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Abstract

An important open question in fluid dynamics concerns the effect of small-scales in structuring a fluid
flow. In oceanic or atmospheric flows, this is aptly captured in wave-current interactions through the study
of the well-known Langmuir secondary circulation. Such wave-current interactions are described by the
Craik-Leibovich system, in which the action of a wave induced velocity, the Stokes drift, produces a so
called “vortex force” that causes streaking in the flow. In this work, we show that these results can be
generalized as a generic effect of the spatial inhomogeneity of the statistical properties of the small-scale
flow components. As demonstrated, this is well captured through a stochastic representation of the flow.

1 Introduction

The in-depth understanding of the interactions between large-scale oceanic currents and small-scale fluctua-
tions of the velocity is of utmost importance for numerical simulation and analysis of oceanic flows. Today,
and for the foreseeable future, small-scale velocity fluctuations and their contributions to the large-scale flow
cannot be fully resolved in numerical simulations. These small-scale fluctuations arising from phenomena
such as surface gravity waves, internal waves, or turbulence, interact with the large-scale flow in a nonlinear
way. These interactions and their effects must be adequately modeled. A purely diffusive model, describing
the mixing effects of the small-scale components on the resolved system’s variables, will generally fail to
represent the emergence of secondary circulations such as Langmuir cells or velocity streaks in wall-bounded
turbulent flows.

The interaction of surface gravity waves with the mean current has been a subject of intense investigations
since the early seventies (Ardhuin et al. 2008; Craik and Leibovich 1976; Hasselmann 1971; Holm 1996;
Leibovich 1980; Longuet-Higgins and Stewart 1964; Phillips 1977). These studies have focused on the
nonlinear interactions between wave orbital velocities and the upper mean flow. In particular, they focus
on the role of the residual Stokes drift as the main driver of this interaction. Two parallel representations
are presented in literature: in the first the driving force is attributed to the action of the so-called ”vortex
force” while in the second, it is attributed to a radiation stress (Longuet-Higgins and Stewart 1964; Mellor
2003). These two representations are related (Lane et al. 2007) although both have been used to understand
different physical phenomena: wave setup in the coastal surf zone, long-shore currents, infra-gravity waves,
for the latter and Langmuir circulation for the former. The vortex force and its associated Bernoulli head
pressure term is now commonly used in oceanic simulation to take into account the effect of surface gravity
waves (Harcourt and D’Asaro 2008; Harcourt 2015; McWilliams et al. 1997; Teixeira and Belcher 2010).
Several equivalent forms of these wave-averaged representations are collated and analyzed in (Suzuki and
Fox-Kemper 2016).

It is important to note that the validity of these models are predicated on several assumptions. There
is a separation assumption on the temporal scales between the waves and the circulation. In addition, the
steepness of the waves is assumed to be small. The waves are also assumed to be quasi-irrotational with a
divergence free Stokes drift (Leibovich 1980; McWilliams et al. 2004; Mellor 2016). All these models rely on
an explicit representation of the waves, a natural requirement given the interactions they aim to represent.
However, there is an inherent limitation associated to such a formulation: they can not be easily extended
to include other interactions between small-scale velocity fluctuations and mean currents.

The objective of this work is to provide a consistent mathematical framework capable of accounting for
more general interactions between unresolved scales and the large-scale flow. This is achieved by a stochastic
representation of the flow dynamics (Chapron et al. 2018; Mémin 2014; Resseguier et al. 2017a,b,c,d). In
this representation, the velocity field, decomposed into a large scale flow component and a small-scale
random component, may reflect an effective advection characterized by the inhomogeneity of the random
flow component. This advection correction will be shown to encode within it, the Craik Leibovich vortex
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force. Thus, this representation, based on less restrictive assumptions, would encompass the original Craik-
Leibovich system as a particular instance. Yet, more complex interactions can be captured.

Stochastic representations of geophysical flows have long been the focus of intensive research efforts
(Franzke and Majda 2005; Hasselmann 1976). These investigations are motivated by the need to design
dynamic systems capable of taking into account error models for data assimilation or ensemble forecast-
ing. For these purposes, several different schemes have been proposed in literature. For example, many
early turbulence models were developed principally to quantify the effects of energy backscatter from the
fast/small scales of motion to the larger scales (Leith 1990). Related models have focused greater attention
on oceanography and weather forecasting (Buizza et al. 1999; Porta Mana and Zanna 2014; Shutts 2005).
They have been shown to improve the system forecasting skill for weather prediction but not for oceanic
flows (Andrejczuk et al. 2016). In order to cope with the energy dissipation due to unresolved scales, but
also to limit the increase in variance, these models are often artificially damped by eddy-viscosity diffusion.
This concept, introduced via an analogy with the molecular viscosity mechanism, dates back to the work of
Boussinesq (Boussinesq 1877) but has no basis on uncertainty modeling. Thus, a careful tuning of the noise
parameter combined with an unrelated viscosity to stabilize the model is required for implementing these
models successfully. The success of such tuning methods often do not extend into new flow regimes.

Contrarily, the stochastic framework proposed in this work is derived from physical conservation laws
expressed through the stochastic transport of fluid parcels. This ensures energy conservation and provides
new approaches to sub-grid parameterization, expressed both in terms of fluctuation distributions, and
spatial/temporal correlations. A very related circulation preserving approach derived from Hamiltonian
principles has been proposed in (Holm 2015). Energy conserving randomization have also been recently
proposed for climate modeling (Gugole and Franzke 2019). As such, these models introduce stochastic
corrections that are amenable to statistical inference from data (either observed, or numerical high-resolution
data) and yield new data analysis tools and models for turbulent flows (Resseguier et al. 2017d). This class
of models establishes a physically relevant randomization via its rigorous derivation at the fundamental level,
rather than a perturbation of the initial condition or ad hoc forcing (Chapron et al. 2018).

The paper is organized as follows. In the proceeding section, the Craik-Leibovich theory is briefly recalled
(Andrews and McIntyre 1978; Craik and Leibovich 1976; Leibovich 1980; Holm 1996) delineating the role
played by the Stokes drift. We then present in Section 3, the stochastic framework applied in this work. In
Section 4 we draw a framework parallel between the Craik-Leibovich system and our stochastic framework
leading to a general stochastic Craik-Leibovich system. In Section 5, some numerical results are provided
for a simple barotropic quasi-geostrophic stochastic system showing the structuring effect of the noise on
the large-scale flow. The stochastic model is analyzed, and we demonstrate the global energy conservation
property of the model.

2 Craik-Leibovich representation of waves-mean current in-
teractions

The Craik-Leibovich (CL) equations (see (Craik and Leibovich 1976; Holm 1996; Leibovich 1980; McWilliams
et al. 1997; Suzuki and Fox-Kemper 2016) for different elegant derivations) parametrize the effect of surface
gravity waves on the (large-scale) evolution of the mean current (u) :

∂tu+ (u · ∇)u = −∇π + uS × ω, ∇ · u = 0, π = p+
1

2
‖u+ uS‖2 −

1

2
‖u‖2, (1)

by recognizing the existence of a vortex force uS × ω, where ω = ∇ × u denotes the curl of the mean
current (i.e. the mean flow vorticity) while π is a modified pressure that includes the pressure p as well as a
correction term due to Stokes drift (velocity) uS . For a divergence-free large-scale velocity u, the pressure
p is the solution of the following Poisson equation:

−∇2(p+
1

2
‖u+ uS‖2 −

1

2
‖u‖2

)
=∇ ·

(
(u · ∇)u− uS × ω

)
. (2)

The Stokes drift is related to the velocity of the surface waves u′. In CL theory, it is given by:

uS =

(ˆ t

t0

u′ds

)
· ∇u′,

where the overbar represents a time average over fast variation at fixed Eulerian position. Leibovich demon-
strated that for the specific case of nearly rapid irrotational oscillations and surface waves with small slope,
the Eulerian mean velocity u is related to the Lagrangian mean uL through the Stokes drift velocity uS
(Andrews and McIntyre 1978; Leibovich 1980):

u = uL − uS +O(ε4). (3)

The vortex force uS × ω acts as a Lamb vector between the mean flow vorticity and the Stokes drift. The
Stokes drift and the associated vortex force term in the momentum equation have been shown to be the
main players in the interaction between the gravity waves and the mean current. Note that in its various
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derivations, the Craik-Leibovich system requires to assume irrotational waves with a weak slope and a
divergence free Stokes drift (Holm 1996; Leibovich 1980; McWilliams et al. 2004). Formally, it does not
strictly apply to general interactions between small-scale velocity fluctuations and the resolved flow. In
the following, we show how a stochastic representation enables us to model such interactions by expressing
them as a generic effect of the spatial inhomogeneity of the statistical properties of the velocity fluctuations
leading to the emergence of an associated vortex force.

3 Stochastic flow models under location uncertainty

The stochastic framework developed in this section, termed modeling under location uncertainty (LU), relies
on a decomposition in a Lagrangian setting of the velocity in terms of a smooth in time component u and
an incompressible highly oscillating random component

dXt

dt
= u(Xt, t) + σ(Xt, t)Ḃt. (4)

It is important to outline, that contrary to traditional Large Eddy Simulation (LES) settings, this decompo-
sition corresponds to a temporal decomposition and not a spatial decomposition formulated through spatial
filters and/or decimation operators. The resolved velocity component u corresponds to a smooth Lagrangian
quantity. The second term, referred to as the random component, is written (formally) as the time derivative
of a d-dimensional Brownian function Ḃt = dBt/dt. It represents the fast, unresolved velocity component.
In turbulent flows, time and spatial scales are related, and in the inertial range the turn-over time ratio
for two different scales, τL/τ` ∝ (L/`)2/3, exhibits a direct relation between a change of time scale and
a change of spatial resolution. A coarsening in time yields thus a space dilation. Efficient LES scheme
based on Lagrangian averaging (Meneveau and Katz 2000, and references therein) or more specifically on
temporal decomposition (4) have been assessed on several prototypical flows (Chandramouli et al. 2018;
Kadri Harouna and Mémin 2017; Resseguier et al. 2017d,b; Yang and Mémin 2019). Therefore, for ease of
understanding, we will adhere to the vocabulary of Large Eddy Simulation (LES) and refer to the first term
as the large-scale/resolved velocity component of the fluid motion while the second term will be designated
as the small-scale/unresolved velocity component.

The unresolved random component is assumed to be a Gaussian field that is uncorrelated in time at the
characteristic time-scale of the large-scale velocity component. Such a simple random field leads to a non-
Gaussian noise when incorporated in transport equations. This stochastic formulation is related, in spirit, to
the Lagrangian stochastic models based on Langevin equations proposed for turbulent dispersion (Sawford
1986) or for probability density function (PDF) modeling of turbulent flows (Haworth and Pope 1986; Pope
1994, 2000). Our interest will be, however, quite different as we only rely on such Lagrangian formulation
to infer the associated large-scale Eulerian representations of the flow dynamics. In this manuscript, we
will work in the Itô calculus setting. The Itô integral has the advantage of being of null expectation (it
is a martingale). From time to time, it will be interesting to use the Stratonovich notation (assuming the
integrand is continuous to safely move from one integral to the other) since the classical chain rule applies.
Note, however, that this comes with a loss of the martingale property. As a consequence, it is interesting to
highlight that the smooth in time velocity component u has the same mean as the fluid velocity u+σḂt. A
decomposition based on Stratonovich representation won’t keep this property, and would separate the flow
in terms of a smooth-in-time velocity component and fluctuation with non-zero mean.

The divergence-free random field involved in the Lagrangian formulation (4) is defined over the fluid
domain Ω through the matrix kernel σ̆(., ., t) of the spatial correlation operator σ(., t):

∀x ∈ Ω, (σ(x, t)f)i
4
=
∑
j

ˆ
Ω

σ̆ij(x,y, t)fj(y, t)dy, i, j = 1, . . . , d. (5)

This operator is assumed to yield a bounded covariance tensor defined as

Qij(x,x
′, t, t′) = E

(
(σ(x, t)dBt)i(σ(x′, t′)dBt)j

)
= cij(x,x

′, t)δ(t− t′)dt,

with E denoting expectation. The last equality is obtained through Itô isometry (41). Note also that the
diagonal of the covariance tensor, defined as aij(x, t) = cij(x,x, t), with cij = (σσT )ij , corresponds to the
so-called quadratic variation terms associated to the noise (c.f. Appendix A, (43), and (44)); it has the
dimensions of kinematic viscosity (m2/s) and plays the role of a generalized matrix-valued eddy viscosity.

3.1 Stochastic Reynolds transport theorem

The rate of change of a scalar quantity q within a volume that is transported by the random flow (4) provides
us a stochastic representation of the Reynolds transport theorem (RTT) (Mémin 2014). For a divergence
free random component, the stochastic RTT reads

d

ˆ
V (t)

qdx =

ˆ
V (t)

(
dtq +∇ · (qu∗)dt+ σdBt · ∇q −∇ · (

1

2
a∇q)dt

)
dx, (6)
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where the first term represents the increment in time of the random scalar q at a fixed position, and the
effective advection velocity u∗ in the second term is defined as:

u∗
4
= u− 1

2
∇ · a. (7)

Thus, the evolution of a conserved scalar (with an extensive property) reads immediately:

Dtq
4
= dtq +∇ · (qu∗)dt+ σdBt · ∇q −∇ · (

1

2
a∇q)dt = 0. (8)

For a divergence-free random field and a conserved scalar, this operator corresponds to the material derivative
and the product and chain rules apply (Resseguier et al. 2017a). The resulting stochastic partial differential
equation encompasses meaningful terms for studying turbulence at large scales. In fact, the fourth term on
the RHS is a dissipation term (with suitable boundary conditions), since

ˆ
Ω

q∇ · (a∇q)dx = −
ˆ
Ω

∇qTa∇qdx ≤ 0,

with a positive semi-definite variance tensor a. It depicts the mixing mechanism due to the action of the
unresolved scales. The third term represents the advection of the scalar quantity by the random velocity
component. This term involves the multiplication of the noise with the solution, which itself depends on
the noise. Thus, it is an advective multiplicative noise and therefore non-Gaussian. The effective advection
velocity in the second term captures the action of inhomogeneity of the random field on the transported
scalar. It is a statistical eddy-induced velocity of crucial importance, as will be shown later on. Such a
correction on the advection corresponds to the so-called turbophoresis phenomenon associated with small-
scale inhomogeneity. This phenomenon drives inertial particles toward regions of lower turbulent diffusivity
(Reeks 1983). In our stochastic framework, it is characterized by the turbophoresis term 1

2
∇ · a. It is also

akin to the velocity correction introduced for tracer mean transport in oceanic or atmospheric circulation
models (Andrews and McIntyre 1978). Recently, this correction was observed to play a fundamental role in
the buffer layer of wall bounded flows (Pinier et al. 2019).

Incompressibility conditions for a fluid with constant density are derived from (8) as:

∇ · σdBt = 0, (9a)

∇ · u∗ =∇ · (u− 1

2
∇ · a) = 0. (9b)

The first condition is intuitive and enforces a divergence free random component, whereas the second
constraint imposes a divergence-free condition on the effective advection. This latter constraint provides
a relation between the smooth resolved velocity component and the divergence of the variance tensor.
For homogeneous random fields (such as an isotropic turbulence) this equation boils down to a classical
divergence-free condition on the resolved velocity component (as the variance tensor is constant in that case).
For isochoric flows with variable density, as in geophysical fluid dynamics, we get a transport equation for
density of the form (8).

Moreover, given (9), the scalar transport equation has the remarkable property of energy conservation,
namely,

d

ˆ
Ω

1

2
q2dx = −

ˆ
Ω

1

2
(u∗dt+ σdBt) · ∇q2dx+ dt

1

2

ˆ
Ω

q∇ · (a∇q)dx︸ ︷︷ ︸
Energy loss by diffusion

+ dt
1

2

ˆ
Ω

∇qTa∇qdx︸ ︷︷ ︸
Energy intake by the noise

= 0,

where the last term on the RHS comes from the Itô integration-by-part formula (40), i.e., it conserves
the main specificity of the transport equation. Thus, we refer to operator Dt as a stochastic transport
operator. For a scalar conserved along time (such as density), this operator exactly corresponds to the
material derivative (Resseguier et al. 2017a).

3.2 Stochastic Navier-Stokes equations

The stochastic RTT (6) allows us to derive from Newton’s second principle (in a distributional sense) the
following system of modified Navier-Stokes equations for an isochoric fluid (Mémin 2014; Resseguier et al.
2017a):

Momentum equation :

Dt(ρu) = ρgdt−∇(pdt+ dpσt ) + µ∇2(udt+ σdBt). (10a)

Mass conservation :

Dtρ = 0. (10b)

Incompressibility :

∇ · (σdBt) = 0, ∇ · u− 1

2
∇ · (∇ · a) = 0. (10c)
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The forces on the RHS of (10a) are due to the gravitation potential, pressure and molecular friction forces
(with the dynamic viscosity µ). The pressure term is split into a continuous pressure p and a time-
uncorrelated random part ṗσt = dpσt /dt. This latter term describes the pressure fluctuations due to the
random velocity component. Note that the gravity force is continuous in time, whereas the friction force
applies both on the smooth and random velocity components. For a fixed observer in a rotating frame, the
rate of change of the fluid velocity incorporates the centripetal acceleration and the Coriolis acceleration as
additional terms. The centrifugal force is included within an effective gravity g. The Coriolis term applies
both to the large-scale component of the velocity and to the random small-scale field.

This system corresponds to a large-scale description of the flow in which the effect of the random com-
ponent is explicitly taken into account. Contrary to traditional Reynolds decomposition techniques, this
method does not rely on the time differentiability assumption of the velocity fluctuations. The use of
stochastic calculus to characterize the random component introduces naturally additional terms in the mo-
mentum equation. These terms inherently account for several interesting phenomena associated with fluid
flows such as (i) backscattering (via the multiplicative noise), (ii) large-scale dissipation (through an addi-
tional diffusion term) and (iii) turbophoresis effect (with the advection modification). The multiplicative
random term, responsible for energy backscattering, ensues from a scale separation principle between the
random fluctuation and the large-scale component. In fact, if the large-scale component is assumed to be
regular enough – formally a finite variation process, (10a) can be safely split in terms of martingale and finite
variation terms (i.e. dt and dBt terms). Then, the previous system simplifies to the following stochastic
LES system with a random forcing:

Momentum equations :

∂tu+ (u∗ · ∇)u− 1

2
∇ · τ = g − 1

ρ
∇p+ ν∇2u. (11a)

Effective advection (with turbophoresis) :

u∗ = u− 1

2
(∇ · a). (11b)

Diffusion (sub-grid tensor) :

τ = (a∇)u. (11c)

Pressure random contribution :

∇dpσt =−ρ(σdB̂t · ∇)u+ ν∇2σdBt. (11d)

Mass conservation :

Dtρ = 0. (11e)

Here, the momentum equation is a classical PDE (where the kinematic viscosity ν = µ/ρ has been introduced)
with a random forcing through the density. The mass conservation (11e) remains a stochastic PDE. For the
particular case of constant density, this equation simplifies to the following incompressibility constraints,

∇ · (σdBt) = 0, ∇ · u− 1

2
∇ · (∇ · a) = 0. (12a)

In this case, the momentum equation is purely deterministic (without random forcing). Nevertheless, the
system incorporates a stochastic balance equation on the pressure contribution dpσt associated to the unre-
solved random term. Also, this system includes the effective advection and the large-scale diffusion brought
by the random component, but loses in the momentum equation the multiplicative random term responsible
for energy backscattering. The shape of the dissipation operator is a priori known. Thus, there is no need
to invoke the Boussinesq assumption to model the Reynolds tensor. Note that the variance tensor (and the
noise, if required) can be constructed by drawing inspiration from known LES sub-grid scale models such
as the Smagorinsky model or its dynamical version based on Germano decomposition(Chandramouli et al.
2018; Kadri Harouna and Mémin 2017). However, it was concluded that local empirical constructions of
Chandramouli et al. (2018); Kadri Harouna and Mémin (2017) for the variance tensor provided more efficient
LES schemes. Oceanic subgrid scale models such as the Gent-McWilliams model can also be constructed
from the LU framework as shown in (Mémin 2014).

3.3 Stochastic geophysical models

In order to account for stratified oceanic or atmospheric flows, the pressure and density are decomposed as

p = p̃(z) + p′(x, y, z, t), (13)

ρ = ρ̃(z) + ρ′(x, y, z, t). (14)

The scalar fields ρ̃(z)
4
= ρb + ρ0(z) and p̃(z) are stationary components in equilibrium that depend only

on height. The fluctuating components are random functions, i.e. they depend on the random velocity
component. From the random momentum equation (10a), it can be readily inferred that the stationary
components are related by the hydrostatic balance:

∂p̃

∂z
= −g

(
ρb + ρ0(z)

)
, (15)
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where g denotes the acceleration due to gravity. Assuming small density fluctuations (i.e the so-called
Boussinesq approximation), the density anomalies are stochastically transported by

Dt(ρ− ρb) = 0. (16)

Including the Coriolis correction force due to earth rotation, fk, we obtain the so-called simple Boussinesq
system of equations:

Momentum equations:

Dtu+ fk × (udt+ σdBt) = b kdt− 1

ρb
∇(p′dt+ dpσt ) + F (udt+ σdBt). (17a)

Effective advection:

u∗ =

(
u∗h
w∗

)
= u− 1

2
(∇ · a)T . (17b)

Buoyancy equation:

Dtb+N2 (w∗dt+ (σdBt)z) =
1

2
∇ ·

(
a•zN

2)dt, (17c)

b = − g

ρb
ρ′, N2(z) = − g

ρb
∂zρ0(z). (17d)

Incompressibility:

∇ · u∗ =∇·
(
σdBt

)
= 0. (17e)

The term F (u) stands for the friction force. Neglecting this term yields the Euler-Boussinesq model.
As is common in geophysical models, the velocity is split into horizontal and vertical components. As a
consequence, the effective drift is also split into the corresponding horizontal u∗h and vertical w∗ components.
The dynamics of density fluctuations is expressed through the buoyancy variable b = − g

ρb
ρ′ and the Brunt-

Väisälä stratification frequency N2(z) = − g
ρb
∂zρ0(z). Also, a•z stands for the z column vector of a. In

comparison to the previous stochastic Navier-Stokes system, the buoyancy term in the momentum equation
constitutes an additional random forcing of the vertical large-scale velocity component. As previously shown,
this system can also be turned into an LES system with a scale separation assumption (i.e. finite variation
of the large-scale component). However, in this case the momentum equation retains its random nature due
to the buoyancy forcing.

From this system of equations a diverse set of approximated models can be obtained through adimen-
sionalization and power series expansions in terms of small Rossby number (ratio of the inertial force to
Coriolis force) with proper scalings (see e.g. Appendix D). These developments follow the same path as in
the deterministic setting. However, the noise introduces here an additional degree of freedom that must be
appropriately accounted for (Resseguier et al. 2017a,b,c). Instances of these approximated models include the
Planetary Geostrophic model (PG), the Quasi-Geostrophic model (QG) and the Surface Quasi-Geostrophic
model (SQG).

Stochastic reduced order models obtained from Galerkin projection onto data-driven basis functions can
also be derived from such a system of equations when combined with snapshots of velocity data (Resseguier
et al. 2017d). The stochastic Boussinesq model for Rayleigh-Benard convection leads to a stochastic version
of the Lorenz system (Chapron et al. 2018). This system, used as a proof of concept, seems to show an
ability of the stochastic system to visit the attractor region of the deterministic system more efficiently than
the deterministic model even for noise of low amplitude (Chapron et al. 2018).

In the following section we focus on the effective advection and on the interactions it has with the large-
scale components. This term unveils the contribution of inhomogeneity at the small-scales as a driver to
trigger large-scale structures in the flow.

4 Stochastic momentum equations in terms of effective ad-
vection

In order to interpret the action of the turbophoresis term in (17b) on the large-scale flow, we rewrite the
momentum equation in an equivalent form outlining the contribution of the effective advection. For reasons

that will be made clear in the following, the turbophoresis term uS
4
= 1

2
∇ · a is, henceforth, referred to as

the “Itô-Stokes” drift. In its expanded form, the stochastic Euler momentum equation (17a) reads:

dtu+
(
(u∗dt+ σdBt) · ∇

)
u− 1

2
∇ · (a∇u)dt+ f × (udt+ σdBt) = b kdt−∇(p′dt+ dpσt ). (18)
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By applying a change of variable in (18) from u to u∗, assuming a stationary Itô-Stokes drift, we get,

dtu
∗ +

((
(

turbophoresis︷ ︸︸ ︷
u∗ − uS )dt+ σdBt

)
· ∇
)
u∗ −

SGS︷ ︸︸ ︷
1

2
∇ ·

(
(a∇)(u∗ + uS)

)
dt−

noise advection

by Itô-Stokes︷ ︸︸ ︷(
uS · ∇

)
σdBt = b kdt

−∇dπt − ωS × (u∗dt+ σdBt)︸ ︷︷ ︸
Itô-Stokes force

−f × (u∗dt+ σdBt)− f × uS︸ ︷︷ ︸
Coriolis Stokes

dt+ uS ×
(
ω∗dt+∇× (σdBt)

)︸ ︷︷ ︸
vortex force

,

(19)

where the curl of effective advection and Itô-Stokes drift are denoted as ∇ × u∗ = ω∗ and ∇ × uS = ωS ,
respectively, and a modified pressure including a Bernoulli head term and a noise term has been introduced:

dπt =
1

ρb
(p′dt+ dpσt ) +

1

2

(
(‖u∗‖2 + ‖uS‖2)− ‖u∗ − uS‖2

)
dt+ uS · σdBt, (20)

by using the vector identity ∇(u · v) = (u · ∇)v + (v · ∇)u + u ×∇ × v + v ×∇ × u. On the RHS
of equation (19), a Craik-Leibovich vortex force appears. This force depicts the statistical contribution
of the inhomogeneity carried by the variance of the random field on the large-scale current. Hence, this
momentum equation may be seen as a general stochastic expression of the Craik-Leibovich system in which
the turbophoresis term replaces the Stokes drift associated to wave motion. This is the reason why we
designate this term with the more general descriptive name of Itô-Stokes drift. This equation still includes
a turbophoresis term and a large-scale dissipation. The Coriolis force now includes a correction term that
depends on the Itô-Stokes drift. An advection of the small-scale component by the Itô-Stokes drift also
emerges. In addition to the vortex force, this stochastic formulation includes another force, referred to here
as the Itô-Stokes force, related to the interaction of the flow with the vorticity of the Itô-Stokes drift. This
force could also be gathered with the Coriolis term to form a Coriolis force corrected by the Itô-Stokes
vorticity. This allows us to notice an interesting particular case. Given a downward curl of the Itô-Stokes
drift and a negligible Coriolis force in front of the Itô-Stokes force, a correction term appears acting opposite
to the Coriolis force. This is in agreement with recent studies showing the variability in turbulent intensity
to wind direction and latitude (Glazunov 2010; Liu et al. 2018). Note that the Itô-Stokes drift depends on
the variance tensor a, which is defined as the variance of the random displacement (σdBt) divided by a
decorrelation time τ (i.e. a ∝ L2/τ). Thus, the divergence and curl of the Itô-Stokes drift both scale as the
inverse of this decorrelation time (i.e. ∇ · ∇ · a ∝ 1/τ). These properties, possibly leading to Itô-Stokes
drift pumping effects, are thus small for sufficiently large decorrelation times such as infra gravity or long
waves. For gravity waves, the divergence and curl of the Itô-Stokes drift may not be necessarily small,
only becoming negligible for small slope waves and spatially smooth waves of low amplitude. For isotropic
random fluctuations, as in isotropic turbulence, the variance tensor is constant in space and the Itô-Stokes
drift cancels. In that case, the effective advection and the large-scale velocity are identical and there is
no vortex force nor Itô-Stokes force to structure the large-scale flow components. In such a scenario, the
only interaction between the large-scale velocity component and the fluctuations is the large-scale diffusion
term and the random advection term. Both of them are in equilibrium to ensure energy conservation. The
ratio between the decorrelation time and the characteristic time of the resolved quantities (or equivalently
the ratio between the Itô-Stokes drift divergence and the characteristic time at the resolved scale) can be

expressed as a Reynolds number based on the variance tensor (or eddy viscosity a) : τ
T

= L2

a
u
L

= Re(a).
This Reynolds number corresponds to a measure of the decorrelation time with respect to the the resolved
scale characteristic time. From the previous discussion, it is also a measure of the Itô-Stokes drift divergence
associated with the so-called Stokes-drift pumps responsible for upwelling and downwelling occurring at the
rear and in front of groups of surface gravity waves respectively (Haney and Young 2017; Longuet-Higgins
and Stewart 1964).

In the following we show how equation (19) can be simplified to get the Craik-Leibovich equation.

4.1 From LU equations to Craik-Leibovich equations

Equation (19) can be simplified with additional assumptions on the inhomogeneity of the small-scale com-
ponent. Given the incompressibility condition on the effective advection, ∇ · u∗ = ∇ · (u − uS) = 0, and
an incompressible large-scale flow, we infer an incompressible Itô-Stokes drift ∇ · uS = 0. In this case, the
summation of the SGS contribution on u∗ and the turbophoresis term gives:

− 1

2
∇ · (a∇u∗)− (uS · ∇)u∗ = −1

2

d∑
i,j=1

∂xi∂xj (aiju
∗), (21)

and the Itô-Stokes diffusion term reads:

− 1

2
∇ ·

(
(a∇)uS

)
= −1

2

d∑
i,j=1

∂xi∂xj
(
aijuS

)
+
(
uS · ∇

)
uS . (22)
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The last term of this equation can be written:(
uS · ∇

)
uS =

1

2
∇(‖uS‖2)− uS × ωS . (23)

Equation (19) can thus be written as

dtu
∗ +

(
(u∗dt+ σdBt) · ∇

)
u∗ −

SGS︷ ︸︸ ︷
1

2

d∑
i,j=1

∂xi∂xj
(
aij(u

∗ + uS)
)
dt−

noise advection︷ ︸︸ ︷(
uS · ∇

)
σdBt =

b kdt−∇(dπt +
1

2
‖uS‖2dt)− ωS ×

(
(u∗ + uS)dt+ σdBt

)︸ ︷︷ ︸
Itô-Stokes force

−f × (u∗dt+ σdBt)−

f × uS︸ ︷︷ ︸
Coriolis Stokes

dt+ uS ×
(
ω∗dt+∇× (σdBt)

)︸ ︷︷ ︸
vortex force

. (24)

Coriolis and Itô-Stokes forces can be gathered to get a Coriolis effect modified by the Itô-Stokes drift yielding,

dtu
∗ +

(
(u∗dt+ σdBt) · ∇

)
u∗ −

SGS︷ ︸︸ ︷
1

2

d∑
i,j=1

∂xi∂xj
(
aij(u

∗ + uS)
)
dt−

noise advection︷ ︸︸ ︷(
uS · ∇

)
σdBt = b kdt

−∇(dπt +
1

2
‖uS‖2dt)− (ωS + f)×

(
(u∗ + uS)dt+ σdBt

)︸ ︷︷ ︸
Coriolis + Itô-Stokes force

+uS ×
(
ω∗dt+∇× (σdBt)

)︸ ︷︷ ︸
vortex force

. (25)

When the Itô-Stokes drift term is sufficiently smooth in space (with a negligible curl) – which together
with the null divergence, implies that uS is quasi-harmonic, i.e. ∇2(uS) ≈ 0 – we obtain:

dtu
∗ +

(
(u∗dt+ σdBt) · ∇

)
u∗ −

SGS︷ ︸︸ ︷
1

2

d∑
i,j=1

∂xi∂xj
(
aij(u

∗ + uS)
)
dt−

noise advection︷ ︸︸ ︷(
uS · ∇

)
σdBt =

bk dt−∇(dπt +
1

2
‖uS‖2dt)− f ×

(
(u∗ + uS)dt+ σdBt

)︸ ︷︷ ︸
Coriolis + Stokes

dt+ uS ×
(
ω∗dt+∇× (σdBt)

)︸ ︷︷ ︸
vortex force

. (26)

As previously described, these equations can be written in an LES deterministic form (assuming u∗ is a
finite variation process) through a decomposition in terms of martingale and finite variation terms. For the
large-scale velocity component this yields (from (25)) a momentum equation of the form,

∂tu
∗ + (u∗ · ∇

)
u∗ − 1

2
∇ ·∇ ·

(
a(u∗ +uS)T

)
= b k−∇(π+

1

2
‖uS‖2)− f × (u∗ + uS)︸ ︷︷ ︸

Coriolis + Stokes

+ uS × ω∗︸ ︷︷ ︸
vortex force

, (27)

which recovers the CL form (1) with a pressure term

π = p′ +
1

2
‖u∗ + uS‖2 −

1

2
‖u∗‖2 = p′ +

1

2
‖u‖2 − 1

2
‖u∗‖2, (28)

accounting for the kinetic energy of the Stokes drift. This pressure term corresponds to the pressure correc-
tion terms found in (Harcourt 2015; Holm 1996; McWilliams et al. 1997).

In the original CL theory, the Stokes drift is identified with the residual velocity of the fast orbital
motion of the waves. It arises from a linear perturbation theory and can be defined (in the assumption
of small surface wave slope and nearly irrotational wave motion) as the difference between the Lagrangian
flow velocity of a fluid element and the averaged Eulerian flow velocity at a fixed point. In our stochastic
framework, it corresponds, instead, to a statistical correction resulting from inhomogeneity of the small-scale.
The quasi-harmonic assumption used to get the original CL system is much stronger than the usual small
slope wave assumption supporting the CL derivation (Leibovich 1980).

As discussed previously, this quasi-harmonic assumption considers either a sufficiently large decorrelation
time for the variance of the velocity fluctuations or smooth enough velocity fields with small inhomogeneity.
Within these hypotheses pertaining to the derivation of the Craik-Leibovich equations from the LU frame-
work (i.e deterministic u∗ and stationary quasi-harmonic Itô-Stokes drift), the effective advection u∗ can
be associated to the mean Eulerian component whereas u is, by definition, a smooth Lagrangian velocity
component. Without these assumptions, we get the more generalized system (19) in which the Itô-Stokes
drift component interacts with all the velocity components and with itself through a Lamb vector involving
its curl. It is important to stress that this general stochastic CL equation is equivalent to the Euler momen-
tum equations (18) for it preserves kinetic energy. This link between the stochastic Euler equations and the
Craik-Leibovich equations clearly shows the potential impact of inhomogeneity of the small-scale random
field in shaping large-scale structures such as Langmuir cells. Let us remark that for the buoyancy equation
(17c) or the transport of any scalar no particular changes needs to be done in our setting. These transport
equations involve the effective advection u∗ which includes the Itô-Stokes drift correction.
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4.2 Practical general consequences

The principal consequence of the connection between the Craik-Leibovich system and the stochastic system
(17a) is that in the latter the explicit inclusion of the vortex force is not necessary to trigger secondary
circulations. In the stochastic setting, such circulations require only a small-scale velocity component with
an appropriately defined Itô-Stokes drift. This constitutes a simplified procedure than considering an LES
representation with an explicit vortex force and the accompanying associated modifications (Coriolis modi-
fication; fluctuation-fluctuation interaction; modified pressure, etc.).

Furthermore, for accurate noise models (learned, for instance, from high resolution data), one might
expect not only to reproduce complex interactions between the mean current and the surface waves but also
interactions coming from sufficiently persistent small-scale inhomogeneity (for example, these small-scales
could be triggered by the internal waves that arise due to interaction of the bathymetry with tidal waves). In
that respect, in our setting, the traditional Stokes drift of the CL system can be interpreted as a particular
instance of small-scale inhomogeneity arising from gravity surface waves and wind forcing.

Before examining some numerical results, we provide some general remarks on the LU framework and
on the associated choices.

4.3 General remarks on the LU framework

Here, we address several points, which, in our opinion, characterizes our LU framework:

• The transport equations derived under the LU framework involves an effective advection u∗ indepen-
dent of the stochastic integral applied (i.e. both in Stratonovich and Itô setting) (see (51) and (59)
respectively). The LU framework under either stochastic setting retains the Itô-Stokes drift associated
to the inhomogeneity of the fluctuations, which is, as shown in this work, an important driver of sec-
ondary circulations. Hence, this capability is an intrinsic property of the LU framework in
the sense that it is independent of the type of stochastic integral used.

• The LU framework based on decomposition (4) includes a centered noise (i.e. of zero-mean) by the
definition of an Itô integral. Therefore, the mean of the Lagrangian large-scale velocity component
corresponds to the mean of the Lagrangian fluid velocity. In contrast, a Stratonovich decomposition
would lead to non-zero mean for the fluctuations.

For instance, let us consider the following decomposition :

dXt = u′(Xt, t)dt+ σ(Xt, t) ◦ dBt. (29)

Such a Stratonovich representation with divergence-free constraint is equivalent, as shown in Appendix
C, to the following Itô form :

dXt = u′(Xt, t)dt+
1

2
∇ ·

(
a(Xt, t)

)
dt+ σ(Xt, t)dBt.

A comparison of this equation with (4) and (7) gives u′ = u∗ = u− 1
2
∇·a. As a consequence, working

directly with a Stratonovich decomposition, for instance as done by (Holm 2015), leads to a momentum
equations on u∗ in which there is no effective advection. In this case, the relation with Craik-Leibovich
system can only be obtained by switching to the Itô setting or by considering additional random
processes c.f. (Holm 2019). Note also that a Stratonovich decomposition requires stronger smoothness
assumptions both in space and time of the transported quantities (see theorem C.2).

• The LU framework conserves the energy of a transported scalar for every realization. As shown later for
QG models, this allows us to build dynamics and draw realizations that have exactly the same energy
conservation properties as their deterministic counterpart. This strong asset of the LU framework
enables us to propose efficient schemes for numerical simulation, analysis and data assimilation of 3D
turbulent flows (Chandramouli et al. 2018; Kadri Harouna and Mémin 2017; Resseguier et al. 2017d).

• The derivation of the stochastic models under the LU framework follows the same path as the deter-
ministic derivation. As shown in this work, only the noise and its amplitude needs to be properly
scaled. To oceanographers, this may provide a very interesting and practical tool for investigating the
implication of the small-scales.

In the following, we apply our LU framework to a barotropic quasi–geostrophic model (BQG). We show that
the introduction of inhomogeneous noise induces a structuration of the flow with strong secondary vortices.

5 Stochastic Barotropic Quasi–Geostrophic model

The derivation of a BQG system under location uncertainty (denoted as BQGLU), described in Appendix
D, follows the same strategy as in the classical framework.

The stochastic advection–diffusion equation of the potential vorticity (PV) q reads

Dtq = dRt, (30a)
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q = ∇2ψ + f − 1

L2
R

ψ, (30b)

u =∇⊥ψ, σdBt =∇⊥ϕdBt, ∇ ·∇ · a = 0, (30c)

where f = f0 + βy is the Coriolis parameter on a beta-plane, LR is the Rossby deformation radius,
∇⊥ = [−∂y, ∂x]T is the perpendicular gradient in two dimensions, ϕdBt is a random streamfunction for the
unresolved flow and the source/sink process dRt is given by

dRt
4
=
[1

2
tr
(
∇⊥(∇ · a)T∇uT

)
+

1

2
∇ ·

(∂a
∂x
∇v − ∂a

∂y
∇u
)
− (∇ · a) · ∇f

]
dt−

tr
(
∇⊥(σdBt)

T∇uT
)
. (30d)

To interpret these forcing terms, it is informative to write the PV evolution equation in Stratonovich notation:

DSt q = dRSt , (31a)

dRSt
4
=

1

2

[
tr
(
∇⊥(∇ · a)T∇uT

)
− (∇ · a) · ∇f

]
dt− tr

(
∇⊥(σ ◦ dBt)

T∇uT
)
. (31b)

The first and last terms can now be interpreted as the rotating interaction between the strain vectors of

the resolved and unresolved flows. For instance, tr
(
∇⊥(σ ◦ dBt)

T∇uT
)

= 1
2
det
(

S(ϕ ◦ dBt), S(ψ)
)

with S

the strain vector (McWilliams 1984; Weiss 1991) can be decomposed into S1(ψ) = ∂u
∂x
− ∂v

∂y
= −2 ∂2ψ

∂x∂y
and

S2(ψ) = ∂u
∂y

+ ∂v
∂x

= ∂2ψ
∂x2
− ∂2ψ

∂y2
. In particular, this anti-symmetric source term will be zero when the two

strain vectors are colinear. A more precise exploration about these terms is described in (Resseguier et al.
2017b). In the following, we outline their contributions to the conservative budget of the QG system.

System (30) has the remarkable property of (resolved) total energy E conservation along each realization,
for ideal periodic, free or no-slip boundary conditions:

dE

dt
= 0, E =

ˆ
Ω

1

2
‖∇ψ‖2 +

1

2

( ψ

LR

)2

. (32)

This is shown in Appendix E using the Stratonovich notation (76a). The energy of the source processes
dRSt compensates the increase of energy due to the advection of the resolved flow by the unresolved one.
Therefore, the stochastic BQG system keeps an essential characteristic of the BQG deterministic system,
though, in this setting, PV is not strictly conserved. We note also that this system introduces a strong
incompressiblility constraint on the Itô-Stokes drift (30b).

5.1 Numerical experiments

In this section we aim at comparing, for BQGLU, the effect of an isotropic homogeneous noise with a
specified spectrum (and a null Itô-Stokes drift) and an inhomogeneous noise built from a scale similarity
assumption. For the first noise, no large-scale secondary structuration should be observed as no Itô-Stokes
drift is associated whereas in the second case the Itô-Stokes drift is non-zero and should impact the large-scale
solution. The construction of these two noises are presented hereafter.

5.1.1 The homogeneous isotropic stationary model

In the context of a stochastic SQG simulation, (Resseguier et al. 2017b) elaborated a random streamfunction
ϕdBt defined through a streamfunction kernel ϕ̆:

σ(x)dBt =∇⊥ϕ(x)dBt = (∇ϕ̆ ? dBt) (x). (33)

In practice, the streamfunction kernel is specified by three parameters: a fixed omni-directional spectrum
slope, denoted s; a band-pass filter fBP with support in the range of two wavenumbers κm and κM , and a
scalar variance tensor a0 similar to an eddy viscosity coefficient. In Fourier space the random streamfunction
is then conveniently defined as:

̂ϕ(x)dBt(k)
4
=

A√
∆t

fBP (‖k‖) ‖k‖−α η̂t(k) with α = (3 + s)/2, (34)

where ηt is a space-time white noise process and A is a constant to ensure E
∥∥σ(x)dBt

∥∥2
= 2a0∆t.

5.1.2 The heterogeneous non–stationary model

It is possible to write the unresolved velocity through a Karhunen-Loeve decomposition (Memin 2014):

σ(x, t)Ḃt =

N∑
k=1

ξk(x, t)Ẇk, (35)
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where (ξk)k=1,...,N are the so-called Empirical Orthogonal Functions (EOFs) weighted by the corresponding
eigenvalues, Wk are independent one-dimensional Brownian motions and N is possibly infinite. That kernel
corresponds – up to a decorrelation time – to the one-time-two-points covariance of the unresolved velocity.

Accordingly, we propose here a new parameterization approach with time-dependent EOFs estimated
on-line from a coarse simulation. To that end, assuming a scale similarity assumption, a set of small-
scale pseudo-observations are generated directly from the resolved velocity field. Then, a singular value
decomposition (SVD) of the associated empirical covariance matrix provides the EOF representation. The
variance of the noise is scaled at the resolution scale using a turbulence power-law scaling (Kadri Harouna
and Mémin 2017).

More precisely, at the current simulation time t, nO pseudo-observations of the velocity fluctuations
v′ at each grid point are build from a nw × nw (nw odd) sliding window. The fluctuations for a given
realization and a given grid point are set from the anomaly between the empirical local velocity average in
the spatially centered window and the velocity associated to random draws within this local window. We
denote by L = nw` the spatial scale of the window, where ` is the smallest scale of the simulation. A SVD
of the empirical correlation matrix composed of these pseudo-observations is performed to obtain the EOFs,
defined as in (35) with N = no. The pseudo-realizations v′ = v′L have been generated through a nw × nw
window average and are defined at a resolution corresponding to a virtual observation scale L; they must
be scaled down to the “simulation scale” `. Following (Kadri Harouna and Mémin 2017) the unresolved
velocity variance tensor a is rescaled by a coefficient:

a` = n−2/3
w aL, (36)

where aL and a` are the variance tensors at scales L and `, respectively. The unresolved velocity is finally
defined as:

σ(`)Ḃt = n−1/3
w σ(L)Ḃt. (37)

5.1.3 Simulation results

The non-dimensionalized simulation of the BQGLU system (with β = LR = 1) for the two types of noise are
initialized with the same monochromatic Rossby waves, ψ(x, t = 0) = 0.1 cos(2x), (which is a solution of the
deterministic BQG system). The geometry is defined as a uniform 128× 128 Cartesian grid within a doubly
periodic domain [0, 2π]× [0, 2π]. Hence, all prognostic variables, such as the streamfunction ψ, the relative
vorticity ξ = ∇2ψ, the vector noise σdBt and the variance tensor a are double periodic. To discretize
spatially the vorticity equation (30a), we employ Arakawa’s nine-point conservative scheme (Arakawa and
Lamb 1977), together with second order centered finite differences for the stochastic and diffusion terms.
For time-stepping of the large-scale time-correlated terms in (30a), we use a strong stability preserving third
order Runge Kutta (RK3) scheme (Gottlieb 2005) with a Courant-Friedrich-Lewy (CFL) number of 1/3.
The time-uncorrelated terms in (30a) are integrated in the final step of the RK3 scheme using the Euler-
Maruyama scheme (Gugole and Franzke 2019; Pavliotis and Stuart 2008). To invert the Helmholtz equation
associated to the streamfunction (30b), an efficient Fast Fourier Transform (FFT) solver (Press et al. 2007)
is adopted.

The objective here, in addition to the study of the structuration effect by the small-scales, is to assess
the preservation of the large-scale initial Rossby wave for the stochastic system under both noise models.
In the inhomogeneous case, at each time we uniformly draw no = 20 pseudo-observations by sliding a
n2
w = 3 × 3 window over the grid, with circular boundary conditions. Both the noise models are fixed to a

similar amplitude. To that end, the homogeneous noise amplitude is fixed with a0 ≈ 2.85 × 10−5, which is
determined by the mean amplitude of the inhomogeneous (and time varying) noise. The other parameters
are chosen as: kM = π/∆ with ∆ the grid spacing, km = kM/2 and s = −3. The vorticity evolution for each
noise is plotted in figures 1-2.

As can be observed, both noises lead to stable solutions. The initial monochromatic wave can still be seen
in both simulations in figures 1 and 2. The monochromatic wave can also be seen in the Fourier spectrum
of the temporal signal associated to a given point of the grid (see Fig. 3). The deterministic BQG and
the BQGLU for both noises have a strong common frequency peak corresponding to this monochromatic
wave. In the homogeneous case, for which the Itô-Stokes drift is null, we observe a statistically homogeneous
solution with no particular structuration of the flow. This can be observed visually in Fig. 1 or infered
from the Fourier spectra in Fig. 3. We clearly see the superposition of the monochromatic wave with a
homogeneous noise pattern active at all scales. In contrast, for the inhomogeneous case, after a spin-up
time of approximately t = 200, the apparition of large vortices can be observed in Fig. 2. These patterns
correspond to the secondary peak on the energy spectrum at slightly lower frequency than the monochromatic
initial wave as observed in the RHS of Fig. 3. They correspond to slower events. These vortices remain
stable for a while then disappear and reappear with a longer time periodicity. This structuration is stable
along time and still conserves the large scale Rossby waves. Note that due to energy conservation, a part of
the energy of the monochromatic wave is redistributed to the secondary vortex structure (as see in Fig. 3).
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Figure 1: BQGLU evolution of the relative vorticity for the isotropic stationary noise model (section 5.1.a)
over a period of t = 1000 adimensional time and a 128 × 128 spatial grid. At the initial time (left figure in
the first row) the relative vorticity is initialized with a monochromatic wave (solution of the deterministic BQG
model). This monochromatic wave is conserved by the stochastic system and an homogeneous noisy component
superimposed on it.

Figure 2: BQGLU evolution of the relative vorticity for the heterogeneous non–stationary noise model (section
5.1.b) over a period of t = 1000 adimensional time and a 128 × 128 spatial grid. At the initial time (left figure
in the first row) the relative vorticity is initialized with a monochromatic wave (solution of the deterministic
BQG model). This monochromatic wave is still conserved by the stochastic system but a secondary circulation
is triggered by the noise inhomogeneity (see Fig.3).
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Figure 3: Fourier spectra of the temporal series of a fixed grid point for the deterministic BQG (black curve),
BQGLU with isotropic noise (blue curve) and BQGLU with inhomogeneous noise (red curve); the right plot
corresponds to a zoom of the left plots. The frequency of the initial monochromatic wave is conserved in
all models (all the curves superimpose for this frequency). For the heterogeneous noise a second frequency
associated to the secondary circulation emerges.

6 Conclusion

In this study, we have shown that a physically consistent stochastic representation, derived from conservation
laws, introduces large-scale flow structuration caused by the action of the small-scale flow component. This
effect is generated by a velocity transport component, associated to the inhomogeneity of the small-scale
velocity fluctuations, that can be interpreted as a generalized Stokes drift – referred to in this work as Itô-
Stokes drift. With this analogy, and proper assumptions we have shown that the derived stochastic dynamics
encompasses the classical Craik-Leibovich system including a vortex force. This stochastic system, however,
generalizes the dynamics capable of accounting for more complex interactions between the resolved current
and the small-scale velocity fluctuations. The action of the velocity fluctuations towards large-scale flow
structuration is demonstrated on a simple barotropic quasi-geostrophic model. The randomized system still
conserves the Rossby wave structure, while introducing secondary vortices. On the contrary, a homogeneous
isotropic noise conserves only the primary wave structure. This is a strong indication of the predominant role
played by inhomogeneity of the small-scale velocity on shaping coherent large-scale structures in turbulent
flows as first wonderfully intuited by Phillips (1977).
The authors acknowledge the support of the “Laboratoires d’Excellence” CominLabs, Lebesgue and Mer
through the SEACS project.

For simplicity, the Einstein summation convention is adopted in the following.

A Quadratic (co-)variation

In stochastic calculus, the quadratic covariation (or cross-variance) of two processes X and Y is defined as:

〈X,Y 〉t = lim
n→0

pn∑
i=1

(Xn
i −Xn

i−1)(Y ni − Y ni−1), (38)

where 0 = tn0 < tn1 < · · · < tnpn = t is a partition of the interval [0, t] and this limit, if it exists, is defined in
the sense of convergence in probability.

Assuming that X and Y are two continuous semimartingales, defined as Xt = X0 + At + Mt, Yt =
Y0 + Bt + Nt with M,N martingales and A,B finite variation processes, then their quadratic covariation
(38) exists, and is given by

〈X,Y 〉t = 〈M,N〉t. (39)

In particular, the quadratic variation of a standard Brownian motion B (as a martingale) is given by 〈B〉t = t.
The quadratic (co-)variations play an important role in the Itô calculus and its generalization of the

chain rule. In particular, they are involved in the Itô integration by parts formula:

dt(XY ) = XdtY + Y dtX + d〈X,Y 〉t. (40)

They are also involved in the Itô isometry, used to express the covariance of two Itô integrals:

E
[( ˆ t

0

fdMs

)( ˆ t

0

gdNs
)]

= E
[ ˆ t

0

fgd〈M,N〉s
]
, (41)

where f and g are two predictable processes such that
´ t

0
f2d〈M,M〉s and

´ t
0
g2d〈N,N〉s are integrable.
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B Derivation of the stochastic transport operator

In this section, we show briefly how the stochastic transport operator Dt comes out. From basic knowledges
of stochastic calculus, if θ is a deterministic function of class C2 in space and of class C1 in time, the
differential of θ is given by the Itô formula (Kunita 1990). However, in our case the random scalar θ is a
semimartingale (assumed to be continuous). This requires, therefore, to compute the differentiation of the
composition of two stochastic processes. This is provided by the following generalized Itô-Wentzell formula
(Kunita 1990) :

Theorem B.1 (Generalized Itô’s formula I) Let θ(x, t),x ∈ Ω be a continuous C2-process and a con-
tinuous C1-semimartingale, let Xt be a continuous semimartingale with values in Ω. Then, θ(Xt, t) is a
continuous semimartingale satisfying

dθ(Xt, t) = dtθ(Xt, t) +
∂θ

∂xi
(Xt, t)dX

i
t +

1

2

∂2θ

∂xi∂xj
(Xt, t)d

〈
Xi, Xj

〉
t

+ d
〈 ∂θ
∂xi

(X, ·), Xi
〉
t
, (42)

where dtθ(x, t)
4
= θ(x, t+ dt)− θ(x, t) stands for the time increment.

For our stochastic flow (4), the first quadratic variation can be immediately determined from the definition
(5), as follows 〈

Xi, Xj
〉
t

=
〈 ˆ ·

0

(
σ(Xs, s)dBs

)i
,

ˆ ·

0

(
σ(Xs, s)dBs

)j〉
t

=
〈 ˆ ·

0

ˆ
Ω

σ̆ik(Xs,y, s)dB
k
s (y)dy,

ˆ ·

0

ˆ
Ω

σ̆jl(Xs,z, s)dB
l
s(z)dz

〉
t

=

ˆ t

0

ˆ
Ω×Ω

σ̆ik(Xs,y, s)σ̆jl(Xs,z, s) d
〈
Bk(y), Bl(z)

〉
s︸ ︷︷ ︸

δklδ(y−z)ds

dydz

=

ˆ t

0

ˆ
Ω

σ̆ik(Xs,y, s)σ̆kj(Xs,y, s)dy︸ ︷︷ ︸
σikσkj(Xs,s)

ds, ∀ i, j = 1, . . . , d, (43)

where δ denotes the Kronecker delta. This allows us to define

aij(Xt, t)
4
= σikσkj(Xt, t) =

d〈Xi, Xj〉t
dt

, ∀ i, j = 1, . . . , d. (44)

The last bracket in (42) is an additional term compared to the classical Itô formula. It describes the interac-
tion between the stochastic flow and the gradient of the transported quantity. Writing the semimartingale
θ in the form

dtθ(Xt, t) = f(Xt, t)dt+

ˆ
Ω

gk(Xt,y, t)dB
k
t (y)dy, (45)

this quadratic variation can be specified in a similar way as in (43), namely

d
〈 ∂θ
∂xi

, Xi
〉
t

= dt

ˆ
Ω

σ̆ij(Xt,y, t)
∂gj
∂xi

(Xt,y, t)dy. (46)

Substituting expressions (43) and (46) in Theorem B.1, we obtain the total variation of the scalar θ due to
the stochastic flow (4). This reads

dθ = dtθ + ui
∂θ

∂xi
dt+

ˆ
Ω

(σ̆ijdB
j
t )
∂θ

∂xi
dy +

1

2
aij

∂2θ

∂xi∂xj
dt+

ˆ
Ω

σ̆ij
∂gj
∂xi

dydt. (47)

In particular, for a conserved scalar driven by the stochastic flow such that dθ(Xt, t) = 0, one may specify
explicitly the expressions of f and g by identifying equation (47) and (45), namely

f = −ui
∂θ

∂xi
− 1

2
aij

∂2θ

∂xi∂xj
−
ˆ
Ω

σ̆ij
∂gj
∂xi

dy, gj = −σ̆jk
∂θ

∂xk
, (48)

since a semimartingale admits a unique decomposition (into a finite variation process and a martingale)
(Kunita 1990). Substituting the expression of g in equation (47) for the last term, we have

ˆ
Ω

σ̆ij
∂gj
∂xi

dy = −
ˆ
Ω

σ̆ij σ̆jkdy
∂2θ

∂xi∂xk
−
ˆ
Ω

σ̆ij
∂σ̆jk
∂xi

dy
∂θ

∂xk

= −aik
∂2θ

∂xi∂xk
−
ˆ
Ω

∂

∂xi
(σ̆ij σ̆jk)dy︸ ︷︷ ︸
∂aik
∂xi

∂θ

∂xk
+

ˆ
Ω

σ̆jk
∂σ̆ij
∂xi

dy︸ ︷︷ ︸
σjk

σij
∂xi

∂θ

∂xk

= −1

2
aik

∂2θ

∂xi∂xk
− 1

2

∂

∂xi

(
aik

∂θ

∂xk

)
− 1

2

∂aik
∂xi

∂θ

∂xk
+ σjk

σij
∂xi

∂θ

∂xk
(49)
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Sequentially substituting (49) in (47), the transport equation of θ reduces to

0 = dtθ +
(
uk −

1

2

∂aik
∂xi

+ σjk
σij
∂xi

) ∂θ
∂xk

dt+ (σdBt)
k ∂θ

∂xk
− 1

2

∂

∂xi

(
aik

∂θ

∂xk

)
dt

or, equivalently, in a vector form to

Dtθ
4
= dtθ +

((
u− 1

2
∇ · a+ σT (∇ · σ)

)
· ∇θ − 1

2
∇ ·

(
a∇θ

))
dt+ σdBt · ∇θ = 0. (50)

The stochastic transport operator with incompressible constraint on the unresolved random component
ensues immediately from this expression:

Dtθ
4
= dtθ +

((
u− 1

2
∇ · a

)
· ∇θ − 1

2
∇ ·

(
a∇θ

))
dt+ σdBt · ∇θ = 0. (51)

C Conversions between Itô and Stratonovich integrals

In this section, we give an equivalent expression of the stochastic transport operator (50) in the Stratonovich
form. To this end, a general Stratonovich–Itô–integral conversion rule (Kunita 1990) is first adopted:

Theorem C.1 If X and Y are two continuous semimartingales, the following Stratonovich integral is well
defined:

Xt ◦ dYt = XtdYt +
1

2
d
〈
X,Y

〉
t
. (52)

Applying this formula component-wise to our stochastic flow (4) yields(
σ(Xt, t) ◦ dBt

)i
=

ˆ
Ω

σ̆ij(Xt,y, t)dB
j
t (y)dy +

1

2

ˆ
Ω

〈
dσ̆ij(Xt,y, t), dB

j
t (y)

〉
dy︸ ︷︷ ︸

I

. (53)

Since σ is assumed to be deterministic in (5), the first term in I can be determined, by the classical Itô
formula (i.e. (42) without the last quadratic variation process), as follows:

dσ̆ij =
∂σ̆ij
∂t

dt+
∂σ̆ij
∂xk

(
ukdt+

ˆ
Ω

σ̆kl(Xt,z, t)dB
l
t(z)dz

)
︸ ︷︷ ︸

dXkt

+
1

2

∂2σ̆ij
∂xk∂xl

d
〈
Xk, Xl〉

t
. (54)

Substituting (54) for the term I in (53), we get

I =
1

2

ˆ
Ω×Ω

∂σ̆ij
∂xk

σ̆kl d
〈
Bl(z), Bj(y)

〉
t︸ ︷︷ ︸

δjlδ(y−z)dt

dydz =
1

2

∂σij
∂xk

σkjdt =
1

2

(∂aik
∂xk

− σij
∂σkj
∂xk

)
dt. (55)

Subsequently, substituting (55) in (53), then in (4), we deduce an equivalent Stratonovich representation of
our stochastic flow that reads in vector form as

dXt =
(
u− 1

2
∇ · a+

1

2
σT (∇ · σ)

)
dt+ σ ◦ dBt. (56)

Afterwards, for a random tracer θ (which is now assumed to be a smoother field than in Appendix B – more
precisely it is assumed to be C3 in space and C2 in time) advected by a Stranotovich flow, one can apply
the following generalized Itô’s formula (Kunita 1990):

Theorem C.2 (Generalized Itô’s formula II) Let θ(x, t),x ∈ Ω be a continuous C3-process and a con-
tinuous C2-semimartingale, let Xt be a continuous semimartingale with values in Ω. Then, the following
formula is satisfied :

dθ(Xt, t) = dt◦θ(Xt, t) +
∂θ

∂xi
(Xt, t) ◦ dXi

t , (57)

where dt◦θ(x, t)
4
= θ(x, t+ dt

2
)− θ(x, t− dt

2
) stands for the centered time increment.

Substituting (56) in (57), we deduce a Stratonovich representation of the stochastic transport operator
(50), that is

DSt θ
4
= dt◦θ +

(
u− 1

2
∇ · a+

1

2
σT (∇ · σ)

)
· ∇θdt+ σ ◦ dBt · ∇θ = 0. (58)

For incompressible flows, the Stratonovich transport operator reads

DSt θ
4
= dt◦θ +

(
u− 1

2
∇ · a

)
· ∇θdt+ σ ◦ dBt · ∇θ = 0. (59)

On the other hand, if we impose a Stratonovich decomposition at the beginning as given in (29), by applying
Theorem C.2 directly, the transport equation can be simply written as

dt◦θ + (u′dt+ σ ◦ dBt) · ∇θ = 0. (60)
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Nevertheless, one must keep in mind that numerous additional terms are hidden behind the Stratonovich
integral (i.e. in the two brackets of Theorem (B.1)). For instance, to interpret the smooth flow component
u′, one may first derive the corresponding Itô form of the Stratonovich flow (29), that is

dXt =
(
u′ +

1

2
∇ · a− 1

2
σT (∇ · σ)

)
dt+ σdBt, (61)

which can be shown in a similar way as in (52)-(56). Then, identifying this expression with (4), we deduce

u′ = u− 1

2
∇ · a+

1

2
σT (∇ · σ). (62)

Therefore, for incompressible noise, we have u′ = u∗.

D Derivation of the BQGLU

In this section, the derivation of governing equations for stochastic QG flows is performed with a similar
strategy as in the classical framework. In particular, the physical arguments used in the classical derivation
are also adopted. We start from the 2D (rotating) shallow water system under location uncertainty given in
(Mémin 2014), that is

Dtu+ fk × (udt+ σdBt) = −∇(φ′dt+ dΦt), (63a)

Dtφ′ + (c20 + φ′)∇ · udt = 0, (63b)

∇ · σdBt = 0, (63c)

∇ ·∇ · a = 0, (63d)

where k = (0, 0, 1)T and φ′ = gh′ stands for a perturbation of the geopotential φ = c20 + φ′, c20 = gH,
associated to a small perturbation of the surface height h′ w.r.t. a background height H. The quantity dΦt
is a rescaled random pressure contribution. We consider the following scalings

x = Lx1, u = Uu1, t = (L/U)t1, (64a)

f = f0f1, f1 = 1 +
βy

f0
= 1 + Roβ1y1, (64b)

φ′ = f0ULφ1, (64c)

a = εULa1, (64d)

σdBt =
√
εL(σdBt)1, (64e)

dΦt =
√
εf0L

2(dΦt)1, (64f)

where the capital numbers stand for the typical values of physical quantities, the numbers with subscript 1
are denoted as dimensionless quantities, Ro = U/(f0L) is the Rossby number and ε is a special scaling for
the amplitude of the variance tensor. In this work, we set it to be O(1) [or εRo = O(Ro)]. Substituting
these expressions in (63), we obtain the following non-dimensional system

RoDεt1u1 + f1k ×
(
u1dt1 +

√
ε(σdBt)1

)
= −∇1

(
φ1dt1 +

√
ε(dΦt)1

)
, (65a)

Roµ2
0Dεt1φ1 +

(
1 + Roµ2

0φ1

)
∇1 · u1dt1 = 0, (65b)

∇1 · (σdBt)1 = 0, (65c)

∇1 · ∇1 · a1 = 0, (65d)

where Dεt1θ
4
= dt1θ+ (u?1dt1 +

√
ε(σdBt)1) · ∇1θ− ε

2
∇1 · (a1∇1θ)dt1,u

?
1 = u1 − ε

2
∇1 · a1 and µ0

4
= f0L/c0

defined as a scaling constant. We then expand u1 and φ1 in power series of (small) Rossby number

u1 = u(0)
1 + Rou(1)

1 + · · · , φ1 = φ(0)
1 + Roφ(1)

1 + · · · . (66)

Substituting these expressions in (65) while using (64b) and keeping only the zeroth and first orders quantities
in the Rossby number,

RoDε(0)t1
u(0)

1 + k ×
(
u(0)

1 dt1 +
√
ε(σdBt)1

)
+ Rok ×

(
β1y1

(
u(0)

1 dt1 +
√
ε(σdBt)1

)
+ u(1)

1 dt1
)

= −∇1

(
φ(0)

1 dt1 +
√
ε(dΦt)1

)
− Ro∇1φ

(1)
1 dt1 + O(Ro

2), (67a)

Roµ2
0Dε(0)t1

φ(0)
1 + Ro∇1 · u(1)

1 dt1 +
(

1 + Roµ2
0φ

(0)
1

)
∇1 · u(0)

1 dt1 = O(Ro
2), (67b)

where Dε(0)t1
θ

4
= dt1θ +

((
u(0)

1 − ε
2
∇1 · a1

)
dt1 +

√
ε(σdBt)1

)
· ∇1θ − ε

2
∇1 · (a1∇1θ)dt1. The zeroth order

equations reduce to

u(0)
1 dt1 +

√
ε(σdBt)1 =∇⊥1

(
φ(0)

1 dt1 +
√
ε(dΦt)1

)
, (68a)
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∇1 · u(0)
1 = 0. (68b)

From (65c), equation (68a) reduces to

u(0)
1 =∇⊥1 φ(0)

1 , (σdBt)1 =∇⊥1 (dΦt)1. (69)

The first order equations reduce to

Dε(0)t1
u(0)

1 + k ×
(
β1y1

(
u(0)

1 dt1 +
√
ε(σdBt)1

)
+ u(1)

1 dt1
)

= −∇1φ
(1)
1 dt1, (70a)

µ2
0Dε(0)t1

φ(0)
1 +∇1 · u(1)

1 dt1 = 0. (70b)

Taking the curl (k · ∇1×) of equation (70a), we deduce an evolution law for the relative vorticity, defined

as ζ(0)
1

4
= k · ∇1 × u(0)

1 =
∂v

(0)
1

∂x1
− ∂u

(0)
1

∂y1
. It reads

Dε(0)t1
ζ(0)
1 + β1

(
v(0)
1 dt1 +

√
ε(σdBt)

y
1

)
+∇1 · u(1)

1 dt1 =
ε

2
γ
(
a1,u

(0)
1

)
dt1 +

√
εη
(

(σdBt)1,u
(0)
1

)
, (71a)

γ
(
a1,u

(0)
1

)
= tr

(
∇⊥1

(
∇1 · a1

)T∇1

(
u(0)

1

)T)
+∇1 ·

(∂a1

∂x1

∇1v
(0)
1 −

∂a1

∂y1
∇1u

(0)
1

)
, (71b)

η
(

(σdBt)1,u
(0)
1

)
= tr

(
∇⊥

1 (σdBt)
T
1∇1(u(0)

1 )T
)
. (71c)

Note that the following vector calculus identity has been used here several times :

k · ∇×
(
(A · ∇)B

)
=∇⊥ ·

(
(A · ∇)B

)
= tr

(
∇⊥AT∇BT

)
+ (A · ∇)(∇⊥ ·B), ∀A,B ∈ R2.

We then go back to the dimensional equation. The zeroth order quantities satisfy the scalings (64), while
(66), we deduce the scaling of the first order velocity such as u(1) = RoUu(1)

1 . Thus, the dimensional version
of equation (71a) and equation (70b) can be written, respectively, as

D(0)

t ζ(0) + β
(
v(0)dt+ (σdBt)

y
)

+ f0∇ · u(1)dt =
1

2
γ
(
a,u(0)

)
dt+ η

(
σdBt,u

(0)
)
, (72a)

D(0)

t φ(0) + c20∇ · u(1)dt = 0, (72b)

where D(0)

t θ
4
= dtθ +

((
u(0) − 1

2
∇ · a

)
dt + σdBt

)
· ∇θ − 1

2
∇ · (a∇θ)dt. Differentiating between equation

(72a) and equation (72b) multiplied by f0/c
2
0, as well as taking account of the Coriolis evolution, we obtain

a single equation

D(0)

t

(
ζ(0) − f0

c20
φ(0) + f0 + βy

)
=

1

2
γ
(
a,u(0)

)
dt+ η

(
σdBt,u

(0)
)
− β∇ · a·ydt. (73)

According to the incompressibility of u(0) and σdBt from (69), we introduce, respectively, a resolved
streamfunction ψ(0) = φ(0)/f0 and an unresolved one ϕdBt = dΦt/f0 such that u(0) = ∇⊥ψ(0) and
σdBt =∇⊥ϕdBt. Thus, the previous equation (73) may be re-written as

D(0)

t

(
∇2ψ(0) − f2

0

c20
ψ(0) + f

)
= dR(0)

t , (74)

where dR(0)

t
4
= 1

2
γ
(
a,u(0)

)
dt+ η

(
σdBt,u

(0)
)
− (∇ · a) · ∇fdt.

Finally, when the Rossby number tends to zero, we obtain a stochastic advection-diffusion equation with
sources and sinks for the PV, that is

Dtq = dRt, q = ∇2ψ − 1

L2
R

ψ + f, (75)

where LR
4
=
√
gH
f0

= c0
f0

.
On the other hand, if we use the Stratonovich transport operator (59) to derive the governing equations,

the equivalent Stratonovich representation of the system (75) can be written as

DSt q =
1

2
tr
(
∇⊥(∇ · a)T∇uT

)
dt− tr

(
∇⊥(σ ◦ dBt)

T∇uT
)
− 1

2
(∇ · a) · ∇fdt︸ ︷︷ ︸

dRSt

(76a)

q = ∇2ψ − 1

L2
R

ψ + f, (76b)

u =∇⊥ψ, ∇ · a =∇⊥ψ̃, σ ◦ dBt =∇⊥ϕdBt. (76c)
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E Energetics budget of the BQGLU

In this section, we show the conservation of total energy for the BQGLU, with a similar strategy as in
the classical deterministic framework (Pedlosky 1992). For ease of understanding, we use the previous
Stratonovich notation (76) in the following.

Recall that the total energy in a BQG system is defined as (Pedlosky 1992)

E =

ˆ
Ω

1

2
‖∇ψ‖2 +

1

2
Fψ2, F

4
=

1

L2
R

. (77)

We now compute its time evolution in the case of BQG-LU (76) :

dtE =

ˆ
Ω

(dt∇ψ) · ∇ψ + Fψdtψ

= −
ˆ
Ω

ψ∇ · (dtψ) +

ˆ
Ω

Fψdtψ (78)

= −
ˆ
Ω

ψdt(∇2ψ − Fψ) = −
ˆ
Ω

ψdtq, via (76b)

=

ˆ
Ω

ψ(u?dt+ σ ◦ dBt) · ∇q −
ˆ
Ω

ψdRSt , via (76a)

=

ˆ
Ω

ψ∇ ·
(

(u?dt+ σ ◦ dBt)q
)
−
ˆ
Ω

ψdRSt , via (76c)

= −
ˆ
Ω

∇ψ · (u?dt+ σ ◦ dBt)q −
ˆ
Ω

ψdRSt (79)

= −
ˆ
Ω

∇ψ · (−1

2
∇ · adt+ σ ◦ dBt)q︸ ︷︷ ︸
I

−
ˆ
Ω

ψdRSt , via (76c),

where equations (78) and (79) are obtained by integration by parts within a close impermeable boundary
condition (i.e. uniform ψ along the boundary) or with doubly periodic boundaries. Notice that until this
step, we show that without any noise, the classical QG system conserves well the total energy.

Let us expand the contribution of the random source/sink term as follows :
ˆ
Ω

ψtr
(
∇⊥(σ ◦ dBt)

T∇uT
)

=

ˆ
Ω

ψ∂⊥
i (σ ◦ dBt) · ∇ui

=

ˆ
Ω

∇ ·
(
ψ∂⊥

i (σ ◦ dBt)ui
)
, via (76c)

= −
ˆ
Ω

∇ψ · ∂⊥
i (σ ◦ dBt)ui (80)

= −
ˆ
Ω

(∇ψ)T (u · ∇⊥)σ ◦ dBt

=

ˆ
Ω

∇⊥ ·
(
u(∇ψ)T

)
σ ◦ dBt (81)

=

ˆ
Ω

∇ψ · σ ◦ dBt∇2ψ +

ˆ
Ω

(
u · ∇⊥(∇ψ)T

)
σ ◦ dBt︸ ︷︷ ︸

II

,

where ∂⊥
1 v

4
= −∂y, ∂⊥

2
4
= ∂x and equations (80) and (81) are obtained by integration by parts. Moreover,

the last term in the previous equation is null through (76c). Indeed,

II =

ˆ
Ω

(
u · ∇⊥(∇ψ)T

)
∇⊥ϕ ◦ dBt

= −
ˆ
Ω

∇⊥ ·
(
u · ∇⊥(∇ψ)T

)
ϕ ◦ dBt (82)

=

ˆ
Ω

∇⊥ ·
(
u⊥ · ∇(∇ψ)T

)
ϕ ◦ dBt

=

ˆ
Ω

tr
(
∇⊥(u⊥)T∇(u⊥)T

)
+ (u⊥ · ∇)(∇⊥ · ∇ψ) = 0

Similarly, one can show the result for the other source/sink term (of bounded variation) in (76a), that is
ˆ
Ω

ψtr
(
∇⊥(∇ · a)T∇uT

)
=

ˆ
Ω

∇ψ · (∇ · a)∇2ψ. (83)

This allows us to deduce the contribution of whole sources and sinks to the energetic budget as

−
ˆ
Ω

ψdRSt =

ˆ
Ω

∇ψ · σ ◦ dBt∇2ψ − dt

2

ˆ
Ω

∇ψ · (∇ · a)∇2ψ +
dt

2

ˆ
Ω

ψ(∇ · a) · ∇f. (84)
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On the other hand, we develop the contribution of the stochastic transport operator like

I = −
ˆ
Ω

∇ψ · σ ◦ dBt(∇2ψ − Fψ + f) +
dt

2

ˆ
Ω

∇ψ · (∇ · a)(∇2ψ − Fψ)− dt

2

ˆ
Ω

ψ(∇ · a) · ∇f. (85)

Thus, the evolution of the total energy reduces to

dtE =

ˆ
Ω

Fψ∇ψ ·
(
σ ◦ dBt −

1

2
∇ · adt

)
−
ˆ
Ω

f∇ψ · σ ◦ dBt

=

ˆ
Ω

∇ ·
(
Fψ∇⊥ψ

)
(ϕ ◦ dBt − ψ̃dt)−

ˆ
Ω

∇ · (f∇⊥ψ)ϕ ◦ dBt

=

ˆ
Ω

(
F∇ψ · ∇⊥ψ + Fψ∇ · (∇⊥ψ)

)
(ϕ ◦ dBt − ψ̃dt)−

ˆ
Ω

(∇f · ∇⊥ψ)ϕ ◦ dBt

= −β
ˆ
Ω

∂ψ

∂x
ϕ ◦ dBt.

Hence, the BQG-LU system conserves the total energy in a f–plane. The energy can be considered to be
conserved also in a β–plane since |βL| � |f0|.
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