
HAL Id: hal-02398053
https://hal.inria.fr/hal-02398053

Submitted on 6 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experience Report on the Development of a Specialized
Multi-view Multi-stakeholder Model-Based Engineering

Framework
Gurvan Le Guernic

To cite this version:
Gurvan Le Guernic. Experience Report on the Development of a Specialized Multi-view
Multi-stakeholder Model-Based Engineering Framework. DSM 2019 - 17th ACM SIGPLAN
International Workshop on Domain-Specific Modeling, Oct 2019, Athens, Greece. pp.50-59,
�10.1145/3358501.3361237�. �hal-02398053�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/275930952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02398053
https://hal.archives-ouvertes.fr


Experience Report on the Development of a
Specialized Multi-view Multi-stakeholder
Model-Based Engineering Framework

Gurvan Le Guernic
DGA Maîtrise de l’Information
Inria, Univ Rennes, CNRS, IRISA

Rennes, France

Abstract
This paper reports on industrial experimentations to develop
a dedicated model-based framework (process and tool sup-
port) aimed at supporting a subset of an existing document-
based engineering process involving different teams belong-
ing to two main stakeholders. The process supported covers
the design of security related products by a prime contractor,
and the supervision of this work by the contracting authority.
This paper provides more details on this process, the require-
ments for the model-based engineering framework, and the
work achieved. It then discusses the first results obtained
from those experimentations, the lessons learned, and pro-
vides feedback for future similar works. Those relate mainly
around: the benefits of an explicit and detailed methodology;
the customizability of a general modeling language such as
SysML for the development of a specialized model-based
framework; and the importance of the distinction and clear
definition of the problem domain, which correspond to the
semantics of the models, and the solution domain, which
corresponds to the syntax of the models.

CCS Concepts •General and reference→ Experimenta-
tion; •Computingmethodologies→Modelingmethod-
ologies; • Applied computing→ Computer-aided design;
• Software and its engineering→Model-driven software
engineering; System modeling languages.

Keywords Model-based engineering, experience report, frame-
work development, customization

ACM Reference Format:
Gurvan Le Guernic. 2019. Experience Report on the Development
of a Specialized Multi-view Multi-stakeholder Model-Based En-
gineering Framework. In Proceedings of the 17th ACM SIGPLAN

DSM ’19, October 20, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 17th ACM SIGPLAN International Workshop on Domain-
Specific Modeling (DSM ’19), October 20, 2019, Athens, Greece, https://doi.or
g/10.1145/3358501.3361237.

International Workshop on Domain-Specific Modeling (DSM ’19), Oc-
tober 20, 2019, Athens, Greece. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3358501.3361237

1 Introduction
The experiences reported in this paper fit in the specific
context where a stakeholder (contracting or certification
authority) interacts with other stakeholders (prime contrac-
tors or product vendors) to ensure that a product meets the
precise and complex requirements of the first stakeholder
(contracting or certification authority). In the security do-
main and for example, this setting is encountered in pro-
curement processes, NATO certifications, FIPS-140’s Crypto-
graphic Module Validation Program (CMVP), or more com-
monly Common Criteria (CC) certifications [25]. It can also
be encountered in other domains such as avionics or nuclear
safety. Requirements on information pieces, needed by the
authority stakeholder to be able to do its work, are usually
explicitly defined. Nowadays and partly due to the fact that
one authority stakeholder may have to work with different
contractors or vendors that apply different processes and
use different tools, those information pieces are mainly ex-
changed through numerous textual technical documents,
which can be ambiguous and sometimes inconsistent [5, 16].

The experiments reported in this paper aim at transform-
ing parts of a specific document-based process involving a
contracting authority and a prime contractor (described in
sect. 2.1) into a model-based process in order to facilitate and
automate the validation of the information pieces exchanged
and their evaluation. These experiments aim at developing a
Specialized Model-based Engineering Framework (SMEF) for
such a technical sub-process. It is specialized in the sense
that it facilitates the engineering tasks of this specific sub-
process, it is not aimed to be a general purpose model-based
engineering framework. It is a framework in the sense that
it is composed of a specific methodology and its supporting
tools. The methodology relies on a dedicated SysML [21]
profile, and the tools are built on top of Eclipse [26] and
Papyrus [12, 27].

The paper focuses mainly on the context, the findings and
personal thoughts resulting from the experimentation, rather
than on the specialized model-based engineering framework

https://doi.org/10.1145/3358501.3361237
https://doi.org/10.1145/3358501.3361237
https://doi.org/10.1145/3358501.3361237


DSM ’19, October 20, 2019, Athens, Greece Gurvan Le Guernic

itself. The main lessons learned from this experimentation
relate to the following points:

• the importance (for the development and use of the
modeling framework) of an explicit and detailed defi-
nition of the process supported and the information
manipulated by this process;

• the importance of a dedicated and customized support-
ing tool;

• the difficulty to develop such a dedicated tool;
• and the difficulty to embed a dedicated meta-model
for a complex set of information pieces into a SysML
profile.

The next section details the context of the work. It de-
scribes the sub-process for which the framework (SMEF)
is developed and the objectives that were to be met. Sec-
tion 3 describes succinctly the work that has been done,
while sect. 4 present the raw facts that resulted from the ex-
periments. Then the paper generalizes those facts in sect. 5
and gives personal thoughts and opinions on approaches to
improve on such works, before concluding in sect. 6.

2 Detailed Context and Objectives
This section describes first the context of deployment of the
future SMEF, and then explicits the main requirements that
the SMEF has to fulfill.

2.1 Context of Deployment
Figure 1 presents the general process into which this work
fits. This process is a generic procurement process for spe-
cific products that provides IT security related services. In
the remainder of this paper, following the CC [25] terminol-
ogy, the product acquired during this process is called the
Target of Evaluation (ToE). Among other things, the goal of
the close supervision by the contracting authority (CA) of
the work of the prime contractor (PC) is to ensure, as much
as possible, that the product’s design respects some good
practices and has good properties that allows for a smooth
evaluation phase. This fine-grained early-stage evaluation of
the product design requires that both stakeholders (CA and
PC) communicate using specific and detailed information on
the product’s requirements and envisioned architecture. The
information exchanged and the level of details required have
been explicitly defined by the CA, and the PC is required
to deliver specific (textual) documents that respects those
requirements. The sub-process of interest for this paper, and
for which a specialized model-based engineering framework
(SMEF) is developed, resides in the dashed area (with other
sub-processes). Communication in this sub-process is cur-
rently mainly based on 2 textual documents (that are also
used by other sub-processes): a document describing the
security requirements the product meets (called CdS); and
a document describing the envisioned architecture (called
DEC).

Conctracting authority (CA)

Prime contractor (PC)Final users

Certification
authority

Final users

CdS

CdS

DEC

Figure 1. Acquisition Process for IT Security Products

The CdS is similar to the Security Target document of the
Common Criteria for Information Technology Security Evalua-
tion (CC) [14, 25]. The CdS is based on the result of a security
analysis of the ToE. It includes a black box definition of the
product identifying, among other information: the environ-
ment of the ToE (actors and other devices in interaction with
the ToE); its interfaces; the services provided by the ToE; and
which actors have access to those services. Most importantly,
it also includes a description of the security related features
and objectives that the ToE must achieve.
The DEC shares some similarities with other artifacts of

the CC. It complements with more details the black box defi-
nition of the ToE, and provides two white box specifications
of the ToE: an “implementation independent” architecture
that focuses on the functional behavior and decomposition
of the ToE and shares similarities with a Platform Indepen-
dent Model (PIM) [7, 22]; and an “implementation focused”
architecture which emphasizes the specific hardware choices
and shares similarities with a Platform Specific Model (PSM)
[7, 22].

CdS

DEC

CdS

DEC

Contracting
Authority

Prime
Contractor

Security
Analysis
Teams

Architecture
Design
Teams

Figure 2. Exchanges overview

As illustrated in
Fig. 2, during the
sub-process of in-
terest for this pa-
per, and for which
a specialized model-
based engineering
framework (SMEF)
is developed, the
CdS is first initial-
ized by the contract-
ing authority (CA) and then updated regularly by the prime
contractor (PC). The DEC goes through an iterative process
of redaction by the PC and evaluation by the CA. Along with
the refinement of the design of the ToE, taking into account
information in the CdS, more and more details are added to
the DEC, that may in turn impact the CdS.



Experience Report on the Development of a Specialized Multi-view Multi-stakeholder Model-Based . . . DSM ’19, October 20, 2019, Athens, Greece

2.2 Constraints and Objectives for the SMEF
The goal of the experimentations reported in this paper is
to develop a Specialized Model-based Engineering Framework
(SMEF) that supports the Secure Design Engineering Process
(SDEP) succinctly described above. Contrary to the majority
of model-based engineering processes, two different stake-
holders are actively interacting with the model. One of them
will always be the same (the CA) while the other can be
many different industrial enterprises acting as PCs. Those
enterprises may (or may not) have their own model-based
engineering processes. It would be nearly impossible to dras-
tically change at once some of the processes of the CA, and
it would be difficult to impose a replacement of engineering
processes to enterprises working as PC (at least not for a rea-
sonable cost). Therefore, the proposed SMEF must cooperate
as smoothly as possible with existing document-based pro-
cesses used by the CA and with generic industrial engineering
processes.
Modeling is quite often a daunting task. Users tend to

get overwhelmed by the modeling possibilities and get lost
between all the potential “next steps” (adding information
in depth or breadth, and under which format) involved in
modeling a realistic product behavior and structure. Mod-
eling requires a strict discipline. In order to facilitate the
acceptance of the SMEF, the framework should come with a
precise methodology explicitly and clearly identifying what to
model, when, and using which modeling elements.
Related to the number and nature of active participants

(main stakeholders and teams inside them) as well as “sets of
information” (documents), during an instance of the SDEP,
pieces of information are regularly exchanged: between the
two main stakeholders (CA and PC); as well as between sets
of information (documents) and their associated teams in-
side the stakeholders (Fig. 2). Due to security reasons, those
pieces of information can not be shared on a common net-
work resource (access to the Internet is restricted and no
common network smoothly spans both stakeholders). At any
given time, the CA and PC work on different “subset copies”
of the same “set of information” (with organizationally lim-
ited overlap on information updates). Regularly, information
is exchanged to asynchronously update the different copies.
In order to be applicable in this setting, the SMEF should facil-
itate asynchronous updates of model copies by offline channels.
Additionally, inside each of the two main stakeholders, differ-
ent participants may be concurrently working on the same
“subset of information”. Hence the SMEF should also support
the concurrent interaction with a model and version control of
models.

In order to facilitate the acceptation of the SMEF, the SMEF
should comply with some of the practices of the document-
based SDEP. The SMEF should for example allow the automatic
generation of the main parts of the CdS and DEC documents

from the model. As the security analysis in the document-
based SDEP relies on attack trees [17, 23], the SMEF should
support security analyses based on attack trees and integrate
them in the model.

Finally, one of the main motivations to experiment with a
SMEF for the SDEP is to enhance the overall quality of the
different “information subset copies”. Therefore, the SMEF
should help ensure and verify the completeness and correction
of the model.

Summary of the SMEF’s high level requirements:
(HLR1) Must be based on a precisely described methodology

guiding the framework users;
(HLR2) Must be applicable with the vast majority of enter-

prises working on the development of secure IT prod-
ucts;

(HLR3) Must be compatible with the document-based secure
design engineering process (SDEP) highlighted in
Fig. 1 involving hardware and software design;

(HLR4) Must support collaborative work by facilitating: the
offline exchange of pieces of data between different
copies of the same model, and concurrent modifica-
tion of a model;

(HLR5) Must support the realization of security analyses
based on attack trees;

(HLR6) Must allow the nearly complete generation of CdS
and DEC;

(HLR7) Must reduce the incompleteness, ambiguities and in-
consistencies in the information exchanged between
the contracting authority and prime contractor.

Overall, it must be a model-based version of a document-
based process. The interactions between the final users and
the models must then closely reflect the content of the cur-
rent documents. As a consequence, similar approaches, as
SysML-Sec [2], can not be directly applied.

3 Realization / Work Done
Some of the experimentations work has been done in part
by contracts with companies. At the time of writing, all con-
tracted work is not finalized yet and the modeling tool of
the framework is thus still a property of one of the con-
tracted companies. However, important cooperation with
and supervision of the companies’ work, as well as intensive
verification operations, have allowed us to extract a first set
of results from those experimentations. Those findings are
exposed and discussed in the following section (sect. 4), while
the current section describes succinctly the work achieved.

Early in the experimentation, it has been decided that the
SMEFwould be built on top of SysML, and thus that the meta-
model used would be a SysML profile. This choice has been
madewith the aim to satisfy the high level requirementHLR2
and comply with the fact that SysML version 1.4 is an agreed
NATO standard for system modeling [9]. By choosing a well-
known and widely available standard, the goal is to facilitate



DSM ’19, October 20, 2019, Athens, Greece Gurvan Le Guernic

the integration of the SMEF with current and future model-
based engineering processes potentially used by enterprises
working with contracting authorities on the development
of secure IT products and to facilitate the comprehension of
the information carried by the SMEF models.

Definition of a precise and specializedmethodology. The
first work achieved in this experimentation is the clear defini-
tion of a specialized methodology incorporated to the SMEF.
This methodology defines:

• the process to follow, identifying the different tasks to
achieve, their precedence, the information exchanged
between those tasks, the information to define in each
task, and the documents or artifacts produced by each
task;

• the meta-model used, defined as a SysML profile, to
model those information pieces;

• and the “encoding” of information to be used, i.e. how
to model an information among the various ways an
information can sometimes be modeled in SysML.

The overall process is not divided into tasks performed by
the contracting authority (CA) and tasks performed by the
contractors. The process is defined along the different mod-
eling steps. During the execution of this process, the model
is created mainly (but not always) by the contractor and the
current model is regularly sent to the contracting authority
for analysis. Figure 3 provides an overview of the modeling
process. The SMEF process is divided between tasks per-
formed by security analysis teams and tasks performed by
architecture design teams.

Black Box model initialisation

Black Box security analysis

White Box security analysis

Security analysis teams

Black Box design

White Box implementation
independent design

White Box implementation
focused design

Architecture design teams

Figure 3. Overview of the SMEF process (BPMN)

The first major step consists in the initialization of the
black box specification of the future product and its security
analysis. This task is usually initialized by the CA’s secu-
rity analysis team and finalized by the contractor’s security
analysis team. This step is refined in a few different tasks.

Hypotheses, implementation constraints and security policies
(as defined in the common criteria [25]) are first created
from scratch or instantiated into the model from libraries
(a common criteria library is provided with the framework).
Then, the services provided by the product and known as-
sets manipulated by the product are modeled. At this stage,
services are modeled as UseCase objects extended with a
specific stereotype inheriting from the Security_Opera-
tion stereotype and storing additional information relevant
for the SDEP. Assets are modeled as DataType objects ex-
tended with a specific stereotype inheriting from a generic
Asset stereotype to store additional information related to
security properties. The different types of human actors in-
teracting with the future product (administrators, regular
users, remote users, auditors, . . . ) are modeled as Actor ob-
jects extended with an Agent stereotype. Once actors are
registered into the model, the hierarchy of actors is modeled
in a specialization of UseCase diagrams called Role diagrams.
And the accessibility of services to actors is modeled in other
specialized UseCase diagrams, called Service/Function dia-
grams, using association relations. Security functions (provid-
ing security related features) are then modeled as UseCase
objects extended with a specific stereotype inheriting from
the Security_Operation stereotype; and, using the same
type of diagrams (Service/Function diagrams), the security
functions used by the services are defined using “include”
relations. Then the environment entities of the product are
modeled as blocks in a specific Block Definition diagram
(BDD); and, in a specific Internal Block diagram (IBD), the
interfaces of the future product are modeled as stereotyped
FlowPort objects providing additional information such as
the services available on those interfaces and the assets tran-
siting on those interfaces. In this same IBD, the connections
between the future product and its environment entities are
modeled as stereotyped Connector objects which provide
information concerning the assets exchanged on those links.
Finally, the future product life cycle is modeled in a specific
StateMachine diagram using stereotyped State objects.
Once all those elements are modeled, an attack tree is

automatically initialized by combining information on as-
sets, services, security functions, life cycle states and interfaces.
This attack tree is then analyzed and completed to expose
all threats and cover each of them with an environment ob-
jective or technical objective. Environment objectives are then
translated into Security Assurance Requirements (SAR); and
technical objectives are translated to Security Functional Re-
quirements (SFR) assigned to security functions.
At this stage a first version of the CdS document can be

generated and the architecture design teams can start their
work. The first step is to model the external communica-
tion protocols as stereotyped Package objects containing
Sequence diagrams defining the message exchange process.
Protocols are modeled as packages in order to facilitate the



Experience Report on the Development of a Specialized Multi-view Multi-stakeholder Model-Based . . . DSM ’19, October 20, 2019, Athens, Greece

reuse of their definitions by relying on import/export fea-
tures of modeling tools. Once protocols are modeled, the
connections previously modeled are completed to specify
which protocols are used.

Then the functional decomposition (behavior) of services
and security functions are modeled using Activity diagrams.
When defining the behavior of a service or security func-
tion, an Activity object is associated to the Security_Ope-
ration stereotyped UseCase object modeling this service
or security function. This Activity object is also stereo-
typed Security_Operation with the same field values. It
is this Activity object for which an Activity diagram is
constructed. This activity diagram is mainly composed of
CallBehavior objects related to a service or security function
and Opaque Action objects.
Before being able to generate a first version of the DEC

document, it remains to create coverage links in the model
between SFR and security function behaviors in such a way
that, for every security function, every SFR assigned to it is
covered by at least one CallBehavior or Opaque Action of
its associated Activity diagram.

Then the architecture design teams can move to the mod-
eling of the white box design. The first task to accomplish
is to model “views” on the overall behavior of the future
product depending on: power sources available; authentica-
tion state; and functional state. This is done by creating
specialized StateMachine diagrams whose State objects
are stereotyped Power_State, Authentication_state or
Functional_State. Those stereotypes contain a field allow-
ing to enumerate the services potentially available in those
states. The next task is to describe the implementation in-
dependent architecture (similar to a PIM) using BDD and
IBD whose blocks are stereotyped to indicate that those
blocks are implementation independent and may receive ad-
ditional stereotypes to indicate that they belong to specific
“domains”, such as the administration domain. Services and
security functions are projected on those blocks as Opera-
tion objects stereotyped again with the Security_Opera-
tion stereotype. Once again, the values of the fields of those
stereotyped objects must match the values of the stereotyped
UseCase and Activity that represent the same service or se-
curity function. Stereotyped FlowPort objects are also added
to the implementation independent blocks to represent func-
tional interfaces. Those interfaces provide information such
as: the assets transiting through them, the functions that can
be called, and their accessibility to different actors.
Then the new security functions, assets and interfaces are

exported and sent to the security analysis teams. Those ele-
ments are imported and the security analysis is updated to
take into account those new elements. This may give rise to
new elements, including new SFR. Elements relevant to the
design teams are once again exported and sent to the design
teams which import them. The implementation independent
white box model (PIM equivalent) is updated if need be, and

the design teams move to implementation focused white box
model (equivalent to a PSM) executing similar tasks as for
the implementation independent white box model.

A specific model hierarchy. The security analysis and ar-
chitecture design teams have different views on the model
which can be roughly divided in three models: a Black Box
Model (BBM), Implementation Independent white boxModel
(IIM) and Implementation Focused white box Model (IFM).
The initial model of the analysis contains only the BBM,
which is exported to the design team after the security anal-
ysis (in addition, there is an attack tree model which is kept
separate and loosely linked to the BBM, and is never ex-
ported to the design teams). The model of the design team
contains all 3 sub-models and its BBM is initialized from the
one imported from the analysis team. The design team ex-
ports to the analysis team its BBM and some elements from
its IIM. After updating the security analysis, the analysis
team exports its new BBM and IIM.
In order to facilitate those export/import operations be-

tween the analysis and design teams, the overall model is
devided into (Papyrus) sub-models: one for the BBM, one for
the IIM and one for the IFM. In addition some elements, such
as the future product top architecture block, is duplicated
in each sub-model; while other elements, such as assets or
actors, must be created only in the BBM and referenced in
other sub-models. This is a compromise that allows BDD
and IBD in the sub-models to be self-contained (no blocks
are reference to blocks in other sub-models) while avoiding
excessive duplication.

Finally, in order to facilitate the navigation in a model that
may become quite big, there is a default model hierarchy to
follow. Elements such as actors, assets, services and security
functions have to be created in specific packages, mainly in
the BBM. Other packages are dedicated to the description of
specific aspects such as the product life cycle, the product
environment, and external communications.

Development of a dedicated specialized modeling tool.
In addition to the definition of a dedicated methodology, one
important part of the experimentation is the development of
a specialized modeling tool that supports and facilitates the
use of the SMEF.

This tool is heavily based on Eclipse Neon 3 and Papyrus
2.0.3 (https://www.eclipse.org/papyrus/). In addition, the
Xmind tool (https://www.xmind.net) has also been integrated
in order to manipulate the attack trees inside the model-
ing tool. And ReqCycle (https://www.polarsys.org/project
s/polarsys.reqcycle) has been integrated in order to han-
dle the high level security analysis requirements and no-
tions (including the CC ones such as SFR, SAR, and tech-
nical objectives). All those tools have been integrated in
such a way that traceability links can be created between
elements manipulated by those tools (attack trees, require-
ments, and product model). Themodeling tool also integrates

https://www.eclipse.org/papyrus/
https://www.xmind.net
https://www.polarsys.org/projects/polarsys.reqcycle
https://www.polarsys.org/projects/polarsys.reqcycle


DSM ’19, October 20, 2019, Athens, Greece Gurvan Le Guernic

MARTE’s library (https://www.omg.org/omgmarte) and is
able to generate documents from the models using GenDoc
(https://www.eclipse.org/gendoc).

The user interface of the modeling tool has been optimized
for the use of the SMEF’s SysML profile: dedicated (contex-
tual) SMEF sub-menus; “new” dedicated diagram types in-
heriting from SysML/UML diagrams; and optimization of
diagram palettes. For example, the contextual menu of the
“Roles” package proposes the creation of role diagrams (in-
heriting from UseCase diagrams) whose palette allows only
the creation of “Agent” objects (stereotyped actors) and gen-
eralization links.
The SMEF methodology (based on a SysML profile) re-

quires to create different (stereotyped) SysML objects for
a single “semantic” object (or notion). For example, in the
SysML model, a service (or security function) is represented
as a UseCase (for association in UseCase diagrams with ac-
tors and included security functions), an Activity (for as-
sociation with other model elements, such as behavioral
description or calls in Activity diagrams), and an Opera-
tion (for projection into blocks implementing this service).
In order to facilitate the preservation of the consistency
between those model artifacts representing the same “se-
mantic” object, some automatic behaviors have been imple-
mented in the modeling tool. For example, a drag’n drop of
a Security_Operation stereotyped UseCase object into a
block automatically creates into that block a Security_Op-
eration stereotyped Operation with the same field values
as the UseCase and associated with an Activity itself asso-
ciated with the originating UseCase.

The SMEF methodology also defines quality related rules
(e.g., every interface is typed, or every function is projected
on the architecture) and security related rules (e.g., sensitive
data is manipulated in accordance with its sensitivity level).
The modeling tool also provides features that help users
to comply with those rules at conception time (coloration
depending on projection status or sensitivity level of data
manipulated) and at verification time (OCL-based [20] and
Java-based verification rules).

4 Observations
Interesting observations started to emerge from the experi-
mentation as early as during the design phase of the method-
ology and modeling tool, and continued to emerge in all
the experimentation stages including a four months long
contractual verification operation involving the design of a
somewhat realistic product.

The current section reports on the main findings, some of
which are more widely discussed in sect. 5. It first describes
usability-related observation, some of which are related to
the implementation-related observation or to the design-
related observation.

Usability-related observations. The first point to empha-
size is the importance of the clear and explicit definition of
an associated methodology. A first benefit relates to the sup-
port its definition provides to the design of the framework.
The precise definition of the methodology associated with
the framework requires the clear definition of the informa-
tion that has to be modeled and of the information that is
exchanged between the different participants involved in ap-
plying the framework. Knowing precisely what information
needs to be modeled facilitates the creation of a clear domain
model dedicated to the precise process supported, which
gives rise to a meaningful and dedicated meta-model (or
profile). Whereas knowing in advance which subsets of this
information are exchanged helps structure the meta-model
in a way that facilitates (in the limits of what is possible) the
required export and import of model fragments. A second
benefit to the clear and explicit definition of an associated
methodology is that it helps users apply more easily the
SMEF. The first part of the SMEF user manual describes the
methodology. It describes the successive steps to follow to
execute the SMEF, what has to be done in every step, what
information has to be modeled. The first part of the manual
does not state how to model those information pieces; with
regard to the how, it only references sections in the second
part of the manual which explain how to use the modeling
tool to do those modeling operations. The first part of the
user manual, which we found to be the most useful, focuses
on what to do in the current stage, and not how to do it.
Clearly knowing what to do and when tremendously help
users apply the framework. Users do not get lost in front of
all the possibilities offered by the modeling tool.
With a similar consequence for users, modeling tool cus-

tomization removes unnecessary information and actionable
items away from the user, leaving only information and
operations that are relevant to execute the framework at
this stage. By offering a SMEF-specific contextual menu for
nearly every object, the modeling tool simplifies questions
that users can ask themselves, such as: what diagram to
create to define an object, what class or relation to use to ex-
press a specific information, or what type of object (child) to
create in a given package. As with an explicit methodology,
a customized modeling tool makes it easier for users to use
the framework and facilitates its adoption.
The current implementation of the Secure Design Engi-

neering Process (SDEP) relies on word-processing programs
to produce the two main documents shared between the
contracting authority and prime contractor (CdS and DEC).
Maintaining the accuracy and consistency of those docu-
ments through out the SDEP using word-processing pro-
grams is a difficult task. As the content and structure that
those documents have to respect are clearly specified, it has
been possible to ensure that the majority of information
they contain is included in the models and to generate de-
cent quality almost complete CdS and DEC from the model.

https://www.omg.org/omgmarte
https://www.eclipse.org/gendoc


Experience Report on the Development of a Specialized Multi-view Multi-stakeholder Model-Based . . . DSM ’19, October 20, 2019, Athens, Greece

This would allow to move from a document-based SDEP to
a model-based SDEP by going through a transition period
where both processes are used and the documents are pro-
duced from amodel. It is our belief that it can be useful, when
going from a document-based process to a model-based pro-
cess, to ensure that the majority of the documents used can
be generated from the models.
This experimentation has also given rise to less positive

observations. As stated in sect. 3, the SMEF’s model follows
a specific hierarchy facilitating navigation in the model and
export of sub-models. However, it has been found difficult to
respect this hierarchy during the whole modeling process. By
defaults in Papyrus, objects in a diagram are created under
the diagram’s root object. As the model grows in complexity
and objects are created driven by the diagrams need, the
model hierarchy tends to be less and less respected. It has
been found that, in order to respect the hierarchy, all objects
have to be first created in the model explorer and then incor-
porated in the diagrams. However, this approach requires a
strict discipline that is hard to follow. This may potentially
be solved by even more modeling tool customization in or-
der to create model objects in specific places respecting the
model hierarchy. However it is not obvious if it is possible
to define implementable rules that are not too restrictive.

Similarly, preserving the model consistency is difficult. In
part because the meta-model is a SysML profile (which is
discussed further below), many different objects and field
values have consistency relations (e.g., they should have the
same values, or should relate to the same objects or a subset
of objects). Preserving the model consistency manually is
doable, but really difficult. Some of the verification rules help
verify model consistency, but sometimes their implementa-
tion is itself based on the preservation of the consistency of
some relations or values. It should be possible to facilitate the
preservation of the model consistency by increasing the mod-
eling tool customization, but this would reduce flexibility
and increase the implementation complexity.
On a related and final usability point, the current imple-

mentation of the modeling tool has some stability issues
that are related to implementation difficulties. The first one
relates to the customizability of Papyrus/Eclipse which ap-
pears to not be as easy as it may seem (everything being
relative). While some lightweight customizations seem easy
to implement. The contracted company had difficulties to
implement some of the more “invasive” modifications. For
example, the company has been unable to deactivate the de-
fault verification rules related to UML profiles and MARTE.
Another implementation-related issue is the relatively low
stability and robustness of the tool. Seemingly minor excep-
tions (mainly NullPointer) pop up from time to time and
seem to gradually degrade the underlying model.

Design-related observations. The first design-related ob-
servation is not really new and is a point addressed in many

information-related models. However, it is a point that has
been overlooked while designing the SMEF meta-model and
is worthmentioning again. For information relatedmodeling,
it is important to distinguish between information (the con-
tent) and data (the container), and to capture the interesting
relations between those elements. The current SMEF meta-
model does not do this distinction and does not capture the
interesting relations between and among information pieces
and data. There is only one class (with inheriting subclasses
for types of data such as cryptographic keys, logs, . . . ) with
a classification field providing information on the impact on
the loss of this data. Therefore an unencrypted information
and the same information encrypted are represented by two
different objects having no direct relations. When designing
an information related meta-model it is important to distin-
guish between data and information, and to make sure the
meta-model embeds information relations that are relevant
for the models.
This experimentation also emphasized the difficulty to

embed a process-specific model (and its meta-model) into
SysML. Under this perspective, SysML does not closely fol-
lows the main philosophy of the family of Model-View-⋆
design patterns [24]. There is not a unique model where
process-specific (or domain) “entities” are instantiated only
once, and multiple partial views (diagrams) on that model.
In fact, it is as if there is one model per diagram (view) type.
Those models partially overlap and are partially coupled
by relations; but there aggregation does not form a unique
model where domain “entities” are instantiated only once.
As just exposed, many SMEF-specific entities had to be rep-
resented by different SysML objects in different diagrams.
For example, services or security functions are represented
by many different objects among which:

• a UseCase instance in order to capture accessibility by
users and inclusion relations in UseCase diagrams;

• an Activity instance in order to describe its behav-
ior in an Activity diagram and for linking with other
model elements;

• some CallBehavior instances to reflect execution of
the corresponding function in another service or func-
tion behavioral description;

• an Operation instance in order to register which ar-
chitecture block implements this function;

• some Behavior Execution Specification instances
to represent its execution in Sequence diagrams;

The differences between all those SysML classes are irrel-
evant for the SMEF. All those occurrences could be repre-
sented by a single element in the SMEF model. However,
in order to use SysML and its diagrams, it is necessary to
use many different model elements to represent the same
“domain” object. Finding which SysML classes to use to rep-
resent a “domain” object, and which relations to use to link
all its SysML model elements, has been not so obvious. Some



DSM ’19, October 20, 2019, Athens, Greece Gurvan Le Guernic

of the SysML objects that have to be created do not even
explicitly appear in the diagrams.
The multiplication of modeling elements to represent

the same “domain” object creates model consistency issues.
It is desirable that a service or security function be identi-
fied by a unique name. Should all the UseCase, Activity,
CallBehavior, Operation, Behavior Execution Speci-
fication instances have consistent values for their name
field? Or should only the UseCase name field be relied on
and all the other name fields be ignored? But then, would
not that be error prone for the user? Should modeling tool
automations ensure name consistency for all the instances?
Is it easy to implement correctly? If a UseCase already linked
to an Activity is linked to a different Activity, which ones
of the 3 instances need to have their name changed?Without
automations however, keeping the model consistent requires
a lot of work from the users. By analogy with the Model-
View-ViewModel design pattern (MVVM) [19], the SysML
diagrams are the views, the SysML model is the agglomera-
tion of the ViewModels, but the model itself (where domain
entities are instantiated only once) is missing. Potentially,
a better design pattern for the SMEF would be to follow
the MVVM pattern where a Domain-Specific Modeling Lan-
guagewould be used for themodel, and SysMLwould be used
only for ViewModels and Views. This would however give
rise to other difficulties linked to the bidirectional nature [1]
of transformations between Models and ViewModels.

5 Discussion
Two observations deserve a deeper discussion. The first one
concerns the distinction betweenmodel (abstract) syntax and
model semantics, and the relation to verification operations.
The second observation concerns the intrinsic reason why it
is difficult to embed specific ad’hoc models into SysML. The
statements expressed in this sectionmay be controversial for
some. This section expresses the authors’ personal thoughts
triggered by the experimentation work. They are not stated
as conclusions, but as an opening discussion.

5.1 Distinguishing Model Syntax and Semantics
One of the lessons learned from this experimentation is that
it is important, while designing process-specific “modeling
support” (the meta-model, or modeling language, that will be
used), to remember that amodel has a syntax and a semantics,
and that they are distinct. Syntax entities are interpreted to
give rise to semantics entities. Users interact trough “objects”
belonging to the syntax domain to express “information”
belonging to the semantics domain. Verification rules are
applied on syntax entities to check that semantics entities
have the right properties. Standard meta-model definition
defines model syntax, but semantics has not to be forgotten.

Syntax, semantics and their relation can, and should, be op-
timized to facilitate model manipulation by users and model
verification.

For example, in SMEF models, functions are decomposed
in (sub-)functions, architectural components are decomposed
in (sub-)components, and every function is projected on a
component (identifying which component implement which
functions). A semantically complete and correct SMEFmodel:
a) has all its functions projected on a component; b) and a
sub-function has to be projected on the same component
(or a sub-component) as its parent function. Semantically,
the projection relation between functions and components is
a many-to-one relation (⋆— 1). There are various ways to
syntactically represent this semantic relation, among which
the two following ones.

direct representation The relation can be directly repre-
sented in the model syntax by a many-to-one associa-
tion (⋆— 1).

indirect representation It can also be represented by an
“optional” association (⋆— 0..1) with the semantic in-
terpretation that, if a function is not syntactically pro-
jected on a component, then it inherits from its parent
semantic projection or, if it does not have a parent, it is
projected on the product top architectural component.

The direct representation involves more associations, that
have to be created and maintained. If the projection of a func-
tion is modified then the projection of all its sub-functions
also have to be modified. The direct representation implies
more work for the user and/or the modeling tool automa-
tions. From a verification point of view, using the indirect
representation, the first property (a) is always true, by virtue
of the semantic interpretation, and the second property (b)
is also always true for functions that are not syntactically
projected. For this particular case, the indirect representation
increases both usability and efficiency.

5.2 SysML is a Meta-model of “Views”
SysML, as a recognized general purpose system modeling
language standard, is a good mean to communicate on dif-
ferent aspects of an IT security-related product engineering
design. However, by observing drawings of SysML meta-
model graphs, one can observe that the classes associated
to the model elements used by different diagram types form
distinct “diagram cliques” sharing little to no elements.

This sighting is reinforced by the observations made when
designing the SMEF’s SysML profile and the way to use it
(Sect. 4). Many elements in the SMEF’s semantic domain
are represented by instances of multiple SysML classes: one
main instance per diagram type. For example, every secu-
rity function is represented by many different SysML ob-
jects, including: one UseCase instance for representation in
UseCase diagrams (the single instance can be reused in ev-
ery UseCase diagram but not directly in any other diagram



Experience Report on the Development of a Specialized Multi-view Multi-stakeholder Model-Based . . . DSM ’19, October 20, 2019, Athens, Greece

type); one Activity instance to be used as representation
of any Activity diagram root or linked to any call; one Ope-
ration instance to represent the security function in any
Block Definition diagram; and, a few Behavior Execution
Specification instances for representation in Sequence
diagrams.
This seems to suggest that a SysML (or UML) model is

not a model of a system with diagrams being views on that
model. Rather, it is an agglomeration of graphical diagram
models. SysML is an agglomeration of diagram meta-models
(Fig. 4b), rather than a single coremeta-model with the ability
to extract (and interact through) “views” which may have
their own meta-models (Fig. 4a).

Core
meta-model

View 1 View 2

View 3 View 4

(a) Core meta-model +
views

BDD IBD

UC SM

(b) Diagram meta-models
agglomeration

Direct consistency constraints between el-
ement instances

Figure 4.Metamodel structures

This share similarities with technical engineering draw-
ings [6, 10, 15, 28]. Historically, three dimensional objects
were mainly modeled, represented and communicated upon
using orthographic, a.k.a. multiview, projections (first-angle
or third-angle), similar to the one of Fig. 5a. In those draw-
ings, there is no direct syntactic model of the object per
se; rather there are some syntactic models of views on that
object. Those syntactic models can be interpreted to get se-
mantic models of those views; and, by combination of those
semantic models and intellectual deduction, a reader can
conceptualize a semantic model of the object itself. However,
nowadays with the advent of 3D CAD models, it is possible 1

to directly construct syntactic (numerical) models of the ob-
ject itself; and the multiview projections (Fig. 5a), which are
still useful for communication, are automatically extracted
from the object model (as for the axonometric projections of
Fig. 5b).

The current state of UML/SysML may be due to historical
reasons. Indeed, the majority of UML diagrams syntax and
semantics were first created in different contexts (a variant
of nearly every UML diagram types existed prior UML) and
they were all put together in a single standard, reusing their
syntax and semantics elements, and creating links between
12D CAD drawings are also a pertinent way to model 3D objects

(a) Orthographic (b) Axonometric

Figure 5. Projections of the same 3D object

them. It is not clear to the author if the fact that UML/SysML
is an agglomeration of views meta-models is only due to
historical reasons, or if there is a deeper intrinsic reason. It
may be the case that, for general purpose system modeling
languages, the only thing that can be generically defined are
the means to interact with and communicate on the model,
because an efficient core meta-model is too tightly linked to
the specificities of the fine purpose or application domain
of a model. Is it possible to construct a core meta-model for
UML/SysML: small enough to be usable and not too complex;
and expressive enough to serve as a general purpose system
meta-model? Is it possible to do it for a general purpose
system modeling language, or is it only doable for “purpose”
specific modeling languages (i.e. languages even more spe-
cialized than domain-specific ones)?

6 Conclusion
This paper reports on experiments to develop a specialized
model-based engineering framework (SMEF) for a design
engineering process of security-related IT products (SDEP).
The first step of this experimentation has been the definition
of a detailed and explicit methodology associated to the
SMEF. This definition work helped precisely define, as a
SysML profile, the meta-model used in the SMEF. Then a
specializedmodeling tool supporting use of the SMEF as been
developed by customization and integration of different tools
such as Xmind, ReqCycle and Eclipse/Papyrus.
Different observations have been made during the ex-

perimentation. Some of them relate to the usability of the
resulting framework and emphasize the importance of an
explicit and clear methodology. Such a methodology helps
user navigate the framework process. It also emphasized the
difficulty to project (or embed) an ad hoc process specific
model into a general purpose modeling language such as
SysML. For many domain concepts, every single instance
has to be represented by different SysML objects depending
on the views in which it is used. Which gives rise to a com-
plex meta-model having many consistency rules to respect
between the different elements of the model. Some of those
observations open up discussions on: the importance of the
distinction between syntax and semantics of models for the



DSM ’19, October 20, 2019, Athens, Greece Gurvan Le Guernic

design of the meta-model and verification rules; and the per-
ception of the UML/SysML meta-model as an agglomeration
of view meta-models.
Overall, the SMEF developed is usable “by fragments” to

model some aspects of the product. However, when used
for big models covering all aspects of interest for the SDEP,
consistency issues start to arise and are difficult to keep up
with. On top of that, some stability issues of the modeling
tool decrease its usability for big models.
It is not clear if a satisfying result could be achieved in a

tractable way using SysML. Its “agglomerate” nature makes
it difficult to use as a “core meta-model”. However, SysML
models are useful for communication. A more promising
approach may be to design a process specific meta-model to
construct the internal syntactic model of the product itself,
and translate it to “view” models for interaction (in a way
similar to what is done for 3D CAD models), and to SysML
models for communication.

Acknowledgments
The author wishes to thank the reviewers whose comments
helped improve this paper. Some of the insightful references
provided [3, 4, 8, 11, 13, 18] could not be integrated due to
lack of time, but will be in an extended version.

References
[1] F. Abou-Saleh, J. Cheney, J. Gibbons, J. McKinna, and P. Stevens. 2018.

Introduction to Bidirectional Transformations. In Bidirectional Trans-
formations. Lecture Notes in Computer Science (LNCS), Vol. 9715.
Springer, 1–28. https://doi.org/10.1007/978-3-319-79108-1_1

[2] L. Apvrille and Y. Roudier. 2013. SysML-Sec: A SysML Environment
for the Design and Development of Secure Embedded Systems. In Proc.
Conf. System Engineering.

[3] C. Atkinson, D. Stoll, and P. Bostan. 2010. Orthographic Software
Modeling: A Practical Approach to View-Based Development. In Proc.
Int. Conf. Evaluation of Novel Approaches to Software Engineering (Com-
munications in Computer and Information Science), Vol. 69. Springer
Berlin Heidelberg, 206–219.

[4] C. Atkinson, C. Tunjic, and T. Möller. 2015. Fundamental Realization
Strategies for Multi-view Specification Environments. In Proc. Int.
Enterprise Distributed Object Computing Conf. IEEE Computer Society,
40–49. https://doi.org/10.1109/EDOC.2015.17

[5] D. M. Berry, E. Kamsties, and M. M. Krieger. 2003. From Contract
Drafting to Software Specification: Linguistic Sources of Ambiguity –
a Handbook. Online. http://se.uwaterloo.ca/~dberry/handbook/amb
iguityHandbook.pdf

[6] G. R. Bertoline. 2008. Introduction to Graphics Communications for
Engineers (4th edition ed.). McGraw-Hill Education.

[7] J. Bézivin, S. Gérard, P.-A.Muller, and L. Rioux. 2003. MDA components:
Challenges and Opportunities. In Proc. Work. Metamodelling for MDA.
23–41. https://hal.archives-ouvertes.fr/hal-00448057

[8] H. Bruneliere, E. Burger, J. Cabot, and M. Wimmer. 2018. A Feature-
based Survey of Model View Approaches. In Proc. Int. Conf. Model

Driven Engineering Languages and Systems. ACM, 211–211. https:
//doi.org/10.1145/3239372.3242895

[9] C3B Interoperability Profiles Capability Team. 2019. NATO Interop-
erability Standards and Profiles. Allied Data Publication 34(L). NATO
C3B. Version 12.

[10] I. Carlbom and J. Paciorek. 1978. Planar Geometric Projections and
Viewing Transformations. ACM Comput. Surv. 10, 4 (Dec. 1978), 465–
502. https://doi.org/10.1145/356744.356750

[11] J. de Lara, E. Guerra, J. Kienzle, and Y. Hattab. 2018. Facet-oriented
Modelling: Open Objects for Model-driven Engineering. In Proc. Int.
Conf. Software Language Engineering. ACM, 147–159. https://doi.org/
10.1145/3276604.3276610

[12] S. Gérard, C. Dumoulin, P. Tessier, and B. Selic. 2010. Papyrus: A
UML2 Tool for Domain-specific Language Modeling. In Proc. Model-
based Engineering of Embedded Real-time Systems. Lecture Notes in
Computer Science (LNCS), Vol. 6100. Springer Berlin Heidelberg, 361–
368. https://doi.org/10.1007/978-3-642-16277-0_19

[13] E. Guerra. 2018. On the Quest for Flexible Modelling.
[14] W. H. Higaki and Y. Higaki. 2010. Successful Common Criteria Evalua-

tions: A Practical Guide for Vendors. Createspace.
[15] ISO. 1996. Technical drawings — Projection methods — Part 2: Ortho-

graphic representations. Standard ISO 5456-2:1996(en). International
Organization for Standardization.

[16] E. Kamsties. 2005. Understanding Ambiguity in Requirements Engi-
neering. In Engineering and Managing Software Requirements. Springer,
245–266.

[17] P. A. Khand. 2009. System level security modeling using attack trees.
In Proc. Conf. Computer, Control and Communication. 1–6. https:
//doi.org/10.1109/IC4.2009.4909245

[18] L. Lucio, S. bin Abid, S. Rahman, V. Aravantinos, R. Kuestner, and
E. Harwardt. 2017. Process-Aware Model-driven Development Envi-
ronments. In Proc. Int. Conf. Model Driven Engineering Languages and
Systems.

[19] Microsoft. 2012. The MVVM Pattern. https://docs.microsoft.com/en-
us/previous-versions/msp-n-p/hh848246(v=pandp.10)

[20] OMG. 2012. Object Constraint Language (OCL). Standard ISO/IEC
19507:2012(E). International Organization for Standardization. http:
//www.omg.org/spec/OCL/ISO/19507 Version 2.3.1.

[21] OMG. 2012. OMG Systems Modeling Language (OMG SysMLTM). Stan-
dard. Object Management Group (OMG). http://www.omg.org/spec/S
ysML/1.3/ Version 1.3.

[22] OMG. 2014. MDA Guide revision 2.0. OMG Document ormsc/2014-06-
01. Object Management Group (OMG).

[23] B. Schneier. 1999. Attack Trees. Dr Dobb’s Journal 24, 12 (Dec.
1999). https://www.schneier.com/academic/archives/1999/12/atta
ck_trees.html

[24] A. Syromiatnikov and D. Weyns. 2014. A Journey through the Land
of Model-View-Design Patterns. In Proc. Conf. Software Architecture.
21–30. https://doi.org/10.1109/WICSA.2014.13

[25] The Common Criteria Recognition Agreement Members. 2006. Com-
mon Criteria for Information Technology Security Evaluation. http:
//www.commoncriteriaportal.org/

[26] The Eclipse Foundation. 2019. Eclipse: The Platform for Open Innova-
tion and Collaboration. https://www.eclipse.org/.

[27] The Eclipse Foundation. 2019. Papyrus: Modeling environment. https:
//www.eclipse.org/papyrus/.

[28] Musashino Art University. 2018. Art & Design Glossary: Third Angle
Projection. http://art-design-glossary.musabi.ac.jp/third-angle-proj
ection/.

https://doi.org/10.1007/978-3-319-79108-1_1
https://doi.org/10.1109/EDOC.2015.17
http://se.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf
http://se.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf
https://hal.archives-ouvertes.fr/hal-00448057
https://doi.org/10.1145/3239372.3242895
https://doi.org/10.1145/3239372.3242895
https://doi.org/10.1145/356744.356750
https://doi.org/10.1145/3276604.3276610
https://doi.org/10.1145/3276604.3276610
https://doi.org/10.1007/978-3-642-16277-0_19
https://doi.org/10.1109/IC4.2009.4909245
https://doi.org/10.1109/IC4.2009.4909245
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)
http://www.omg.org/spec/OCL/ISO/19507
http://www.omg.org/spec/OCL/ISO/19507
http://www.omg.org/spec/SysML/1.3/
http://www.omg.org/spec/SysML/1.3/
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://doi.org/10.1109/WICSA.2014.13
http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/
https://www.eclipse.org/
https://www.eclipse.org/papyrus/
https://www.eclipse.org/papyrus/
http://art-design-glossary.musabi.ac.jp/third-angle-projection/
http://art-design-glossary.musabi.ac.jp/third-angle-projection/

	Abstract
	1 Introduction
	2 Detailed Context and Objectives
	2.1 Context of Deployment
	2.2 Constraints and Objectives for the SMEF

	3 Realization / Work Done
	4 Observations
	5 Discussion
	5.1 Distinguishing Model Syntax and Semantics
	5.2 SysML is a Meta-model of ``Views''

	6 Conclusion
	References

