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Abstract This paper deals with the adhesive interaction arising between a
cell circulating in the blood flow and the vascular wall. The purpose of this
work is to investigate the effect of the blood flow velocity on the cell dynamics,
and in particular on its possible adhesion to the vascular wall. We formulate
a model that takes into account the stochastic variability of the formation of
bonds, and the influence of the cell velocity on the binding dynamics: the faster
the cell goes, the more likely existing bonds are to disassemble. The model
is based on a nonlinear birth-and-death-like dynamics, in the spirit of Joffe
and Metivier (1986); Ethier and Kurtz (2009). We prove that, under different
scaling regimes, the cell velocity follows either an ordinary differential equation
or a stochastic differential equation, that we both analyse. We obtain both the
identification of a shear-velocity threshold associated with the transition from
cell sliding and its firm adhesion, and the expression of the cell mean stopping
time as a function of its adhesive dynamics.

Keywords Cell adhesion · Metastatic development · Immune response ·
Atherosclerosis · Stochastic process

1. Introduction (2)
2. A Markovian jump process for the cell adhesion dynamics (5)
3. Continuous limiting models and characterization of the dynamics (9)
4. Discussion (22)

References (26)
Appendices (29)

C. Etchegaray
INRIA Monc, Institut de Mathématiques de Bordeaux, 351, cours de la Libération, 33 405
TALENCE, France.
E-mail: christele.etchegaray@inria.fr

N. Meunier
LaMME, CNRS UMR 8071, Université Évry Val d’Essonne, 23 boulevard de France 91 037
Évry Cedex, France.
E-mail: nicolas.meunier@univ-evry.fr



2 Christèle Etchegaray, Nicolas Meunier

Fig. 1 Scheme of the multistep cascade of leukocyte extravasation. Reprinted by permission
from Macmillan Publishers Ltd: Nature Reviews Immunology Vestweber (2015), copyright
(2007).

1 Introduction

1.1 Biological context

Cell adhesion to the vascular wall is a major process involved e.g in inflam-
mation and metastasis invasion (Granger and Senchenkova, 2010). The adhe-
sive interaction between a cell circulating in the blood flow and endothelial
cells forming the wall occurs in the presence of hemodynamic forces. Adhe-
sion bonds can form between cell transmembrane proteins, called ligands, and
adhesion receptors at the vascular wall surface. The first step of interaction
happens when some bonds form and are stabilized, therefore slowing the cell
down: this is the so called capture phase. Then, the cell rolls or slides along
the endothelium, as new bonds form in the direction of motion and bonds at
the back disassemble. This step is mediated by the selectin receptor molecules.
During rolling, endothelial cells may also be stimulated, leading to the recruit-
ment of integrins, another family of cell-receptor molecules. They mediate the
cell firm adhesion which allows it to cross the vascular. The cell extrava-
sation out of the vessel leads to further development of the process involved
(immune response, invasion of tissues by metastatic cells e.g, see for example
Ley et al (2007)). This process is depicted in Figure 1 for leukocytes.

The fate of a rolling cell is not clear, since it can either adhere to the wall
or be released in the blood flow. Many experiments have been dedicated to
the study, in vivo and in vitro, of isolated cells rolling on either monolayers of
cultured endothelial cells or surfaces coated with selectin or other molecules.
This has helped putting to light the adhesive interaction between rolling cells
and the substrate (Springer et al, 1990), and also the stochastic variability
of the rolling motion (Schmid-Schöounbein et al, 1987; Goetz et al, 1994). In
particular, for cells rolling on a substrate bearing a uniform concentration of
adhesion molecules (Springer et al, 1990), such a variability suggests that the
fluctuations in the cell dynamics near the vascular wall reflects the stochastic
nature of the binding dynamics. Our purpose is to both build and study a
model of cell dynamics in a blood vessel to investigate the role of the cell’s
adhesion activity.

http://www.nature.com/nri/index.html
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1.2 Existing Models

There already exist several models and approaches that aim at studying cell
adhesion to the vascular wall. The simplest approach consists in ignoring the
cell spatial structure and in assuming a step-wise, stop-and-go motion. In the
work by Zhao et al (1995), the dynamics of the center of mass of the cell
follows a stepping process: its trajectory is approximated by a series of steps
made when a cluster of bonds dissociates. Two random variables are used to
describe the average stepsize and lifetime of bond clusters resisting the applied
fluid force. Performing some mean field approximation makes it possible to
heuristically derive a Fokker-Planck equation that governs the cell velocity
evolution. This approach allowed to explain the dispersion of rolling velocity
data acquired under different experimental conditions. In the same spirit, in
the absence of blood flow, macroscopic models have been developed for cell
adhesion force (Preziosi and Vitale, 2011), where bonds are described as a
distribution function. Its dynamics follows a maturation-rupture equation, also
called renewal equation. In the limit of large bonds turnover, a macroscopic
friction coefficient can be computed (Milišić and Oelz, 2011, 2015).

In the work by Grec et al (2018), the cell is described as a point carried by
the blood flow and interacting with the endothelium, seen as a straight line. At
the level of the individual receptor molecule, ligand binding and dissociation
are stochastic Poisson processes. The bond forces are described by linear elas-
tic forces. For constant binding and dissociation rates, the averaged problem
writes as a deterministic linear Volterra integro-differential equation similar
to the one considered by Preziosi and Vitale (2011); Milišić and Oelz (2011),
and provides some information on the cell location. Linear continuous models
are not satisfactory as they can not describe the strong dependency of the cell
arrest on the shear flow. In the work by Grec et al (2018), force-dependent
binding rates and/or nonlinear elastic laws are also considered. For these non-
linear models a threshold on the blood velocity, under which the cell velocity
vanishes, was numerically observed. Furthermore the link between the nonlin-
ear stochastic processes and the deterministic equations was only highlighted
numerically.

In the works by Hammer and Lauffenburger (1987); Hammer and Apte
(1992), the authors used a numerical model to describe the interplay between
hydrodynamic transport and adhesion. In these works, the cell is modeled as a
receptor-bearing hard sphere that interacts with a planar ligand-bearing wall.
The ligand-receptor binding follows a chemical kinetic dynamics according to
Bell’s law, (Bell, 1978). Bonds then exert elastic forces on the sphere while the
linear shear flow exerts both hydrodynamic force and torque. In the PhD thesis
of Korn (2007), the Brownian motion of the sphere is taken into account in
order to model the spatial receptor-ligand encountering more precisely. These
models allow the numerical study of the influence of weak bonds on the motion
of the sphere. More recently, other mechanical models were built to describe
more precisely the hydrodynamic forces exerted on the cell (Reboux et al,
2007; Efremov and Cao, 2011; Li et al, 2018). These works justify a bistable
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behaviour between either cell release and rolling, or between cell arrest and
rolling.

1.3 Results of the paper

The main goal of this article is to study the balance between shear forces
and resistive adhesion forces, and its consequences on the dynamics of a cell
located near the arterial wall. To this aim, we build a stochastic model of
birth-death type for a particle cell that develops adhesive interaction with the
vascular wall. Note that in this setting, no information on the repartition of
bonds can be obtained, so that cell rolling can not be described and will thus
be confounded with cell sliding in the following. In order to model the effect of
the cell motion on the adhesion dynamics, we consider cell velocity-dependent
binding rates. In such a case the model is nonlinear. We want to capture the
transition from cell rolling to either its stopping or its release in the blood
flow. For this purpose, we perform and justify some scaling limits to quantify
for the effect of the cell adhesion activity on the dynamics of the cell.

Following the approach of Grec et al (2018), we consider a minimal discrete
stochastic model where the cell is a point particle carried by the blood flow in
a one-dimensional setting. The adhesion dynamics is modeled by a Markovian
Jump process for the formation and disassembly of bonds exerting units of
resistive force. The choice of a stochastic model follows biological observations
of e.g Springer et al (1990). This model has some similarities with the one
heuristically derived by Zhao et al (1995) but describes more precisely the
interaction with the endothelium, in the spirit of Hammer and Apte (1992).
Moreover, by considering constant binding forces instead of elastic ones, the
present model differs from the one given by Grec et al (2018). Additionally, we
take into account both the adhesions growth, modelled by the reproduction of
bonds, and the effect of the cell velocity on the binding dynamics, thus leading
to a nonlinear stochastic process.

The timescale of the binding dynamics being actually fast compared to
the timescale of cell motion, it is natural to use a time-continuous descrip-
tion of the adhesion dynamics. Therefore, in a second step, we rescale the
process in the spirit of Joffe and Metivier (1986); Ethier and Kurtz (2009),
and we rigorously derive continuous limiting models for the cellular adhesion
dynamics. Depending on the renormalization assumptions, we obtain either a
deterministic or a stochastic model, which we both study.

The deterministic model predicts that when the shear rate is high or the
vascular wall is in a lowly inflamed state (with a low density of adhesion
proteins), the cell develops no bonds with the wall, while it can slow down
and slide on the wall otherwise, until it eventually stops and adheres to the
wall. More generally, the model successfully predicts bistable behaviours in
some parameter spaces, between either cell release and sliding or cell sliding
and arrest. Consequently, the model is indeed able to describe the two-step
process involved in the cell adhesion to the vascular wall. The analysis of the



A stochastic model of cell adhesion to the vascular wall 5

continuous stochastic model is made in two steps. First, when there is no
feedback from the cell velocity on the adhesion activity, the model writes as
a Cox-Ingersoll-Ross (CIR) process, for which the probability density of the
arrest time is explicitly given and numerically shows a transition between the
cell stopping and its release in the bloodstream. Then, in the nonlinear case,
when the blood flow exerts a feedback on the binding dynamics, we derive the
cell mean stopping time using a Fokker-Planck approach.

We believe that this work can have strong implications for the immune
response, drug delivery systems, as well as tumor invasion. More precisely, our
model could be used as a first step in the construction of a permeability law for
the vascular wall. In a future work, it will be compared with experimental in
vivo data obtained by Follain et al (2017) in the context of metastatic invasion.

The plan of this article is the following. In Section 2, we detail the con-
struction of the discrete stochastic model of the individual bond dynamics,
and we perform its analysis together with numerical simulations. In Section
3, we proceed to rigorous derivations and study of models of the continuous
time-evolution of the cell velocity, which are either deterministic or stochastic.
In Section 4 we discuss our results and how they allow the characterization of
the long term cell motion.

2 A Markovian Jump process for the cell adhesion dynamics

We first present the stochastic model used to investigate the adhesion process
outlined in the introduction. We use a classical birth-and-death process for
bonds turnover. As in most of the literature, see Bell (1978), it is assumed
that the bond lifetime has an exponential distribution. Then, we study its
mathematical properties and perform some numerical simulations.

2.1 Modelling approach

Let us consider a cell carried by the blood flow. We suppose that the distance
between the cell and the blood vessel wall is small enough so that bonds
may always form. Since the cell is in the vicinity of the wall, we assume that
the blood shear flow is 1D, parallel to the vascular wall and with a constant
velocity, denoted by u ∈ R+.

Deformability may play a role in the cell dynamics inside the blood flow
and in its interaction with the vessel wall. However, some large cells like Cir-
culating Tumor Cells can be very stiff (Follain et al, 2017), and still follow
the behaviour studied in this paper. Therefore, we hereafter choose to neglect
cell deformability and to focus on the interaction between the intracellular
adhesion dynamics and the vascular wall.

In previous studies, see Chang and Hammer (1999); Jadhav et al (2005)
e.g., it was shown that approximating the contact surface by a simple geomet-
rical figure (a circle or a rectangle) and neglecting the increase of the contact
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surface with the flow shear rate due to cell deformability do not qualitatively
change the analysis. Moreover, as suggested in Bhatia et al (2003), the cell
adhesion is primarily determined by physicochemical properties of adhesion
proteins. In a first approximation, we thus assume the cell to be a point par-
ticle whose position at time t ≥ 0 is denoted by Xt.

Velocity model

To describe the cell motion, we use a non-inertial approximation. Indeed, in
a regime of low Reynolds number, viscous forces outweight inertial forces and
the momentum equation reduces to the force balance principle:

Vt = u− γFt,

where Vt ∈ R is the cell velocity, u is the blood shear flow and the cell is
subjected to a macroscopic resistive force, denoted by Ft ∈ R+, and induced by
the bonds that contribute to decelerating the cell, see Figure 1. The parameter
γ is such that γ−1 is a friction coefficient, following a linear force-velocity
relation. The previous equation is valid only for γFt ≤ u, as for a maximal
force the cell stops and the model is no longer valid. The resistive force arises
from the strength of the cell adhesion to the vessel wall. Cellular adhesion is
the macroscopic readout of the forces exerted by the wall on the cell through
each bond (Boettiger, 2007). As a result, we assume that

Ft = fNt ,

where f ≥ 0 is the typical force generated by a stabilized bond, and Nt is the
number of stabilized bonds at time t. Note that f ranges in pN (Boettiger,
2007), but its precise value depends on the experimental conditions.

Non-dimensionalization

We now introduce typical quantities for our problem: the typical force consid-
ered is the one generated by a stabilized bond: F = f ; the associated typical
velocity writes V = γF = γf ; and the typical timescale of the model is taken
to be the typical lifetime of a bond (Alon et al, 1995): T = 1s. Therefore,
keeping the same notations for simplicity, the nondimensionalized problem
writes

Vt = u−Nt .

We now construct the process (Nt)t of the number of stabilized bonds over
time.
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Stochastic model for the adhesive force

Let us now introduce the simple discrete model that we use to describe the
individual bonds dynamics. We write (Nt)t the Markovian processes for the
number of stabilized bonds at time t, which follows a classical birth-and-death-
like dynamics in the state space N.

• New bonds form spontaneously at rate c(u) = c1u≤u∗ , for a velocity thresh-
old u∗ above which no new bonds can be created, due to the high blood
velocity.

• Each existing bond can reproduce at constant rate r. This phenomenon
reflects the local reinforcement of the connection to the vessel wall by
the involvement of integrins in adhesion growth, which can be imputed
to cytoskeletal forces or external stresses (Nicolas et al, 2004). Moreover,
intuitively, if an adhesion complex is composed of a large number of bonds,
the unbounded molecules can find an attachment more easily than a less
stable adhesion formed of fewer molecules.

• Each bond dissociates at the velocity-dependent rate d(Vt) = deαVt =
deα(u−Nt). We choose here an exponential relation, where d is the unstressed-
bonds dissociation rate, and α is a sensitivity parameter. This choice ac-
counts for the fact that the average lifetime of an adhesion site changes
with the applied tension exerted by the blood flow: the faster the cell, the
shorter the bonds’ lifetime. Note that since the cell velocity is bounded
by u, the dissociation rate is also bounded. In the following, we will write
indifferently d(Vt) or d(Nt).

Remark 1 The rate of a single bond formation is mainly determined by the
time spent by the two proteins near one another. Therefore, the rate c should
depend on the cell velocity when it is non zero. A more realistic choice for
c would be a decreasing function of the instantaneous cell velocity Vt such
as c(v) = (u∗ − v)+, where ( · )+ denotes the positive part function. Since Vt
depends on Nt, the rate rewrites c(n) = (u∗ − u+ n)+ with n the number of
stabilized bonds. For such a choice, and assuming that v ≤ u∗, the dependency
on n then only provides an additional contribution to the reproduction rate.

Note that these rates are also representative of the adhesive properties of the
endothelial cells forming the vessel wall. The key point here is that there is a
feedback loop between the instantaneous cell velocity and the bonds dynamics.
More elaborate dependency could be considered (see e.g Milišić and Oelz (2011,
2015)), in particular involving age dependencies to model the bond elasticity
(see Grec et al (2018)), but we choose to keep a minimal set of parameters,
for both simplicity and the sake of clarity.

The balance between the adhesion force on the one hand, and the load
and torque created by the blood flow on the other hand then determines the
outcome of the dynamics: either the cell rolling and arrest or its release in the
blood flow.
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2.2 Mathematical properties of the discrete model

In this section we derive some mathematical properties based on stochastic
analysis tools, and we perform numerical simulations of the process (Nt)t.
The dissociation rate being nonlinear, classical tools do not apply. Since we
are interested in the dynamics while Vt ≥ 0, that is, while Nt ≤ u, we define
the stopping time

τu := inf
t≥0
{Nt ≥ u} .

We are interested in the Markovian jump process (Nt)t∈[0,τu] defined by the
following transitions:

n 7→
{
n+ 1 at rate λ(n) = c(u) + rn ,
n− 1 at rate µ(n) = d(n)n ,

(1)

where λ and µ are defined on N, and are bounded. Such a process is classi-
cally well-defined (see e.g Ethier and Kurtz (2009)). We also control the mean
number of bonds in finite time.

Proposition 1 (Moments propagation) Assume that there exists p ≥ 1
such that E [Np

0 ] < +∞. Then,

E

[
sup

t∈[0,T∧τu]
Np
t

]
< +∞∀ T > 0 .

Proof This Proposition is proved in a more general framework in Appendix A.

The mean path of this process can not be fully studied in the general case.
Indeed, for E [N0] < +∞, we classically write the mean equation

E [Nt∧τu ] = E [N0] + c(u)E[t ∧ τu] + E
[∫ t∧τu

0

(
r − deα(u−Ns)

)
Ns ds

]
(2)

where, even when assuming t ≤ τu, the nonlinearity prevents any analysis. In
a simpler case, namely when there is no feedback from the cell velocity on the
adhesion dynamics, and without considering the stopping time τu, we obtain a
classical immigration-birth-death process, that was already studied by Bansaye
and Méléard (2015); Dessalles et al (2018). More precisely, (Nt)t then follows
a negative binomial distribution of parameters

(
c(u)
r , rd

)
. It follows that

E[Nt] =

{
E[N0] + c(u)t if r = d ,

E[N0]e(r−d)t + c(u)
r−d

(
e(r−d)t − 1

)
otherwise.

(3)

At steady state, one finds

E[N ]∞ :=

{
c(u)
d−r for r < d ,

+∞ otherwise,
⇔ E[V ]∞ :=

{
u− c(u)

d−r for r < d ,

−∞ otherwise,
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with
Var(N∞) =

c(u)

d
(
1− r

d

)2 .
In the case of a circulating cell, we are only interested in the situation where
v ≤ u. As a consequence, assuming E[N0] = 0 and u > 0, we obtain the
following mean asymptotic behaviours:

u > u∗
v = u Cell release

c(u) = 0

u ≤ u∗
r < d

0 <
c

d− r
< u Cell sliding

c(u) = c > 0
0 < u ≤ c

d− r Cell arrest

r ≥ d Cell arrest

These results show that the birth-and-death dynamics without feedback intrin-
siquely carries a dichotomic asymptotic behaviour. However, such a model is
not fully satisfactory, since the only shear-treshold effect that appears concerns
the initiation of the adhesive interaction and not the cell fate.

2.3 Numerical Simulations

The process (Nt)t being Markovian, it can be simulated directly events after
events. Consider the population size NTk at time Tk. Then,

• the global jump rate writes ςk = λ(NTk) + µ(NTk), which means that the
time before the next event is a random variable following an exponential
law of parameter ςk. A realization of this law provides Tk+1.

• a new bond is created with probability λ(NTk)/ςk, while with probability
µ(NTk)/ςk a randomly chosen bond disassembles, and NTk+1

follows.

The above procedure can be iterated to give the time evolution of the pro-
cess. Numerical simulations of the process are displayed in Figure 2. One may
observe that the velocity may either shrink to zero or remain close to u for
the same parameter values. Note also that sliding phases are observed in both
cases.

3 Continuous limiting models and characterization of the dynamics

In this section we separate the scale of the adhesion dynamics from the one of
the cell motion. Such scale separation is justified by the large number of bonds,
and by the very fast binding dynamics, as compared to the cell displacement.
As an illustration, a bond lifetime ranges around 1s, a typical binding rate
ranges aroung 103 s−1 whereas the cell rolling velocity ranges around 30µms−1
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(a) The stochasticity induces a sliding
phase that ends up in the cell arrest.

(b) The cell only experiences a small
sliding phase that does not prevent its

release in the blood flow.

Fig. 2 Numerical simulations of the discrete process defined by (1). Parameters:
(u, c, r, d, α) = (33, 4, 5, 3, 0.1).

(see Grec et al (2018) and the references therein). As will be seen next, this
assumption allows the use of a scaling approach to derive two continuous
limiting models, for which deeper analysis can be pursued.

More precisely, let K ≥ 1 be a parameter such that 1/K scales the force
generated by a fraction of bonds. Moreover, we assume that the bond dynamics
gets faster and faster as the fraction of bonds gets smaller: we consider now
K-dependent rates cK , rK , and dK , related to the process (NK

t )t. We then
define the renormalized process (ZKt )t by

ZKt =
1

K
NK
t ∈

1

K
N. (4)

3.1 Deterministic continuous limiting model

We consider the following rates:

cK(u) = Kc(u) , rK = r , and dK(KZKt ) = d(ZKt ) . (5)

In other words, in considering an approximation for a continuous description of
bonds, the formation rate is larger, while the self-enhancement of the adhesion
dynamics and the bonds typical lifetime stay unchanged. From the modelling
viewpoint, such an assumption amounts to considering adhesion clusters that
involve only a small number of proteins on each side (wall and cell). Note that
since the reproduction is not accelerated, the clustering that leads to adhesion
growth is not large enough to induce stochastic fluctuations at the cell level.
In this context, we obtain the following convergence result.
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Theorem 1 Consider the sequence of processes (ZK)K for (ZKt )t≥0 defined
by (4) and rates defined by (5). If ZK0 −→

K→+∞
n0 ∈ R+ in probability, and if

sup
K>0

E
[
(ZK0 )2

]
< +∞ ,

then, for T > 0, (ZK)K>0 converges in law in D ([0, T ],R+) to the unique
continuous function n ∈ C([0, T ],R+) solution to

n(t) = n0 +

∫ t

0

c(u) + (r − d(n(s)))n(s) ds . (6)

Remark 2 By the Gronwall lemma, one has for T <∞,

sup
t∈[0,T ]

n(t) ≤ (n0 + cT )erT < +∞ ,

showing that the global density stays finite in finite time.

Proof The proof is displayed in Appendix B.

We now perform the analysis of the limiting problem. Let us define the function
F by F (n) = c1u≤u∗ +

(
r − deα(u−n)

)
n. We prove the following result.

Proposition 2 Assume that the rates are given by (5). Then the stationary
state(s) n∞ of (6) are as follows.
1. If u > u∗, then the system admits two stationary states n∞1 = 0 and

n∞2 = u− 1
α ln( rd ). The smallest is stable and the largest is unstable.

2. If u ≤ u∗,
(a) for u ≤ 1

α ln
(
r
d

)
, then n∞ = +∞.

(b) for u > 1
α ln

(
r
d

)
, then there exists a unique 0 < n̄ < 1

α such that
F ′(n̄) = 0 and
i. If F (n̄) > 0, then n∞ = +∞.
ii. If F (n̄) = 0, then n̄ is the unique stationary solution.
iii. If F (n̄) < 0, then there exists two stationary solutions n∞1 and n∞2 ,

such that 0 < n∞1 < n̄ < n∞2 < +∞, the smallest being stable and
the largest unstable.

Proof The case u > u∗ follows from a direct computation. Consider the case
where u ≤ u∗, then one has

n′(t) = c+
(
r − deα(u−n(t))

)
n(t) = F (n(t)) .

To understand the dynamics of the velocity of the cell, we have to understand
that of n. We are therefore interested in the values of n for which F (n) = 0,
which are the steady states, and in the sign of F required to obtain the stability
of the steady states. A quick computation shows that

F ′(n) = r + d (αn− 1) eα(u−n) ,

F ′′(n) = αd (2− αn) eα(u−n) .

We can study the sign of F ′′(n) to obtain the variations of F ′. This yields the
following variation table:
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n 0 2
α +∞

F ′′(n) + 0 −

F ′(n)

r − deαu

��
�

�

F ′( 2
α ) > 0

@
@
@R

r

Since F ′(2/α) > 0 and r > 0, the existence of a stationary state n∞ such that
F (n∞) = 0 depends on the sign of F ′(0) = r − deαu. As a consequence,

– If u ≤ 1
α ln

(
r
d

)
, then ∀n ∈ R+, F (n) ≥ c > 0, hence n∞ = +∞.

– If u > 1
α ln

(
r
d

)
, then F ′(0) < 0, and there exists a unique 0 < n̄ < 2

α such
that F ′(n̄) = 0. This provides the sign of F ′, from which we obtain the
variation table for F that leads to the result:

n 0 n̄ < 2
α +∞

F ′(n) − 0 +

F (n)

c > 0
@
@
@R
F (n̄)

��
�
�

+∞

Notice that since u > 1
α ln

(
r
d

)
⇔ deαu > r, both behaviours arise according

to the comparison between the reproduction and death rates. Note also that
since F ′ is strictly increasing on

(
0, 2

α

)
and since F ′(1/α) = r > 0, we obtain

that n < 1/α.

Remark 3 Note that if u∗ ≥ u > 1
α ln

(
r
d

)
the three cases described in the

proposition above may occur. Indeed, consider the particular case where d > r

and u =
1− rd
α , then n̄ = u and F (n̄) = c − (d−r)2

αd whose sign depends on the
value of c. The dynamics is then dependent on the ability of the cell to form
bonds at primary contact.

We are now interested in the biological interpretation of this study. Since our
model is only valid up until the cell adhesion to the vessel wall, we consider
Equation (6) up until the adhesion density reaches u. The following Corollary
locates u with respect to the stationary state(s) of the system. This allows us
to assess the cell fate depending on the parameter values. For α > 0, denote
the key parameters

Uα :=
1

α
ln(r/d), Uα :=

1

α
(1−r/d), Uc :=

c

d− r
, and C :=

1

αd
(r−d)2 .

Corollary 1 Let n0 ∈ [0, u] with u > 0. Then, Equation (6) admits either
one stationary state denoted by n∞, or two stationary states n∞1,2 such that
0 < n∞1 < n∞2 , the smaller one being stable and the larger unstable.

1. If u > u∗:
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(a) for r ≤ d, then n∞1 = 0 and n∞2 = u− Uα ≥ u.
(b) for r > d, if u ≤ Uα, n∞ = +∞ ; if u > Uα, one has n∞1 = 0 < n∞2 =

u− Uα < u.
2. If u ≤ u∗, then
(a) for r < d, ∃!0 < n̄ < 1

α such that F ′(n̄) = 0.
i. For u > Uα, F ′(u) > 0, so that u > n.

A. If u > Uc, then we have 0 < n∞1 < n < u < n∞2 .
B. If u = Uc, then 0 < n∞1 < n∞2 = u.
C. If u < Uc, then if F (n̄) < 0, one has 0 < n∞1 < n < n∞2 < u ;

if F (n̄) = 0, then n∞ = n < u ; if F (n̄) > 0, then n∞ = +∞.
ii. For u = Uα, then u = n.

A. If c > C, then n∞ = +∞.
B. If c = C, then n∞ = u.
C. If c < C, then 0 < n∞1 < u < n∞2 .

iii. For u < Uα, then 0 < u < n.
A. If u = Uc, then n∞1 = u < n∞2 .
B. Otherwise, if F (n̄) = 0, then u < n∞ = n ; if F (n̄) > 0, then

n∞ = +∞. Finally, if F (n̄) < 0, then u < n∞1 < n∞2 when
u < Uc, and n∞1 < u < n when u > Uc.

(b) For r = d, there exists a unique 0 < n̄ < 1
α such that F ′(n̄) = 0 and

u > n. If F (n̄) < 0, we have 0 < n∞1 < n < n∞2 < u. If F (n̄) = 0,
n∞ = n < u. If F (n̄) > 0, n∞ = +∞.

(c) For r > d, F (u) > 0.
i. if u ≤ Uα, then n∞ = +∞.
ii. if u > Uα, then ∃!0 < n̄ < 1

α such that F ′(n̄) = 0 and u > n.
Then, if F (n̄) < 0, we have 0 < n∞1 < n < n∞2 < u. If F (n̄) = 0,
n∞ = n < u. If F (n̄) > 0, n∞ = +∞.

Proof The Corollary results from Proposition 2 combined with the sign anal-
ysis of F (u) and F ′(u) that depends on parameter values.

Let us give an interpretation of the above results. First, note that when
there are two stationary states, the largest one denoted by n∞2 is unstable.
Therefore, if n∞2 < u, it follows that for n(0) > n∞2 , the adhesion density will
increase until the cell adheres to the wall. This can be interpreted as another
stable stationary state for the model, which therefore captures the bistability
previously described in experimental and theoretical studies. This property
will be further discussed in Section 4.

Table 3a gives the outcome of the cell dynamics in the case where u > u∗.
In this case, the blood flow is so fast that the cell does not initiate any new
adhesion. However, the dynamics may still be interesting in the case where
some bonds already exist and may be stabilized by the growth of adhesions.
Then, if r ≤ d, dissociation is always more frequent than strenghtening of
existing adhesions, so that starting with n0 ≤ u, the cell is released into the
bloodstream. When r > d, and depending on the sensitivity α of the dissoci-
ation rate on the cell velocity, the cell either goes back in the bloodstream or
adheres firmly to the wall, while sliding is an unstable state.
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Table 3b shows the possible outcomes in the case where u ≤ u∗. In this
situation, the whole adhesion dynamics is active. Then, the conditions dis-
criminating between different cell fates are based on the balance between the
formation of adhesion bonds (related to r and c), and their dissociation (re-
lated to d and α). This study shows how Equation (6) has more complex
behaviours in comparison with the mean linear ODE (3).

Let us comment on these results. First of all, not surprisingly, our model
successfully predicts the shear-stress threshold above which nor capture nor
sliding occurs when the cell does not initially interact with the wall. This is ex-
plained by the regulation of bonds dissociation by the cell velocity. The model
also predicts the firm adhesion to the wall that is observed experimentally.
Finally, the model provides conditions on the parameter space for both stable
sliding and bistable behaviour between cell sliding and cell adhesion. This re-
sults come from the competition between bonds formation and rupture that
occurs in the cell-wall contact area.

r > d

u ≤ Uα n∞ =

{
+∞ if initial contact,
0 otherwise.

Cell arrest if initial contact,
Cell release otherwise

u > Uα n∞1 = 0 < n∞2 = u− Uα < u Cell release, Cell sliding
and Cell arrest

r ≤ d n∞1 = 0 < u < n∞2 = u− Uα Cell release

(a) Case u > u∗

r > d
u ≤ Uα n∞ = +∞ Cell arrest
u > Uα

u > n
Cell arrest

r = d or Cell sliding

r < d

u > Uα

u < Uc or Two sliding regimes

u = Uc 0 < n∞1 < n∞2 < u
Two sliding regimes

and Cell arrest
u > Uc 0 < n∞1 < u < n∞2 Cell sliding and Cell arrest

u = Uα

c < C

c = C n∞ = u
Cell arrestc > C n∞ = +∞

u < Uα

u = Uc 0 < n∞1 = u < n∞2

u 6= Uc 0 < u < n
Cell sliding and Cell arrest

or Cell arrest

(b) Case u ≤ u∗

Fig. 3 Table of stationary solutions of (6) and corresponding situations. Stationary solu-
tions are in red if unstable, blue if stable.

3.2 Stochastic continuous limiting model

In this section, we consider the following rates:

cK(u) = Kc(u), rK = r +Ka, and dK(KZKt ) = d(ZKt ) +Ka, (7)
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with K > 0 and a > 0. The whole adhesion dynamics is therefore accelerated.
Note that using the same acceleration for reproduction and death permits to
keep the same bounded individual growth rate rK−dK = r−d. This way, even
if each adhesion bond reproduces and dies infinitely faster, its contribution to
the global adhesion growth remains the same.

Theorem 2 Consider the sequence of processes (ZK)K for (ZKt )t≥0 defined
by (4) and rates defined by (7). If for K → +∞ the initial value ZK0 converges
in law to a R+-valued random variable N0, with

sup
K>0

E
[
(ZK0 )2

]
< +∞,

then (ZK)K>0 converges in law in D ([0, T ],R+) to the continuous process
N = (Nt)t∈[0,T ] ∈ C([0, T ],R+) solution of

dNt = b(Nt) dt+ σ(Nt) dBt, (8)

with Bt a Brownian Motion, b(Nt) = c(u)+(r−d(Nt))Nt and σ(Nt) =
√

2aNt.

Proof The proof is displayed in Appendix C.

Remark 4 The solution to the SDE (8) is almost surely positive if b(n) ≥ 0
for all n ≥ 0, and for a positive initial state (see the 1D comparison principle
in Karatzas and Shreve (1998) e.g.).

Numerical simulations In order to preserve the positivity of the process, we
perform numerical simulations of the SDE (8) using a symmetrized Euler
scheme, which consists in taking the absolute value of the classical Euler
scheme (see e.g Berkaoui, Abdel et al (2008)). More precisely, the scheme is the
following: write (Nk)k for the discretization of (Nt)t, where Nk corresponds to
the time tk = k∆t. Then, define N0 = n0 and for k ≥ 0,

Nk+1 =| Nk + b(Nk)∆t+
√

2a∆tNkW | ,

with W ∼ N (0, 1). The strong L1 convergence of this scheme is proved by
Berkaoui, Abdel et al (2008) provided that

σ2

8

(
2b(0)

σ2
− 1

)2

> 3P ∨ 4σ2 ,

for P ≥ |r − d| and ∆t ≤ 1
2P . This condition allows to deal with the non-

Lipschitz diffusion coefficient, and rewrites, in our case,

a

4

( c
a
− 1
)2

> (3P ∨ 8a) .

As an example, a
4

(
c
a − 1

)2
> 8a is equivalent to

(
c
a − 1

)2
> 32, which is

verified for c > 7a. The numerical simulations are displayed in Figure 4, and
show two typical arrest and release situations.
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(a) Example of cell arrest, c = 4. (b) Example of cell sliding, c = 5.

Fig. 4 Numerical simulations of the solution of the SDE (8), showing typical arrest (left)
and sliding before release (right) situations. The cell velocity is displayed in red while the
cell position is displayed in blue. Parameters: (u, r, d, α, a) = (20, 5, 4, 0.1, 0.55).

The rolling motion of individual cells has been observed to fluctuate ran-
domly both in vivo and in vitro. The model (8) obtained in Theorem 2 is
therefore suited to investigate the effects of the stochastic fluctuations asso-
ciated with the adhesion activity on the cell dynamics. In particular, we are
interested in the expected time until the cell firmly adheres to the vessel wall.

The case without feedback: the CIR process.

When we assume that the cell velocity exerts no feedback on the bonds disso-
ciation, the solution of (8) reduces to a CIR process, see Göing-Jaeschke and
Yor (1999); Shreve (2004); Ikeda and Watanabe (1989):

dNt = (c+ (r − d)Nt) dt+
√

2aNt dBt , (9)

with c > 0, a > 0 and r−d ∈ R. It is known that such processes arise from the
diffusion limit of discrete branching processes with immigration (Athreya and
Ney, 2004), and show a dichotomy behaviour. Depending on the parameters,
the density is almost surely either close to 0 or large, leading to the almost sure
cell arrest in our model. Simulations of this process are displayed in Figure
5. Some general properties of the CIR process are displayed in Appendix D.
In particular, its stationary probability density is represented in Figure 5 and
shows the transition between both behaviours.

Time to reach u: It is also possible to obtain information on the time needed
to reach a given value. More precisely, one can use the Laplace transform of the
first hitting time of any value, starting at a given point (Göing-Jaeschke and
Yor, 1999; Leblanc and Scaillet, 1998). However, it is not possible to proceed to
its inversion analytically. While numerical inversions procedures exist (some
of them are compared by Leblanc and Scaillet (1998)), they do not always
provide satisfactory results: the integral of the output may not be equal to
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(a) Subcritical case with
(c, a, r, d) = (0.5, 1.5, 4.45, 4.5).

(b) Supercritical case with
(c, a, r, d) = (2, 1, 4, 4).
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)

(c) Subcritical case with (c, a) = (1, 2).
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(d) Supercritical case with (c, a) = (5, 2).

Fig. 5 Up: numerical simulations of the CIR process (9). In the subcritical case, the adhe-
sion density almost surely reaches zero, while in the supercritical case, an adhesive interac-
tion is almost surely sustained. Down: numerical simulations of the stationary probability
density of the CIR process for (u, α, r, d) = (20, 0.1, 4, 4.5).

one, and negative values may appear. The procedure proposed by Abate and
Whitt (1992) seems satisfactory in this viewpoint.

In this paper, we follow the work of Linetsky (2004a,b) to numerically
compute the first hitting time density using an eigenfunction decomposition,
an approach used for diffusions in the litterature (Davydov and Linetsky, 2003;
Itô and McKean, 1965; McKean, 1956). For the CIR process, it is established
in Linetsky (2004c,b) that the same type of decomposition holds. We now
recall the result of Linetsky (2004a) that provides a series expansion for the
density fTx→y of the first hitting time of y starting from x.

Proposition 3 Linetsky (2004a)

i) For 0 < x < y ∈ I, and t > 0 we have

fTx→y (t) =

+∞∑
n=1

onλne
−λnt , (10)
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with uniform convergence on [t0,+∞), t0 > 0, and (λn)n a strictly posi-
tive and strictly increasing sequence with λn growing to +∞ as n goes to
infinity. More precisely, we have that

λn = (r − d)sn , (11)

with (sn)n the strictly decreasing sequence of strictly negative roots of Φ( · ; c/a; y) =
0, with Φ(w1;w2;w3) denotes the Kummer confluent hypergeometric func-
tion. The sequence (on)n is defined by

on = − Φ(sn; c/a;x)

sn∂s(Φ(sn; c/a; y))
, (12)

for y := − r−da y and x := − r−da x.
ii) Moreover, the following asymptotics hold:

λn ∼
n→+∞

(d− r)π2

4y

(
n+

c

2a
− 3

4

)2

− (r − d)c

2a
, (13)

as well as

on ∼
n→+∞

(−1)n+12π(n+ c/(2a)− 3/4)

π2(n+ c/(2a)− 3/4)2 − 2c
a y
× e 1

2 (x−y)
(
x

y

) 1
4−

c
2a

cos

(
π

(
n+

c

2a
− 3

4

)√
x

y
− πc

2a
+
π

4

)
.

(14)

Therefore, the proposed numerical method requires the computation of the set
of negative roots of Φ to get approximations of the families {λn}n and {on}n.
The choice of the level of truncation for the approximation of (10) may be
made using the following estimate:∣∣onλNe−λN t0∣∣ ∼

N→+∞
ANe−BN

2t0 ,

for

A =
2aπ

4y
e
x−y
2

(
x

y

) 1
4−

c
2a

, B =
aπ2

4y
.

Linetsky also notices that using (13)-(14) instead of computing zeros of the
Kummer function provides satisfactory results, in particular when c/a is small.
For better accuracy, one can also use the exact expressions (11)-(12) of the first
term of the decomposition, then the estimates (13)- (14) for the others. The
following numerical simulation was performed using the asymptotic expansions
of λn and on only, even for n small, since it is observed that this approximation
does not change qualitatively the profile (see Figure 6). Obviously, in this case,
the obtained function is not a probability density, and an inconsistency tends
to appear near t = 0 due to the approximation, but the overall shape is
preserved.
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Fig. 6 Numerical simulation of an approximation of the asymptotic spectral decomposition
of (10), the probability density of the first hitting time of 1 of a CIR process starting at
0.01. Parameters: ∆t = 0.01, c = 0.45, a = 0.5, r = 0.2 and d = 1. The sum is truncated at
Ntres = 100.

The general case

Let us now focus on the general case of Equation (8). As a first approach one
can use the 1D comparison principle (see e.g Revuz and Yor (2005)) to com-
pare the process with CIR processes. In this work, we follow another method
and derive from (8) a Fokker-Planck equation on p(n, t) := p(n, t|n0, t0) the
probability density of (Nt)t conditionally to its initial condition. We obtain
the following equation:

∂p(n, t)

∂t
=

∂

∂n
(−b(n)p(n, t) +

1

2

∂

∂n
(σ2(n)p(n, t)))︸ ︷︷ ︸

J(n,t)

,

where we recall that b(n) = c+ (r(n)−d(n))n, while σ(n) =
√

2an and J(n, t)
is the associated probability current. The natural boundary conditions are the
following:

J(0, t) = 0 ,

lim
n→+∞

p(n, t) = 0 ,

p(n, 0) = δn=n0
.

We are interested in the mean time necessary for the process to reach the
value u starting from n0 ∈ (0, u), that we denote by τu(n0). This question
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can be adressed by considering the Fokker-Planck equation on (0, u) with 0 a
reflecting and u an absorbing barrier. We show the following proposition.

Proposition 4 The mean time τu(n0) necessary for the process to reach the
value u starting from n0 ∈ (0, u) writes

τu(n0) =
1

a

∫ u

n0

∫ y

0

(
z

y

) c
a

z−1e
r
a (z−y) exp

(
d

aα
eαu

(
e−αz − e−αy

))
dz dy .

(15)

Proof Write G(n0, t) the probability that a particle starting at n0 is still in
(0, u) at time t. Then,

G(n0, t) =

∫ u

0

p(n, t|n0, 0) dn = P(τu ≥ t) .

Since the dynamics is homogeneous in time, we deduce that p(n, t|n0, 0) =
p(n, 0|n0,−t) and n0 7→ p(n, t|n0, 0) satisfy the backward Fokker-Planck equa-
tion:

∂p(n, t|n0, 0)

∂t
= b(n0)

∂

∂n0
p(n, t|n0, 0) +

1

2
σ2(n0)

∂

∂n02
p(n, t|n0, 0) ,

and (n0, t) 7→ G(n0, t) satisfies

∂G(n0, t)

∂t
= b(n0)

∂

∂n0
G(n0, t) +

1

2
σ2(n0)

∂

∂n02
G(n0, t) . (16)

The initial and boundary conditions are the following:

G(n0, 0) =

∫ u

0

δn−n0
dn = 1[0,u](n0) ,

∂

∂n0
G(0, t) = 0 ,

G(u, t) = 0 .

Take f ∈ C1(R,R+) non-decreasing. Then, classically, E[f(τu)] =
∫ +∞
0

f ′(t)P(τu >

t) dt =
∫ +∞
0

f ′(t)G(n0, t) dt. Hence, we get for k > 1,

τu(n0) = E[τu] =

∫ +∞

0

G(n0, t) dt ,

τku (n0) = E[τku ] = k

∫ +∞

0

tk−1G(n0, t) dt .

Integration of (16) in time leads to the following ODEs on the family (τk)k≥1:
b(n0)τ ′u(n0) + 1

2σ
2(n0)τ ′′u (n0) = −1 ,

τ ′u(0) = 0 ,

τu(u) = 0 ,

(17)
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(a) Mean first stopping time τu(0) as a
function of u.

(b) Phase plane with respect to u and
the spontaneous binding rate c.

Fig. 7 Numerical simulations of the mean stopping time τu(0) defined by (15) as a function
of u (left), and phase plane depending on the blood velocity u and the spontaneous binding
rate c. Parameters: α = 0.8, r = 0.6, d = 0.7, a = 0.1.

and for k > 1,
b(n0)τku

′
(n0) + 1

2σ
2(n0)τku

′′
(n0) = −kτk−1u (n0) ,

∂n0τ
k
u (0) = 0 ,

τku (u) = 0 .

(18)

By direct integration, we can solve (17), allowing to solve successively the
problems (18). Write

Ψ(n0) = e
∫ n0
0

2b(n′)
σ2(n′)

dn′

.

Then, we have

τu(n0) = 2

∫ u

n0

1

Ψ(y)

∫ y

0

Ψ(z)

σ2(z)
dz dy .

In practice, denoting ε > 0 the lower bound in the integral instead of zero, we
find that

Ψ(n0) =
(n0
ε

) c
a

exp

(
r

a
n0 −

d

αγa
eαu(1− e−αγn0)

)
.

Explicit computations lead to the result.

We perform numerical simulations of τu(0) for different values of the blood
flow velocity u (see Figure 7). Below a shear-velocity treshold, the particle
stops very quickly, while it becomes extremely slow above the treshold. The
numerical phase plane shows a natural dependency on the adhesion creation
rate c. The value of a, quantifying the noise intensity, has a direct effect on the
range of the arrest time, but does not qualitatively change the phase plane.



22 Christèle Etchegaray, Nicolas Meunier

4 Discussion

In this work, we have presented a discrete model of cell adhesion on a vessel
wall. The model is based on the stochastic formation of both weak bonds
between the cell and the wall, and stronger ones arising by self-reinforcement.
This phenomenon is modelled by a stochastic birth-and-death-type process.
The cell velocity exerts a feedback on the breaking rate of bonds: the faster
the cell, the shorter-lived the bonds.

Our purpose is to explore the events that follow the first cell contact with
the wall and that may determine whether the cell stops and adheres or goes
back into the blood stream. More precisely, we are interested in reproducing
the bistable behaviour observed experimentally between cell rolling on the wall
and its stationary adhesion. Moreover, we look for an expression of the cell
stopping time, which is equivalently the first hitting time of a treshold value
for the density of bonds. To achieve these goals, we perform some scaling limits
to derive continuous deterministic and stochastic models that allow for deeper
theoretical analysis.

4.1 Implication of our work on the understanding of the arrest and
extravasation of circulating cells

In vivo, the firm adhesion of circulating cells on the wall is a first step towards
its extravasation out of the vessel, which has different consequences depending
on the cell type. Extravasation of Circulating Tumor Cells (CTCs) takes part in
tumor invasion since it allows the formation of secondary tumors (Follain et al,
2017). During the immune response, leukocytes carried by the bloodstream
firmly adhere to the vessel wall at inflammed sites. Their extravasation then
allows them to pursue their immune function. Let us also mention that cell
adhesion to vessel walls is involved in the study of drug delivery systems.

Overall, cell adhesion to vessel walls is a phenomenon showing major ap-
plications in biology and medecine. It is now clear that understanding the pro-
cesses involved in the determination of the location of cell arrest is of prime
importance. This justifies the development of new mathematical models able
to explain the experimental observations. Our model focuses on the cell be-
haviour within the bloodstream, and is consequently no longer valid after the
cell velocity has reached zero. A different model is then required to capture
the fundamental processes involved in extravasation.

4.2 The linear mean ODE (3) does not agree with known observations

Our first finding concerns the mean linear Ordinary Differential Equation (3) in
which the cell velocity has no effect on the adhesion dynamics: ligand binding
and dissociation rates are constant. As expected, in such a case, the stationary
mean number of bonds is independent of the shear rate u. Such a result does
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not agree with in vitro and in vivo experiments, (Follain et al, 2017; Goetz et al,
1994), which show that cells preferably stop in regions with low shear rate.
This shows that a nonlinear model is required to capture this phenomenon.

4.3 The nonlinear model qualitatively agrees with known observations:
hemodynamic forces affect the adhesion dynamics of circulating cells (Follain
et al, 2017)

In the nonlinear case, we perform a renormalization procedure based on the
biological observation that the orders of magnitude between the adhesion dy-
namics and the cell motion are different. This allows us to rigorously build
continuous models, either deterministic or stochastic, of the dynamics of the
density of bonds (or equivalently of the cell velocity). Then, the analysis shows
that these nonlinear models predict the cell adhesion bistability as a result of
the competition taking place in the cell-wall contact area between bond for-
mation and rupture.

The deterministic limiting model provides a parameter space for cell adhesion
bistability. The deterministic limiting model writes as a nonlinear ODE, for
which we give the stationary states and their stability. This allows us to outline
the existence of a dichotomy behaviour in which the stability of the cell arrest
is explicitly related to the balance between the blood flow velocity and the
adhesion dynamics. It leads to the identification of a shear stress value that
separates the cell arrest from a moving state, in agreement with experimental
observations (Follain et al, 2017).

Our study also provides a parameter space associated with the existence of
two stationary states, with a stable release state and an unstable sliding one.
Moreover, since the model is no longer valid after the bond density reaches u,
the cell arrest is an additional «stable» stationary state. Therefore, the model
is indeed able to reproduce the bistability observed in experimental works and
already reproduced in more elaborate models that take into account the types
of proteins involved in the adhesion and the role of hydrodynamic forces in
the cell fate.

In Finger et al (1996), the authors investigate the specificity of short-lived
L-selectin proteins in the adhesion process. More precisely, they put to light a
shear-flow treshold above which L-selectin-based binding occurs. The authors
emphasize that the first step in cell adhesion may require the recruitment of
these short-lived proteins to sufficiently slow the cell down to promote the
formation of longer-lived types of bonds. Let us note that our model can ex-
plain this observation. Indeed, assuming that the spontaneous formation of
bonds is related to L-selectins, the observed treshold is described using a bond
formation rate of the form c(u, v) = c1[0,u∗](u)1[v,+∞)(v), for a given v > 0.
Reproduction then accounts for the integrins dynamics. Moreover, our assump-
tion of velocity-dependent dissociation rate is consistent with observations of
Finger et al (1996), since L-selectin bonds form when the cell velocity is high
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and, consequently, so is the dissociation rate. Integrin-based bonds form for a
smaller cell velocity, leading to longer lifetimes. Initially, one can assume that
n(0) = 0, c 6= 0, r << d, and that u > Ūα. Table 3b then shows that in the
long-time limit, the density of bonds converges towards a stable sliding state.
Then, if the cell velocity gets low enough, the cell dynamics is ruled by Table
3a with r > d, where the bistable behaviour between cell release and cell arrest
is given. Our model is therefore able to succesfully explain the two main steps
involved in the experimental observations.

More recent works have provided mechanical models taking into account
the hydrodynamics forces involved in cell adhesion. In Reboux et al (2007), the
cell is a rolling cylinder, and interestingly the model captures both sliding and
rolling situations. The model shows a bistable behaviour between cell rolling
(or weak resistance to sliding) and its release in the blood flow. In Efremov
and Cao (2011); Li et al (2018), the cell is either a rectangle with a given
zone for bond rupture, or a 2D circular cell in adhesive interaction with an
elastic substrate. Both models predict bistability between the cell arrest and
a near-release rolling state for intermediate shear rates. Furthermore, plots
of the stationary velocity depending on the blood flow velocity show that,
at stationary state, the cell adheres for a low shear rate and is in a rolling
state above some threshold. The explanation relies on the competition between
formation and rupture of bonds, that vary with the proteins involved in the
adhesion.

The model we build in this paper is simpler, since it does not describe the
cell geometry, so that the hydrodynamic description is minimal. As a conse-
quence, cell rolling cannot be distinguished from sliding, and we are not able
to provide a plot relating the blood and cell velocities. However, remarkably,
the model still reproduces a bistable behaviour, suggesting that cell adhesion
dynamics is crucial for this feature.

The stochastic limiting model provides an expression for the cell mean ar-
rest time and shows the effect of fluctuations on the dynamics. The stochastic
limiting model writes as a diffusive Stochastic Differential Equation on the
adhesion density, that carries a nontrivial noise term. It arises in a regime
where the fluctuations in the local reinforcement of adhesions have nontrivial
effects on the cell dynamics. When there is no effect of the cell velocity on
its adhesion activity, the model writes as a linear CIR process, that already
carries a dichotomic behaviour, and for which some first hitting time proper-
ties are known. We use a spectral method to perform numerical simulations of
the corresponding probability density. Finally, in the full model describing the
interaction between the cell velocity and its adhesion activity, we use a Fokker-
Planck approach to derive an integral formulation of the mean arrest time of
a cell. Numerical simulations of this quantity further confirm the dichotomy
arising between the cell arrest and its unstopped displacement in the blood-
stream, and show that the range of the arrest times is mostly sensitive to the
stochastic fluctuations intensity, in agreement with experimental observations.
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4.4 Perspectives

The modelling approach we developped gathers key components involved in
the behaviour of cells circulating in blood vessels. It allows the study how
the blood flow affects the cells ability to initiate and maintain an adhesive
interaction with endothelial cells. These phenomena mediate either the stable
cell adhesion to the wall, its rolling or sliding, or its release in the blood flow.

Further improvements would consist in extending the modelling framework
in several directions. First, the model could take into account time-dependent
rates, in order to consider a variable blood-flow velocity, illustrating the effect
of the heart cycle on the adhesion dynamics. Moreover, it is natural to extend
the model to a 2D setting, where the vessel wall is a surface and the cell
geometry is taken into account, as well as the spatial repartition of adhesive
proteins at the cell surface. This situation could be handled by adding a spatial
structure to the population of bonds, following the framework of Fournier
and Méléard (2004); Champagnat and Méléard (2007) and further works on
measure-valued stochastic processes. This framework would allow the precise
description of hydrodynamic forces exerted on the cell, so that both rolling
and sliding phenomena could occur.
Finally, further works should focus on the comparison with experimental mea-
sures to to shed light on cell arrest conditions. In particular, in the work of
Follain et al (2017), the authors study Circulating Tumor Cells (CTCs) in
vivo, and keep track of the cell arrest sites with respect to a tuned hemo-
dynamic flow velocity. They show that cell arrest in blood vessels occurs at
sites with permissive flow profiles. Since CTCs are large, fairly rigid cells, our
point-particle cells assumption is particularly relevant in this context. In ad-
dition, the density of adhesion molecules on the vessel wall is experimentally
controlled, so that each feature of the model is characterized by experimental
data. In this perspective, confronting the model to these data is of great inter-
est, and could be supplemented with the theoretical study of the distribution
of arrest positions.
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Appendices
A Mathematical properties of the rescaled process

In this part, we study the rescaled process (ZKt )t for a constant K, in a general
framework that includes the situations studied in this paper. More precisely,
we consider rates that satisfy the following hypothesis:

Hypothesis 1 For all z ∈ R+,

0 ≤ cK(u) ≤ Kc(u) ≤ Kc, 0 ≤ rK ≤ r +Ka,

0 ≤ dK(z) ≤ d(z) +Ka ≤ deαu +Ka,

where a > 0. In addition the disassembly rate z 7→ dK(z) is continuous. The
total formation and dissociation rates write

λK(z) = cK(u) + rKz and µK(z) = dK(z)z .

By construction, (ZKt )t≥0 is also a Markov process, and for Φ : R+ → R
measurable bounded, its infinitesimal generator writes

LKΦ(Z) = λK(KZ)

[
Φ(Z +

1

K
)− Φ(Z)

]
+ µK(KZ)

[
Φ(Z − 1

K
)− Φ(Z)

]
.

(19)
We show the following Proposition.

Proposition 5 (Moment and martingale properties) Under Hypothesis
1, if there exists p ≥ 2 such that E

[
(ZK0 )p

]
< +∞, then

1. ∀ T > 0,

E

[
sup
t∈[0,T ]

(ZKt )p

]
< +∞,

2. for all measurable Φ : R+ → R for which there exists C such that ∀z ∈
R+, |Φ(z)|+ |LKΦ(z)| ≤ C(1 + zp),

Φ(ZKt )− Φ(ZK0 )−
∫ t

0

LKΦ(ZKs ) ds (20)

is a càdlàg (Ft)t≥0-martingale starting from 0.
3. The process defined by

MK
t = ZKt − ZK0 −

∫ t

0

1

K
cK(KZKs ) +

(
rK(KZKs )− dK(KZKs )

)
ZKs ds

(21)

is a càdlàg square-integrable martingale starting from 0 and of quadratic
variation〈

MK
〉
t

=
1

K

∫ t

0

{
1

K
cK(KZKs ) + (rK(KZKs ) + dK(KZKs ))ZKs

}
ds .

(22)
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Proof Although the proof is similar to Proposition 2.7 of (Bansaye and Méléard,
2015) we recall it here for clarity. In the following C will denote a positive con-
stant which value can change from line to line. Let (Ω,F ,P) be a probability
space, Z0 an integer-valued random variable, and M( ds, dw) an indepen-
dent Poisson Point Measure on R2

+, of intensity measure dsdw. Denote by
(Ft)t≥0 the canonical filtration generated by these objects. Then, we define
the (Ft)t≥0-adapted càdlàg process (ZKt )t≥0 as the solution of the following
SDE: ∀t ≥ 0,

ZKt = ZK0 +

∫ t

0

∫
R+

(
10≤w≤λK(ZK

s−
) − 1λ(ZK

s−
)<w≤λK(ZK

s−
)+µK(ZK

s−
)

)
M( ds, dw) .

This representation is classical (see e.g Fournier and Méléard (2004); Cham-
pagnat and Méléard (2007)). The Poisson jumps related to the measure are
accepted or rejected thanks to the indicator functions. The variable w is then
used as an acceptance parameter in order to obtain the desired rates for each
event. Now, writing that P − a.s, for a positive and measurable test function
Φ,

Φ(ZKt ) = Φ(ZK0 ) +

∫ t

0

∫
R+

[
(Φ(ZKs− + 1)− Φ(ZKs−)10≤w≤λK(ZK

s−
)

+(Φ(ZKs− − 1)− Φ(ZKs−)1λK(ZK
s−

)≤w≤λK(ZK
s−

)+µK(ZK
s−

)

]
M( ds, dw) ,

so that for Φ(ZKt ) =
(
ZKt
)p and neglecting the negative death term, we obtain

(
ZKt
)p ≤ (ZK0 )p +

∫ t

0

∫
R+

(
(ZKs− + 1)p −

(
ZKs−

)p)
10≤w≤λK(ZK

s−
)M( ds, dw) .

Taking expectation, and using that for p ∈ N, (1 + z)p − zp ≤ C(p)(1 + zp−1),
we obtain that

E

[
sup

t∈[0,T∧τu]

(
ZKt
)p] ≤ E[

(
ZK0
)p

] + C(p)E

[∫ T∧τu

0

(
1 + ZKt−

) (
1 +

(
ZKt−

)p−1)
dt

]

≤ E[
(
ZK0
)p

] + C(p)

(
T +

∫ T

0

E

[
sup

u∈[0,t∧τu]

(
ZKu−

)p]
dt

)
.

We conclude with the Gronwall Lemma together with the assumption on the
initial condition. The second item of Proposition 5 is a classical property of
Markov processes, and (21) is obtained as a consequence. Finally, to obtain the
quadratic variation (22), one has to write the semi-martingale decomposition
of
(
ZKt
)2, one the one hand by applying (20) to Φ(z) = z2, and on the other

hand by applying (20) to Φ(z) = z before using the Itō formula. The conclusion
follows from the uniqueness of the decomposition.
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B Proof of Theorem 1

The proof is similar to the ones of (Joffe and Metivier, 1986; Ethier and Kurtz,
2009), and is based on a compactness-uniqueness argument. First, note that
since the rates under study have K-independent upper bounds, reproducing
the proof detailed in Appendix A lead to

∀ T > 0, sup
K>0

E

[
sup

t∈[0,T∧τu]
(ZKt )p

]
< +∞ .

The uniform tightness of the sequence of laws (QK)K of (ZK)K follows. Then,
from the Prokhorov theorem we deduce the relative compactness of the family
of laws (QK)K on D([0, T ],R+). Consider now a convergent subsequence of
limit Q, and a corresponding sequence of processes converging in distribution
to some n ∈ D([0, T ],R+) of law Q. Our aim is thus to identify this limit.
Firstly, since the jumps of (ZKt )t are of the form 1/K, we know that any
process of law Q is almost surely strongly continuous. Now, for t ≤ T ∧ τu,
denote

Ψt(n) := nt − n0 −
∫ t

0

c(u) + (r − d(ns))ns ds .

We can easily prove that for all t ≤ T , EQ [|Ψt(n)|] = 0. Finally, the conver-
gence follows from the uniqueness of solutions to (6) in C([0, T ],R+), which
comes from the Lipschitz-continuity of the disassembly rate.

C Proof of Theorem 2

C.1 Uniform estimates

We first prove two propositions that provide uniform estimates on the process.
They will be used to show the tightness of any sequence of laws associated with
(ZKt )K .

Proposition 6 Under the assumptions of Theorem 2, if

sup
K>0

E[(ZK0 )2] < +∞,

then for T < +∞,
sup
K

sup
t∈[0,T ]

E[(ZKt )2] < +∞.

Proof First, the infinitesimal generator (19) associated with Φ(x) = x2 writes

LKΦ(ZKs ) ≤
(
c+ rZKs

)(
2ZKs +

1

K

)
+ 2aZKs ≤ C

(
1 + ZKs + (ZKs )2

)
.
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Therefore, we obtain that

E[(ZKt )2] ≤ E[(ZK0 )2] + C

(
t+

∫ t

0

E[ZKs ] + E[(ZKs )2] ds

)
,

and since the Gronwall Lemma yields E[ZKs ] ≤ C(1 + E[(ZKt )2]), we deduce
that there exists C(T ) such that E[(XK

t )2] ≤ C(T ), and the Proposition is
proved.

Proposition 7 Under the assumptions of Theorem 2, if supK>0 E[(ZK0 )2] <
+∞, then for T < +∞,

sup
K

E

[
sup
t∈[0,T ]

ZKt

]
< +∞ .

Proof We first deduce from (21) that

sup
t∈[0,T ]

ZKt ≤ sup
t∈[0,T ]

|MK
t |+ ZK0 + cT + r

∫ t

0

ZKs ds . (23)

We want to take the expectation in this inequality. For that purpose, we first
use the Burkholder-Davis-Gundy inequality to write that

E

[
sup
t∈[0,T ]

|MK
t |

]2
≤ E

[
sup
t∈[0,T ]

|MK
t |2

]
≤ 4E

[
|MK

T |2
]

= 4E
[〈
MK

〉
T

]
.

Now, since E[ZK0 ] < +∞, we obtain from (23) that

E

[
sup
t∈[0,T ]

ZKt

]
≤ 2E

[〈
MK

〉
T

]1/2
+ C(T ) + rE

[∫ t

0

ZKs ds

]
.

We then use (22) to get

E[
〈
MK

〉
T

] ≤ cT + (r + deαu + 2a)

∫ t

0

E[ZKs ] ds ≤ C(T )

thanks to Proposition 6. We conclude using the Gronwall lemma.

C.2 Proof of convergence

The proof follows the same outline as in the deterministic case. First, we prove
similarly that the sequence of laws (QK)K of the processes (ZK)K is uniformly
tight in L(D([0, T ],R+)). Indeed, denote (AKt )t≥0 the finite variation process
associated to (ZKt )t. The Aldous and Rebolledo criterion (Aldous, 1989) states
that we need to prove that for all T > 0 the following inequalities hold true:

a) sup
K>0

E

[
sup
t∈[0,T ]

∣∣ZKt ∣∣
]
< +∞.
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b) ∀ε > 0, ∀η > 0, ∃δ > 0, K0 ∈ N∗ such that for all sequence (σK , τK)K of
stopping times with σK ≤ τK ≤ T,
(i)

sup
K≥K0

P
(∣∣< MK >τK − < MK >σK

∣∣ ≥ η, τK ≤ σK + δ
)
≤ ε,

(ii)
sup
K≥K0

P
(∣∣AKτK −AKσK ∣∣ ≥ η, τK ≤ σK + δ

)
≤ ε .

These estimates can easily by obtained by direct computations, using Propo-
sition 7 and the Markov inequality. Now, we aim at identifying the limiting
values. For Y = (Yt)t≥0 ∈ D([0, T ],R+), let us define

M̃t(Y ) := Yt − Y0 −
∫ t

0

c(u) + (r − d(Ys))Ys ds . (24)

We need to show that M̃t(N) is a twice-integrable continuous martingale with
quadratic variation process defined by〈

M̃
〉
t

= 2a

∫ t

0

Ys ds. (25)

First, we show that M̃(N) is a martingale. Take 0 ≤ s1 < ... < sn < s < t, and
Φ1, ..., Φn continuous bounded functions from R to R. Define Ψ on D([0, T ],R)
by

Ψ(Y ) = Φ1(Ys1)...Φn(Ysn)

[
Yt − Ys −

∫ t

s

c(u) + (r − d(Ys))Ys du

]
.

As for the proof of Theorem 1, we can show that E[Ψ(N)] = 0. The main
novelty in this proof consists in showing that the bracket of M̃ is given by
(25). We proceed in two steps.

1. First, we consider K-dependent semimartingale obtained from (20) with
Φ(ZK) = (ZK)2, that is related to the infinitesimal generator given by

LKΦ(ZKs ) = 2ZKs
(
c(u) + (r − d(ZKs ))ZKs

)
+

1

K

(
c(u) + (r + d(ZKs ) + 2Ka)ZKs

)
.

We can show that, at the limit, we obtain the following martingale:

∼
N t= (Nt)

2 − (N0)2 −
∫ t

0

2Ns (c(u) + (r − d(Ns))Ns) + 2aNs ds .

2. Then, the Itō formula applied to (24) show that

N2
t −N2

0− < M̃ >t −
∫ t

0

2Ns (c(u) + (r − d(Ns))Ns) ds

is a martingale. We conclude by the uniqueness of the semimartingale de-
composition of N2

t .
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The equivalence between the martingale problem (24)-(25) and the SDE (8)
follows from the classical martingale identification

M̃t =

∫ t

0

√
2aNs dBs ,

see for example Karatzas and Shreve (1998). Finally, the pathwise unique-
ness of the solution to (8) is classical in dimension 1 since the drift term is
Lipschitz-continuous and the diffusion coefficient is 1/2-Hölder (see e.g Ikeda
and Watanabe (1989)).

Remark 5 The solution is strong and has the strong Markov property.

D The CIR process

In this part, we give some classical results about the CIR process. For more
details we refer to Göing-Jaeschke and Yor (1999); Shreve (2004).

Reaching zero

First, it is known that forc > 0 and a positive initial state, {N = 0} is a
reflective barrier for the process (9). The properties of the probability P0 to
hit zero are gathered in the following table.

c < a
c ≥ a

r − d ≤ 0 r − d > 0

P0 = 1 P0 ∈ (0, 1) P0 = 0

These results can be intuitively understood when r − d ≤ 0, using the corre-
spondance between CIR processes and Orstein-Uhlenbeck processes. Indeed,
consider D such processes (X1, · · · , XD) such that ∀1 ≤ i ≤ D,

dXi
t = −1

2
βXi

t dt+
1

2
σ dBit ,

with (Bi)i independent Brownian motions and β > 0. Each process follows a
stochastic dynamics that is drifted to zero. The Itō formula allows the deriva-
tion of the SDE satisfied by R = (X1)2 + · · ·+ (XD)2, the squared euclidean
norm of (X1, · · · , XD). We obtain

dRt =

(
σ2D

4
− βRt

)
dt+ σ

√
R(t) dBt ,

with B a Brownian motion. The CIR Equation (9) is therefore obtained for
r − d = −β ≤ 0, σ2 = 2a and D = 4c/σ2 > 0. As a consequence, when 4c/σ2

is an integer, the CIR process writes as the squared norm of D Ornstein-
Uhlenbeck processes. Therefore, using the properties of the Brownian motin,
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the CIR process almost surely hits zero infinitely many times when D = 1,
while it has a null probability of reaching zero when D ≥ 2. As a remark, note
also that the CIR process can be rigorously related to the Squared Radial
Ornstein-Uhlenbeck process.

Distribution

When δ := 2c
a ∈ N and r− d < 0, the CIR process writes as the squared norm

of a δ-dimensional Ornstein-Uhlenbeck process. Consequently, we have that

Nt|n0 =
(1− e(r−d)t)2a

2(d− r)
Yt,

where Yt follows a non-central Chi-square distribution with δ degrees of free-
dom, and a non-centrality parameter ξt = n0

2(d−r)
(1−e(r−d)t)ae

(r−d)t. Moreover, the
mean solution and its variance can be computed from (9), leading to

E[Nt|n0] = n0e
(r−d)t +

c

d− r

(
1− e(r−d)t

)
,

V ar(Nt|n0) = n0
2a

d− r

(
e(r−d)t − e2(r−d)t

)
+

ac

(d− r)2
(

1− e(r−d)t
)2

.

For n ≥ 0, n0 > 0 and κt = d−r
(1−e(r−d)t)a , the probability density pn0

of the
CIR process writes

pn0
(n; k, ξt) = κt

(
n

n0e(r−d)t

) c
a−1

e−κt[n0e
(r−d)t+n]I c

a−1

(
2κt
√
n0ne(r−d)t

)
,

where
Iα(x) := Σ∞m=0

1

m!Γ (m+ α+ 1)

(x
2

)2m+α

is the modified Bessel function of the first kind, with Γ the Gamma function
defined by Γ (t) =

∫∞
0
xt−1e−x dx. A stationary distribution exists if and only

if r−d < 0 (Ikeda and Watanabe, 1989). In this case, following a Fokker-Planck
approach, one can check that the stationary density writes

p∞(n) =

(
d− r
a

) c
a 1

Γ
(
c
a

)n c
a−1e

r−d
a n ,

= N e−φ(n) ,

with φ(n) =
(
1− c

a

)
ln(n) + d−r

a n the corresponding potential, and N a nor-
malization constant.
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