequencies related to the C, U and E types. In this season, the 

C type is characterised as a low pressure centre with a small pressure gradient observed 

over Taiwan (Figures 5.6a-3 and b-3). Otherwise, the high frequency of the U type at 

both local and regional scales suggests that those ozone days classified as the U type, 

particularly on the P-Day, may be related to local pollution, as the characteristic of the 

U type is a weak peripheral circulation around Taiwan (Figures 5.6a-4 and b-4).  

In autumn, most of the ozone days are associated with the E and NE types at both the 

local and regional scales. The characteristics of the E/NE type show that air flow moves 

from the East Asian continent toward the East China Sea (Figures 5.7a and b). In this 

season, the frequency of the NE type gradually increases back in time at both spatial 

scales; higher frequency shows on the P-2 Day than the P-1 Day and P-Day. These 

results suggest that air flows from the northeasterly direction may play an important role 

in long-range transport of ozone and its precursors for Taiwan, as the air flows pass 

through polluted areas such as China, Korea and Japan.    
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Figure 5.10: The mean annual frequency (shown as the percentage of all days) of 
twelve circulation types at the local scale and of thirteen circulation types at the 
regional scale (solid bars); and their relation with the annual frequency of ozone days 
(shown as the percentage of total annual ozone days) (open bars). The first open bar 
represents the pollution day (P-Day), the second open bar represents the day prior to 
the ozone pollution day (P-1 Day) and the third open bar represents the two days prior 
to the ozone pollution day (P-2 Day).  
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Figure 5.11: The mean seasonal frequency (shown as the percentage of all days) of 
twelve circulation types at the local scale (solid bars); and their relation with the 
seasonal frequency of ozone days (shown as the percentage of total seasonal ozone 
days) (open bars). The first open bar represents the pollution day (P-Day), the second 
open bar represents the day prior to the ozone pollution day (P-1 Day) and the third 
open bar represents the two days prior to the ozone pollution day (P-2 Day).
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Figure 5.12: The mean seasonal frequency (shown as the percentage of all days) of 
thirteen circulation types at the regional scale (solid bars); and their relation with the 
seasonal frequency of ozone days (shown as the percentage of total seasonal ozone 
days) (open bars). The first open bar represents the pollution day (P-Day), the second 
open bar represents the day prior to the ozone pollution day (P-1 Day) and the third 
open bar represents the two days prior to the ozone pollution day (P-2 Day).
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5.3.2 Evaluation of Ozone Pollution and Circulation Type
 Relationships 

The frequency analysis presented in the previous section suggests that the ozone days 

(P-Day, P-1 Day and P-2 Day) are mainly related to the E and NE types, particularly for 

the local scale (Figures 5.10, 5.11 and 5.12); and that ozone days also correspond with the 

A and C types at the regional scale (Figure 5.12). The correlation between the ozone days 

and these circulation types may be because these types are the most frequent circulation 

types during the study period (1994-2004), for instance, the annual frequency of the E 

type is 40.44% and 27.25% for the local and regional scales, respectively (Figure 5.10). 

In order to more rigorously identify the relationship between ozone days and circulation 

types, a standardised ratio of the ozone days related to circulation type frequency is 

calculated. The ratio is calculated by PROPct/PROPtot, where PROPct is the proportion of 

type days which are ozone days, and PROPtot is the proportion of all days which are ozone 

days. Annual and seasonal ratios have been calculated for the ozone days (P-Day, P-1 

Day and P-2 Day) for both spatial scales (Figures 5.13, 5.14 and 5.15). When the value 

of the ratio of a specific circulation type is greater than 1.0, the probability of 

occurrence of the ozone days on that specific circulation type is more likely than the 

mean frequency of the circulation type. Moreover, selected individual days representing 

the characteristics of the circulation types related to ozone days at both the local and 

regional scales are shown in Figure 5.16 

The annual and seasonal ratios indicate the variability between the two spatial scales, as 

well as seasons; however, a number of consistent relationships can be identified. The 

annual ratios show that the P-Day, at the local scale, is related to the anticyclonic group 

(the ANE, AE and ASE types), and the P-1 Day and the P-2 Day are mainly related to 
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the ANE, AE and NE types (Figure 5.13). On the other hand, the cases at the regional 

scale are associated with the A, NE, C, CNE and CE types (Figures 5.13). Otherwise, 

the P-2 Day is also related to the cyclonic group (the C, CNE and CE types) at the local 

scale; though the ratios are lower than for the regional scale. For both the local and 

regional scales, the ozone days are mainly related to anticyclonic and cyclonic patterns, 

as well as the NE type. In the annual standardised analysis, the correlation between the 

ozone days and the S and SW types is in accordance with the result of the frequency 

analysis. However, the E type, at the two spatial scales, shows much less correlation 

with ozone days compared to the result of the frequency analysis (Figures 5.10 and 

5.13).  

In spring, the ozone days (P-1 Day and P-2 Day) are related to a variety of circulation 

types at the local scale. The P-1 Day is related to the anticyclonic group (the ANE, AE 

and ASE types) and the NE, E, SE and CNE types (Figure 5.14). Moreover, the ANE, 

NE and CNE types have a higher relation than expected on the P-2 Day (Figure 5.14). 

The synoptic circulation characteristics of the ANE, NE and E types are related to air 

flow originating from the East Asian Continent (Figures 5.5 and 5.8), and the CNE type 

is related to the cyclone originating from southern China or the South China Sea in this 

season (Figures 5.16a). The air flows of these types may pass through polluted areas (i.e. 

China and Japan) and bring northeasterly flow to Taiwan. The results suggest that the 

ozone days related to these types may be caused by long-range transport. In the cases of 

the ozone days within the SE and ASE types, the features of the composite maps in 

Figures 5.5 and 5.8 suggest that ozone days may result from more local pollution, as the 

air flows of these two types mainly originate from low polluted areas (maritime areas). 

Otherwise, the P-Day shows a clear relationship within the anticyclonic group (the A, 
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ANE, AE and ASE types) which is similar with the result of the frequency analysis 

(Figure 5.14).  

For the regional scale, the P-1 Day and P-2 Day ozone days are mainly associated with 

the cyclonic group (the C, CNE and CE types), which also show at the local scale 

(Figures 5.14 and 5.15). The synoptic circulation features of the cyclonic type show low 

pressure over the South China Sea and the air flows pass through South China and 

Southeast Asia (Figure 5.16a). The characteristics of the cyclonic group suggest that the 

ozone days may be related to long-range transport and the source region of pollutants 

may be from south China and Southeast Asia in spring (Figure 5.16a).  

In summer, the ozone days (P-1 Day and P-2 Day) correspond with the ANE, AE and 

NE types at the local and regional scales (Figures 5.14 and 5.15). The high ratios 

indicate that the occurrence of these types may result in high probability of ozone 

pollution in this season. These types show that Taiwan is under the influence of air flow 

from the East Asian continent (Figure 5.16b). The air flows of these types may bring 

ozone or its precursors from the East Asian continent to Taiwan. In addition, the 

correlation between the ozone days and the C and CE type, at the regional scale, 

suggests that ozone pollution may be affected by the air flow from southern China or 

Japan (Figures 5.6 and 5.9). The E type is associated with ozone days (P-Day, P-1 Day 

and P-2 Day) at both local and regional scales. The circulation features suggest that 

ozone pollution within the E type in this season may result from local pollution, as the 

composite map shows a weak flow over Taiwan (Figure 5.6a-5). In the standardised 

analysis, there is no obvious correlation between the ozone days and the U type, which 

is different from the result of the frequency analysis (Figures 5.14 and 5.15).    
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In autumn, the circulation types of the ozone days, at the local scale, resemble the cases 

in spring (Figure 5.14). The ozone days (P-Day, P-1 Day and P-2 Day) are associated 

with the anticyclonic group. In addition, the P-1 Day and P-2 Day ozone days are also 

related to the NE type (Figure 5.14). The similar circulation patterns on the ozone days 

in spring and autumn may be because these two seasons are transition seasons for 

Taiwan; the synoptic weather is affected by the evolution of a Siberian anticyclone and 

a Pacific anticyclone (Figure 5.16c). For the regional scale, the ozone days are related to 

the anticyclonic group (the A, ANE, and ASE types), the CNE and NE types (Figure 

5.15). In this season, the circulation features show small pressure gradients around 

Taiwan and air flow from the northeast direction to Taiwan, except for the AE type at 

the local scale (Figure 5.16c). The characteristics of circulation types (the A, ANE, 

CNE and NE types) suggest that ozone or its precursors may be transported from 

polluted areas (i.e. China Korea and Japan) and accumulated in Taiwan, as small 

pressure gradients occur in this season. Therefore, ozone pollution in this season may be 

affected by both local pollution and long-range transport (Figure 5.16c). The 

comparison of the results between standardised analysis and frequency analysis 

indicates that the relationship between the ozone days and the E type is not that obvious 

in the standardised analysis in this season, though the E type shows the highest 

frequency in the frequency analysis. However, the results of the standardised analysis 

show clearer features of the circulation types associated with ozone pollution compared 

to the result of frequency analysis, because the standardised analysis reduces the effect 

of high frequencies types on the identification of the relationship between ozone days 

and circulation types (for example, the E type in spring and autumn and the U type in 

summer).   
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Figure 5.13: Standardised ratios PROPct/PROPtot of year for ozone days (P-Day, P-1 
Day and P-2 Day) at the local and regional scale.  
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Figure 5.14: Standardised ratios PROPct/PROPtot for spring, summer and autumn for 
ozone days (P-Day, P-1 Day and P-2 Day) at the local scale.  
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Figure 5.15: Standardised ratios PROPct/PROPtot for spring, summer and autumn for 
ozone days (P-Day, P-1 Day and P-2 Day) at the regional scale. 
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    (a-1) 26/05/2003 C     (a-2) 21/04/1996 CE 

    (a-3) 22/05/2002 CNE     (a-4) 26/05/2002 NE 

      (b-1) 30/05/2003 AE       (b-2) 31/05/2003 ANE 

    (b-3) 11/06/2004 AE  
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Figure 5.16: Seasonal mean sea level pressure (hPa) map of selected circulation types 
for ozone days at both local and regional scales.
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5.3.3 Discussion 

The relationship between ozone days (P-Day, P-1 Day and P-2 Day) and circulation 

types shows that the ozone days, at the local and regional scale, are mainly associated 

with anticyclonic types, cyclonic types and the NE type, but vary with season. The 

P-Day is associated with the anticyclonic types (i.e. the A, ANE, AE and ASE types) in 

spring and autumn for the local scale and only autumn for the regional scale. The 

characteristics of the anticyclonic types suggest that subsidence associated with 

anticyclones may result in ozone pollution occurring under anticyclonic types, as the 

subsidence of high pressure impedes pollutants’ dispersion.   

The important circulation types on the days prior to the P-Day (i.e. P-1 Day and P-2 

Day) are the types with northeasterly flow, such as the ANE, CNE and NE types, for 

both the local and regional scales in spring and autumn. The synoptic features of these 

circulation types show that air flows pass through an area of high pollution (i.e. China, 

Korean and Japan). Ozone and its precursors may be collected from these areas and 

transported downward to Taiwan. These results suggest that ozone pollution occurring in 

these two seasons is very likely related to long-range transport. Otherwise, it is worth 

noting that the circulation features of the cyclonic types, at the regional scale, suggest 

that ozone pollution may be contributed to by different source regions in different 

seasons; the pollutants may be transported from southern China to Taiwan in spring 

(Figure 5.16a), and northern China, Korea and Japan in autumn (Figure 5.16c). The 

characteristics of circulation types (i.e. the ANE, AE and NE types) on the P-1 Day and 

P-2 Day in summer demonstrate that ozone pollution in this season is related to 

long-range transport, and the east coast of China is a possible source region. Otherwise, 

the relationship between the C and CE types and the ozone days suggests that southern 

China and Japan are also possible source regions of ozone and its precursors in summer. 
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In addition to the contribution of long-range transport to ozone pollution, the features of 

the SE and ASE types in spring and autumn, and the E type in summer suggest that 

ozone pollution can also be associated with local pollution events because the air flows of 

these types are from clean, maritime regions to southeastern Taiwan. 
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5.4 The analysis of large-scale atmospheric circulation links 

 with HOD3  

In this section, the features of the large-scale atmospheric circulation that accompany 

high ozone pollution days, as defined by the HOD3 index, which is defined as a day with 

three or more stations exhibiting a daily concentration > 60 ppb (see Section 3.3.3), are 

investigated using sea level pressure (SLP) data and geopotential height data at the 

850hpa level (see Section 3.6). Both absolute and anomaly maps are presented to define 

the characteristics of the large-scale circulation on ozone days to throw light on the role of 

long range transport, in particular, identified as possibilities in the preceding discussion. 

Given the seasonal evolution of the atmospheric circulation, the analysis is stratified by 

month to focus on the analysis of high ozone pollution months. A random selection of 

non-pollution days (see Section 3.7) is used as a control.  

The composite geopotential height anomaly map of the ozone days in April (Figure 

5.17a-left) shows a positive pressure centre northwest of Taiwan, which may collect 

pollution over the underlying source regions, and a strong anomalous airflow from 

northeast to southwest over Taiwan, suggesting long-range transport from the direction of 

mainland China, Japan and Korea (Figure 5.17 a-left). In contrast, on the non-pollution 

days in April (Figure 5.17a- right), the anomalous map shows an interaction between a 

positive circulation located in the northeast Asia region and negative circulation over the 

Pacific Ocean (Figure 5.17a-right) bringing pristine air masses from maritime areas. The 

anomalous SLP maps show a similar pattern of flow to the anomalous map of 

geopotential height (Figure 5.17a and b left).
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For May, the anomaly maps of geopotential height and SLP are similar to the anomaly 

maps in April but the pattern is much stronger (Figure 5.18a and b left).  

In the cases of ozone days in June, Taiwan is affected by a cyclone or the peripheral 

circulations of a cyclone (Figure 5.19a and b left). Generally, the weather conditions of a 

cyclone are associated with strong convective activity which is unfavourable for ozone 

formation. However, the anomalous patterns show a similar pattern to April and May 

(Figure 5.19a and b lower left) with air flows from the notheasterly direction, though the 

pattern is weaker than in April and May.  

During September, the patterns are quite different. The ozone days are associated with a 

strengthening of the dominant high pressure belt, particularly the two main centres 

(Figure 5.20a-left). The anomalous map presents a strong and significant positive 

pressure centre located over mainland China (Figure 5.20a lower left) and illustrates that 

Taiwan is under an anomalous air flow along the east coast of China. Otherwise, the 

composite maps of SLP show a trough from the equator to Japan, enhanced air flow from 

Japan is observed both in the actual and anomaly maps (Figure 5.20b-left). The results 

suggest that both mainland China and Japan may be the precursor source of ozone 

pollution in September. With respect to the non-pollution days, the patterns suggest that 

Taiwan is affected by a later (delayed end) summer monsoon over southern China which 

delivers a cleaner air mass from maritime areas to Taiwan.  

In October, the geopotential height maps (Figure 5.21a-left) illustrate the influence of the 

Siberian high and an intensive trough from Japan and a northward displacement of the 

Pacific anticyclone. In this month, Taiwan is controlled by the Siberian anticyclone 

(Figure 5.21a and b left). Nevertheless, there is no obviously anomalous air flow affecting 
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Taiwan, except the circulation near Japan may bring a northeast direction flow towards 

Taiwan (Figure 5.21a and b lower left), but this is not as marked as in the September case.  

The anomalous maps for November show an intensification of the prevailing seasonal 

circulation, with Taiwan on the fringe of a large negative pressure anomaly area and the 

peripheral circulation from mainland China passing over the country (Figure 5.22a and b 

lower left). The composite maps of non-pollution days show Taiwan affected by 

anomalous easterly flow from low polluted maritime areas (Figure 5.22a and b right). 

These results strongly suggest a role for long-range transport in the contrast between 

polluted and non-polluted source areas for the air passing over Taiwan during pollution 

and non-pollution days, respectively. 

To summarise, in spring, the findings suggest that long-range precursor transport from a 

northeasterly direction may be a factor determining the occurrence of high ozone days 

with stronger anticyclonic conditions permitting the accumulation of pollutants over 

source regions and dispersal to the periphery. The suggested pollutant source area in this 

case is over the region north and northeast of Taiwan. The high ozone pollution observed 

in May should be considered as the result of interaction between long-range precursors 

transport and local stable weather conditions. Significantly enhanced northerly or 

northeasterly flows are also observed in autumn, though the pattern is much stronger in 

September.
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(a)  850hpa  High Ozone Pollution Non-Pollution 

(b) SLP (hPa) High Ozone Pollution Non-Pollution 

Figure 5.17: High ozone pollution (left) and Non-pollution (right) days average 
geopotential height at 850hPa (a) and SLP (hPa) (b) absolute (upper) and anomalies 
(lower) values for April (22 days). Anomalies significant at the 5% level are shaded. 
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(a)  850hpa  High Ozone Pollution Non-Pollution 

(b) SLP (hPa) High Ozone Pollution Non-Pollution 

Figure 5.18: High ozone pollution (left) and Non-pollution (right) days average 
geopotential height at 850hPa (a) and SLP (hPa) (b) absolute (upper) and anomalies 
(lower) values for May (29 days). Anomalies significant at the 5% level are shaded.
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(a)  850hpa  High Ozone Pollution Non-Pollution 

(b) SLP (hPa) High Ozone Pollution Non-Pollution 

Figure 5.19: High ozone pollution (left) and Non-pollution (right) days average 
geopotential height at 850hPa (a) and SLP (hPa) (b) absolute (upper) and anomalies 
(lower) values for June (10 days). Anomalies significant at the 5% level are shaded. 
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(a)  850hpa  High Ozone Pollution Non-Pollution 

(b) SLP (hPa) High Ozone Pollution Non-Pollution 

Figure 5.20: High ozone pollution (left) and Non-pollution (right) days average 
geopotential height at 850hPa (a) and SLP (hPa) (b) absolute (upper) and anomalies 
(lower) values for September (19days). Anomalies significant at the 5% level are shaded.
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(a)  850hpa  High Ozone Pollution Non-Pollution 

(b) SLP (hPa) High Ozone Pollution Non-Pollution 

Figure 5.21: High ozone pollution (left) and Non-pollution (right) days average 
geopotential height at 850hPa (a) and SLP (hPa) (b) absolute (upper) and anomalies 
(lower) values for October (32 days). Anomalies significant at the 5% level are shaded. 
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(a)  850hpa  High Ozone Pollution Non-Pollution 

(b) SLP (hPa) High Ozone Pollution Non-Pollution 

Figure 5.22: High ozone pollution (left) and Non-pollution (right) days average 
geopotential height at 850hPa (a) and SLP (hPa) (b) absolute (upper) and anomalies 
lower) values for November (10 days). Anomalies significant at the 5% level are shaded.
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5.5 Summary 

The successful results of weather type classification by the objective scheme show 

seasonal characteristics of circulation weather types in Taiwan at two different scales 

(local and regional scales). On the basis of the results of the composite SLP and 

geopotential height analyses, the relationship between the ozone days (P-Day, P-1 Day 

and P-2 Day) and circulation type is identified for the local and regional scales. Four 

key findings in this chapter can be summarised as follows:  

• Consistent with the climate of Taiwan, the synoptic circulation in Taiwan is 

mainly classified as the E and NE types; the prevailing winds around Taiwan are 

usually easterly or northeasterly, except for the circulations in summer, which are 

related to the C, S and SW types.   

• The long-term trends of circulation types indicate that the NE type increases 

significantly in spring, and while the S and SW types significantly decrease in 

spring and summer at both spatial scales. Changes of these types may influence 

the winter and summer monsoon activities in Taiwan. 

• Ozone pollution is mainly associated with the types with northeasterly flow (i.e. 

the ANE, CNE and NE types) in spring, summer and autumn. The air flows of 

these types suggest that long-range transport from a northeasterly direction may 

be a factor in high ozone pollution in Taiwan.  

• The correlation between ozone pollution and the cyclonic types (i.e. the C, CNE 

and CE types) suggests that convective activity may also play a role in long-range 

transport and the source region of pollutants may differ with season; pollutants 
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may be transported from southern China and Southeast Asia in spring and 

Northeast Asia in autumn.  

The relationships between ozone pollution and synoptic circulation demonstrated in 

this chapter suggest that ozone days are related to air flows originating from the East 

Asian continent. However, the source region and the transport pathways of 

long-range transport need to be further clarified; a back trajectory analysis is used to 

investigate the source-receptor relationship in chapter six.  
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Chapter 6: Trajectory Analysis 

6.1 Introduction 

In the previous chapter, the circulation weather types and spatial compositing analyses 

showed pronounced airflows from the north or northeast direction towards Taiwan 

during the ozone days. These air flows may export pollutants from source areas of 

Northeast Asia to Taiwan. Back trajectory analysis is employed to test the apparent 

relationship between source-receptor of ozone pollution at the north (25°N, 121.3°E) 

and south (22.5°N, 120.5°E) sites in Taiwan. The selection of two receptor sites is due 

to the climatic distinction between the north and south Taiwan. In the south, the climate 

is mainly affected by tropical monsoon activity. On the other hand, the climate in the 

north Taiwan is classified as subtropical climate. Three-day back trajectory simulations 

arriving at three different heights, 100m, 500m and 2000m above ground level are 

computed with a six-hour timestep from 04:00 UTC. A comparative analysis is 

investigated to discriminate the difference of transport pathways between pollution and 

non-pollution days (see Section 3.7). The correlation with atmospheric circulation is 

discussed as well.   

 

6.2 Back Trajectory Analysis 

Back trajectories of high ozone days are calculated by the Hybrid Single-Particle 

Lagrangian Integrated Trajectory model (HYSPLIT_4) in this study (see Section 3.6). 

The ozone days used here for trajectory analysis are the index HOD3 of high ozone days 
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to be consistent with the ozone days used in spatial compositing analysis in the previous 

chapter.  

Back trajectory analyses showing transport pathways of HOD3 for each high ozone 

pollution month at three altitudes of 100m, 500m and 2000m for the two analytical 

locations are presented in Figure 6.1. The air parcels at 100m and 500m mostly 

originate in the industrial areas on the east coast of China or northern China and Korea 

with a few from Japan. The results confirm the findings derived from the analysis of 

weather types and pressure patterns that air parcels originating in industrial areas may 

contribute significant ozone or its precursors. The trajectory pattern is especially 

marked for April, September and October, less so for June. There is, however, a 

pronounced discrepancy observed at the level 2000m, where the source region is to the 

northwest of Taiwan (Figure 6.1). It would appear that the key pollutant transport is at a 

lower level. For the south site, high frequencies of back trajectories at 2000m are related 

to clean maritime air flows from the South China Sea and the western Pacific Ocean in 

spring, whilst back trajectories are largely associated with the continental air masses at 

the north site (Figure 6.1 and 6.2). An example of discrepancy of back trajectories at the 

high level (2000m) between the north and south sites is shown in Figure 6.2. The 

trajectories for the north site are mostly related to continental air flows; however, the 

trajectories for the south site originating from maritime air flows at the level 2000m. In 

addition, the trajectories at the south sites represent slower-moving air parcels or 

stagnant circulations. 
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Figure 6.1: Three-day trajectories in April (a), May (b), June (c), September (d), 
October (e) and November (f), North site in left column and South site ion right column, 
at the level 100m, 500m and 2000m. 

(a)   April (North Site at 100 m) April (South Site at 100 m) 

500m 500m 

2000m 2000m 



                                             Chapter 6: Trajectory Analysis 

 148

Figure 6.1(b): same as Figure 6.1 (a) but for May 
North site (100m) South Site (100m) 

500m 500m 

2000m 2000m 
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Figure 6.1(c): same as Figure 6.1 (a) but for June 
North site (100m) South Site (100m) 

500m 500m 

2000m 2000m 
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Figure 6.1(d): same as Figure 6.1 (a) but for September 
North site (100m) South Site (100m) 

500m 500m 

2000m 2000m 
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Figure 6.1(e): same as Figure 6.1 (a) but for October 
North site (100m) South Site (100m) 

500m 500m 

2000m 2000m 
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Figure 6.1(f): same as Figure 6.1 (a) but for November 
North site (100m) South Site (100m) 

500m 500m 

2000m 2000m 
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Figure 6.2: The discrepancy of back trajectories at the high level (2000m) for the north and south sites. 
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To check that the back trajectories for ozone days represent a true characteristic of these 

days and are not an artefact of the dominant circulation, back trajectory analysis wa

also performed for a random set of non-pollution days. The results for the pollution and 

non-pollution days for the north and south are compared in Figures 6.3 and 6.4 and are 

now discussed in detail. A strong contrast in the trajectories for these two sets of days is

clear.  

The back trajectory analysis of ozone pollution days in April shows a high proportion of 

source areas over mainland China and some from Korea at the levels 100m and 500

(Figure 6.3a and 6.4a). However, the investigation of the level 2000m shows that 

advection changes to mostly a northwest source direction for the north site and west 

source direction for the south site. In the non-pollution cases for the north site, the back 

trajectories at the three elevation levels exhibit pathways mainly from low-polluted 

maritime regions, such as the East China Sea or the South China Sea, and recirculation

flows around the Western Pacific region (Figure 6.3a). Although the East China Sea and 

South China Sea may be affected by air pollutants exported from the Asian contine

(Hoell et al., 1996; Jacob et al., 2003), the concentration of pollutants in these regions is

still lower than over the Asian continent. The back trajectories of non-pollution days f

the south site show that the air parcels originate over the western Pacific Ocean and the 

South China Sea (Figure 6.4a).  

For May, the back trajectory analyses for the pollution days indicate a localised, looping 

circulation close to Taiwan and the air parcels are mainly from a maritime region at the 

low levels (100m and 500m), north and northeast from Taiwan (Figures 6.3b and 6.4b). 

It is suggesting that the circulations at the low levels are associated with stable an

stagnant conditions which do not facilitate pollutants dispersion. On the other hand, the
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back trajectories at the altitude of 2000m show high frequencies of air parcels 

originating from over China. The result suggests that ozone or its precursors may be 

transported by convective activity of cyclone in the South China Sea. The ozone 

contributed from South China is also observed in Japan (Naja and Akimoto, 2004). The 

back trajectories of non-pollution days present a quite similar pattern to the cases in 

April, in spite of less air parcels related to continental air masses (Figures 6.3b and 

6.4b). 

In the case of June, the trajectories for the pollution days show slow-moving air parcels 

apparently originating from Korean and Japan, particularly for the north site (Figures 

6.3c and 6.4c). At the level of 2000m, the circulation flows around Southeast Asia 

suggest that Taiwan is under a cyclonic synoptic weather pattern. The trajectory of air 

parcels for the non-pollution days mostly originate from southern, low-polluted 

maritime areas (Figures 6.3c and 6.4c).  

In September, the trajectories for the pollution days show a similar distribution at low 

levels (100m and 500m), from the north and over the eastern coastline of China (Figures 

6.3d and 6.4d), suggesting again that pollutants are transported at low levels from the 

east cost of China, Korea and Japan. On the other hand, the non-pollution days are 

obviously associated with fast-moving air parcels from maritime regions, which deliver 

clean air masses to Taiwan and may sweep away local pollution resulting in low ozone 

levels. 

The trajectories in October for the pollution days present analogous pathways with the 

cases in September, a high frequency of air parcels originating from mainland China 

and Korea at low levels (Figures 6.3e and 6.4e). During this month, though, the 

strengthening of the Siberian anticyclone brings a prevailing wind from the Asian 
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continent to Taiwan at the 2000m level and this is evident in the trajectories at this level, 

especially at the north site. In the case of the non-pollution days, there is again a high 

frequency of air parcels travelling from low-polluted maritime regions and the strong 

winds associated with these fast-moving air parcels may facilitate pollutant dispersion.    

Finally, in November, the trajectories for both the pollution days and non-pollution days 

show analogous pathways at the lower levels (Figures 6.3f and 6.4f). There is a contrast, 

though, at the 2000m level; at that height, the back trajectories for the pollution days 

show air parcels originating from central and south China.  

In summary, this comparison between back trajectories on sets of pollution days and 

non-pollution days confirms that there is a contrast in the air sources for these two sets 

of days with, broadly, flow from pollution source areas a characteristic of the pollution 

days whereas flow from clean, maritime regions a characteristic of the non-pollution 

days in most months. Moreover, the trajectories for the pollution days are in general 

agreement with the results of the weather type analysis and the anomalous flow shown 

by the pressure maps in Chapter 5. A seasonal picture of the varying contribution of 

long-range transport to ozone levels over Taiwan is now developed.
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(a)  April (Pollution days at 100 m) April (Non-pollution days at 100 m) 

500m 500m 

2000m 2000m 

Figure 6.3: Three-day back trajectories in April (a), May (b), June (c), September (d), 
October (e) and November (f), Pollution days in left column and Non-pollution days in 
right column, at the level 100m, 500m and 2000m, for the north site. 
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Figure 6.3(b): same as Figure 6.3 (a) but for May. 

Pollution days at 100m Non-Pollution days at 100m 

500m 500m 

2000m 2000m 
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Figure 6.3(c): same as Figure 6.3 (a) but for June. 

Pollution days at 100m Non-Pollution days at 100m 

500m 500m 

2000m 2000m 
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Figure 6.3(d): same as Figure 6.3 (a) but for September. 

Pollution days at 100m Non-Pollution days at 100m 

500m 500m 

2000m 2000m 
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Figure 6.3(e): same as Figure 6.3 (a) but for October. 

Pollution days at 100m Non-Pollution days at 100m 

500m 500m 

2000m 2000m 
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Figure 6.3(f): same as Figure 6.3 (a) but for November. 

Pollution days at 100m Non-Pollution days at 100m 

500m 500m 

2000m 2000m 
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(a)  April (Pollution days at 100 m) April (Non-pollution days at 100 m) 

500m 500m 

2000m 2000m 

Figure 6.4: Three-day back trajectories in April (a), May (b), June (c), September (d), 
October (e) and November (f), Pollution days in left column and Non-pollution days in 
right column, at the level 100m, 500m and 2000m, for the south site.
 163
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Figure 6.4(b): same as Figure 6.4(a) but for May. 

Pollution days at 100m Non-Pollution days at 100m 

500m 500m 

2000m 2000m 
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Figure 6.4(c): same as Figure 6.4 (a) but for June. 

Pollution days at 100m Non-Pollution days at 100m 

500m 500m 

2000m 2000m 
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Figure 6.4(d): same as Figure 6.4 (a) but for September. 

Pollution days at 100m Non-Pollution days at 100m 

500m 500m 

2000m 2000m 
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Figure 6.4(e): same as Figure 6.4 (a) but for October. 

Pollution days at 100m Non-Pollution days at 100m 

500m 500m 

2000m 2000m 
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Figure 6.4(f): same as Figure 6.4 (a) but for November. 

Pollution days at 100m Non-Pollution days at 100m 

500m 500m 

2000m 2000m 
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6.3 Framework for Long-Range Transport 

The results of the back trajectory analysis confirm that high ozone pollution over 

Taiwan is contributed, at least in part, to long-range transport of ozone and its 

precursors from polluted areas in the region. The role of the large-scale atmospheric 

circulation at different times of the year can be best explained in terms of the seasonal 

variation in the monsoon circulation. In the following discussion, the results for 

pollution days are focused on except in cases where there is either little difference in the 

results for pollution and non pollution days (i.e. there is no clear signal) or else when 

the results for non pollution days are particularly relevant (i.e. in revealing clean air 

sources or other factors affecting ozone accumulation or loss). 

During April, a transitional period, the Siberian anticyclone, which characterises the 

winter monsoon circulation, declines and moves eastward from mainland China with 

reduced pressure gradients and a trough over Japan, suppressing pollution lifetimes in 

the latter area (Figure 5.17). These synoptic conditions are favourable to export ozone 

and its precursors from the East Asian continent over Taiwan. The characteristics of 

transport pathways are illustrated by the anomaly pressure maps and the back trajectory 

analysis (Figures 5.17, 6.1a, 6.3a and 6.4a). A positive pressure anomaly located over 

the east coast of China indicates that heightened pressure might increase pollutant 

accumulation over local source areas. The adjacent anomalous northerly/northeasterly 

flow, confirmed by the back trajectory analysis, brings the air parcels that passed over 

the polluted areas, such as north China or Korea, southward to Taiwan and enhances the 

ozone concentration in the downwind area. The back trajectories show clear transport 

pathways with a northerly component at the lower levels of 100m and 500m, for both 
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analytical sites. The results suggest that these north and northeasterly transport 

pathways at lower levels provide long-range transport of ozone and its precursors in 

April from source areas in China and Korea.  

The trajectories at 2000m may suggest transport from source areas in southern China, 

but this must be a secondary contribution. It is notable that the 2000m winds are weaker 

in the case of pollution days at the southern site. 

In May, the dominant regional influence shifts from the Siberian anticyclone to the 

Pacific anticyclone. The pressure anomaly charts for the pollution days show a similar, 

but stronger, pattern to those for April (Figure 5.18). The trajectory analysis reveals 

weaker flows, particularly at the lower levels, with stagnation close to Taiwan, but still 

from a generally northerly direction (Figures 6.1b, 6.3b and 6.4b). These weak and 

stagnant circulations are not favourable for pollutant dispersion. In May, the trajectories 

at 2000m show a more marked transport from the north than was the case for April, 

particularly for northern Taiwan. The trajectories also illustrate more air parcels 

originated from the South China Sea for the south site in May than in April. In the case 

of non-pollution days (Figures 5.18, 6.3b and 6.4b), the pressure maps and the back 

trajectories indicate the strong onset of the summer monsoon which is favourable for 

pollutant dispersion due to convective activity. In this month, the effect of the summer 

monsoon is more significant than in April. 

June is the month when the summer monsoon activity dominates; Taiwan is mainly 

affected by the interaction of air flows between the Western Pacific and the South China 

Sea. The average pressure maps for the non-pollution days present the characteristics of 

the typical synoptic circulation during this period, a clear southwesterly monsoonal flow 

passing over Taiwan (Figure 5.19). As noted earlier, there are fewer high ozone 
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episodes observed in this month due to unfavourable weather conditions associated with 

cyclonic circulations and short lifetime of pollutants. (Nevertheless, an increase of high 

ozone episodes has been observed in the recent years of the study period in this month, 

as discussed in Chapter 4.) In contrast, the anomaly pressure maps for the ozone 

pollution days show a marked anomalous, northeasterly flow over Taiwan generated by 

a negative pressure anomaly over the western Pacific and a positive pressure anomaly 

over northern China (Figure 5.19). This indicates a weakening of the dominant 

southwesterly monsoon flow associated with high pollution episodes. The back 

trajectories prove that the air parcels are travelling from a northerly or northeasterly 

direction to Taiwan at the lower levels (Figures 6.1c, 6.3c and 6.4 c), suggesting that 

ozone and its precursors may be transported from Korea and Japan southward to 

Taiwan.  

During September, as the summer monsoon has ended and a transitional season is 

underway, there is a weakening of the influence of the Pacific anticyclone in Taiwan 

and an evolving Siberian anticyclone (Figure 5.20). The pressure anomaly charts for the 

pollution days show a marked strengthening of these two anticyclones, with an 

enhanced air flow along the east coastal region of China. The results of back trajectory 

analysis present similar transport pathways at the low levels, suggesting slow-moving 

air parcels may carry pollutants from the east coast of China, Korea and Japan and 

enhance local ozone concentration on the pollution days (Figures 6.3d and 6.4d). Higher 

pressure over the Chinese mainland may also enhance the accumulation of local 

pollutants over the continent, providing a steady source for advection to Taiwan. In 

addition, the extension of the influence of the Siberian high pressure over Taiwan would 

create low wind speeds, favourable for ozone formation. The back trajectories at the 

2000m level show a high frequency of air parcels originating from maritime regions, 
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particularly for the southern site. The results suggest that the synoptic circulation at high 

levels may be still influenced by late summer monsoon activities or tropical depressions. 

In any event, the results suggest that long-range transport of ozone and its precursors is 

again most important at lower levels.  

In October, the actual pressure maps illustrate the evolution of the winter monsoon with 

a dominant northeasterly wind over Taiwan (Figure 5.21). The anomaly maps show no 

marked pattern, but the back trajectories show similar transport pathways of air parcels 

as in September at the lower levels (100m and 500m), except faster moving air parcels 

are observed in October. Comparing the back trajectories for pollution and 

non-pollution days indicates a stronger contribution from the north at lower levels, but 

the difference is most marked at 2000m where pollution days are characterised by back 

trajectories from over the polluted areas of mainland China (Figures 6.1e, 6.3e and 

6.4e).  

In November, an intense trough from North Asia and the evolution of the Siberian 

anticyclone brings prevailing northeasterly winds again to Taiwan (Figure 5.22). The 

anomalous pressure maps show that, on pollution days, there is a stronger influence of 

the ridge from the Siberian anticyclone over Taiwan. This would be associated with 

favourable conditions for ozone formation over Taiwan, as well as greater advection 

towards Taiwan from the northern mainland of China. The results of the back trajectory 

analysis show slow-moving air parcels at the lower levels and faster-moving air parcels 

at altitude of 2000m, suggesting that ozone and its precursors may be accumulated in 

polluted source areas and transported by high level air parcels to Taiwan with central 

China making more of a contribution at this time of year (Figures 6.1f, 6.3f and 6.4f).  
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While the patterns of the back trajectories are generally similar for the northern and 

southern analyses, there is a suggestion that the southern site is more sensitive to 

changing trajectories related to monsoon strength, with the north more responsive to 

changes in northerly advection. In general, the back trajectories suggest faster moving 

air parcels at the northern site in many cases. 
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6.4 Summary 

It is important to note that long range transport is only one factor contributing to 

enhanced ozone levels over Taiwan. Local sources and formation processes are of 

considerable importance. Nevertheless, this analysis indicates that long-range transport 

does play a role in increasing the severity of episodes of high ozone concentrations. 

This is most clear in the contrast between the atmospheric circulation for pollution and 

non pollution days, as evidenced by the pressure anomaly maps and the back 

trajectories. In general, pollution days are characterised by more frequent flows from 

polluted source areas to the north and west over China, Korea and, to a lesser extent, 

Japan, whereas non pollution days are characterised by flows from clean, maritime 

areas. The evolution of the winter and summer monsoons plays an influential role in 

determining the nature of the contribution of long-range transport and the relative 

importance of the different source areas. During the transition months of April, May, 

September and October, low level flow from a northerly direction makes a major 

contribution due to fluctuations in the relative strength of the Siberian and Pacific 

anticyclones. During the monsoon seasons (the months of June and November in this 

analysis), the key factor is the strength of the monsoon flow, with a weaker summer 

monsoon and a stronger, northeasterly monsoon in winter associated with enhanced 

ozone pollution. In these cases, local conditions are also strongly affected by weaker or 

stronger anticyclonicity as well as long range transport. At these times of year, the flow 

at 2000m appears more important than at the lower levels. In many months, enhanced 

anticyclonicity over remote source areas suggests reduced dispersal and longer pollutant 

lifetimes, creating a stronger source for low level long-range transport along the 

periphery of the region as the flow under the anomalous high pressure area diverge. 
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6.5 Conclusion  

Back trajectory analysis has distinguished the source of ozone pollution and transport 

pathway in different months. A marked contrast is evident in most cases between the 

trajectories for pollution days and non-pollution days, confirming that the former are not 

spurious. The results are analogous with the findings from the weather type analysis and 

composite pressure maps in Chapter 5. The main findings can be summarised as 

follows: 

Pollutants are transported to Taiwan by air parcels originating from the polluted areas of 

neighbouring Asia, such as mainland China, Korea and Japan. The source areas vary 

with month as the seasonal circulation alters. 

Southern China, a rapidly developing region, is also a prominent source, particularly in 

May and November. The dynamic process of long-range pollutant transport from 

southern China is likely related to convective activity rather than advective activity. 

Slow-moving air parcels from Northeast Asia and the effect of cyclones from the 

Southeast Asia region result in ozone pollution increasing in summer (June).  

The variation of East Asian monsoon activity, such as winter monsoon and summer 

monsoon, affect the ozone pollution in Taiwan. Ozone pollution days are related with a 

weak winter monsoon activity and non-pollution days are associated with the air flow 

from the maritime monsoon activity (i.e. South China Sea and the Western Pacific 

Ocean). 
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Finally, it should be noted that, though ozone pollution in Taiwan may be associated 

with pollutants transported from distant source areas, the effect of local pollution should 

not be neglected, especially for south Taiwan.  
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Chapter 7: Conclusions 

7.1 Introduction 

The aim of this study has been to investigate the relationship between ozone pollution in 

Taiwan and the large-scale circulation, paying particular attention to the effect of the 

long-range transport of ozone precursors on ozone pollution. Daily ozone concentration 

data from the Taiwan Air Quality Monitoring Network were used to analyse annual and 

seasonal ozone trends. The characteristics of circulation weather types on ozone days 

were determined using an objective weather typing scheme with sea level pressure data 

from the NCEP reanalysis dataset. Spatial composite analysis and back trajectory 

analysis were used to characterise the signature of the large-scale circulation associated 

with high ozone pollution and its relation with the long-range transport of ozone 

precursors. The spatial composite maps were derived from the NCEP reanalysis dataset 

for the variables of geopotential height and sea level pressure. Back trajectories were 

calculated using the Hybrid Single-Particle Lagrangian Integrated Trajectory model.   

This chapter focuses on concluding the findings of the study, and assess the 

methodology which could be improved and development. The findings are summarised 

by answering the specific questions identified in Chapter three as follows: 

 What are the characteristics of high ozone pollution episodes and their 
variability over Taiwan?  

 Is there evidence that regional atmospheric circulation patterns are linked to 
the occurrence of high ozone pollution days? 

 What is the role of long-range transport and other circulation mechanisms, 
including the dominant monsoonal circulation of the region?
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7.2 Summary of Findings 

A positive trend of high ozone episodes is observed from 1994 to 2004, suggesting that 

the effect of moderate high ozone pollution (daily 8hrs average ozone concentration ≥ 

60 ppb) on Taiwan’s air quality is more significant in recent years.  

The spatial distribution analysis shows that the North and the Kao-Ping zones are the 

most polluted areas in Taiwan. The seasonal variation across Taiwan generally exhibits 

two peaks (with the maxima in spring and autumn), but the peak month varies with 

spatial distribution. For the North zone, the effect of ozone pollution is more significant 

in spring than in autumn, reverse in the Kao-Ping zone, corresponding to the interaction 

among synoptic weather patterns. The increase of high ozone days observed in summer 

implies that the seasonal cycle of ozone pollution may be shifting in recent years.  

An integrated analysis consisting of circulation type classification, spatial composite 

analysis and back trajectory analysis has demonstrated that northeasterly flow over or 

north of Taiwan, generally associated with heightened pressure over mainland China, is 

typical of high ozone days. This finding suggests that the long-range transport of ozone 

and its precursors does influence ozone pollution in Taiwan, with air parcels originating 

from nearby polluted source regions such as mainland China, Korea and, at times, Japan 

in spring, summer and autumn. The main circulation types related to long-range 

transport of pollutants from Northeast Asian to Taiwan are the ANE and NE types in 

spring, summer and autumn, and the CNE type in autumn. It should be noted that, while 

long-range transport clearly plays a role, local pollution is not negligible in some areas. 

The SE, ASE (in spring and autumn) and the E type (in summer), for example, are 

characterised by small pressure gradients and maritime air flows. Ozone pollution 
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occurs within these types more related to local pollution than long-range transport 

because the circulation features are not favourable for local pollutants dispersion and 

the air flows of these types mainly originate from low polluted areas. The analyses have 

also shown that southwesterly or southerly flows related to summer monsoon are the 

circulation features of non-pollution days. The influence of the seasonal monsoonal 

circulation is evident for both high ozone pollution days and non-pollution days.  

New possible source regions of ozone and its precursors have been found in this study. 

Ozone pollution associated with the cyclonic types (i.e. C, CNE and CE types) in 

different seasons suggests that pollutants may be transported from South China and 

Southeast Asia to Taiwan in spring or summer, which has not been noticed in the past.    

The results of long-term trend analysis, between 1958 and 2004, suggest a stronger 

winter monsoon and a weakening summer monsoon, particularly for the regional scale. 

Because of the different role of the winter monsoon and summer monsoon in long-range 

transport, long-term trends in the frequencies of these types may, all other factors being 

equal, reflect trends in the frequency of high ozone episodes in Taiwan. The variation in 

strength of these two monsoonal circulations may have enhanced ozone pollution in 

Taiwan in recent years. This may explain at least part of the observed trend in ozone 

pollution, although, of course, the role of increased local sources of precursors and other 

factors should not be neglected.  
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7.3 Limitations of the Study 

A number of limitations of the present study have been identified throughout the 

investigation. The main deficiencies are summarized below. 

 Data quality 

There is a need to consider further the implications of varying data quality. For example, 

the reanalysis data represents the best currently available observational data which 

provides global coverage with more than sixty years of temporal coverage. However, 

the homogeneity of the underlying data is subject to changes over time, especially in the 

late 1970s with improved satellite and aircraft data. A similar problem of data 

homogeneity is also considered for the ozone data, as only a short period (1993 to 

present) for the monitoring network, the improvement of instruments, and the change of 

locations etc may reduce the accuracy of ozone data. In addition, the reliability of trend 

analysis is affected by the shortness of the ozone pollution record available for this 

study.  

 

 The influence of meteorological conditions 

This study has not considered directly the meteorological conditions that could affect 

ozone pollution, such as humidity, wind speed and temperature. The identification of 

the relationship between ozone pollution and atmospheric circulation in this study only 

depends on the analysis of circulation features and the pathway of air flow; however, it 

may reduce the reliability of identification of relationships and mechanisms because the 

meteorological conditions are important factors related to ozone formation. 
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 The influence of long-range transport  

This study has identified the characteristics of atmospheric circulation on high ozone 

days and found that long-range transport of ozone and its precursors does have an 

influence on ozone pollution in Taiwan. There is a need to consider the quantification of 

ozone precursors derived from long-range transport and to further confirm the 

contribution of local emissions and long-range transport to ozone pollution in Taiwan. 

This is necessary in order to quantify the relative role of long-range transport, variation 

in source strength and local factors favouring ozone formation. 

 

 Spatial variability 

This study has been based on the identification of ozone episodes over representative 

regions of Taiwan; the regions are mainly located at the western plain. The role of 

long-range transport and other factors may vary across the country if high spatial scales 

are considered. Study of the spatial distribution of these events requires further 

consideration of data quality across Taiwan.  
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7.4 Recommendations for Further Research   

Based on the findings of this study, the following recommendations to extend this study 

can be made. 

 Relationship between meteorological conditions and circulation types 

Further work of the construction of the link between meteorological conditions (i.e. 

humidity/rainfall, wind speed and temperature) and circulation types is necessary. This 

is useful to identify the characteristics of air flow (e.g. cold or warm anticyclones), 

source region of air flow, to understand the weather conditions of ozone pollution days, 

and to improve the identification of local pollution and long-range transport of ozone 

pollution in Taiwan.  

 

 Quantification of the long-range transport contribution 

As an extension of the present study, a chemical transport model could be used to 

quantify the long-range transport of ozone and its precursors from the polluted areas (i.e. 

China, Korea and Japan) and to identify the key controlling processes of long-range 

transport, such as chemical production, horizontal or vertical transport, and deposition 

or chemical removal during transport. Model simulations could be used to compare with 

the results of this study and to assess the impact of ozone pollution from different 

source regions in high ozone pollution seasons.    
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 Impact of global warming on future ozone pollution 

The relationships between ozone pollution and synoptic circulation in different seasons 

identified in this study suggest that ozone pollution in Taiwan may be associated with 

the intraseasonal variability of the East Asian monsoon over the past decade. Given that 

the East Asian monsoon may be affected by global warming in the future, further 

investigation of the influence of future changes of the East Asian monsoon in response 

to global warming on future ozone pollution is useful to understand the variation of 

future ozone pollution related to synoptic weather systems and to provide information 

for future air pollution control strategies in Taiwan. There are three questions which 

could be ideas for research design for further study as follows:  

1) What was the long-term relationship between circulation type and the East Asian 
monsoon, and its link with high/low ozone pollution in Taiwan over the past 
decade? 

2) How will global warming influence future climate at the regional scale (the East 
Asian monsoon circulation) and weather at the local scale (rainfall) for East Asia? 

3) How will the changes of future climate at the regional scale and weather at the 
local scale affect future ozone pollution in Taiwan? 

In order to classify both composite and meteorological features of the East Asian 

monsoon (winter and summer monsoons) related to circulation types, a further 

identification of the characteristics of the East Asian monsoon could be classified by the 

results of the correlation between circulation types and meteorological conditions such 

as rainfall and wind speed. To estimate the influence of global warming on future 

climate and ozone pollution, projections of future variations of the East Asian monsoons 

simulated by coupled atmosphere-ocean general circulation models (AOGCMs) could 

be analysed. Considering that the definitions of the temporal and spatial scales in the 
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present study are related to a shorter timescale (daily and monthly) and small region 

(Taiwan to East Asia), respectively; the validation of AOGCMs simulations using 

downscaling methods such as the circulation classification approach is necessary to 

improve the application of AOGCMs output for obtaining more reliable assessments of 

the variation of future ozone pollution in response to global warming.  

 

7.5 Wider Implications 

Ozone pollution has become an important issue of air quality control in Taiwan. The 

features of atmospheric circulation on ozone pollution days identified in this study have 

improved understanding of the relationship between ozone pollution episodes and the 

regional atmospheric circulation. This will assist better environmental management and 

pollution control.  

The objective classification scheme has been applied in a low-latitude region 

successfully. The results of the objective classification scheme show a good agreement 

with the typical circulation types in Taiwan classified by subjective methods. The 

results could be applied in the investigation of extreme weather events such as flood and 

drought, to improve understanding and management of water resources in Taiwan. 
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Appendix  
 
1. The calculation of the flow and vorticity parameters for the grid is shown for the 
regional area:        

• westerly flow (W): the westerly component of geostrophic surface wind          

calculated from the pressure gradient between 13.75° N and 33.75° N;   

• southerly flow (S): the southerly component of geostrophic surface wind calculated 

from the pressure gradient between 110° E and 130° E; 

• resultant flow (F): total resultant westerly and southerly flow; 

• direction (dir): in degree (0 to 360 °) of the resultant surface wind obtained from w 

and s, the directional category is calculated on a eight-point compass with a   

resolution of 45 ° (e.g. NE occurs between 22.5 ° and 67.5 °); 

• westerly shear vorticity (ZW): difference of the westerly flow between 3.75° N and  

23.75° N minus that between 23.75° N and 43.75° N; 

• southerly shear vorticity (ZS): difference of the southerly flow between 23.75° N   

and 150° E minus that between 23.75° N and 90° E; 

• total shear vorticity (Z): the sum of westerly and southerly shear vorticity. 

All the indices, listed above, are calculated from the grid-point values using the 
following equations (adapted from Jenkinson and Collison, 1997; Jones et al., 1993): 

W= 0.5(12+13)-0.5(4+5)                      (1) 

S = 1.09 [0.25(5+2x9+13)-0.25(2+2x8+12)]                       (2) 

F = (S 2+W 2)1/2                                                (3) 

ZW = 1.72 [0.5(15+16)-0.5(8+9)]-0.73[0.5(8+9)-0.5(1+2)]              (4) 

ZS= 0.6 [0.25(6+2x10+14)-0.25(5+2x9+13)- 

0.25(4+2x8+12) +0.25(3+2x7+11)]                               (5) 

Z = ZW+ZS                                                (6) 



 
2. The list of all ozone pollution days (HOD3) for the period 1994-2004  
YEAR DAY(dd/mo) YEAR DAY(dd/mo) YEAR DAY(dd/mo) YEAR DAY(dd/mo)
1994 01/10 1999 15/04 2002 28/02 2003 01/06 
1995 26/09  27/04  12/03   02/06 
1996 20/04  28/04  24/05   04/06 

  21/04  29/04  25/05   05/06 
  25/04  08/05  26/05   26/09 
  12/05  13/05  27/05   04/10 
  13/05  14/05  28/05   22/10 
  18/05  21/05  29/05   23/10 
  29/10  29/05  30/08   27/10 
  30/10  31/05  21/09   29/10 

1997 24/04  05/06  22/09 2004 06/04 
  25/04  24/09  29/09   21/04 
  29/05  24/10  30/09   28/04 
  12/11   27/10  01/10   29/04 

1998 04/04 2000 18/04  02/10   11/05 
  18/04  09/05  04/10   05/06 
  19/09   18/09  05/10   06/06 
  20/09   20/09  09/10   12/06 
  22/09 2001 23/03  10/10   13/06 
  23/09  13/05  08/11   30/06 
  24/09  24/05  13/11   30/09 
  25/09  25/05  17/12   08/10 
  27/09  26/05 2003 20/02   09/10 
  01/10  04/07  05/04   10/10 
  02/10  10/09  09/04   20/10 
  03/10  11/09  10/05   21/10 
  18/10  05/10  20/05   23/10 

 12/11  06/10  21/05  02/11 

1999 06/04  11/10  26/05   03/11 
  07/04  12/10  27/05   05/11 
  08/04  13/10  30/05   10/11 
  11/04  14/10  31/05   20/11 
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